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Abstract—We present a novel method allowing one to approx-
imate complex arithmetic circuits with formal guarantees on the
approximation error. The method integrates in a unique way
formal techniques for approximate equivalence checking into
a search-based circuit optimisation algorithm. The key idea of
our approach is to employ a novel search strategy that drives
the search towards promptly verifiable approximate circuits. The
method was implemented within the ABC tool and extensively
evaluated on functional approximation of multipliers (with up
to 32-bit operands) and adders (with up to 128-bit operands).
Within a few hours, we constructed a high-quality Pareto set
of 32-bit multipliers providing trade-offs between the circuit
error and size. This is for the first time when such complex
approximate circuits with formal error guarantees have been
derived, which demonstrates an outstanding performance and
scalability of our approach compared with existing methods that
have either been applied to the approximation of multipliers
limited to 8-bit operands or statistical testing has been used
only. Our approach thus significantly improves capabilities of
the existing methods and paves a way towards an automated
design process of provably-correct circuit approximations.

Index Terms—approximate computing, logical synthesis, ge-
netic programming, formal methods

I. INTRODUCTION

As many important applications are inherently error re-
silient, precision of the involved computations can be traded
for improved energy efficiency, performance, and/or chip area.
Various approaches exploiting this fact have been developed in
recent years and presented under the umbrella of the so-called
approximate computing [1]. These approximations can be
conducted at different system levels with circuit approximation
being one of the most popular.

Circuit approximation techniques can be classified into
two main groups: (1) Frequency/voltage over-scaling where
timing-induced errors can appear as the circuit is operated
on a higher frequency or lower voltage than the nominal
value. (2) Functional approximation where the original circuit
is replaced by a less complex one which exhibits some
errors but improves non-functional circuit parameters such
as power consumption or chip area. We only deal with the
latter approach in this paper. Circuit approximation can be
formulated as a multi-objective optimization problem where
the error and non-functional circuit parameters are conflicting
design objectives. Since the resulting approximate circuits are
common circuits, they can be implemented using the standard
circuit design flow.

We focus on approximate arithmetic circuits (AACs) be-
cause they are frequently used in key applications relevant
for approximate computing. Prominent examples are signal,

image, and video processing circuits (such as filters, discrete
transforms, and motion estimation blocks [2]), or the multiply-
accumulate-transform structures of artificial neurons in neural
networks (consuming about 50% of the total power in neural
network accelerators [3]).

Various error metrics, such as the worst-case relative error
or the mean absolute error, for evaluating approximate circuits
have been proposed (cf. Sect. III). A crucial question is then
how the error of a given approximation is derived. For that,
as discussed in more details in the related work section,
methods based on simulating the circuit on given inputs
are often used. However, such approaches suffer from low
scalability (exhaustive simulation), lack of strong guarantees
(when simulating the circuit for a random subset of the
possible inputs only), and/or specialization to certain circuits
only (statistical models). Alternatively, as in our case, the error
can be derived using formal verification. The main advantages
of this approach lie in that (1) formal error bounds can be given
as a part of the input and (2) the approach is more scalable
than exhaustive circuit simulation.

While formal methods of (exact) equivalence checking have
been studied for decades, only a few formal approximate
checking methods have been used in circuit approximation
tools. Depending on the particular error metric, the error
calculation is transformed to a decision problem and solved by
means of SAT solving or binary decision diagrams (BDDs).
Despite of enormous progress in the area of SAT solvers
and BDD libraries, approximation of arithmetic circuits with
formal error guarantees was so far limited to circuits no more
complex than 16-bit adders and 8-bit multipliers [4], [5], [6].

In this paper, we present a new method for designing
complex approximate arithmetic circuits with formal bounds
on the approximation error. The method uniquely integrates
new formal techniques for approximate equivalence checking
into search-based circuit optimization by means of Cartesian
genetic programming (CGP). The key idea is to employ
a novel search strategy driving the search towards promptly
verifiable approximate circuits. We have implemented the
strategy within the ABC tool and extended the underlying
equivalence checking algorithm to support queries on the
worst-case error. This extension builds on a new effective
construction of miters, i.e. auxiliary circuits interconnecting
the original correct circuit and its approximation such that
their approximate equivalence can be checked.

We decided to optimize for the worst-case error since its
exact value can be important in time-critical and dependable
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systems (e.g., inverse kinematics in robot control [7]) or when
complex approximate arithmetic circuits are constructed using
less complex approximate building (circuit) blocks. The final
error then depends on how the worst case error is propagated
from low-level blocks to the result. Moreover, even in not so
critical applications such as image processing, low average
error but excessive worst-case error can produce unacceptable
results [8]. Finally, our results suggest that there is also a high
correlation between the worst-case error and the mean absolute
error (Sect. V).

While our primary motivation is to automatically approxi-
mate complex multipliers, our method is directly applicable
to other arithmetic circuits too. The method is capable of
providing Pareto fronts showing high-quality compromises
between the circuit error and non-functional circuit parameters.
Results are presented for approximate multipliers (with up to
32-bit operands) and adders (with up to 128-bit operands)
and compared with several approximate circuits available
in literature. This is for the first time when such complex
approximate arithmetic circuits with formally guaranteed error
bounds have been presented.

Contributions: We propose a new miter construction al-
lowing for efficient approximate equivalence checking tailored
to search-based approximation of complex arithmetic circuits.
We design a novel search strategy for synthesis of approximate
circuits with formal error guarantees that integrates Cartesian
genetic programming and the proposed approximate equiva-
lence checking. Using a resource-limited verifier, the strategy
drives the search towards promptly verifiable candidates and
thus provides scalable approximation of complex circuits. We
develop an implementation of the miter construction and the
search strategy within the ABC tool and perform extensive
experimental evaluation of our approach on large circuits
including approximation of 128-bit adders and 32-bit multi-
pliers. Within several hours, we are able to construct high-
quality Pareto sets of 128-bit adders and 32-bit multipliers
that represent the trade-offs between the circuit error and non-
functional circuit parameters.

II. RELATED WORK

This section presents a brief survey of the most important
approaches developed for functional approximation of mul-
tipliers and adders. We restrict our attention to these two
arithmetic operations because they represent the key compo-
nents of more complex circuits and thus their approximation
has been intensively studied. Moreover, multipliers—due to
their complex structure—represent one of the most difficult
arithmetic circuits from the perspective of both approximation
as well as verification.

A. Approximation Methods

The approximation process usually starts with a fully func-
tional circuit and a target error. Circuit-dependent approx-
imation methods then take the structure of the arithmetic
circuit at the input and (manually or algorithmically) introduce
modifications to carefully preselected parts of the circuit. In

the case of adders, it is possible to approximate elementary
1-bit adders, modify the carry propagation chain, or introduce
segments of adders and generate the carry using different
methods [9]. In the case of multipliers, generation of partial
products, the summation tree, counters, or compressors are
approximated [10]. In addition to that, the simple bit-width
reduction belongs to this category of methods too.

More complex approximate circuits can be constructed by
a smart composition of approximate elementary blocks. For
example, a 2-bit multiplier was approximated in [11] and then
used as a building block of more complex multipliers. This
strategy can be improved, e.g., by configurable lossy compres-
sion of the partial product rows based on their progressive bit
significance [12].

The concept of quality configurable circuits uses elementary
circuits composed in such a way that their error can be
modified online using several configuration bits in order to
dynamically reduce the power consumption. The configuration
bits can (dis)connect some preselected parts of the circuit.
As the source codes of quality configurable adders [13] and
multipliers [2] are available online, we compare them with
approximate circuits obtained using our approach.

General-purpose methods, such as SALSA [14] or
SASIMI [15], aim at automatically approximating circuits in-
dependently of their structure. These methods operate with dif-
ferent circuit representations and employ various heuristics to
identify circuit parts suitable for approximation. Evolutionary
algorithms have been recently applied to accomplish desired
approximations in a holistic scenario [16], [17]. A compre-
hensive library of 8-bit adders and multipliers was built using
multi-objective CGP [18].

B. Simulation-Based Error Computation

Conceptually, the simplest approach to obtain precise error
bounds of an AAC is to simulate its function on all possible in-
puts. However, even on state-of-the-art computer architectures,
this approach has principal scalability limitations causing that
it cannot be used to synthesize approximate circuits with more
than 12-bit operands [19].

Due to that, the error is commonly estimated using a subset
of input vectors only, e.g. 108 inputs were used to evaluate
16-bit adders in [9]. Of course, the main drawback of this
approach is that no formal guarantees on the error bound can
be provided. Alternatively, the circuit error can be calculated
using a statistical model constructed for elementary circuit
components and their compositions [20], [21]. However, re-
liable and general statistical models can only be constructed
in some specific situations.

C. Formal Error Computation

Recently, various applications of formal methods have been
intensively studied in order to improve the scalability of
the design process of correct as well as approximate cir-
cuits. For designing correct circuits (where one insists on
preserving the original functionality but tries to optimize
non-functional parameters), one can consider combinational
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equivalence checking based on modern SAT solvers, efficient
BDD representations of circuits, or algebraic computation
techniques combining polynomial representation of circuits
with logic reductions [22], [23]. For designing AACs, a more
challenging notion of relaxed or approximate equivalence
checking is needed. This notion requires to quantify the
approximation error or, alternatively, prove whether the error
is below a certain threshold.

To quantify the approximation error using formal verifi-
cation techniques, a use of auxiliary circuits, called miters,
combining the original circuit and the approximate circuit was
proposed in [24]. In order to check whether a predefined worst-
case error is violated by the candidate approximate circuit,
a pseudo-Boolean SAT solver combining a SAT solver with
integer linear programming was then employed.

The number of inputs for which an approximate circuit
returns an incorrect result can be quantified using SAT counting
methods (so-called #SAT solvers). However, despite the recent
progress in the area of #SAT solvers (see, e.g., [25]), our pre-
liminary experiments indicate that #SAT problems encoding
the error quantification are currently beyond the capabilities
of state-of-the-art #SAT tools even for 12-bit multipliers.

An efficient BDD-based approach allowing one to guarantee
the worst-case and the average-case arithmetic error of approx-
imate adders up to 16-bit operands was proposed in [5]. An
alternative approach that uses BDDs representing characteris-
tic functions was employed in [4]. Compared to our approach,
this approximation method lags behind in scalability, which
is demonstrated by the fact that it has been applied to the
approximation of multipliers limited to 8-bit operands and
adders limited to 16-bit operands only.

III. ERROR METRICS FOR AACS

Various metrics describing the error of AACs have been
proposed and shown suitable for different application domains.
The most popular error metrics relevant especially to arith-
metic circuits are the worst-case absolute error (WCAE) and
the mean absolute error (MAE). For a correct circuit G, fur-
ther denoted as the golden circuit, which computes a function
fG, and its approximation C, computing a function fC , where
fG, fC : {0, 1}n → {0, 1}m, these metrics, relativized by the
range of the output, are defined as follows:

WCAE(G,C) =
maxx∈{0,1}n |int(fG(x))− int(fC(x))|

2m
,

MAE(G,C) =

∑
x∈{0,1}n |int(fG(x))− int(fC(x))|

2m
,

where int(x) denotes the integer representation of a bit vec-
tor x and |i| denotes the absolute value of an integer i.

A. Checking Worst Case Errors

To compute whether the WCAE is violated, we can adopt
the concept of approximation miter introduced in [24]. The
general configuration of the approximation miter is shown
in Fig. 1. The miter consists of the inspected approximate

Fig. 1. Approximation miter for the worst-case error analysis, typically
e(x) = |fG(x)− fC(x)|.

circuit C, the golden circuit G which serves as the specifica-
tion, a subtractor, and a comparator which checks whether
the error introduced by the approximation is greater than
a given threshold T . The output of the miter is a single bit
which evaluates to 1 if and only if the error is violated, i.e.
WCAE(G,C) > T .

For a given input vector x, the subtractor calculates the
difference between the output of the golden circuit, i.e. fG(x),
and the output of the approximate circuit, i.e. fC(x). Let
d = int(fG(x))− int(fC(x)) be the error magnitude. A direct
computation of the WCAE according to its definition leads to
evaluating the expression e = |d|, i.e. the absolute difference
of the error magnitude. The absolute difference is typically
calculated by means of a common two’s complement subtrac-
tor (implemented using m full-adders with the first carry-in
set to 1 and inverting each bit of the subtrahend) followed by
a circuit determining the absolute value (computed using m
half-adders and m XOR gates).

B. The Proposed Miter Construction

Miters used in the literature compute the absolute value of
the difference between fG and fC . The computation is usually
performed in two steps. Firstly, a subtractor with a signed
output evaluates fG − fC . Secondly, the absolute value has
to be computed. The circuit performing such a task contains
XOR chains which are a known cause of poor performance
of the state-of-the-art SAT solvers [26]. The main reasons are
that unlike AND/OR gates, the Boolean constraint propagation
over XOR gates is limited, and the XOR operations cause the
CNF form of the formulae to grow rapidly.

In order to avoid long XOR chains at the output of the miter
which slowdown the decision process, we propose to employ
a different approach. The key idea is to compare the result
of the subtractor with both the positive and negative value
of the threshold and thus avoid the expensive evaluation of
the absolute value. For a given threshold T on the worst-case
absolute error WCAE, it holds that e > T is satisfied iff d
is positive and d > T , or d is negative and −d > T . As
we typically deal with numbers in the two’s complement, the
second condition is equal to ¬d > (T −1). Hence, we can use
the two’s complement representation and examine the positive
and negative values separately to avoid usage of the absolute
difference of the output.

Since the threshold T is fixed during the design process, we
can easily avoid the standard comparator consisting of a long
chain of XOR gates. This helps us to further simplify the
miter and improve the performance of the decision procedure.
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Fig. 2. The proposed approximation miter for the worst-case error analysis:
an example for T = 5, N = 6.

In particular, we replace the sequential comparison of the
particular bits of the operands implemented as

A > B ≡
∨

0≤i≤N−1

Ai ∧ ¬Bi

∧
i<j≤N−1

Aj ⊕Bj

 ,

for B being a constant bit vector representing the threshold
T , by a simpler procedure implemented as

A > B ≡
∨

0≤i≤N−1 ∧ Bi=0

Ai

∧
i<j≤N−1 ∧ Bj=1

Aj

 .

As is evident, the resulting formula does not contain any
XOR gate. Note that d is represented as an m+1 bit number in
the two’s complement—hence, A corresponds to the N least
significant bits of d where N = m. The (m + 1)-th bit is
reserved for the sign and employed for determining whether d
encodes a positive or negative number. The miter for T = 5,
fC and fG with 6-bit outputs is illustrated in Fig. 2.

The proposed construction, compared to the construction us-
ing the absolute value and full comparators, allows us to obtain
smaller and structurally less complex miters. Such miters can
be efficiently used in the SAT-based CEC procedures, resulting
in a significant acceleration of the candidate circuit evaluation.
Our experiments show that, in the case of arithmetic circuits
having 64 output bits (e.g. 32-bit multipliers), the proposed
construction improves the size of the miters (in terms of the
number of And-Inverter Graph (AIG) nodes representing the
circuit) by about 25–35% depending on the value of T , where
T ranged from 0.0001% to 0.5% of the maximal value at the
output (i.e. 264) in our experiment.

IV. SEARCH-BASED DESIGN OF AACS

In this section, we present our novel approach to the search-
based design of AACs combining principles of CGP with
a verifiability-driven search strategy that employs a fitness
function based on the approximate equivalence checking.

A. Cartesian Genetic Programming

CGP is a form of genetic programming where the candidate
solutions are represented as a string of integers of a fixed
length that is mapped to a directed acyclic graph [27]. This
integer representation is called a chromosome. CGP can effi-
ciently represent common computational structures including

Fig. 3. Full adder represented by CGP. Chromosome: (0, 2, 2) (0, 1, 0)
(1, 3, 2) (3, 2, 0) (5, 6, 3) (4, 6, 1) (5, 8), node functions: AND (0), OR (1),
XOR (2), NOT (3).

mathematical equations, computer programs, neural networks,
and digital circuits. The candidate circuits are typically repre-
sented in a two-dimensional array of programmable two-input
nodes. Every node is encoded by three integers in the chromo-
some representation where the first two numbers denote the
node’s inputs, the third represents the node’s function (see the
illustration in Fig. 3).

In circuit approximation, the evolution loop starts with
a parent representing a correctly working circuit. New can-
didate circuits are obtained from the parent using a mutation
operator which performs random changes in the candidate’s
chromosome in order to obtain a new, possibly better candidate
solution. In the next step, the algorithm evaluates the quality of
each solution using a specified metric, called the fitness func-
tion. This function assesses important correctness and perfor-
mance aspects of circuits. The candidate with the best fitness
value is chosen as the parent of the next generation, the other
solutions are removed and the evolution continues with gener-
ating new candidate circuits. The whole loop is repeated until
a termination criterion is met. For details of CGP, see [27].

The most critical and time consuming part of the CGP loop
is the fitness evaluation, which principally limits the scalability
of the search-based design. To alleviate this problem, we
propose below a novel search strategy.

B. Verifiability-Driven Search Strategy

The verifiability-driven search strategy can be seen as a gen-
eral concept improving the scalability of evolutionary design
methods. We demonstrate its key idea on the below problem.

Problem: For a given golden circuit G and a threshold T ,
our goal is to find a circuit C∗ with the minimal size such
that the error WCAE(G,C∗) ≤ T .

This problem formulation allows us to define the fitness
function f in the following way:

f(C) =

{
size(C) if WCAE(G,C) ≤ T ,
∞ otherwise

where size(C) denotes the size of the circuit C. Since the
procedure deciding whether WCAE(G,C) ≤ T (further
denoted as SAT solver) represents the most time consuming
part of the design loop, we avoid calling the procedure as
much as possible. Therefore, we only call SAT solver for
circuits C satisfying size(C) < size(B) where B is the best
solution with an acceptable error (i.e., WCAE(G,B) ≤ T )
that we have found so far. Our experiments show that, during
the evolution process, a significant set of candidate designs C
does not satisfy the condition size(C) < size(B) and thus
their fitness can be easily assessed without SAT solver.
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Fig. 4. The main steps of the proposed verifiability-driven search scheme.

Our experiments further indicate that a long sequence of
candidate circuits Bi improving the size and having an ac-
ceptable error has to be typically explored to obtain a solution
that is sufficiently close to C∗. Therefore, both the SAT and
the UNSAT queries to SAT solver have to be short. To this
end, we use an additional criterion for the evaluation of the
circuit C, namely, the ability of SAT solver to prove that
WCAE(G,C) ≤ T with a given limit L on the resources
available to the underlying decision procedure. If the proce-
dure fails to prove WCAE(G,C) ≤ T within the limit L, we
set f(C) =∞ and generate a new candidate. The design loop
using the verifiability-driven search is illustrated in Fig. 4.

The inputs of the design process include: (1) the golden
model G, (2) the threshold on the worst case absolute error T ,
(3) the initial circuit B having an acceptable error (it can
be either the golden model or a suitable approximation we
want to start with), and (4) the time limit on the overall
design process. The loop exploits the CGP principles; namely,
it uses mutations to generate new candidate circuits C from
the candidate circuit B representing the best approximation
of the circuit C∗ that we have found so far. The circuit C
is then evaluated using the fitness function f as described
above. If the candidate C belongs to the improving sequence
(i.e., size(C) < size(B) and WCAE(G,C) ≤ T ), we replace
B by C. The design loop terminates if the time limit is reached
and B is returned as the output of the design process.

In our verifiability-driven search scheme, we use the re-
source limit L (as a parameter of the design loop) to drive the
search towards candidates that can be promptly evaluated. We
intentionally throw away improving candidates Bi that require
greater resources and thus longer, but still feasible, verification
time. The reason for this is the fact that by mutating these
candidates we would most likely obtain solutions that would
require the same or even longer verification times and thus
finding the whole improving sequence would become time-
infeasible. Instead, we require that every improving candidate
Bi has to be verifiable using the resource limit L and thus
drive the search towards candidates Bi that, for a given time
limit on the overall design process, lead to longer improving
sequences. Our experiments indicate that these sequences lead
to candidate circuits that are closer to C∗. Since we are able
to evaluate a much larger set of candidate circuits, we have
a better chance to find a long improving sequence within the
given time provided that it exists for the limit L.

The obvious disadvantage is that we possibly cut improving
sequences that would lead to good solutions within the given
design time. It can also happen that, for the limit L, no
improving sequence exists, while it exists for a slightly greater
resource limit. Despite of this limitation, our results clearly
show that the proposed verifiability-driven search strategy
allows us to utilise the given design time in a more efficient
way compared to the standard evolution schemes.

C. Integration to the ABC Tool

The proposed approach performs the approximation at the
level of the CGP problem representation (i.e., on acyclic
oriented graphs with arbitrary two-input logic functions in the
nodes). The green part of Fig. 4 shows the position of ABC in
our methodology. ABC is primarily used to construct the miter
and decide whether the maximal arithmetic error of the candi-
date circuit is not above T . The proposed miter construction
allows us to reduce the problem of approximate equivalence
checking to the Boolean satisfiability (SAT) problem. In order
to evaluate a candidate circuit, (1) a candidate chromosome
is used to construct a corresponding AIG, (2) another AIG,
representing the golden circuit, is constructed (just once at the
beginning of the evolution), and (3) the miter is built. The
state-of-the-art techniques used for CEC in the ABC tool—
the iprove engine—are then applied to decide the equiv-
alence. An important feature of the mix of techniques used
in iprove is that one can control the time needed for one
query, which is the key feature we exploit in our verifiability-
driven search strategy. In particular, the satisfiability checking
can be controlled by fine-tuning various resource limits for the
different techniques used, such as the number of simulations
performed to prove non-equivalence, the number of conflicts in
structural hashing, or the number of logic-reduction steps. We
so far used solely a limit on the maximal number of conflicts
in which a single variable (representing an AIG node) can
be involved during the backtracking process. Our experiments
show that this resource limit allows us to effectively control
the time needed for particular iprove queries and thus to
drive the search towards promptly verifiable circuits.

A similar approach has recently been used in circuit ap-
proximation exploiting the approximate-aware rewriting of an
AIG representation of circuits [4]. Principally, our approach
differs in the candidate circuit representation (the gate-level
CGP encoding), its evaluation, and in using the verifiability-
driven evolution instead of a simple greedy algorithm for AIG
pruning. The gate-level representation is an important feature
of our approach which allows us to efficiently capture XOR-
intensive structures existing in arithmetic circuits.

V. RESULTS

To evaluate the proposed method, we primarily focused on
complex approximate multipliers as they are the most chal-
lenging benchmark problems. Since only 8-bit multipliers with
guaranteed error bounds were presented in the literature so
far, there are no solutions available for a direct comparison in
the case of 16-bit and more complex approximate multipliers.
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Hence, (1) we compare the 16-bit approximate multipliers
that we generated using our method with 16-bit multipliers
(available in the literature) whose error was determined using
simulation, and then (2) we present Pareto fronts (the error and
key circuit parameters) for 20-bit, 24-bit, 28-bit, and 32-bit
approximate multipliers and up to 128-bit approximate adders
to demonstrate the scalability of the proposed method.

A. Experimental Setup

We implemented our approach, including the miter con-
struction and verifiability-driven evolution, within the ABC
tool [28]. Array multipliers and ripple carry adders composed
of 2-input gates were employed as the initial (golden) circuits
for CGP. The number of nodes in the CGP’s grid is equal to
the number of gates of the initial circuit. The set of functions
consists of the common two-input logic gates, the buffer, and
the inverter. We used 2 circuits in the population and 5 integers
were modified by the mutation operator.

For each target WCAE, we performed 30 independent runs
of CGP to obtain statistically significant results. Each CGP
was executed for 2 hours on an Intel Xeon X5670 2.4 GHz
processor using a single core. The individual CGP runs are
independent and thus we executed them in parallel using
a cluster of these processors to accelerate the design process.

For purposes of the fitness evaluation, the circuit size is
estimated as the sum of the relative area of the two-input
gates used, where the sizes of each gate are taken from the
technology library. At the end of the evolution, the 5 most
fitting circuits for each WCAE were synthetized using the
Synopsys Design Compiler (high-effort compiling for a better
quality of the results) for a 45 nm technology library in
order to obtain non-functional parameters like the area and
power-delay product (PDP). The accurate implementations
were created by means of Verilog ∗ and + operators and
synthesized in the same way as approximate circuits.

B. 16-bit Approximate Multipliers

An evaluation of the verifiability-driven search: In the
first experiment, we approximated the golden 16-bit multiplier
for 9 target values of WCAE from the set {0.1, 0.2, 0.5, 1, 2,
5, 10, 15 and 20%} and evaluated the proposed method with
three different settings of the resource limit L controlling the
maximal number of conflicts for one AIG node: (1) no limits,
i.e., L=∞, (2) L=160K, and (3) L=20K. The limits L=160K
and L=20K roughly correspond to the time limit of 120 sec.
and 3 sec., respectively, on 16-bit multipliers.

Fig. 5 shows that, for WCAE ≥ 2%, the resource limit L has
a marginal impact on the PDP and area. However, with a de-
creasing target WCAE, the limit L=20K provides significantly
better results. For example, if WCAE = 0.1% and L=20K,
22,050 SAT calls were produced and 11% of them were
terminated on average because of the termination condition.
In the case of L=160K, 856 SAT calls were produced only
(15% terminated). The average number of SAT calls (across
all target errors) that were forced to terminate is 6.28%
(for L=160K) and 8.84% (for L=20K). If L=∞, 170 SAT
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Fig. 5. PDP and area of approximate 16-bit multipliers for 9 target errors
obtained using 3 different resource limits L on the SAT solver. The red line
shows the PDP and area of the accurate multiplier.

calls were evaluated for WCAE = 0.1% only. Despite the
fact that some potentially good candidate circuits are quickly
rejected, the aggressive resource limits allowed us to generate
and evaluate significantly more candidate circuits and thus to
substantially improve the quality of results. Box plots in Fig. 5
also show that independent runs with L=20K lead to circuits
having very similar parameters (low inter-quartile distances)
and thus this limit is be used in the following experiments.

Note that the parameters of some approximate multipliers
shown in Fig. 5 are worse than for the accurate multiplier.
The reason is that the relative area is the only non-functional
circuit parameter optimized by CGP while the PDP and area
are computed at the end of the optimization using the Synopsys
Design Compiler. We have never observed this discrepancy for
the limit L=20K.

A comparison with other multipliers: Next, we generated
16-bit approximate multipliers using the setup described in
the previous section and compared them with approximate
multipliers available in the literature. In order to perform
a fair comparison (the error of the published multipliers
was originally estimated using simulation), we modified our
method and applied a binary search strategy to determine the
WCAE exactly. In addition to WCAE, we also provide MAE
obtained using simulation (109 vectors).

We considered the following 16-bit approximate multipliers:
M1 Approximate configurable multipliers from the lpACLib

library [13], where the multiplication is recursively sim-
plified using two different variants (denoted as Lit and
V1) of an elementary block representing a 2-bit multiplier.
The partial results are summed using accurate adders. We
implemented 32 different architectures consisting of four
8-bit multipliers where each of these multipliers is config-
urable as exact/approximate (24 configurations) and can
be built using either Lit (M1Lit) or V1 (M1V1) blocks.
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Fig. 6. Parameters of 16-bit approximate multipliers considered in our study.

M2 The approximate multiplier employing the bit-significan-
ce-driven logic compression as introduced in [12].

M3 Approximate multipliers obtained from exact multipliers
using the bit-width reduction. The reduction replaces 16-
bit multipliers by accurate x-bit multipliers (for x < 16).
It ignores the LSBs of the operands and leaves the LSBs
of the result zero.

M4 The approximate multiplier composed of approximate
2-bit multipliers as proposed in [11].

M5 Approximate multipliers composed of 8-bit multipliers
that are available in the EvoApproxLib library [18]. The
construction principle is taken from [11].

For all considered multipliers, the value of PDP is plotted
against WCAE and MAE in Fig. 6 (only Pareto fronts are
visualized). While the bit-width reduction provides the same
quality of results as our method for large target errors (up to
20% WCAE), it is significantly outperformed by our approach
for small target errors. Despite that the existing approximate
multipliers typically exhibit good tradeoffs between the error
and PDP in specific applications (as demonstrated in the
relevant literature), Fig. 6 clearly shows that these multipliers
are considerably Pareto-dominated by the multipliers obtained
using our approach. These results were, in fact, expected as
the proposed method is based on a global holistic optimiza-
tion approach while the other approximate multipliers were
composed of smaller ones and the composition procedure
always introduces some overhead. Finally, it is an interesting
observation that MAE follows the trend of WCAE. It seems
that WCAE can be used as a good indicator of MAE.
C. Complex Multipliers

The aim of our further experiments is to show that the pro-
posed method is scalable and can approximate complex multi-
pliers. We present the results of the approximation process on

12-bit, 16-bit, 20-bit, 24-bit, 28-bit, and 32-bit multipliers. The
target WCAEs were adapted accordingly to respect the range
of values in the different considered bit widths. We used the
same setup as in the previous sections but increased the time of
optimization to 4 hours for the 24-bit multiplier and 6 hours for
larger multipliers. The reason is that the search space becomes
much bigger. While the exact 12-bit multiplier contains 850
two-input gates, the 32-bit exact multiplier requires over 6,300
gates. We obtained (as the result of evolution) over 1190
unique multipliers. Because of this huge number and for
the sake of clarity, Fig. 7 shows parameters of approximate
multipliers occupying the Pareto fronts only.

In the experiments, we observed that, in the case of 12-
bit multipliers, 2.4% of SAT calls were terminated on av-
erage due to the resource limit L=20K only. However, this
number increased to 36.9% in the case of approximate 32-bit
multipliers. For all bit widths, the MAE is around 30% of
the worst-case error, which again demonstrates that WCAE is
a good indicator of MAE. Fig. 7 also shows that the obtained
approximations cover the whole range (up to 100%) of the
Area axis. However, this is not the case for PDP. The reason
is that we optimize the relative area and PDP is computed
after the synthesis.

Since Pareto fronts shown in Fig. 7 follow the trend of the
highly competitive fronts for the 16-bit multipliers presented
before, we believe that the tradeoffs between the circuit error
and size obtained for more complex multipliers are also very
good and thus the corresponding circuits represent the cutting
edge of approximate multipliers and can serve as a new
benchmark set for approximate computing.

D. Approximate Adders

In order to demonstrate that the proposed method is appli-
cable for other complex arithmetic circuits, we constructed
Pareto fronts for approximate adders with 20-bit to 128-
bit operands. Approximation of adders is much easier than
approximation of multipliers since adders are structurally less
complicated and the number of outputs is lower. For example,
the exact 20-bit adder requires 140 two-input gates and the
128-bit adder consists of 1,000 gates.

The approximate adders were constructed using the same
setup as in the previous section. A single CGP run took 2 hours
(for all bit widths). Fig. 8 shows parameters of approximate
adders occupying the corresponding Pareto fronts. We report
16 to 18 non-dominated implementations of 24-bit, 28-bit, and
32-bit adders in terms of PDP and WCAE. For 64-bit and 128-
bit adders, 12 tradeoffs are reported only because we have
restricted the number of target error levels. Similarly to the
evolved multipliers, the proposed approximate adders are also
good candidates for including into a new benchmark suite.

VI. CONCLUSION

Automated design of approximate circuits with formal error
guarantees is a landmark of provably-correct construction of
energy-efficient systems. We present a solution to this prob-
lem, introducing a novel verifiability-driven search strategy
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that uniquely integrates approximate equivalence checking into
a search-based circuit optimisation algorithm. Able to con-
struct high-quality Pareto sets of 32-bit multipliers and 128-bit
adders, our method shows excellent scalability and paves the
way for design automation of complex approximate circuits.

In the future, we will thoroughly explore relationships be-
tween resource limits on the underlying SAT solvers and the
structure of the resulting circuits. This will allow us to further
improve the performance of our method and thus to go beyond
the approximation of 32-bit multipliers. We will also integrate
the constructed circuits into real-world energy-aware systems
to demonstrate practical impacts of our work.
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