
Analysis of Constrained 
Application Protocol 

Technical Report – FIT-TR-2017-15 

Ondřej Ryšavý  
Marek Rychlý 

Ondřej Ryšavý 

Technical Report no. FIT-TR-2017-15  
Faculty of Information Technology  
Brno University of Technology Brno,  
Czech Republic  
 
December, 2017

  

01  02 
 
03/1 
 

Analysis of DLMS Protocol  
 
 

Technical Report, version 1.0 
 
 

Petr Matoušek 
 
 
 
 
 
 
 

 
 
 
Technical Report no. FIT-TR-2017-13 
 
Faculty of Information Technology 
Brno University of Technology 
Brno, Czech Republic 
 
December, 2017 

 



IRONSTONE Report     © 2017, Brno University of Technology 

2 
 

Analysis of CoAP Protocol  
1. Introduction 

IoT nodes can be very lightweight in the sense of consumption, resources, and capabilities. To 
enable their communication the communication protocol should reflect the limitations of IoT 
nodes. While common Internet protocols can be used in IoT environment, new protocols 
addressing the need for IoT nodes emerges. In this report, we focus on Constrained Application 
Protocol (CoAP). It is one of the applications protocols of IoT protocol family being considered for 
standardization by IETF that also comprises MQTT, DDS, AMQP, XMPP and HTTP REST. 
 
While there are some attempts to propose a unifying architecture for IoT, many architectural 
models have been designed and applied. Common architectures for IoT are represented as three-
layered, middleware based, or five-layered. CoAP is an application protocol for IoT environment 
and can be adapted to all mentioned IoT layered architectures (see Figure 1). 
 
CoAP protocol was designed for communication in the environment of constrained nodes. The 
protocol is not intended to replace HTTP. Interoperability with typical Internet environment is 
often necessary for CoAP deployment. Typical interoperability scenario involves CoAP-HTTP 
gateway. The constrained realm of IoT devices uses CoAP application protocol to exchange data. 
When necessary to access IoT devices from the Internet the gateway performs necessary 
translations between internet application protocol (HTTP) and IoT application protocol (CoAP). 
While CoAP can be used in the Internet environment too, HTTP is usually preferred as it offers 
more robust and reliable data communication.  

2. CoAP Protocol  
Constrained Application Protocol (CoAP) is an application layer protocol for constrained 
communication in IoT applications. In principle, it follows REST paradigm and message semantics 
similar to HTTP but with lower overhead and some extensions suitable for IoT environment. CoAp 
can be carried in UDP while HTTP requires reliable transport offered by TCP. The advantage of 
adopting REST approach is in making CoAP interoperability with REST HTTP straightforward.  
 
Because of no reliable data transport is required, CoAP needs to solve the problem of reliable data 
communication. It specifies messaging sub-layer that detects duplications and assures reliable 
data delivery. The request-response layer then implements REST communications. CoAP also 

Figure 1: IoT Architecture Models 



IRONSTONE Report     © 2017, Brno University of Technology 

3 
 

provides some advanced features such as native push notifications and group communication. The 
security of data communication is ensured by using DTLS, which is an adaptation of TLS for UDP 
protocol.  
 

2.1. Resource Naming 
CoAP uses URI scheme to identify resources. URI is split in CoAP header into options each carrying 
part of the complete URI. Because of this, only the URI component can be carried in CoAP message 
saving the valuable space in CoAP message. URI for CoAP consists of four parts: 

• ( “coap:”)   - the scheme used for resource access that always is CoAP protocol. 
• (“//” Uri-Authority) – The host needed to localize the resource; this is especially important 

when virtual servers are deployed on a single host (same as in HTTP). In cases, when the 
resource can be localized by IP address this can be omitted.  

• ( “/” Uri-Path ) – absolute path of the resource, because of constrained environment, short 
path descriptors should be used. 

• ( “?” Uri-Query ) -When necessary this part represents a query part of the URI; that is a 
series of variable value pairs in the form of “key=value.” 

2.2. Messages 
The format of CoAP message is depicted in Figure 2. CoAP message contains a small header of 
fixed fields followed by options and payload. Options use a special kind of TLV encoding explained 
later and demonstrated in Figure 4. The fixed header consists of the following parts: 

• V – Version (2-bits). The current version is version 1.  
• T – Type of CoAP message (2-bits). CoAP uses four types of messages: Confirmable (0), 

Non-confirmable (1), Reset (2), and Acknowledgment (3). 
• TKL - 4-bit unsigned integer.  Indicates the length of the variable-length Token field (0-8 

bytes). 
• Code – Method or Response Code (8-bits) of a message determines the meaning of the 

message. Common method codes are GET (1), POST (2), PUT (3), DELETE (4). Response 
codes are in the interval 40-255 and denote a success of the operation or characterize the 
error. 

• Message ID – unsigned 16-bit integer stands for an identification of request-response pair 
of messages. MID is essential for reliable communication. MID must be fresh for new 
requests but must not change for retransmission of an existing request.   

• Token, if any, may be 0 to 8 bytes as given by the Token Length field.  The Token value is 
used to correlate requests and responses.  

 

 
 



IRONSTONE Report     © 2017, Brno University of Technology 

4 
 

 
 
Options sections can be empty. However, for most of the operations, some options are required. 
Options start with the type specification followed by length and value. Type specification is only 
four bits. To provide more than 16 different option types, this field does not directly represent an 
option type, but rather it is an increment to the previous option type. Thus the option type can be 
obtained by summing all option type fields up to the current option. For instance, the sequence 
of option items with type values 1,4,4,2,4 represents the following items: 
 

Type 
Value 

Option Type Option Name 

1 1 Content-type 
4 5 Uri-Authority 
4 9 Uri-Path 
2 11 Token 
4 15 Uri-Query 

 
Some options can have a variable length. The maximum size of the option value is limited to 270 
bytes because of the size of the length field. Specific TLV encoding is employed to save space in 
the options section as explained in Error! Reference source not found.. Type part is a 4-bit value 
representing an increment to previous option item. To compute the type, this value is added to 
the previous option. For the first option, it directly represents the option id. Options thus have to 
be ordered according to their IDs in the CoAP message. Length part is another 4-bits when the 
length of option value is less than 15 bytes. If the length of option’s value is between 15 and 270 
octets length is encoded in the second byte. 
 

2.3. Request/Response Model of Communication 
The CoAP basic style of communication is based on Request/Response Model. The client sends a 
request message to a server and the server answers with a response message. The character of 
response depends on the requested Type and Code.  
 
Some fields carry valuable information for matching request response messages and for 
identifying transactions. 

• Message ID is used to identify which response match the request message. Response to 
the specific request MUST have the same TID. Usually, the request has CON type, and the 
response of ACK type is expected.  

• Token is an option that is involved in non-trivial communication. Message ID determines 
only a pair of messages. If a transaction involves multiple message pairs, the token 
identifies all these messages as a part of the transaction.  

 

Figure 2: CoAP Message 



IRONSTONE Report     © 2017, Brno University of Technology 

5 
 

Some fields are critical to CoAP communication. A CoAP request message consists of the following 
mandatory fields: 
 

Field Meaning 
ID Represents a message ID. The requestor sets it for Confirmable and Non-

Confirmable messages. This ID is used to match an Ack messages.  
Type Represents a message type, which is one of the following: 

CON – confirmable message requires acknowledgment. 
NON – non-confirmable message does not require acknowledgment. 

Token The token option is used to distinguish further among concurrent 
request/response transactions. 

MethodCode Basic methods of GET, POST, PUT and DELETE with a similar meaning is in HTTP.  
URI A resource identifier is encoded using three separate options:  

• The Uri-Authority Option indicates the authority (host + port) part of a 
URI, and conforms to "host [ : port ]." 

• The Uri-Path Option indicates the absolute path part of a URI. 
• The Uri-Query Option indicates the query part of a URI (if any). 

ContentType Content-type determines application payload.  
Payload The payload can be any data in binary or text formatting. Content-type option 

determines the type of data.  
 
A CoAP response message consists of the following major fields: 
 

Field Meaning 
ID For ACK response this field should match to the corresponding CON message. 
Type Represents a message type, which is one of the following: 

ACK – message that acknowledges received confirmable message 
RST – answer to CON message that cannot be processed because of missing 
context 

Token The token option is used to correlate messages in concurrent or asynchronous 
transactions. 

ResponseCode The status code of the transaction. The most often used codes are OK (80), 
Created (81), Not Modified (124), Bad Request (160), Not Found (164) and Not 
Allowed (165).  

ContentType Content-type determines application payload. Common media types are 
text/plain (0), text/xml (1), image/gif (21), image/jpeg (22), application/link-
format (40), application/octet-stream (42), application/json (51).  

Payload The payload can be any data in binary or text formatting. Content-type option 
determines the type of data. 



IRONSTONE Report     © 2017, Brno University of Technology 

6 
 

 
2.4.  Reliable Delivery 

Transactions comprise of message exchange between clients and servers that have the same 
token. When reliable communication is required, CoAP protocol uses CONFIRMABLE message type 
to inform the remote party that ACKNOWLEDGEMENT is required. If the ACKNOWLEDGEMENT 
message is not received within predefined period, the CONFIRMABLE message is resent.  
 
Depending on whether the result can be immediately provided or not there are two possible 
scenarios as explained in Figure 4. 

• If the result is available, the response is sent immediately in ACK message answer. This is 
called piggybacked response.  

Figure 3: Reliable Transactions 



IRONSTONE Report     © 2017, Brno University of Technology 

7 
 

• If it is not possible to provide result immediately, then the response is sent in a separate 
message. It means that the server sends ACK response without the required result and 
when the result is available it is sent in a separate message. Figure 5 shows piggybacked 
and separated transactions.  

Observe ID of messages. In piggybacked case, both messages have the same ID. In separated case, 
there are two pairs of messages. In this case, the token value is used to link these two pairs 
together as a separated transaction. 
 
 

2.5. Unreliable Transactions 
Non-confirmable communication is simpler as the communicating parties do not require reliable 
message delivery. The client sends a request in NONCONFIRMABLE message type. The server also 
replies with the NONCONFIRMABLE message type. Note that ID of the messages may be different 
as the response does not acknowledge the request message. The correlation of these two 
messages is based on the same token value. Figure 5 shows an example of non-confirmable 
communication. 
 

2.6. Advanced Features 
CoAP protocol was extended with some advanced features to support various needs of IoT 
environments. Observers are used in scenarios when a client wants to be informed about the 
changes of the target resource. This scenario can be realized by polling mechanism implemented 
as usual request/response message exchange. Observes extension simplifies this scenario enabling 
clients to register at the target resource for receiving notifications.   
Another extension is the experimental support for group message delivery. The CoAP group 
communication is realized by a single multicast request and multiple unicast responses.  
Resource Discovery enables clients to enumerate resources available at the server. Resource 
discovery is built on the top of URI capabilities. Discovering resources on a specific host is 
performed by sending a GET request to “/.well-known/core” which is defined as a default entry-
point. Server’s respond then should list available resources.  
Blockwise Transfer extension was introduced to enable high volume data transfer. The original 
design of CoAP considered that data exchanged in messages is small and fits in a single message 
in most cases. For software updates or downloading large information the usually request-
response message exchange is inefficient.  

Figure 4: Unreliable Transaction 



IRONSTONE Report     © 2017, Brno University of Technology 

8 
 

2.6.1. Observers 
An extension of CoAP with the ability to observe resources by implementing publish/subscribe 
mechanism of communication is proposed in RFC7641 [2]. Instead of repeated queries, the client 
registers itself to the server and receives updates for interested resources. As this would incur 
overhead, the protocol provides a best-effort delivery of updates thus the eventual consistency 
model is only guaranteed.  
The protocol implements the observer design pattern. Observers register themselves at providers 
called subjects. A subject informs registered observers when the state changes. In the context of 
CoAP the key elements have the following meaning: 

• The subject is a resource located on a CoAP server. 
• The observer is a CoAP client that is informed about subject’s state change. 
• Registration is a GET request sent by the observer to the CoAP server.  
• Notification is CoAP response sent by the server that includes the new resource state. 

 
Registration and Notification messages exchanged between server and observer use option 
Observe to identify the order of updated records. The token value is employed to correlate 
notifications to corresponding registrations. Observe option is used to determine the order of a    
notification message. See Figure 6 for example of observer registration and a sequence of 
notifications. 
 
A lifetime of each registration is determined by the interest of the observers by the combination 
of the following methods: 

• Observer sends a Deregister message to the server. 
• Observer rejects (RST message) notification. 

 

T=NON, Code=0.01 GET, ID=0x7d36

T=NON, Code=2.05 Content, ID=0x845a

Token: 0x31; Uri-Path=/sensor/temp/01
Observer: 0

Token: 0x31; Content-type: text/plain;
Observe: 12

Payload: 22.3 C

Client Server

T=NON, Code=2.05 Content, ID=0x3463

Token: 0x31; Content-type: text/plain;
Observe: 44

Payload: 21.8 C

T=NON, Code=2.05 Content, ID=0x15a2

Token: 0x31; Content-type: text/plain;
Observe: 60

Payload: 21.2 C

Registration

Notification

Notification

Notification

Figure 5: Registration and Notifications 



IRONSTONE Report     © 2017, Brno University of Technology 

9 
 

• The observer does not acknowledge the confirmable notification.  
 
The protocol provides only eventual consistency model. It is because of the following: 

• Latency between the change of the state and reception of the notification. 
• Notification can get lost as best-effort is used for informing observers. 
• The server may incorrectly consider that the observer is not further interested in the 

notification. 
The protocol itself does not specify when and how often the server sends notifications. It depends 
on the server implementation. However, it is possible to parametrize resources’ URLs to enable 
specifying trigger value, for instance:     <coap://server/temperature/critical?above=42>.  
 
Observe option has ID=6 and its length is up to 4 bytes. The meaning of the Observe value depends 
on whether it is used in request or response. If Observe is in GET request then the value means: 

• 0 (register) adds the entry to the list, if not present; 
• 1 (deregister) removes the entry from the list if present. 

If Observe is a part of the notification, the option value is a sequence number for reordering 
detection.    The value of the Observe Option is encoded as an unsigned integer in network byte 
order using a variable number of bytes. 
 

2.6.2. Multicast Group Communications 
The CoAP provides for group communications and multicast as specified in experimental RFC7390 
[3]. Group communication in IoT is common. For example, CoAP control node may switch on/off 
multiple devices with a single group request. The multicast capability of IP protocol is considered 
for CoAP group communication. The CoAP group communication is realized by a single multicast 
request and multiple unicast responses. The assumption is that the source node may or may not 
be a part of the group and also that there may be more source nodes.  A CoAP group consists of a 
collection of CoAP endpoints that are members of the same IP multicast group. To enable CoAP 
discovery, all nodes should be members of “All CoAP Nodes” group: 224.0.1.187. Fro IPv6, CoAP 
nodes should join link-local scoped address ff02::fd and the site-local scoped address ff05::fd. Uri 
authority should contain a group IP or Group Fully Qualified Domain Name that can be resolved to 
the group IP multicast address, for instance, all.west.bldg6.example.com. Sending group messages 
requires specific considerations: 

• CoAP group communication does not work if different ports are used on group’s nodes. 
• Idempotent methods can be safely used with multicast. For non-idempotent methods, 

such as DELETE and POST, the operations should be designed to take message loss into 
account. 

• CoAP group communication uses only non-confirmable messages. Optional unicast 
responses may not be complete depending on whether some messages were lost. Rules 
for reusing token values are more complicated comparing to unicast communication.   

A set of operations related to membership configuration are necessary to properly maintain CoAP 
groups: 

• Member discovery can be performed with the help of Resource Directory [6] or use some 
proprietary management system. 



IRONSTONE Report     © 2017, Brno University of Technology 

10 
 

• The configuration of a group membership of a CoAP node can be (i) preconfigured before 
deployment, (ii) set up by executing discovery procedure, or (iii) configured from another 
node. 

• CoAP endpoints implementing the membership configuration RESTful interface must 
support the CoAP group configuration Internet Media Type "application/coap-
group+json". 
 

2.6.3. Resource Discovery 
Resource Discover in CoAP environment is essential as this domain often lacks human 
administrator that could provide information on resource localization. Resource discovery is a 
mechanism that assigns URI for resources host by CoAP servers. Resource discovery is thus built 
on the top of URI capabilities. Discovering resources on a specific host is performed by sending a 
GET request to “/.well-known/core” which is defined as a default entry-point. The response to this 
request is a list of all available resources. To obtain only a filtered subset of all available resources 
the query part of the request is used, for instance, /.well-known/core?rt=temp  to get resources 
with temp in their name. In addition to basic discovery scenario, in which resources of the single 
CoAP node are discovered, it is possible to discover resource collections. It can be achieved, for 
instance, using Resource Directory [6] interface. 
CoAP Resources Discovery mechanism uses Web Links that were designed to indicate the 
relationships between resources on the Web. A Link is a typed connection between two resources 
defined as: 
 
“<” TARGET-URI “>” ( “;” LINK-PARAM )* 
 
Where: 
 

• TARGET-URI – each link contains one target URI inside angle brackets. The target URI must 
be a relative URI of the context URI that is determined by the CoAP endpoint’s authority 
URI. 

• LINK-PARAM – specific target attributes are defined for CoAP resources. For instance, (i) 
the resource type “rt” is an opaque string used to assign an application-specific semantic 
type to a resource, or (ii) the interface description “if” attribute is an opaque string used 
to provide a name or URI indicating specific interface definition that can be used to interact 
with the resource. 

 
The following example presents two links with target URI “sensors/temp” and “sensors/light”, 
respectively. Both links have only a single target attribute that states they have the same interface 
identifies as “sensor”.  
 
CON [0xaf6] GET /.well-known/core 
 
 
ACK [0xaf6] 2.05 Content 



IRONSTONE Report     © 2017, Brno University of Technology 

11 
 

 
</sensors/temp>;if="sensor", 
</sensors/light>;if="sensor" 
 
Consider that context URI (URL of the CoAP server) is coap://server.domain.org then URIs of the 
resources are: 
 
coap://server.domain.org/sensors/temp 
coap://server.domain.org/sensors/light 
 

2.6.4. Blockwise Transfer 
CoAP was designed for constrained environment where most of the traffic consists of small chunks 
of data. However, some scenarios require transferring larger payloads. RFC7252 introduces a 
block-wise mode of communication as a method of transferring multiple blocks of information 
from a resource representation in multiple request-response pairs. Block-wise transfer aims at 
avoiding the fragmentation for segments larger than maximum PDU size of the underlying 
protocol. Also, this mechanism was designed such that the conversation state is not necessary.  
 
In general, the block-wise transfer is used to send data larger than PDU size of supporting 
protocols. Two new options are introduced to support block-wise transfer: Block1 (option number 
27) and Block2 (option number 23) are options that can be used in request and response. 
Depending on their occurrence they have slightly different interpretation: 

• Block1 in the request or Block2 in response describes how the block-wise payload forms 
part of the entire body being transferred ("descriptive usage"). 

• Block1 in response or Block2 in a request provides additional control on how that payload 
will be formed or was processed ("control usage"). 

 
Block option contains three items: 

• The size of the block (SZX) – three-bit uint encoding size exponent, the size of the block is 
computed as 2**(SZX+4) bytes. 

• Whether more blocks are following (M) -  single bit. 
• The relative number of the block (NUM) within a sequence of blocks with the given size. 

This item has a variable size between 4 and 19 bits. 
All these items are encoded using a variable-size uint type. An example of blockwise data transfer 
is in Figure 7: Blockwise data transfer.  
 



IRONSTONE Report     © 2017, Brno University of Technology 

12 
 

 

3. Exported CoAP Fields 
This section summarizes CoAP fields and options. This specification was adapted from Wireshark 
display filter reference1. Exported information from CoAP message can be a subset of the 
presented items.  
 

Field Name Type Description 
coap.code UINT8 Method or Response Code (8-bits) of a 

message determines the meaning of the 
message. 

coap.mid UINT16 Message ID. 
coap.ocount UINT8 Option Count. 
coap.payload BINARY Payload of CoAP message 
coap.tid UINT16 Transaction ID. 
coap.type UINT8 Type of CoAP message, e.g., Confirmable, 

Nonconfirmable, Reset, Ack. 
coap.version UINT8 A version of CoAP message. 

 
CoAP options are split into groups depending on their meaning.  
General options are as follows: 

Field Name Type Description 

                                                      
1 https://www.wireshark.org/docs/dfref/c/coap.html 

Figure 6: Blockwise data transfer 



IRONSTONE Report     © 2017, Brno University of Technology 

13 
 

coap.opt.accept STRING Specifies the acceptable content type of 
the response. 

coap.opt.ctype STRING Specifies the content type of the payload. 
coap.opt.token BINARY Token content. This has a variable size. 
coap.opt.token_len UINT8 Token field length. 

 
Uri-related options are used for describing the requested resource: 

Field Name Type Description 
coap.opt.uri_auth STRING Authority part of the URI. 
coap.opt.uri_host STRING The host part of the URI. 
coap.opt.uri_path STRING Path part of the URI. 
coap.opt.uri_port UINT16 Port part of the URI. 
coap.opt.uri_query STRING Query part of the URI. 

 
Observers extension and block-wise transfer use the following options: 

Field Name Type Description 
coap.opt.block_mflag BOOL More blocks flags. 
coap.opt.block_number UINT32 A sequence number of the block. 
coap.opt.block_size STRING Path part of the URI. 
coap.opt.observer UINT32 Sequence number of the notification 

message. 
 

4. CoAP Events 
This section provides a list of CoAP events identifiable by analyzing CoAP communication. An event 
is emitted when the specific communication pattern is identified. For most of the events, it is 
enough to track message ID and Token option. 
 

Event name Explanation 
coap.event.request Emitted on the occurrence of a CoAP request message. 
coap.event.response Emitted on the occurrence of a CoAP response message. 
coap.event.simple_transaction Emitted when a single CoAP transaction occurs. This 

happens if the request message and the corresponding 
response message were processed. 

coap.event.duplicate_request A duplicate request message was found. This occurs when 
two request messages of the same message ID were 
processed.  

coap.event.duplicate_response A duplicate response message was found. This occurs when 
two response messages of the same message ID were 
processed. 

coap.event.block_transaction Emitted when a blockwise transfer completes. 
coap.event.split_transaction Emitted when a sperated transaction completes. 



IRONSTONE Report     © 2017, Brno University of Technology 

14 
 

coap.event.observer_register Emitted when an observer sends a register message to the 
resource owner. 

coap.event.observer_deregister Emitted when an observer sends a deregister message to 
the resource owner. 

coap.event.observer_notification Emitted when notification message. 
coap.event.resource_enum Emitted when resource discovery request message was 

identified. 
 
 

References 
1. Shelby, Z., Hartke, K., & Bormann, C. (2014). The Constrained Application Protocol (CoAP). 

IETF RFC 7252.  
2. Hartke, K. (2015). Observing Resources in the Constrained Application Protocol (CoAP). 

IETF RFC 7641. Retrieved from https://tools.ietf.org/html/rfc7641 
3. Rahman, A., & Dijk, E. (2014). Group Communication for the Constrained Application 

Protocol (CoAP). IETF RFC 7390. Retrieved from https://tools.ietf.org/pdf/rfc7390.pdf  
4. Shelby, Z. (2012). Constrained RESTful Environments (CoRE) Link Format. IETF RFC 6690. 

Retrieved from https://tools.ietf.org/html/rfc6690  
5. Bormann, C. & Sheldby, Z. (2016). Blockwise transfers in the Constrained Application 

Protocol (CoAP). IETF RFC 7959. Retrieved from https://tools.ietf.org/html/rfc7959  
6. Shelby, Z., Koster, M., Bormann, C., van der Stok, P. (2016) CoRE ResourceDirectory. IETF 

Draft. Retrieved from https://tools.ietf.org/html/draft-ietf-core-resource-directory-09  
 

 
 


