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Abstract

This paper explores the use of Sequence Summarizing Neu-
ral Networks (SSNNs) as a variant of deep neural networks
(DNNgs) for classifying sequences. In this work, it is applied
to the task of spoken language recognition. Unlike other clas-
sification tasks in speech processing where the DNN needs to
produce a per-frame output, language is considered constant
during an utterance. We introduce a summarization component
into the DNN structure producing one set of language poste-
riors per utterance. The training of the DNN is performed by
an appropriately modified gradient-descent algorithm. In our
initial experiments, the SSNN results are compared to a sin-
gle state-of-the-art i-vector based baseline system with a similar
complexity (i.e. no system fusion, etc.). For some conditions,
SSNN:ss is able to provide performance comparable to the base-
line system. Relative improvement up to 30% is obtained with
the score level fusion of the baseline and the SSNN systems.
Index Terms: Sequence Summarizing Neural Network, DNN,
i-vectors

1. Introduction

Spoken language identification (LID) is an important part of
speech data mining. The task is to select the language spoken in
an utterance. Typically, it is considered as a closed-set problem,
i.e. one language from IV possible ones should be chosen. The
traditional approaches to LID include acoustic and phonotactic
ones, see for example [1].

Nowadays state-of-the-art LID systems make use of i-
vectors defined originally for speaker verification [2]. This gen-
erative approach is based on a Gaussian Mixture Model (GMM)
with means adapted from a Universal Background model
(UBM) towards the current utterance in a low-dimensional sub-
space. The utterance-specific latent variable (an i-vector) is a
fixed- and low-dimensional representation of the utterance and
actually jointly represent several of its properties (speaker, lan-
guage, etc.). Ini-vector based LID [3], the i-vector is considered
as a feature vector to the following classifier (e.g. Multiclass
Logistic Regression). Note that the i-vector model assumes in-
dependent and identically distributed (i.i.d.) frames, allowing
for estimation of the i-vector from sufficient statistics collected
from the utterance. It ignores evolution of speech in time.

The recent success of deep neural networks (DNN) in
speech recognition has influenced also LID and we have seen
DNN:ss at places of different building blocks of LID systems in
recent years. Lei et al. [4] replaces the GMM in an i-vector
system with Convolutional Neural Network (CNN) trained in
a standard ASR-fashion to estimate posterior probabilities of
tied-states (senones). This approach is actually moving the sys-
tem from acoustics back to phonotactics and the authors report
its good performance in noise conditions and complementar-
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ity with acoustic i-vectors. Lopez-Moreno et al. [5] train the
DNN as a per-frame language classifier and they average ob-
tained posteriors over the utterance to yield the final posteriors.
They report 70% relative improvement in Cavg' using conven-
tional (PLP) features. However, large amount of training data
for each language is needed to benefit from this approach. Also,
the improvements were seen only for very short test utterances
(around 3s). For longer utterances, the techniques fails to pro-
vide a competitive performance.

In our opinion, both approaches do not make full use of the
DNN capabilities: the first still relies on a different classifier.
The DNN is taken from an ASR system and it is not trained for
the target task. In the second one, training of the neural network
in per-frame manner is sub-optimal, as LID should ultimately
produce one set of class (language) posteriors for one utterance.

A recurrent neural network (RNN) is a candidate for such a
solution: it can be configured to give us the decision only at the
end of an utterance. Unfortunately, RNN approach has prob-
lem with vanishing gradients due to presence of recurrent con-
nections between layers. Gonzales-Dominguez et al. [7] have
experimented with an RNN (more precisely Long Short-Term
Memory - LSTM) approach to LID, but had to recur to classifi-
cation of short chunks in order to randomize the gradients.

Our paper presents the use of a sequence-summarizing neu-
ral network (SSNN) for LID. SSNN is a variant of DNN for
producing one set of posteriors for the whole utterance. It is a
standard feed-forward neural network with summarization layer
positioned in the middle of the network. SSNN was first defined
by Vesely et al. [8] to obtain adaptation vectors for an ASR
task. In their scheme, a separate summarizing DNN provided
a constant summary vector, which was fed to the main classi-
fication DNN simultaneously with the speech features. Both
networks were trained jointly to optimize the final ASR crite-
rion. Zmolikova et al. [9] have successfully used SSNN for
data selection in mismatched training-test ASR setups.

For the LID task, we have simplified the SSNN - our struc-
ture is shown in Fig 1. As in i-vector approach, the output from
the summarization layer —the summary vector — is also a fixed-
length representation of an utterance. The summary vector ex-
tractor and its classifier is jointly trainined, i.e. it is a fully dis-
criminative end-to-end approach. SSNN is not influenced by
re-ordering feature vectors in time, the summary layer weights
them all equally. Therefore, on contrary to RNN, it can be com-
pared to i-vector extraction from statistics collected from the
utterance, and we expect SSNN to work for the same class of
problems as i-vectors.

Note that recent years have seen advances in feature extrac-
tion for the LID task. While traditional systems use MFCC,
PLP or shifted-delta cepstra (SDC), Fer et al. [10] have found

YCavg metric was first introduced in NIT LRE 2009. For more de-
tails see [6]
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Figure 1: SSNN general structure

Bottleneck Features (BN) [11] imported from an ASR system
to perform the best for LID. We have to take into account how-
ever, that the BN-DNN for feature extraction must see a huge
amount of (possibly multi-lingual) transcribed data to be prop-
erly trained. Therefore, for sake of fairness, we compared the
SSNN (which sees only the target LID data for its training) with
a simple MFCC-SDC/i-vector system.

2. Sequence Summarizing Neural Networks

In LID, given a sequence X of length of ¢ frames X
[x1, X2, ...X¢], our task is to find a mapping for each sequence
X to appropriate class from the set of C classes.

A standard neural net layer is defined as

where O,, is the output matrix from n-th layer, W,, is the
weight matrix for this layer, by, is the vector of biases, h,, is an
element-wise activation function and O,_; is the output ma-
trix from the previous layer n — 1. The input to the first layer
Oy is the feature matrix X. A distinguishing element of our
SSNN is the summarization pseudo-layer, which does not con-
tain any trainable parameters. It collapses the input sequence
into a fixed-length summary vector. In this work, the summa-
rization layer simply calculates the mean of the input vector
sequence:

1z
0= 0, &)
t=0

SSNN is defined as a sequence of standard neural net layers
(Eq. 1) with one layer replaced with summarization pseudo-
layer.

To obtain posterior probability of class p(c|X) we use soft-
max function on the output from the last layer o,

exp(on(c
P(eX) = —o p(on(c)) 3)
>m=1xp(on(m))
2.1. Training
Let us have a loss function
L =logp (ct|X) “4)

with log p (¢:|X) being log posterior probability for true class
label c; given one training example — the whole feature ma-
trix X.

Derivatives of (4) with respect to one particular parameter
0 from the part after summarization are obtained in the same
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manner, as in the case of propagating one frame through stan-
dard feed-forward neural network, so we do not need to discuss
it any further.

Derivatives of (4) with respect to one particular parameter
from the part before summarization 6,1 are obtained as

AL _ 9L 1~ 9041
90~ 9o, T & 90

&)

As mentioned above, RNN suffers from a problem of gra-
dient vanishing/explosion. This is caused primarily by having
recursive connections through the network. While doing Back-
propagation through time (BPTT) [12], every time-step gradi-
ent is propagated recursively through non-linearities which can
cause gradient vanishing or explosion depending on initial con-
ditions. From Equation 5 we see, that there are no recurrent
functions in SSNN derivatives. This means that we can con-
trol the gradient vanishing/explosion problem simply by setting
reasonable number of layers.

Unlike per-frame approaches, SSNN has significantly
smaller number of weight updates. This is caused by the sum-
marization pseudo-layer, which enforces just one update per ut-
terance. It raises a risk of over-fitting the network, if sufficient
amount of training utterances is not available.

3. Experiments

Experiments were carried out on NIST Language Recognition
Evaluation 2015 [13] data. The data contains 20 target lan-
guages divided into 6 language clusters (Arabic, Chinese, En-
glish, French, Slavic, Iberian) and the task is to perform a di-
alect identification within a language cluster.

3.1. Data

In this paper, we report results only on the primary condition,
where data for training is restricted - 394 hours of recordings
in total. Originally, only the training set was provided by NIST
as it is usual in all evaluations; we further divided it into one
smaller training set with 248 hours in 3042 segments and de-
velopment set with 146 hours in 42295 segments. For training
the SSNN classifier, the training was further sub-divided into
two subsets with 10% of files used as cross-validation held out
set. This sub-division yielded us 2729 utterances for training
of SSNN and 313 utterances for cross-validation with the same
proportions of languages in both subsets. The development set
was used as a held out set to develop the system before eval-
uation data were released. It was used to report performance,
and for estimating calibration parameters used to calibrate eval-
uation scores. Distribution of utterance lengths in the develop-
ment set tries to simulate presumed eval set utterance durations.
The details of the dataset division can be found in [14]. The
evaluation set delivered lately contains 164334 utterances.

3.2. Baseline system

As the reference features, we use popular SDC features [15]
with usual configuration 7-1-3-7, concatenated with 7 MFCC
coefficients (including C0). The frame rate is 10 ms. Cepstral
mean and variance normalization (CMVN) and RASTA filter-
ing [16] are applied before SDC.

For UBM training, we used subset of training set which
consisted of 145 hours of speech, with duration per language
limited to 15 hours. The UBM has 2048 Gaussians compo-
nents with full-covariance matrices. The i-vector extractor was



trained on the full training set with 248 hours of speech. The
resulting dimensionality of i-vectors is 600. We used conven-
tional setup with a Gaussian Linear Classifier used for classi-
fication of i-vectors. The output scores were calibrated using
multi-class logistic regression.

3.3. SSNN System

For Sequence Summarizing setup, we use 40 log Mel filter-
bank features, with frame context of +15 frames. Stacked
frames are projected into 16 Hamming-weighted DCT tempo-
ral basis, which gives us the input to the neural net - vectors of
31 x 16 = 496 dimensions. Utterance based mean and vari-
ance normalization is applied on the input to the SSNN. The
complete LID SSNN structure is shown in Fig. 2.

3.3.1. RMSPropAvg optimizer

To optimize our error function we found RMSProp optimizer
[17] to be very effective. This optimization method works the
best when minibatches are randomized properly. Normally,
frames from the training set are assembled into one huge ma-
trix, randomized and cut into minibatches together with accord-
ing labels. In our case, one training example is a sequence of
variable length, which makes creating of minibatches in stan-
dard way difficult. Moreover, randomization of frames within
one sequence does not make sense, as the resulting gradient is
always the sum of gradients from all frames, as shown in Eq. 5.

Masking approach can be used for training with variable
length sequences. It utilizes two input matrices for training: a
mask and a feature matrix. In this architecture, maximal al-
lowed sequence length is pre-defined. Then, the mask matrix
and the feature matrix are allocated in such a way, that the
mask determines which frames in feature matrix are valid for
the training. However, this is memory inefficient and particu-
larly slow on Graphical Processing Unit (GPU).

Because of this, we are forwarding just one utterance at a
time and accumulate gradients on every layer. After sufficient
number of utterances (i.e. the number of utterances we want to
include into one minibatch) we perform an update of weights.
This is equivalent to masking, but without the necessity of ex-
tracting the features vectors from a sparse masked matrix. It
proves to be faster and more efficient than masking.

3.3.2. Training

We used two approaches for training the systems. The first one,
“percluster”, exploits the way how LRE15 evaluation is scored.
In LRE1S, average of target language clusters Cavg is com-
puted. Therefore, six language cluster-dependent systems were
trained and outputs from individual systems were concatenated
to obtain the final scores. In the second approach, the train-
ing is done in usual way: one system is trained to discriminate
between all languages from all language clusters.

For percluster systems, we saw a strong tendency to over-
fitting. This happens for two main reasons. First, percluster sys-
tems see only a small fraction of the training set belonging to the
corresponding language cluster. Second, we have just one up-
date per utterance caused by summarization pseudo-layer. Even
after heavy regularization, we were not able to force the system
to generalize well.
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Figure 2: Structure of SSNN for LID

Table 1: Individual systems’ and fusion results

System Dev* | Eval | Eval*

MFCCSDC-BASELINE || 0.073 | 0.239 | 0.219

SSNN tanh610-tanh256 0.089 | 0.335 NA

FUSION 0.045 | 0.239 | 0.214
4. Results

The primary metric for all LRE1S results is avgCavg. It is an
average of Cavg over the language clusters as defined in [13].
Two scores are computed for each system. Dev* are scores on
the development set, calibrated on this same set (i.e. cheating
calibration) to show the lower bound for the cost function with-
out any calibration error. Eval are scores on the original evalu-
ation set calibrated on the development set.

Various experiments to determine optimal topology, sizes
of layers and non-linearities were carried out. We were exper-
imenting with layers from size 32 up to 1024 and with tanh,
sigmoid and ReLU non-linearities. Different topologies were
also tried - up to 2 hidden layers before summarization and up
to 2 layers after summarization.

The best combination turned out to be one hidden layer with
tanh non-linearity before summarization and one hidden linear
layer after summarization. We were also trying to employ L1,L2
and Dropout regularizations, without significant improvement
in systems performance.

We found that the ideal amount of trainable parameters be-
fore summarization pseudo-layer should be around 300 000 per
layer. This requirement gave us width of first layer fixed to 610
neurons. Determining the size of summary vector was the final
step of experimentation — we can see different sizes and their
influence on performance of the system on Fig. 3.

Table 4 shows, that our SSNN systems yield similar results
to baseline, but still they are about 30% relatively worse. This
situation changes when we fuse our best SSNN system with 256
dimensional summary vector and baseline system: the results
improved by 30% relative in comparison with the baseline sys-
tem on the development set. No change occurs for evaluation
set performance. We speculate, this can be caused by wrongly
estimated calibration. This theory is supported by the last col-
umn of Fig. 4 (eval* scores); here we calibrated also evaluation
scores on the eval set (i.e. cheating calibration). Some improve-
ment is shown, but it is rather insignificant.

5. Conclusion

We have explored Sequence Summarizing Neural Networks
(SSNNs) as an alternative to i-vector scoring in LID. On con-
trary to previsously published works on DNNs in LID, SSNN
has the advantage of discriminative end-to-end training without
any generative component or post-averaging of language pos-
teriors. In SSNN, the summarization layer is responsible for
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Figure 3: Performance with different sizes of summary vectors

converting variable-length feature sequence into one vector that
is then forwarded through the rest of the DNN.

We have compared SSNN to a single state-of-the-art i-
vector based baseline system based on standard MFCC/SDC
features (intentionally omitting bottle-neck features requiring to
be trained within an ASR system) and found that SSNN reaches
comparable, though worse performance. In fusion, we have
seen 30% relative improvement on the development set, but so
far no positive change on the evaluation one.

In our future work, we will focus on the generalization of
SSNN, its calibration properties (experiments with cheating cal-
ibration on the eval set suggest possible issues) and we will also
test SSNN on more standard NIST LRE data from older evalu-
ations. As DNNSs are sensitive to training data amounts, we are
especially interested in the performance of SSNN in conditions
with abundant training data.
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