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ABSTRACT
This paper describes a systems for emotion recognition and
its application on the dataset from the AV+EC 2016 Emo-
tion Recognition Challenge. The realized system was pro-
duced and submitted to the AV+EC 2016 evaluation, mak-
ing use of all three modalities (audio, video, and physiolog-
ical data). Our work primarily focused on features derived
from audio. The original audio features were complement
with bottleneck features and also text-based emotion recog-
nition which is based on transcribing audio by an automatic
speech recognition system and applying resources such as
word embedding models and sentiment lexicons. Our mul-
timodal fusion reached CCC=0.855 on dev set for arousal
and 0.713 for valence. CCC on test set is 0.719 and 0.596
for arousal and valence respectively.

CCS Concepts
•Social and professional topics → User characteris-
tics;

Keywords
emotion recognition, valence, arousal, bottleneck features,
neural networks, regression, speech transcription, word em-
bedding

1. INTRODUCTION
This paper presents an emotion recognition system eval-

uated on the material defined within the Audio-Visual +
Emotion Recognition Challenge (AV+EC 2016)1 [25]. AV+EC
is an annual challenge held since 2011. Its main purpose is

∗The author is further affiliated with Phonexia, Brno, CZ
1http://sspnet.eu/avec2016/
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emotion recognition from multimodal data — audio, video
and physiological data. Emotion is understood as a value in
two-dimensional arousal-valence continuous space [12].

The data comes with three sets of features for audio, video
and physiological signals. Our main focus was on audio and
video features. The work on physiological features was con-
centrated on their post-processing, regressor training and
fusion.

In audio, we have complemented the provided material
by Bottle-neck (BN) features generated from a narrow hid-
den layer of a neural network trained toward phonetic tar-
gets. BN features were designed for automatic speech recog-
nition [11] and have since been integrated into many top-
performing ASR systems and their multilingual variants [11].
Recently, BN features (and general feature extraction schemes
based on deep neural networks) were found very efficient in
other areas of speech processing, such as language identifi-
cation [19, 5] and speaker identification [4, 7]. Due to their
ability to suppress nuisance variability in the speech data,
we proved in AVEC2015 challenge [21] that these features
are promising candidate also for emotion recognition.

In video, we have complemented the baseline features by
activations of a convolutional neural network (CNN) trained
to localize facial landmarks [26]. These activations encode
geometrical information mixed with appearance informa-
tion.

In addition we experimented with text based features,
which we obtained from an automatic speech recognition
system. We explored a lexicon-based approach as well as
word embedding – a technique mapping words to vectors
of real numbers in a space with lower dimension than the
vocabulary size [2, 20].

The rest of this paper provides a description of experi-
ments leading to our submission for the AV+EC 2016 chal-
lenge.

2. EMOTION FEATURES

2.1 Audio Features
Organizers provided a set of 102 dimensional audio fea-

tures, known as Extended Geneva Minimalistic Acoustic Pa-
rameter Set (eGeMAPS). The features were generated from
short fixed length segments (3s) shifted by 40 ms [25].

In addition, we used two Stacked Bottle-Neck features as
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our main acoustic feature set trained as French only and sec-
ond in Multilingual fashion (trained on several languages).
We have seen very good results with this features in our
AVEC 2015 submission [21].

The architecture for the feature extraction consists of two
NNs. The output of the first network is stacked in time,
defining context-dependent input features for the second
NN, hence the term Stacked Bottleneck Features (SBN) [19].

The NN input features are 24 log Mel Filter band ener-
gies concatenated with fundamental frequency (F0) features
produced by four different estimators: BUT F0 detector pro-
duces 2 coefficients (F0 and probability of voicing), Snack
F0 gives just a single F0 and Kaldi F0 estimator outputs 3
coefficients (Normalized F0 across a sliding window, proba-
bility of voicing and delta). Fundamental frequency varia-
tion (FFV) estimator [16] produces a 7-dimensional vector.
Therefore, the whole feature vector has 24+2+1+3+7=37
coefficients [15].

The conversation-side mean subtraction is applied on the
whole feature vector. 11 frames of log filter bank outputs
and fundamental frequency features are stacked together.
The Hamming window followed by the DCT consisting of
0th to 5th base are applied on the time trajectory of each
parameter resulting in (24 + 13) × 6 = 222 coefficients on
the first-stage NN input [19].

The first-stage NN has four hidden layers with 1500 units
each except the BN layer. The size of the BN layer is 80 neu-
rons and it is the third hidden layer. Its outputs are stacked
over 21 frames and down-sampled (every 5th is taken) and
entered into the second-stage NN with the same structure as
the first-stage NN. Outputs from 80 neurons in the BN layer
form the final BN features for the recognition system [15].

We trained 2 systems with this topology, first only on
French data (which match the data from the challenge) and
second on 5 languages as multilingual bottleneck features.

For the training of the French recognition system, we used
the 21 hours of transcribed data from BISON project2 and
23 hours from EVALDA project3. Bottleneck features de-
rived from this system are denoted as BN-FR.

To train the multilingual system, the IARPA Babel Pro-
gram data4 were used. We used 11 languages to train our
multilingual SBN feature extractor: Cantonese, Pashto, Turk-
ish, Tagalog, Vietnamese, Assamese, Bengali, Haitian, Lao,
Tamil, Zulu. Details about the characteristics of the lan-
guages can be found in [13]. The training speech was force-
aligned using our BABEL ASR system [15]. Bottleneck fea-
tures derived from this system are denoted as BN-Multi.

2.2 Text Based Features
People’s emotion can be perceived through different modal-

ities, most acknowledged ones being hearing and vision. How-
ever, the semantic of the words used can also be an impor-
tant aspect to take into consideration in emotion detection.
The words chosen can say a lot on the current state of emo-
tion of the person indeed.

Automatic speech recognition was applied to the audio
data and several approaches to extract features from the
resulting texts were attempted. These included word em-
bedding, lexicon based sentiment detection in French and

2http://bison-project.eu/
3http://www.elra.info/en/projects/archived-projects/
evalda/
4Collected by Appen, http://www.appenbutlerhill.com

two standard English sentiment tools applied to automatic
translations of the transcripts.

2.2.1 Automatic Speech Recognition
The French speech-to-text transcription system used to

generate the automatic word hypotheses has the same basic
structure as the American English one described in [8] except
that an MLP is used to estimate the HMM state likelihood.
The French system (developed in collaboration with Vocapia
Research), first separates non-speech and speech portions of
the audio file and then applies a maximum-likelihood seg-
mentation/clustering process [10], to associate labels with
segment clusters, where each cluster ideally represents one
speaker.

The acoustic models are speaker-adaptive (SAT) and Max-
imum Mutual Information (MMIE) trained on about *1200*
hours of audio data from a variety of broadcast sources
and cover 33k context-dependent phones. They are gender-
independent, word-position dependent tied-state, left-to-right
phone HMMs with about 10k tied pdfs estimated with a
DNN. The states are tied by means of a divisive decision
tree with questions concerning the phone position, the phone
identity and distinctive features and the neighboring phones
in order to reduce model size and increase triphone coverage.
The acoustic features are obtained by combining bottle-neck
MLP outputs applied to raw PLP and TRAP features [6].

The system has a 250k word pronunciation lexicon, rep-
resented with 34 phones including specific units for silence,
breath noise and filler words [9].

N-gram language models are trained on over 2 billions
words of text from a large number of sources. Unpruned
component LMs trained on different subsets of the training
texts are interpolated for the final language models used for
both decoding and lattice rescoring.

Word decoding is carried out in two passes, where each de-
coding pass produces a word lattice with cross-word, word-
position dependent acoustic models, followed by consensus
decoding with a 4-gram language model and pronunciation
probabilities. Unsupervised acoustic model adaptation is
performed for each segment cluster using CMLLR [18].

While the ASR word error rate (WER) is not known on
this data, an older version of the system obtained a WER in
the range of 9-28% (average 15%) across a variety of styles
of broadcast data in the Quaero 2011 test [17].

2.2.2 Word Embedding (WE)
Word embedding or word2vec is a technique which maps

words to vectors of real numbers in a space with lower di-
mension than the vocabulary size [2, 20]. Usual dimension
are ranging between 80 and 2000. Most of the new word
embedding techniques rely on a neural network architecture
where bottleneck layer does the compression to the final vec-
tor.

We used a French word embedding model5 built using
Word2Vec [20] on the frWak6 corpus [1]. The model had
200 embedding dimensions with a cutoff of 0 and the cbow
algorithm.

2.2.3 Lexicon-based approach

5http://fauconnier.github.io/index.html#
wordembeddingmodels
6http://wacky.sslmit.unibo.it/doku.php?id=corpora
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We realized a valence and arousal estimation from text
analysis, based on the transcriptions obtained from the ASR
system previously described. Several methods have been ap-
proached, among them a lexicon-based system. A French
lexicon of emotional words have been extracted from the
emoBase platform7 which stores resources gathered for the
ANR project EMOLEX8. The semantic (high intensity, ver-
bal demonstration, etc.) and emotion (joy, disappointment,
contempt, etc.) labels, as well as the collocation information
(as for context) provided by the corpus have been interpo-
lated to estimate valence and arousal values for each entry
of the lexicon. The latter were then applied to the training
and development datasets, expecting high precision results.

2.3 Video Features
Organizers provided features including two types of facial

descriptors: appearance and geometric based [22, 25]. The
former were extracted by Gabor Binary Patterns from Three
Orthogonal Planes (LGBP-TOP) leading to total vector size
of 84, the latter are facial landmarks leading to vector size
of 316. Again, overlapping 3s segments with 40 ms were
used. The problem we experienced with the video features
was that for parts of the data, the face was not recognized
and no information was provided. For certain records, the
amounts of unrecognized frames were up to 40%.

We have complemented the baseline video features by ac-
tivations of a convolutional neural network (CNN) trained
to localize facial landmarks [26] on the AFLW dataset. The
regression network has 4 convolutional layers followed by a
fully connected layer with absolute hyperbolic tangent ac-
tivation. A final fully connected layer outputs x and y co-
ordinates of 5 facial landmarks. It is necessary to use a
pretrained network due to the very small size of the AVEC
dataset, and the facial landmark localization task should be
suitable for emotion recognition considering the good per-
formance of the baseline geometric features on the valence
task.

We have extracted the activations of the last convolutional
layer (Video CNN-L4) and the first fully connected layer
(Video CNN-L5) from the baseline facial regions enlarged
by factor of 1.3 and rescaled to 40× 40 pixels. The CNN-L4
features should contain more appearance information while
the CNN-L5 should encode more geometric information.

2.4 Physiological Features
Physiological sets included Electrocardiogram (ECG) de-

rived features, based on heart rate, its measure of variabil-
ity, and derived parameters and statistics, and Electroder-
mal activity (EDA), skin conductance response (SCR), skin
conductance level (SCL), as well as a number of derived pa-
rameters [22]

3. EXPERIMENTS AND ANALYSIS

3.1 Database
The data-set comes from RECOLA multimodal database [23].

It contains spontaneous interactions in French. Participants
were recorded in dyads during a video conference while re-
solving of a collaborative task (âĂIJWinter survival taskâĂİ).

7http://emolex.u-grenoble3.fr/emoBase/index.php
8http://emolex.eu/

Data was collected from 46 participants, but due to con-
sent issues, only 5.5 hours of fully multimodal recordings
from 27 participants are usable. The database is gender
balanced and the mother tongues of speakers are French,
Italian and German. The first 5 minutes of each recordings
were rated by 6 French-speaking emotion raters in the con-
tinuous arousal-valence space, leading to 135 minutes of data
with emotion ground truth. The database is freely available9

and full details are provided in [23].

3.2 Evaluation and baselines
The results were evaluated using the concordance corre-

lation coefficient (CCC) to measure the correlation between
the prediction and the gold standard. CCC combines the
Pearson correlation coefficient of two time series ρ with mean
square error:

CCC =
2ρσxσy

σ2
xσ2

y + (µx − µx)2
.

CCC produces values from -1 to 1. 1 means that the two
variables are identical, -1 means that they are opposite and
0 means that they are totally uncorrelated.

The organizers experimented with several emotion recog-
nition schemes and provided the best obtained values in [25].
These serve as baselines for our work and are mentioned in
the tables in brackets.

3.3 Feature pre-processing
There are several steps to prepare features for regressor

training. Each step has a different setting for different input
features and different modality. Table 1 shows in condense
form the settings of each pre-processing block which are de-
scribed in more details below in this section.

At first, Principal Component Analysis (PCA) is used for
dimensionality reduction. And the resulting features are
normalized to have zero mean an unit variance.

In our experiments, we trained regression models for va-
lence and arousal values for each frame (every 40 ms). In
many other classification and recognition tasks, we have seen
the need of adding larger temporal context to make a good
prediction. This context is different for each modality.

We chose to provide the context primarily by stacking to-
gether features from a temporal neighborhood. The features
themselves have quite smooth trajectories, so we do not need
to take every frame but rather skip some frames, in order to
keep the size of frame feature vectors manageable - we call
it sub-sampling.

Further context is provided by computing local statistics
for each feature. We compute mean, variance, maximum and
minimum for each feature from a temporal window. Finally,
we apply PCA again to reduce the size of feature vectors and
we optionally normalize the features again to zero mean and
unit variance.

We experimented with the delay applied to the gold-standard
and optimal numbers in seconds for each modality are pre-
sented in the work too, This shift is consistent with previous
works [14, 25].

All parameters in the Table 1 were obtained by grid search
with the performance measured as CCC on the development
partition of the AVEC 2016 database. Dash ”-” in the Ta-
ble 1 means that this step was skipped for particular sub-
system.

9https://diuf.unifr.ch/diva/recola/
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Table 1: Parameters of the single systems used for final fusion. The right side of the table lists the operations
in the order they were computed. PCA - number of PCA components; norm. - per feature zero and mean
normalization; stack - stacks frames from local window with temporal sub-sampling; stat. - computes statistics
in local window per feature (min., max., mean, median); - shift features by n frames.

features task fusion dev. CCC PCA norm. stack stat. shift PCA norm.
audio BN FR 80

a
ro

u
sa

l

1
a
n
d

3

0.83 8 yes 201 (sub 5) - 60 - -
audio eGeMAPS 0.72 - yes - - 60 - -
audio BN l3 0.83 8 yes 60 (sub 20) - 60 - -
video appearance 0.44 40 yes - - 90 - -
video geometric 0.44 64 yes - - 40 - yes
ECG 0.31 - yes 21 - 40 - -
HRHRV 0.39 8 yes - - 0 - -
SCL 0.13 4 yes 21 - 10 - -
SCR 0.17 - yes 41 - 40 - -
video appearance

v
el

en
ce

1
a
n
d

3

0.39 64 yes - - 50 - yes
video geometric 0.54 64 yes - - 90 - -
audio BN-FR 0.50 8 yes 181 (sub 5) - 50 - -
audio BN-Multi 0.50 64 yes 161 (sub 5) - 30 - -
audio eGeMAPS 0.47 64 yes - - 100 - -
ECG 0.27 8 yes 40 - 60 - -
HRHRF 0.39 8 yes - - 30 - yes
SCL 0.31 - yes - - 20 - yes
audio BN-FR

a
ro

u
sa

l

2
a
n
d

3

0.81 4 yes 120 (sub 20) 60 60 64 -
audio BN-Multi 0.83 8 yes 120 (sub 20) - 90 - -
audio eGeMAPS 0.79 - yes 120 (sub 20) - 90 64 -
ECG 0.32 24 yes 60 (sub 10) - 30 64 -
Text ASR+WE 0.63 8 yes 120 (sub 20) 10 60 64 -
EDA

v
el

en
ce

2
a
n
d

3

0.32 - yes - 150 30 64 yes
HRHRV 0.19 - yes 120 (sub 20) - 30 - -
SCL 0.21 - yes 120 (sub 20) - 30 - -
video appearance 0.35 - yes - 150 60 64 yes
video geometric 0.58 4 yes 60 (sub 20) 60 60 64 -

3.4 Classifiers and Fusion
Linear regression is used on all single systems for arousal

and valence. Liner regression is used also for the fusion. We
have experimented with many classifiers (NN, RNN, LSTM,
BLSTM) and their settings ... but we did not see any gain.

3.5 Individual systems
Table 2 summarizes our best results of single systems

on development data for both modalities (Arousal and Va-
lence). First part of the Table describes our systems with
baseline features. We provide baseline results from organiz-
ers [25] for comparison, the numbers in brackets.

Second part of the Table 2 is reserved for our own feature
extraction. We show results for our two systems based on
Bottleneck features (BN) which outperform baseline audio
system. Next line is reserved for text based word embed-
ding system described in more details in Section 3.7.2. Last
two lines are results from our two video features reaching
CCC=0.617 on arousal and CCC=0.497 on valence.

Last line of Table 2 show our best fusion results.
Scores from all subsystem were smoothed with median

filter with length 2.4 sec.

3.6 CCC as objective function
In general, regression systems should be trained with the

same objectives as those used for evaluation. CCC is fully

differentiable and can be easily integrated into gradient de-
scent learning.

We trained diverse linear regressors using different regu-
larizations and feature preprocessing pipelines to assess the
effect of the objectives. We optimized the regressors using
AdaDelta algorithm [27] with mini-batches of 256 frames.
Figure 1 shows that CCC objective consistently improves
results in the emotion recognition task compared to mean
squared error loss (MSE). The average CCC improvement
for arousal and valence is 0.048 (median 0.056) and 0.062
(median 0.066), respectively. Similar trend in performance
was already reported in [14, 24].

Additionally, we compared CCC loss to mean absolute
error loss (MAE) which previous work suggests is more suit-
able for the valence estimation task [3] than MSE. In our
experiments CCC consistently improved results over MAE
for arousal and valence on average by 0.054 (median 0.052)
and 0.081 (median 0.079), respectively. The corresponding
scatter plots are shown in Figure 2.

3.7 Text Based Features

3.7.1 Lexicon based approach
As for the lexicon based approach, a closer look at the

database and transcripts revealed that only two words from
the resulting lexicon appeared in the voice transcripts, and
these two apparent transcription errors. Several factors may
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Figure 1: Scatter plots of MSE vs. CCC learning
objective showing CCC scores of diverse linear sys-
tems on arousal (left) and valence (right).
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Figure 2: Scatter plots of MAE vs. CCC learning
objective showing CCC scores of diverse linear sys-
tems on arousal (left) and valence (right).

Table 2: Comparison of single systems of differ-
ent modalities, AV+EC 2016 baseline results are in
brackets [25].

Development
CCC Arousal Valence
Audio 0.791 (0.796) 0.470 (0.455)
Video geometric 0.539 (0.379) 0.623 (0.612)
Video appearance 0.541 (0.483) 0.475 (0.474)
ECG 0.323 (0.271) 0.272 (0.153)
EDA 0.123 (0.077) 0.316 (0.194)
SCL 0.134 (0.101) 0.310 (0.124)
SCR 0.167 (0.071) 0.194 (0.110)
HRHRV 0.391 (0.382) 0.388 (0.293)
Audio BN-Multi 0.833 0.503
Audio BN-FR 0.830 0.497
Text ASR+WE 0.626 0.278
Video CNN-L4 0.595 0.497
Video CNN-L5 0.617 0.467
Fusion-Multimodal 0.855 (0.821) 0.713 (0.683)

have contributed to this: on casual examination, we ob-
served that the transcripts were very low in verbal expres-
sions of emotion and contained no apparent emotion-specific
words; the lexicon may have been too generic, not covering
such specific domain as the one from the provided corpus.
More than analyzing the context around the words, a whole
profiling of the domain should be done for such method to
really be beneficial.

3.7.2 Word Embedding
This approach is more promising, since we can use the

features and train classifier on the target database. The
first results from this approach are in the Table 2 reaching
on valence CCC=0.278 and CCC=0.626 for arousal.

3.8 Undefined regions
There is about 50% of speech in each audio file, the rest

is silence. There is about 60% of detected face in video, the
rest is unrecognized. It is obvious that we can not recognize
emotion from audio if there is silence, and similar remark
is applicable for video too. We present an analysis of train-
ing and evaluation of the system on all data, then Defined
region (speech or face is detected) and notDefined) regions
(silence/unrecognized face). Table 3 present results of such
experiment for arousal. The system for video fulfilled our
expectation that training and testing on matched data is
better and provides performance gain, whereas scoring in
notDefined region yield to poor performance. The audio
system does not behave the same way and we are currently
investigating on the reasons of this.

3.9 Fusion
Table 4 presents the results of our best fusions and submit-

ted systems. We have submitted 3 systems to the challenge.
All of them are fusions of several subsystems of different
modalities. Table 1 gives the lists of subsystems belonging
to each submission. Fusion 1 for arousal is from first block
from the Table 1 and for valence from the second block. Fu-
sion 2 is from third block for arousal and fourth for valence.
The last Fusion for arousal contain all subsystems from Fu-
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Table 3: Analysis of training and evaluating the sys-
tem on all data, Defined region( speech or face de-
tected) and notDefined region (silence/unrecognized
face).

Arousal CCC on Dev
train test Audio Video
all all 0.836 0.448
all Defined 0.837 0.464
all notDefined 0.761 0.348
Defined all 0.830 0.541
Defined Defined 0.754 0.576
Defined notDefined 0.770 0.327

Table 4: Results of final fusions submitted to
AV+EC 2016.

Development Test
CCC Arousal Valence Arousal Valence
Baseline [25] 0.820 0.702 0.682 0.638
Fusion 1 0.851 0.656 0.706 0.584
Fusion 2 0.852 0.589 0.708 0.505
Fusion 3 0.855 0.713 0.719 0.596

sion 1 and 2 and the same apply for valence. All our fusions
consists of many systems and we will continue to work on
analyzes which subsystems contribute the most.

Our fusion is better than the baseline from [25] except the
results for valence on test set. We trained our systems and
fusion on the train part of the AVEC database. Our fusion
is not able to get the same gain as the baseline fusion for
valence.

All systems are trained with only one output which is
gold standard. We have experimented with other settings,
separate raters etc, but did not get any improvement. The
objective function is CCC.

Median filter from 100 frames (4 second) is applied on the
top of the fusion scores.

Last thing which, unfortunately did not end up in the final
fusion, are the statistics of notDefined regions. Easiest way
of incorporating such statistics was to define a confidence
vector for each single system with such statistics. This confi-
dence vector is a binary vector with 1 at Defined regions and
0 at notDefined regions. Such confidence vector can be used
in the fusion and tells us which system produce meaningful
result for particular frame. We got a slight improvement
(2% relative) on development set if such vectors are input
vectors to the fusion. We are still experimenting how to use
this information in the fusion and improve overall results.

4. CONLUSION
We substantially improved our system from last year sub-

mission [21]. This year we experimented again mainly with
the audio modality. We improved our bottleneck feature sys-
tem from CCC=0.699 [21] to CCC=0.833 on development
set.

We also newly experimented with text based features. The
automatic speech recognition was used to get text transcrip-

tions. First results CCC=0.278 for valence and CCC=0.626
for arousal was obtained with word embedding approach.
This modality is new to this field and our plan is to ex-
periment more in that direction: comparing different speech
transcription systems, applying sentiment recognition to the
French corpus by building a French sentiment model, or else
translating the text into English in order to use one of the
main English sentiment detector tools available.

To summarize our effort and compare it to baseline sys-
tem, our single best system for both modalities are better
than the baseline single best systems, for arousal it is even
better then the baseline fusion. The CCC of our single best
systems is 0.833 for arousal and 0.623 for valence on devel-
opment set. Our final linear fusion reached CCC 0.855 and
0.713 on Arousal and Valence on development set and 0.713
and 0.596 on test set respectively for Arousal and Valence.
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bottle-neck features for emotion recognition. In Text
Speech and Dialog (TSD), 2016.

[22] F. Ringeval, B. Schuller, M. Valstar, S. Jaiswal,
E. Marchi, D. Lalanne, R. Cowie, and M. Pantic.
Av+ec 2015: The first affect recognition challenge
bridging across audio, video, and physiological data.
In Proc. AVEC 2015, satellite workshop of
ACM-Multimedia 2015, Brisbane, Australia, Oct.
2015.

[23] F. R. A. Sonderegger, J. Sauer, and D. Lalanne.
Introducing the recola multimodal corpus of remote
collaborative and affective interactions. In Proc. Face
and Gestures 2013, Workshop on Emotion
Representation, Analysis and Synthesis in Continuous
Time and Space (EmoSPACE), 2013.

[24] G. Trigeorgis, F. Ringeval, R. Brueckner, E. Marchi,
M. Nicolaou, S. B., and S. Zafeiriou. Adieu features?
end-to-end speech emotion recognition using a deep
convolutional recurrent network. In Proceedings of the
41st IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), 2016.

[25] M. F. Valstar, J. Gratch, B. W. Schuller, F. Ringeval,
D. Lalanne, M. Torres, S. Scherer, G. Stratou,
R. Cowie, and M. Pantic. AVEC 2016 - depression,
mood, and emotion recognition workshop and
challenge. CoRR, abs/1605.01600, 2016.

[26] Y. Wu and T. Hassner. Facial landmark detection
with tweaked convolutional neural networks. CoRR,
abs/1511.04031, 2015.

[27] M. D. Zeiler. ADADELTA: an adaptive learning rate
method. CoRR, abs/1212.5701, 2012.

81




