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Abstract—The histogram of oriented gradients (HOG) feature
extraction is a computer vision method widely used in embedded
systems for detection of objects such as pedestrians. We used
Cartesian genetic programming (CGP) to exploit the error re-
silience in the HOG algorithm. We evolved new approximate im-
plementations of the arctan function, which is typically employed
to compute the gradient orientations. When the best evolved
approximations are integrated into the SW implementation of
the HOG algorithm, not only the execution time, but also the
classification accuracy was improved in comparison with the
accurate implementation and the state-of-the art approximate
implementations.

Index Terms—Functional approximation, Cartesian genetic
programming, Histogram of oriented gradients

I. INTRODUCTION

Providing high-quality outputs, for example, in terms of
image classification accuracy, is usually computationally ex-
pensive and energy demanding. In this paper, we focus on
one particular application – human detection in images –
implemented on low power devices. Various implementation
approaches have been proposed in this area. One of their key
distinguishers is a method used to define the so-called features,
i.e. the vectors of parameters that represent particular input
images in the image classification pipeline. While hand-crafted
features (such as image gradients) are created by experts and
used in application-specific algorithms (such as histogram of
oriented gradients, Harr wavelets and shape contexts), learned
features are derived from data in the process of learning of
deep convolutional neural networks. Although learned features
achieve better classification accuracy, their usage leads to the
2–4 orders of magnitude overhead in energy consumption
as measured on integrated circuits recently developed for
embedded vision [1], [2]. If our objective is to minimize the
computation cost and energy, we should consider an algorithm
based on hand-crafted features, assumed that the quality of
output is sufficient for a particular application.

This paper deals with improving of the histogram of ori-
ented gradients (HOG) feature extraction method in terms
of execution time (and power consumption). The approach is
proposed and evaluated in the context of low power pedestrian
detection used in driver assistant systems. First, we perform
an error resilience analysis of HOG in order to identify such
components whose potential inexact implementation will have
a minor impact on the quality of result, but will significantly
reduce the execution time and power consumption. Then,

we design approximate versions of selected component(s)
and analyze if our objectives are met. This strategy falls
under the umbrella of approximate computing which exploits
error resilience of certain applications to optimize their power
consumption, execution time and other parameters [3].

In particular, we focus on the gradient orientation module
which is typically based on a relatively expensive iterative
algorithm computing the arctan function. We employ Cartesian
genetic programming (CGP) to automatically evolve a linear
code (no loops, no branches) to approximate the gradient
orientation module. As the evolved code can immediately be
implemented as a combinational circuit, we, in fact, provide a
suitable solution not only for software-based implementations,
but also for hardware accelerators of HOG. The evolved
solution is compared with the original implementation and
state-of-the art solutions from the literature, in terms of the
execution time and classification accuracy on MIT and INRIA
pedestrian datasets.

II. APPROXIMATE COMPUTING

Approximate computing was established with the goal of
providing more energy efficient, faster, and less complex
computer-based systems by allowing some errors in computa-
tions [3]. One of the approximation techniques is functional
approximation whose principle is to implement a slightly
different function with respect to the original one, provided
that the error is acceptable and key parameters are improved.

Approximate solutions are typically obtained by a heuristic
procedure that modifies the original implementation. In the
case of SW approximation, programmers can typically de-
clare which parts of a program can be computed approxi-
mately and specialized compiler and optimizer then preform
requested approximations (e.g., EnerJ [4]). In the case of
HW approximation, either general-purpose or circuit-specific
approximation methods have been applied. While the aim
of general-purpose approximation methods (e.g., SALSA [5]
and SASIMI [6]) is to automatically approximate any circuit
regardless of its structure, circuit-specific methods are focused
on a rather specific class of circuits (e.g., adders [7] or
multipliers [8]).

III. EVOLUTIONARY APPROXIMATION

The approximation problem can be formulated as a multi-
objective optimization problem in which the error, delay (or
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performance) and power consumption are conflicting design
objectives and solved using a general-purpose optimization
method. For circuit and low-level code approximations, Carte-
sian genetic programming (CGP) has provided excellent trade-
offs between the key parameters, often better than competitive
methods [9], [10].

CGP is a form of genetic programming where each can-
didate solution is represented as a string of integers of fixed
length that is mapped into directed acyclic graph (DAG) [11].
The DAG is constructed within an array consisting of nc×nr
programmable na-input nodes whose functions are taken from
a set Γ. The DAG utilizes ni primary inputs and no primary
outputs. No feedback is allowed in the basic version of CGP.
The string representation of the DAG is called the chromosome
and can be understood as a simplified netlist or assembly
language program (Fig. 1).

The search is usually performed using a simple (1 + λ)
evolutionary algorithm. In this algorithm, every new popula-
tion consists of the best individual of the previous population
and its λ offspring created using a mutation operator which
modifies up to h genes (integers) of the chromosome. In order
to evaluate the population, each candidate solution is evalu-
ated using the so-called fitness function which assigns better
scores to better performing solutions. The search is typically
terminated after generating and evaluating a given number of
populations.

The CGP-based approximation can be conducted in such a
way that CGP tries to firstly modify the exact solution to obtain
an approximate solution showing desired value of a given
parameter (e.g. the error), and then to optimize the remaining
parameters without worsening the parameter optimized in the
first step [9]. In a truly multi-objective scenario, all parameters
are optimized together [10].

IV. HISTOGRAM OF ORIENTED GRADIENTS

The Histogram of oriented gradients (HOG) feature ex-
traction is a method widely used for detection of objects
such as pedestrians [12]. Pedestrian identification is important
in various problem domains, such as surveillance, robotics
or driver assistance systems [13]. Although HOG extraction
employs the hand-crafted feaures, it is still computationally
expensive. For example, for real-time processing of HDTV
video stream, a workload of more than 440 Gbps and memory
bandwidth of 55 Gbps is necessary [14]. There is a number of
works dealing with an efficient implementation of HOG-based
detectors (for example, [1], [13], [15]).

avg

>>2

15
+

16
max

17
avg

19
+

20
+S

21
~a|b

22
min

23
xor

24
min

25
nand

Y

10

28
min

29
>>2

10

9

11

12

7
swap

avg

13

14

9

18
avg

26
nand

30
>>2

27
nand

32
min

31
min

34
max

33
+

Fig. 1. A candidate solution in CGP (see C code in Fig. 4)

The HOG algorithm can be divided into several steps as
shown in Figure 2. The image is scanned by detection windows
of selected size. The content of the window is divided into
smaller parts and for each of them, the gradient orientation
histogram is computed. The histograms are normalized to
compensate for different lightning conditions in different parts
of the image and the so-called detection window descriptor
is created. Finally, the descriptor is fed into a classifier to
evaluate whether the window contains specified object or not.

First, the gradient orientation θ(x, y) and magnitude
m(x, y) are calculated for each pixel f(x, y) as follows:

θ(x, y) = arctan
fy(x, y)

fx(x, y)
, (1)

m(x, y) =
√
f2x(x, y) + f2y (x, y) (2)

where fx(x, y) is the gradient in the x-axis and fy(x, y) is
the gradient in the y-axis, computed as the difference of the
adjacent pixels:

fx(x, y) = f(x+ 1, y)− f(x− 1, y), (3)
fy(x, y) = f(x, y + 1)− f(x, y − 1). (4)

Next, the image is divided into cells of 8×8 pixels and the
orientation histograms are calculated for each cell. The interval
of 0–180° is evenly divided (usually into 9 parts) to produce
the histogram bins. For each pixel, the gradient orientation
θ(x, y) determines the bin and the gradient magnitude m(x, y)
is used to calculate the pixel’s contribution to that bin. To avoid
aliasing, the two nearest bins are updated as well. If the pixel
belongs to bin b, the contribution vb to bin b and contributions
to the nearest bins vb±1 is determined as:

vb = (1− α) ·m(x, y), vb±1 = α ·m(x, y), (5)

where α is the weight of the pixel calculated as:

α = (b+ 0.5)− n · θ(x, y)

π
(6)

where n denotes the total number of bins (usually 9).
The last step of HOG extraction is normalization of the

orientation histograms in order to compensate for lightning
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Fig. 2. Steps performed to compute histogram of oriented gradients.
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and contrast differences in various areas within the image.
The cells are organized into overlapping blocks. Normally,
each block has the size of 2× 2 cells, forming a vector of 36
values (considering 9 histogram bins used in cells). The values
in each block are normalized using selected scheme and the
normalized values of all blocks are then combined in the
resulting feature vector. If L2-norm is used, the normalized
values can be obtained as follows:

vni =
vi√

‖v‖22 + ε2
, where (7)

‖v‖22 = v21 + v22 + · · ·+ v2n (8)

and i = 1 . . . 36, vi and vni denote unnormalized and normal-
ized values of the i-th component of the block vector. ε is a
small constant to avoid division by zero.

In the task of pedestrian detection, the input image is
scanned using a detection window of 64× 128 pixels, which
is divided into 7 × 15 cells (4 pixels on each side serve as a
margin) and the resulting feature vectors fed into a classifier
contain 3870 values.

V. PROPOSED APPROXIMATION

The HOG feature extraction is highly error resilient. For ex-
ample, Chen et al. [15] replaced various components of HOG
with approximate implementations and the classification accu-
racy remained very close to the standard HOG. However, no
systematic approximation approach was employed, the inexact
modules were created ad-hoc from standard components such
as adders or comparators.

In order to create an approximate implementation of the
HOG algorithm, we divided the HOG extractor into several
modules, roughly corresponding to the stages of preprocessing
(see Fig. 2). There are modules computing the gradient orien-
tation, gradient magnitude, L2-norm, and normalized values.

Then, we performed an error resilience analysis to estimate
the contribution of each module to the overall detection
performance. The outputs of modules were simply replaced
with random values. Table I shows the classification accuracy
obtained using 10-fold cross validation on a set of 1836 images
taken from the MIT pedestrian dataset [16] and the INRIA
person dataset [17]. The most error-resilient modules appears
to be those dealing with gradient computation, while a failure
in magnitude computation has lower impact on resulting detec-
tion accuracy than orientation computation. Note that if both
these modules are replaced by a random number generator, the
detection is not able to work at all. Similarly, if the L2-norm
calculation is broken, the detection accuracy drops to around
50 %, which is the accuracy of a random classifier.

The gradient orientation is computed using the arctan func-
tion (see Formula 1), which can be implemented in hardware
(or in processors not supporting the arctan) using CORDIC
iterative algorithm. In our approach, arctan is replaced by a
simple code containing neither loops nor branches. This is
useful not only for SW implementations, but also for HW
accelerators as the simple code can easily be mapped to a
combinational circuit.

TABLE I
CLASSIFICATION ACCURACY AFTER INTRODUCING ERRORS INTO HOG

(10-FOLD CROSS VALIDATION, 1836 TRAINING IMAGES).

Detection accuracy
Fully-functional implementation 99.4 %
Random gradient orientation 94.2 %
Random gradient magnitude 98.5 %
Random gradient orientation and magnitude 49.8 %
Random L2-norm 50.3 %

The target function is evolved using CGP in the same way
as CGP was employed to evolve local image filters [18].
Similarly to calculating a new pixel value in image filters, the
output of the gradient orientation is based on the neighbour
pixels. The 9-neighbourhood centred on currently processed
pixel is used as the primary input of the candidate programs,
and additionally the gradients of x- and y-axes fx(x, y) and
fy(x, y) (eq. 3 and 4) are provided (Fig. 1).

The evolved programs will then be used to replace gradient
orientation calculation in standard HOG implementation and
evaluated in terms of preprocessing performance and classifi-
cation accuracy.

VI. RESULTS

A. Evolution of gradient orientation module

Our first case study was dedicated to the evolution of
approximate arctan function for later usage in HOG feature
extraction.

1) Experimental setup: The approximate gradient orienta-
tion module was evolved using CGP. The training set consists
of windows of 3 × 3 pixels and the gradients of x- and
y-axes fx(x, y) and fy(x, y) taken from the Lena image.
The golden output is calculated using Formula 1. We used
the same setup as for the image filter design described in
literature [18], i.e. nc = 8, nr = 4, ni = 11, no = 1, na = 2,
λ = 7, and the number of mutations per new individual is
h = 5. According to [18], Γ contains functions working over
8-bit operands (6 logic functions, 3 shift functions, addition,
average, minimum and maximum).

The fitness function is defined as the number of hits:

f(s) =
1

k

k∑
i=1

g(v(x, y)), where (9)

g(v(x, y)) =

{
0 |v(x, y)− θ(x, y)| ≥ ε
1 |v(x, y)− θ(x, y)| < ε

(10)

where v(x, y) denotes the output of candidate program for
pixel at coordinates (x, y), k is the number of fitness cases in
the training set, θ is the golden value (see Formula 1), and ε is
the allowed error. Five different values of ε are considered in
our experiments: 5, 10, 20, 30, and 40.

2) Results: We measured the resulting fitness value and
the CPU time consumed by CGP from 100 independent runs
for each considered ε value. In average, one evolutionary run
took 57 minutes of CPU time. As expected, the lowest fitness
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(a) Time to process the training dataset for classifica-
tion.

96

96.5

97

97.5

98

98.5

99

99.5

100

5 10 20 30 40

A
cc

ur
ac

y
[%

]

ε

refatan
refChen

(b) Classification accuracy.

96

96.5

97

97.5

98

98.5

99

99.5

100

0 1 2 3 4 5

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy
[%

]

Preprocessing time

refatan
refChen

(c) Pareto frontier: processing time vs. classification
accuracy.

Fig. 3. Processing performance and classification accuracy using HOG with various evolved orientation modules.

was achieved with ε = 5 (median value 23.1 %) and as the
error boundary relaxes, the achieved fitness is higher; however,
none of the evolved solutions fulfill the error boundary for all
fitness cases, the highest achieved fitness was 98 % hits (with
ε = 40). On the other hand, in the context of HOG extraction,
the error of 40° means that the selected histogram bin is at
most two bins away from the proper bin, which still results in
acceptable accuracy as shown in our following experiments.

B. Replacing orientation calculation by evolved programs

All evolved gradient orientation modules were used as
a replacement of the gradient orientation modules in the
standard HOG. These implementations were compared with
the implementation using standard arctan function (refatan) and
with the implementation described by Chen et al. [15] (refChen)
in terms of the execution time and classification accuracy. Note
that in the refChen approach, the histogram bin is selected using
a lookup table, without calculating the exact value of gradient
orientation. The remaining parts of the HOG algorithm are
implemented in the same way in all compared approaches,
the only difference is in the gradient orientation module.

1) Experimental setup: A dataset consisting of 1836 images
was used, where 924 positive (i.e. images containing a person)
samples were taken from the MIT pedestrian dataset [16]
and 912 negative samples (without a person) were randomly
chosen from the INRIA person dataset [17]. Each of the
compared approaches was employed to extract features from
the dataset and a linear SVM classifier was trained using
LIBLINEAR [19] to perform the final detection. The evolved
programs were translated into a C code and compiled into bi-
nary before executing feature extraction to avoid performance
bias caused by interpreting the CGP chromosome during run-
time. The trained classifiers were evaluated using 10-fold cross
validation and compared against each other. The performance
of evaluated programs is estimated by measuring the CPU time
required to process the whole training set.

2) Classification accuracy and resource usage: Figure 3a
shows the CPU time necessary to extract features from the
training set obtained for all evolved programs together and
for the two reference approaches. Regarding the execution
time, all evolved modules beat the refatan implementation (with

#define SWAP(A, B) (((A & 0x0F) << 4) | ((B & 0x0F)))
#define ADD_SAT(A, B) ((A > 0xFF - B) ? 0xFF : A + B)

unsigned char cgp_atan(unsigned char inputs[11])
{ // all variables are unsigned char.
n11 = (inputs[9] + inputs[10]) >> 1; n12 = inputs[9] >> 2;
n13 = SWAP(inputs[9], inputs[9]); n14 = (inputs[5] + inputs[1]) >> 1;
n15 = n14 + inputs[10]; n16 = MAX(n13, inputs[9]);
n17 = (n12 + n11) >> 1; n19 = inputs[10] + n16;
n20 = ADD_SAT(n16, inputs[9]); n21 = (˜inputs[7]) | n15;
n22 = MIN(n16, n17); n23 = n22 ˆ n20;
n24 = MIN(n22, n19); n25 = ˜(n22 & n21);
n28 = MIN(n25, n24); n29 = n23 >> 2;
n34 = MAX(n28, n29);
return n34;

}

Fig. 4. The C code of evolved gradient orientation module

the average speedup of 1.28). An average evolved solution
shows the same execution time as refChen. However, CGP
provided many implementations that are much faster than
refChen (see the plus symbols in Figure 3a). The experiments
were performed on a full-featured Intel Xeon CPU supporting
the arctan function. If a simple embedded processor were used,
we would expect a more significant difference in performance.

Although the reference implementations show better accu-
racy than an average evolved solution (Fig. 3b), CGP was
able to find superior solutions in both considered objectives.
Figure 3c shows the Pareto frontier with four programs out-
performing refChen in both objectives, while three of them also
outperform refatan. Having this set of non-dominated solutions,
the user can select the right one with respect to constraints
imposed by a given application. An example of program from
the Pareto frontier is shown in Figure 4. This solution can
easily be implemented in SW as well as HW.

VII. CONCLUSION

We used CGP to evolve new approximate implementations
of the arctan function. We integrated these evolved solutions
into HOG feature extraction algorithm to detect pedestrians in
image data, where the arctan function is typically employed
to compute the gradient orientations. We have shown that the
best evolved implementations improve not only the execution
time, but also the classification accuracy.

This work was supported by the Ministry of Education, Youth and Sports
of the Czech Republic from the National Programme of Sustainability (NPU
II); project IT4Innovations excellence in science – LQ1602 and by BUT IGA
project FIT-S-17-3994.
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