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Abstract— Gigantic rates of data production in the era of Big Data, 

Internet of Thing (IoT) / Internet of Everything (IoE), and Cyber Physical 
Systems (CSP) pose incessantly escalating demands for massive data 
processing, storage, and transmission while continuously interacting 
with the physical world under unpredictable, harsh, and energy-/power-
constrained scenarios. Therefore, such systems need to support not only 
the high performance capabilities at tight power/energy envelop, but also 
need to be intelligent/cognitive, self-learning, and robust. As a result, a 
hype in the artificial intelligence research (e.g., deep learning and other 
machine learning techniques) has surfaced in numerous communities. 
This paper discusses the challenges and opportunities for building 
energy-efficient and adaptive architectures for machine learning. In 
particular, we focus on brain-inspired emerging computing paradigms, 
such as approximate computing; that can further reduce the energy 
requirements of the system. First, we guide through an approximate 
computing based methodology for development of energy-efficient 
accelerators, specifically for convolutional Deep Neural Networks 
(DNNs). We show that in-depth analysis of datapaths of a DNN allows 
better selection of Approximate Computing modules for energy-efficient 
accelerators. Further, we show that a multi-objective evolutionary 
algorithm can be used to develop an adaptive machine learning system 
in hardware. At the end, we summarize the challenges and the associated 
research roadmap that can aid in developing energy-efficient and 
adaptable hardware accelerators for machine learning.   

Keywords—machine learning, approximate computing, deep 
learning, neural networks, energy efficiency, performance, low power, 
accelerators, architecture, memory, FPGA, CGRA, adaptive, roadmap.    

I.  INTRODUCTION 

In recent years, Artificial Intelligence (AI) has achieved great 
applicability due to the advancements in its sub-domains of Machine 
Learning (ML), Artificial Neural Networks (ANNs), Convolutional 
Neural Networks (CNN) and Deep Neural Networks (DNNs). Neural 
networks based ML algorithms give computers the ability to find a 
solution by learning through a training data. Starting from the ImageNet 
Large Scale Visual Recognition Challenge (ILSVRC 2012), techniques 
based upon DNNs and specifically deep CNNs have witnessed 
groundbreaking success in various big data analytics and computer 
vision tasks such as: object classification and recognition, autonomous 
driving and handwritten digit recognition [1]-[3]. However, CNN 
operations are characterized by extensive convolution operations, 
enormous memory traffic, and storage requirements [5]. Deep CNNs are 
variants of DNNs that have further hidden layers that comprise of 
multiple layers of convolution, pooling (selection) and non-linear 
activation functions [3]. The weights that are employed in the 
convolution process are computed based upon a training phase that 
typically involves a back propagation based scheme to minimize the 
classification error [5]. GPUs are amenable to such machine learning 
kernels when compared against CPUs due to the availability of plenty of 
simple cores, the support of massive thread-level parallelism, and ease 
of parallel programmability. However, their computational superiority is 
coupled with a serious compromise: the enormous power consumption. 
Once such example is NVIDIA DGX-1 GPU that can train VGG-D CNN 

58 times faster as compared to a CPU server with two Intel Xeon E5-
2699v4 CPUs. However, as compared to commodity GPUs (typically 
100 watts), DGX-1 can consume upto 32 times more power [4]. 
Therefore, besides for the energy-constrained embedded devices, it is 
also important to provide extreme energy efficiency in high-end DNN 
implementations and training to lower cooling costs, thus GPUs may 
potentially become a less-attractive option as more specialized, energy-
efficient and configurable architectures evolve that support high degree 
of parallelism and ease of programmability. 

With the development of mobile computing, wearable (healthcare) 
devices, Internet of Things (IoT) and their applications, there is an urgent 
need to provide capabilities for smart operations and artificial 
intelligence (or at least a part of it) in systems with limited energy and 
resources. Thus, GPUs, that may be favored for compute-intensive 
training for time being, are still not suitable for inference on energy-
constrained embedded and IoT devices that are typically battery 
operated and/or survive on harvested energy, and often have 
power/energy budget in sub-Watt range. Therefore, the design of highly 
energy-efficient hardware accelerators for compute-intensive CNNs (or 
their kernels) has received a lot of interest [5]. Using FPGAs, ASICs, and 
other specialized compute fabrics like Application-Specific Instruction 
Set Processors (ASIPs) and Coarse-Grained Reconfigurable Processors 
(CGRAs) for CNN acceleration lowers the energy/power consumption 
while providing high throughput, and thereby reducing the overall cost 
of the operation. Power/energy consumption can further be decreased by 
using (brain-inspired) emerging computing paradigms such as 
approximate computing blocks [6] and neuromorphic computing [8].   

Approximate Computing (aka Inexact Computing) relies on relaxing 
the bounds of precise computing to provide new opportunities for 
improving the area, power/energy, and performance efficiency of 
systems by orders of magnitude (when considering both memory and 
computations) at the cost of reduced output quality (typically within 
user-tolerable range) [6]. Thus, there is a need to apply emerging 
computing paradigms (such as approximate computing) systematically 
to realize specialized hardware accelerators for machine learning with 
extreme energy efficiency. 

Our Contributions: This paper provides various insights for 
systematic development of energy-efficient accelerators for Machine 
Learning, specifically in the context of DNNs, where a high degree of 
adaptivity can be realized by employing quality-/energy-configurable 
approximate modules inside the accelerator datapath. Towards the end, 
we discuss various challenges and outline a roadmap for research in 
adaptive and energy-efficient architectures for machine learning. 

Paper Organization: We provide a brief review of existing work, 
which can be related to different phases of our systematic approach. In 
Section III, we illustrate that in-depth analysis of datapaths of a DNN 
allows better selection of Approximate Computing modules for 
developing energy-efficient accelerators. Section IV provides an 
overview of an Evolutionary Algorithm based low power and adaptive 
architecture for Machine Learning. Section V outlines open research 
challenges and discusses the roadmap for further research in this area to 
enable extreme energy efficiency. Without loss of generality, throughout 
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this paper, we make use of the MNIST dataset [36], which is a dataset of 
handwritten English characters.  

II. ENERGY-EFFICIENT ADAPTIVE HARDWARE ACCELERATORS 

FOR NEURAL NETWORKS 

Recent advancements in low-power architectures for DNNs apply 
optimization at various stages of accelerator development [7]. To further 
reduce the power/energy consumption, implementations of DNNs can 
significantly benefit from approximate computing based low-energy 
computing modules, as the applications of DNNs are inherently error 
resilient. This resilience can be attributed to the following reasons:  

1. In DNN architecture, all input vectors are typically processed in the 
same way despite the fact that they vary greatly in their inherent 
difficulty for a particular classification application. There is a 
potential in identifying neurons whose contribution to the expected 
quality is low and hence simplifying their implementation (or even 
removing them) to reduce power consumption without affecting the 
quality of processing [8]. 

2. Training of DNN is an iterative process, which can be stopped when 
good enough results are obtained. Moreover, retraining can even 
mitigate the effects of approximations and lead to better results than 
with the accurate implementation [8]. 

A systematic application of such techniques can thus result in 
significant energy reduction. Fig.1 provides our systematic methodology 
for realizing energy-efficient accelerators, specifically for CNN and 
DNN based AI systems, which works in the following steps. 

 
Fig. 1. Our methodology for designing energy-effcient and adaptive neural 
network accelerator-based architectures for Machine Learning and AI systems. 

1) Libraries such as TensorFlow and Caffe are typically employed to 
customize pre-trained networks for a particular application [5]. The 
pre-trained synaptic weights, computed as a result, are then further 
tuned as per the application requirement. These trained weights are 
applied via convolutional kernels and hence “multiplication” 
constitutes the bulk of computational load for CNNs/DNNs.  

2) The next step is to perform a fixed point analysis in order to select an 
appropriate fixed point format (Qm.n) that keeps minimum number of 
bits for integer (m bits) and fraction (n bits), while keeping a 
minimum accuracy level.  

3) The quantized weights and the architectures are than evaluated to 
explore their error resilience properties. This step can be performed 
either via Monte-Carlo based simulations where a certain randomly 
selected training data is used to evaluate the suitability of each 
datapaths for approximation or via analytical modeling of 
approximate modules [43]-[45].  

4) Since, machine learning based systems can be employed in a variety 
of settings with application-specific requirements such as high 
accuracy and/or low power the underlying hardware accelerators 
should provide (re-)configurability. Quality knobs that give control 
over the accuracy-power tradeoff and allow selection of appropriate 
approximate hardware modules as per the requirements are thus 
desirable for such adaptive hardware accelerators.  

5) The approximated datapaths may also be retrained for updating the 
quantized weights to further improve the classification accuracy.  

In the following, we discuss works related to above steps. 

A. Fixed Point Analysis 
Courbariaux et al. [15] used floating-point, fixed-point and dynamic 

fixed-point formats to train neural networks and demonstrated that fixed-
point weights are sufficient for training. Gupta et al. [9] presented a 
hardware based DNN accelerator for image classification in which they 
studied the impact of different fixed-point rounding schemes on the 
accuracy. Judd et al. [10] demonstrated that minimum precision 
requirement not only varies across different networks, but also across 
different layers of the same network. Lin et al. [11] identified the optimal 
data precision for all layers of a network based on fixed-point 
quantization methodology. Gysel et al. [12] presented a framework, 
Ristretto, for fixed-point quantization and re-training of CNNs  based on 
Caffe. Lai et al. [13] proposed an approach based on floating-point 
representation for CNN weights and fixed-point for activations. They 
showed that the proposed approach can reduce storage requirements by 
up to 36% and multiplier energy by up to 50%. In [9], authors used a 
stochastic rounding scheme and demonstrated network training with 16-
bit fixed-point weights. Hashemi et al. [14] presented the DNN based 
quantized hardware accelerator on Ristretto, in which they analyzed the 
effects of varying quantization bits on accuracy, area and energy for 
hardware based designs.  

B. Approximation Resiliance Analysis  
Use of approximate arithmetic modules has been vastly explored to 

develop energy-efficient and high performance hardware accelerators 
[16]-[18], [46]-[48]. However, this comes at the cost of loss of 
classification accuracy and hence requires careful analysis to select a 
particular approximate arithmetic configuration. In [16] authors 
evaluated the use of low-power imprecise multipliers using the UCI 
Machine Learning repository. They reported that inexactness could be 
overcome by retraining the network. They reported an energy savings of 
up to 62.49% over accurate face recognition. In [19], the authors 
proposed a Lower-Part-OR Adder, which computes least significant bits 
of an addition using approximate logic, using OR gates instead of 
accurate adders, along with a Broken Array approximate multiplier 
which omits cells of Carry Save Adder array circuit. The approach 
similar to [16] was followed in [20], where a multiplier-less neuron 
structure was presented. Furthermore, re-training of the network was 
carried out to compensate for the inaccuracies introduced due to 
approximations. Multiplication is implemented by shifting pre-
computed alphabets, and then adding them. As pre-computed alphabets 
introduce area overhead, approximation in introduced by not calculating 
all the alphabets. To alleviate the accuracy loss incurred due to 
approximation, constrained re-training of neural network is done to get 
rid of undesired combinations. They reported an accuracy loss of 2.83% 
for 8-bit and ~0.25% for 12-bit implementations for handwritten digit 
recognition on MNIST dataset [36].  It was further shown that by 
incorporating a selective rule to apply approximation only to 
multiplication where both operands are non-zero, the power 
consumption can be significantly reduced for a small decrease in 
classification accuracy (Fig. 2) [21].  

Memory operations are responsible for a considerable portion of 
energy consumption. In order to reduce this energy, one can optimize 
memory cells, memory hierarchy, memory access patterns, data storage, 
refresh rates of DRAMs, and other properties of the memory subsystem 
[25]. For example, a hybrid 8T-6T SRAM cell was proposed to store the 
synaptic weights, wherein the sensitive MSBs are stored in 8T bit-cells 
and resilient LSBs are stored in 6T bit-cells [22]. If voltage over-scaling 
is applied, errors can appear in 6T cells, while 8T cells remain operating 
correctly. In another approach, a memory compression scheme 
exploiting the error resilience of DNN was introduced with the aim of 
reducing overall memory traffic and memory energy [18]. Finally, 
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several non-conventional technologies were proposed such as spintronic 
neural computing platforms in which the neural and synaptic 
functionalities are approximated by the underlying device physics. It was 
demonstrated that such systems can achieve competitive classification 
accuracy in a large number of complex recognition problems. Such 
architectures achieve over 15x improvement in energy compared to well-
optimized CMOS designs [23].  

In the following, we provide a case study of approximate resilience 
analysis that selects a datapath within a particular DNN that is more 
suitable for approximation. 

 
Fig. 2. Classification accuracy of NN with approximate multipliers for 
MNIST and SVHN datasets and 8/12 bit precision [21]. 

III. ERROR RESILIANCE ANALYSIS: DNN-SPECIFIC 

APPROXIMATIONS FOR LOW-POWER ACCELERATORS 

We consider a design case where a reduced power/energy budget 
necessitates the application of low-power approximations. The problem 
then reduces to the selection of appropriate datapath of the DNN 
architecture where approximations can be employed (at application 
and/or hardware levels). We propose that since the filters in a trained 
DNN architecture are either low-pass, high-pass or band-pass, their 
outputs shall have defined data distributions. Since, approximate 
arithmetic modules behave differently to different data distributions, a 
careful analysis of data distribution across various data-paths of neural 
network can aid in selecting an approximate circuit that provides 
minimum loss to classification accuracy. Data-unaware approximations 
may severely turn the benefits into loss, and therefore require additional 
training, or other kind of overhead, etc. as faced by existing approaches.  

 
Fig. 3. Modified LeNet for Handwritten Digit Classification (MNIST dataset) 
used in our experiments. Figure illustrates the outputs of various layers. 

For our analysis, we consider a deep CNN architecture based on the  
LeNet-5 [2] as shown in Fig. 3 for classifying the MNIST dataset. Input 
image size is 28×28. The network has two convolution layers (C1 and 
C2), two pooling layers (P1 and P2), and finally, a Fully Connected layer 
(FC). C1 has six different kernels, and produce six different output 
Feature Maps (FM1, FM2, …, FM6) for a single input image. Then, P1 
applies average pooling for stride of one, and neighborhood of 2×2. 
Thus, the size of a feature map (FM) is reduced to half after passing 
through a pooling layer. Afterwards, C2, which has 12 collections of six 
kernels each, operates on these six feature maps. In each collection, six 
feature maps from P1 are convolved with six kernels, and resultant six 
feature maps are added together, to generate a final FM per collection. 
Finally, these twelve output feature maps are concatenated together in a 
vector, and the vector is passed onto FC layer. Output vector at the end 
of FC layer contains a prediction about the digit classified. Fixed point 

simulations with Q (6.7) bit format (6 integer and 7 fractional bits); 
provided a classification accuracy of 94%, when tested on 200 images.  

As an illustrative case, we analyze the data distribution at the output 
of 6 filters applied during C1. The analysis will then be employed to 
select an appropriate low-power approximate adder during the pooling 
layer P1. Fig. 4 shows the Feature Maps at the output of six filters of C1, 
for four randomly selected input images.  

 
Fig. 4. (a) to (f) show the Feature Maps (FMs) at the output of six filters  of 
C1, obtained for 4 randomly selected input images.  

Fig. 5 provides the corresponding data distribution for the same 
feature maps. It can be observed that all the histograms within each part 
of Fig. 5 have strong correlation. Thus, regardless of the input image, the 
data distribution of the output FM of a particular filter is identical. 

 
Fig. 5. Histograms within (a) to (f) provide the data distribution of the 
corresponding Feature Maps illustrated in Fig. 4. 

Next, we evaluate the performance of five approximate adder 
configurations (1, 2, 3, 4 and 5), selected from the low-power 
IMPACT [17] adder configurations, for our Q 6.7 format fixed-point 
number. The IMPACT adders provide five imprecise alternate circuits 
(LP1 to LP5) for Full Adder. Thus, 1 = LP1:6, means that during 
approximate addition the 6 least significant bits (from Q6.7) shall be of 
the type LP1. Similarly, 2, 3, 4, 5, were chosen to be LP2:6, LP3:6, 
LP4:7 and LP5:7, respectively. Afterwards, we populated the data for each 
of the six filter using 50 images selected randomly from the training set, 
and used it to evaluate the performance of each of these 5 adders for the 
six Feature Maps. As evident from Table 1, approximate adders have 
different tolerance for different data distributions. It can be observed that 
datapath that belongs to FM2, FM5 and FM6 provide better resilience to 
approximate adders (when applied at the P1 layer) as compared to FM1, 
FM3 and FM4. This is because regardless of the adder type, they provide 
a classification accuracy of at least 92%. This can be attributed to the fact 
that the input data distribution resulted into adder operands that were less 
sensitive to error due to approximation. Based upon this analysis, we 
define a function R(), which ranks the approximation resilience of a 
particular feature map for each adder type. Thus, the FM that experiences 
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the lowest error for a particular adder ranks first in terms of error 
resilience. Thus, for the simulated data, R(2) = {FM6, FM5, FM2, FM4, 
FM3, FM1}. Accordingly, if there is a power constraint requirement to 
apply 2 approximation to the P2 layer of any one of the FMs, FM1 shall 
be the least suitable. The table also highlights that in general 1, 4 and 
5 provide results with higher accuracy as compared to other adder 
variants for all the FMs. This is because, according to their truth tables 
[17], these adders produce outputs that are equivalent to an accurate adder 
in case both inputs are zero. As evident from the data distributions in 
Fig.5, these FMs contain a significant number of zero-valued or closer to 
zero data and hence, 2 and 3 are bound to generate erroneous outputs. 

TABLE I.  CLASSIFICATION ACCURACY OBTAINED BY EMPLOYING 
APPROXIMATE ADDERS (1, TO 5) IN THE P1 LAYER FOR VARIOUS DATAPATHS. 

 

To evaluate our hypothesis, we consider a power constraint where it 
is required to apply approximation to at least two datapaths out of the 
total six. Table-1, in general, predicts highest classification accuracy to 
be achieved when datapaths comprising FM5 and FM6 are approximated. 
We thus compared the classification accuracy achieved when datapaths 
comprising FM5 and FM6 are approximated (i.e., the best case) as 
compared to the case when that of FM1 and FM3 are approximated (i.e., 
the worst case).  We populated the results of Fig.6 by testing on 50 
images, from the testing dataset. Fig.6 illustrates that, for 1, 4 and 5, 
both the cases show comparable performance. However, for 2 and 3, 
approximation of FM1 and FM3 leads to substantial accuracy loss in 
terms of classification accuracy. This is in agreement with the 
predictions of Table-1. Thus, we demonstrate that due to the fixed 
architectural design of DNN, each datapath has a particular data 
distribution. Since, error of approximate modules is also function of data 
distribution, prior analysis on training data can thus provide useful 
insight and thus guide the process of employing approximations. 

As the number of approximate configurations and number of layers 
increase, manual analysis can become non-trivial mandating the need for 
automated analysis and design tools. In the next section, we provide an 
Evolutionary Algorithm (EA)-guided approximation selection strategy 
to automatically develop adaptive and power/energy-efficient 
accelerators for machine learning.  

 
Fig. 6. Classification accuracy for two cases  

IV. AN EA-BASED LOW-ENERGY ARCHITECTURE  
FOR MACHINE LEARNING  

In this section, we will focus on how multi-objective evolutionary 
algorithms (EAs) can contribute to creating, optimizing and adapting 
machine learning systems in hardware. In Cartesian Genetic 
Programming (CGP), an ni-input and no-output combinational circuit is 

modeled using an array of nc x nr programmable nodes forming a 
Cartesian grid (Fig. 7). The set of available node functions (G) contains 
na-input functions. No feedback is allowed in the basic version of CGP. 
The primary inputs and programmable nodes are uniquely numbered 
(from 0 to 8 in Fig. 7). CGP evolves a population (a set) of candidate 
circuits that are represented using the so-called chromosomes in the form 
of strings of integers. For each node the chromosome contains (na+1) 
values that represent (i) the node logic function and (ii) na addresses 
specifying the input connections. The chromosome also contains no 
values specifying the nodes connected to the primary outputs. The 
chromosome size is nc x nr (na + 1) + no integers. The chromosome can 
be understood as a simplified netlist. 

 
Fig. 7. Full adder represented by CGP with parameters: ni = 3; no = 2; nc = 3; 
nr = 2; na = 2; G = {AND0; OR1; XOR2; NOT3}. Chromosome: (0, 2, 2) (0, 1, 
0) (1, 3, 2)(3, 2, 0) (5, 6, 3) (4, 6, 1) (5, 8). Node functions are underlined. 

The search is usually performed using a simple (1 + ) evolutionary 
algorithm, where  is between 1 and 20. In this algorithm, every new 
population consists of the best individual of the previous population and 
its  offspring created using a mutation operator which modifies up to h 
genes (integers) of the chromosome. 

1) Evolutionary Circuit Approximation 
The approximate circuit design problem can be formulated as a 

multi-objective optimization problem in which the error, area, delay (or 
performance) and power consumption are conflicting design objectives. 
Designers expect obtaining a set of solutions which exhibit various trade-
offs among key circuit parameters. The optimal set of such solutions is 
the so-called Pareto optimal set [24]. Available tools (such as [26]) 
typically approximate the Pareto front by multiple executions of 
approximation engines which are initialized using different parameters. 
The reasons for using an advanced evolutionary approach (contrasted to 
a simple greedy search or ad hoc heuristics) is that the population-based 
approach suits well in finding multiple solutions and its niche-
preservation methods can be exploited to discover diverse solutions. We 
deal with evolutionary circuit approximation conducted with “gate-
level” CGP as most evolutionary approaches developed in this area 
utilize CGP. However, EAs can be applied to approximate RTL or even 
behavioral descriptions. For example, ABACUS [40] tool creates an 
abstract syntax tree from the input behavioral RTL description of a 
circuit, and then applies variant operators to the AST to create acceptable 
approximate designs that are implemented using a standard design tool. 
The search is performed by means of a multi-objective genetic algorithm 
NSGA-II. ABACUS was evaluated in three different domains - machine 
learning, signal processing, and computer vision - with power savings 
reaching up to 40% [27]. In another application, approximate 
implementations of complex median networks that are useful in 
convolutional kernels and signal processing were evolved [28].  

2) Evaluation of Candidate Approximate Circuits 
CGP can naturally be extended for circuit approximation because the 

fitness function always includes a component measuring the circuit 
functionality. If the circuit under approximation is not complex, it is 
possible to evaluate its responses for all possible input combinations and 
compute its exact error according to an arbitrary chosen error metric 
(e.g., as implemented in [29]). 

In the case of more complex circuits, candidate circuits are evaluated 
using a training set (i.e., a subset of all possible vectors) and the resulting 
error is thus only estimated (e.g., [26], [27]). This is a common practice 
used in the literature. If the exact error value is requested, more advanced 
approaches such as formal relaxed equivalence checking techniques 

FM1 FM2 FM3 FM4 FM5 FM6 Average

1 92% 92% 92% 92% 90% 92% 92.00%

2 56% 92% 60% 84% 92% 94% 80.00%

3 56% 92% 60% 88% 93% 94% 80.67%

4 92% 92% 92% 92% 91% 92% 92.00%

5 94% 92% 92% 94% 92% 94% 93.34%

Average 78% 92% 79% 90% 92% 93% 87.60%
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have to be employed. Depending on the particular error metric (e.g., the 
mean error or the worst-case error), the error calculation problem is 
transformed to a decision problem and solved by means of SAT solving 
or binary decision diagrams (BDD). However, approximate arithmetic 
circuits no more complex than 16-bit adders and 8-bit multipliers have 
been reported so far with the known (exact) error [30], [27], [31]. For 
example, it is unknown how to effectively compute the (exact) mean 
error for complex arithmetic circuits. Table III compares the evaluation 
time when optimized circuit simulator and BDD-based method are used 
in the case of 16-bit adder. Other parameters (delay, power, area) of 
candidate circuits are only estimated in the process of evolution. At the 
end of evolution, selected resulting circuits (especially those forming the 
Pareto front) are implemented for a given technology (or FPGA) using 
common circuit design tools to determine their final electrical 
parameters.  

TABLE II.  THE AVERAGE TIME NEEDED TO PERFORM THE WORST-CASE (MAX) 
AND THE AVERAGE-CASE ERROR (AVG) ANALYSIS FOR W-BIT ADDERS WITH 

SIMULATION AND BDD 

 

The EA-based approximation methods can be classified as, Error-
oriented, multi-objective and evolutionary (Fig.8). Error-oriented EA 
tries to evolve a circuit showing a predefined error, and optimize circuit 
parameters without worsening this error [32]. Resources-oriented is one 
in which resources (e.g., the number of gates) are constrained and EA is 
used to minimize the error with available resources [36]. And finally the 
Multi-objective, in which all criteria are optimized together using a 
multi-objective EA such as NSGA-II [27],[29]. 

 
Fig. 8. Error-oriented (a), area-ariented (b) and multiobjective (c) evolutionary 
circuit approximation. Accurate circuits (green points) are evolved to resulting 
approximate circuits (blue points). 

 
Fig. 9. Pareto front showing parameters of 8-bit approximate multipliers, 
where Ripple-Carry Array Multiplier represents 100%. 

3) Evaluating Automatically Generating Approximate Modules 
We provide a rich and well-focused library of approximate modules 

[29] (called EvoApprox8b) that can be immediately used for 
benchmarking of circuit approximation methods. The library consists of 
approximate 8-bit adders and 8-bit multipliers. In addition to circuit 
parameters (error, area, delay, power etc.) and 7 error metrics, the library 
contains Matlab, C and Verilog implementations for all components 
which allows the user not only to immediately use the components, but 
also to calculate the error for a new target error. There are 430 different 
approximate 8-bit adders and 471 different approximate 8-bit multipliers 

forming a Pareto front in a three-dimensional space defined using the 
mean relative error, delay, and power metrics (non-dominated 
multipliers are shown in Fig. 9). These implementations were obtained 
by a multi-objective CGP. As a starting point for the CGP-based 
approximation process, 13 different adders and 6 different multiplier 
conventional accurately-operating architectures were employed. 

V. CHALLENGES, PERSPECTIVES AND RESEARCH ROADMAP FOR 

EFFICIENT MACHINE LEARNING ARCHTIECTURES 

In the following, we highlight selected but important research 
challenges, and associated research opportunities and perspectives that 
will help the community in realizing highly adaptive and energy-efficient 
architectures for machine learning. 

Optimize for Memory or Computations First: A Million-Dollar 
Question? ML is heavily deployed in data-intensive applications, and 
memory footprint of the DNNs is significant and further escalating. Some 
studies have shown that the memory energy contributions can even grow 
up to 50%-80% of the total energy. Therefore, reducing the memory 
energy should be one of the top-most priorities when designing 
specialized architectures for ML with extreme energy efficiency. It should 
be done throughout the memory hierarchy considering all the 
feasible/beneficial knobs and techniques like (weight) compression, 
efficient data storage, refresh rate control, optimizing memory cells and 
access patterns, devising fine-grained memory power management 
policies, and using non-volatile memories. Going one step ahead, 
deployment of emerging technologies like nano-wires based 3D-stacked 
architectures could provide a very attractive solution, where the sea of 
accelerators can be directly connected to the dense memory layers through 
highly energy-efficient and high bandwidth nano-wires. An example 
project in this direction is N3XT1000x [41]. Spintronic devices (e.g., see 
the works at the C-Spin center of excellence [39]), Memristors, and 
Graphene based design are other parallel emerging technologies. On the 
computing side, there is a huge potential of architectures based on sea of 
accelerators, which can highly specialized and context-adaptive, with the 
support of enhanced power-management features. 

Accuracy vs. Energy Tradeoff: New computing paradigms such as 
Approximate/Stochastic and Neuromorphic computing add an additional 
dimension to the power/energy, area, performance, and accuracy design 
space, and thereby enabling design and run-time tradeoffs. Particularly, 
ML architectures may require different precision/accuracy requirement 
for different set of applications.  Thus, an efficient hardware accelerator 
for ML should be able to adaptively control the accuracy of the 
accelerator such as to minimize the energy consumption without 
violating the user-tolerable quality constraints, or alternatively maximize 
the quality under a given energy budget. However, to achieve this, there 
is a need to carefully analyze the effects of approximations on the DNN 
architecture design and its efficiency. This requires development of 
efficient simulation frameworks, evaluation methodologies, as well as 
analytical error analysis techniques. Due to the layered nature of the ML 
architectures, it may be advantageous to distribute the power/energy 
budget across multiple layers in a stochastic manner while accounting 
for the sensitivity of each layer and/or sensitivity of different neurons 
inside layers. Furthermore, since analytical modeling becomes non-
trivial for large-sized DNN architectures, a divide-and-conquer 
methodology may help in achieving a (near-)accurate error analysis in 
significantly less amount of time. 

Adaptability, (Re-)Configurability, Flexibility, and Scalability: 
DNN architectures are characterized by repetitive arrangements of 
standard layers, e.g., convolution, pooling and activation functions. 
However, developing a generic DNN accelerator shall require a highly 
adaptive, configurable, flexible and scalable system since the order of 
layers, synaptic weights of convolutional layers and dimensions of input 
data vary across different applications. This can further lead to 
interesting design decisions, such as, time-shared vs. dedicated designs 
and choice of scratchpad vs. caches, activation control of different layers 



while keeping the configuration overhead minimal or doing it in a 
transparent fashion without exposing the overhead to the user. Towards 
this end, selection of FPGA or CGRAs as the basic compute fabric is 
also an interesting research question, as both have their pros and cons in 
terms of reconfiguration granularity and associate overhead. Finally, the 
data bandwidth requirements also scale with input data dimensions. 
Efficient data storage, synaptic weight compression, and multiplier-less 
designs can allow for energy-efficient architectures. 

Run-Time Evolutionary Algorithms for Designing and Optimizing 
DNN Architectures: General-purpose optimization algorithms such as 
EAs can also be used to optimize and approximate particular layers of 
DNN, the whole architecture, memory access patterns, or the training 
procedure, possibly in a holistic scenario in which errors introduced in 
some part of NN can be compensated by a suitable construction of other 
parts of DNN. In addition to the offline evolutionary design, there is a 
great potential in the online adaptation of components of DNNs with the 
goal of providing the best trade-off between energy/power consumption 
and error of processing anytime when deployed. 

Correct Benchmarking with Fairness and High Fidelity: Circuit 
approximation methods and actual approximate circuits obtained by 
means of these methods have to be evaluated by comparing them with 
existing solutions. However, due to a rapid development of the field, a 
fair evaluation methodology has not been established yet, especially 
across different communities working on these challenging problems. 
Also, metrics to estimate the fidelity of results, standard test conditions, 
etc. are also required for fair validation. In order to compare circuit 
approximation methods, it would be requested for each method and each 
benchmark circuit to provide a Pareto-front containing the best tradeoffs 
achieved for key circuit parameters such as the error, area, delay and 
power/energy consumption (in a given fabrication technology), 
assuming that a fixed time budget is available for the approximation 
procedure. Several papers provided detailed comparison of different 
approximation approaches, for example, in the case of adders and 
multipliers [33], [34]. However, if the models of appropriate circuits, 
experimental platforms and test conditions are not available online, it is 
not only hard to reproduce their results, but also near-to-impossible to 
achieve fair comparisons for the newly proposed methods and solutions. 

Open-Source Contributions: Besides the above point, also, as a 
community, to move faster and to address challenges in this rapidly 
growing field effectively, there is a strong need for researchers and 
developers to open-source their contributions along with their test 
configurations and settings. This way, other researchers and developers 
can not only reproduce their results, but can also use it for fair 
comparison and also as a baseline to rapidly progress forward without 
reinventing the wheel. Towards this end, as a first step, we contribute 
through our open-source libraries of approximate modules at: GeaR-
DAC15 [42], [37], lpACLib-ICCAD16 [35], [38] and [29]. 
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