
Fast Incremental Bundle Adjustment with Covariance Recovery

Viorela Ila
Australian National University, ACRV

Canberra, ACT, Australia
Viorela.Ila@anu.edu.au

Lukas Polok
Apple Inc.

One Infinity Loop, Cupertino, CA, USA
lukas@lukas-polok.cz

Marek Solony
Brno University of Technology

Brno, Czech Republic
isolony@fit.vutbr.cz

Klemen Istenic
University of Girona

Girona, Spain
klemen.istenic@udg.edu

Abstract

Efficient algorithms exist to obtain a sparse 3D repre-
sentation of the environment. Bundle adjustment (BA) and
structure from motion (SFM) are techniques used to esti-
mate both the camera poses and the set of sparse points
in the environment. Many applications require such recon-
struction to be performed online, while acquiring the data,
and produce an updated result every step. Furthermore, us-
ing active feedback about the quality of the reconstruction
can help selecting the best views to increase the accuracy as
well as to maintain a reasonable size of the collected data.
This paper provides novel and efficient solutions to solving
the associated NLS incrementally, and to compute not only
the optimal solution, but also the associated uncertainty.
The proposed technique highly increases the efficiency of
the incremental BA solver for long camera trajectory appli-
cations, and provides extremely fast covariance recovery.

1. Introduction

The field of 3D reconstruction from 2D images is a ma-
ture field in computer vision. Available software and ap-
plications are able to process and assemble the information
from a large amount of images and produce large scale 3D
structures; Nevertheless, the majority of the existing appli-
cations are designed to be used offline, post-acquisition and
do not provide any feedback about the uncertainty of the
reconstruction.

Mapping large areas prior to special effect insertion in
film production, capturing and documenting underwater
reefs, wrecks, thermal vents, etc. are only a few examples in

Figure 1: Color-coded marginal covariances of the Fountain-
P11 dataset (orange–small uncertainty, violet–large). Despite this
dataset is quite small, Google’s Ceres solver takes 2556.740 s to
recover the covariances. The proposed solution only needs 1.765 s
to do that (at each step).

which opportunities to revisit the site for collection of addi-
tional images are limited and associated with high increase
in operational costs. To diminish the probability of obtain-
ing unsatisfactory captured data from a single session and
simultaneously reduce the redundancy of capture efforts, it
is important to obtain feedback about the quality of the re-
construction during the acquisition process itself. Such ac-
tive feedback can be directly utilized by skilled operators
or autonomous mission planning schemes to adjust the ac-
quisition mission in progress. As the process is performed
online, the methods must be highly efficient.

Most of the existing large-scale, image-based 3D recon-
struction techniques work by estimating an initial position
of cameras and a sparse set of points, followed by a global
optimization refinement of the solution. Bundle adjustment

4321

(BA) is the technique which simultaneously estimates the
camera poses, calibration parameters and the 3D structure.
Large-scale 3D model reconstruction [4] relies on having all
the images already available and processing them in batch
mode, without providing feedback during acquisition. In
general, those problems are regarded as unstructured, the
cameras can be placed anywhere in the environment, and
the BA step is concerned with the batch optimization of the
cameras and 3D points. In contrast, this paper proposes ef-
ficient solution to structured 3D reconstruction problems,
where the image acquisition is performed sequentially. If
the camera is moving, the 3D structure can be obtained by
tracking image features over time and subsequently estimat-
ing the camera motion [30]. This problem in general relies
on sequential BA steps for accurate estimation [10].

In this paper we propose a novel incremental BA tech-
nique which naturally adapts to the size of the updates at
each step and achieves high performance in processing the
images sequentially. This has the advantage that solves, in
a principled way, very large scale 3D reconstruction where
points move in and, soon after, out of the field of view, with-
out relying on approximations or partial and windowed op-
timizations. The solution we offer can be plugged to any
front-end image processing and automatically restrict the
optimization to only the set of variables that need to be op-
timized, eliminate outlier measures, and provide immediate
feedback about the quality of the reconstruction by calculat-
ing the marginal covariances. We show that the solution we
provide is on average one order of magnitude (almost two
in some cases) faster than the high-end solvers.

2. Related Work
Bundle adjustment and structure from motion are sim-

ilar to simultaneous localization and mapping in robotics
(SLAM) [23, 9, 22]. In order to deal with the uncertainty,
they are formulated as probabilistic estimation problems
and can be solved using nonlinear least squares (NLS) [32].

The paper by Lourakis et al. [25] describes the design
and implementation of an efficient NLS solver for BA, with
the basic traits shared by most of the other implementa-
tions. It makes use of the problem sparsity, and the fact
that the BA problem typically contains a relatively large
number of independent points. This gives rise to diagonal
sub-matrices that make the underlying linear problem eas-
ier to solve using Schur complement rather than by apply-
ing a general linear solvers directly to the whole matrix as in
SLAM [9, 22, 32]. It was shown that using Cholesky factor-
ization on reduced camera matrix is efficient for structured,
relatively small problems. The paper by Jeong et al. [19]
emphasises the importance of block-matrix data-structure
and block operations, and variable ordering, ideas also ex-
ploited in SLAM by [34]. All those aspects are tackled
and efficiently solved by the proposed method. Other tech-

niques to speed up the BA consider solving in a distributed
manner [29], although mostly suitable for batch processing.
Gradient methods such as preconditioned conjugate gradi-
ent (PCG) can be used instead of matrix factorization to
solve the linear iterations within NLS [3, 20]. Those meth-
ods are mostly used in unstructured problems, where the
points are seen from many cameras and the system matrix
is far from being block diagonal.

A major challenge appears in online applications, where
the state changes every step. One solution to speed up the
incremental processing is to reduce the problem to a pose
graph optimization where only the poses of key frames are
globally optimized and local BA is used to adjust the cam-
eras and the points [28]. Incremental light bundle adjust-
ment [18] is another technique proposed for solving BA
incrementally, which it is based on marginalizing out the
structure while solving only for the camera poses. Those
”light“ techniques are not suitable for applications where
a feedback about the structure is needed during the acqui-
sition, in here a rather ”hard“ approach is used to update
the structure and its uncertainty every step. Efficient incre-
mental NLS solutions have been developed in the SLAM
community, either by working directly on the matrix factor-
ization of the linearized system, by using graphical model-
based data structures such as the Bayes tree [22], or by
exploiting the sparse block structure of the problems [32].
Those solutions are possible due to small changes in the lin-
earization point at consecutive steps, as well low rank up-
dates directly to the factorized form of the linear system.
The matters in bundle adjustment are more complicated,
since the increments have much higher rank than in SLAM.
Also, when applying the Schur complement trick, the effect
of new integrated measurements are hard to be localised,
affecting the entire reduced camera matrix.

In a real application, the uncertainty of the estimation
plays an important role, in particular in active reconstruc-
tion scenarios. This is given by the marginal covariances
that encode the uncertainties between a subset of variables.
The calculation of the covariance amounts to inverting large
matrices, where the resulting matrix is no longer sparse
and this can become a computational bottleneck. An ex-
act method for sparse covariance recovery was proposed
in [21], based on a recursive formula which calculates any
covariance elements on demand from other covariance ele-
ments and elements of the Cholesky factorization result. An
incremental technique to obtain exact marginal covariances
has recently been proposed by Ila et al. [16], and it is based
on incremental updates of marginal covariances every time
new variables and observations are integrated into the sys-
tem, and on the fact that, in practice, when the changes in
the linearization point are often small and can be ignored.
The above-mentioned techniques rely on the Cholesky or a
Q-less QR factorizations of the linearized system [5, 13], a

popular approach in the SLAM community. However, the
BA and SFM problems have a completely different structure
where the number of points is in general much larger than
the number of cameras and there are more efficient methods
to solve the linearized system.

3. Incremental BA estimation
We can formulate the BA problem as an incremental

maximum likelihood estimation (MLE) over a set of cam-
era poses c = [c1 . . . cnc] and the points on the structure
given by the set p = [p1 . . . pnp], together forming the state
θ = [c,p]. We want to find the optimal configuration sat-
isfying the measurements, z = [z1 . . . zm] given by the re-
projected points on the image:

θ∗ = argmax
θ

P (θ | z) = argmin
θ

− log(P (θ | z)) . (1)

Each observation is assumed with zero-mean Gaussian
noise with the covariance Σk and we measure the re-
projection error: ek(ci, pj , zk) = zk − Prk(ci, pj), with
[ci, pj] ⊆ θ and Pr(·) is the projection function of a point,
pj , onto the camera ci, and zk is the actual pixel measure-
ment. Note that this paper considers only reprojection error
minimization, other measurement functions are also possi-
ble. Assuming Gaussian noise models, finding the MLE
from (1) is done by solving the following NLS problem:

θ∗ = argmin
θ

1

2

m∑
k=1

∥∥zk − Prk(ci, pj)
∥∥2

Σk
. (2)

Iterative methods such as Gauss-Newton (GN) or
Levenberg-Marquard (LM) are used to find the solu-
tion of the NLS in (2). They start with an initial point
θ0 and, at each step, computes a correction δ towards
the solution. For small ‖δ‖, a Taylor series expansion
leads to linear approximations in the neighborhood of θ0:
ẽ(θ0 + δ) ≈ e(θ0) + Jδ , where e = [e1, . . . , em]

> stacks
all the reprojection errors and J , the Jacobian matrix,
which gathers the derivative of the components of e. Thus,
at each ith iteration, a linear LS problem is solved

δ∗ = argmin
δ

1

2
‖A δ − b‖2 , (3)

where the A = Σ−>/2J(θi) is the system matrix,
b = Σ−>/2e(θi) the right hand side (r.h.s.) and
δ = (θ − θi) the correction to be calculated [9]. The
minimum is obtained where the first derivative cancels,
A> A δ = A>b, or Λδ = η with Λ = A>A, the square
symmetric system matrix approximating the Hessian, and
η = A>b, the right hand side. The solution to this lin-
ear system can be obtained either by sparse matrix factor-
ization followed by backsubstitution or by linear iterative
methods. After computing δ, the new linearization point

becomes θi+1 = θi ⊕ δ. Incremental NLS solving is pos-
sible because in real applications, most of the time only a
small potion of the increment δ is relevant, the rest can be
ignored [32] and the updates isolated. In BA applications,
LM is preferred over the GN methods to deal with local
minima, using damping strategies which allow convergence
even from poor initial solutions. LM solves a slightly mod-
ified normal equation with damping factor λ:

(Λ + λD̄)δ = η or Hδ = η , (4)

with common choices of D̄ = diag(Λ) or D̄ = I .
Similarly to LM, dog leg (DL) algorithm, which was

first described by Powell [35], varies between GN steps
and steepest descent (SD) directions [24] with the differ-
ence that DL always stays in a trust region. The trust region
is a hypersphere of radius ∆ centred at the current lineariza-
tion point θi and where the linearized function in (??) and
nonlinear function behave in a similar way. It is possible
to calculate both the GN step Λ δGN = η and also the di-
rection of the SD step δSD ≈ η at the same time. Finally,
the dog leg step δdl is chosen as a linear combination of the
two, in order to be on or inside the trust radius hypersphere
(please, refer to [35, 36] for specific details). Similarly as in
LM, the trust radius is modified based on the improvement
of the solution once the step has been taken.

The study in [24] shows that DL converges faster than
LM while giving solutions of the same quality. In addi-
tion to that, DL is appealing from the incremental solving
point of view [36], as it does not require modification of the
system matrix by damping which would impede incremen-
tal factorization updates. In incremental solving, we will
attempt to only update the variables which are changing.
Altering the entire diagonal of the system matrix would re-
quire recalculating much more. DL is also favorable if not
only the state mean but also state covariance is needed; then
the factorization used by the linear solver can be inverted to
get the covariance directly whereas in LM, a second factor-
ization without the damping needs to be formed first.

3.1. Dealing with Outlier Measurements

In 3D reconstruction, a situation often arises when some
of the measurements introduced into the system are not af-
fected by normal distributed noise, as assumed in (2) but
rather a few of them have a significantly larger error. It
is possible to introduce additional variables to the opti-
mized system, which decide on the validity of the mea-
surements [42]. Alternatively, it is possible to calculate the
weights directly, without any additional variables as in [1]
by using standard robust estimators.

The appealing property of robust estimators or M-
estimators (maximum likelihood type estimators) [15] is
their simple integration into the ordinary nonlinear least

squares framework. In fact, NLS is a special case of an M-
estimator where the loss function ρ(b) happens to be the L2
norm or squared Mahalanobis norm. Other loss functions
that are less susceptible to the outliers are possible [15], we
used Huber’s pseudo-L1 function. To integrate it in the NLS
framework, each observation zk is assigned a weight given
by wk = ψ(bk)

bk
, with ψ(b) = dρ(b)

db . These weights then
multiply the measurement covariances Σk in (2).

In the literature, estimating the scale of the problem is of-
ten discussed, since the scale s of the errors b̃ = b

s follows
the general scale of the problem. There are methods to es-
timate this scale, such as median absolute deviation (MAD)
or Huber’s “alternative proposal” [15]. In the context of
incremental solving, adjusting the scale estimate leads to
the change of the weights for all the observations and thus
impedes incremental updates. The scale could either be es-
timated with hysteresis or guessed apriori from the sensor
characteristics and fixed, an approach we also adopted.

3.2. Variable Parametrization

There are several approaches to parameterizing the BA
problem. Landmarks can be parametrized in Euclidean co-
ordinates, pi = [xj , yj , zj]

> resulting in a 3D vector. Scale
can be introduced as a parameter resulting in a 4D vector of
homogeneous coordinates pj = qj [xj , yj , zj , 1]>, where q
is the scale factor. A commonly used factor is qj = 1/zj ,
which yields the inverse depth parameterization of the
points, resulting in a 3D vector pj = [xj/zj , yj/zj , 1/zj]

>.

The camera poses can be parameterized using 6D vec-
tors. It is common to consider a camera pose as an el-
ement of the Lie algebra ĉi ∈ se(3) of the special Eu-
clidean group SE(3) with ĉi being the matrix form of
the pose ci = [v, ω]>, ci ∈ R6, with ω ∈ R3, the rotation
component and v ∈ R3 the translation component. The
scale can be better estimated during the optimization pro-
cess by considering the camera poses as elements of the
Lie algebra ĉi ∈ sim(3) of the Similarity group Sim(3),
ci = [v, ω, q]>, ci ∈ R7, q ∈ R being the scale factor [39].

Every point pj from the state vector θ can be expressed
either globally in the world coordinate frame or locally in
coordinate frame of one of the cameras. In the same way the
cameras can be represented relative to previous camera or
in global coordinates. Polok et al. [33] provides an exhaus-
tive analysis of the effects of different points and camera
parameterizations when solving the problem incrementally.
In incremental updates, the number of variables affected by
the update has a direct impact on the performance. They
concluded saying that using local inverse depth parameteri-
zation the number of variables affected by the updates stays
bounded, even if the size of the state cotinuously grows.

3.3. Solving using Schur Complement

A permutation can isolate the cameras C from the points
P , yielding this system matrix and r.h.s.:

Λ =

[
C B

B> P

]
; η =

[
ηC

ηP

]
(5)

It is common to use Schur complement to invert such ma-
trix:

SΛ/P = SC = C −BP−1B> (6)

SΛ/C = SP = P −B>C−1B . (7)

We call SΛ/P in (6) the Schur complement (SC) corre-
sponding to the camera poses, a sparse matrix with the size
given by the number of cameras, and SΛ/C in (7) the SC
corresponding to the points. SC is in general not as sparse
as Λ so calculating SΛ/C is often intractable, due to the fact
that the number of points is much larger than the number of
cameras. Only SΛ/P will be considered in our derivations,
and the remainder of this paper, it will be denoted simply
with SC . In order to solve the normal equation we apply:

(C −BP−1B>) δC = ηC − (BP−1) ηP (8)

δP = P−1(ηP −B> δC) (9)

3.4. Incremental Schur Complement

This paper shows that in many incremental BA appli-
cations, it is useful to reuse, if possible, the computations
performed in the previous steps. In case small changes in
the linearization point can be neglected, additive incremen-
tal updates on the Schur complement can be performed:

Λ̂ =

[
C B

B> P

]
+

[
4C 4B

4B> 4P

]
=

[
Ĉ B̂

B̂> P̂

]
. (10)

The number of points seen by the new camera and which
constitute the update, is in general much smaller than the
total number of points, therefore the matrices 4C,4B and
4P have low rank and most of their elements are zero.
Assuming the points are independent, P and P̂ are block-
diagonal matrices, and therefore easy to invert. Here, it is
important to note that LM nonlinear optimizers cannot be
used, the damping parameter λwould induce changes in the
entire diagonal of C and P . Therefore, a dog leg optimizer
is assumed.

Taking the difference 4(P−1) = P̂−1 − P−1 after the
inverse, the updated Schur complement of (10) becomes:

ŜC = Ĉ − B̂(P−1 + 4(P−1))B̂>

= Ĉ −BP−1B> −BP−14B>−

4BP−1B̂> − B̂4(P−1)B̂>

= SC + 4C −BP−14B>−

4BP−1B̂> − B̂4(P−1)B̂> . (11)

Note that 4(P−1) is nonzero only in the new or changing
blocks, while 4(P−1) 6= (4P)−1. Taking advantage of
symmetry P−1 = P−> we can write:

4SC = 4C − (4BP−1B̂> − 4BP−14B>)>−

4BP−1B̂> − B̂4(P−1)B̂>

= 4C − B̂F + 4BF − F>B̂> − B̂4(P−1)B̂>

= 4C − (B̂ − 4B)F −
(
F> + B̂4(P−1)

)
B̂>, (12)

where ŜC = SC + 4SC and the common subexpression
F , P−14B> is sparse, with the same sparsity pattern as
4B> and is explicitly evaluated only once. That way, the
number of terms with products is reduced from three in (11)
to two. The additions in the left sides of the two product
terms in (12) also help to save some operations as the sum-
mands have similar sparsity patterns and so the number of
nonzeros in the sum does not exceed the number of nonze-
ros of the denser of the summands.

The cost of calculating the Schur complement from
scratch is dominated by the cost of the product B̂P̂−1B̂>

that is not easily described in terms of the sizes of the ma-
trices and their numbers of nonzeros, as it depends heav-
ily on the sparsity pattern of B̂, given by the visibility of
the same landmarks by different cameras. Therefore, many
pairs of columns have nonzero dot product, which in turn
yields dense SC (e.g. for the Venice dataset, SC is over
40% dense).

The problematic term in (12) is B̂4(P−1)B̂> that has
the same complexity as calculating the Schur complement
from scratch if 4(P−1) has the same rank as P̂ (and this
happens if all the variables are changing). Therefore, it is
necessary to switch between the proposed incremental up-
dates and sometimes resort to a batch step. A benchmark of
the costs was made on all the datasets described in 4, and
can be seen in 2. The horizontal axis is the rank of the vari-
ables being updated and the vertical axis is the speedup over
a batch step. It can be seen that the cost is smaller if fewer
than 50% of the variables are being updated.

In order to solve the system in (8) the right hand side
(r.h.s.) of the equation must be evaluated. This involves the
product of large matrices with a vector (BP−1) ηP . For
the updated system this becomes:

r̂ = B̂P̂−1 η̂P (13)

= (B + 4B)(P−1 + 4(P−1))ηP + B̂P̂−14ηP

= BP−1ηP + B̂4(P−1)ηP + 4BP−1ηP+

B̂P−14ηP + B̂4(P−1)4ηP

= r + B̂4(P−1)ηP + 4BP−1ηP + B̂P̂−14ηP .

Observe that by bookkeeping ηP and P−1ηP vectors,
the rest of the computations are just low rank multipli-
cations. The cost of computing the r.h.s. from scratch

Figure 2: Incremental Schur complement speedup.

is O(2nnzP̂−1) +O(2nnzB̂) while incrementing it costs
O(6nnz4B) +O(4nnz(4P)−1). Therefore, incrementing is
cheaper if nnz4B < nnzB̂/3.

Once both the SC and the r.h.s. are updated, the sys-
tem can be solved using an off-the-shelf linear solver. It
could be possible to apply incremental Cholesky factoriza-
tion to the Schur complement. However, unlike in incre-
mental SLAM where the changes in the system matrix are
localized, the changes to the Schur complement are not. For
that reason, an ordinary batch sparse block Cholesky factor-
ization is used instead of its incremental variants [22, 32].

3.5. Covariance Calculation

The uncertainty of the variables is encoded in the covari-
ance matrix Σ = Λ−1. For the ordering applied to Λ in (5),
we have a corresponding partition for Σ:[

C B

B> P

]
·

[
ΣC ΣB

Σ>B ΣP

]
=

[
Ic 0

0> Ip

]
, (14)

where Ic and Ip are the identity matrices of the size nc× nc
and np× np, respectively. The covariances of the camera
poses and the points, respectively, can be calculated naively
using the Schur complement:

ΣC = (C −BP−1B>)−1 = S−1
C (15)

ΣP = (P −B>C−1B)−1 = S−1
P . (16)

Applying the Woodbury formula for ΣP we obtain:

ΣP = P−1 + P−1B>(C −BP−1B>)−1BP−1

= P−1 + P−1B> S−1
C BP−1

= P−1 + P−1B>ΣCBP
−1 . (17)

The computation and memory use can be reduced by fac-
torizing the Schur complement of the camera matrix:

ΣC = S−1
C = T−1 T−> , (18)

where T−1 is a sparse triangular matrix with the storage
requirements similar to that of chol(SC). Note that a dif-
ferent factorization may be used here, e.g. LDL> or LU ,
in order to improve numerical stability, and in exchange for
little extra space and time. With that, (17) transforms to:

Σ = P−1 + P−1B> T−1 T−> BP−1

= P−1 + V>V , (19)

where V = T−> BP−1 is only used here to illustrate sym-
metry and is not explicitly formed. One block element of
the diagonal of the covariance matrix can be computed as:

ΣPii = P−1
ii + V>i,: V:,i . (20)

Computation can be saved by taking advantage of sparsity
of the matrices and the fact that most applications require
only the recovery of the block diagonal of ΣP .

4. Experimental Results
This section evaluates the proposed incremental BA

framework. For the implementation of the proposed al-
gorithm we selected an existing implementation of a NLS
solver. Several such choices exist in the SLAM commu-
nity [23, 22, 32]. We selected SLAM++ implementation
based on the exhaustive evaluations in [32, 16] and the fact
that it facilitates the manipulation of the matrix incremental
updates. For comparison two popular NLS solvers in com-
puter vision, g2o and Ceres, were used.

g2o: General Framework for Graph Optimization is a
popular framework for nonlinear optimization in robotic vi-
sion [23]. It contains several optimizers, based on GN, LM
or (experimental) DL. While designed to be easily exten-
sible, g2o can solve BA and SLAM problems out-of-the-
box. The BA implementation is restricted to batch solv-
ing, yet an incremental SLAM solver is available. The sup-
port for robust solving is also implemented. It can also re-
cover covariances, using the same recursive formula imple-
mentation as described in [5, 13, 21]. However, it needed
some code modifications to be able to recover covariances
of the landmarks, as it can only recover the covariances of
the poses. Additionally, it cannot add new variables to a
Schur-complemented system so it was necessary to rebuild
the system from scratch with every new camera added. This
was not included in the timing for the sake of fairness.

Ceres: Google’s solver [2] received much attention, as
it is used in their 3D Maps and Street View applications. It
is mostly focused on batch solving, using a variety of avail-
able algorithms (GN, LM, DL, subspace DL [6], CG). It re-
lies on SuiteSparse [8] and Eigen [14] for solving the linear
systems via a set of sparse and dense solvers. It supports au-
tomatic and numeric derivatives, as well as analytical ones.
It also has a multitude of robust loss functions. Ceres can

also recover covariances of the solution, either using dense
SVD or using sparse QR decomposition of the system ma-
trix Λ followed by sparse right-hand-side backsubstitution.

SLAM++: implements incremental solutions for
SLAM [32, 17] using sparse block Cholesky factorization
and recently also SFM [33] and has the advantage of highly
efficient block matrix data-structure that facilitates struc-
tural and numerical changes of block matrices as well as
arithmetic operations. Both the CPU and the GPU ver-
sions were shown to be faster than the SuiteSparse vari-
ants of element-wise implementations [31]. This library
sparked our attention because of its two order of magnitude
faster SLAM covariance recovery compared to any exist-
ing solvers [16], therefore we identified it as being the best
candidate for the base implementation of our proposed al-
gorithm for incremental Schur complement solver with co-
variance recovery. Note that the computations in incremen-
tal BA highly differ from SLAM as shown is section 3.3 and
3.5. The incremental block Cholesky factorization imple-
mented in SLAM++ [32, 17] is not suitable for solving BA
problems, it does not support LM nor DL solving and fails
once the system matrix becomes positive indefinite. Neither
it supports solving using Schur complement which is known
to be much faster. Finally, it relies on constrained ordering
of the variables (last pose and corresponding landmarks are
ordered last), the complexity directly depends on the rank
of the update. This rank is prohibitively high with BA.

All the benchmarks were ran on a computer with In-
tel Core i7-4790 which is an eight-core CPU running
at 3.6 GHz, equipped with 16 GB of RAM. It had
Ubuntu 14.04 and g++ 4.8. At the time of running the
benchmarks, there were no other applications running in
the background. Each test was run ten times and the re-
sults were averaged. Some of the benchmarks of covari-
ance recovery of [16] required more than 16 GB of memory
and were run on a computer with Intel Xeon E5-4627v2 at
3.3 GHz and 256 GB of RAM. Results on this machine are
clearly marked with a dagger†.

The compared implementations were evaluated on one
simulated and five standard real datasets. The simulated
dataset Loop consists of 180 camera poses and 3600 3D
points. The real datasets include Fountain-P11 [40], New
College [37], TUM Frei3 [41], Guildford Cathedral1 and
the Fast & Furious 6 dataset which was kindly provided by
Double Negative Visual Effects2.

The images were processed using the publicly available
OpenMVG library [27] which was modified to handle incre-
mental processing. As the structure (3D points) and motion
parameters are inferred entirely from the projections of the
points on the images, salient features are robustly detected
and tracked from previous images. The association of fea-

1can be obtained from http://cvssp.org/impart/
2http://www.dneg.com/

tures uses Lowe’s ratio test and geometrical filtering (i.e.
epipolar constraints) inside the parameter-free robust statis-
tical method Acontrario-RANSAC [26] to prevent the influ-
ence of possible outliers on the estimation of the geometri-
cal model. Using the estimated camera pose, the new 3D
points can be triangulated by exploiting features matched
with candidates from previous images. In this way, the new
camera together with the new points are intialized and can
be added into the system.

In order to guarantee repeatability and fairness of the
evaluation, the same input data is used by all the solvers.
When processing the images as decsribed above, the data
is saved into a graph file where the estimated camera poses
and the 3D points are referred to as vertices and the cor-
responding observations as edges. All the solvers use the
same graph files as input (save for minor conversions re-
quired by the solvers, i.e. changing YPR to quaternions).
The time spent in creating these graph files is not counted,
as it is the same for all the solvers.

Incremental Schur complement performance: For
linear solving we compared the batch Schur complement
solvers in SLAM++, g2o and Ceres to the proposed incre-
mental Schur complement that was implemented on top of
SLAM++. For g2o and SLAM++, LM solvers with ten it-
erations per every new camera were used, since neither of
these solvers have a mature dog leg implementation. The
proposed method is based on DL. For Ceres, the DL op-
timizer with equivalent settings was used. The incremen-
tal solvers in SLAM++ are intended for SLAM graph op-
timization [32, 17] and are not suitable for solving BA, so
they were not considered for this comparison.

The cost of the proposed method depends on the spar-
sity of the update. When performing only a single itera-
tion at each step, the updates are typically very dense and
the proposed method has the same results as batch. There-
fore, we let the nonlinear solver iterate until convergence
at each step, to get the asymptotic time. The other imple-
mentations perform batch solving where all the iterations
are equally expensive and so it is possible to multiply the
time by the desired number of iterations. The landmarks
are represented in relative coordinates and every camera
pose is ĉi ∈ sim(3). Robust outlier rejection strategy de-
scribed in 3.1 is used. All the tests use Huber loss func-
tion of width 16 px. The results are in 1 and show that the
incremental Schur complement methods perform better in
applications with long camera trajectories (Loop, New Col-
lege, TUM Frei3 and Fast & Furios 6); in Fountain-P11
and Cathedral the density is higher therefore the incremen-
tal solver is not advantageous. In Fountain-P11 specifically,
the solver takes several bad steps while trying to fully con-
verge, which slows it down. We plan to address this issue in
the future. Note that SLAM++ also supports GPU accelera-
tion but we only had GeForce GTX 970 which has very low

y = 1.4775x2.5654

y = 0.0154x1.9943

y = 0.0088x1.663

1E-2

1E-1

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

1E+6

0 20 40 60 80

C
u

m
u

la
ti

ve
 M

ar
gi

n
al

s
Ti

m
e

 [
se

c]

Step

 Ila ICRA15 Backsubstitution Recursive Formula Proposed

1E-14

1E-12

1E-10

1E-8

1E-6

1E-4

1E-2

1E+0

0 20 40 60 80
M

ar
gi

n
al

 C
o

va
ri

an
ce

s
R

e
la

ti
ve

 E
rr

o
r

Step

 Ila ICRA15 Recursive Formula Proposed

Figure 3: Incremental covariance recovery analysis on Cathedral;
top–time evaluation, bottom–precision evaluation.

performance in double-precision numbers and we obtained
only a modest speedup. The times measured with this GPU
were omitted to save space.

Covariance recovery performance: The proposed
method for recovering block diagonal of the covariance ma-
trix was tested on several datasets and reported in 2. The
full covariance is a dense matrix and for large systems, it is
prohibitive to recover all its elements. The marginal covari-
ances on the block diagonal are required by most of the ap-
plications. Elements of the covariance matrix are calculated
differently by each solver. For Ceres, the SuiteSparse QR
option was used, being the most adequate for sparse prob-
lems. For g2o, recursive formula was used to obtain only
the block diagonal elements. Note that, in both cases, an
extra Cholesky factorization of Λ is required. SLAM++ has
a more efficient implementation of the recursive formula,
accompanied by the incremental updates [16]. While suit-
able for SLAM problems where the rank of the update is
typically very small, for BA it requires a dense inverse of
the innovation matrix that requires large amounts of space
and time, as reported in the table. The proposed covari-
ance calculation reusing the Schur complement in (20) does
not require any extra factorization and has low asymptotic
cost. The recovered covariances were compared to refer-
ence calculated using backsubstitution by taking L2 norm
of the difference.

A comparative evaluation of the cost and precision of
the recursive formula implementation in SLAM++, method

Dataset Loop Fountain-P11 New College TUM Frei3 Cathedral F&F 6 Boreas∗

Num. of Cameras/Points 180/3600 11/58817 224/26935 326/40435 92/57957 160/136453 1772/170018

Num. of Observations 119642 171026 87532 134620 422163 466262 455776

Schur-g2o 478.073 s 21.70021.70021.700 s 335.656 s 635.853 s 685.928 s 1282.380 s 19578.700 s

Schur-Ceres 317.080 s 36.258 s 92.106 s 1047.801 s 483.320483.320483.320 s 955.074 s 15138.994 s

Schur-SLAM++ 265.511 s 149.331 s 50.418 s 345.821 s 739.483 s 1158.909 s 20876.609 s

incSchur-Proposed (12) 191.454191.454191.454 s 69.882 s 13.66813.66813.668 s 119.671119.671119.671 s 705.738 s 889.026889.026889.026 s 9541.6809541.6809541.680 s

Num. of Iterations? 755/179 112/19 305/223 1275/325 910/91 1590/159 35490/3549

Schur-g2o (RMSE) 0.796 px 0.684 px 2.639 px 8.789 px 3.208 px 1.381 px 2.616 px

Schur-Ceres (RMSE) 1.787 px 0.303 px 5.730 px 7.722 px 14.028 px 7.722 px 8.466 px

Schur-SLAM++ (RMSE) 0.795 px 0.620 px 3.223 px 9.108 px 2.639 px 1.307 px 12.575 px

incSchur-Proposed (RMSE) 0.795 px 0.616 px 2.884 px 8.479 px 2.644 px 1.557 px 6.022 px

Table 1: Nonlinear solving performance (best times in bold). ?The number of iterations for the proposed incremental until convergence
(δ < 0.005) / number of steps. ∗Boreas is an asynchronous multi-cameras rig dataset.

Dataset Loop Fountain-P11 New College TUM Frei3 Cathedral F&F 6

Time proposed (20) 13.59013.59013.590 s 1.7651.7651.765 s 20.05020.05020.050 s 62.24062.24062.240 s 18.14618.14618.146 s 61.82761.82761.827 s

Error w.r.t. backsubstitution 1.91·10−8 1.83·10−4 3.58·10−9 3.51·10−9 5.35·10−7 2.83·10−7

Memory proposed 5.23 MB 1.78 MB 2.91 MB 4.88 MB 4.73 MB 6.40 MB

Ceres backsubstitution 3014.174 s 2556.740 s 6370.129 s 28926.793 s 34926.434 s 170835.508 s

g2o recursive formula 1029.138 s 10.052 s 233.087 s 456.748 s 808.790 s 999.471 s

Time [16] 2422.103 s 73.435† h 988.436 s 4824.560 s 126.919† h 80.979† h

Memory required in [16] 207.16 MB 23.66 GB 686.29 MB 1.80 GB 18.64 GB 24.96 GB

Time SLAM++ recursive formula 62.429 s 17.921 s 227.909 s 65.851 s 117.904 s 165.532 s

Table 2: Timing results of the evaluated covariance recovery methods (best times in bold). †Some of the runs required too much memory
and had to be calculated on a slightly different system with 256 GB of RAM, please refer to section 4 for more details.

of [16] and the proposed method is shown in 3. Note that
the proposed method is significantly faster while also be-
ing precise and that the final value of the recursive formula
(117.904 s) is still several times lower than that of g2o or
Ceres in 2. The method of [16] is imprecise due to handling
extremely large dense matrices and calculating dot prod-
ucts of extremely long vectors. Special treatment would be
needed to make it numerically stable in such conditions.

5. Conclusions

This paper proposed methods to efficiently obtain incre-
mental updates of the BA solution every step a camera and
corresponding points are incorporated into the system. We
propose an incremental Schur complement formulation that
brings up to threefold reduction in solving time if the up-
dates are sparse. If the updates are dense, it gracefully de-
generates to batch solving. Moreover, a highly efficient co-
variance recovery technique was integrated, and was shown
to be more than one order of magnitude faster than the
existing implementations while having only modest mem-
ory requirements. This is the first existing solver that can
provide the covariances of the estimate in BA at the cost

comparable to that of NLS solving. Both features are ex-
tremely important in applications where an immediate feed-
back about the 3D reconstruction is required to guide the
acquisition. In the future, we plan to perform more eval-
uations on a Tesla-class GPU and to see if the proposed
method could be adapted to commodity hardware and per-
haps even for embedded GPUs onboard robotic platforms.
Most of the time in calculating the marginals is spent in (20)
which is a simple sparse matrix multiplication and a reason-
able speedup can be expected from a GPU implementation.
The implementation of the proposed method can be found
at http://sf.net/p/slam-plus-plus/.

6. Acknowlegments

This research was supported by the ARC through
the “Australian Centre of Excellence for Robotic Vision”
CE140100016 and by the Ministry of Education, Youth
and Sports of the Czech Republic from the NPU II project
IT4Innovations excellence in science (LQ1602), the TA-CR
Competence Centres project V3C Visual Computing Com-
petence Center (no. TE01020415) and research project no.
VI20172020068.

References
[1] P. Agarwal, G. D. Tipaldi, L. Spinello, C. Stachniss, and

W. Burgard. Robust map optimization using dynamic co-
variance scaling. In IEEE Intl. Conf. on Robotics and Au-
tomation (ICRA), pages 62–69. IEEE, 2013.

[2] S. Agarwal and K. Mierle. Ceres solver. http://
ceres-solver.org/, 2012.

[3] S. Agarwal, N. Snavely, S. Seitz, and R. Szeliski. Bundle
adjustment in the large. In Computer Vision – ECCV 2010,
pages 29–42. 2010.

[4] S. Agarwal, N. Snavely, I. Simon, S. M. Seitz, and
R. Szeliski. Building rome in a day. In Intl. Conf. on Com-
puter Vision (ICCV), Kyoto, Japan, 2009.

[5] A. Björck. Numerical methods for least squares problems.
SIAM, 1996.

[6] R. H. Byrd, R. B. Schnabel, and G. A. Shultz. Approxi-
mate solution of the trust region problem by minimization
over two-dimensional subspaces. Mathematical Program-
ming, 40(1–3):247–263, 1988.

[7] M. Byröd and K. Åström. Conjugate gradient bundle ad-
justment. In Eur. Conf. on Computer Vision (ECCV), pages
114–127. Springer Heidelberg, 2010.

[8] T. Davis. Csparse. http://www.cise.ufl.edu/
research/sparse/SuiteSparse/.

[9] F. Dellaert and M. Kaess. Square Root SAM: Simultane-
ous localization and mapping via square root information
smoothing. Intl. J. of Robotics Research, 25(12):1181–1203,
Dec 2006.

[10] C. Engels, H. Stewénius, and D. Nistér. Bundle adjustment
rules. In Symp. of ISPRS Commision on Photogrammetric
Computer Vision, pages 266–271, Sep 2006.

[11] A. Eudes and M. Lhuillier. In IEEE Conf. on Computer Vi-
sion and Pattern Recognition (CVPR).

[12] R. Eustice, H. Singh, J. Leonard, and M. Walter. Visu-
ally mapping the RMS Titanic: Conservative covariance es-
timates for SLAM information filters. Intl. J. of Robotics
Research, 25(12):1223–1242, Dec 2006.

[13] G. H. Golub and R. J. Plemmons. Large-scale geodetic least-
squares adjustment by dissection and orthogonal decomposi-
tion. Linear Algebra Appl., 34:3–28, 1980.

[14] G. Guennebaud, B. Jacob, et al. Eigen v3. http://
eigen.tuxfamily.org, 2010.

[15] P. J. Huber. Robust statistics. Springer Heidelberg, 2011.
[16] V. Ila, L. Polok, M. Šolony, P. Smrž, and P. Zemčı́k. Fast

covariance recovery in incremental nonlinear least square
solvers. In IEEE Intl. Conf. on Robotics and Automation
(ICRA), pages 4636–4643, May 2015.

[17] V. Ila, L. Polok, M. Šolony, and P. Svoboda. SLAM++-A
highly efficient and temporally scalable incremental SLAM
framework. Intl. J. of Robotics Research, Online First(0):1–
21, 2017.

[18] V. Indelman, R. Roberts, C. Beall, and F. Dellaert. Incremen-
tal light bundle adjustment. In British Machine Vision Conf.
(BMVC), pages 134.1–134.11. BMVA Press, 2012.

[19] Y. Jeong, D. Nister, D. Steedly, R. Szeliski, and I.-S.
Kweon. Pushing the envelope of modern methods for bun-

dle adjustment. IEEE Trans. Pattern Anal. Machine Intell.,
34(8):1605–1617, 2012.

[20] Y.-D. Jian, D. Balcan, and F. Dellaert. Generalized subgraph
preconditioners for large-scale bundle adjustment. In Out-
door and Large-Scale Real-World Scene Analysis, volume
7474 of Lecture Notes in Computer Sci., pages 131–150.
Springer Heidelberg, 2012.

[21] M. Kaess and F. Dellaert. Covariance recovery from a square
root information matrix for data association. Robotics and
Autonomous Syst., 2009.

[22] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. J. Leonard,
and F. Dellaert. iSAM2: Incremental smoothing and map-
ping using the Bayes tree. Intl. J. of Robotics Research,
31:217–236, Feb. 2011.

[23] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and
W. Burgard. g2o: A general framework for graph optimiza-
tion. In Proc. of the IEEE Int. Conf. on Robotics and Au-
tomation (ICRA), Shanghai, China, May 2011.

[24] M. I. Lourakis, A. Argyros, et al. Is Levenberg-Marquardt
the most efficient optimization algorithm for implementing
bundle adjustment? In Intl. Conf. on Computer Vision
(ICCV), volume 2, pages 1526–1531. IEEE, 2005.

[25] M. I. Lourakis and A. A. Argyros. SBA: A software package
for generic sparse bundle adjustment. ACM Trans. Math.
Software, 36(1):2, 2009.

[26] L. Moisan, P. Moulon, and P. Monasse. Automatic homo-
graphic registration of a pair of images, with a contrario
elimination of outliers. Image Processing On Line, 2:56–73,
2012.

[27] P. Moulon, P. Monasse, R. Marlet, and Others. OpenMVG.
https://github.com/openMVG/openMVG.

[28] R. Mur-Artal, J. Montiel, and J. D. Tardós. ORB-SLAM:
A versatile and accurate monocular SLAM system. IEEE
Trans. Robotics, 31(5):1147–1163, 2015.

[29] K. Ni, D. Steedly, and F. Dellaert. Out-of-core bundle ad-
justment for large-scale 3D reconstruction. In Intl. Conf. on
Computer Vision (ICCV), Rio de Janeiro, October 2007.

[30] M. Pollefeys, M. Vergauwen, K. Cornelis, J. Tops, F. Ver-
biest, and L. V. Gool. Structure and motion from image se-
quences. In Proc. Conf. on Optical 3-D Measurement Tech-
niques, pages 251–258. Vienna University of Technology,
2001.

[31] L. Polok, V. Ila, and P. Smrž. Fast sparse matrix multiplica-
tion on GPU. In Proc. of the High Performance Computing
Symp. ACM, 2015.

[32] L. Polok, V. Ila, M. Šolony, P. Smrž, and P. Zemčı́k. In-
cremental block Cholesky factorization for nonlinear least
squares in robotics. In Robotics: Science and Systems (RSS),
2013.

[33] L. Polok, V. Lui, V. Ila, T. Drummond, and R. Mahony. The
effect of different parameterisations in incremental structure
from motion. In Australian Conf. on Robotics and Automa-
tion (ACRA), December 2015.

[34] L. Polok, M. Šolony, V. Ila, P. Zemčı́k, and P. Smrž. Effi-
cient implementation for block matrix operations for nonlin-
ear least squares problems in robotic applications. In IEEE
Intl. Conf. on Robotics and Automation (ICRA). IEEE, 2013.

[35] M. J. Powell. A hybrid method for nonlinear equations. Nu-
merical methods for nonlinear algebraic equations, 7:87–
114, 1970.

[36] D. Rosen, M. Kaess, and J. Leonard. An incremental trust-
region method for robust online sparse least-squares esti-
mation. In IEEE Intl. Conf. on Robotics and Automation
(ICRA), pages 1262–1269, St. Paul, MN, May 2012.

[37] M. Smith, I. Baldwin, W. Churchill, R. Paul, and P. Newman.
The new college vision and laser data set. Intl. J. of Robotics
Research, 28(5):595–599, May 2009.

[38] N. Snavely, S. M. Seitz, and R. Szeliski. Skeletal graphs for
efficient structure from motion. In IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR), 2008.

[39] H. Strasdat. Local Accuracy and Global Consistency for Ef-
ficient Visual SLAM. PhD thesis, Imperial College London,
UK, 2012.

[40] C. Strecha, W. von Hansen, L. Van Gool, P. Fua, and
U. Thoennessen. On benchmarking camera calibration and
multi-view stereo for high resolution imagery. In IEEE Conf.

on Computer Vision and Pattern Recognition (CVPR), pages
1–8. IEEE, 2008.

[41] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cre-
mers. A benchmark for the evaluation of RGB-D SLAM
systems. In IEEE/RSJ Intl. Conf. on Intelligent Robots and
Systems (IROS), Oct. 2012.

[42] N. Sünderhauf and P. Protzel. Switchable constraints for ro-
bust pose graph SLAM. In IEEE/RSJ Intl. Conf. on Intel-
ligent Robots and Systems (IROS), pages 1879–1884. IEEE,
2012.

[43] S. Thrun, Y. Liu, D. Koller, A. Ng, Z. Ghahramani, and
H. Durrant-Whyte. Simultaneous localization and mapping
with sparse extended information filters. Intl. J. of Robotics
Research, 23(7–8):693–716, 2004.

[44] B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W. Fitzgib-
bon. Bundle adjustment – a modern synthesis. In Vision
Algorithms: Theory and Practice, pages 298–372. Springer
Heidelberg, 1999.

