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Abstract—Advancements in technology developed in the early
nineties have enabled researchers to successfully apply techniques
of evolutionary computation in various problem domains. As a
consequence, a new research direction referred to as evolvable
hardware (EHW) focusing on the use of evolutionary algorithms
to create specialized electronics has emerged. One of the goals of
the early pioneers of EHW was to evolve complex circuits and
overcome the limits of traditional design. Unfortunately, evolvable
hardware found itself in a critical stage around 2010 and a very
pessimistic future for EHW-based digital circuit synthesis was
predicted. The problems solved by the community were of the
size and complexity of that achievable in fifteens years ago and
seldom compete with traditional designs. The scalability problem
has been identified as one of the most difficult problems that
researchers are faced with and it was not clear whether there
existed a path forward that would allow the field to progress.
Despite that, researchers have continued to investigate how to
overcome the scalability issues and significant progress has been
made in the area of evolutionary synthesis of digital circuits in
recent years. The goal of this chapter is to summarize the progress
in the evolutionary synthesis of gate-level digital circuits, and
to identify the challenges that need to be addressed to enable
evolutionary methods to penetrate into industrial practice.

I. INTRODUCTION

Advancements in technology developed in the early 1990s
have enabled researchers to successfully apply techniques
of evolutionary computation in various problem domains.
Higuchi et al (1993) and Thompson (1996) demonstrated that
evolutionary algorithms (EAs) are able to solve non-trivial
hardware-related problems. The achievements presented in the
seminal paper of Higuchi et al motivated other scientists to
intensively explore a new and promising research topic. As a
consequence, a new research direction referred to as Evolvable
hardware has emerged (Gordon and Bentley, 2002). Evolvable
hardware, a field of evolutionary computation, focuses on the
use of evolutionary algorithms to create specialized electronics
without manual engineering. The vision of EHW is to replace
expensive and sometimes unreliable designers and develop
robust, flexible and survivable autonomous systems. EHW
draws inspiration from three fields: biology, computer science
and electronic engineering.

Several schemes have been developed for classifying
EHW (Gordon and Bentley, 2002). Usually, two research areas
are distinguished: evolutionary circuit design and evolvable
circuits. In the first case, evolutionary algorithms are used as
a tool employed to design a system that meets a predefined
specification. For example, genetic programming can be used

to discover an area-efficient implementation of a circuit whose
function is specified by a truth table. In the second case, an
evolutionary algorithm represents an inherent part of an evolv-
able circuit. The resulting adaptive system is autonomously
reconfigured to provide a degree of self-adaptive and self-
repair behaviour.

In the context of the circuit design, EHW is an attractive
approach as it provides another option to the traditional
design methodology: to use evolution to design circuits for us.
Moreover, a key strength of the EHW approach is that it can be
applied to designing the circuits that cannot be fully specified
a priori, but where the desired behaviour is known. Another
often emphasized advantage of this approach is that circuits
can be customized and adapted for a particular environment.
For example, if we know that some input combinations in our
target application occur with relatively low probability, we can
take this information into account and evolve a circuit that
shows better parameters such as reduced size, delay or power
consumption.

There are several works devoted mainly to the evolvable
circuits and adaptive systems (Sekanina, 2004; Higuchi et al,
2006; Greenwood and Tyrrell, 2006; Trefzer and Tyrrell,
2015). However, there is no similar work systematically map-
ping the history and progress of evolutionary circuit design.
Such a situation may suggest that evolutionary circuit design
represents an area in which only marginal results have been
achieved. Let us restrict ourselves to the evolution of digital
circuits represented at the gate-level, i.e. circuits implemented
using common (typically two-input) gates. Considering the
complexity of circuits routinely used in industry, we have to
admit that only little was done before 2010 even if many novel
and promising approaches were published, as surveyed in Sec-
tion II-A. However, this area has been undergoing a substantial
development in the last five years, and many competitive and
real-world results have been obtained (Section II-C).

Before we proceed further, it is necessary to clarify what we
mean by a complex circuit, as researchers in EC usually have a
somewhat illusory notion about circuit complexity. In theoret-
ical computer science, the complexity of Boolean functions is
expressed as the size or depth of corresponding combinational
circuits that compute them. The size of a circuit is the number
of gates it contains; its depth is the maximal length of a
path from an input gate to the output gate. In evolutionary
computation, complexity is typically assessed according to the



number of input variables, because the number of variables
significantly impacts the scalability. In practice, the number of
gates is usually considered as a complexity measure. Since the
goals of the early pioneers of EHW were to evolve complex
circuits and overcome the limits of traditional design, it is
necessary to take the parameters of real circuits into account.
The electronic design automation (EDA) community relies
heavily on public benchmarks to evaluate the performance of
academic and commercial design tools, because benchmarking
is essential to develop effective methodologies. Hence we
can analyse characteristics of benchmark circuits to provide
a real picture regarding the circuit complexity. The first
widely accepted benchmark suite ISCAS-85 consisting of ten
industrial designs was introduced by Brglez and Fujiwara
(1985). The circuits included in this benchmark set contain
from 32 to 207 inputs and were originally implemented using
160 to 3512 logic gates. With advancements in technology,
several updates have been introduced. The most recent updates
are LGSynth93 (McElvain, 1993) and IWLS 2005 (Albrecht,
2005). LGSynth93 consists of 202 circuits with up to 24,658
gates and 1,465 registers; IWLS2005 contains 84 designs with
up to 185,000 registers and 900,000 gates collected from
different websites with open-source IP cores. A combinational
benchmark suite was introduced by Amaru et al (2015). This
suite is designed to challenge modern logic optimization tools,
and consists of 23 natively combinational circuits that are
divided into three classes: arithmetic circuits, random/control
circuits, and difficult benchmarks. The arithmetic benchmarks
have up to 512 inputs and more than a thousand gates; the
difficult benchmark set consists of circuits with more than
million gates and more than 100 inputs. As is evident, a
complex circuit is a circuit having at least a hundred inputs
and consisting of thousands of gates.

The goal of this chapter is to summarize the progress in
the evolutionary synthesis of gate-level digital circuits, and to
identify the challenges that need to be addressed to enable
evolutionary methods to penetrate into industrial practice. The
rest of this chapter is organized as follows. Section II briefly
maps the history of evolutionary circuit design. Among others,
it summarizes the key results that have been achieved in the
area of evolutionary design of digital circuits for the whole
existence of EHW. Then, challenges identified in recent years
and that should be addressed in near future are mentioned in
Section III. Concluding remarks are given in Section IV.

II. EVOLUTIONARY DESIGN OF DIGITAL CIRCUITS

A. First generation EHW

Gate-level evolution was addressed only rarely before 2000.
The first results in the area of digital circuit synthesis were
reported by Koza (1992), who investigated the evolutionary
design of the even-parity problem in his extensive discus-
sions of the standard genetic programming (GP) paradigm.
Although the construction of an optimal parity circuit is a
straightforward process, parity circuits are considered to be
an appropriate benchmark problem within the evolutionary

computation community when a small set of gates (AND, OR,
NOT) is used.

Thompson (1996) used a form of direct encoding loosely
based on the structure of an FPGA in his experiment with
evolution of a square wave oscillator. A genetic algorithm was
employed by Coello et al (1998), to evolve various 2-bit adders
and multipliers. Miller demonstrated that evolutionary design
systems are not only able to rediscover standard designs, but
they can, in some cases, improve them (Miller et al, 1997;
Miller, 1999a); he was interested in the evolutionary design
of arithmetic circuits and digital filters.

A new evolutionary algorithm, Cartesian genetic program-
ming (CGP), was introduced by Julian Miller in 20001. Miller
designed this approach to address two issues related to the
efficiency of common genetic programming: poor ability to
represent digital circuits, and the presence of bloat. This
variant of GP is called ‘Cartesian’ because it represents a
program using a two-dimensional grid of nodes. The genotypes
are encoded as lists of integers of fixed length that are mapped
to directed acyclic graphs (DAGs) rather than the usual trees.
For more details about CGP and its applications, we refer the
reader to the collection edited by Julian Miller (Miller, 2011).

CGP has been used to demonstrate that evolutionary com-
puting can improve results of conventional circuit synthesis
and optimization algorithms. As a proof of concept, small
arithmetic circuits were considered originally. A 4-bit multi-
plier is the most complex circuit evolved in this category (Vas-
silev et al, 2000). However, the problems addressed by the
EHW community have remained nearly of the same complex-
ity since then. The most complex combinational circuit directly
evolved during the first two decades of EHW consists of tens
of gates and has around 20 inputs (Stomeo et al, 2006). It is
clear that those results could barely compete with conventional
circuit design tools producing circuits counting thousands of
gates and hundreds of inputs.

One of the goals of the early pioneers of EHW was to
evolve complex circuits, overcome the limits of traditional
design, and find ways how to exploit the vast computational
resources available in today’s computation platforms. Unfor-
tunately, nobody has been able to approach this goal, except
Koza (2010), who reports tens of human-competitive analogue
circuits obtained automatically using genetic programming.
Since 2000, many researchers have invested enormous effort
in proposing new ways to simplify the problem for evolution
in terms of finding more effective approaches to explore the
search space for more complex applications. Many novel tech-
niques, including decomposition, development, modularisation
and even new representations, have been proposed (Stomeo
et al, 2006; Shanthi and Parthasarathi, 2009; Miller, 2011;
Zhao and Jiao, 2006). Despite this, only a little progress has
been achieved and the gap between the complexity of problems
addressed in industry and EHW continues to widen as the

1Cartesian genetic programming grew from a method of evolving digital
circuits developed by Miller et al (1997). However the term Cartesian genetic
programming first appeared in Miller (1999b), and was proposed as a general
form of genetic programming in Miller and Thomson (2000).



advancements in technology develop. This further supports
the belief that evolutionary search works better for analogue
circuits than for digital circuits, possibly due to the fact that
analogue behaviours provide relatively smoother search spaces
(Stoica et al, 1999).

In order to address the increasing complexity of real-world
designs, some authors escape from the gate-level representa-
tion and use function-level evolution. Instead of simple gates,
larger building blocks such as adders and multipliers are
employed. Many and even patentable digital circuits have been
discovered, especially in the area of digital signal process-
ing (Sekanina, 2004; Miller, 2011; Vasicek et al, 2013). One of
the most complex circuits evolved by means of the function-
level approach is a random shot noise image filter with 25
inputs consisting of more than 1,500 two-input gates when
synthesised as 8-bit circuit (Vasicek et al, 2013). Despite this
work, EHW found itself in a critical stage around the year
2010, and it was not then clear whether there existed a path
forward that would allow the field to progress (Haddow and
Tyrrell, 2011). The scalability problem has been identified as
one of the most difficult problems that researchers are faced
with in the EHW field and one that should be, among others,
addressed by the second generation of EHW.

B. Scalability issues

Poor scalability typically means that evolutionary algo-
rithms are able to provide solutions to small problem instances
only, and a partially working solution is usually returned
in other cases. The scalability problem can primarily be
seen from two perspectives: scalability of representation and
scalability of fitness evaluation. From the viewpoint of the
scalability of representation, the problem is that long chro-
mosomes are usually required to represent complex solutions.
Long chromosomes, however, imply large search spaces that
are typically difficult to search. The scalability of fitness
evaluation represents another big challenge. The problem is
that complex candidate solutions might require a lot of time
to be evaluated. As a consequence, only a small fraction of
the search space may be explored in a reasonable time. This
problem is especially noticeable in the case of the evolutionary
design of digital circuits where the time required to evaluate
a candidate circuit grows exponentially with the increasing
number of inputs. One possibility how to overcome this issue
is to reduce the number of test cases utilised to determine
the fitness value. However, this approach is not applicable in
the case of gate-level evolution (Imamura et al, 2000). There
is a high chance that a completely different circuit violating
the specification is evolved even if only a single test case is
omitted.

Both mentioned scalability issues have independent effects
that are hard to predict in practice. Consider, for example, the
evolutionary design of gate-level multipliers from scratch. It
is relatively easy to evolve a 4-bit (i.e. 8-input) multiplier,
yet a huge computational effort is required to discover a
5-bit multiplier, even though the time required to evaluate
a candidate solution increases only 4-fold and the number

of gates is approximately doubled. Experiments with various
accelerators have revealed that the number of evaluations has
to be increased more than 170-fold to discover a valid 5-bit
multiplier (Hrbacek and Sekanina, 2014).

It is believed that the scalability of representation is the
root cause that prevents evolutionary algorithms from handling
complex instances. This hypothesis is supported mainly by
the fact that the number of evaluations needed to discover
a digital circuit is significantly higher compared to Koza’s
experiments with analogue circuits. In addition, the commu-
nity has been unable to substantially improve the scalability
of gate-level evolutionary design, even when various FPGA-
based, GPU-based and CPU-based accelerators have been
employed (Miller, 2011; Vasicek and Slany, 2012; Hrbacek
and Sekanina, 2014). There is no doubt that the size of the
search space grows enormously as the complexity of problem
instances increases. On the other hand, only little is known
about the phenotypic search space of digital circuits. It may
be possible, for example, that the number of valid solutions
proportionally increases with the increasing size of search
space.

In addition to the previously discussed scalability issues,
scalability of specification is sometimes mentioned (Vasicek
and Sekanina, 2014). Let us assume that the previously men-
tioned problems do not exist. Even then, we will not be able
to design complex circuits in reasonable time. The problem is
that the frequently used specification in the form of truth table
does not itself scale. The amount of memory required to store
the whole truth table grows exponentially with the increasing
number of variables.

C. Second generation EHW

Despite pessimism of the EHW community, its researchers
have continued to investigate how to overcome the scalability
issues. Vasicek and Sekanina (2011) demonstrate that it is
feasible to optimize complex digital circuits when the common
truth-table-based fitness evaluation procedure is replaced with
formal verification. The method exploits the fact that efficient
algorithms have been developed in the field of formal verifi-
cation that enable us to relatively quickly decide whether two
circuits are functionally equivalent. Compared to the state-of-
the-art synthesis tools, the authors reported a 37.8% reduction
in the number of gates (on average) across various benchmark
circuits having 67–1408 gates and 22–128 inputs.

An interesting feature of the approach is that it focuses
solely on the improvement of fitness evaluation efficiency. In
order to reduce the time needed to determine the fitness value,
a method routinely used in the area of logic synthesis known
as combinational equivalence checking is employed. But it
is not the equivalence checking alone that enables speedups
of several orders of magnitude. The approach benefits from a
tight connection between the evolutionary algorithm and com-
binational equivalence checking. Since every fitness evaluation
is preceded by a mutation, a list of nodes that are different for
the parent and its offspring can be calculated. This list can
be used to determine a cone of influence (COI) – the set of



outputs and gates that have to be compared with the reference
circuit – and only these outputs and gates are checked. In
addition to that, a parental circuit serves simultaneously as a
reference.

The efficiency of the proposed method has been further
improved by Vasicek (2015), who combines a circuit simulator
with formal verification in order to detect the functional non-
equivalence of the parent and its offspring. In contrast with
previously published work, an extensive set of 100 real-world
benchmarks circuits is used to evaluate the performance of the
method. The least complex circuit has 106 gates, 15 primary
inputs, and 38 outputs. The most complex circuit, an audio
codec controller, has 16,158 gates, 2,176 inputs, and 2,136
outputs. Half of the benchmark circuits have more than 50
primary inputs and more than a thousand gates. On average,
the method enables a 34% reduction in gate count, and the
evolution is executed for only 15 minutes.

A very pessimistic future for EHW-based digital circuit syn-
thesis was predicted by Greenwood and Tyrrell (2006). Despite
that, five years later and after little more than 15 years of EHW,
Vasicek and Sekanina (2011) proposed an approach easily
overcoming the previous empirical limitation of evolutionary
design represented by a digital circuit having about twenty
inputs and up to hundred gates. At the same time, several
doubts and questions emerged. Since only the scalability of
fitness evaluation was addressed, it is questionable whether the
scalability of representation is really the key issue preventing
the handling of complex instances. We believe that this is not
the case for at least the evolutionary optimization of digital
circuits. Hence, addressing the problem of scalability of repre-
sentation in the context of evolutionary optimization of digital
circuits seems not to be urgent. The extensive experimental
evaluation presented by Vasicek (2015) has revealed another
and probably more severe issue of evolutionary optimization of
digital circuits: the enormous inefficiency of the evolutionary
algorithm itself. The ratio between the number of acceptable
candidate solutions and invalid candidate solutions is worse
than 1:180 in average. A candidate solution is invalid if it is
functionally incorrect, i.e. violates the requirements given by
the specification. So approximately 99.5% of the runtime is
wasted by generating and evaluating invalid candidate circuits
that lie beyond the desired space of potential solutions.

If we want to keep the EHW field progressing, it seems that
the researchers should firstly turn their attention away from
tweaking the parameters of various evolutionary algorithms,
and begin to combine evolutionary approaches with state-of-
the-art methods routinely used in the field that is addressed
with evolution. This claim is based mainly on the fact that the
results reported by Vasicek (2015) were obtained by means
of the standard variant of genetic programming and standard
settings recommended in the literature. Although CGP is con-
sidered as one of the most efficient methods for evolutionary
design and optimization of digital circuits (Miller, 2011), there
is no guarantee that it offers the best possible convergence. It
is not even clear whether the poor efficiency discussed in the
previous paragraph is caused by CGP, or if it is a common

problem of all evolutionary approaches. It is unfortunately
nontrivial to point out the algorithm that achieves the best
performance. Firstly, many authors are evaluating algorithms
using artificial problems such as simple parity circuits instead
of real benchmark circuits. Secondly, only evolutionary design
of simple circuits has been addressed. Hence, the efficiency of
the evolutionary algorithm and its improvement represents an
open question for future investigations.

The approach of Vasicek and Sekanina (2011) has some-
times been criticised that it has to be seeded with an already
working circuit. and thet it cannot be used to evolve digital
circuits from scratch. At first sight, this objection seems to
be legitimate. However, it is important to realise and accept
how circuits are specified in conventional tools. Conventional
circuit synthesis and optimization usually starts from an unop-
timized fully functional circuit supplied by a designer. Such a
circuit is specified in the form of a netlist, typically using low-
level (e.g. BLIF specification) or high-level (e.g. Verilog or
VHDL language) hierarchical description. In some cases, truth
tables are directly used, but to specify only simple circuits.
So the seed required by evolution can easily be obtained from
the specification, for example by transforming the Sum-of-
Products representation into a logic network or synthesizing
Verilog description to a gate-level netlist.

An interesting question, at least from the theoretical point
of view, is whether complex digital circuits can be evolved
from randomly seeded initial populations, i.e. whether a truly
evolutionary circuit design is possible for complex circuits.
Firstly, it is necessary to accept the fact that this approach can
hardly compete with conventional state-of-the-art synthesis
tools if the time of synthesis is considered. Obtaining a
fully functional solution from a randomly seeded population
consumes a considerable time because the approach exploits
the generate-and-test principle, and no additional knowledge
about the problem is available. However, there are reasons why
it makes sense to develop the aforementioned evolutionary
approach. Firstly, the circuit design problem can serve as
a useful test problem for the performance evaluation and
comparison of genetic programming systems. Secondly, the
approach seems to be suitable for adaptive embedded systems,
because running standard circuit design packages is usually
infeasible on such systems.

In order to address the evolution of complex circuits from
scratch, Vasicek and Sekanina (2014) propose a method that
exploits the fact that the specification can be given in the
form of binary decision diagram (BDD). Although there are
some pathological cases of circuits for which BDDs do not
scale well, BDDs are known to be an efficient tool for repre-
sentation and manipulation with digital circuits. Vasicek and
Sekanina (2014) use BDDs to determine Hamming distance
between a candidate circuit and specification. This requires
only a few milliseconds, even for circuits having more than
40 inputs. Compared to the well-optimized common CGP,
the proposed method achieves a speedup of four to seven
orders of magnitude when circuits having from 23 to 41
inputs are considered. As a proof of concept, 16 nontrivial



circuits outside of the scope of well-optimized standard CGP
are considered. Correctly evolved circuits are reported in
twelve cases. In addition, evolution is able to improve the
results of conventional synthesis tools. For example, evolution
discovered a 28-input circuit having 57% fewer gates than
the result obtained from the state-of-the-art synthesis tool. An
average gate reduction of 48.7% is reported for all evolved
circuits.

We can conclude that it has been experimentally confirmed
that it is beneficial to employ EAs even in the evolution of
digital circuits from scratch. In many cases, more compact
solutions may be obtained, because the EA is not biased
to the initial circuits that must be provided in the case
of conventional synthesis. However, we have to accept and
tolerate the overhead of evolution manifesting itself in the
higher demand for computational resources. For example, at
most three hours are required to evolve the circuits investigated
by Vasicek and Sekanina (2014). On the other hand, this
represents an unimportant problem when a theoretical point
of view is considered. There are more fundamental questions
that we should deal with.

Firstly, how is it possible that evolution successfully discov-
ered a 28-input circuit (frg1), yet no solution was provided for
23-input circuit (cordic)? Since the 23-input circuit consists
of fewer gates than the 28-input circuit, this issue is evidently
not connected with poor scalability of representation. We can
exclude even the problem of scalability of fitness evaluation,
because the time required to evaluate the candidate solutions is
nearly the same in both cases. Hence, there must be some other
issue that prevents the discovery of some circuits. Secondly,
the notion of circuit complexity remains an open question.
Computation effort (derived from the number of input combi-
nations and the number of gates) is used to measure the circuit
complexity. Some of the circuits that are not evolved, however,
exhibit a lower complexity value compared to the successfully
evolved circuit. Thirdly, the paper does not offer an answer to
the question related to the most complex circuit that could be
directly evolved. The work was intended as a proof-of-concept
only. Finally, it is worth noting that only the scalability of
fitness evaluation is targeted. Does it mean that the scalability
of representation is an unimportant problem, at least to some
circuit size? Haddow et al (2001) state that it is becoming
generally accepted that there needs to be a move away from a
direct, or one-to-one, genotype-phenotype mapping to enable
evolution of large complex circuits. This conjecture seems
to be wrong at least for the evolutionary optimisation of
existing gate-level circuits, because large genotypes encoding
circuits with thousands of gates can be directly optimised using
CGP (Vasicek, 2015).

III. OPEN CHALLENGES

Significant progress has been made in the area of evolution-
ary synthesis of digital circuits in recent years. Despite that,
we are still facing many challenges that need to be properly
addressed in order to enable evolutionary circuit design to
become a competitive and respected synthesis method.

A. Evolutionary synthesis and hardware community

One of the problems with the EHW community is that the
practical point of view is usually in second place. The typical
goal is to evolve some circuit and nobody questions whether
there is a real need to do so. Although there is no doubt that
much work has been done in the last more than two decades of
EHW, there is a barrier preventing EHW being fully accepted
by hardware community. Let us mention the main aspects
that are usually criticised by the “traditional” circuit design
community.

The evolutionary design of digital circuits is sometimes
criticised due to its inherently non-deterministic nature. To
understand this, it is necessary to realize how the conventional
synthesis tools are implemented. The tools typically start with
a netlist represented using a network, for example in the form
of and-inverter graph (AIG). Then, deterministic transforma-
tions are performed over the AIG. Since the transformations
are local in nature, the network may be refined by their
repeated application. The solution quality can be improved
in this way at the expense of run-time. Designers have a
guarantee that the optimisation process ends. In addition, they
have a certain degree of guarantee that a circuit of some
quality will be obtained when, say, one hundred iterations are
employed.

Another handicap of the evolutionary approaches is that they
are time consuming and generally not scalable when compared
with methods of logic synthesis. While the problem of scala-
bility of evaluation has been partly eliminated, the method still
suffers from long execution times due to the inefficiency of
the generate-and-test approach. Even though the recent results
indicate that more complex circuits may be evolved, it will
probably be necessary to accompany the proposed methods
with a suitable partitioning in order to reduce the problem
complexity. It makes no sense to optimize complex netlists
describing the whole processors or other complex circuits at
the gate-level. The conventional tools usually benefit from a
hierarchical description of a given digital circuit.

Another issue is the relevance of the chosen optimisation
criteria for industrial practice. Originally, the number of gates
was the only criterion that was optimized within the evolu-
tionary community. In many cases, not only the number of
gates, but also delay and area on a chip, play an important
role. In addition, power efficiency has emerged as one of the
most critical goals of hardware design in recent years (Hassoun
and Sasao, 2002). Logic synthesis is a complex process that
has to consider several aspects that are in principle mutually
dependent. Two basic scenarios are typically conducted in
practice: optimizing the power and/or area under some delay
constraints, or optimizing the delay possibly under some power
and/or area constraints. In order to efficiently determine the
delay, area and power dissipation of a given circuit, so as
to avoid running of time-consuming SPICE simulator and
yet obtain results exhibiting a reasonable accuracy, several
algorithms have been developed to estimate the delay as well
as power dissipation of digital circuits (Hassoun and Sasao,



2002). The evolutionary community should adopt them and
combine them with evolution.

Although the attitude of hardware community to evolution-
ary techniques seems to be a rather sceptical, it does not mean
that evolutionary synthesis has no chance to be accepted at
hardware conferences. Interestingly, there is a new research
area – approximate computing – in which evolutionary ap-
proaches seem to be accepted (Sekanina and Vasicek, 2015).
Conventional synthesis tools are not constructed to perform
the synthesis of approximate circuits, and no golden design
exists for an approximate circuit. In the case of approximate
synthesis, it is sufficient to design a circuit that responds
correctly for a reasonable subset of input vectors, provided that
the worst-case (or average) error is under control. Because of
the nature of approximate circuits (in fact, partially working
circuits are sought) and principles of evolutionary circuit
design (evolutionary-based improving of partially working
circuits), evolutionary computing seems to be the approach
of the first choice.

B. Efficiency of Cartesian genetic programming

Some problems, such as adopting relevant optimisation
criteria, are a matter of time, but there are fundamental issues
that need to be addressed. Since its introduction, CGP has
been considered to be one of the most efficient methods
for evolutionary design and optimization of digital circuits.
However, the experiments with complex Boolean problems
revealed that the evolutionary mechanisms of CGP should
be revised, because there are cases for which CGP performs
poorly.

It seems that the evolutionary optimization of digital circuits
exhibits a completely different behaviour when compared to
the evolutionary design of digital circuits. Let us give one
example supporting this claim. Redundancy is believed to
play an important role in evolutionary computation, as it
represents a powerful mechanism for searching the fitness
landscape. Two forms of redundancy have been identified
in CGP (Turner and Miller, 2015). Firstly, CGP employs a
genotype-phenotype mapping that removes the genes coding
the nodes that are inactive, i.e. the nodes that do not participate
in creating the output values. This form of redundancy is
referred to as explicit genetic redundancy. Secondly, there is
implicit genetic redundancy. This refers to the situation when
there active genes, ones that are decoded into the phenotype,
that do not contribute to the behavior of the phenotype
under common fitness functions that measure the distance
between a candidate circuit and its specification. Both forms
of genetic redundancy, together with the replacement strat-
egy, encourages genetic drift, as individuals can be mutated
without affecting their fitness. The replacement strategy in
CGP enables these individuals to replace the old parent. It
is believed that genetic drift strongly aids the escape from
local optima. Recently, the theory that the effectiveness of
evolutionary search is correlated with the number of available
nodes has been disproved (Turner and Miller, 2015). Despite
that, it has been shown that explicit genetic redundancy offers a

significant advantage. Vasicek (2015) reports extensive experi-
mental evaluation that reveals, however, that neutral mutations
and redundancy surprisingly offer no advantage when using
CGP to optimise complex digital circuits. This result does not
mean that neutral mutations are of no significance generally,
but they are less important in the case of circuit optimisation.
Hence, the role of neutrality and redundancy in CGP represents
still an open problem that it is not well understood, especially
in the context of evolutionary synthesis of complex circuits.

CGP was originally designed to evolve digital circuits
represented using a two-dimensional array of nodes. An open
question is whether there is an evidence that this represen-
tation improves the efficiency of the evolutionary algorithm.
Nowadays, this limitation seems to be an unnecessary con-
straint (Turner and Miller, 2015) and many researchers prefer
to represent the circuits by means of a linear array of nodes.
While both arrangements have the ability to represent any
DAG, the main advantage of the linear encoding is that it
substantially reduces the number of nodes required to encode
a circuit, because the number of columns and rows of the
two-dimensional array must respect circuit parameters such
as the circuit depth and width. On the other hand, the two-
dimensional array of nodes has the ability to explicitly limit
the circuit depth. DAGs are encoded in a linear genome of
integer values in CGP. Each node in the DAG is represented
by a tuple of genes. One gene specifies the function that the
node applies to its inputs, and the remaining genes encode
where the node takes inputs from. Nodes can take input
from primary circuit inputs or any node preceding them in
the linear genome. This restriction prevents the creation of
cycles and offers several advantages compared to the genetic
programming (e.g. it allows CGP to reuse sub-circuits), but
it introduces a positional bias that has a negative impact on
CGP’s ability to evolve certain DAGs (Goldman and Punch,
2015). Nodes that could be connected without creating a cycle
may still be prevented from forming that connection because
of the given genome ordering. This effect has been investigated
only on the evolutionary design of few small circuits, and it
will be necessary to perform an additional study focused on
the evolutionary optimization. Vasicek (2015) did not register
any significant degradation in performance of the evolutionary
optimisation process related to the positional bias during
the experiments with complex circuits. The manifestation of
CGP’s positional bias thus remains in this context an open
question. Goldman and Punch (2015) show that this bias is
connected with an inherent pressure in CGP that makes it very
difficult to evolve individuals with a higher number of active
nodes. Such a situation, called the length bias, is prevalent as
the length of an individual increases. We have not explicitly
investigated this problem in the context of evolutionary design
of complex circuits, however, this conclusion seems to be
valid. The most complex circuit that has been evolved using
BDDs consists of around 155 gates (Vasicek and Sekanina,
2014). Fortunately, the length bias is related to evolutionary
design only, and does not affect evolutionary optimization.

It is natural to expect that the previously mentioned issues



can degrade the performance of CGP in some way. We are
convinced, however, that the most critical part of CGP is the
process of generating candidate solutions. In order to generate
a new population, CGP utilizes a single genetic operator, point
mutation. This operator modifies a certain number of randomly
chosen genes in such a way that the value of a selected gene is
replaced with a randomly generated, yet valid, new one. The
range of valid values depends on the gene position and can
be determined in advance. This scheme seems to be extremely
inefficient. Let us give two facts supporting our claim. Firstly,
a population containing only two individuals (i.e. parent and
a candidate solution) provides the best convergence when
a fixed number of evaluations is considered (Vasicek and
Sekanina, 2011). Secondly, Vasicek (2015) observes that ap-
proximately 180 candidate solutions need to be generated to
obtain a single valid candidate solution, i.e. an individual
with the same or better fitness. Both observations suggest
that the evolutionary-based approach requires the generation
of a large number of candidate solutions to compensate the
poor performance of the mutation operator. The poor ability
to generate an acceptable candidate circuit is emphasised by
the fact that the smallest possible population size exhibits the
best performance. Assuming that our claims are correct, we
could also explain why we have pushed forward the limits
of evolution when we focus only on the improvement of the
scalability of fitness evaluation. The reason is that formal
methods such as BDD and SAT achieve speedup of a few
orders of magnitude compared to standard CGP. We believe
that this part of CGP offers a great potential to significantly
improve not only the convergence but also scalability of
evolutionary synthesis. It is clear that a form of informed
mutations benefiting from problem domain knowledge should
be employed, instead of blind random changes. The question
is how we should accomplish that.

C. Deceptive fitness landscape

The notion of a fitness landscape has become an important
concept in evolutionary computation. It is well known that
the nature of a fitness landscape has a strong relationship
with the effectiveness of the evolutionary search. There are
three aspects forming the structure of the fitness landscape:
the encoding scheme, the fitness function, and the connectivity
determined by the genetic operators. The structure can be spec-
ified in terms of two characteristics: ruggedness and neutrality
of landscapes. Ideally, small gene changes should lead to small
changes in the phenotype and, consequently, a small change in
fitness value. A landscape exhibiting such a behaviour is said
to be smooth. In contrast, if small movements result in large
changes in fitness, then the landscape is considered rugged.

Vassilev et al (1999) study the structure of the fitness
landscape by evolving 2-bit multipliers represented at the
gate level. The landscape is modelled as a composition of
three sub-landscapes as discussed above. The experiments
reveal not only that the landscapes are irregular but also that
their ruggedness is very different. The conclusion is that the
fitness landscapes of digital circuits are quite challenging for

evolutionary search. Unfortunately, only a little is known about
the phenotypic search space of digital circuits, despite the
fact that every search algorithm provides implicit assumptions
about the search space (Haddow and Tyrrell, 2011).

If we ignore the problematic scalability issue, it is fair to
say that CGP performs very well in general. However, our
experiments with evolution of circuits having more than 15
inputs reveals that there are instances that are extremely hard
to evolve. What is even worse, there are trivial problems for
which the evolutionary search completely fails. One of them is
the well-known and well-studied evolutionary design of parity
circuits. In the case of the 30-input parity circuit, for example,
the evolutionary search is stuck, and no correct circuit is
evolved, provided that a complete set of gates (including
XOR gate) is employed. To understand this phenomenon, the
fitness landscape needs to be investigated. Under common
conditions, there is nearly 100% probability that a randomly
generated individual receives a high fitness score whose value
equals HD(F) = 229 (i.e. 50% of the worst-case Hamming
distance between the correct solution and individual captur-
ing a Boolean function F). Among many others, constant
value (i.e. F = 0), identities (i.e. F = xi), or XOR of two
input variables (i.e. F = xi ⊕ x j) represent Boolean functions
exhibiting HD(F) = 229. Even XOR over 29 input variables
(i.e. F = x1 ⊕ . . .⊕ x29) has the same Hamming distance. In
fact, every Boolean function F implemented as k-input XOR
(k = 2, . . . ,29) exhibits HD(F) = 229. Considering phenotypic
space, there is a huge disproportion between the number of
Boolean functions with Hamming distance equal to 229 and
the rest. Hence there is a high chance that such a candidate
solution is produced by mutation. In addition to that, it is
necessary to consider also the complexity of the correct and
a partially working solution. While the correct parity circuit
consists of 29 XOR gates, a circuit with Hamming distance
equal to 1, for example, consists of a significantly larger
number of gates2. It is then no surprise that it is extremely
hard to generate a Boolean function consisting of more gates
yet having better fitness. It can be argued that evolution is an
incremental process utilising neutral genetic drift that can help
build a circuit consisting of more gates. Of course, but there is
no pressure that helps to escape from this trap. If we analyse
the number of gates during evolution, it oscillates around a
few gates only.

One of the possibilities for how to eliminate this problem
is to disable XOR gates. The presence of XOR gates in
the function set, however, represents the main benefit for
the evolutionary approach. While the conventional circuit
synthesis approaches are not fully capable to perform the
XOR decomposition, evolution is surprisingly able to do that
very well. This is typically the main reason why such a
huge reduction in the gate count is achieved in comparison

2Such a circuit can be implemented using a 2-input multiplexer that
provides the correct output value for all input combinations except of a single
combination for which the inverse output value is given. The implementation
consisting of two-input gates evidently requires more gates than common
parity circuit.



with state-of-the-art synthesis tools (Vasicek and Sekanina,
2011). Hence, it seems to be more beneficial to combine
the Hamming distance with some additional metric (e.g. the
number of used variables) to encourage the selection pressure
and smooth the fitness landscape.

Evidently, a fitness function based solely on the Hamming
distance produces a really deceptive fitness landscape. The
question is whether parity represents a singularity or whether
there exist a whole class of problems with similar behaviour. It
is known that parity is a typical example of symmetric Boolean
functions. The symmetric functions are Boolean functions
whose output value does not depend on the permutation of
the input variables. It means that the output depends only on
the number of ones in the input. A unique feature of this class
of Boolean functions is that a more compact representation
can be utilized instead of the truth table having 2n rows. Each
symmetric Boolean function with n inputs can be represented
using the (n+ 1)-tuple, whose i-th entry (i = 0, . . . ,n) is the
value of the function on an input vector with i ones.

IV. FINAL REMARKS

When Julian F. Miller, the (co)inventor of Cartesian genetic
programming, published his paper devoted to the evolution-
ary design of various gate-level circuits such as adders and
multipliers where he demonstrated the strength of evolu-
tionary approach (Miller et al, 2000)3, he not only moti-
vated researchers around the world to further develop their
investigations of evolutionary design of digital circuits, but
also inspired many others to engage in a relative young and
promising research area: evolvable hardware. Julian brought
the evolvable hardware community an efficient method for
modelling and evolution of digital circuits. Despite the fact that
CGP has been evaluated on small problem instances only and
there is no guarantee that it will work on different problems,
CGP has become very popular in EHW. Since its introduction,
CGP is still considered to be one of the most efficient methods
for evolutionary design and optimization of digital circuits.

We can say without any exaggeration that Julian gave rise
to a problem that seems to be an endless source of research
opportunities, challenges and questions. After little more than
15 years of CGP’s existence, there exist many open questions
that are still waiting to be addressed. While there are questions,
such as the role of neutrality and importance of redundancy,
that accompany CGP since its introduction, progress in various
areas, such as evolutionary synthesis of logic circuits, has
gradually revealed further questions that were not properly
addressed in the past. Many problems have emerged within
the last five years, during the experiments with evolutionary
synthesis of complex gate-level circuits. The primary reason is
that many researchers dealt only with small circuit instances
in the past. Also, circuit optimization was originally out of
the main focus of EHW community, because the researchers
addressed the problem of circuit design.

3This paper is currently the most cited paper in the journal of Genetic
Programming and Evolvable Machines.

Cartesian genetic programming, and its variants, is not the
only contribution of Julian Miller. He is also a pioneer of an
unconventional computing paradigm known as evolution-in-
materio (Miller et al, 2014). Julian is still providing us with
revolutionary and inspiring ideas.
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