
Security Monitoring of
LwM2M Protocol

Technical Report – FIT-TR-2017-16

Ondřej Ryšavý  
Marek Rychlý

Ondřej Ryšavý

Technical Report no. FIT-TR-2017-16  
Faculty of Information Technology  
Brno University of Technology Brno,  
Czech Republic  
 
December, 2017

01 02

03/1

Analysis of DLMS Protocol

Technical Report, version 1.0

Petr Matoušek

Technical Report no. FIT-TR-2017-13

Faculty of Information Technology
Brno University of Technology
Brno, Czech Republic

December, 2017

IRONSTONE Report © 2017, Brno University of Technology

2

Table of Contents

1. Introduction ... 3

2. LwM2M Interfaces ... 5
2.1 Bootstrapping ..5
2.2 Client Registration ...8
2.3 Device Management .. 10
2.4 Information Reporting ... 12
2.5 Queue Mode.. 13

3. Resources .. 14

4. Security .. 16
4.1 LwM2M and DTLS ... 16

5. Transport Layer Binding ... 17

6. Experimental Environment ... 17

7. LwM2M Exported Information ... 18
6.1 Events ... 18

8. References ... 20

IRONSTONE Report © 2017, Brno University of Technology

3

1. Introduction

LwM2M is a device management protocol. It has the purpose of supporting many

aspects of IoT device management. The protocol defines four interfaces:

• Bootstrapping – configures servers and keying material.

• Device Registration – registers the client and its resource objects to

Resource Directory.

• Information Access – server reads or writes resource value on a device.

• Information Reporting – a device asynchronously notifies about new

resource value.

Bootstrapping and device registration interfaces are used when a new device

(LwM2M client) is turned on and enrolls in the system. Bootstrapping and

successive registration aims to prepare a device to be accessible from the

server for management.

Information Access and Reporting interfaces are utilized for querying the state

of a client, modifying parameters of a client or executing a specific action on

a client. In LwM2M environment, the client is necessarily a collection of

resources organized in objects that can be read, write or executed. All

management and monitoring tasks are thus represented by a series of read/write

operations initiated by the server and executed on the client. Moreover,

Information Reporting interface enables for asynchronous information delivery.

The server can ask a client for providing periodic or event-triggered

information on the selected set of resources.

The protocol considers an extensible object and resource model. The resource

model employs global registry and public lookup of all objects. The reusable

objects provide application semantics.

A client has one or more object instance. Each object is represented as a

collection of resources. A resource can be read, write or executed. Objects,

resources, and instances have integer identifier. Accessing a resource one needs

to provide a unique path to this resources, which is represented as URI string.

The new object can be defined by OMA working groups or enterprise organizations.

Because all objects are global, the object definition needs to be registered.

The specification also provides security model and binding of LwM2M to transport

protocols. Security is based on DTLS [DTLS_REF!] allowing three authentication

modes:

• pre-shared,

IRONSTONE Report © 2017, Brno University of Technology

4

• public key, and

• certificate.

Bootstrapping is utilized for key management. Key material can be preconfigured

or read from smart card, etc.

The standard applies to different type of communication networks, namely,

cellular, 6LoWPAN, WiFi, ZigBee or other IP based networks. The protocol mainly

targets mobile devices connected to the cellular network. Because of constrained

resources, the protocol has a lightweight design.

LwM2M does not define its message protocol. Instead, it uses CoAP protocol to

encode messages. LwM2M utilizes several types of payload representation 1:

• Link (application/link-format)[RFC6690]

• Plain (text/plain)

• Opaque (application/octet-stream)

• TLV (application/vnd.oma.lwm2m+tlv)

• JSON (application/vnd.oma.lwm2m+json)

The manner how these data representations are used for payload encoding is

further discussed in section 3.

1 http://www.iana.org/assignments/core-parameters/core-parameters.xhtml#content-formats

Figure X: Architecture of LwM2M (from [1])

http://www.iana.org/assignments/core-parameters/core-parameters.xhtml#content-formats

IRONSTONE Report © 2017, Brno University of Technology

5

2. LwM2M Interfaces

There are four interfaces: 1) Bootstrap, 2) Client Registration, 3) Device

Management and Service Enablement, and 4) Information Reporting.

Figure {INTERFACES} shows the messages related to each of these interfaces.

Bootstrap interface and Client Registration interface are utilized only during

client initialization. Device Management and Information Reporting are used

during normal operation for retrieving information from clients or updating and

executing resources as a part of device management.

Figure INTERFACES: Interface Flows (from [2])

General operations that interact with Resources, Resource Instances, Objects,

and Object instances are as follows:

• Read – is used to read current values.

• Create – is used to create a new instance of resource or object.

• Delete – is used to delete the instance of resource of object.

• Write – is used to update the values.

• Execute - is used to initiate an action.

• Discover – is used to discover attributes and to discover which Resources

are implemented in a certain Object.

Interfaces also define specific operations, such as Request-Bootstrap, Cancel

Observation, etc.

2.1 Bootstrapping

The Bootstrap interface serves for initializing necessary information in the

LwM2M client before the client can perform REGISTER operation with LwM2M server.

IRONSTONE Report © 2017, Brno University of Technology

6

A client may ignore requests and response in this phases if not related to its

Bootstrap mode, but it must support at least one Bootstrap mode defined. There

are predefined Bootstrap modes:

• Factory bootstrap – all necessary information is defined in the local

permanent memory and is loaded in the device initialization. The

information must be provided before the device is deployed.

• Bootstrap from Smart Card – information is provided from a Smart Card,

e.g., SIM, and is loaded in the device initialization. This mode improves

the security and provides more flexibility.

• Client Initiated Bootstrap – information is obtained from the LwM2M

Bootstrap server. The client initiates the Bootstrap process. The client

needs to be preloaded with the LwM2M Bootstrap-Server Account information

that also contains security credentials for a DTLS connection established

to the bootstrap server. The communication is presented in Figure

{IBOOTSTRAP}.

• Server Initiated Bootstrap - information is obtained from the LwM2M

Bootstrap server. The server initiates the Bootstrap process. The

communication is the same as presented in Figure {IBOOTSTRAP) except that

there is not the Bootstrap-Request message. Still, the server needs to

find out when the client is ready for bootstrap operation. In this case,

this is implementation dependent.

For the last two Bootstrap modes, the LwM2M Bootstrap server is used to provide

clients with the necessary information. The main result of the bootstrap process

is the receipt on how to contact a Registration server.

Bootstrap communication starts with Bootstrap-Request message and ends with a

Bootstrap-Finish message. Between these two messages, the bootstrap server may

configure the client with necessary information. Bootstrap Information can be

of the following two types:

• LwM2M Server Bootstrap Information is used by the LwM2M client to register

and connect to the LwM2M server. This information contains LwM2M Server

Figure IBOOTSTRAP: Bootstrap Communication (from [1])

IRONSTONE Report © 2017, Brno University of Technology

7

Account and additional object instance (access control, connectivity

object)

• LwM2M Bootstrap-Server Bootstrap Information is optional information

providing LwM2M Bootstrap-Server Account. It is used by the client to

contact LwM2M Bootstrap Server securely.

Bootstrap phase finishes by sending BOOTSTRAP-FINISH command. Error response

code must report any inconsistencies during this phase. The bootstrap server

may initiate corrective actions when receiving an error response code.

The following table summarizes the operation of Bootstrap interface. Because

LwM2M maps to CoAP, the operations are defined regarding CoAP methods and URI:

Operation Method URI Success Failure

BOOTSTRAP-

REQUEST

POST /bs?ep={ClientName} 2.04 4.00

4.15

BOOTSTRAP-

FINISH

POST /bs 2.04 4.00

4.06

BOOTSTRAP-

DISCOVER

GET /{ObjectID} 2.05 4.00

4.04

BOOTSTRAP-

WRITE

PUT /{ObjectID}/{ObjectInstanceID}/

{ResourceID}

2.04 4.00

BOOTSTRAP-

DELETE

DELETE /{ObjectID}/{ObjectInstanceID}

2.02 4.00

An example of client initiated bootstrap conversation is depicted in Figure

{CLIENT-BOOTSTRAP}.

IRONSTONE Report © 2017, Brno University of Technology

8

Figure CLIENT-BOOTSTRAP: Example of Client initiated Bootstrap (from [1])

2.2 Client Registration

The client registration is performed by a client to register with one or more

servers. In registration, the client provides the properties necessary for the

server to recognize the client. Registration information includes the following

data:

• End point name of the client

• Registration lifetime and queue mode

• Objects supported by a client

Registered client updates lifetime resource of the corresponding server object

instance.

Figure REGISTRATION: Client Registration (from [1])

OMA-TS-LightweightM2M-V1_0-20170208-A Page 75 (138)

 2017 Open Mobile Alliance All Rights Reserved.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-Template-Spec-20170101-I]

Only in Bootstrap Interface, the Discover command MAY target to “/” URI to discover all Objects and Object Instances
supported in the Device.

The Bootstrap-Server MUST send finish indication after it has sent all object instances/resources. Bootstrap-Server send
finish message by sending CoAP POST to “/bs” location path with empty payload.

Operation CoAP Method URI Success Failure
Bootstrap-

Request
POST /bs?ep={Endpoint Client Name} 2.04 Changed 4.00 Bad Request

4.15 Unsupported
content format

Write PUT /{Object ID}/{Object Instance
ID}/ {Resource ID}

2.04 Changed 4.00 Bad Request

Delete DELETE /{Object ID}/{Object Instance
ID}

2.02 Deleted 4.00 Bad Request

Discover GET Accept:
application/link-
format

/{Object ID}
2.05 Content 4.00 Bad Request

4.04 Not Found

Bootstrap-Finish POST /bs 2.04 Changed 4.00 Bad Request
4.06 Not
Acceptable

Table 23: Operation to Method and URI Mapping

LwM2M
Client

LwM2M
Client

LwM2M
Bootstrap
Server

LwM2M
Bootstrap
Server

POST /bs? Ep=node34141

2.04 Changed

Delete /

PUT /0/1

(Security Object Instance)

(Server Object Instance)

PUT /2/0
(ACL Object Instance)

Post /bs

PUT /1/0

Figure 19: Example of Client initiated Bootstrap exchange

IRONSTONE Report © 2017, Brno University of Technology

9

The following table summarizes operation of Registration interface

Operation Method URI Success Failure

REGISTER POST /rd?ep={ClientName}<={Lifetime}&sms={MSISDN}

&lwm2m={version}&b={binding}

2.04 4.00

4.03

4.12

UPDATE POST /{location}?lt={Lifetime}&sms={MSISDN}

&b={binding}

2.04 4.00

4.04

DEREGISTER DELETE /{location}

2.02 4.00

4.04

The register operation is performed by the client on a server after the

bootstrap procedure has completed. The parameters provided by the client is as

follows:

• Endpoint client name identifies the client node for further reference.

• Lifetime indicates the expected duration of the registration.

• Version specifies the version of the protocol.

• Binding mode defines the current transport binding and queue mode.

Currently, there are several queue modes for UDP and SMS transport.

• SMS Number is the MSISDN if the client is reachable through SMS binding.

• Objects and Object instances are lists of available objects and instance

on the client.

The register message has a payload of type application/link-format. The payload

contains a list of objects and instances using link format. For example, if the

client supports Access Control, Device, and Firmware Update it provides the

following list of objects: </2>,</3>,</5>. Result of registration is location

information that represents an object instance created for registered client.

The update operation is used by a client or server to refresh the registration

information. Lifetime, binding mode, SMS number and object list can be updated.

Usually, the update is used to restore the lifetime parameter. Also, adding or

removing objects is announced by the update operation.

The deregister operation is executed when the client no longer requires

registration to a server. Server processed this operation by removing all

registration information belonging to the client.

IRONSTONE Report © 2017, Brno University of Technology

10

Figure CLIENT-REGISTER: Example of Client registration (from [1])

2.3 Device Management

The Device Management interface is used by a server to access Object Instances

and Resources on a registered client. This interface defines the following

operations:
Operation Method URI Success Failure

READ GET /{ObjectID}/{ObjectInstanceID}/{ResourceID}

2.05 4.00

4.01

4.04

4.05

4.06

DISCOVER GET /{ObjectID}/{ObjectInstanceID}/{ResourceID}

2.05 4.00

4.04

WRITE PUT

/{ObjectID}/{ObjectInstanceID}/{ResourceID}

2.04 4.00

4.01

4.04

4.05

4.06

WRITE POST /{ObjectID}/{ObjectInstanceID} 2.31 4.08

4.13

WRITE-ATTRIBUTES PUT /{ObjectID}/{ObjectInstanceID}/{ResourceID}

?pmin={minimumPeriod}&pmax={maximumPeriod}

>={greaterThan}<={lessThan}&st={step}

2.04 4.00

4.01

4.04

4.05

OMA-TS-LightweightM2M-V1_0-20170208-A Page 77 (138)

 2017 Open Mobile Alliance All Rights Reserved.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-Template-Spec-20170101-I]

Note: Throughout the present document the format of the MSISDN must be as specified in [3GPP-TS_23.003]. According to
this definition “+” is not preceding the country code.

LwM2M
Client

LwM2M
Client

LwM2M
Server

LwM2M
Server

POST/rd?ep=exapmple-client

2.01 Created Location: /rd/5a3f

POST/rd/5a3f?It=600000

Registration

2.04 Changed

DELETE /rd/5a3f

2.02 Deleted

</1/1>,</1/2>,</2/0></2/1>,</3/0>,</4/0>

Update

De-register

Figure 21: Example register, update and de-register operation exchanges (shorthand in [CoAP] example style, actual
messages using CoAP binary headers)

8.2.5 Device Management & Service Enablement Interface
The Device Management & Service Enablement Interface is used to access Resource, an array of Resource Instances, an
Object Instance or all the Object Instances of an Object. An Object Instance is identified by the path /{Object ID}/{Object
Instance ID}. If Object doesn‟t support multiple Object Instances, the Object Instance is identified by the path /{Object ID}/0.
A Resource is identified by the path /{Object ID}/{Object Instance ID}/{Resource ID}.

An Object Instance or Resource is Read by sending a CoAP GET to the corresponding path. The response includes the value
in the corresponding Plain Text, Opaque, TLV or JSON format according to the specified Content-Format (see section
6.4).The request MAY specify an Accept option containing the preferred Content-Format to receive. When the specified
Content-Format is not supported by the LwM2M Client, the request MUST be rejected.

An Object Instance or Resource is Written to by sending either a CoAP PUT or a CoAP POST to the corresponding path. The
request includes the value to be written in the corresponding Plain Text, Opaque, TLV or JSON format according to the
Content-Format option which MUST be specified [CoAP]. The Write request MUST be rejected when the specified Content-
Format is not supported by the LwM2M Client

A CoAP PUT is used for the Replace and CoAP POST is used for Partial Update mechanism of the “Write” operation as
described in 5.4.3.

A Resource is Executed by sending a CoAP POST to the corresponding path. The request MAY include a list of arguments
as value of the payload expressed in Plain Text format. The definition of the Executable Resource and its arguments is given
in Appendix D.

The list of argument can be empty, 2 arguments of the arguments list are separated by a comma. The syntax of the arguments
is provided in Section Execute (5.2.4).

Note that the behaviour of the “Execute” operation, whether it uses arguments and how those are interpreted, and how it
returns values is specified in the Resource description of the Object.

IRONSTONE Report © 2017, Brno University of Technology

11

EXECUTE POST /{ObjectID}/{ObjectInstanceID}/{ResourceID}

2.04 4.00

4.01

4.04

4.05

CREATE POST /{ObjectID} 2.01 4.00

4.01

4.04

4.05

4.06

DELETE DELETE /{ObjectID}/{ObjectInstanceID 2.02 4.00

4.01

4.04

4.05

All operations use the identification of objects/resources by the path:

/{ObjectId}/{ObjectInstanceId}/{ResourceId}.

Read operation expect the response including a value in plain text, Opaque, TLV

or JSON format according to the specified Content-Format. Preferred Content-

Format may be suggested in the request.

Values of resources or object instances are set by WRITE operation that is

represented by sending CoAP PUT or POST request with the specified URI. The

request contains a value in plain text, Opaque, TLV or JSON format.

Some resources can be executed which is achieved by sending CoAP POST request.

The request may contain a list of arguments.

A new object instance is created by CREATE operation which is encoded as CoAP

POST request with URI specifying the object ID. The request may contain values

in TLV or JSON format to be used in object creation. The ID of an object instance

is returned in CoAP response and “2.01 Created” is signalized that this

operation completed successfully.

IRONSTONE Report © 2017, Brno University of Technology

12

Figure CLIENT-REGISTER: Example of Device Management communication (from [1])

2.4 Information Reporting

Information Reporting interface serves for periodic or event-triggered reporting

about resource values from a client to the server. Operations of this interface

rely on the CoAP Observe mechanism.

Operation Method URI Success Failure

OBSERVE GET

OBS=0

/{ObjectID}/{ObjectInstanceID}/{ResourceID}

2.05 4.00

4.01

4.04

4.05

CANCEL

OBSERVATION

GET

OBS=1

/{ObjectID}/{ObjectInstanceID}/{ResourceID}

2.05 4.00

4.01

4.04

4.05

NOTIFY Async

Response

2.05

OMA-TS-LightweightM2M-V1_0-20170208-A Page 79 (138)

 2017 Open Mobile Alliance All Rights Reserved.
Used with the permission of the Open Mobile Alliance under the terms as stated in this document. [OMA-Template-Spec-20170101-I]

Create POST Content
Format: /{Object ID}

2.01 Created 4.00 Bad Request, 4.01
Unauthorized, 4.04 Not Found,
4.05 Method Not Allowed, 4.06
Not Acceptable

Delete DELETE /{Object ID}/{Object
Instance ID}

2.02 Deleted 4.00 Bad Request, 4.01
Unauthorized, 4.04 Not Found,
4.05 Method Not Allowed

Note (*): 2.31, 4.08, 4.13 response messages, are relevant only when the CoAP Blockwise Transfer option is supported (see
Section 8.1).

Table 25: Operation to Method Mapping

PUT /3/0/9?pmin=1&max=5&It=5

LwM2M
Client

LwM2M
Client

LwM2M
Server

LwM2M
Server

GET /3/0/0

2.05 Content

PUT /3/0/13

Read

2.04 Changed

POST /3/0/12

2.04 Changed

Write

Execute

Open Mobile Alliance

1367491215

2.04 Changed

Write
 Attribute

Figure 22: Example of Device Management & Service Enablement interface exchanges

IRONSTONE Report © 2017, Brno University of Technology

13

The OBSERVE operation sends a CoAP GET message with Observe set option, which

causes that notification will be sent every time the value changes or

periodically. The CoAP message token value is used to match notifications to

the observe GET message. Observing a resource is canceled either by sending

CoAP GET with the Observe reset option sent or responding to the notification

with an RST CoAP message.

Figure CLIENT-BOOTSTRAP: Example of Information Reporting (from [1])

2.5 Queue Mode

The Queue Mode supports disconnected clients. Clients may request Queue Mode

during registration. When this mode is used, the server does not send the

request immediately but queues them until the client is online. Clients inform

servers about any period they become offline and also signalize their

reachability. The client indicates its availability by UPDATE message through

Registration interface.

IRONSTONE Report © 2017, Brno University of Technology

14

3. Resources

Each client has one or more object instances. An object is a collection of

resources. A resource can be read, write or executed. Figure {RESOURCE} presents

a data model of a typical client.

An integer number identifies objects and resources. Server access a resource

located at a client by using a simple URI pattern:

/ObjectID/ObjectInstance/ResourceID

Figure RESOURCE: Resource Model (from [1])

Each object has a specification that defines supported operations and available

resources. Objects and resources may have multiple instances. Objects may exist

in different versions which endorses the situation when resources are added or

removed from the object. The version is composed of two digits separated by a

dot representing major and minor version.

The standard defines some predefined objects:

• LWM2M Server (1) – This objects provides data about LWM2M server.

IRONSTONE Report © 2017, Brno University of Technology

15

• Access Control (2) – This object is used to check if the server has enough

rights to perform specified operations.

• Device (3) – This object provides device related information.

• Connectivity Monitoring (4) – This object can be used to monitor network

related parameters.

• Firmware (5) – This object provides functions and information related to

firmware management.

• Location (6) – This object provides location information for the devices

based on GPS information.

LwM2M uses four data formats for representing possible values of resources:

• Plain text it is used for READ and WRITE operations. It provides a value

in plain text format.

• Opaque it is used for READ and WRITE operations associated with resources

whose values have binary format, such as images or application specific

binary data.

• TLV is used for READ and WRITE operations enable to represents either

singular value or an array of values in a compact way. The format is self

describing. It consists of four parts, namely, TYPE, IDENTIFIER, LENGTH

and VALUE. This format is defined in [OMA-TS-LightweightM2M-V1_0-

20170208-A, p.48]2.

• JSON is used for READ and WRITE operations to transport single or multiple

resource values. It provides a value in JSON text format. The data must

contain resource array assigned to JSON variable “e”. For example, the

following shows three values of a temperature sensor “72/1/2”:

{

 “bn”:“/72/“,

 “e”:[

 {"n":"1/2","v":22.4,"t":-5},

 {"n":"1/2","v":22.9,"t":-30},

 {"n":"1/2","v":24.1,"t":-50}

],

 “bt”:25462634

}

The meaning of JSON variables are explained in [OMA-TS-LightweightM2M-

V1_0-20170208-A, p.56].

2 Kaitai specification of LwM2M TLV is available from https://github.com/rysavy-

ondrej/Netfox.NDX/blob/master/Ndx.Packets/Kaitai/lwm2m-tlv.ksy

https://github.com/rysavy-ondrej/Netfox.NDX/blob/master/Ndx.Packets/Kaitai/lwm2m-tlv.ksy
https://github.com/rysavy-ondrej/Netfox.NDX/blob/master/Ndx.Packets/Kaitai/lwm2m-tlv.ksy

IRONSTONE Report © 2017, Brno University of Technology

16

4. Security

Security of LwM2M environment within UDP binding is based on the use of DTLS

protocol for protecting CoAP data exchange. Enforcing a secure client-server

communication requires addressing the two aspects:

• Authentication – mutual authentication of a client and a server is

required prior to exchange of any information.

• Encryption and integrity protection – any communication between a client

and a server should be protected by encryption.

For authentication, LwM2M considers employing credentials that can be of

different types. The following types of credentials are considered in the LwM2M

environment:

• Certificates – clients and severs have certificates that can be validated

as a part of authentication.

• Raw public keys3 - private/public key pairs exist for servers and clients.

Public key is known in the system.

• Pre-shared keys – both client and server share a key used for

authentication.

Because LwM2M expects that the underlying DTLS protocol provides security, the

use of a particular type of credentials expects to select appropriate cipher

suite of DTLS as discussed in the next section.

4.1 LwM2M and DTLS

Typical DTLS implementation provides a collection of cipher suites for providing

secure communication. A cipher suite defines at least three algorithms:

• Key exchange algorithm is used for exchange keys during the secure channel

initialization. The agreed keys are then used in encryption algorithm.

• Message encryption algorithm is used to protect application data during

the entire communication.

• Message authentication code algorithm is used for providing message

integrity check.

3 The use of raw public keys is considered in RFC7250. In this architecture, it is assumed that

public key is distributed by other means thus operations involved in certificate processing are

not necessary.

IRONSTONE Report © 2017, Brno University of Technology

17

From the available cipher suites, the LwM2M standard selects a subset that is

mandatory for client and server implementations. The only required cipher suites

are4:

• Pre-Shared Keys:

TLS_PSK_WITH_AES_128_CCM_8  

 TLS_PSK_WITH_AES_128_CBC_SHA256

• Raw Public Keys and X.509 Certificates:

TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8  

TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256  

These cipher suites are based on AES block encryption algorithm. The length of

the key is 128 bits. The AES encryption algorithm is used either in counter

mode (CCM) that provides both authentication and encryption mode or in the

encryption mode complemented with cipher block chaining (CBC) message

authentication code provided by SHA256.

5. Transport Layer Binding

Both client and server must support UDP binding and should support SMS binding.

UDP binding means that the communication is transported in UDP datagrams and

the protocol has registered scheme coap:// at the default port of 5683.SMS

binding stands for transmitting a CoAP message in SMS payload. As SMS is limited

to 140 characters concatenation is used for messages larger than that.

6. Experimental Environment

We have developed an experimental environment that consists of several LwM2M

software emulated clients and LwM2M server. The environment simulates the smart

metering application.5 This demonstration environment consists of a single

server equipped with a simple UI to present information read from multiple

clients. Each client provides measurement values for a number of households.

To simulate a real world situation, the NREL dataset

https://data.nrel.gov/submissions/69 was used as the source of data. The data

4 These ciphersuites are suitable for resource constrained devices and are available as a part

of TinyDTLS implementation (https://projects.eclipse.org/projects/iot.tinydtls).
5 https://github.com/rysavy-ondrej/Ironstone.LwM2M/tree/master/SmartMetering

https://data.nrel.gov/submissions/69

IRONSTONE Report © 2017, Brno University of Technology

18

set contains values of power demands for 200 households meassured every 10

minutes.

To get more realistic data we used the data set for reference points and compute

every second actual values of demand.

This implementation is the source of LwM2M traffic that can be used for

validation and testing the monitoring system.

IRONSTONE Report © 2017, Brno University of Technology

19

IRONSTONE Report © 2017, Brno University of Technology

20

7. References

1. Open Mobile Alliance. (2017). Lightweight Machine to Machine Technical
Specification.

2. Rao, S., Chendanda, D., Deshpande, C., & Lakkundi, V. (2016). Implementing
LWM2M in constrained IoT devices. In 2015 IEEE Conference on Wireless
Sensors, ICWiSE 2015 (pp. 52–57).

	1. Introduction
	2. LwM2M Interfaces
	2.1 Bootstrapping
	2.2 Client Registration
	2.3 Device Management
	2.4 Information Reporting
	2.5 Queue Mode

	3. Resources
	4. Security
	Because LwM2M expects that the underlying DTLS protocol provides security, the use of a particular type of credentials expects to select appropriate cipher suite of DTLS as discussed in the next section.
	4.1 LwM2M and DTLS

	These cipher suites are based on AES block encryption algorithm. The length of the key is 128 bits. The AES encryption algorithm is used either in counter mode (CCM) that provides both authentication and encryption mode or in the encryption mode com...
	5. Transport Layer Binding
	6. Experimental Environment
	7. References

