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Abstract— This paper presents a novel approach to inter-
action between human workers and industrial collaborative
robots. The proposed approach addresses problems introduced
by existing solutions for robot programming. It aims to reduce
the mental demands and attention switches by centering all in-
teraction in a shared workspace, combining various modalities
and enabling interaction with the system without any external
devices. The concept allows simple programming in the form
of setting program parameters using spatial augmented reality
for visualization and a touch-enabled table and robotic arms
as input devices. We evaluated the concept utilizing a user
experience study with six participants (shop-floor workers). All
participants were able to program the robot and to collaborate
with it using the program they parametrized. The final goal
is to create a distraction-free, usable and low-effort interface
for effective human-robot collaboration, enabling any ordinary
skilled worker to customize the robot’s program to changes in
production or to personal (e.g. ergonomic) needs.

I. INTRODUCTION

Contemporary collaborative robots are collaborative in the
sense that for human workers, it is safe to work alongside
them. However, human-robot interaction is very limited if it
exists at all: The behavior of the robot is pre-programmed
without cognition of an environment, a user, tools, or the
parts necessary for a given task. The robots are programmed
by domain experts using specialized devices and an expert is
needed even for small changes in the program. It is expected
that, in the near future, collaborative robots will be cheaper
and thus more affordable for small and medium-sized enter-
prises (SMEs). In such companies, all of the aforementioned
issues will be even more prominent. As robots in SMEs will
have to deal with higher product variability (smaller batches,
customization) it would be beneficial to allow workers with
no specific skills to make changes in a robot’s program. At
the same time, it will be necessary to support a close human-
robot collaboration, as with rising cost of human labor, it
might be expected that a trend will occur to offload non-
ergonomic or repetitive parts of the workflow to robots. In
order to allow this, robots will have to perceive and interact.

In this work, we present a novel approach to programming
collaborative robots based on cognition, spatial augmented
reality (SAR) and multimodal input and output. In order
to make programming as simple as possible, programming
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Fig. 1. Setup of the novel interactive system concept where all the
interaction elements (visualization and control) are gathered in a shared
workspace (example of setting program parameters using a robotic arm and
gestures; image edited).

takes place on a high level of abstraction where no robot-
specific knowledge is necessary. Our intention was to make
interaction with robots easy, fun, safe and effective.

In order to evaluate the approach, we developed a proof
of concept system (see Fig. 1)1 and carried out initial user
experience testing. The purpose of the testing was to discover
whether there are some fundamental usability issues related
to the approach as well as to find out issues related to the
current implementation. In the experiment, the robot played
the role of a worker’s assistant, preparing parts for assembly
in a fictional SME.

II. RELATED WORK

Various approaches exist aimed at the simplification of
robot programming or to support human-robot collabora-
tion on a joint task. One of the techniques used to make
programming robots more suitable for non-expert users is
programming by demonstration. For instance, the approach
proposed in [1] was rated by non-expert users as highly
intuitive. However, the tasks are quite simple and there is

1The code is available at https://github.com/robofit/artable.
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no feedback for the user. In [2], kinesthetic teaching is used
in conjunction with an iconic based programming to enable
users to create and edit non-trivial programs. While the usage
of a graphical user interface (GUI) on a standard monitor
adds more control over the program and provides feedback,
it also leads to attention switches.

The system described in [3] uses behavior trees to rep-
resent the program and was successfully deployed at an
SME. The program itself is created on the monitor. The
parameters of the program could be set using GUI, object
recognition or kinesthetic teaching. The usage of behavior
trees leads to high flexibility and the creation of reusable
pieces of programs; however, it also inevitably leads to a
more complicated GUI. Similarly, the system described in [4]
enables users to create complex programs using kinesthetic
teaching and object recognition. However, three different
GUIs and voice input are involved. Moreover, its target user
group consists of general programmers.

The previous approaches share a common disadvantage:
The inability to show information within a task context. On
the other hand, [5] uses physical blocks to create a program
which is highly intuitive (requires no training), although it is
limited to trivial tasks. Recently, augmented reality (AR) has
been used to show important information within a task con-
text. Probably the most common approach is to use a hand-
held device. In [6], the authors recruited robot programmers
and evaluated a tablet-based AR interface for programming
abstracted industrial tasks. From the results, it seems that the
usage of an AR may lead to a decrease in the workload and
higher motivation to perform accurately. However, the usage
of a tablet prevents the usage of both hands. A head-mounted
display frees the user’s hands and according to [7] might
lead to faster task completion times and higher accuracy.
Unfortunately, the currently available devices have a limited
field of view. Also, a head-mounted display probably would
not be suitable for long-time usage. On the other hand, SAR
is able to show information in context, does not require any
hand-held devices, is suitable for long-term usage, and is
visible to anyone. It was recently used to implement an
interactive work desk [8], show instructions to workers [9],
or to show robotic data and learn trajectories [10].

To the best of our knowledge, there is currently no existing
interactive system targeting all of the following important
issues:

• problems with attention switching when a monitor or a
hand-held device is used to visualize the programming
interface and system status during operation,

• too much information is presented to the user, leading
to a higher mental workload,

• external devices are needed to fully interact with the
robotic system (during both the programming and pro-
cessing phases),

• low level of abstraction allowing only medium-expert
users to program the robot.

  
bool applyGlue(objectType, polygon, positions) {

obj = findObjectInPolygon(detectedObjects,                    
                               objectType, 
                               polygon);
     return glue(obj, positions);
}

Object detectionInteractive SAR Kinesthetic teaching

Instruction with parameters

Within-context programming Perception

Execution

Feedback

Fig. 2. Illustration of program parameters’ definition (combination of
manually set parameters by the user with perceived information by the
system) and its execution with visual feedback.

III. PROPOSED APPROACH

We propose and initially evaluate a novel approach to col-
laborative robot programming with the following attributes
(see also Fig. 2):

• avoiding switching of the user’s attention during pro-
gramming and cooperation by placing all the interaction
elements in a shared workspace,

• decreasing the mental demands on the users by present-
ing the relevant information according to the current
context,

• avoiding the usage of further external devices to interact
with the system by making the shared workspace itself
interactive,

• allowing non-expert users to work with the system by
utilizing a high level of abstraction to program a robot.

Based on literature review and the current state of the
technology, we see SAR as the most suitable instrument
to visualize a user interface within a task context. While
previous research has shown that gesture control is the
preferred input modality for setting the parameters of com-
mon industrial tasks, we decided to use a touch-enabled
table, which was also rated highly [11], and which is much
more reliable. Moreover, together with SAR, it creates a
similar user experience to tablets and smart phones, the usage
of which is well-known to the general public. For tasks
requiring 3D data input, the robot’s arms could be used.

The user interface should be minimalistic, as the interface
elements have to share space with real-world objects in the



workspace: Tools, parts, etc. However, the design of the
elements should allow convenient touch control. Depending
on the state of the task, only the relevant information should
be shown to lower the cognitive load [12]. The interface
should clearly indicate the current state of the system,
including an explicit representation of the robot’s program
and the context of the current program instruction (what
happened before it and what is going to happen after it).
Additional modalities, such as sound or light, could be used
to for instance attract attention in special cases.

In order to make programming as well as the user interface
as simple as possible, we decided to use complex instructions
with a high amount of underlaying autonomy, at the price of
lowering expressivity (see Fig. 2). While theoretically, with
the system from [3] one can create complex instructions
from basic ones, it also makes the user interface complex
and the program representation complicated. For instance,
one has to set several poses, specify open and close gripper
commands, etc. We believe that, for the sake of simplicity,
the user should be abstracted from such low-level commands
and the robot should perform them automatically.

To achieve a high level of abstraction and effective collab-
oration, the robot needs to perceive its surroundings as well
as track its human coworker(s) and plan motions according
to the current situation.

IV. PROOF OF CONCEPT SYSTEM

To evaluate the proposed approach, a proof of concept
system has been developed. The system allows end-user
programming of selected industrial tasks.

A. Setup

The experimental setup (see Fig. 1) was designed to be
easy to deploy and modular. It is centered around a standard
workshop table equipped with a capacitive touch foil. On the
sides, two speaker stands are placed, connected by a truss.
The truss is equipped with an Acer P6600 projector. There
is a Microsoft Kinect V2 camera on each stand for object
detection and calibration of the system. On one stand, there
is an additional Kinect for user tracking. Each stand has its
own processing unit (Intel NUC) where the projector and
sensors are connected (in the study, only one projector was
utilized). The unit is connected to the central computer using
a wired network. The system is designed to be modular in a
way so that it supports 1..n stands.

As a demonstrator of a near-future collaborative robot,
we use the intrinsically safe PR2. The robot provides an
additional set of sensors (Kinect and cameras on the head,
cameras in the forearms). There is also a physical stop button
under the table which shuts down the robot’s motors.

B. System design

The system’s state and behavior are defined and controlled
by the central node and it can be manipulated by an arbitrary
number of user interfaces. For instance, we currently use two
interfaces: GUI projected on the table and a sound interface,

providing audio feedback (e.g. confirmation of action, errors,
etc.).

All parts of the system must be mutually calibrated first.
Calibration of the Kinects utilizes an AR tracking library2

to detect three markers placed on the table. One marker
serves as an origin of the coordination system; the two
others determine the X and Y axes. The PR2 robot is
calibrated in the same way, using a head-mounted Kinect. To
calibrate the projectors, a checkerboard pattern is displayed
by each projector, and its corners are detected using already
calibrated Kinects. In order to calibrate the touch-enabled
surface, the points are projected on the table and the user
has to click them. Then, homography is computed and used
to convert the internal coordinates of the touch device into
the common coordinate system.

Each of the objects used in our study has a set of two AR
tags printed on the body, and multimarker detection is used
to gain a unique ID of the object and its pose. Each object
has an object type and a bounding box defined.

The manipulation pipeline is based on MoveIt! [13] and a
library for grasp planning3.

C. Program representation

The program in our system is a set of instructions, col-
lected into blocks. Each program contains 1..n blocks; each
block contains 1..n instructions. Every instruction execution
can result in success (e.g. a successfully picked up object)
or failure (e.g. failed to apply glue). Based on this result, the
next instruction is determined. With this approach, simple
branching and cycling of the program are possible (e.g.
picking up objects from a feeder until the picking up failed,
i.e. until there are no objects left). For an example of a
program structure in the form of a graph, see Fig. 5.

Contrary to the conventional methods of programming
robots, no precomputed joint configurations or arm paths
are stored. By combining the perception capabilities of the
system and on-the-fly motion planning, we do not rely on
e.g. storing exact object positions.

It can be expected that the parameters of the program will
be changed more often than the structure of the program.
For this reason, we have divided the programming process
into two parts. First, an empty template is created offline.
This template can be seen as a description of an industrial
technological process. It contains a set of instructions with
defined transitions; however, without parameters. Thus, the
template can be created once and later be adapted to conform
to different products by setting instruction parameters.

D. Supported instructions

The system currently supports the following parametric
instructions: pick from polygon (to pick up an object from
a table), pick from feeder (to pick up parts from a gravity
feeder), place to pose (to place a previously picked-up object
on a selected place on the table) and apply glue (simulated

2http://wiki.ros.org/ar_track_alvar
3https://github.com/davetcoleman/moveit_simple_

grasps
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Program list

Program 5
Training - pick from polygon, place

Program 6
Training - pick from feeder, place

Program 7
Training - glue application

Run Edit Template

(a) List of programs. Green ones
are ready to run, red ones need to
set parameters.

Program 6, block 1

1 | PICK FROM FEEDER
     Object type: wood_46_300
     Pose has to be set.
     Success: 2, failure: 0

2 | PLACE TO POSE OBJECT FROM STEP 1
     Object type: wood_46_300 (same as in 1)
     Success: 3, failure: 0

3 | PICK FROM FEEDER (copy of 1)
     Object type: wood_46_300
     Pose has to be set.
     Success: 2, failure: 0

Edit Run On S On F

Back to blocks

(b) List of instructions. Green
ones are ready to run, red ones
need to set parameters.

Program 6, block 1

1 | PICK FROM FEEDER
     Object type: wood_46_300
     Pose has to be set.
     Success: 2, failure: 0

2 | PLACE TO POSE OBJECT FROM STEP 1
     Object type: wood_46_300 (same as in 1)
     Success: 3, failure: 0

3 | PICK FROM FEEDER (copy of 1)
     Object type: wood_46_300
     Pose has to be set.
     Success: 2, failure: 0

Done Run On S On F

Back to blocks

Save gripper pose

Right arm (0) Left arm (1)

(c) A small dialog shows if the
robot is able to detect an object in
the feeder and allows the user to
save the arm pose.

PICK AREA

ID: 2005 ID: 2008

(d) Polygon defining the area on the table
from which the objects will be picked up.
The green outlines correspond to detected
objects.

Fig. 3. Examples of different widgets from a proof of concept system.

gluing). Each of these instructions has certain parameters to
be set by the user.

The object type must be set for all of these instructions.
For the pick from polygon and apply glue, a polygon defining
the area of interest on the table has to be set, so that the
user can limit objects of the given type affected by the
instructions.

For the pick from feeder, a pre-picking pose (see Fig. 4(c)),
used for object detection, has to be set using the robot’s
arm. While executing this instruction, the robot moves to
the stored pose, observes the objects with its forearm camera
and picks up the closest object in the direction of the gripper.
For apply glue, the poses where the glue is supposed to be
applied have to be set using an arbitrary arm of the robot.

There are also a couple of non-parametric instructions: get
ready, wait for user, and wait until user finishes. The first
one moves the robot’s arms to their default position. The
other instructions allow the synchronization of the system
and the user. The wait for user instruction will pause the
program execution until the user is in front of the table, while
wait until user finishes will pause the program until the user
finishes current interaction with the objects on the table. In
our experiments, the behavior of these two instructions was
simulated and controlled by the Wizard of Oz approach.

E. User Interaction

The interaction between the user and the system is cur-
rently achieved using three modalities: GUI projected on
the touch-enabled surface (which serves as an input for the
system and feedback for the user), kinesthetic teaching (input
to the system only), and sound (feedback for the user only).

The GUI is composed of various widgets. The list of
programs (see Fig. 3(a)) shows all the programs stored in
the system. The color of each entry suggests whether the
program has set all the parameters (green; only these can
be started) or some of them are not set (red). Any program
can be templated (it is duplicated as a new program, with

no parameters set) or edited (the user may set or adjust its
parameters). During the program editation, the user can see a
list of blocks of the selected program and can edit a selected
block or get back to the list of programs.

When editing a block of a program, the list of instructions
is shown (see Fig. 3(b)). The selected instruction is always
in the middle (with exception for the first and the last one)
so the user can see its context. Similarly to the program
list, each instruction has either a red or a green background,
indicating whether it has all the parameters set. When all
the parameters have been set, the selected instruction can be
executed. Moreover, a gray instruction background suggests a
non-parametric instruction. There are also buttons to navigate
through the program, to select an instruction following either
the successful or failed execution of the current instruction.

When a program has been executed, the list of instructions
differs slightly. All the instructions are grayed out and are
not interactive, and the buttons for pausing and stopping the
program are displayed. The instruction detail shows: The
type of the instruction (e.g. pick from feeder), the parameters
(e.g. object type) and transitions for success and failure.

The user is notified about the state of the system and the
errors, as well as the currently available actions, using a
notification bar shown next to the front edge of the table.

It is important for the user to know the state of the
system, so for every detected object an outline and ID are
displayed (see Fig. 3(d)). The type of the object is displayed
upon clicking on the outline. For the purpose of setting the
parameters, more information is shown, such as a polygon
defining the area on the table, the outline of the object
showing the position for object placement, etc. The same is
also shown during the program execution, so the user knows
in advance what object the robot will work with.

Various dialogs exist which allows the user to specify
additional information. For instance, while programming an
pick from feeder instruction, the user has to specify a pre-
pose for object detection by manipulating the robot’s arm



and then confirming the position using a dialog. The pose is
saved after pressing a button corresponding to the arm used
(see Fig. 3(c)). The whole procedure is shown in Fig. 4 (a-e).

F. Known Limitations

The main input modality – touch foil – is prone to false
readings when metal objects are placed on it, which makes
it unsuitable for certain industrial settings. In the future, it
might be replaced with or complemented by a vision-based
approach (e.g. one from [8]). 3D interaction is currently
limited to the kinesthetic teaching of positions, with no
means for their later visualization.

V. EVALUATION

In order to evaluate the proposed approach and to discover
the main usability issues of the early prototype, a user
experience testing was carried out4. Prior to the experiment
itself, a pilot experiment with three subjects (faculty staff)
took place, which helped us to verify the functionality of the
prototype and to create the final experiment design.

As measures, we choose a combination of qualitative and
quantitative data. Self-reported data were obtained using
a questionnaire consisting of the System Usability Scale
(SUS) [14], NASA Task Load Index (TLX) [15] in its raw
form (simplified, with a scale in the range [1..7]) and a
custom questionnaire focusing on the specifics of the system.
We recorded the task completion times and the corresponding
number of moderator interventions as quantitative data.

A. Experiment protocol

The experiment protocol consisted of four phases. None of
the phases of the experiment was time-limited. There were
one moderator and one operator in a separate room in charge
of system monitoring, data recording, and WoZ (used solely
to simulate user activity recognition).

1) Introduction: At the beginning of the experiment, the
participants signed an informed consent form. They were told
a story about a fictional SME producing wooden furniture:
“The company cannot afford a dedicated robot programmer,
so it bought a collaborative robot programmable by any
ordinary skilled worker. The robot will serve as an assistant
preparing the parts for the workers who will do the assem-
bly.” They were given information about safety, the parts of
the workspace (interactive table, robot, feeders with furniture
parts), and basic usage of the interface.

2) Training: The training phase consisted of three simple
programs demonstrating the supported instructions. No spe-
cific product was assembled in this phase. The parameters of
each program were first set by the participant and then the
program was executed. During the execution, errors (e.g. a
missing object) were intentionally invoked in order to gain
familiarity with the error resolution dialog. In this phase,
the moderator proactively helped the participants to complete
the tasks and answered all the questions. A short practice of
the think-aloud protocol followed. After that, the participants

4Overview of the experiment: https://youtu.be/cQqNLy6mE8w.

were told to set the parameters of those three programs
independently while thinking aloud.

3) Main task: The assembly process of a target product (a
small stool) was explained and the participants assembled it
manually. Next, the structure of the corresponding program
and the expected workflow were explained.

After the questions were answered, the participants started
working. When finished, they started the program and collab-
orated with the robot on the task of producing a stool. Two
stools were produced and the participants were told that there
was a demand to adapt a product - to produce a higher stool.
After the parameters of the program had been adapted, they
produced one more.

4) Feedback: After finishing the tasks, an open discussion
took place. The participants were asked for their impressions,
additional questions, etc. Then, they were asked to fill in the
questionnaire.

B. Stool assembly

The intended workflow of the main task is that the user
does the assembly while the robot prepares the parts needed
in the next steps “on background”. The program is divided
into three blocks (see Fig. 5). Blocks 1 and 2 have the same
structure and serve to prepare the parts for the sides of the
stool (two legs, two connecting parts, application of glue).
The purpose of two blocks is that the user might set parts
within one block to be supplied from e.g. the left feeder and
in the other block from the right feeder. Block 3 serves to
prepare the connecting parts for the final assembly of the
sides of the stool.

C. Participants

In cooperation with an industrial partner (ABB Brno),
six regular shop-floor workers of various ages, genders and
technical backgrounds were selected (out of 27 volunteers)
to take part in our study. These participants will be labeled as
Participants A, B, C, D, E and F. Five of them work in quality
control; one (E) works as a mechanic. The demographic data
of the participants can be seen in Table I.

VI. RESULTS

The section provides results of the experiment.

A. Qualitative and quantitative data

Table II shows the results per participant. The mean time
to complete the main task was 2711 s (SD 620 s) with 11.7
(SD 6.7) moderator interventions. The main task consisted
of setting the following instructions: 5x pick from feeder (2
parameters), 12x place to pose (1 parameter), 2x apply glue
(4 parameters), resulting in settings of 30 parameters in total.
The mean time for program adaptation task was 1053 s (SD
215 s). It consisted of setting: 2x pick from feeder, 2x apply
glue, and optionally, adjustment of place poses (based on
previously set poses), resulting in at least 12 parameters in
total. These times include the delays caused by system errors
(unreliable object detection, unstable manipulation pipeline,
etc.). The mean SUS rating was 75.8 (SD 8.9), while for

https://youtu.be/cQqNLy6mE8w


(a) User selects instruction to
be set from list (pick).

(b) Object type is set by
touching its outline.

(c) Robot arm is used to
teach detection position.

(d) Dialog shows if robot is
able to detect object in feeder.

(e) User saves position (con-
firmation sound is played).

(f) User selects follow-up in-
struction (place).

(g) User adjusts place pose
by dragging it on the table.

(h) Another pose, first one
also shown for convenience.

(i) User tests pick from feeder
instruction.

(j) Test of place to pose in-
struction.

Fig. 4. An example of human-robot interaction during the experiment. In this case, the user sets parameters for two pick from feeder instructions (one
shown) and consequent place to pose instructions (both shown). Then, instructions are tested. Two input modalities are used: touch table and robot arm.

part. gender age education experience with robots attitude towards new technology
A F 57 vocational (technical) none skeptical
B M 46 secondary (technical) seen robot at least once neutral
C F 27 secondary (economics) none neutral
D M 33 secondary (technical) seen robot at least once early adopter
E M 24 secondary (technical) works on workplace with robots but not next to them neutral
F M 34 undergraduate (technical) none skeptical

TABLE I
DEMOGRAPHIC DATA OF THE PARTICIPANTS.

comparison, the system from [4] was scored 66.75 (SD
16.95). The mean TLX was 33.3 (SD 8.8).

From the custom questions (see Table III) it seems that
the participants in general liked interacting with the system
and felt safe; however, they were confused from time to time.
However, during the experiment, in most cases it was enough
to tell them to check the notification area and they were able
to continue afterwards.

B. Programming

Observation of the users has shown that the current
visualization of the robot program is probably not suffi-
cient, as it often took considerable time to realize what
was currently being programmed, especially for the case
of repeating sequences of program items (e.g. pick from
feeder, place to pose, pick from feeder, place to pose). Not
fully consistent terminology (e.g. program instruction was
sometimes referred to as item and sometimes as step) may
have contributed to this. Probably because of the similar
appearance, for some participants it was difficult at the
beginning to distinguish between a program block and a
program instruction.

Probably the most common issue during programming was
the participant forgetting to press the Edit button in order to

switch from the view-only mode to the parameter settings
mode for the selected instruction. The participants often tried
to adjust for example place pose and were confused as to
why it was impossible. Also, it was often unclear that it
is only possible to execute individual instructions. Initially,
two participants thought that the instructions (displayed in
the program visualization) were for them, so they should
perform e.g. pick from feeder. One participant asked if there
are also assembly instructions for the workers.

There have been cases where the user accidentally changed
the selected object type. Despite the fact that this was covered
during training, some of the participants thought that the
object type is selected when they put an object of that type
on the table. It seems that although the objects of a selected
type were highlighted differently (with a green outline), most
of the participants only guessed what type was selected, or
rather, checked it in the program visualization where the
information was in textual form.

C. Individual instructions

1) Pick from feeder: Participants were often confused,
as it was required to select the object type on the table
and then to use a robot arm to set the pose enabling the
detection of parts in the feeder. We noticed cases where the



Block 3
Connecting parts

Block 1
Side 1

Block 2
Side 2

Step 1
WAIT UNTIL USER FINISHES

Step 2
PICK FROM FEEDER

Step 3
PLACE TO POSE

 from step 2

Step 4
PICK FROM FEEDER

copy of step 2

Step 5
PLACE TO POSE

 from step 4

Step 6
PICK FROM FEEDER

copy of step 4

Step 8
PICK FROM FEEDER

copy of step 4

Step 7
PLACE TO POSE

 from step 6

Step 9
PLACE TO POSE

 from step 8

Step 10
GET READY

Step 1
WAIT UNTIL USER FINISHES

Step 2
PICK FROM FEEDER

Step 3
PLACE TO POSE

 from step 2

Step 4
PICK FROM FEEDER

copy of step 2

Step 5
PLACE TO POSE

 from step 4

Step 6
PICK FROM FEEDER

Step 7
PLACE TO POSE

 from step 6

Step 8
PICK FROM FEEDER

copy of step 6

Step 9
PLACE TO POSE

 from step 8

Step 10
APPLY GLUE

to 2 poses

Step 11
GET READY

Step 1
WAIT UNTIL USER FINISHES

Step 2
PICK FROM FEEDER

Step 3
PLACE TO POSE

 from step 2

Step 4
PICK FROM FEEDER

copy of step 2

Step 5
PLACE TO POSE

 from step 4

Step 6
PICK FROM FEEDER

Step 7
PLACE TO POSE

 from step 6

Step 8
PICK FROM FEEDER

copy of step 6

Step 9
PLACE TO POSE

 from step 8

Step 10
APPLY GLUE

to 2 poses

Step 11
GET READY

Program end

Program start

Fig. 5. Stool production program. The green edges represent on success
transition, while the red ones represent on failure. The grey edges show
dependencies. In the case of apply glue, there is a loop. The robot applies
glue to one object in a specified area. If an object is found, the program flow
continues to the on success instruction - it tries to apply glue to another
object. If there is no object without glue applied, the flow continues to
on failure (next instruction).

participant tried to select an object by knocking on it (instead
of clicking on its outline), both on the object on the table
and in the feeder. The participants commonly skipped the
object selection, grabbed the robot arm and tried to set the
pose, even above the object on the table, despite the fack that
they were learning picking from feeder. After pressing Edit,
dialog buttons for saving the arm pose (grayed-out at the
time) were sometimes used “to select arm” before any other
interaction. Most users took a new part from the feeder and
put it on the table when they needed to select the object type
even though there were already objects of that type that could
have been used for this purpose. When adapting the program,
it happened twice, that the participant by mistake set the
position for the other feeder (e.g. the instruction originally
used the left feeder, and they switched to the right one). This
would mean that the robot would not be able later to place
the object, as the following place pose (on the opposite side
of the table) would be out of its reach.

2) Place to pose: Common sources of problems were un-
reachable place poses, or place poses too close to each other,
which prevented the robot from placing parts successfully.
The only possibility was to find out by trial and error. For all

the participants, it was difficult initially to handle separated
translation (by dragging) and rotation (using a pivot point).
Some of them intuitively attempted to use multi-touch ges-
tures (not supported by the interface thus far), including one
participant who does not own any touch devices. Although
the initial position of the place pose was in the middle of
the table, some participants had trouble finding it, especially
if there were many objects around. Some of them tried to
drag the outline of a detected object or even placed an object
into the outline of the place pose. Visualization of the place
poses from other instructions (differentiated by a dotted line
and a corresponding instruction number) were confused a
few times with the current place pose and the users tried to
move them.

For successful collaboration with the robot, it was nec-
essary to organize the workspace so that the robot could
prepare the parts for the next steps, while the user did the
assembly. Only Participant B explicitly thought about orga-
nization of the workspace. The others had minor problems
with it or required help. Participant C placed the parts in
a very chaotic way. The participants were explicitly told
during training that they may move widgets (e.g. program
visualization) across the table; however, most of them did
not use it and rather adjusted the place poses so that they
did not collide with the widget.

3) Glue application: The most common issues were ob-
ject type selection (attempts to select using the robot’s arm)
and difficulties with the number of actually stored poses
(shown textually). The fact that it is necessary to store
required poses only with regard to the one object and the fact
that the robot will do it in the same way for other objects in
a given area was also generally unclear.

D. Program execution

During the program execution, errors occurred relatively
often, especially when the robot tried to place an object;
erroneous detection prevented it from doing so. In the event
of an error, a dialog appeared and sound was played. Most
issues were solved just by pressing the Try again button. The
participants were explicitly told to pay attention to errors.
Some of the participants reacted immediately, others after
some time and one seemed to ignore the errors and had to
be told to solve them. Once in a while it was necessary to
warn a participant that he or she was blocking the robot by
occupying part of the table where the robot was meant to
place parts.

E. General findings

No one complained about imperfections of the projection
(shadows, inaccurate registration), low readability of the text,
interface response times, etc. Each participant had an issue
at least once with a non-touchable margin of the interactive
table, which was not indicated by the projected interface.
There were also issues with pressing the buttons twice, where
user tried, for example, to select an instruction which was
immediately unselected. While inactive buttons were grayed



Measure A B C D E F
System Usability
Scale

87.5 67.5 77.5 75.0 85.0 62.5

Simplified TLX 25.0 33.3 30.6 22.2 41.7 47.2
time to set program
(s)

3849 3025 2618 2217 2661 1897

interventions 21 7 20 12 6 4
time to adapt pro-
gram (s)

1088 1447 1118 958 738 968

interventions 11 4 12 2 2 2

TABLE II
QUALITATIVE MEASURES, TASK COMPLETION TIMES (STOOL PROGRAM)

AND NUMBER OF MODERATOR INTERVENTIONS (INCLUDING

ANSWERING QUESTIONS).

Statement A B C D E F
Collaboration was effective. 5 4 5 5 4 4
I felt safe. 4 5 5 5 5 5
Robot motions were uncomfortable. 2 1 1 1 1 1
It was easy to see what the robot was
about to do.

4 5 5 4 4 2

The robot hindered me at work. 1 2 1 1 1 1
I watched every movement of the
robot.

3 1 2 3 4 2

Learning the robot using its arm was
intuitive.

4 4 5 5 5 4

Learning the robot using the interactive
table was intuitive.

4 4 5 5 5 3

Interactive table shows all necessary
information.

5 2 5 5 5 4

Sometimes I did not know what to do. 5 5 4 2 4 4

TABLE III
CUSTOM QUESTIONNAIRE, 1 - TOTALLY DISAGREE, 5 - TOTALLY AGREE

out, most users tried to press them anyway when they thought
they should work.

With many objects on the table or during the stool assem-
bly, there was considerable visual clutter. Interestingly, no
one mentioned it. Difficulties with moving interface elements
(e.g. place pose) across longer distances were observed,
especially if there were many objects on the table. Again, no
one complained or asked if there was an alternative method
to dragging.

As a complementary modality, there were sounds (confir-
mation, warning, error). Only Participant B explicitly appre-
ciated it.

Regarding safety, only Participant A once noted that a
particular movement was probably not safe. No one used
the emergency stop button.

VII. CONCLUSIONS

In this work, we targeted problems of the existing solutions
in the area of interaction between the human workers and the
industrial collaborative robots, particularly in the context of
programming robots in SMEs. The proposed and tested in-
teraction system is an attempt to reduce the mental demands
and attention switching by centering all interaction elements
in the shared workspace. This is achieved by the interactive
SAR (combination of projection and a touch-enabled table)
and kinesthetic teaching. Non-expert users program a robot
on a high level of abstraction, and work within the task
context, free of any additional external devices and with
immediate visual feedback.

The conducted user experience tests proved the potential
of our concept when all six regular shop-floor workers
were able to program the robot to prepare parts for a stool
assembly, to collaborate with the robot, and to adapt the
program for an alternative product within a reasonable time.

During the experiment, no fundamental issues forcing us
to reconsider the approach were found. However, the task
state awareness in particular has to be improved as well as
support for the workspace layout. The participants rated the
system positively despite a number of minor usability issues
and system errors caused by its experimental nature.

In addition to the revision of the interface to solve the
usability issues, we plan to investigate multi-touch support,
group operations, intelligent placement of user interface
elements, and visualization of robot reachability.
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