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Chapter 1

Introduction

Information contained in many different physical phenomena (e.g., sounds, images) can be
described using signals. Manipulation with these signals using computers is the subject of
the signal processing field, which uses a variety of mathematical tools to analyse, process,
and synthesize them. The wavelet transform is one of these tools, allowing for the time–
frequency signal analysis. In other words, one can view the information associated with
a particular time and frequency.

The thesis focuses on methods for computing the discrete wavelet transform. Specif-
ically, it extends existing single-loop methods to enable dealing with a two-dimensional
multi-scale decomposition and to efficiently utilize features of modern CPUs.

The discrete wavelet transform (DWT) is a signal-processing tool suitable to decom-
pose an analysed signal into several scales. For each such scale, the resulting coefficients
are formed in several subbands. In the one-dimensional case, the subbands correspond to
low-pass (a) and high-pass (d) filtered subsampled variants of the original signal. Plenty
of applications are built over the discrete wavelet transform. One of them, nevertheless,
stands out quite markedly. The transform is often used as a basis for sophisticated com-
pression algorithms. Particularly, JPEG 2000 is an image-coding system based on such
a wavelet compression technique. Unfortunately, there exists several major issues with
effective implementation of the discrete wavelet transform. This holds true in particular
for images with high resolution (4K, 8K, aerial imagery) decomposed into a number of
scales (e.g. 8 scales). These issues are discussed below.

In the case of the two-dimensional transform, one level of the transform can be realized
using the separable decomposition scheme. In this scheme, the coefficients are evaluated
by successive horizontal and vertical 1-D filtering, resulting in four disjoint groups (a, h,
v, and d subbands). A naive algorithm of 2-D DWT computation directly follows the
horizontal and vertical filtering loops. Unfortunately, this approach is encumbered with
several accesses to intermediate results. State-of-the-art algorithms fuse the horizontal
and vertical loops into a single one, which results in the single-loop approach.

One level of the just described 1-D transform can be computed utilizing a convolution
with two complementary filters. However, on most architectures there exists a more
efficient scheme to calculate the transforms coefficients. This scheme is called lifting and,
in contrast to convolution, it benefits from sharing intermediate results.
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Figure 1.1: Shape of CDF 5/3 and CDF 9/7 wavelets. CDF 5/3 situated on the left,
while CDF 9/7 on the right.

As indicated above, for high-resolution data decomposed into several scales by a typi-
cal separable transform, many CPU cache misses occur. These cache misses significantly
slow down the overall calculation. Moreover, in real implementations, a large image
block often needs to be buffered, which makes the transform memory-demanding. The
motivation behind this work is to overcome these issues.

The thesis contributes to the state of the art of discrete wavelet transform computation
methods. The following paragraph particularly outlines the issues that are not solved
satisfactorily when using the existing methods.

The state-of-the-art approaches treat signal boundaries in a complicated and inflexi-
ble way. When we take these approaches into consideration, we find that parallelization,
SIMD vectorization, and the cache hierarchy exploitation are not handled well. This is
especially true in conjunction with multi-scale decomposition. Furthermore, the trans-
form fragments cannot be computed according to arbitrary application requirements.
For example, a particular transform block at a particular scale cannot be obtained with
minimal or no unnecessary calculations. Finally, these approaches do not address the
problem of scheme reorganization aimed at minimizing some of the platform’s resources
at the expense of others.

The thesis focuses on the CDF (Cohen-Daubechies-Feauveau) 5/3 and 9/7 wavelets,
which are often used for image compression (e.g. the JPEG 2000 or Dirac standards).
However, the methods are general and they are not limited to any specific type of trans-
form. For illustration, the CDF 5/3 and 9/7 wavelets are plotted in Figure 1.1.
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Chapter 2

State of the Art

This chapter reviews the wavelet theory and the state of the art of the efficient computa-
tion of the two-dimensional discrete wavelet transform. The discrete wavelet transform
can be understood as a method suitable for the decomposition of a signal into low-pass
and high-pass frequency components through so-called wavelets.

Wavelets are functions generated from one basic function by dilations and transla-
tions. Many constructions of wavelets have been introduced in the literature in the
past three decades; for example [1]. As a key advance, I. Daubechies [2] constructed
orthonormal bases of compactly supported wavelets in 1988. Subsequently, in 1992,
Cohen–Daubechies–Feauveau (CDF) [3] biorthogonal wavelets provided several families
of symmetric (linear phase) biorthogonal wavelet bases. Earliery, in 1989, S. Mallat [4, 5]
demonstrated the orthogonal wavelet representation of images. It was computed with
a pyramidal algorithm based on convolutions with quadrature mirror filters (QMF). In
the mid-1990s, W. Sweldens [6, 7, 8] presented the lifting scheme which sped up decom-
position. He showed us how any discrete wavelet transform can be decomposed into a
sequence of simple filtering steps (lifting steps).

For a description of the filters, the well known z-transform notation is employed. The
transfer function of the one-dimensional FIR filter h(k) is defined as

H(z) =
∑
k

h(k) z−k. (2.1)

For a better insight, the discrete wavelet transform can be understood as the approxi-
mation of a continuous signal by superposition of the individual wavelets. Generally, the
wavelets ψ ∈ L2(R) are continuous functions from the Hilbert space of finite energy func-
tions localized in both time and frequency. However, if we limit ourselves to the discrete
wavelet transform, the wavelets are further constrained by the following equations. The
approximation is calculated through two conjugated quadrature filters often referred to
as h, g. The relation between the wavelet and these filters is

φ(t) =
√
2
∑
n

h(n)φ(2t− n), (2.2)

ψ(t) =
√
2
∑
n

g(n)φ(2t− n), (2.3)
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where φ ∈ L2(R) is a scaling function, which was formulated [4, 9] by S. Mallat. As a
consequence of these equations, the multi-scale DWT can be computed by passing the
signal through a filter bank comprising the h̃, g̃ filters followed by subsampling. One level
of the decomposition linked with the synthesis is shown in Figure 2.1. The method is
also referred to as the multiresolution analysis (MRA).

H̃(z−1) a

d

↓ 2

+

G̃(z−1) ↓ 2

↑ 2 H(z)

↑ 2 G(z)

Figure 2.1: Analysis and synthesis part of DWT using FIR filters.

2.1 Lifting Scheme

DWT decomposes the signal into low-pass (a) and high-pass (d) frequency components
using two analysis filters – h̃ (low-pass) and g̃ (high-pass) – followed by subsampling. The
inverse transform first upsamples the a and d components and then uses two synthesis
filters h (low-pass) and g (high-pass). The signal-processing view of such a decomposition
and analysis is shown in Figure 2.1. Readers not very familiar with DWT are referred to
the excellent book [10] by S. Mallat. For details about the lifting scheme, see [8, 7].

The polyphase representation [11, 8] is a convenient tool to express the h, g, h̃, g̃ filters
as a sum of shorter filters formed by even (e) and odd (o) coefficients of the original ones.
Having these filters, the assembled polyphase matrix

P (z) =

He(z) Ge(z)

Ho(z) Go(z)

 (2.4)

expresses the inverse transform. Such a polyphase matrix can be factorized (e.g. using
the Euclidean algorithm [12]), so that

P (z) =
I−1∏
i=0


1 Si(z)

0 1

 1 0

Ti(z) 1


K 0

0 1/K

 , (2.5)

where K is a non-zero constant, and polynomials Si(z), Ti(z) for 0 ≤ i ≤ I − 1 represent
the individual lifting steps. Since the DWT has the perfect reconstruction property
P (z) P̃ (z−1)T = I, where I is the identity matrix and ·T denotes the transposition, the
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dual polyphase matrix

P̃ (z) =
I−1∏
i=0


 1 0

−Si(z
−1) 1

1 −Ti(z−1)

0 1


1/K 0

0 K

 (2.6)

describes the analytical part of DWT (forward transform). The −Ti(z−1) is called the
predict, whereas −Si(z

−1) is called the update. Before the decomposition, the input
signal is split into two disjoint groups a, d (using even/odd sample indices). Then, the

individual lifting steps are performed
[
d a

]T
= P̃ (z−1)T

[
d a

]T
resulting in a, d

subbands. The system is illustrated in Figure 2.2.

a

d

split P̃ (z−1)T P (z) merge

Figure 2.2: Analysis and synthesis part of DWT using lifting schemes.

Focusing on the CDF 9/7 wavelet as an example, the forward transform can be ex-
pressed [8] by the dual polyphase matrix

P̃ (z) =

1 α (1 + z−1)

0 1

 1 0

β (1 + z) 1


1 γ (1 + z−1)

0 1

 1 0

δ (1 + z) 1

ζ 0

0 1/ζ

, (2.7)

where ζ is called the scaling constant. The α, β, γ, δ, ζ are real constants [8] specific to
the CDF 9/7 transform. The forms (1 + z−1) and (1 + z) of the polynomials indicate
symmetry of the lifting steps as well as the original filters. It should be noted that
this particular wavelet is widely used in image processing, for example, in JPEG 2000
compression standard.

2.2 2-D Decomposition

S. Mallat [4] demonstrated the wavelet representation of two-dimensional signals com-
puted with a pyramidal algorithm based on convolutions with quadrature mirror filters.
One level of such a 2-D pyramid leads to a quadruple of wavelet coefficients (a, h, v,
d). The transform is defined as the tensor product of 1-D transforms. In this case, the
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two-dimensional transform consists of horizontal and vertical filtering steps. Considering
the lifting scheme [8], the order of these steps has some constraints, but it is not strictly
fixed (the horizontal and vertical steps can be interleaved). The decomposition is re-
peatedly applied on a subband which leads to the pyramidal decomposition. It should
be noted that a naive algorithm implementing this 2-D scheme could perform a series
of 1-D transforms horizontally, followed by a series of 1-D transforms vertically (or vice
versa). The above mentioned 1-D transform could be implemented through the filter
bank (convolution) or the lifting scheme.

The following discussion considers the situation in the context of a naive implemen-
tation. It does not matter whether the convolution or the lifting scheme is used. In both
cases, the data coefficients are accessed at least twice (firstly for horizontal, secondly
for vertical pass). Thus, the approach is inherently burdened with several accesses to
intermediate results. More sophisticated algorithms [13] could perform these separable
steps joined together which could even lead into a single loop transform. In any case, the
decomposition is further applied to a subband in order to get multi-scale representation.
As in the previous case, individual scales of the decomposition can be performed in an
interleaved manner. Performing the multi-scale decomposition in this way is described
as the multi-scale single-loop approach.

Images can be understood as finite two-dimensional arrays (matrices), where the val-
ues of individual elements represent image pixels. As these matrices are finite, a problem
with an appropriate treatment of transform margins arises.

2.3 Computation Schedules

This section discusses existing methods of computing the 2-D discrete wavelet transform
on various platforms, especially contemporary general-purpose processors (GPPs).

A type of the CPU cache is present in all modern platforms. An excellent introduction
to this topic can be found in [14]. The cache is usually organized as a hierarchy of more
cache levels. In the cache hierarchy, the individual coefficients of the transform are
stored inside larger and integral blocks – cache lines, typically 64-bytes long. A hardware
prefetcher attempts to speculatively load these lines in advance, before they are actually
required. Moreover, due to a limited cache associativity, it is also impossible to hold in
the cache lines corresponding to the arbitrary memory location at the same time. In
detail, the cache lines are divided into several sets according to an associativity of the
cache (e.g. four sets for typical 4-way associativity). The cache associativity indicates
the number of lines from a particular set which can be held in the cache at one time.
When more lines from this set are accessed, the older lines are evicted in favour of the
new ones.
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Originally, the problem of efficient implementation of the 1-D lifting scheme was
addressed in [15] by Ch. Chrysafis and A. Ortega. Their approach is very general and is
not focused on parallel processing. Nonetheless, this is essentially the same method as the
on-line or pipelined method mentioned in other papers (although not necessarily using
the lifting scheme nor the 1-D transform). The key idea is to make the lifting scheme
causal, so that it may be evaluated as a running scheme without buffering of the whole
signal.

Many authors have tried to find an efficient schedule for calculating the 2-D lifting
scheme. Having the input 2-D image in the main memory, different strategies of 2-D
transform implementation can be used. These strategies can be divided into three groups
– row-column (fully separable), block-based, and line-based methods. The groups will
be discussed with the individual techniques below. Aside from these basic strategies,
several techniques were independently presented in several papers. All of them led to
performance improvements.

The separable implementation of the 2-D transform is performed by two passes of the
1-D transform – the horizontal and vertical pass. The horizontal pass densely visits the
coefficients likely prefetched in the cache. Usually, there is no bottleneck in the horizontal
pass. However, the vertical pass accesses the coefficients using a stride that prevents the
hardware prefetcher from doing its job well. Moreover, usually only one coefficient from
each cache line is accessed; the rest remains unused. Finally, considering the vertical
access pattern, the coefficients lying in a particular column are likely mapped into the
same cache set, especially considering the power-of-two [16, 13] data sizes. In order to
solve the last of the mentioned issues, several authors [16, 13, 17] suggested adding a
padding after each data row (or the resulting subband row in some cases). This row
extension causes the coefficients in a particular column to be mapped into different sets
with a high probability. In particular, the odd or prime strides are often used.

Since only one of the coefficients settled in each cache line is used in a vertical pass,
many authors [16, 18, 19] discovered a technique leading to a better utilization of cache
lines. This technique is referred to as the aggregation, strip-mine, or loop tiling. Using
such a technique, several adjacent columns are filtered concurrently, likely using all the
coefficients in each cache line.

So far, the input as well as the output data were stored using a linear-memory lay-
out (particularly, the row-major layout). Several authors investigated the influence of
more complicated, possibly non-linear memory layouts (4-D, Morton). The 4-D, Mor-
ton layouts are internally organized into blocks and thus imply the block-based strategy
mentioned above. The working set for each block can now fit into the cache. The per-
formance of these layouts was investigated in [20, 21]. The "mallat" layout utilized in
[19, 18] uses an auxiliary matrix in order to store the results of the horizontal filtering. As
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a result, no rearrangement stage is needed after the transform, since the coefficients can
be directly stored at arbitrary locations in the original memory area. Using the recursive
layout, each subband is laid out contiguously in the memory. This is especially useful
for multi-scale decomposition, where the resulting subbands are transformed once more.
This layout was employed in [19, 18].

Among all these disclosed techniques, probably the most important one is to interleave
processing of the vertical and horizontal loop. This 2-D technique is often referred to as
the pipelined, line-based, or single-loop transform. Some granularity (e.g. several input
lines, large blocks) is used for interleaving of the loops. For instance, D. Chaver [22]
used the block-based interleaving with a non-linear 4-D memory layout. Moreover, in
[22, 23, 24], the line-based interleaving was used (at least two lines are needed). The
most sophisticated techniques were investigated by R. Kutil in [13], which focused on CDF
9/7 wavelet and SIMD vectorization. In Kutil’s work, one step of the lifting processing
requires two values (a pair) to perform a loop iteration. Thus, the algorithm needs to
perform two horizontal filterings (on two consecutive rows) at once. For each row, a
low-pass and a high-pass coefficient is produced, which makes 2× 2 values in total. The
algorithm passes four values from one iteration to the other in the horizontal direction
for each row (eight in total). In the vertical direction, the algorithm needs to pass four
rows between iterations. This algorithm can be vectorized by handling the coefficients
in blocks. Special prolog and epilog parts are needed (at least nine variants, if even/odd
signal lengths are not considered).
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Chapter 3

Lifting Cores

The main contribution of the thesis is presented in this chapter. The contribution is a
formulation of a computation unit built over the lifting scheme technique. The direct
consequence of this formulation is the possibility of reorganizing operations in order to
minimize the requirements for certain resources. Moreover, several other possibilities
arise – for example, an elegant treatment of signal boundaries, or, in the case of multi-
dimensional signals, a variety of allowed processing orders. The presented unit is further
referred to as the core. In this chapter, the core is formally specified.

In this paragraph, some terminology necessary for understanding the following text is
clarified. Lag F describes a delay of the output samples with respect to the input samples.
The stage is used in the sense of the scheme step, usually the lifting step. In linear algebra,
such a stage can be described by the linear operator (a matrix) mapping the input vector
onto the output vector. In this context, the operation denotes the multiply–accumulate
(MAC) operation. Considering the output coefficient, the most demanding operation is
identified as the operation having the highest number of operands. Although the thesis
has focused on image processing, the one-dimensional transform will be discussed first. To
simplify the relations, the inequality 0 ≤ nj < Nj holds for all 0 ≤ j ≤ J . The multi-scale
discrete wavelet transform decomposes the input signal

(
a0n0

)
of size N0 = N samples

into J > 0 scales giving rise to the resulting wavelet bands
(
djnj

)
the temporary bands(

ajnj

)
at scales 0 < j < J , and the residual signal

(
aJnJ

)
at the topmost scale J .

In order to solve the issues summarized at the beginning of this thesis, a unit which
continuously consumes the input signal aj and produces the output aj+1, dj+1 subbands is
proposed. This unit was also presented in [VI]. As a consequence of the DWT nature, the
core has to consume pairs of input samples. The input signal is processed progressively
from the beginning to the end, therefore in a single loop. It should be noted that it is also
possible to run these cores parallel – this possibility is discussed at the end of the chapter.
The corresponding output samples are produced with lag F samples depending on the
underlying computation scheme. For each scale 0 ≤ j < J , the core requires access to an
auxiliary buffer Bj. These buffers hold intermediate results of the underlying computation
scheme. At each scale, the size of the buffer can be expressed as κ coefficients, where
κ is the number of values that have to be passed between adjacent cores. To simplify
relations, two functions will be introduced. The function Θ(n) = n+F maps core output

13



coordinates onto core input coordinates with the lag F . The function Ω(n) = ⌈n/2⌉
maps the coordinates at the scale j onto coordinates at the scale j + 1 with respect to
the chosen coordinate system.

The core transforms the fragment Ijn =
(

ajΘ(n) ajΘ(n+1)

)T

of an input signal onto

the fragment Oj
n =

(
aj+1
Ω(n) dj+1

Ω(n+1)

)T

of an input signal, while updating the auxiliary
buffer. Finally, operations performed inside the core can be described using a matrix C
as the relationship

y = C x (3.1)

from the input vector x = Ijn ∥ Bj onto the output vector y = Oj
n ∥ Bj, where ∥ denotes

the concatenation operator. The (3.1) is the most fundamental equation of this thesis.
In this linear mapping, the matrix C defines the core. The meaning and the number of
individual coefficients in Bj is not firmly given. The choice of the matrix C is a degree
of freedom of the presented framework. Particularly, this matrix can be reorganized in
order to minimize some of the resources (e.g. memory cells, operations, latency).

3.1 Treatment of Signal Boundaries

In order to keep the total number of wavelet coefficients equal to the number of input
samples, symmetric border extension is widely used. A particular variant of this extension
is employed in JPEG 2000 standard. This section describes the core calculating the
CDF 5/3 transform. The core described in the previous section consumes the input
signal

(
ajn, a

j
n+1

)
per fragments of two samples. After performing the calculations, the(

dj+1
Ω(n), a

j+1
Ω(n+1)

)
is produced with a lag F . For the purposes of the following discussion,

only even length signals are considered. The core consists of two stages suitable for
hardware pipelining.

As mentioned earlier, the core processes the signal in a single loop. The naive way
[VIII] of border handling is described first. Due to the symmetric border extension, the
core begins the processing at a certain position before the start of the actual signal.
Analogously, the processing stops at a certain position after the end of the signal. The
samples outside the actual signal are mirrored into the valid signal area. This processing
introduces the need for buffering of the input, at least at the beginning and end of the
signal. This buffering breaks the ability of simple stream processing, especially consider-
ing the multi-scale decomposition. All the approaches described in Chapter 2 also suffer
from this issue.

The situation can be neatly resolved changing the core near the signal border. In more
detail, the "mutable" core performs 5 different calculations depending on the position of
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the input signal. Therefore, the core comprises 2 × 5 slightly different steps (stages) in
total. As in the previous section, each of them is implemented by a linear transformation
operating with four-component vectors. This can be written in matrix notation as

y = Sβ,Θ(n) Tα,Θ(n) x, (3.2)

where Tα,Θ(n), Sβ,Θ(n) are the linear transformations of the predict and update stages per-

formed at the subsampled output position Θ(n). Moreover, x =
[

ab db an dn

]T
and y =

[
ab db an−1 dn−1

]T
are the input and output vectors, respectively. Here,

the b superscript denotes the content of the auxiliary buffer. These coefficients are gen-
erated in Tα,Θ(n) so that these can be used by Tα,Θ(n+2) at the same time when Sβ,Θ(n+2)

runs. It is essential that the coefficients ab, db are initially set to zero. The output signal
is generated with a lag F = 1 sample with respect to the input signal. The input a
samples outside of the input signal are treated as zeros. Similarly, the output a, d co-
efficients outside of the output signal are discarded. The transform is defined using the
α, β constants. As a result, the signal is transformed without buffering, possibly on a
multi-scale basis.

3.2 Multi-Dimensional Cores

The presented core approach can be naturally extended to multiple dimensions. The key
ideas of this section were presented in [VI, VIII, II]. This section is particularly focused
on two-dimensional cores. However, the same principles also apply to more dimensions.
Several benefits of the implementation arise by extending the core into two dimensions.
Thanks to the linear nature of DWT, the horizontal and vertical steps can be interleaved
or even merged. Merging of the final coefficient scaling is a useful involvement of this
property.

The extension into two dimensions follows. To simplify the relations, the inequality
(0, 0) ≤ (mj, nj) < (Mj, Nj) holds for all 0 ≤ j ≤ J . The 2-D transform decomposes the
input raster

(
a0m0,n0

)
of size M0 × N0 pixels into J > 0 scales giving rise to the tempo-

rary subbands
(
ajmj ,nj

)
, the resulting wavelet subbands

(
hjmj ,nj

)
,
(
vjmj ,nj

)
,
(
djmj ,nj

)
, at

scales 0 < j < J , and the residual signal
(
aJmJ ,nJ

)
at the topmost scale J . Such a decom-

position is performed using the 2 × 2 core with lag F samples in both directions. This
idea was also proposed in [VIII]. For each scale 0 ≤ j < J , the core requires an access to
two auxiliary buffers

(
MBj

mj

)
0≤mj<Mj

,
(
NBj

nj

)
0≤nj<Nj

. These buffers hold intermediate

results of the underlying lifting scheme. The size of the buffers can be expressed as M×κ
(horizontal buffer) and N×κ coefficients (vertical buffer), where κ is the number of values

15



that have to be passed between adjacent 1-D cores. Taken together, the 2× 2 core needs
to access 2× κ values in the horizontal buffer and 2× κ values in the vertical buffer.

Similarly to in the 1-D case, the 2-D core consumes a 2 × 2 fragment of the input
signal and immediately produces a four-tuple of coefficients (a, h, v, d). The produced
coefficients have a delay of F samples in the vertical as well as the horizontal direction
with respect to the input coordinate system. To simplify relations, two functions will be
introduced once again. The function Θ(m,n) = (m+F, n+F ) maps core output coordi-
nates onto core input coordinates with a lag F . The function Ω(m,n) = (⌈m/2⌉, ⌈n/2⌉)
maps the coordinates at the scale j onto coordinates at the scale j + 1. It should be
noted that Ω(m,n) can be defined in many ways. However, this particular example fits
into the JPEG 2000 coordinate system. The 2 × 2 core transforms the fragment Ijm,n of
the input signal onto the fragment Oj

m,n of the output signal

Ijm,n =
(

ajΘ(m,n) ajΘ(m+1,n) ajΘ(m,n+1) ajΘ(m+1,n+1)

)T

, (3.3)

Oj
m,n =

(
aj+1
Ω(m,n) hj+1

Ω(m+1,n) vj+1
Ω(m,n+1) dj+1

Ω(m+1,n+1)

)T

, (3.4)

while updating the two auxiliary buffers. Finally, operations performed inside the core
can be described using a matrix C as a relationship

y = C x (3.5)

from the input vector x = Ijm,n ∥ MBj
m ∥ MBj

m+1 ∥ NBj
n ∥ NBj

n+1 onto the output vector
y = Oj

m,n ∥ MBj
m ∥ MBj

m+1 ∥ NBj
n ∥ NBj

n+1, where ∥ denotes the concatenation operator.
One needs to recall that the choice of the C matrix and the consequent arrangement and
the size κ of elements in the buffers is the subject of this thesis.

So far, the main ability of the 2-D extension remains undisclosed. The single loop
over the data does not have a strictly fixed order. On the contrary, many scan orders
are now possible. In should be noted that the original single-loop approach from [25]
does not have this ability. The above-described degree of freedom allows us to adapt
the processing to specific needs of the application. For instance, it turned out that the
2-D core approach can be adapted to JPEG 2000 coding units (so-called codeblocks) in
[II]. When associated with the capabilities explained in the previous paragraph, these
codeblocks can be generated in parallel. This experiment is further evaluated below.

3.3 2-D Core Reorganization

For purposes of illustration, the following text is focused on two-dimensional CDF 5/3
transform. Considering the baseline separable extension into two dimensions resulting
into a 2× 2 core, the matrix C in the relationship y = Cx can be factored into

y = NSβ
NTα

MSβ
MTα x, (3.6)

16



where theM superscripts refer to the horizontal direction, whereas N refers to the vertical
one. Taken together, MTα performs two horizontal predicts, MSβ two horizontal updates,
etc. The order of these steps (or stages) is not only strictly fixed but also completely
unconstrained. The implementation has the latency of four lifting steps, plus scaling. In
total, 16 non-trivial operations (four in each stage) are needed to calculate this core (the
scaling is omitted).

In [26], the authors derived a non-separable 2-D lifting scheme for CDF 5/3 DWT.
One can easily identify a suitable core in their construction. Thanks to the parallel pro-
cessing of v and h samples, this implementation has a total latency of 3 steps. Practical
implementations with a horizontal image scanning order would require two rows of coef-
ficients to be buffered. The core has the lag F of one sample in each direction. Using the
matrix notation, the core is described as

y = Aβ Tα,β Dα x, (3.7)

where Dα operator computes the d coefficient, Tα,β computes h and v, and Aβ finally
computes a coefficient. Excluding diagonals, the matrices Aβ, Tα,β, Dα have a total of 24
non-zero entries implying 24 non-trivial MAC operations.

Using the core approach presented in this thesis, it is possible to go further. The
total number of arithmetic operations in the non-separable scheme [26] can be reduced.
The key idea here is not to calculate the wavelet coefficients all at once. Instead, the
calculation of these coefficients is subdivided into separate parts. The sum of these parts
gives us the desired result. The starting point of the solution is the non-separable lifting
scheme of CDF 5/3 transform as described in [26]. After some rewriting of expressions, a
new scheme has appeared. The scheme requires only 8 coefficients to be passed between
core iterations. This means that this new scheme has the same memory demands as in the
original separable case. It should be emphasized that this newly formed scheme cannot
be derived using instruments in [26]. This is caused by the fact that the authors of [26]
do not specify a sequence of the operations. The implementation is always a trade-off
between latency and the number of operations. In matrix notation, the transform can be
written as the product

y = Aβ Dα x. (3.8)

The steps are graphically illustrated in Figure 3.1.
Table 3.1 provides a summarized comparison of the discussed 2-D single-loop cores.

The most complicated calculation from all the steps is indicated in the last column. This
number is given in the format of the non-trivial operations plus the trivial operations.
When the stages of the core are pipelined (run in parallel), the clock latency of the core is
directly subordinated by the maximum number of operands. The table further indicates
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1 2
a dh v

Figure 3.1: Proposed non-separable lifting core of CDF 5/3 with two stages. The input
coefficients of the active core are in the bright box. The output ones are in the dark one.

core latency buffer operations max. operands in step

separable [6] 4 8 16 2 + 1

non-separable [26] 3 10 24 8 + 1

proposed 2 8 22 8 + 1

Table 3.1: Comparison of the 2-D single-loop cores. The operands are given in format
non-trivial plus trivial. The scaling is omitted.

the number of stages (steps), the number of coefficients accessed in the auxiliary buffers,
and the total number of non-trivial operations.

3.4 Parallel 2-D Cores

So far, only the single-loop two-dimensional cores were discussed. Considering the parallel
environment, the cores can be modified in order to run in parallel. In such a case, the cores
have to exchange the intermediate results directly, without buffers. This modification
introduces the need for synchronization using the memory barrier. Usually, these barriers
form the major bottleneck of the overall computation. Taken together, it is desirable to
minimize the number of memory barriers (along with another resources). The cores
discussed in this section were proposed in [X]. This section is still focused on the CDF
5/3 transform. The generalization is straightforward.

Iwahashi et al. [27, 26] recently presented the non-separable lifting scheme employing
genuine spatial filtering steps. In this scheme, it is no longer possible to distinguish the
vertical and horizontal filtering. The transform can be described as linear transformations
of the vectors x =

[
a h v d

]
, y =

[
a h v d

]
. These transformations can

formally be compressed into the matrix Cα,β in

y = Cα,β x = Aβ Tα,β Dα x. (3.9)

The scheme is graphically illustrated in Figure 3.2b (referred to as Iwahashi2007 ). Simi-
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1 2 3 4
(a) Sweldens1995 [6]

1 2 3
(b) Iwahashi2007 [27]

1 2
(c) proposed

a dh v

Figure 3.2: 2-D data-flow graphs of the parallel cores. The order of the lifting steps is
determined by the bottom numbers. The vertical lines indicate the necessary memory
barriers.

larly in the original scheme, a memory barrier must be inserted between each of the two
steps. As a result, the scheme consists of 24 non-trivial arithmetic operations in three
lifting steps separated by two explicit memory barriers. For the sake of comparison,
the baseline separable scheme is illustrated in Figure 3.2a (referred to as Sweldens1995 ).
Note that the scheme for CDF 9/7 comprises two such connected transforms.

Motivated by the work of Iwahashi et al. [26], the elementary lifting filters were
reorganized in order to obtain a highly parallelizable scheme. The main purpose of
this modification is to minimize the number of memory barriers that slow down the
calculation. As a result, several non-separable two-dimensional FIR filters arise. The
scheme consists of two parts between which a memory barrier is placed. The new scheme
is composed of four operators referred to as S1 to S4. Between the second S2 and
third S3 operator, the memory barrier must be inserted in order to properly exchange
intermediate results. Thus, S1 and S2 form the first lifting step and S3 and S4 form the
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second one. Additionally, the scheme requires the induction of two auxiliary variables
(the intermediate results) per each quadruple of coefficients a, h, v, and d. These auxiliary
variables are denoted as h(1), v(1). Their initial as well as final values are unimportant.
The scheme

y = S4
β S

3
β S

2
α S

1
α x (3.10)

describes the relation between input x =
[

a h v d h(1) v(1)
]

and output y =[
a h v d h(1) v(1)

]
vectors. It should be noted that in practical realizations, each

single computing unit (e.g. thread) can be responsible of such a vector. In addition, the
operations are graphically illustrated in Figure 3.2c (referred to as proposed). Compared
with [26], the total number of arithmetic operations has been reduced from 24 to 20 for
the CDF 5/3 wavelet. The calculation of the CDF 9/7 transform consists of two such
connected transforms (the first with α, β, the second with γ, δ) and between them another
barrier is placed. In total, such a calculation contains three explicit memory barriers. A
quantitative comparison for the CDF 5/3 wavelet of all the cores discussed is provided in
Table 3.2. For the CDF 9/7 wavelet, the number of lifting steps and thus the number of
operations must be doubled. In general, the cores can be used for any lifting factorization
with two-tap filters.

The original Sweldens1995 scheme provides the best choice in terms of arithmetic
operands as well as their complexity. However, it requires three explicit synchronization
points (memory barriers) for the CDF 5/3 wavelet. This can be an issue for parallel
processing. The recently proposed Iwahashi2007 scheme uses the highest number of
operations of all schemes. On the other hand, it requires only two synchronizations for
the CDF 5/3 wavelet and does not need any additional memory. In numbers, this scheme
reduces the number of lifting steps to 75%. Finally, the proposed scheme provides a
trade-off in the number of operations. Moreover, for the CDF 5/3 wavelet, only one
barrier is needed for its realization. In comparison to the original scheme, this scheme
reduces the number of lifting steps to only 50 %.

scheme steps operations max. operands memory cells

Sweldens1995 [6] 4 16 3 4

Iwahashi2007 [27] 3 24 9 4

proposed 2 20 9 6

Table 3.2: Parameters of the 2-D parallel cores for CDF 5/3 wavelet. The columns
describe: number of lifting steps, number of arithmetic operations, maximum number of
operands per the lifting step result (the complexity of steps), number of memory cells per
coefficient quadruple (inclusive).
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Chapter 4

Evaluation

This chapter provides deep performance evaluation of the presented core approach. Sev-
eral experiments evaluating the performance of different methods were conducted on
general-purpose processors. Several findings are evident from these experiments. The
most important effect occurs as soon as the working set exceed the cache size. The
discussed effect causes the single-loop methods to be faster compared with the naive hor-
izontal vectorization. Considering the 2-D transform, the single-loop methods are faster
as compared with the naive separable methods. Furthermore, considering the 2-D trans-
form, the core implementation of the single-loop approach is discussed in detail. The cores
disclose several degrees of freedom. This advantage is especially useful when considering
the multi-dimensional transform. Namely, a variety of processing orders can be employed
during the transform. This is true even in connection with the multi-scale decomposition
as shown when integrating into the JPEG 2000 encoder. Moreover, many possible uses
of SIMD extension became available in the case of multi-dimensional core. Particularly,
4 × 4 vectorized core is the best performing one on the Intel x86 platform with SSE
extensions. Moreover, the transform employing the cores allow for easy coarse-grained
parallelization. As demonstrated in the JPEG 2000 encoding chain, no synchronizations
are even required in between threads considering the horizontal adjacency of parallel
blocks. The cores incorporated into the JPEG 2000 compression chain have proven to be
fundamentally faster than the widely used implementations.

The cores can also be internally reorganized in order to minimize some of the resources.
This property was demonstrated on the FPGA where the minimization of the core latency
has a direct impact on the utilization of flip-flop circuits and look-up tables (LUT).
Specifically, the reduced latency core consumes more LUTs and uses a smaller amount of
flip-flops.

The cores may also be advantageously used on massively-parallel architectures. This
option was demonstrated using the OpenCL framework and the most recent GPUs of
two biggest vendors. Specifically, the transform employing the parallel non-separable
core reducing the number of memory barriers which was proven to be the fastest way to
transform the 2-D data.
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4.1 General-Purpose Processors

The following discussion shows the effect of coarse-grained parallelization of the above
discussed approaches. The naive approach that uses the horizontal and vertical 1-D
transform was parallelized using multiple threads. The same was done with vectorized
core single-loop approach. In the latter case, the image was split into several rectangular
regions assigned to different threads. The parallelization of the single-loop core approach
is not as straightforward as the parallelization of the naive approach. In order to produce
correct results, each thread must process a segment (several rows) of an input image be-
fore its assigned area. In this segment, no coefficients are written to output. Therefore,
this phase can be seen as a prolog. Without the prolog, the threads would produce inde-
pendent transforms. A summarized comparison of parallelizations is shown in Table 4.1.
The measurements were performed on a 58-megapixel image. The single-threaded al-
gorithm is used as a reference one. The core approach scales almost linearly with the
number of threads. In order to also confirm the performance in a multi-scale scenario, the
presented single-loop cores have been incorporated into the JPEG 2000 encoding chain.

Efficient realization of the JPEG 2000 transform was outlined by D. Taubman in [28].
The author expressed the memory requirements for multi-scale DWT as (4+I)M samples.
As the transform coefficients have to be arranged into codeblocks, the total memory
requirements for the JPEG 2000 codec are (4 + I + 3× 2cn)M samples, where 2cn is the
codeblock height. The initial 4 term corresponds to 2 lines per one decomposition scale.
This imposes that his implementation generates all codeblocks at the same time, not one
after another. According to the description in [28], their implementation does not process
the data in a single loop. However, I assumed at the time that their implementation would
do so. This strategy is still fundamentally different from the architecture described in this
section which generates individual blocks sequentially while all the time reusing the same
memory area for output coefficients. The above-described line-based processing does not
fit the JPEG 2000 codeblocks, does not allow for the parallel codeblock processing or for
the reuse of the memory for h, v, and d subbands. The motivation behind my work is to
overcome these issues.

threads 1 2 4

algorithm time speedup time speedup time speedup

naive 46.9 1.0 24.0 2.0 12.1 3.9

core 4.3 11.0 2.3 20.5 1.2 39.3

Table 4.1: Performance evaluation using threads on AMD Opteron. The time is given in
nanoseconds per pixel. The speedups are shown compared to the naive algorithm.
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The processing of the codeblocks was encapsulated into monolithic units. These units
are evaluated in horizontal "strips" due to the assumed line-oriented processing order.
Inside the codeblock unit, the core is used. Moreover, the unit requires access to two
auxiliary buffers (one for each direction). The size of the buffer can be expressed as
2cm × κ (for the horizontal buffer) and 2cn × κ (for the vertical buffer), where κ = 4. As
the strip-based processing with a granularity of the codeblock size is used, the vertical
buffer is passed straight to the subsequent codeblock processing unit. The horizontal
buffer will be used by a strip of codeblocks lying below. The transform of this subsequent
unit is not started earlier than the EBCOT [29] on the current unit has been finished.
This allows for reusing the memory for h, v, and d subbands.

The described procedure is in effect friendly to the cache hierarchy. The processing
engine uses several memory regions for a different purpose. (1) The resulting codeblock
subbands occupy several KiB of memory likely settled in the top-level cache. (2) The
vertical buffer occupies several hundreds of bytes. (3) The fragments of horizontal buffers
occupy the same size as the total size of the vertical buffer. However, they are used only
for a short time and then can be evicted from all levels of the cache hierarchy. (4) The
input strip can be simply streamed into the same memory region which may be in part
mirrored in the cache. (5) The temporary a subbands can be partially mirrored as well.

The entire process described above can be efficiently parallelized. The key idea is
to split the strip processing into several independent regions. Thus, a single thread
is responsible for several adjacent codeblocks. Each thread holds its private copy of
the vertical buffer and the memory region for the resulting subbands (h, v, d). There-
fore, several EBCOT coders can work in parallel. Moreover, the threads are completely
synchronization-free (they do not need to exchange any data). In a test implementa-
tion, the wavelet decomposition as well as Tier-1 encoding was parallelized. On parallel
architectures, it is also possible to encode every single codeblock of the strip in parallel.

The performance of the test implementation was evaluated. The input image is con-
sumed gradually using strips with a height of 2 × 2cm lines. No more input data are
required to be placed in the physical memory at the same time. For the output subbands,
memory for only 4× 2cm+cn coefficients is allocated (considering all four subbands). This
memory is reused by all codeblocks in the transform (or a processing thread). Addition-
ally, two auxiliary buffers of sizeMj×κ andNj×κ coefficients have to be allocated for each
decomposition level j. It should be noted that Mj+1 = ⌈Mj/2⌉cm and Nj+1 = ⌈Nj/2⌉cn ,
where ⌈.⌉c denotes ceiling to the next multiple of 2c; initially M0 =M and N0 = N . For
each auxiliary a band (excluding the input and the final one), the window of physical
memory can be maintained and progressively mapped onto the right place in the virtual
memory. The size of such a window is roughly 3× 2cn ×Mj+1. It must be noted that 3
instead of 2 codeblock strips are needed due to the periodic symmetric extension on the
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Figure 4.1: Performance comparison of JPEG 2000 libraries. Time per pixel for the
transform stage only. DCI 4K and 8K UHD resolutions indicated by the vertical lines.

image borders; additionally, a lag of F = 3 lines from the input to the output of the core.
Roughly speaking, the codeblocks of the subsequent scales do not exactly fit each other.
Taken together, the presented solution requires (I+3×2cn)M samples populated into the
physical memory. The presented solution was compared to open-source C/C++ libraries
listed on the official JPEG committee web pages – OpenJPEG, FFmpeg, and JasPer.
The transform stage was extracted from the libraries in order to get accurate results.
This stage was then subjected to measurement. The results are shown in Figure 4.1. As
observed also in [13], the single-loop processing has stable performance regardless of the
input resolution. The proposed implementation was measured using four threads and
SSE extensions.

4.2 Graphics Processing Units

Two parallel lifting scheme schedules for GPGPUs were designed and implemented. These
schedules are based on the separable and non-separable parallel cores presented in the
previous chapter. The implementation is based on the OpenCL framework. All of the
algorithms are evaluated on CDF 9/7 transform. The achieved memory throughput
performance is shown in Figure 4.2. Both of the core methods overcome the state-of-the-
art method. The proposed non-separable core performs slightly better compared to the
separable one. This behavior corresponds to the reduced number of the memory barriers.

4.3 Field-Programmable Gate Arrays

In the last substantial experiment, the hardware implementation is evaluated. The imple-
mentation is focused on JPEG 2000 system. Particularly, the lossless CDF 5/3 transform
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Figure 4.2: NVIDIA TitanX. Throughput performance of parallel methods. Kucis2014
denotes the reference method presented in [IX].

was implemented in FPGA.
The wavelet engine was experimentally synthesized in a Xilinx Zynq XC7Z045 FPGA

and evaluated on the Xilinx ZC706 board (with DDR3 at 1066 MHz). The engine was
synthesized for several image resolutions that merely differ in the BRAM size, only to
allow comparison with other papers, and also to show that the core is able to process
Full HD video (1080p, 60 Hz) faster than in real-time. The input expects streamed video
frames in the predefined resolution, the output stream is generating interlaced coefficients
of wavelet transform that can be easily split into four separate data streams for further
multi-scale decomposition. I would especially like to highlight the ability to process the
video stream without the need of using external memory for intermediate results. The
design includes mirroring on the image edges which is not performed by the wavelet core
itself, but by the engine, which encapsulates the core. The engine itself then represents
an independent block, which can be used in a more complex system or which can be
easily duplicated and chained to perform more levels of wavelet transform of one image.
The overall comparison with the selected architectures is shown in Table 4.2.

architecture device BRAM [bits] clocks/pel time [ms]

Dillen [30] VirtexE1000-8 50K 0.50 1.20

Seo [31] Altera Stratix 128K 2.64 6.02

Zhang [32] Virtex-II Pro XC2VP30 6× 18K 0.50 0.97

proposed Zynq XC7Z045 1× 36K 0.26 0.27

Table 4.2: Comparison of various FPGA implementations. Tiles of size 512 × 512. The
processing time and clocks per pixel were projected to the uniform image size.
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Chapter 5

Conclusions

The thesis focuses on efficient methods for computing the discrete wavelet transform. The
state-of-the-art methods suffer from several ailments. For example, the parallelization,
exploitation of SIMD extensions and the cache hierarchy are not handled well. The
treatment of signal boundaries is done in a complicated and inflexible way. Additionally,
these methods do not address the problem of scheme reorganization in order to minimize
some of the resources. The aim of the thesis has been to overcome these issues. This
was accomplished with the formation of a compact streaming core which performs the
transform in a single loop, possibly in a multi-scale fashion. Using this core, transform
fragments can be computed according to application requirements.

New features of the approach presented are indicated by numbers. The presented
core can (1) efficiently exploit the capabilities of modern CPUs, especially the cache
hierarchy, SIMD extensions, and parallel computing. Operations inside the core can be
(2) reorganized in order to minimize some of the platform resources (e.g. the number
of memory barriers, the number of steps). Since the core itself (3) treats the signal
boundaries, no special prolog or epilog phases are needed. Moreover, the cores can be
adapted to (4) massively-parallel environments. The core can be described as a direct
mapping from the input coefficients on the output ones while retaining and exploiting
some auxiliary intermediate results. This mapping can be seen as a standalone streaming
unit, implemented either in software or hardware. Using the core, the transform fragments
can be computed with several (5) new degrees of freedom (the processing order, the
interleaving of the multi-scale decomposition). For example, a particular transform block
at a particular scale can be obtained with minimal or no unnecessary calculations.

When searching for the best core, I have found that the core can optimize only one
criterion at the expense of others. For instance, minimizing the number of arithmetic
operations goes against the number of synchronization points (the memory barriers) and
the number of scheme steps (the latency). Moreover, a universal core suitable for all cases
and environments probably does not exist.

The future work I would like to do comprises the concatenation of the analysis and
synthesis cores coupled with some useful algorithm. This can be done on a multi-scale
basis. The algorithms can perform, for example, tone-mapping, denoising, compression,
etc. Another area of activities can be the generalization to non-linear transforms.
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Abstract

The thesis focuses on efficient computation of the two-dimensional discrete wavelet trans-
form. The state-of-the-art methods are extended in several ways to perform the transform
in a single loop, possibly in a multi-scale fashion, using a compact streaming core. This
core can further be appropriately reorganized to target the minimization of certain plat-
form resources. The approach presented here nicely fits into common SIMD extensions,
exploits the cache hierarchy of modern general-purpose processors, and is suitable for
parallel evaluation. Finally, the approach presented is incorporated into the JPEG 2000
compression chain, in which it has proven to be fundamentally faster than widely used
implementations.

Abstrakt

Práce se zaměřuje na efektivní výpočet dvourozměrné diskrétní vlnkové transformace.
Současné metody jsou v práci rozšířeny v několika směrech a to tak, aby spočetly tuto
transformaci v jediném průchodu, a to případně víceúrovňově, použitím kompaktního
jádra. Tohle jádro dále může být vhodně přeorganizováno za účelem minimalizace užití
některých prostředků. Představený přístup krásně zapadá do běžně používaných rozšíření
SIMD, využívá hierarchii cache pamětí moderních procesorů a je vhodný k paralelnímu
výpočtu. Prezentovaný přístup je nakonec začleněn do kompresního řetězce formátu
JPEG 2000, ve kterém se ukázal být zásadně rychlejší než široce používané implementace.
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