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Objectives. At present, medical thermal imaging is still considered a mere qualitative tool enabling us to distinguish between but
lacking the ability to quantify the physiological and nonphysiological states of the body. Such a capability would, however,
facilitate solving the problem of medical quantification, whose presence currently manifests itself within the entire healthcare
system. Methods. A generally applicable method to enhance captured 3D spatial data carrying temperature-related
information is presented; in this context, all equations required for other data fusions are derived. The method can be
utilized for high-density point clouds or detailed meshes at a high resolution but is conveniently usable in large objects with
sparse points. Results. The benefits of the approach are experimentally demonstrated on 3D thermal scans of injured subjects.
We obtained diagnostic information inaccessible via traditional methods. Conclusion. Using a 3D model and thermal image
data fusion allows the quantification of inflammation, facilitating more precise injury and illness diagnostics or monitoring.
The technique offers a wide application potential in medicine and multiple technological domains, including electrical and
mechanical engineering.

1. Introduction

In recent years, the availability of thermal imagers has moved
from expensive, bulky, and cumbersome systems to afford-
able and practical solutions [1]. Applicable sensors and filters
have been developed to such an extent that thermal cameras
can be found already in smartphones at prices up to 700 EUR
[2]. Due to such rapid progress, thermal imaging is being
practically employed on an everyday basis also in fields and
disciplines where it previously functioned as an instrument
convenient exclusively for research purposes.

In the given context, a typical target field is, for example,
medicine: digital medical thermal imaging (DMTI), a modal-
ity of medical imaging to monitor surface skin temperature,
has been evolving over the last 50 years to contribute towards
improving evidence-based diagnosis and facilitating the early
detection of diseases.

Within medicine, current applications of the technique
are to be sought primarily within clinical procedures centred

on assessing and monitoring peripheral vascular, neurologi-
cal, and musculoskeletal conditions within multiple medical
subdisciplines, including cardiology, dermatology, dentistry,
obstetrics, oncology, physiotherapy, public health, surgery,
and veterinary medicine, and the investigation of chronic
and occupational diseases [3].

Although the 2D thermal imaging is able to quantify the
temperature of the individual pixels of the image, the DMTI
is still considered a mere qualitative tool, enabling us to dis-
tinguish between the physiological and nonphysiological
states of the body but lacking the ability to quantify them
[3, 4]. This is due to three main drawbacks of DMTI: almost
impossible definition of the region of interest (ROI) in a
thermal image due to lack of recognizable clearly bounded
thermal features in the image, distortions caused by trans-
forming 3D world to 2D representation, and dependence of
the thermogram on the view of the camera. The first draw-
back makes measurements of average ROI temperature
impossible, the same as differential measurements between
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two ROIs, what are the main methods of medical thermal
quantification (the single thermal values are not used for
quantification, since the surface body temperature is influ-
enced by previous physical activity, stress, etc. From this
reason, the comparison between average temperatures of
the reference area and ROI shall be used). The second
drawback disallows also measurements of an affected area,
and the third one disqualifies evaluation of changes during
the time.

Nearly all types of injury, together with many diseases or
pathological changes, are characterized by an increased blood
flow and a stronger cellular metabolic rate in the affected
region; the two aspects cause a local increase of temperature
proportional to the phenomenon [5]. This proportional
dependence predetermines that quantification via DMTI
should be possible.

Another rapidly advancing technology consists in 3D
scanning. 3D surface models find increasingly intensive use
in situations where an object must be preserved in a perma-
nent, time-invariant state. In such cases, colour-covered 3D
models seem to constitute the best modality [6]. Further, at
present, object cloning could also be named as a dynamically
growing domain. Multiple types of 3D printers are available
on the market, and each of them requires a tool to build the
3D model to be printed [7]. Finally, computer-based 3D
models are, due to their plasticity, becoming ever more
favoured in the visualization of objects characterized by good
visibility but also a small size of major details, which then
have to be enlarged plastically [8]. These solutions and appli-
cations, by definition, exhibit a strong potential to be used
also in healthcare too.

If combined, the two above-outlined, state-of-the-art
technologies could yield a volume of new information even
higher than that obtainable through their separate use. Such
data fusion would subsequently enable us to address some
of the long-term challenges to be resolved within diverse
medical sectors.

One such problem lies in medical quantification, an issue
encompassing the entire healthcare system: evaluation
methods excessively inaccurate, insensitive, or subjective
embody a principal drawback affecting, for example, derma-
tology, traumatology, physiotherapy, and forensic sciences.

In dermatology, the degree of objectivity in evaluating
disease severity and the extent of lesions is still insufficient,
due in particular to the lack of reliable in vivo quantification
methods to assess the concrete region of interest only.

Traumatology and forensic sciences suffer from the
absence of methods to cope with the quantification of bruise
severity, often through time.

In physiotherapy, techniques are unavailable for detect-
ing early tiny changes in the body volume, a possible symp-
tom of an emerging disease. It is also rather difficult to
distinguish between physiological (e.g., muscle growth) and
nonphysiological (e.g., swelling) changes, and the impact of
treatment procedures on a disease cannot be quantified
smoothly, because the current evaluation methods are mostly
based on subjective perception, health surveys and related
forms, or low-resolution scoring systems exhibiting poor
interobserver correlation.

These and many other issues are solvable using 3D ther-
mal quantification. An effective approach appears to consist
in extending a 3D scanner with a thermal imaging sensor
and mapping relevant thermal information onto the surface
of the 3D model via data fusion algorithms (Figure 1) [9].

Such a combination of sensors generates a multilayered
3D model of the patient’s body, containing the temperature
at each surface point and embodying an extension of the
3D volume that constitutes the output of a standard 3D scan-
ner. By studying the distribution of the temperatures along
the surface of the body, we can then easily localize and, sub-
sequently, quantify the inflammation foci (in the sense of the
average temperature gradient in the affected region or its
extent). At the following stage, the volume increment caused
by swelling can be precisely measured.

Besides inflammation monitoring, merging thermal and
spatial data allows several other medical applications. While
inflammation increases the local temperature, necrosis leads
to its decrease; thus, the device characterized herein can be
used in, for example, monitoring diabetic necrotic tissues.

This paper discusses data fusion algorithms to merge a
3D model (captured by any 3D scanner) and thermal
images (captured by any thermal imager). In this context,
the following section introduces a generally applicable
process of combining the thermal and spatial data; impor-
tantly, the related significance and usefulness for medical
diagnosis are experimentally demonstrated on 3D thermal
models of real patients.

2. Materials and Methods

The section outlines a procedure for merging 3D data and
thermal images. The algorithms introduced below are

Figure 1: Visualizing the data fusion process: the 3Dmodel from a 3D scanner (left) is combined with the 2D thermal images obtained using a
thermal camera (middle) to produce the final 3D thermal model (right).
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applicable to a general digital 3D model of an object provided
by any 3D scanner and usable with the general thermal data
produced by any thermal imager. The only requirement is
to know the location and orientation of the camera relevant
to each captured image. After this condition has been satis-
fied, the data fusion algorithm is fully automatic and does
not require manual assistance.

The entire algorithm is set forth within the diagram in
Figure 2, and all the procedures are further explained in the
following sections.

2.1. Standardizing Inputs. Various 3D scanners provide the
output data in diverse, more or less standardized, digital
formats. Even though the protocol, structure, and data
type vary between the different forms, they share a com-
mon feature: the data can be considered a triangle mesh,
namely, a set of triangles defined by three points, with
each of these defined by three coordinates in the Cartesian

space. The data may assume the shapes of another polygon
mesh (e.g., a quadrilateral mesh or a set of quadrilaterals)
or an unordered set of points (point cloud) [10]. The first
type is easily transferable to triangle mesh because every con-
vex polygon can be divided to a number of triangles [11], and
the other one enables conversion to a triangle mesh via
any triangulation algorithm [12], for example, a Delaunay
triangulation [13].

Thermal imagers also exhibit different file formats; in all
cases, however, the thermal data are obtainable as a 2D
matrix of scalar temperature values. Some cameras supply
such matrices directly, while others provide coloured images
in the bitmap form. In the latter option, the transformation
scale between the colour and the temperature values is
yielded, whereby the colours can be translated to scalars
[14]. In general terms, however, the thermal data are
represented as a 2D matrix where each value refers to the
temperature of a particular pixel.

Single image temperature mapping
for each thermal image

Single ray tracing
For each point of 3D model

Standardizing inputs

Computing prerequisites

Checking point visibility

Checking 3D model crossing

Mapping temperature value to point

Point directly visible on thermal image

Point in camera field of view

Combining multiple mapped image

3D model with assigned
thermal values 

3D model with thermal
surface 

Next point
Otherwise

Next thermal image

3D model Thermal images

Figure 2: A schematic diagram of the data fusion algorithm.
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The discussion below also presumes no radial and
tangential distortion of the image, meaning that the input
images shall be already preprocessed according to the intrin-
sic parameters of the camera.

Proper image alignment is achievable if the following
thermal imager parameters are known:

(1) Location of the camera focus in space (vector T f rom)

(2) Camera view direction (unit vector T to )

(3) Direction defining “up” in the camera image (unit

vector Tup , perpendicular to T to )

(4) Angle of view of the camera in the horizontal (δH)
and vertical (δV) dimensions (in radians)

(5) Focal distance of the camera optics (scalar T FD)

(6) Number of values (resolution) in the thermal
image along the horizontal (IW) and vertical (IH)
dimensions.

The first three parameters are usually measured directly
using various tracking systems [15] or estimated from scene
changes (ICP-based methods, [16]). Parameters 4–6 are
mostly known from the technical documentation of the
camera; alternatively, they can be acquired through the
calibration method published in [17].

It is important to emphasize that these 6 parameters exert
a significant influence on proper matching between the ther-
mal images and the 3D model, and we thus need to know
them with a high accuracy. The calibration methods relevant
to these tasks are characterized in [17–19]. The properly
mutually calibrated sensors, providing these 6 parameters
with high accuracy and then ensuring correct registration
of thermal images onto the 3D model, are assumed in
further text.

2.2. Computing Prerequisites. The computations below are
associated with certain prerequisites, which can be computed
once per mapped image (Figure 3) in order to keep the
algorithm fast.

The position of the thermal image, located in real coordi-

nates and defined by its top-left ( ITL ), top-right ( ITR ),

bottom-left ( IBL ), and bottom-right ( IBR ) corners, is com-
putable as

ITL = T FD ∗ T to + ICU + ICL ,
ITR = T FD ∗ T to + ICU − ICL ,

IBL = T FD ∗ T to − ICU + ICL ,

IBR = T FD ∗ T to − ICU − ICL ,

1

where the vectors ICU and ICL point away from centre of the
image, upwards or leftwards. Both the vectors are shortened
by one half of a pixel size as each pixel represents the average
colour on its surface. We then have

ICU = Tup ∗ tan
δV
2

∗ T FD ∗ T to ∗ 1 −
1
IH

,

ICL = T lef t ∗ tan
δH
2

∗ T FD ∗ T to ∗ 1 −
1
IW

,

T lef t = norm Tup × T to

2

The size of a single pixel in the horizontal (SH) and
vertical (SV) dimensions can be derived as follows:

SH = 2
tan δH/2 ∗ T FD ∗ T to

IW
,

SV = 2
tan δV/2 ∗ T FD ∗ T to

IH

3

2.3. Single Image Temperature Mapping. The central concept
of the mapping algorithm is to trace the rays between the
thermal imager’s origin and each point of the scanned 3D
model. For each point of the 3D model, the steps to be taken
are as shown in the following portion of the article: this single
mapping procedure is performed for each thermal image,
resulting in the assignment of several thermal values to each
point of the 3D model (the number of the thermal values
assigned to a single point is given by the number of those
images where the particular point is directly visible).

2.3.1. Checking the Point Visibility. In the initial phase, we

need to check whether the point ( P ) lies within the imager’s

field of view, namely, if the ray PR = P − T f rom from the
imager’s focus to the point intersects the plane in which the
thermal image is located (the plane is defined by three arbi-

trary points from the image corner points ITL , ITR , IBL ,

and IBR ).

ITL ITR

IBL IBR

Tfrom

Tup

δH

δV

ICU

ICL
Tleft

PI

P
h,v XH

XV

PH

PV

SH

SV

P R
T tO

T FD

Figure 3: The meaning of the main variables from the thermal
image mapping algorithm. Here, the red variables are the
positional vectors; the blue ones denote the directional vectors;
and the green values represent the scalars.
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If we find an intersection point (PI), the algorithm is left
to continue; otherwise, we skip the related following steps
and continue with step 1 for the next point of the 3D model.

Then, it has to be established whether PI lies within the
thermal image rectangle. This is true when all the following
conditions are satisfied [20]:

norm IBR − IBL ⋅ norm PI − T from − IBL > 0,

norm ITR − IBR ⋅ norm PI − T from − IBR > 0,

norm ITL − ITR ⋅ norm PI − T from − ITR > 0,

norm IBL − ITL ⋅ norm PI − T f rom − ITL > 0

4

If, however, the above items are not fulfilled, we skip
again.

2.3.2. Checking the 3D Model Crossing. Satisfying the condi-
tions above does not suffice to determine if a point is directly
visible, as that point can be hidden behind a part of the 3D

model. Thus, we are obliged to check if the ray PR intersects
the 3D model or not.

The simplest procedure to find the intersection consists in

verifying whether the ray PR intersects any of the triangles
which constitute the 3D model. To check the ray-triangle
intersection, the algorithm from source [21] is used.

The algorithm iterates throughout all the triangles. When
the ray-triangle intersection is located, the iteration stops,
and we skip. With all the triangles checked without the inter-

section found, the point P is directly visible from T f rom, and
we continue with the last step; otherwise, the stage is skipped.

2.3.3. Mapping the Temperature Values to the Point.After the
direct visibility has been proved, the temperature value for
the given point is computed as the linear interpolation
between the 4 nearest neighbouring pixels, taking into

account the distance from the intersection PI to the pixels.
The indices (the horizontal index h and vertical index v)

of the nearest pixel from PI in the top-left direction are deter-
mined as follows:

h = f loor
PH
SH

,

v = floor
PV
SV

,

PH = norm IBL − ITL × PI − T f rom − ITL ,

PV = norm ITL − ITR × PI − T from − ITR

5

The distance of the intersection PI from this pixel
(expressed as a percentage of the pixel size) in the horizontal
(XH) and vertical (XV) directions is

XH =
PH mod SH

SH
,

XV =
PV mod SV

SV

6

The temperature tP belonging to the point P is then
interpolated from the temperatures of the neighbouring
pixels th,v , th+1,v, th,v+1, and th+1,v+1:

tP = interp interp th,v, th,v+1, XH ,

interp th+1,v, th+1,v+1, XH , XV ,

interp t1, t2, d = 1 − d ∗ t1 + d ∗ t2

7

2.4. Combining Multiple Mapped Images. The temperature
mapping procedure outlined in the previous section assigns
several temperature values to each point visible in the ther-
mal image. If more overlapping thermal images are mapped,
then a correspondingly increased count of values is assigned
to a single point of the 3D model.

Pursuing the development of medical thermography, we
use long-wave infrared thermal imagers (LWIR) to detect
the thermal radiation from the scene; such radiation consists
of the reflected and the emitted forms [22]. The typical emis-
sivity of a naked human body ranges between 0.93 and 0.96
[23], meaning that the major part of the radiation detected
by a thermal imager consists in the emitted form; reflected
radiation thus plays a minor role.

Our experiments also show the validity of this claim in
that the values belonging to a single point of the 3D model,
acquired via the images captured from several different ori-
entations, varied at the sensor noise level only. Thus, the
thermal radiation reflection can be considered negligible.

The final point temperature value is thus simply comput-
able as the average temperature from all the values associated
with the particular point.

2.5. Optimizing the Algorithm Performance. Even though the
algorithm to check the ray-triangle intersection [21] is very
fast, iterating throughout the entire set of triangles remains
significantly slow.

The procedure execution time can be markedly decreased
by a hierarchical structure allowing us not to check triangles
remote from the ray. The presented algorithm exploits a
modification of the octree data structure, facilitating the
partitioning of the 3D space by recursive subdivision into
eight octants [24, 25].

The minimal rectangular spatial area aligned with the
axes into which the model extends is divided into a number
of same-sized cubes. The triangles of the 3D model are split
to form cubes respecting their relevant locations in the 3D
space. To enable the assignment to a cube, at least one point
of a triangle shall be in its spatial area.

Every eight neighbouring cubes are encapsulated in a
bounding box with a double-length edge; such boxes are then
encapsulated in another bounding box and so forth. If a cube
does not have an assigned triangle, it is completely removed,
similarly to a bounding box with no child cube. If a bounding

5Journal of Healthcare Engineering



box has only one child, it is substituted by that single child.
The result is a tree hierarchical structure (Figure 4).

When testing the 3D model intersection, we start at
the top-level bounding box, checking the intersection; if
a ray crosses, we check the intersection with the 8 subboxes
and so on. Using this approach, we finally reach the cubes
at the lowest levels, which are intersected by the ray. Only
the triangles belonging to these cubes are tested for inter-
section. The method distinctly decreases the number of
tested triangles, exerting a positive effect on the image
mapping performance.

As the algorithm computational time depends on multi-
ple parameters, including, for example, the complexity of a
particular 3D model, its resolution, thermal image capturing
directions, and the order of the points stored in the memory,
it is impossible to estimate the computational effort.

To obtain a rough estimate of the optimization perfor-
mance, we conducted an experiment where an object was
scanned by means of a 3D scanner and a thermal imager in
exactly the same manner but at different resolutions. The
scanned area corresponded to 100× 100mm, with the fixed
resolution of 64 points per mm in one axis and the variable
resolution of from 0.2 to 20 points in the other. As a result,
the number of points fluctuated between 14 thousand and
2.5 million. The results are presented in Figure 5. Here, the
grey line indicates the performance without optimization,
which grows rapidly even when the resolution still remains
very low. The blue line shows the performance in the
condition where the octree cube size fixed at 5mm, a solution
linear from the beginning but also exhibiting the tendency
towards fast growth with the increasing number of points.
The orange line then represents the optimization perfor-
mance in the scenario of the octree tube adapted according
to the average distance between the neighbouring points;
this configuration has approximately linear characteristics,
pointing to the fact that octree optimization reduces the
computational complexity.

3. Results

The result of the data fusion method described above lies in a
3D point cloud or a mesh in the same form as that captured
by the 3D scanner, enhanced through the thermal informa-
tion linked with each point of the digital model.

The experiments showed that combining the 3D spatial
and thermal data will yield new diagnostic outcomes unavail-
able with the 3D scanner and thermal imager used separately.

The algorithms were verified in detailed high-resolution
meshes captured via RoScan, a robotic 3D scanner able to
provide 3D models having a resolution better than 0.1mm
[8, 26, 27]. The thermal images were taken using a LWIR
thermal camera Xenics GOBI1954 with the resolution of
384× 288 pixels, pixel pitch of 25 μm, and spectral response
in the wavelength range of 8–14 μm. To establish a computa-
tional unit, we employed a desktop computer having an Intel
Core i7-4790K processor at 4.00GHz; 32GB RAM; and an
NVIDIA GeForce GTX 970 GPU.

Due to the octree optimization, the data fusion was quick:
the 3D models with 500,000 points merged with the 10
thermal images in only 27 seconds. The resulting data were
conveyed in the standard PLY format [28, 29], facilitating
the import to multiple 3D analysing software tools; in our
experiments, the CloudCompare opensource software was
used [30].

The screenshots from the temperature-mapped 3D
models are shown in the related images. Figure 6 intro-
duces a high-density 3D model of a hand in the physiological
condition, with the thermal 3D image displaying even the
tiniest details.

Figure 7 presents an inflamed toe after the injury and
following the recovery. The injury induced merely light
pain, and no other symptoms were observed. A significant
temperature increment of 5.12°C is visible in the 3D scan
of the afflicted toe; this bodily part also exhibited the vol-
ume increment of 5%. Seventy-four hours later, after the
recovery, no symptoms or pain was observed; however,
the increased temperature was still present in the toe, indi-
cating that the subject had not fully recovered by then. In
this context, let us note that the inflammation appears to
be determinable and measurable in its very roots, before
becoming painful. This finding can benefit, for example,
top-class athletes and other sportsmen in their efforts to
prevent injuries.

Figure 8 demonstrates the ability to measure objects
inside the inner tissue, which are otherwise not observable
or measurable via traditional approaches. The subject
informed us of the injury approximately 2 months ago, and
he mentioned an unusual feeling perceived when touching
a hard surface with the afflicted finger. The suspected cause
consisted in an encapsulated glass shard of unknown dimen-
sions. Although this location could be examined via MRI or
CT, these methods are too expensive if employed for the
given purpose. Our approach, then, was significantly cheaper
while providing the same information; the thermal data
served towards defining the boundaries of the encapsulated
shard, and the 3D model facilitated precise measurement of
the item’s dimensions.

x

y

z

Figure 4: The spatial division employed in the octree hierarchical
cubes.
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It has to be stressed that all the diagnostic information
acquired in the cases displayed in Figures 7 and 8, that is,
the average temperature and dimensions of the selected
region, would not have been available without merging the
thermal images and the 3D model. This fact then aptly dem-
onstrates the benefits of the proposed technique.

4. Discussion

The described method to merge sets of 2D thermal images
with a digital 3D model appears to contribute new diagnostic
data unobtainable via traditional methods or through using
thermal imaging or 3D scanning separately. The present
paper characterizes an algorithm for a general 3D model
and images, regardless of the data format. This approach
allows us to employ the algorithms also in other research
applications or medical diagnostic tools.

Considering its principles, the method is suitable for
rendering high-density point clouds or detailed meshes at a
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Figure 5: A rough estimation of the optimization performance.

Figure 6: A temperature-mapped 3D model of a hand in the
physiological condition. Higher temperatures are observable in the
vicinity of the vessels and veins, while lower ones can be located
around the joints. The high thermal conductivity of the ring cools
the element down, even when put on the finger.

Figure 7: (a) A stubbed toe captured 2 hours after the injury; a
precise 3D scan enables us to measure the inflamed area and
the swelling-induced volume increase. (b) The same scene 74
hours after the injury; the volume and temperature of the toe
have decreased.

4.03 mm

6.66 mm

Figure 8: Measuring the dimensions of a glass shard encapsulated in
the inner tissue of the finger, unobservable via traditional methods.
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high resolution; conversely, the technique cannot be conve-
niently utilized in large objects with sparse points.

The benefits of creating 3D thermal models have already
been demonstrated on practical experiments with injured
subjects. The findings published within article [31] show that
thermal imagers constitute a useful, versatile diagnostic tool
which, when combined with 3D scanners, significantly
increases the amount of data to facilitate precise diagnostics
or monitoring.

Thismethod finds usewithin not only themedical but also
the technological domain: the data fusion between thermal
imagers and 3D scanners will bring numerous advantages
in, for example, robotic rescue systems [32, 33], where the
potential of the technique may be exploited for augmented
reality [18].

Additional Points

Main Messages. (i) 3D thermal imaging facilitates quantifica-
tion, a step not performable with 2D thermal imaging. (ii)
Combining 3D and thermal imaging yields more useful diag-
nostic data. (iii) Practical experiments on injured subjects
display possible target application cases. (iv) A general recipe
for fusing a thermal image and a 3D model is proposed,
offering broad usability with common data types.
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