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Abstract—Accurate and detailed 3-dimensional (3D)
models of the underwater environment are becoming
increasingly important in modern marine surveys, since
they convey immense information that can be easily in-
terpreted. Techniques such as bundle adjustment (BA)
and structure from motion (SfM), which jointly esti-
mate sparse 3D points of the scene and camera poses,
have gained popularity in underwater mapping appli-
cations. However, for large-area surveys these methods
are computationally expensive and not intended for on-
line application. This paper proposes an SfM pipeline
based on solving the BA problem in an incremental and
efficient way. Furthermore, the new system can provide
not only the solution of the optimization (camera trajec-
tory along time and the 3D points of the environment),
but also the estimate of the uncertainty associated with
the 3D reconstruction. This system is able to produce
results in mission-time, i.e. while the robot is in the
water or very shortly afterwards. Such quick availability
is of great importance during survey operations as it
allows data quality assessment in-situ, and eventual re-
planning of missions in case of need.

I. Introduction

Underwater exploration and inspection is a fundamental
way to improve our knowledge of the oceans. Accurate and
detailed 3D models of the environment obtained from the
data acquired underwater yield high added value to any
marine survey, as such results convey immense information
easily interpretable by humans. The wealth of information
enables experts (biologists, archaeologists and geologists,
among others) to perform further in-depth investigation of
the areas of interest after the missions, and can also serve
as base map for long term environmental monitoring.

Recent advances in technology enabled scientists to
capitalize on the use of unmanned underwater vehicles
(UUVs) to gain access to large marine areas and deep
sea regions. While underwater 3D mapping usually relies
on multibeam echosounders and sidescan sonars, the
relatively coarse resolution of acoustic sensing prevents
highly detailed representation of complex structures with
concavities. Optical sensing, on the other hand, can be
used to recover quality 3D representation of smaller areas
of interest in higher resolution.

Image based 3D reconstruction techniques have been
studied extensively in the computer vision community.
Sparse techniques such as BA and SfM, which jointly
estimate sparse 3D points of the scene and camera poses,

have gained popularity in underwater surveying and are
currently used for producing 3D representations from data
provided by commercial and custom built camera systems
(e.g., [1]–[4]). To obtain an optimal solution, a nonlinear
optimization is performed on a complete set of camera poses
and 3D points observed by the camera [5] in a stochastic
estimation framework which accounts for Gaussian noise
models in the observations. For large scale applications, this
is an expensive procedure and it is normally performed
offline, after the acquisition process. In this sense, the
reconstruction phase is decoupled from the acquisition,
and performed offline post-mission.

Due to the unfavourable properties of the underwater
medium (such as the rapid attenuation of light, scattering
effects, and non-uniform lighting), the outcome of the
underwater 3D reconstruction is vastly dependent on the
conditions and the strategy applied in the acquisition
process. The current offline nature of the processing pre-
vents any feedback about the quality of the reconstruction
during the mission. This consequently demands a strong
human intervention during the surveys and careful mission
planning to ensure the capture of adequate data. Despite
the best efforts, several deployments over the same area are
still commonly required, significantly increasing the total
expenditure of the mission due to high costs of ship-time
and highly trained personnel.

Currently, some techniques capable of online reconstruc-
tion decouple the problem into a local BA step optimizing
over parameters of a few recently added cameras and 3D
points and a global camera pose graph optimization [6],
[7]. Alternatively, the complexity of the problem can
be reduced by marginalizing out the 3D structure from
the optimization process: a technique called light bundle
adjustment [8]. While the former achieves real-time results
in structured environments, the reconstruction is only
locally consistent during the execution of large loops,
whereas the latter obtains the solution solely for camera
poses. Neither case is able to provide an estimate of the
uncertainty of the solution encoded in the covariance matrix
associated to each of the variables (camera poses and
points). This covariance is a valuable indicator of the
quality of the reconstruction, which can be highly beneficial
for the acquisition process if it can be estimated during
the mission.

This paper analyzes several solutions for solving the



BA problem in an efficient way, during the mission, in
an incremental fashion. Furthermore, it proposes a new
system that is able to provide not only the solution of
the optimization (pose of the cameras and location of
the 3D points in the environment), but also the value
of the associated uncertainty of the 3D reconstruction at
mission-time. The ability to obtain the reconstruction and
its associated uncertainty during the time of the mission
enables the possibility of concurrent assessment of the
quality of the acquired data (and the 3D structure) as well
as the identification of poorly mapped or even missing areas.
Endowed with this additional information, skilled pilots
and autonomous planning schemes will be able to alter the
mission in progress. By guiding the vehicle towards the
problematic areas, the quality of the final representation
will be significantly improved. As such, these quality-aware
surveys not only improve the survey efficiency but also help
reduce the need for additional deployments of the vehicle,
further reducing the mission time and cost.

II. Related Works
When performing online 3D reconstruction, the state,

containing the 3D structure and the camera trajectory
so far, is continuously growing, leading to a highly com-
putationally demanding estimation process. There are
several solutions to speed up the online processing. One
is to reduce the problem to a pose graph optimization
where only the poses of key frames are globally optimized
and local BA is used to adjust the cameras and the
points [6]. Incremental light bundle adjustment [8] is
another technique proposed for solving BA incrementally,
which it is based on marginalizing out the structure while
solving only for the camera poses. Those techniques are
not suitable for applications where a feedback about the
structure is needed during the acquisition, where a globally
consistent solution is required every step.

Efficient incremental NLS methods have been developed
in the simultaneous localization and mapping (SLAM)
community [9], [10]. Those methods exploit the fact that
adding new information into the system only affects a part
of the solution. SLAM structure facilitates identifying the
affected part. The matters in bundle adjustment are more
complicated, since the increments have much higher rank
than in SLAM and sometimes affecting large part of the
system (e.g. when the same points are seen by most of the
cameras).

In general, the existing solutions to NLS provide only the
estimate of the mean state vector, its associated covariance
being computationally too expensive to recover. Neverthe-
less, in SLAM applications, knowing only the mean vector
is not enough. Quality estimation, active decisions and next
best view are only a few of the applications that require
fast state covariance recovery. Several approximations for
marginal covariance recovery have been proposed in the
literature. Thrun et al. [11] suggested using conditional
covariances, which are inversions of sub-blocks of the

system matrix, called the Markov blankets. The result is an
overconfident approximation of the marginal covariances.
Online, conservative approximations were proposed in [12],
where at every step, the covariances corresponding to the
new variables are computed by solving the augmented
system with a set of basis vectors. An exact method for
sparse covariance recovery was proposed in [13], based on a
recursive formula which calculates any covariance elements
on demand from other covariance elements and elements of
the Cholesky factorization result. An incremental technique
to obtain exact marginal covariances has recently been
proposed by Ila et al. [14], and it is based on incremental
updates of marginal covariances every time new variables
and observations are integrated into the system, and on
the fact that, in practice, the changes in the linearization
point are often small and can be ignored. However, the BA
and SfM problems have a slightly different structure where
the number of points is in general much larger than the
number of cameras and there are more efficient methods
to solve the linearized system. Polok et al. [15] proposed
an efficient method to calculate the point covariances in
the context of BA. An improved version of this method is
integrated in our pipeline.

III. Pipeline overview
The following section presents an overview of the pro-

posed approach for a robust, globally-consistent, large-
scale 3D reconstruction. Conceptually we can understand
the pipeline as divided into two parts; the front-end and
the back-end. The front-end is in charge of tracking 3D
points and obtaining, at every time step, an initial estimate
for the camera pose, associations with the existing 3D
points, and creating newly observed 3D points. For that,
features in every new frame are matched with features in
the previous frames and based on that an initial estimate
of the current pose of the camera and new 3D points is
obtained. The new camera and points are refined by the
back-end that implements incremental bundle adjustment
system to obtain a globally consistent estimate at every
step. In order to account for the high level of noise in
underwater image processing, the BA is formulated as a
probabilistic framework and provides not only the mean
estimate but also the uncertainty of each camera pose and
3D points.

An important characteristic of the proposed pipeline
is its ability to eliminate outliers which is implemented
at several stages, when initializing the camera pose as
well as in the global optimization stage. We found this is
mandatory when processing noisy underwater images.

The state of our 3D reconstruction is given by the camera
poses, c = [c1 . . . cnc] and the 3D points in the environment
p = [p1 . . . pnp]. The camera poses can be parameterized
using 6D vectors. It is common to consider a camera pose
as an element of the Lie algebra ĉi ∈ se(3) of the special
Euclidean group SE(3) with ĉi being the matrix form of
the pose ci = [v, ω]⊤, ci ∈ R6, with ω ∈ R3, the rotation



component and v ∈ R3 the translation component. The
scale can be better estimated during the optimization
process by considering the camera poses as elements of
the Lie algebra ĉi ∈ sim(3) of the Similarity group Sim(3)
with:

ĉi =
[
[ω]× + qI3×3 v

0 0

]
, (1)

where q ∈ R and σ = exp(q) being the scale factor [16].
Thus, now the pose becomes ci = [v, ω, σ]⊤, ci ∈ R7. Esti-
mating for the scale component alleviates the scale-drift
effect when constructing the map incrementally [7].

The 3D points can be parameterized either in Eu-
clidean coordinates P = [x, y, z]T , or using local inverse
depth P = [x/z, y/z, 1/z]T . Such point parameterization,
as shown by [17], bounds the number of variables affected
by updating the system with new measurements, thus
reducing the incremental processing time.

IV. Tracking and Mapping

In order to obtain a good estimation, the points are
tracked along a sequence of images and tested whether
or not they are outliers. Through the process, the map
points are assigned with confidence values depending on the
number of successful observations. The confidence levels
are used to decide whether a point is added or not to the
global map or kept into a local map for further processing. In
particular, every new 3D point is initially added to a local
map, and remains there until its confidence reaches the
threshold of minimum number of observations before being
moved to the global map. The confidence of the points is
increased with successful observation from any frame. The
local map points are discarded after a period of inactivity,
as they are considered outliers. If their confidence increases
in the meantime (seen by new frames), they are added to
the global map. By decoupling the two sets, all points are
still used in the tracking process while only well observed
points are utilized for global map estimation.

A. Feature Extraction
As the estimation of the 3D points together with the

motion of the camera is inferred entirely from the sparse
features matched across the set of 2D images, it is important
to identify distinctive and repeatable features in each
frame. Features that can not be matched across multiple
frames do not contribute to the localization and mapping
efforts and are therefore discarded. The particularities
of the underwater medium induces several effects (such
as light attenuation, blurring and low contrast) which
can deteriorate the performance of some feature detec-
tors/descriptors [18], [19]. In our approach, we currently
use scale-invariant feature transform (SIFT) [20] features,
which can be extracted using graphics processing unit
(GPU) (e.g. Wu [21]) and are widely accepted as one of
the highest quality feature descriptors [22] due to their
high degree of invariance to scale and rotation, as well as

being partially invariant to changes in illumination, noise,
occlusions and small changes in the viewpoint.

B. Initialization

In order to start the tracking, the relative pose between
two frames (not necessarily consecutive) has to be esti-
mated, together with an initial set of triangulated points.
Photo-metric correspondences between extracted features
in both candidate frames are computed using Cheng et
al. [23] cascade hashing approach based on the Euclidean
distance between the descriptors. Ambiguous matches are
discarded using Lowe’s ratio test [20].

Relative poses are then computed through the estimation
and decomposition of a geometric model. The selection
of the most appropriate model should depend on the
structure of the viewed scene, the type of motion and
the knowledge of the intrinsic parameters of the camera.
While homography (4-point algorithm [24]) should be
used if the scene is planar/distant or motion is pure
rotation, the selection between fundamental matrix (8-point
algorithm [24]) and essential matrix (5-point algorithm [25])
depends on the knowledge of the intrinsic parameters of
the camera.

To select the best model, we estimate both, homog-
raphy and fundamental/essential matrix using all-to-all
photometric feature matching and a parameter-free robust
AC-Ransac [26] statistical method. The best model and its
confidence level (automatically adapted to the noise) is es-
timated by following the Helmholtz principle of meaningful
deviations and by regarding any model that is unlikely to
be explained by chance as conspicuous. By comparing the
confidence levels and number of inliers obtained from the
estimation of both geometric models, we select the more
appropriate. At the same time, using a robust estimation
method also diminishes the influence of outliers on the
estimation process.

As a final step of the initialization, the selected model
is used to evaluate the behavior of individual matches
with respect to the epipolar constraints [24]. Outliers and
points with low parallax are omitted, while the rest are
triangulated and added to the initial local map. Once the
points are seen by a sufficient number of frames they are
introduced to the global map.

C. Motion Tracking

Given that the tracking has been successful for the previ-
ous frame, the constant motion model is used to predict the
pose of a new camera. Based on that, successfully tracked
points from a previous frame are projected onto the new
frame obtaining a prediction of where the correspondence
in the new frame should be ẑk = projk(ci, pj). The features
extracted in the new image, which we call observations and
denote with zk, are potentially matched with the predicted
features in their vicinity. The matching is successful if the



difference of their descriptors is below a threshold and
passes the χ2 test at 95% (THm = 5.991):∥∥ẑk − zk

∥∥2
Σk

< THm . (2)

It is important to note that if the motion model does not
describe well the real motion of the camera, the matches
will not be found and the system can easily lose track of the
points. In case too many points are unable to be tracked,
the system automatically adjusts by widening the search
area around the projections ẑk, and in the case that no
matches were found, the system uses the last frame added
to the global system to re-localize the current frame. This
is done by using 3D-2D correspondences, and the pose of
the new frame can be estimated using EPnP algorithm [27].

Once the matching is successful, the camera pose is
optimized through a camera optimization step, where
only the parameters of the camera pose are allowed to
change. The newly optimized pose is further improved by
attempting to match 3D points seen in neighboring frames
(i.e. frames which share a sufficient number of 3D points
with current frame) by projection (2) followed by another
pose-points refinement.

D. Frame Insertion and Outlier Rejection
In order to maintain a scalable representation, only

the frames which exhibit sufficient motion [6] are added
to the global system. If the number of tracked features,
compared to the last inserted frame, significantly decreases
(below 70%), we introduce the frame to the global map and
triangulate new points to strengthen the tracking. Similarly,
in case of small number of tracked features (e.g. due to poor
quality of images) we introduce new frames more frequently
to increase the probability of successful tracking.

Once the frame is selected for insertion, previously
unmatched features in neighboring frames are tested to
match unmatched features in the current frame. As the
poses of all the frames have been previously estimated, the
search can be restricted to only pairs of features satisfying
epipolar constraints. Successful matches are triangulated
and inserted only if all matched observations from neigh-
boring frames are consistent with the triangulated point.

In order to eliminate possible point outliers, a local
refinement test using BA is required prior to the global
map insertion. This includes the points visible in the current
frame and all the camera poses from where the points in the
local map have been previously observed. The optimization
is restricted to the parameters of the current camera and
local points, as this step is only used to eliminate possible
point outliers before introducing them to the global map.
Local points with high re-projection error in frames that
they are observed are considered outliers and removed. The
remaining points are added to the global map if and only
if they achieved sufficient confidence (e.g. seen by sufficient
number of frames).

In [6] the goal is to obtain real-time tracking, and thus
global BA process is run concurrently with the tracker

on distinct processing thread. When the tracker adds new
points and cameras to the map, the global BA process
is stopped to promote the real time operation. This can
prevent the pipeline to provide a global optimization at
every step. In contrast, our pipeline is concerned with
providing the best estimate all the time so that the result
can be used either on-board an autonomous underwater
vehicle (AUV) to localize the robot and generate a good
representation of the environment, or presented on a
remotely operated vehicle (ROV) mission control panel
to help the pilot control the acquisition in real-time.

V. Incremental Processing
Bundle adjustment is used to refine the camera poses

and the 3D structure. In order to deal with the uncertainty,
BA is formulated as probabilistic estimation and solved
using non-linear least squares (NLS). Available BA software
and applications are able to assemble and process the
information from large amount of images and produce
accurate solutions; Bundler, Open MVG, Visual SFM, to
name just a few. Nevertheless, the majority of the existing
applications are designed to be used offline, post-acquisition
and do not provide any feedback about the uncertainty of
the reconstruction.

SLAM++ [28], [29] is an open source library we are devel-
oping and which implements nonlinear least squares solvers
for SLAM and SfM applications. The main advantage of
the SLAM++ is that it implements incremental solutions
for SLAM [10] using sparse block Cholesky factorization
and recently also incremental solutions for BA [17]. Those
are based on the highly efficient block matrix data-structure
that facilitates structural and numerical changes of block
matrices as well as arithmetic operations. Both the CPU
and the GPU versions were shown to be faster than the
SuiteSparse variants of element-wise implementations [30].

A. Bundle Adjustment Step
Formulating the BA as a probabilistic estimation method

accounts for the uncertainties in the image measurements.
It is common to assume that the point measurements
are characterized by zero mean Gaussian noise and to
formulate the BA problem as an optimization over a set
of variables θ = [θ1 . . . θn], the camera poses and the 3D
points forming the state θ = [c, p]. We want to find the
optimal configuration satisfying a set of measurements,
z = [z1 . . . zm], given by the re-projected points on the
image. This can be done by finding the maximum a
posteriori probability (MAP) estimate:

θ∗ = argmax
θ

P (θ | z) = argmin
θ

− log(P (θ | z)) . (3)

Each point observation is assumed to have zero-mean
Gaussian noise with the covariance Σk and we measure the
re-projection error: ek(ci, pj , zk) = zk − projk(ci, pj), with
[ci, pj ] ⊆ θ where proj(·) is the projection function of a
point, pj , onto the camera ci, and zk is the actual pixel
measurement. Note that even if this paper considers only



3D point observations, other measurement such as IMU or
altitude sensors can be easily integrated into the estimation
problem. The solution is obtained by solving the following
NLS:

θ∗ = argmin
θ

1
2

m∑
k=1

∥∥zk − projk(ci, pj)
∥∥2

Σk
. (4)

Iterative methods such as Gauss-Newton (GN), Levenberg-
Marquardt (LM) or Dog leg trust region are often used to
find the solution of (4). In brief, these methods compute,
at every iteration, a linear approximation of the problem,
given a linearization point θ0 and find a correction δ
towards the solution by solving a linear system Λδ = η.
At every iteration, the linear system can be solved either
using matrix factorization methods or gradient methods
and obtain an update for the current linearization point,
θi+1 = θi ⊕ δ. The process iterates until convergence.

B. Incremental Bundle Adjustment with Fast Covariance
Recovery

In online applications, at every time step, new mea-
surements are integrated into the system and a globally
consistent solution can be found by solving the updated
system. In our previous work [10], [29], we showed that, in
SLAM applications, the updates only affect a small part of
the system. Based on that, we proposed methods to solve
the system in an incremental fashion, which translated
into very efficient SLAM algorithms that can run on-
board vehicles with limited computational capabilities. The
proposed methods were based on techniques such as partial,
block Cholesky factorization, which, at every step, performs
matrix factorization on a small part of the system matrix
affected by the update [10].

In general, the solution of the NLS is providing a mean
estimate θ∗. In a probabilistic framework, it is important
to consider the uncertainty associated with this solution,
the covariance matrix in our case. It is a well known
fact that the covariance matrix is very computationally
expensive to obtain, given that it requires inversion of large
matrices. Identifying which variables are affected by the
updates led to very efficient solutions for the calculation of
important elements of the covariance matrix in SLAM [14].
Our previous work shows that the marginal covariances,
representing the uncertainty of each variable, and the cross-
covariances of the last pose of the robot and all the other
variables can be computed in a time which is a fraction
of the solving time. The proposed algorithm outperformed
the existing methods by two orders of magnitude and
enabled SLAM applications where the state representation
is maintained compact and the loop closure is obtained
based on the state estimates [29].

Nevertheless, SLAM has a much simpler structure than
BA. A typical BA problem is more dense and this is due
to the fact that many (sometimes up to thousands) of
points are seen from a single camera view. This makes
incremental methods which are efficient when solving a

SLAM problem to become inefficient when applied to BA.
This is also the case of the matrix factorization, in SLAM
Cholesky factorization has been shown to be very efficient.
Whereas in BA, it is well known that the underlying
variable graph is bipartite and can be separated in two
parts, one corresponding to the camera variables and one
to the point variables. An algebraic trick called Schur
complement (SC) can be applied in this case. Given that
the point measurements are independent and the fact that
the number of camera poses is in general much smaller than
the number of 3D points (nc << np), solving first for the
camera poses and then for the points divides the problem
to solving a small relatively dense system first and a large
sparse system after. This partitioning of the computation is
at the core of speeding up most of the batch BA solvers, but
can make the matters difficult in incremental processing.
Recently, we integrated into SLAM++ a method that can
directly update the Schur complement representation with
the new measurements obtained at every time step. This
method brings up to threefold reduction in solving time in
steps where the 3D points are seen from a small amount
of cameras and when the size of the update increases, it
gracefully degenerates to batch solving.

Moreover, a highly efficient covariance recovery technique
was integrated. This method is based on an algebraic
manipulation of the operations involved, so that resulting
calculations take advantage of the sparsity of the problem,
the previously calculated elements of the SC, and requires
similar storage as the solving of the SC system. Details
about the method can be found in our previous work [15]
and an improved version of that will be made publicly
available with the new release of the SLAM++ code
http://sf.net/p/slam-plus-plus. This method was shown to
provide marginal covariances at a time comparable with the
solving time and to be more than one order of magnitude
faster than the existing implementations.

Although the tracking system in the front-end imple-
ments several stages of outlier rejection based on local
reprojection errors, the global optimizer can further check
for the global consistency of the observations. This is
done by using using robust estimators. The appealing
property of robust estimators or M-estimators (maximum
likelihood type estimators) [31] is their simple integration
into the ordinary nonlinear least squares framework. The
only change is that each observation zk is assigned a weight.
These weights then multiply the measurement covariances
Σk in (4). With that, our back-end adds another level of
robustness to the pipeline.

VI. Results
The proposed pipeline was tested on a large-scale under-

water data set acquired by a setup comprising five GoPro
Hero 4 cameras, while inspecting a shipwreck near the coast
of Palamos, Spain. The total duration of the acquisition was
11 minutes. Views containing plain water and no structure
(figure 1b) were automatically omitted by the tracker, as



(a) Structure (b) Open water

Figure 1. Captured frames: (a) registered and (b) discarded.

they convey no information to be integrated into the system.
Binary masks were used to conceal the view of the robot
seen on two cameras. For the back-end performance analysis
in section VI-A we aimed to maximize the size of the BA
system, therefore we use the images form all five cameras
and, from that, a total of 1772 images were successfully
registered offline to produce 455776 observations of a total
of 170018 3D points. However, our current version of the
tracker only supports single camera systems. Therefore
for the tracking performance analysis we used the video
sequence of the camera that captures the most of the visible
structure. In total, the sequence contains 5480 frames out of
the total of 16000. The extension to handle a multi-camera
system will be implemented as future work.

A. Back-end Performance
We first tested the incremental optimization and covari-

ance recovery introduced in section V and implemented
in SLAM++. For that, we compared performance with
two popular NLS solvers in computer vision, g2o [32]
and Ceres [33]. The first one, g2o, can solve BA and
SLAM problems out-of-the-box. TheBA implementation is
restricted to batch solving. The Ceres solver received much
attention, as it is used in Google’s 3D Maps and Street
View applications. It is mostly focused on batch solving.
SLAM++, on the other hand, implements incremental
solutions for SLAM and recently for BA.

In order to guarantee repeatability and fairness of the
evaluation, the same input data was used by all the solvers.
Therefore, for time comparison we processed the images
with a similar pipeline as described in section IV but instead
of actually feeding an incremental, global BA optimizer,
the measurements were stored in a file. This file was
then parsed incrementally by all three solvers and the
data processed incrementally. Here we need to make the
distinction between incremental processing and incremental
solving. While the former refers to performing the global
optimization every time new information is available, the
latter refers to actually updating and solving the system
incrementally (partially). For example with SLAM++ we
process and solve incrementally but with g2o and Ceres
we process incrementally and solved batch.

The main characteristic of this dataset is that each point
is seen in only a few images, and that makes the updates on
the incremental optimizer very efficient. Table I shows how

the incremental solver in SLAM++ outperforms the other
solvers by a factor of 1.5× while having comparable root-
mean-square error (RMSE). Observe that the covariance
recovery times using g2o and Ceres are fairly high, clearly
showing that those solvers are not suitable for this purpose.

Figure 4 shows an example of how the covariance value
helps identifying poorly sampled regions of the reconstruc-
tion. For that, we simply color-coded the values of the
determinant of marginal covariances for each point in the
global map (purple–high uncertainty, red–low uncertainty).
This can help in re-planning trajectories of the robot to
re-sample high uncertainty regions.

B. Tracking Performance
The tracking approach in section IV successfully recon-

structed a scene (figure 5) containing 65355 global 3D
points and 801 key-frames out of a total of 5480 frames.
Observe that the tracker samples the key-frames, only main-
taining the informative ones in the global representation.
This is very important for the efficiency of the on-board
processing where the computational resources are limited.
We further analyze the global vs. local maps. As shown in
figure 2, we can see that the number of global 3D points
is constantly rising, while the number of local 3D points is
limited as inactive points are continuously removed from
the map.

Figure 2. Number of global/local points with respect to number of
frames processed

As already mentioned earlier, our tracking relies on both,
matching with motion model and subsequent matching with
points in a local neighborhood map. Both steps are highly
important for obtaining an accurate pose estimation which
enables better outlier rejection. This can be seen in figure 3,
where the percentage of successfully matched points with
each strategy is shown. After each key-frame insertion into
global map, the proportion of points matched using the
motion model increases, as the motion and points have
been recently optimized by global optimization. As frame-
to-frame tracking gradually accumulates error, the number
of matches using a motion model decreases. However,
the camera refinement step enables better matching with
the local neighborhood map, resulting in an increased
percentage of matched points.



Solver g2o Ceres Batch SLAM++ Incremental SLAM++
Solve Time 19578.700 sec 15138.994 sec 20876.609 sec 541.680 sec

Covariance Recovery Time 25.65 hours 2478.973 hours 2.839 hours 2.839 hours
RMSE 2.616 px 8.466 px 12.575 px 6.022 px

Table I
Evaluation of the incremental processing on the Boreas dataset. Num. of Cameras: 1772, Num. of Points: 170018, Num. of

Observations: 455776.

Figure 3. Relation between matches obtained using motion
model/local neighborhood map

Our current implementation was developed by extending
the open-source library OpenMVG [34]. The CPU imple-
mentation of the SIFT feature extractor, taking on average
0.2 s per frame could be significantly improved using GPU
implementation (e.g. [21]) which we plan to integrate in
the future. Matching and triangulation take 0.15 s and the
rest of the tracking additional 0.1 s. While the numbers
do not indicate real-time performance it is worth noting
that the code could be further optimized. Some parts such
as feature extraction and matching can be parallelized to
gain on time performance. This experiment was performed
on Intel Core i7-5500U processor and 8 GB RAM.

VII. Conclusions
This paper contributes to the field by demonstrating

the feasibility of mission-time 3D reconstruction and
uncertainty estimation. This is the critical component
missing for performing quality-aware data acquisitions,
which will increase the quality of both the final acquired
data and the survey efficiency as well as concurrently
diminish the possibility of performing unsatisfactory optical
surveys. In the future we plan to speed up the tracking part
by parallelizing parts of the pipeline to obtain real-time,
and to exhaustively test the entire incremental pipeline
on different scenarios. The final goal is to integrate this
system into our Girona500 and SparusII underwater robots
and use the uncertainty-aware 3D reconstruction to guide
their missions.
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