
Adaptive and Energy-Efficient Architectures for Machine
Learning: Challenges, Opportunities, and Research Roadmap

Muhammad Shafique*, Rehan Hafiz†, Muhammad Usama Javed†, Sarmad Abbas†,
Lukas Sekanina‡, Zdenek Vasicek‡, Vojtech Mrazek‡

*Computer Architecture and Robust, Energy-Efficient Technologies (CARE-Tech.) Group, Vienna University of Technology, Wien, Austria
†Vision Processing (VISpro) Lab, Information Technology University (ITU), Lahore, Pakistan

‡Faculty of Information Technology, Brno University of Technology, Brno, Czech Republic

Abstract— Gigantic rates of data production in the era of Big Data,

Internet of Thing (IoT) / Internet of Everything (IoE), and Cyber Physical
Systems (CSP) pose incessantly escalating demands for massive data
processing, storage, and transmission while continuously interacting
with the physical world under unpredictable, harsh, and energy-/power-
constrained scenarios. Therefore, such systems need to support not only
the high performance capabilities at tight power/energy envelop, but also
need to be intelligent/cognitive, self-learning, and robust. As a result, a
hype in the artificial intelligence research (e.g., deep learning and other
machine learning techniques) has surfaced in numerous communities.
This paper discusses the challenges and opportunities for building
energy-efficient and adaptive architectures for machine learning. In
particular, we focus on brain-inspired emerging computing paradigms,
such as approximate computing; that can further reduce the energy
requirements of the system. First, we guide through an approximate
computing based methodology for development of energy-efficient
accelerators, specifically for convolutional Deep Neural Networks
(DNNs). We show that in-depth analysis of datapaths of a DNN allows
better selection of Approximate Computing modules for energy-efficient
accelerators. Further, we show that a multi-objective evolutionary
algorithm can be used to develop an adaptive machine learning system
in hardware. At the end, we summarize the challenges and the associated
research roadmap that can aid in developing energy-efficient and
adaptable hardware accelerators for machine learning.

Keywords—machine learning, approximate computing, deep
learning, neural networks, energy efficiency, performance, low power,
accelerators, architecture, memory, FPGA, CGRA, adaptive, roadmap.

I. INTRODUCTION

In recent years, Artificial Intelligence (AI) has achieved great
applicability due to the advancements in its sub-domains of Machine
Learning (ML), Artificial Neural Networks (ANNs), Convolutional
Neural Networks (CNN) and Deep Neural Networks (DNNs). Neural
networks based ML algorithms give computers the ability to find a
solution by learning through a training data. Starting from the ImageNet
Large Scale Visual Recognition Challenge (ILSVRC 2012), techniques
based upon DNNs and specifically deep CNNs have witnessed
groundbreaking success in various big data analytics and computer
vision tasks such as: object classification and recognition, autonomous
driving and handwritten digit recognition [1]-[3]. However, CNN
operations are characterized by extensive convolution operations,
enormous memory traffic, and storage requirements [5]. Deep CNNs are
variants of DNNs that have further hidden layers that comprise of
multiple layers of convolution, pooling (selection) and non-linear
activation functions [3]. The weights that are employed in the
convolution process are computed based upon a training phase that
typically involves a back propagation based scheme to minimize the
classification error [5]. GPUs are amenable to such machine learning
kernels when compared against CPUs due to the availability of plenty of
simple cores, the support of massive thread-level parallelism, and ease
of parallel programmability. However, their computational superiority is
coupled with a serious compromise: the enormous power consumption.
Once such example is NVIDIA DGX-1 GPU that can train VGG-D CNN

58 times faster as compared to a CPU server with two Intel Xeon E5-
2699v4 CPUs. However, as compared to commodity GPUs (typically
100 watts), DGX-1 can consume upto 32 times more power [4].
Therefore, besides for the energy-constrained embedded devices, it is
also important to provide extreme energy efficiency in high-end DNN
implementations and training to lower cooling costs, thus GPUs may
potentially become a less-attractive option as more specialized, energy-
efficient and configurable architectures evolve that support high degree
of parallelism and ease of programmability.

With the development of mobile computing, wearable (healthcare)
devices, Internet of Things (IoT) and their applications, there is an urgent
need to provide capabilities for smart operations and artificial
intelligence (or at least a part of it) in systems with limited energy and
resources. Thus, GPUs, that may be favored for compute-intensive
training for time being, are still not suitable for inference on energy-
constrained embedded and IoT devices that are typically battery
operated and/or survive on harvested energy, and often have
power/energy budget in sub-Watt range. Therefore, the design of highly
energy-efficient hardware accelerators for compute-intensive CNNs (or
their kernels) has received a lot of interest [5]. Using FPGAs, ASICs, and
other specialized compute fabrics like Application-Specific Instruction
Set Processors (ASIPs) and Coarse-Grained Reconfigurable Processors
(CGRAs) for CNN acceleration lowers the energy/power consumption
while providing high throughput, and thereby reducing the overall cost
of the operation. Power/energy consumption can further be decreased by
using (brain-inspired) emerging computing paradigms such as
approximate computing blocks [6] and neuromorphic computing [8].

Approximate Computing (aka Inexact Computing) relies on relaxing
the bounds of precise computing to provide new opportunities for
improving the area, power/energy, and performance efficiency of
systems by orders of magnitude (when considering both memory and
computations) at the cost of reduced output quality (typically within
user-tolerable range) [6]. Thus, there is a need to apply emerging
computing paradigms (such as approximate computing) systematically
to realize specialized hardware accelerators for machine learning with
extreme energy efficiency.

Our Contributions: This paper provides various insights for
systematic development of energy-efficient accelerators for Machine
Learning, specifically in the context of DNNs, where a high degree of
adaptivity can be realized by employing quality-/energy-configurable
approximate modules inside the accelerator datapath. Towards the end,
we discuss various challenges and outline a roadmap for research in
adaptive and energy-efficient architectures for machine learning.

Paper Organization: We provide a brief review of existing work,
which can be related to different phases of our systematic approach. In
Section III, we illustrate that in-depth analysis of datapaths of a DNN
allows better selection of Approximate Computing modules for
developing energy-efficient accelerators. Section IV provides an
overview of an Evolutionary Algorithm based low power and adaptive
architecture for Machine Learning. Section V outlines open research
challenges and discusses the roadmap for further research in this area to
enable extreme energy efficiency. Without loss of generality, throughout

978-1-5090-6762-6/17/$31.00 © 2017 IEEE

this paper, we make use of the MNIST dataset [36], which is a dataset of
handwritten English characters.

II. ENERGY-EFFICIENT ADAPTIVE HARDWARE ACCELERATORS

FOR NEURAL NETWORKS

Recent advancements in low-power architectures for DNNs apply
optimization at various stages of accelerator development [7]. To further
reduce the power/energy consumption, implementations of DNNs can
significantly benefit from approximate computing based low-energy
computing modules, as the applications of DNNs are inherently error
resilient. This resilience can be attributed to the following reasons:

1. In DNN architecture, all input vectors are typically processed in the
same way despite the fact that they vary greatly in their inherent
difficulty for a particular classification application. There is a
potential in identifying neurons whose contribution to the expected
quality is low and hence simplifying their implementation (or even
removing them) to reduce power consumption without affecting the
quality of processing [8].

2. Training of DNN is an iterative process, which can be stopped when
good enough results are obtained. Moreover, retraining can even
mitigate the effects of approximations and lead to better results than
with the accurate implementation [8].

A systematic application of such techniques can thus result in
significant energy reduction. Fig.1 provides our systematic methodology
for realizing energy-efficient accelerators, specifically for CNN and
DNN based AI systems, which works in the following steps.

Fig. 1. Our methodology for designing energy-effcient and adaptive neural
network accelerator-based architectures for Machine Learning and AI systems.

1) Libraries such as TensorFlow and Caffe are typically employed to
customize pre-trained networks for a particular application [5]. The
pre-trained synaptic weights, computed as a result, are then further
tuned as per the application requirement. These trained weights are
applied via convolutional kernels and hence “multiplication”
constitutes the bulk of computational load for CNNs/DNNs.

2) The next step is to perform a fixed point analysis in order to select an
appropriate fixed point format (Qm.n) that keeps minimum number of
bits for integer (m bits) and fraction (n bits), while keeping a
minimum accuracy level.

3) The quantized weights and the architectures are than evaluated to
explore their error resilience properties. This step can be performed
either via Monte-Carlo based simulations where a certain randomly
selected training data is used to evaluate the suitability of each
datapaths for approximation or via analytical modeling of
approximate modules [43]-[45].

4) Since, machine learning based systems can be employed in a variety
of settings with application-specific requirements such as high
accuracy and/or low power the underlying hardware accelerators
should provide (re-)configurability. Quality knobs that give control
over the accuracy-power tradeoff and allow selection of appropriate
approximate hardware modules as per the requirements are thus
desirable for such adaptive hardware accelerators.

5) The approximated datapaths may also be retrained for updating the
quantized weights to further improve the classification accuracy.

In the following, we discuss works related to above steps.

A. Fixed Point Analysis
Courbariaux et al. [15] used floating-point, fixed-point and dynamic

fixed-point formats to train neural networks and demonstrated that fixed-
point weights are sufficient for training. Gupta et al. [9] presented a
hardware based DNN accelerator for image classification in which they
studied the impact of different fixed-point rounding schemes on the
accuracy. Judd et al. [10] demonstrated that minimum precision
requirement not only varies across different networks, but also across
different layers of the same network. Lin et al. [11] identified the optimal
data precision for all layers of a network based on fixed-point
quantization methodology. Gysel et al. [12] presented a framework,
Ristretto, for fixed-point quantization and re-training of CNNs based on
Caffe. Lai et al. [13] proposed an approach based on floating-point
representation for CNN weights and fixed-point for activations. They
showed that the proposed approach can reduce storage requirements by
up to 36% and multiplier energy by up to 50%. In [9], authors used a
stochastic rounding scheme and demonstrated network training with 16-
bit fixed-point weights. Hashemi et al. [14] presented the DNN based
quantized hardware accelerator on Ristretto, in which they analyzed the
effects of varying quantization bits on accuracy, area and energy for
hardware based designs.

B. Approximation Resiliance Analysis
Use of approximate arithmetic modules has been vastly explored to

develop energy-efficient and high performance hardware accelerators
[16]-[18], [46]-[48]. However, this comes at the cost of loss of
classification accuracy and hence requires careful analysis to select a
particular approximate arithmetic configuration. In [16] authors
evaluated the use of low-power imprecise multipliers using the UCI
Machine Learning repository. They reported that inexactness could be
overcome by retraining the network. They reported an energy savings of
up to 62.49% over accurate face recognition. In [19], the authors
proposed a Lower-Part-OR Adder, which computes least significant bits
of an addition using approximate logic, using OR gates instead of
accurate adders, along with a Broken Array approximate multiplier
which omits cells of Carry Save Adder array circuit. The approach
similar to [16] was followed in [20], where a multiplier-less neuron
structure was presented. Furthermore, re-training of the network was
carried out to compensate for the inaccuracies introduced due to
approximations. Multiplication is implemented by shifting pre-
computed alphabets, and then adding them. As pre-computed alphabets
introduce area overhead, approximation in introduced by not calculating
all the alphabets. To alleviate the accuracy loss incurred due to
approximation, constrained re-training of neural network is done to get
rid of undesired combinations. They reported an accuracy loss of 2.83%
for 8-bit and ~0.25% for 12-bit implementations for handwritten digit
recognition on MNIST dataset [36]. It was further shown that by
incorporating a selective rule to apply approximation only to
multiplication where both operands are non-zero, the power
consumption can be significantly reduced for a small decrease in
classification accuracy (Fig. 2) [21].

Memory operations are responsible for a considerable portion of
energy consumption. In order to reduce this energy, one can optimize
memory cells, memory hierarchy, memory access patterns, data storage,
refresh rates of DRAMs, and other properties of the memory subsystem
[25]. For example, a hybrid 8T-6T SRAM cell was proposed to store the
synaptic weights, wherein the sensitive MSBs are stored in 8T bit-cells
and resilient LSBs are stored in 6T bit-cells [22]. If voltage over-scaling
is applied, errors can appear in 6T cells, while 8T cells remain operating
correctly. In another approach, a memory compression scheme
exploiting the error resilience of DNN was introduced with the aim of
reducing overall memory traffic and memory energy [18]. Finally,

NN Architecture
(#,type of layers)

Training Data

Approximated
Datapaths with

Error
Characteristics

Fixed Point Analysis
(MATLAB, C)

Trained Weights

Training
(Caffe, Tensorflow)

Fixed Point Architecture

Quantized
Weights

Approx. Resilience
Analysis

Simulation / Error Modelling

Retraining

Energy Efficient
Architecture

Optimized
Quantized
Weights

Quality
Knob

several non-conventional technologies were proposed such as spintronic
neural computing platforms in which the neural and synaptic
functionalities are approximated by the underlying device physics. It was
demonstrated that such systems can achieve competitive classification
accuracy in a large number of complex recognition problems. Such
architectures achieve over 15x improvement in energy compared to well-
optimized CMOS designs [23].

In the following, we provide a case study of approximate resilience
analysis that selects a datapath within a particular DNN that is more
suitable for approximation.

Fig. 2. Classification accuracy of NN with approximate multipliers for
MNIST and SVHN datasets and 8/12 bit precision [21].

III. ERROR RESILIANCE ANALYSIS: DNN-SPECIFIC

APPROXIMATIONS FOR LOW-POWER ACCELERATORS

We consider a design case where a reduced power/energy budget
necessitates the application of low-power approximations. The problem
then reduces to the selection of appropriate datapath of the DNN
architecture where approximations can be employed (at application
and/or hardware levels). We propose that since the filters in a trained
DNN architecture are either low-pass, high-pass or band-pass, their
outputs shall have defined data distributions. Since, approximate
arithmetic modules behave differently to different data distributions, a
careful analysis of data distribution across various data-paths of neural
network can aid in selecting an approximate circuit that provides
minimum loss to classification accuracy. Data-unaware approximations
may severely turn the benefits into loss, and therefore require additional
training, or other kind of overhead, etc. as faced by existing approaches.

Fig. 3. Modified LeNet for Handwritten Digit Classification (MNIST dataset)
used in our experiments. Figure illustrates the outputs of various layers.

For our analysis, we consider a deep CNN architecture based on the
LeNet-5 [2] as shown in Fig. 3 for classifying the MNIST dataset. Input
image size is 28×28. The network has two convolution layers (C1 and
C2), two pooling layers (P1 and P2), and finally, a Fully Connected layer
(FC). C1 has six different kernels, and produce six different output
Feature Maps (FM1, FM2, …, FM6) for a single input image. Then, P1
applies average pooling for stride of one, and neighborhood of 2×2.
Thus, the size of a feature map (FM) is reduced to half after passing
through a pooling layer. Afterwards, C2, which has 12 collections of six
kernels each, operates on these six feature maps. In each collection, six
feature maps from P1 are convolved with six kernels, and resultant six
feature maps are added together, to generate a final FM per collection.
Finally, these twelve output feature maps are concatenated together in a
vector, and the vector is passed onto FC layer. Output vector at the end
of FC layer contains a prediction about the digit classified. Fixed point

simulations with Q (6.7) bit format (6 integer and 7 fractional bits);
provided a classification accuracy of 94%, when tested on 200 images.

As an illustrative case, we analyze the data distribution at the output
of 6 filters applied during C1. The analysis will then be employed to
select an appropriate low-power approximate adder during the pooling
layer P1. Fig. 4 shows the Feature Maps at the output of six filters of C1,
for four randomly selected input images.

Fig. 4. (a) to (f) show the Feature Maps (FMs) at the output of six filters of
C1, obtained for 4 randomly selected input images.

Fig. 5 provides the corresponding data distribution for the same
feature maps. It can be observed that all the histograms within each part
of Fig. 5 have strong correlation. Thus, regardless of the input image, the
data distribution of the output FM of a particular filter is identical.

Fig. 5. Histograms within (a) to (f) provide the data distribution of the
corresponding Feature Maps illustrated in Fig. 4.

Next, we evaluate the performance of five approximate adder
configurations (1, 2, 3, 4 and 5), selected from the low-power
IMPACT [17] adder configurations, for our Q 6.7 format fixed-point
number. The IMPACT adders provide five imprecise alternate circuits
(LP1 to LP5) for Full Adder. Thus, 1 = LP1:6, means that during
approximate addition the 6 least significant bits (from Q6.7) shall be of
the type LP1. Similarly, 2, 3, 4, 5, were chosen to be LP2:6, LP3:6,
LP4:7 and LP5:7, respectively. Afterwards, we populated the data for each
of the six filter using 50 images selected randomly from the training set,
and used it to evaluate the performance of each of these 5 adders for the
six Feature Maps. As evident from Table 1, approximate adders have
different tolerance for different data distributions. It can be observed that
datapath that belongs to FM2, FM5 and FM6 provide better resilience to
approximate adders (when applied at the P1 layer) as compared to FM1,
FM3 and FM4. This is because regardless of the adder type, they provide
a classification accuracy of at least 92%. This can be attributed to the fact
that the input data distribution resulted into adder operands that were less
sensitive to error due to approximation. Based upon this analysis, we
define a function R(), which ranks the approximation resilience of a
particular feature map for each adder type. Thus, the FM that experiences

(a) (c)(b)

(d) (e) (f)

0

0.35

0.7

-10 -5 0 5 10
0

0.35

0.7

-10 -5 0 5 10

0

0.35

0.7

-10 -5 0 5 10
0

0.35

0.7

-10 -5 0 5 10

0

0.35

0.7

-10 -5 0 5 10
0

0.35

0.7

-10 -5 0 5 10

0

0.35

0.7

-10 -5 0 5 10
0

0.35

0.7

-10 -5 0 5 10

0

0.35

0.7

-10 -5 0 5 10
0

0.35

0.7

-10 -5 0 5 10

0

0.35

0.7

-10 -5 0 5 10
0

0.35

0.7

-10 -5 0 5 10

0

0.35

0.7

-10 -5 0 5 10
0

0.35

0.7

-10 -5 0 5 10

0

0.35

0.7

-10 -5 0 5 10
0

0.35

0.7

-10 -5 0 5 10

0

0.35

0.7

-10 -5 0 5 10
0

0.35

0.7

-10 -5 0 5 10

0

0.35

0.7

-10 -5 0 5 10
0

0.35

0.7

-10 -5 0 5 10

0

0.35

0.7

-10 -5 0 5 10
0

0.35

0.7

-10 -5 0 5 10

0

0.35

0.7

-10 -5 0 5 10
0

0.35

0.7

-10 -5 0 5 10

0.70

0.35

0

0.70

0.35

0

0.70

0.35

0

0.70

0.35

0

0.70

0.35

0

0.70

0.35

0

0.70

0.35

0

0.70

0.35

0

0.70

0.35

0

0.70

0.35

0

0.70

0.35

0

0.70

0.35

0

0.70

0.35

0

0.70

0.35

0

0.70

0.35

0

0.70

0.35

0

0.70

0.35

0

0.70

0.35

0

0.70

0.35

0

0.70

0.35

0

0.70

0.35

0

0.70

0.35

0

0.70

0.35

0

0.70

0.35

0

-10 -5 0 5 10-10 -5 0 5 10-10 -5 0 5 10-10 -5 0 5 10-10 -5 0 5 10-10 -5 0 5 10

-10 -5 0 5 10-10 -5 0 5 10 -10 -5 0 5 10-10 -5 0 5 10 -10 -5 0 5 10-10 -5 0 5 10

-10 -5 0 5 10-10 -5 0 5 10-10 -5 0 5 10-10 -5 0 5 10-10 -5 0 5 10-10 -5 0 5 10

-10 -5 0 5 10-10 -5 0 5 10-10 -5 0 5 10-10 -5 0 5 10-10 -5 0 5 10-10 -5 0 5 10

the lowest error for a particular adder ranks first in terms of error
resilience. Thus, for the simulated data, R(2) = {FM6, FM5, FM2, FM4,
FM3, FM1}. Accordingly, if there is a power constraint requirement to
apply 2 approximation to the P2 layer of any one of the FMs, FM1 shall
be the least suitable. The table also highlights that in general 1, 4 and
5 provide results with higher accuracy as compared to other adder
variants for all the FMs. This is because, according to their truth tables
[17], these adders produce outputs that are equivalent to an accurate adder
in case both inputs are zero. As evident from the data distributions in
Fig.5, these FMs contain a significant number of zero-valued or closer to
zero data and hence, 2 and 3 are bound to generate erroneous outputs.

TABLE I. CLASSIFICATION ACCURACY OBTAINED BY EMPLOYING
APPROXIMATE ADDERS (1, TO 5) IN THE P1 LAYER FOR VARIOUS DATAPATHS.

To evaluate our hypothesis, we consider a power constraint where it
is required to apply approximation to at least two datapaths out of the
total six. Table-1, in general, predicts highest classification accuracy to
be achieved when datapaths comprising FM5 and FM6 are approximated.
We thus compared the classification accuracy achieved when datapaths
comprising FM5 and FM6 are approximated (i.e., the best case) as
compared to the case when that of FM1 and FM3 are approximated (i.e.,
the worst case). We populated the results of Fig.6 by testing on 50
images, from the testing dataset. Fig.6 illustrates that, for 1, 4 and 5,
both the cases show comparable performance. However, for 2 and 3,
approximation of FM1 and FM3 leads to substantial accuracy loss in
terms of classification accuracy. This is in agreement with the
predictions of Table-1. Thus, we demonstrate that due to the fixed
architectural design of DNN, each datapath has a particular data
distribution. Since, error of approximate modules is also function of data
distribution, prior analysis on training data can thus provide useful
insight and thus guide the process of employing approximations.

As the number of approximate configurations and number of layers
increase, manual analysis can become non-trivial mandating the need for
automated analysis and design tools. In the next section, we provide an
Evolutionary Algorithm (EA)-guided approximation selection strategy
to automatically develop adaptive and power/energy-efficient
accelerators for machine learning.

Fig. 6. Classification accuracy for two cases

IV. AN EA-BASED LOW-ENERGY ARCHITECTURE
FOR MACHINE LEARNING

In this section, we will focus on how multi-objective evolutionary
algorithms (EAs) can contribute to creating, optimizing and adapting
machine learning systems in hardware. In Cartesian Genetic
Programming (CGP), an ni-input and no-output combinational circuit is

modeled using an array of nc x nr programmable nodes forming a
Cartesian grid (Fig. 7). The set of available node functions (G) contains
na-input functions. No feedback is allowed in the basic version of CGP.
The primary inputs and programmable nodes are uniquely numbered
(from 0 to 8 in Fig. 7). CGP evolves a population (a set) of candidate
circuits that are represented using the so-called chromosomes in the form
of strings of integers. For each node the chromosome contains (na+1)
values that represent (i) the node logic function and (ii) na addresses
specifying the input connections. The chromosome also contains no
values specifying the nodes connected to the primary outputs. The
chromosome size is nc x nr (na + 1) + no integers. The chromosome can
be understood as a simplified netlist.

Fig. 7. Full adder represented by CGP with parameters: ni = 3; no = 2; nc = 3;
nr = 2; na = 2; G = {AND0; OR1; XOR2; NOT3}. Chromosome: (0, 2, 2) (0, 1,
0) (1, 3, 2)(3, 2, 0) (5, 6, 3) (4, 6, 1) (5, 8). Node functions are underlined.

The search is usually performed using a simple (1 +) evolutionary
algorithm, where is between 1 and 20. In this algorithm, every new
population consists of the best individual of the previous population and
its offspring created using a mutation operator which modifies up to h
genes (integers) of the chromosome.

1) Evolutionary Circuit Approximation
The approximate circuit design problem can be formulated as a

multi-objective optimization problem in which the error, area, delay (or
performance) and power consumption are conflicting design objectives.
Designers expect obtaining a set of solutions which exhibit various trade-
offs among key circuit parameters. The optimal set of such solutions is
the so-called Pareto optimal set [24]. Available tools (such as [26])
typically approximate the Pareto front by multiple executions of
approximation engines which are initialized using different parameters.
The reasons for using an advanced evolutionary approach (contrasted to
a simple greedy search or ad hoc heuristics) is that the population-based
approach suits well in finding multiple solutions and its niche-
preservation methods can be exploited to discover diverse solutions. We
deal with evolutionary circuit approximation conducted with “gate-
level” CGP as most evolutionary approaches developed in this area
utilize CGP. However, EAs can be applied to approximate RTL or even
behavioral descriptions. For example, ABACUS [40] tool creates an
abstract syntax tree from the input behavioral RTL description of a
circuit, and then applies variant operators to the AST to create acceptable
approximate designs that are implemented using a standard design tool.
The search is performed by means of a multi-objective genetic algorithm
NSGA-II. ABACUS was evaluated in three different domains - machine
learning, signal processing, and computer vision - with power savings
reaching up to 40% [27]. In another application, approximate
implementations of complex median networks that are useful in
convolutional kernels and signal processing were evolved [28].

2) Evaluation of Candidate Approximate Circuits
CGP can naturally be extended for circuit approximation because the

fitness function always includes a component measuring the circuit
functionality. If the circuit under approximation is not complex, it is
possible to evaluate its responses for all possible input combinations and
compute its exact error according to an arbitrary chosen error metric
(e.g., as implemented in [29]).

In the case of more complex circuits, candidate circuits are evaluated
using a training set (i.e., a subset of all possible vectors) and the resulting
error is thus only estimated (e.g., [26], [27]). This is a common practice
used in the literature. If the exact error value is requested, more advanced
approaches such as formal relaxed equivalence checking techniques

FM1 FM2 FM3 FM4 FM5 FM6 Average

1 92% 92% 92% 92% 90% 92% 92.00%

2 56% 92% 60% 84% 92% 94% 80.00%

3 56% 92% 60% 88% 93% 94% 80.67%

4 92% 92% 92% 92% 91% 92% 92.00%

5 94% 92% 92% 94% 92% 94% 93.34%

Average 78% 92% 79% 90% 92% 93% 87.60%

Approximation applied to individual Feature MapsAdder
Configuration

0%

20%

40%

60%

80%

100%

α₁ α₂ α₃ α₄ α₅

A
cc

ur
ac

y

Adder Configurations

FM₁₋₃ FM₅₋₆

have to be employed. Depending on the particular error metric (e.g., the
mean error or the worst-case error), the error calculation problem is
transformed to a decision problem and solved by means of SAT solving
or binary decision diagrams (BDD). However, approximate arithmetic
circuits no more complex than 16-bit adders and 8-bit multipliers have
been reported so far with the known (exact) error [30], [27], [31]. For
example, it is unknown how to effectively compute the (exact) mean
error for complex arithmetic circuits. Table III compares the evaluation
time when optimized circuit simulator and BDD-based method are used
in the case of 16-bit adder. Other parameters (delay, power, area) of
candidate circuits are only estimated in the process of evolution. At the
end of evolution, selected resulting circuits (especially those forming the
Pareto front) are implemented for a given technology (or FPGA) using
common circuit design tools to determine their final electrical
parameters.

TABLE II. THE AVERAGE TIME NEEDED TO PERFORM THE WORST-CASE (MAX)
AND THE AVERAGE-CASE ERROR (AVG) ANALYSIS FOR W-BIT ADDERS WITH

SIMULATION AND BDD

The EA-based approximation methods can be classified as, Error-
oriented, multi-objective and evolutionary (Fig.8). Error-oriented EA
tries to evolve a circuit showing a predefined error, and optimize circuit
parameters without worsening this error [32]. Resources-oriented is one
in which resources (e.g., the number of gates) are constrained and EA is
used to minimize the error with available resources [36]. And finally the
Multi-objective, in which all criteria are optimized together using a
multi-objective EA such as NSGA-II [27],[29].

Fig. 8. Error-oriented (a), area-ariented (b) and multiobjective (c) evolutionary
circuit approximation. Accurate circuits (green points) are evolved to resulting
approximate circuits (blue points).

Fig. 9. Pareto front showing parameters of 8-bit approximate multipliers,
where Ripple-Carry Array Multiplier represents 100%.

3) Evaluating Automatically Generating Approximate Modules
We provide a rich and well-focused library of approximate modules

[29] (called EvoApprox8b) that can be immediately used for
benchmarking of circuit approximation methods. The library consists of
approximate 8-bit adders and 8-bit multipliers. In addition to circuit
parameters (error, area, delay, power etc.) and 7 error metrics, the library
contains Matlab, C and Verilog implementations for all components
which allows the user not only to immediately use the components, but
also to calculate the error for a new target error. There are 430 different
approximate 8-bit adders and 471 different approximate 8-bit multipliers

forming a Pareto front in a three-dimensional space defined using the
mean relative error, delay, and power metrics (non-dominated
multipliers are shown in Fig. 9). These implementations were obtained
by a multi-objective CGP. As a starting point for the CGP-based
approximation process, 13 different adders and 6 different multiplier
conventional accurately-operating architectures were employed.

V. CHALLENGES, PERSPECTIVES AND RESEARCH ROADMAP FOR

EFFICIENT MACHINE LEARNING ARCHTIECTURES

In the following, we highlight selected but important research
challenges, and associated research opportunities and perspectives that
will help the community in realizing highly adaptive and energy-efficient
architectures for machine learning.

Optimize for Memory or Computations First: A Million-Dollar
Question? ML is heavily deployed in data-intensive applications, and
memory footprint of the DNNs is significant and further escalating. Some
studies have shown that the memory energy contributions can even grow
up to 50%-80% of the total energy. Therefore, reducing the memory
energy should be one of the top-most priorities when designing
specialized architectures for ML with extreme energy efficiency. It should
be done throughout the memory hierarchy considering all the
feasible/beneficial knobs and techniques like (weight) compression,
efficient data storage, refresh rate control, optimizing memory cells and
access patterns, devising fine-grained memory power management
policies, and using non-volatile memories. Going one step ahead,
deployment of emerging technologies like nano-wires based 3D-stacked
architectures could provide a very attractive solution, where the sea of
accelerators can be directly connected to the dense memory layers through
highly energy-efficient and high bandwidth nano-wires. An example
project in this direction is N3XT1000x [41]. Spintronic devices (e.g., see
the works at the C-Spin center of excellence [39]), Memristors, and
Graphene based design are other parallel emerging technologies. On the
computing side, there is a huge potential of architectures based on sea of
accelerators, which can highly specialized and context-adaptive, with the
support of enhanced power-management features.

Accuracy vs. Energy Tradeoff: New computing paradigms such as
Approximate/Stochastic and Neuromorphic computing add an additional
dimension to the power/energy, area, performance, and accuracy design
space, and thereby enabling design and run-time tradeoffs. Particularly,
ML architectures may require different precision/accuracy requirement
for different set of applications. Thus, an efficient hardware accelerator
for ML should be able to adaptively control the accuracy of the
accelerator such as to minimize the energy consumption without
violating the user-tolerable quality constraints, or alternatively maximize
the quality under a given energy budget. However, to achieve this, there
is a need to carefully analyze the effects of approximations on the DNN
architecture design and its efficiency. This requires development of
efficient simulation frameworks, evaluation methodologies, as well as
analytical error analysis techniques. Due to the layered nature of the ML
architectures, it may be advantageous to distribute the power/energy
budget across multiple layers in a stochastic manner while accounting
for the sensitivity of each layer and/or sensitivity of different neurons
inside layers. Furthermore, since analytical modeling becomes non-
trivial for large-sized DNN architectures, a divide-and-conquer
methodology may help in achieving a (near-)accurate error analysis in
significantly less amount of time.

Adaptability, (Re-)Configurability, Flexibility, and Scalability:
DNN architectures are characterized by repetitive arrangements of
standard layers, e.g., convolution, pooling and activation functions.
However, developing a generic DNN accelerator shall require a highly
adaptive, configurable, flexible and scalable system since the order of
layers, synaptic weights of convolutional layers and dimensions of input
data vary across different applications. This can further lead to
interesting design decisions, such as, time-shared vs. dedicated designs
and choice of scratchpad vs. caches, activation control of different layers

while keeping the configuration overhead minimal or doing it in a
transparent fashion without exposing the overhead to the user. Towards
this end, selection of FPGA or CGRAs as the basic compute fabric is
also an interesting research question, as both have their pros and cons in
terms of reconfiguration granularity and associate overhead. Finally, the
data bandwidth requirements also scale with input data dimensions.
Efficient data storage, synaptic weight compression, and multiplier-less
designs can allow for energy-efficient architectures.

Run-Time Evolutionary Algorithms for Designing and Optimizing
DNN Architectures: General-purpose optimization algorithms such as
EAs can also be used to optimize and approximate particular layers of
DNN, the whole architecture, memory access patterns, or the training
procedure, possibly in a holistic scenario in which errors introduced in
some part of NN can be compensated by a suitable construction of other
parts of DNN. In addition to the offline evolutionary design, there is a
great potential in the online adaptation of components of DNNs with the
goal of providing the best trade-off between energy/power consumption
and error of processing anytime when deployed.

Correct Benchmarking with Fairness and High Fidelity: Circuit
approximation methods and actual approximate circuits obtained by
means of these methods have to be evaluated by comparing them with
existing solutions. However, due to a rapid development of the field, a
fair evaluation methodology has not been established yet, especially
across different communities working on these challenging problems.
Also, metrics to estimate the fidelity of results, standard test conditions,
etc. are also required for fair validation. In order to compare circuit
approximation methods, it would be requested for each method and each
benchmark circuit to provide a Pareto-front containing the best tradeoffs
achieved for key circuit parameters such as the error, area, delay and
power/energy consumption (in a given fabrication technology),
assuming that a fixed time budget is available for the approximation
procedure. Several papers provided detailed comparison of different
approximation approaches, for example, in the case of adders and
multipliers [33], [34]. However, if the models of appropriate circuits,
experimental platforms and test conditions are not available online, it is
not only hard to reproduce their results, but also near-to-impossible to
achieve fair comparisons for the newly proposed methods and solutions.

Open-Source Contributions: Besides the above point, also, as a
community, to move faster and to address challenges in this rapidly
growing field effectively, there is a strong need for researchers and
developers to open-source their contributions along with their test
configurations and settings. This way, other researchers and developers
can not only reproduce their results, but can also use it for fair
comparison and also as a baseline to rapidly progress forward without
reinventing the wheel. Towards this end, as a first step, we contribute
through our open-source libraries of approximate modules at: GeaR-
DAC15 [42], [37], lpACLib-ICCAD16 [35], [38] and [29].

REFERENCES
[1] M. Bojarski et al.“End to End Learning for Self-Driving Cars,” arXiv:1604, pp. 1–9, 2016.
[2] Y. LeCun et al. , B. Boser, J. Denker, D. Henderson, R. Howard, W. Hubbard, and L.

Jackel, “Handwritten digit recognition with a backpropagation network,” NIPS, 1989.
[3] C. Szegedy et al., "Going deeper with convolutions," 2015 IEEE Conference on

CVPR, Boston, MA, pp. 1-9, 2015.
[4] http://images.nvidia.com/content/technologies/deep-learning/pdf/Datasheet-DGX1.pdf

Accessed on 03 May 2017.
[5] Y. H. Chen, T. Krishna, J. S. Emer and V. Sze, "Eyeriss: An Energy-Efficient

Reconfigurable Accelerator for Deep Convolutional Neural Networks," in IEEE
Journal of Solid-State Circuits, vol. 52, no. 1, pp. 127-138, Jan. 2017.

[6] M. Shafique et al., “Invited: Cross-layer approximate computing: From logic to
architectures,” ACM/EDAC/IEEE 53rd Design Automation Conference (DAC), June
2016.

[7] C. Zhang, D. Wu, J. Sun, G. Sun, G. Luo, J. Cong, “Energy-efficient CNN implementation
on a deeply pipelined FPGA cluster,” ACM ISLPED, pp. 326–331, 2016

[8] P. Panda et al., “Invited – cross-layer approximations for neuromorphic computing: From
devices to circuits and systems,” ACM/EDAC/IEEE 53rd Design Automation Conference
(DAC), June 2016.

[9] S. Gupta, A. Ankur, G. Kailash, N. Pritish, "Deep Learning with Limited Numerical
Precision," ICML, pp. 1737-1746. 2015.

[10] P. Judd et al., “Reduced-precision strategies for bounded memory in deep neural nets,“
arXiv:1511.05236, 2015.

[11] D.D. Lin, S.S. Talathi, V.S. Annapureddy, “Fixed point quantization of deep convolutional
networks,“ arXiv:1511.06393, 2015.

[12] P. Gysel, “Ristretto: Hardware-oriented approximation of convolutional neural networks,“
arXiv:1605.06402, 2016

[13] L. Lai, N. Suda, V. Chandra. "Deep Convolutional Neural Network Inference with
Floating-point Weights and Fixed-point Activations," arXiv:1703.03073, 2017.

[14] S. Hashemi, N. Anthony, H. Tann, R. Bahar, S. Reda. "Understanding the Impact of
Precision Quantization on the Accuracy and Energy of Neural Networks."
arXiv:1612.03940, 2016.

[15] M. Courbariaux, Y. Bengio, JP. David, “Training deep neural networks with low precision
multiplications,” arXiv:1412.7024, 2014.

[16] Z. Du et al.,“Leveraging the Error Resilience of Machine-Learning Applications for
Designing Highly Energy Efficient Accelerators,” ASP-DAC, pp. 201–206, 2014.

[17] V. Gupta, D. Mohapatra, S. P. Park, A. Raghunathan, K. Roy, “IMPACT: IMPrecise
adders for low-power approximate computing,” ISLPED, pp. 409–414, 2011.

[18] P. Judd et al.,“Proteus: Exploiting Numerical Precision Variability in Deep Neural
Networks,” ACM International Conference on Supercomputing (ICS), 2016,.

[19] H. R. Mahdiani, A. Ahmadi, S. M. Fakhraie, C. Lucas, “Bio-inspired imprecise
computational blocks for efficient VLSI implementation of soft-computing applications,”
IEEE Trans. Circuits Syst. I Regul. Pap., vol. 57, no. 4, pp. 850–862, 2010.

[20] S. S. Sarwar, S. Venkataramani, A. Raghunathan, K. Roy, “Multiplier-less Artificial Neurons
Exploiting Error Resiliency for Energy-Efficient Neural Computing,” DATE, 2016.

[21] V. Mrazek, S. S. Sarwar, L. Sekanina, Z. Vasicek, K. Roy, “Design of power-efficient
approximate multipliers for approximate artificial neural networks,” ICCAD, 2016.

[22] G. Srinivasan, P. Wijesinghe, S. S. Sarwar, A. Jaiswal, K. Roy, “Significance driven hybrid
8t-6t sram for energy-efficient synaptic storage in artificial neural networks,” DATE, 2016.

[23] S. G. Ramasubramanian, R. Venkatesan, M. Sharad, K. Roy, A. Raghunathan, “Spindle:
Spintronic deep learning engine for largescale neuromorphic computing,” ISLPED, 2014.

[24] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, “A fast and elitist multiobjective genetic
algorithm: NSGA-II,” IEEE Transactions on Evolutionary Computation, vol. 6, no. 2, pp.
182–197, 2002.

[25] M. Shafique, F. Sampaio, B. Zatt, S. Bampi, J. Henkel, “Resilience-Driven STT-RAM
Cache Architecture for Approximate Computing”, Workshop on Approximate Computing
(AC), Paderborn, Germany, Oct. 15-16, 2015.

[26] S. Venkataramani, K. Roy, A. Raghunathan, “Substitute-and simplify: a unified design
paradigm for approximate and quality configurable circuits,” DATE, 2013.

[27] K. Nepal, S. Hashemi, H. Tann, R. I. Bahar, S. Reda, “Automated high-level generation of
low-power approximate computing circuits,” IEEE TETC, 2017.

[28] Z. Vasicek and V. Mrazek, “Trading between quality and non-functional properties of
median filter in embedded systems,” Genetic Programming and Evolvable Machines, vol.
2017, no. 1, pp. 45–82, 2017.

[29] V. Mrazek, R. Hrbacek, Z. Vasicek, L. Sekanina, “Evoapprox8b: Library of approximate
adders and multipliers for circuit design and benchmarking of approximation methods,”
DATE, pp. 258–261, 2017.

[30] A. Chandrasekharan, M. Soeken, D. Große, R. Drechsler, “Precise error determination of
approximated components in sequential circuits with model checking,” DAC, 2016.

[31] C. Yu and M. Ciesielski, “Analyzing imprecise adders using bdds – a case study,” in 2016
IEEE Computer Society Annual Symposium on VLSI (ISVLSI), pp. 152-157, IEEE, 2016.

[32] Z. Vasicek and L. Sekanina, “Evolutionary design of complex approximate combinational
circuits,” Genetic Programming and Evolvable Machines, vol. 17, no. 2, pp. 1–24, 2016.

[33] H. Jiang, J. Han, and F. Lombardi, “A comparative review and evaluation of approximate
adders,” 25th Great Lakes Symposium on VLSI, pp. 343–348, ACM, 2015.

[34] H. Jiang, C. Liu, N. Maheshwari, F. Lombardi, J. Han, “A comparative evaluation of
approximate multipliers,” IEEE/ACM Intr. Symposium on Nanoscale Architectures, 2016.

[35] lpACLib Library: https://sourceforge.net/projects/lpaclib/ Accessed on 17 May 2017
[36] yann.lecun.com/exdb/mnist Accessed on 03 May 2017.
[37] GeaR Library: https://sourceforge.net/projects/approxadderlib/ Accessed on 17 May 2017
[38] S. Rehman et al. "Architectural-space exploration of approximate multipliers," 2016

IEEE/ACM ICCAD, Austin, TX, 2016, pp. 1-8.
[39] C-SPIN: http://cspin.umn.edu/ Accessed on 17 May 2017
[40] K. Nepal, K., Y. Li., R. Bahar, and S. Reda, “Abacus: A technique for automated

behavioral synthesis of approximate computing circuits”, IEEE/ACM 17th DATE
Conference March, 2014.

[41] M. M. Sabry Aly et al., "Energy-Efficient Abundant-Data Computing: The N3XT 1,000x,"
in IEEE Computer, vol. 48, no. 12, pp. 24-33, Dec. 2015.

[42] M. Shafique, W. Ahmad, R. Hafiz, J. Henkel, “A low latency Generic Accuracy
Configurable Adder” ACM/EDAC/IEEE 52nd DAC, San Francisco, CA, USA, June 2015.

[43] S. Mazahir, O. Hasan, R. Hafiz, M. Shafique, J. Henkel, “Probabilistic Error Modeling for
Approximate Adders”, in IEEE Transactions on Computers (TC), vol. 66, no. 3, pp. 515-
530, 2017.

[44] M. A. Hanif, R. Hafiz, O. Hasan, M. Shafique, “QuAd: Design and Analysis of Quality-
Area Optimal Low-Latency Approximate Adders”, ACM/EDAC/IEEE 54th Design
Automation Conference (DAC), June 2017.

[45] M. K. Ayub, O. Hasan, M. Shafique, “Statistical Error Analysis for Low Power
Approximate Adders”, ACM/EDAC/IEEE 54th Design Automation Conference (DAC),
June 2017.

[46] W. El-Harouni, S. Rehman, B. S. Prabakaran, A. Kumar, R. Hafiz, M. Shafique,
“Embracing Approximate Computing for Energy-Efficient Motion Estimation in High
Efficiency Video Coding”, IEEE/ACM 20th DATE Conference March, 2017.

[47] S. Mazahir, O. Hasan, R. Hafiz, M. Shafique, J. Henkel, “An Area-Efficient Consolidated
Configurable Error Correction for Approximate Hardware Accelerators”,
ACM/EDAC/IEEE 53rd Design Automation Conference (DAC), June 2016.

[48] D. Palomino, M. Shafique, A. Susin, J. Henkel, “Thermal Optimization using Adaptive
Approximate Computing for Video Coding”, IEEE/ACM 19th Design, Automation and
Test in Europe Conference (DATE), Mar. 2016.

