
On Evolutionary Approximation of Sigmoid
Function for HW/SW Embedded Systems

Milos Minarik(B) and Lukas Sekanina

Faculty of Information Technology, IT4Innovations Centre of Excellence,
Brno University of Technology, Brno, Czech Republic

{iminarikm,sekanina}@fit.vutbr.cz

Abstract. Providing machine learning capabilities on low cost elec-
tronic devices is a challenging goal especially in the context of the Inter-
net of Things paradigm. In order to deliver high performance machine
intelligence on low power devices, suitable hardware accelerators have to
be introduced. In this paper, we developed a method enabling to evolve
a hardware implementation together with a corresponding software con-
troller for key components of smart embedded systems. The proposed
approach is based on a multi-objective design space exploration con-
ducted by means of extended linear genetic programming. The approach
was evaluated in the task of approximate sigmoid function design which
is an important component of hardware implementations of neural net-
works. During these experiments, we automatically re-discovered some
approximate sigmoid functions known from the literature. The method
was implemented as an extension of an existing platform supporting con-
current evolution of hardware and software of embedded systems.

Keywords: Sigmoid · Linear genetic programming · HW/SW co-design

1 Introduction

There are many applications in which it is too expensive or impractical to employ
a general purpose processor programmed to perform a given task. For example,
in small electronic subsystems such as sensors, it is often impossible to perform
basic signal processing on a processor because of its relatively high cost. On the
other hand, a general-purpose processor could be acceptable in terms of cost,
but it is insufficient in delivering expected computing power with a given power
budget. This is clearly the case of complex machine learning algorithms such
as deep neural networks (DNN) which are currently ported to low power elec-
tronic devices. Hence a boom of new hardware implementations of DNN is cur-
rently observed in which the requested performance is achieved by using multiple
processing units and smart memory access optimized for energy efficiency [11].

As the target processing unit can show both combinational and sequential
behavior, its implementation is based on (i) a data processing part composed of
functional modules and registers, and (ii) a (micro)program stored in a memory.
c© Springer International Publishing AG 2017
J. McDermott et al. (Eds.): EuroGP 2017, LNCS 10196, pp. 343–358, 2017.
DOI: 10.1007/978-3-319-55696-3 22



344 M. Minarik and L. Sekanina

The circuits of the data processing part can be configured, for example, in terms
of the number of registers and their bit width, the number of modules, func-
tions supported by each module, and interconnection options. The program then
defines a sequence of operations over the preselected resources. The resulting
HW/SW system can be programmed and configured to minimize power con-
sumption, area or delay in a multi-objective optimization scenario. As this opti-
mization task is difficult, a framework was developed which allows the designer
to automatically evolve a control program together with the most suitable data
processing circuits [10].

The objective of this paper is to extend the framework [10] in order to support
the evolutionary design and optimization of elementary processing elements that
are typical for recent neural networks implemented on a chip and demonstrate
its performance in comparison with human-created designs. It is expected that
the improved designs will lead to significant power reduction.

A clear disadvantage of current framework is the inability to effectively use
the subsets of modules provided. If the framework were able to use arbitrary
combination of modules, all these combinations would have to be specified in
the instruction set. If there is a large number of modules, the instruction set
can be quite extensive. This significantly increases the probability of disruptive
mutation. Therefore it could be beneficial to introduce a mechanism enabling a
better control of module utilization at the microinstruction level.

In order to optimize this kind of HW/SW systems, linear genetic program-
ming (LGP) is used. The chromosome then contains two parts: (i) microinstruc-
tions to be executed and (ii) definition of the processing element (circuits of
the data processing datapath). Resulting Pareto fronts then typically represent
various design alternatives, where some solutions show better performance using
more hardware resources and other solutions show better cost using fewer hard-
ware components but more complicated program.

The proposed solution is evaluated in the task of sigmoid function approx-
imation which is typically used as an activation function in the artificial neu-
rons. Evolved approximate functions are compared with approximate sigmoid
functions available in the literature. We show that a rich spectrum of sigmoid
approximations can be obtained using the proposed approach.

The rest of the paper is organized as follows. Section 2 summarizes relevant
state of the art and introduces the evolvable HW/SW platform. Section 3 is
devoted to the extension of the framework enabling the deactivation of modules
at microinstruction level. Experimental results are presented in Sect. 4. Conclu-
sions are given in Sect. 5.

2 Previous Work

In this section similar approaches from the GP literature will be briefly reviewed.
The proposed approach can be classified as a combination of genetic program-
ming and evolvable hardware. Although we believe our approach is new and
unique, there are some features similar to conventional evolutionary algorithms



On Evolutionary Approximation of Sigmoid Function 345

based HW/SW co–design [4,5,14], co-evolution of programs and cellular MOVE
processors [15]. The approach having the most features in common with the pro-
posed solution is genetic parallel programming (GPP) [3]. GPP evolves efficient
parallel programs by mapping a problem on parallel resources (ALUs), whereas
the proposed method is more hardware oriented and allows optimizations at the
level of the underlying digital circuits. Therefore we consider it more suitable
for embedded systems where area, speed or power consumption is critical. The
rest of this section contains a brief description of some basic terms (regarding
the framework proposed in [10]) that will be used in the following sections.

2.1 Hardware

The HW part is composed of a configurable datapath which is controlled by
a microprogram. The structure of the HW part can be seen in Fig. 1. Some
parts are fixed and are not affected by the evolution process. These parts are
drawn in gray. The other parts are subjects to the evolution. There is a set of
registers connected to modules’ inputs via multiplexers that are configurable by
the microprogram. The outputs of those modules are then connected back to the
registers using a set of decoders.

Fig. 1. HW architecture

Registers. The number of registers is given by the initial specification of the
architecture and remains the same throughout the whole evolution. However the
bit width of these registers can be affected by the evolution and it can range
from 0 to the maximum width specified by the user. When the bit width of the
register is set to 0, it is considered unused as it cannot influence the program
execution. Therefore it is possible to let the evolution optimize the number of
registers even if their number is constant.

Modules. The modules can be thought of as black boxes transforming the
inputs to the outputs using an arbitrary function. Formally the module can
be described as a 6–tuple M = <ni, no, a, p, d, ft>, where ni is the number of
module inputs, no the number of outputs, a is the area occupied by the module
and p is its power consumption. Function d defines the processing delay of the
module. Provided that D is the user chosen data type (integer or floating point



346 M. Minarik and L. Sekanina

type), function d can be thought of as a projection Dni → N as it can use
the values of inputs to asses the processing delay. This is useful in the case
of modules realizing internally different functions based on the inputs provided.
Finally function ft is the output function transforming the inputs to the outputs.
It can be described as Dni × Q → Dno where Q is the set of internal module
states. The module can therefore retain some internal state during the program
execution. However it is crucial that this state is reset between independent runs
of the program.

Architecture. The HW part is described by following components:

i the number of inputs
o the number of outputs

R = {r1, r2, . . . rr} a set of registers
w : R → N a function defining the widths of the registers

A = {M1,M2, . . .Mm} a set of available modules
u : A → {0, 1} a function specifying module utilization

2.2 Software

Each program is composed of instructions i1, i2, . . . , is, where s is the program
size. Each of the instructions can consist of several microinstructions that get exe-
cuted in the order defined by the instruction. The representation of the microin-
struction is depicted in Fig. 2. The microinstruction is composed of the header
specifying primarily the type of the instruction (e.g. branch instruction, reset
instruction, or instruction utilizing the modules). The header also contains the
information, which modules are used by the microinstruction. Right after the
header there is a definition of a constant (that is used by some instructions) and
definitions of input and output connections or values.

Fig. 2. Microinstruction format

2.3 Encoding and Search Method

The individuals are represented by chromosomes composed of integers. The
first part of the chromosome describes the software part, where the program
is encoded in LGP-like style [2]. The second part of the chromosome describes
the hardware part. It contains the description of register bit widths, the usage of
modules and the µ permutation encoding the order of modules. The µ permuta-
tion is the inversion sequence describing how many values precede the value at



On Evolutionary Approximation of Sigmoid Function 347

particular position while being greater than that value. The main advantage of
this encoding is its straightforward use with genetic operators, because it stays
valid even after recombination or mutation. Therefore the software part stays
valid even when the order of modules is changed, so there is no need to validate
or fix the software part as would be the case if a direct encoding of modules
order was used. The details can be found in [17].

The initial population is generated randomly by default. After the genera-
tion of initial population the evolution is started. It utilizes two–point crossover
operator which performs crossover at the level of instructions in the software
part and at the level of modules in the hardware part. A mutation operator
implements several modifications of the chromosome. It can change the order of
modules, their usage, bit width of the registers, instructions order and inputs,
outputs and parameters of microinstructions. The selection is performed by a
tournament method with the base of two.

The fitness of an individual is composed of four components: functionality
fitness, speed fitness, area fitness and power consumption fitness. Due to the
fact that there are multiple components of the fitness, the NSGA-II algorithm is
utilized as it supports non-dominated sorting of candidate solutions and multi-
objective optimization. However, due to the configurable design of the framework
it is possible to change the algorithm easily or to select just a subset of predefined
objectives.

3 Proposed Extension: Microinstruction-Level Modules
Deactivation and a New Mutation Operator

Throughout previous experiments with the framework the disadvantage regard-
ing the strategy in which modules are used was found. As already stated,
the header of a microinstruction includes the information about the mod-
ules used. This information had to be hardcoded in the instruction set and
could not be changed in any way by the EA. Therefore if the architecture
should be able to perform various instructions utilizing different combinations
of modules, all such instructions would have to be specified in the instruc-
tion set. For example, if the architecture employs 8 modules, there should be(
8
1

)
+

(
8
2

)
+

(
8
3

)
+

(
8
4

)
+

(
8
5

)
+

(
8
6

)
+

(
8
7

)
= 254 instructions operating with the

modules in the instruction set. The number of instructions can be easily han-
dled as the instruction set is generated automatically. However, there are other
problems imposed by the excessive number of instructions.

Let us analyze the following situation. The architecture contains 8 modules
where two of them perform addition and another one performs multiplication.
The framework discovered a candidate solution providing the expected outputs.
This solution is depicted by black parts of Fig. 3. It is obvious that the output of
the multiplier module is not used in the first instruction. Presuming the delay of
the multiplier is longer than the delay of the adder, this solution is sub-optimal,
as the first instruction takes longer than it has to. If the multiplier is disabled at
the architecture level, it will be skipped during the execution. This will lead to



348 M. Minarik and L. Sekanina

Fig. 3. Candidate solution. The instructions are separated by the dashed lines.

shorter delay of the first instruction and thus a better speed fitness. However, as
the multiplier is disabled at the architecture level, it will be skipped also during
the second instruction execution, therefore the r2 register will not be set and the
output of the third instruction will be wrong. The only possible way of achieving
better speed fitness is the mutation that replaces the first instruction with the
instruction performing only the addition. The mutation operator is implemented
in such way it randomly chooses new instruction and generates random input
connections for the modules. To achieve the desired effect, the mutation would
need to choose the right one of 254 possible instructions and generate the same
input connections (i2, i3) and output connection (r0), what is quite unlikely.

To address this issue a modification of the SW part of the chromosome is pro-
posed. This modification adds another property to microinstructions encoded in
the SW part of the chromosome (the format of the instructions is not changed).
It can be thought of as a bit string defining which modules are utilized by the
microinstruction. This property is used during the microinstruction execution
and if the module is not utilized by the microinstruction, it is skipped and its
outputs are not available as the inputs for subsequent modules. Regarding this
change, additional mutation operator was introduced that randomly flips the
bits in aforementioned bit string of a particular microinstruction. The situation
described in the previous paragraph can therefore be simply solved by deactivat-
ing the multiplier in the first microinstruction using this new mutation operator.

The downside of this approach is that the inputs of subsequent modules
that were previously connected to the outputs of the deactivated module have
to be connected to other points. Let’s presume the candidate solution in Fig. 3
contains also the gray part. Presuming the i0 input holds at zero value for all
input samples, the multiplication in the first instruction is not needed. If the
multiplier is disabled at the microinstruction level, the bottom input of the gray
adder in the first instruction has to be connected somewhere else. If it gets
connected to i0 or to any of the uninitialized registers, the outputs will remain
valid while the speed fitness increases. However, if it gets connected for example
to i1, the outputs will be wrong and the functional fitness will decrease.

On the other hand the proposed modification introduces some other advan-
tages. During the experiments with the modified framework it was found that



On Evolutionary Approximation of Sigmoid Function 349

the deactivation of a module at the microinstruction level does not only lead
to better speed, area and power consumption fitness values, but also prevents
the deactivated modules from spoiling the registers by their unneeded outputs.
This side effect is important especially with respect to the architectures utilizing
just a few registers. For example, if the output of the multiplier (in the first
instruction in Fig. 3) was connected to r0, it would overwrite the value stored
by the adder and the outputs would not be correct.

Another advantage of the proposed extension is simpler generation of the
instruction set. The simplest approach is to specify just the instruction utiliz-
ing all the modules and let the evolution disable the unneeded modules at the
microinstruction level. There is also a possibility to divide modules to sepa-
rate groups. For example, one instruction can utilize all the modules performing
Boolean operations and another instruction can utilize the modules performing
arithmetic operations as there is usually no point in combining Boolean and
arithmetic modules in the scope of one instruction.

4 Experiments

The proposed framework will be evaluated in the task of sigmoid function
approximation. In order to reduce a bias of the method, only the inputs and
expected outputs will be provided in the training set.

4.1 Problem Description

The sigmoid function is defined as

y =
1

1 + e−x

and has the derivative
dy

dx
= y(1 − y)

The existence of the first derivative is crucial for artificial neural network
training algorithms. Moreover, the sigmoid function is symmetrical with the
point of symmetry at (0, 0.5). Therefore, its value for negative values of x can
be computed as y(−x) = 1 − y(x).

A straightforward implementation of the sigmoid function is very resource
demanding. Hence there is a need for its approximation. Most implementa-
tions of such approximations can be divided into three groups: piecewise lin-
ear approximations, piecewise second-order approximations and purely combi-
national approximations. There are also other approaches, e.g. lookup tables or
recursive interpolation, but as stated in [16] they are outperformed by the three
aforementioned approaches in terms of precision, area or speed, so they will not
be further discussed in this paper.

The main goal of the experiments is to find out, whether the proposed frame-
work is capable of finding some of these solutions on its own. As little infor-
mation as possible was exposed to the framework so the solutions found can



350 M. Minarik and L. Sekanina

be considered as new designs discovered by the evolution. Some decisions were
made regarding the inputs and outputs representation. Although the framework
is capable of working with floating point numbers, the HW implementation of
floating-point arithmetics is more resource demanding compared with fixed-point
arithmetics [12]. Hence fixed-point representation of inputs and outputs was cho-
sen. In terms of bit width, we decided to use the representation with 6 fractional
bits, as according to [16], this precision should be sufficient for implementing a
reliable network forward operation.

4.2 Experiment 1: Using the Arithmetic Operations

The first experiment was based on the premise that the sigmoid function could
be approximated on some interval by another function using less HW resources,
but with required precision.

Experiment Setup. The modules allowed for use by the framework were 1
input module, 2 multipliers, 2 ALU modules and 2 bit shifters. The ALU mod-
ules can implement various basic arithmetical operations based on the function
selection input. Namely these operations include addition, subtraction, incre-
menting and decrementing by one (in terms of the chosen fixed-point represen-
tation, where the increment is equal to 0.015625 for 6 bit inputs).

The training set was composed of 32 evenly distributed samples from the
interval <0; 4>. The testing set was the whole set of possible inputs (i.e. 256
values). The parameters of the evolution are summarized in Table 1. The values
of population size, crossover and mutation probabilities were chosen empirically
based on several hundreds of runs with different values of these parameters. The
maximum program length was chosen to be 10 instructions as during the afore-
mentioned runs the output usually took place among the first ten instructions.
The maximum logical time was inferred from the delays of the modules available
and the maximum program length. The functionality fitness was defined as

fo =
ne∑

i=1

100
ns

1
1 + (ei − oi)2

,

Table 1. EA parameters used for the first experiment

Parameter Value

Population size 50

Max. generation count 200,000

Crossover probability 0.1

Mutation probability 0.7

Max. logical time 300

Max. program length 10



On Evolutionary Approximation of Sigmoid Function 351

where ei is ith item from the sequence of expected outputs (e1, e2, . . . , en),
oi is the ith output generated by the framework and ns is the number of samples.
The functionality fitness could therefore range from 0 to 100. Other parts of the
fitness (speed, area and power consumption) were left to default (see [9]).

Results. 100 independent runs were carried out and the solutions found were
then examined to asses their quality. The framework was able to find the solu-
tion in 19% of runs. The computational effort needed to find the solution was
calculated according to [6]. To the best of our knowledge, no study has investi-
gated the same problem. Therefore the sextic polynomial symbolic regression
problem was chosen for comparison as it is a problem of comparable com-
plexity and it has already been tested with one of the older versions of the
proposed framework. Table 2 shows the computational efforts needed to find
the solution by various approaches. Note there was no successful run in the
sigmoid approximation experiment when conducted on the original framework
[10], while it succeeded in the sextic polynomial regression experiment with the
computational effort comparable to other methods. The sigmoid approximation
could be therefore considered more complex problem than the sextic polynomial
regression.

Table 2. Comparison of the computational effort with sextic polynomial symbolic
regression

Problem Method Computational effort

Sextic polynomial GPP M1,2 [7] 5,310,000

GP [6] 1,440,000

Original framework [9] 990,000

GPP M8,8 [7] 540,000

Sigmoid approximation Proposed framework 7,520,000

Original framework No solution

Afterwards the solutions found were examined. One of the solutions found is
depicted in Fig. 4. It implements the formula

y = 1 − 2−1(1 − 2−2x)2,

which is the expression realizing piecewise second-order approximation proposed
by Zhang et al. [18]. Minor differences are present due to the fact the solution
found by the framework implements the approximation only for the interval
<0; 4>. Moreover, the approximation of Zhang et al. utilizes the nature of chosen
binary encoding to replace the addition/subtraction by exclusive-or.



352 M. Minarik and L. Sekanina

Fig. 4. Example of evolved solution in Experiment 1

Multiple variations of the correct solution were found. Most of them were
computing the approximated value in the expanded form as

y = −2−5x2 + 2−2x + 2−1.

Some of those solutions were found to be sub-optimal in terms of area and
speed, as they used multiplication by constant instead of a simple bit shift.
Apart from that some solutions were found that even utilized both multipliers
in parallel and therefore achieved lower area fitness but the highest speed fitness
of all the solutions found. Figure 5 shows the non-dominated solutions discovered.
The tradeoff between the speed and area fitness is clearly seen.

20

30

40

50

60

70

40 50 60 70 80 90

Ar
ea

 fi
tn

es
s

Speed fitness

Fig. 5. Nondominated solutions for Experiment 1. The values were computed according
to [9] and scaled from the <0; 1> interval to <0; 100> interval, where 0 is the worst
fitness and 100 is the best (i.e. no modules used or zero execution time).

4.3 Experiment 2: No Multiplication

The framework was able to find a solution utilizing the multiplier module. How-
ever, multiplication is quite expensive in terms of the area used. Therefore, the
next step was to find a solution that would not need the multiplier. One of such
solutions (PLAN approximation) was proposed in [1]. This solution approximates
the sigmoid by 4 linear segments (see Fig. 6).



On Evolutionary Approximation of Sigmoid Function 353

0,5

0,6

0,7

0,8

0,9

1

0 1 2 3 4

y

x

sigmoid y1 y2 y3 y4

Fig. 6. PLAN approximation [1]

Each of the segments is used for some part of the interval. These segments can
be described by the equations and appropriate intervals presented in Table 3. As
can be seen, the multiplications by coefficients can be replaced by bit shifts. The
HW implementation is, however, quite complex as it uses direct transformation
of the inputs to outputs. Finding such a complex system at once would probably
be nearly impossible. So the goal of our experiment was just to find a piecewise
linear approximation of the sigmoid function.

Table 3. PLAN approximation of the sigmoid function [1]

Function Interval

y1 = 0.25x + 0.5 0 ≤ x < 1

y2 = 0.125x + 0.625 1 ≤ x < 2.375

y3 = 0.03125x + 0.84375 2.375 ≤ x < 5

y4 = 1 5 ≤ x

Experiment Setup. The setup of the experiment remained almost the same
as in previous experiment except the multipliers being removed. In the first
experiment, only the first output for each sample was processed. However in
the case of linear approximation, it could be beneficial to process more outputs
and choose the one best approximating the sigmoid function for a given sample.
This should enable the framework to evolve a program computing and outputting
multiple linear approximations.

Results. 200 independent runs were performed and the results were examined.
In 2.5% of runs a suitable solution was found. Outputs of one of the most precise
solutions are depicted in Fig. 7. The solution differs from the original PLAN
approximation. This is mainly due to the fact that the PLAN approximation
is not bound only to interval <0; 4> as the evolved solution is. The evolved
solution utilizes this restriction to approximate the last segment of the interval



354 M. Minarik and L. Sekanina

by constant 0.96875, whereas in PLAN approximation the constant segment is
used for inputs x ≥ 5. Moreover the gradient of the third segment differs from
the PLAN approximation. That is, again, probably due to the interval restriction
as the evolved solution does not have to approximate values between 4 and 5,
where the gradient of the PLAN approximation is feasible.

0,5

0,6

0,7

0,8

0,9

1

0 1 2 3 4

y

x

sigmoid y1 y2 y3 y4

Fig. 7. Linear approximation A

0,5

0,6

0,7

0,8

0,9

1

0 1 2 3 4

y

x

sigmoid y1 y2 y3

Fig. 8. Linear approximation B

Table 4. Description of segments –
solution A

Function Interval

y1 = 0.25x + 0.5 0 ≤ x < 1

y2 = 0.125x + 0.625 1 ≤ x < 2.5

y3 = 0.0625x + 0.765625 2.5 ≤ x < 3

y4 = 0.96875 3 ≤ x

Table 5. Description of segments –
solution B

Function Interval

y1 = 0.25x + 0.5 0 ≤ x < 1

y2 = 0.125x + 0.625 1 ≤ x < 2.5

y3 = 0.0625x + 0.75 2.5 ≤ x

Table 4 shows the description of the linear functions obtained by the analysis
of SW part of the evolved solution. The intervals are given by the fitness function
(i.e. the segment with the closest value is taken). In the case there were more
possible points, the boundary of the interval was chosen to be the number with
the least fractional bits for better readability of the table. Another solution is
shown in Fig. 8 and the description of the linear segments is given in Table 5. It
is similar to solution A, but uses just three linear segments. Moreover, it allows
to design the HW implementation of such variation of a PLAN approximation,
in which the offsets of the segments of solution B are more feasible.

Finally, the original PLAN approximation and the two proposed solutions
were compared in terms of the average and maximum error. The results are listed
in Table 6. The maximum error is the same but the average error is smaller for
both evolved solutions. Therefore those solutions could be considered superior to
original PLAN approximation in the interval <0; 4>. The framework therefore
succeeded in evolving the solution suited specifically for this restricted interval
and as [16] states, this interval is sufficient in many applications. The solution
can therefore be considered as an improvement of an existing solution.



On Evolutionary Approximation of Sigmoid Function 355

Table 6. Comparison of average Eavg and maximum Emax error

Approximation Emax Eavg

Plan approximation 3.13% 0.92%

Solution A 3.13% 0.61%

Solution B 3.13% 0.83%

4.4 Experiment 3: Combinational Approximation

The last approach is a purely combinational approximation. It is based on the
fact that when both the input and output have a bit width restricted to only a
few bits, it is possible to perform a direct bit-level mapping. More formally, the
bit-level mapping can be expressed as a sum-of-products (SOP). The SOP can
be minimized using a procedure such as Quine–McCluskey [8] and the result can
be implemented by AND, OR and NOT gates.

Encoding. The bit widths should be as small as possible while still maintaining
the required precision. As the previous experiments were carried out at the
<0; 4> interval, the inputs were chosen to have 2 integral bits, so the <0; 4)
interval is covered. The output is restricted to interval <0.5; 1>, so the outputs
were chosen to have 0 integral and 6 fractional bits to provide the same precision
as the previous experiments. The number of input fractional bits was decided
to be 3 as, according to [16], it should provide a sufficient precision for neural
network operation.

Experiment Setup. The input was chosen to have 2 integral and 3 fractional
bits, therefore the modules allowed to use by the framework were 5 input mod-
ules (one for each bit) providing the bit value and its complement and 20 Boolean
modules. Boolean modules can implement bitwise AND, OR, NAND or NOR.
These modules were chosen to have 5 inputs. Four of them are used for actual
inputs and the last one is used for Boolean operation selection. Four inputs were
chosen as it is a typical number of binary inputs for a function that can be
realized by a single look-up table in field programmable gate array (FPGA).
The number of 20 Boolean modules is quite high compared to experiments per-
formed with the previous version of the framework. It should, however, assure
the evolution wouldn’t be too limited by available resources and confirm that
the proposed modules deactivation works as expected.

As only Boolean operations were used, the inputs were merged into 32 bit
integers (according to [13]). The complete set of all the input combinations was
chosen as the input set, as the goal of the experiment was to find a solution giving
the correct outputs for all the input combinations. As there are only 5 input bits,
the evaluation of whole training set could be done in one program execution.
The outputs are processed in the same manner. The problem is that there are
6 outputs and it would not be possible to tell, which one should correspond to
a particular expected output. Therefore the evolution was performed separately
for individual outputs.



356 M. Minarik and L. Sekanina

Modification of Boolean Modules Evaluation. After performing several
runs, it was observed, that the candidate solutions tend to output 0 or −1
(all bits set). All possible input combinations are processed at once, which has
an interesting side-effect. As it is known that none of the 32bit inputs nor the
output is 0 or −1, these values can be ignored as they only spoil the computation.
Thus the modification was made that the Boolean module ignores 0 values on
its inputs when operating as AND/NAND and −1 values when operating as
OR/NOR. This change reportedly lowered the computational effort by approx.
two orders of magnitude.

Results. As the first fractional bit is known to be 1 for the whole positive
domain, the first runs were performed for the second fractional bit of the output.
The solution was found and compared to the solution sig 236 proposed in [16]
(see Tables 7 and 8). The expressions in the tables use the notation from [16],
where the input is of form x4x3.x2x1x0. Redundant input bits in expressions
in Table 7 are caused by redundant connections of corresponding module. This
can happen as such connection influences neither the result correctness nor the
speed or area fitness. Such connections could be easily identified and removed
manually or some area would have to be assigned to the connections, so the
framework would remove them while trying to minimize the area used. Another
difference is the presence of x3 ∨ x0 instead of x3 ∧ x0. According to the rules
of Boolean algebra these expressions are equivalent, so it’s not a difference in
terms of functionality.

Table 7. Logic equations of the
solution found for the second bit

Term Expression

im1 NOR(x3, x0)

im2 AND(x3, x3, x1)

im3 AND(x3, x2, x2)

im4 OR(im2, x4)

Output OR(im4, im3, im1)

Table 8. Logic equations for the
second bit of sig 236p [16]

Term Expression

p2 AND(x4)

p4 AND(x4, x3, x2, x0)

p17 AND(x3, x0)

p19 AND(x3, x1)

p22 AND(x3, x2)

Output OR(p2, p4, p17, p19, p22)

The most important difference, however, is the absence of x4 ∧ x3 ∧ x2 ∧ x0.
After the examination it was concluded that the absence of this expression is
correct, because it gets minimized due to x4 input as x4 ∨ (x4 ∧ x3 ∧ x2 ∧ x0)
minimizes to x4, which is included. Presence of such expression in sig 236 could
possibly be a mistake or some side-effect of the synthesis. This could happen
e.g. in the case when some gates are shared by multiple outputs. In such case, it
would be in accordance with aforementioned disadvantage of separate outputs
evolution. However no evidence has been found to prove this. Afterwards the
solutions were successfully found for all subsequent output bits, therefore the
evolution succeeded in reinventing the sig 236p approximation presented in [16].



On Evolutionary Approximation of Sigmoid Function 357

5 Conclusions

In this paper the framework for development of small application-specific digital
embedded architectures was extended with the possibility to deactivate the mod-
ules at microinstruction level. The proposed extension was evaluated by evolv-
ing several distinct solutions of sigmoid function approximation. The extended
framework was able to evolve variations of two sequential and one combinational
well-known sigmoid function approximation algorithms. These results together
with the results in [9] and [10] have shown that the framework can be used to
find solutions for a wide variety of problems without the need of modifying the
underlying algorithms. In most of the experiments, it was sufficient to specify
the inputs and expected outputs, choose the modules available and define the
functionality component of the fitness function.

The future research regarding this platform will deal with improving overall
efficiency of the method. Another possibility would be to assess the extended
framework on other complex problems, such as the evolution of convolutional
kernels for DNNs.

Acknowledgments. This work was supported by the Czech science foundation
project GA16-17538S.

References

1. Amin, H., Curtis, K.M., Hayes-Gill, B.R.: Piecewise linear approximation applied
to nonlinear function of a neural network. IEE Proc. Circ. Dev. Syst. 144(6),
313–317 (1997)

2. Brameier, M., Banzhaf, W.: Linear Genetic Programming. Springer, Berlin (2007)
3. Cheang, S.M., Leung, K.S., Lee, K.H.: Genetic parallel programming: design and

implementation. Evol. Comput. 14(2), 129–156 (2006)
4. Deniziak, S., Gorski, A.: Hardware/software co-synthesis of distributed embedded

systems using genetic programming. In: Hornby, G.S., Sekanina, L., Haddow, P.C.
(eds.) ICES 2008. LNCS, vol. 5216, pp. 83–93. Springer, Heidelberg (2008). doi:10.
1007/978-3-540-85857-7 8

5. Dick, R.P., Jha, N.K.: MOGAC: a multiobjective genetic algorithm for hardware-
software cosynthesis of distributed embedded systems. IEEE Trans. CAD Integr.
Circ. Syst. 17(10), 920–935 (1998)

6. Koza, J.R.: Genetic Programming II: Automatic Discovery of Reusable Programs.
MIT Press, Cambridge (1994)

7. Leung, K.S., Lee, K.H., Cheang, S.M.: Parallel programs are more evolvable than
sequential programs. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E., Poli, R.,
Costa, E. (eds.) EuroGP 2003. LNCS, vol. 2610, pp. 107–118. Springer, Heidelberg
(2003). doi:10.1007/3-540-36599-0 10

8. McCluskey, E.J.: Minimization of Boolean functions. Bell Syst. Tech. J. 35(6),
1417–1444 (1956)

9. Minarik, M., Sekanina, L.: Concurrent evolution of hardware and software for
application-specific microprogrammed systems. In: 2013 IEEE International Con-
ference on Evolvable Systems (ICES), pp. 43–50 (2013). Proceedings of the 2013
IEEE Symposium Series on Computational Intelligence (SSCI). IEEE Computa-
tional Intelligence Society

http://dx.doi.org/10.1007/978-3-540-85857-7_8
http://dx.doi.org/10.1007/978-3-540-85857-7_8
http://dx.doi.org/10.1007/3-540-36599-0_10


358 M. Minarik and L. Sekanina

10. Minarik, M., Sekanina, L.: Exploring the search space of hardware/software embed-
ded systems by means of GP. In: Nicolau, M., Krawiec, K., Heywood, M.I., Castelli,
M., Garćıa-Sánchez, P., Merelo, J.J., Rivas Santos, V.M., Sim, K. (eds.) EuroGP
2014. LNCS, vol. 8599, pp. 112–123. Springer, Heidelberg (2014). doi:10.1007/
978-3-662-44303-3 10

11. Misra, J., Saha, I.: Artificial neural networks in hardware: a survey of two decades
of progress. Neurocomputing 74(1–3), 239–255 (2010)

12. Parhami, B.: Computer Arithmetic: Algorithms and Hardware Designs. Oxford
University Press, Oxford (2000)

13. Poli, R., Langdon, W.B.: Sub-machine-code genetic programming. In: Advances in
Genetic Programming, pp. 301–323. MIT Press, Cambridge (1999)

14. Shang, L., Dick, R.P., Jha, N.K.: SLOPES: hardware-software cosynthesis of low-
power real-time distributed embedded systems with dynamically reconfigurable
FPGAs. IEEE Trans. CAD Integr. Circ. Syst. 26(3), 508–526 (2007)

15. Tempesti, G., Mudry, P.A., Zufferey, G.: Hardware/software coevolution of genome
programs and cellular processors. In: First NASA/ESA Conference on Adaptive
Hardware and Systems (AHS 2006), pp. 129–136. IEEE Computer Society (2006)

16. Tommiska, M.T.: Efficient digital implementation of the sigmoid function for repro-
grammable logic. IEE Proc. Comput. Digital Tech. 150(6), 403–411 (2003)

17. Üçoluk, G.: Genetic algorithm solution of the TSP avoiding special crossover and
mutation. In: Sixth Turkish AI and NN Symposium (TAINN VI), Ankara, pp.
57–62 (1997)

18. Zhang, M., Vassiliadis, S., Delgado-Frias, J.G.: Sigmoid generators for neural com-
puting using piecewise approximations. IEEE Trans. Comput. 45(9), 1045–1049
(1996)

http://dx.doi.org/10.1007/978-3-662-44303-3_10
http://dx.doi.org/10.1007/978-3-662-44303-3_10

	On Evolutionary Approximation of Sigmoid Function for HW/SW Embedded Systems
	1 Introduction
	2 Previous Work
	2.1 Hardware
	2.2 Software
	2.3 Encoding and Search Method

	3 Proposed Extension: Microinstruction-Level Modules Deactivation and a New Mutation Operator
	4 Experiments
	4.1 Problem Description
	4.2 Experiment 1: Using the Arithmetic Operations
	4.3 Experiment 2: No Multiplication
	4.4 Experiment 3: Combinational Approximation

	5 Conclusions
	References


