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Abstract—Randomness testing is an important procedure that
bit streams, produced by critical cryptographic primitives such
as encryption functions and hash functions, have to undergo. In
this paper, a new hardware platform for randomness testing is
proposed. The platform exploits the principles of genetic pro-
gramming, which is a machine learning technique developed for
automated program and circuit design. The platform is capable of
evolving efficient randomness distinguishers directly on a chip.
Each distinguisher is represented as a Boolean polynomial in
the Algebraic Normal Form. Randomness testing is conducted
for bit streams that are either stored in an on-chip memory
or generated by a circuit placed on the chip. The platform is
developed with a Xilinx Zynq-7000 All Programmable System
on Chip which integrates a field programmable gate array with
on-chip ARM processors. The platform is evaluated in terms of
the quality of randomness testing, performance and resources
utilization. With power budget less than 3 W, the platform
provides comparable randomness testing capabilities with the
standard testing batteries running on a personal computer.

I. INTRODUCTION

Cryptographic primitives such as encryption functions, one-
way hash functions, pseudo-random number generators and
hardware random number generators (exploiting a suitable
physical process to obtain a truly random bit stream) are
often implemented as electronic circuits directly on a chip.
Ideally, the output bits they produce should be statistically
indistinguishable from the outputs of a truly random number
generator. However, this crucial property can be partly lost
because of various unpredictable faults, changes in the envi-
ronment or hidden design flaws. Randomness testing is thus
an important procedure that critical cryptographic primitives
should regularly undergo. Various statistical test suites such
as NIST STS, Dieharder and TestUO1 are routinely employed
for randomness testing. However, they are primarily intended
for an offline testing conducted on a common processor.

Recently, a new randomness testing procedure has been
proposed [1]. As this procedure is based on creating specific
Boolean functions acting as randomness distinguishers, there
is a great potential to develop its efficient circuit implementa-
tion. The design of desired distinguishers is based on searching
in the space of Boolean functions represented in an Algebraic
Normal Form (ANF), i.e. as polynomials with product terms
summed by means of an exclusive-or operator. A heuristic
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approach utilizing a brute force search method was employed
to obtain desired Boolean functions by means of a software
implementation [1]. Recent work [2] showed that machine
learning techniques, particularly genetic programming (GP),
can also provide high-quality Boolean distinguishers, but with
a lower computational effort invested in comparison with the
brute force algorithm.

In this paper, we propose a hardware implementation of the
genetic programming method [2] that enables us to evolve
efficient randomness distinguishers directly on a chip. The
objective is to find Boolean functions (so-called distinguishers)
that successfully distinguish a given bit stream from a random
bit stream. These bit streams are either stored in an on-
chip memory (as a result of some on-chip computation) or
generated “on the fly” by a cryptographic primitive (circuit)
implemented on the chip. The fitness function, determining
the quality of candidate solutions, is based on the so-called
Z-score (see Sect. III-B) which is a numerical outcome of a
statistical randomness test comparing two data sequences.

The platform has been developed with a Xilinx Zyng-
7000 All Programmable System on Chip which integrates a
field programmable gate array (FPGA) with on-chip ARM
processors. The platform consists of three main components:
(1) Configurable Boolean Distinguishers (CBDs) implemented
as digital circuits in the FPGA; (ii) a search algorithm im-
plemented in an on-chip ARM core and used to generate
candidate distinguishers that are evaluated in CBDs; and (iii)
a memory subsystem storing the data sequences undergoing
the randomness testing if they are not directly generated by a
circuit component. If multiple instances of CBDs exist, several
candidate distinguishers can be evaluated in parallel. The
platform was evaluated in terms of the quality of randomness
testing (by means of the data sets produced by several cryp-
tographic primitives), performance and resources utilization
and compared with a relevant hardware implementation of
randomness testing.

The main contribution of this paper is that the algorithm
and the software implementation described in [2] can be
implemented as an embedded solution for sensitive on-demand
statistical test requiring a fraction of energy in comparison to
a personal computer. The design tool reports less than 3 W
for the Zynq chip. The paper also provides a detailed analysis
of the tradeoffs between the area occupied in the FPGA and
the randomness testing time.

The rest of the paper is organized as follows. Section II
introduces the principles of statistical randomness testing of
cryptographic primitives and its hardware implementations,
evolutionary algorithms, genetic programming, hardware im-
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plementations of genetic programming (by means of evolvable
hardware) and relevant applications of evolutionary algorithms
in the domain of this paper. The idea of Boolean distinguishers
and the methods based on the brute force search and the
evolutionary search of Boolean distinguishers are presented
in Section III. The proposed hardware platform, capable of
evolving efficient Boolean distinguishers in FPGA, is intro-
duced in Section IV. Section V deals with the experimental
evaluation of the platform. Section VI provides the use case in
which randomness testing is conducted online, for a pseudo-
random number generator implemented on a chip. Conclusions
are given in Section VII.

II. RELATED WORK
A. Cryptographic Primitives and Randomness Testing

Cryptographic primitives such as encryption functions, one-
way hash functions and pseudo-random number generators
(RNGs) are well-established, low-level cryptographic algo-
rithms (or hardware components) that are used as building
elements of cryptographic protocols in computer applications.
Designing a new cryptographic primitive is a very time-
consuming job even for experts. These primitives have to be
tested well by the cryptologist community before their routine
deployment. The history carries many examples of serious
flaws in cryptographic algorithms [3], [4], [5]. Cryptanalysis
conducted by a skilled human cryptanalyst is by far the
most successful approach to assess the overall security of an
algorithm.

Some automation is, however, possible in the first phases
of the cryptanalysis, e.g., by using randomness testing suites
such as the NIST Statistical Test Suite (STS) [6] or Dieharder
[7]. These tests can be applied to check whether the produced
bits are correct in terms of statistical properties, and to reveal
a potentially undesired behavior indicating a deviation from
randomness. Such a defect signalizes a potential flaw in the
algorithm design. As these testing suites are limited only to
testing of predefined patterns on certain statistical defects,
others potential flaws will remain unnoticed.

In some cases, statistical testing is also periodically con-
ducted during the deployment of the primitives. For example,
superseded standard FIPS 140-1 [8] required on-demand sta-
tistical RNG test using four statistical tests. New standard FIPS
140-3 [9] requires additional continuous testing of the RNG
using simple continuous Random Bit Generation (RBG) test or
RBG Entropy Source Test. As summarized in [2], a standard
statistical test examines randomness of data by looking at a
specific feature (e.g., the number of ones, the number of ones
in blocks, etc.). Empirical tests of randomness are typically
based on the statistical hypothesis testing.

These tests evaluate the null hypothesis, i.e. “data being
tested are random”. Each test computes a specific statistic of
bits or block of bits. A test checks whether the observed test
statistic for analyzed bit stream happens to be in the extreme
(tail) parts of the null distribution (distribution of test statistic
of random data). In such a case, the hypothesis is rejected,
and the data are considered as non-random. Formally, a test
statistic is transformed to a p-value (using the null distribution)

representing the probability that a perfect random number
generator would have produced a bit stream “less random”
(i.e. more extreme according to the analyzed feature) than the
tested bit stream [6]. A small p-value (below 0.01) is typically
interpreted as the tested data not being random.

In general, the empirical tests of randomness are based on
the following steps. Firstly, a histogram of patterns for the
given data set is computed by the test. Then the histogram
is reduced into a single value representing its “randomness”
according to the analyzed feature. Finally, p-value is typically
calculated from the observed test statistic using the null
distribution.

Tests are grouped to testing suites (also called batteries)
to provide more complex randomness analysis. NIST STS
[6], Dieharder [7] (an extended version of the Diehard) and
TestUO1 [10] are the most commonly used batteries for
statistical randomness testing. Although test batteries consist
of a set of tests, their testing ability is limited since the feature
being examined is fixed for each test. However, it is believed
that by using suitable type and amount of features, randomness
can be confirmed with a desired level of confidence.

Recent work [1], [2], [11] showed that carefully constructed
Boolean functions can provide comparable results, yet much
faster and using lower data volumes in comparison with
commonly used statistical test suites. This approach will be
elaborated in detail in Section III.

B. Evolutionary Algorithms and Cryptography

Genetic algorithms, genetic programming, evolutionary
strategies and other search methods inspired in Darwinian
theory of evolution and in the principles of neo-Darwinism are
collectively referred to as evolutionary algorithms (EAs). They
are traditionally used to solve hard optimization problems
by means of a parallel search in the space of all feasible
solutions. In order to do so, EAs employ a set of candidate
solutions (the so-called population), new candidate solutions
are created by bio-inspired operators such as crossover and
mutation, and the search is driven by an objective function,
called the fitness function. Genetic programming can also be
seen as a machine learning technique that can automatically
design computer programs without requiring the user to know
or specify the form or structure of the solution in advance [12].
As logic networks can also be treated as candidate solutions,
GP has been employed to automatically design digital circuits,
for example, using a version of GP denoted as Cartesian
GP (CGP) [13]. By evolvable hardware we mean a circuit
evolution conducted directly on a chip, typically by means of
GP [14].

In the context of cryptography, EAs have been applied
to solve quite a diverse set of problems, yet all showing
a common property — they can be formulated as a search
problem. Picek’s tutorial [15] provides a list of tasks where
EAs proved successful in cryptology.

Pseudo-random generators have traditionally been evolved
by the EA community (e.g., [16], [17]). One of the require-
ments for their use for cryptographic purposes is a low imple-
mentation cost. Cartesian genetic programming was employed
to produce such type of pseudo-random generators [18].
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Boolean functions with specific properties (for example,
highly nonlinear and balanced functions) are introduced to
cryptographic primitives because they make a possible attack
on them more difficult. Genetic algorithms (e.g., for S-Box
generation [19]) as well as genetic programming (e.g., for
bent function [20] and high correlation immunity function [21]
designs) were successfully applied, improving the state of the
art results. A general scheme for the design of block ciphers
by means of genetic programming was introduced in [22]. To
best of our knowledge, there has been no research related to
evolvable hardware dealing with randomness testing.

C. Circuit Evolution in FPGAs

FPGAs have always been an attractive platform for the on-
chip circuit evolution because they provide electronic circuits
that can relatively easy be configured and evolved by means
of EAs (see Chapter 2 in [14]).

Evolvable hardware systems based on FPGAs have been
developed for more than two decades, see a recent survey [23].
In the FPGA-based evolvable hardware, EA (GP) generates
candidate configurations (the so-called chromosomes in the
EA terminology) that are used to configure the reconfigurable
blocks of the FPGA. Once a new candidate circuit is estab-
lished on the basis of this configuration, it is evaluated to
obtain the fitness score. The evaluation is performed for all
candidate circuits in the population either sequentially or in
parallel. New populations are created using genetic operators
which can be implemented in the software or as circuits. The
process is repeated until a required solution is obtained or
a predefined number of generations is exhausted. From the
designer perspective, the key decisions (determining the area
on a chip, performance and flexibility) are how candidate
circuits will be implemented and reconfigured and where EA
will be implemented.

The circuit reconfiguration can directly be performed at the
level of the configuration bit stream for some FPGA families.
The concept of dynamic partial reconfiguration (DPR) is then
used which allows designers to modify a part of the FPGA
while other parts of the FPGA can operate unaffected [24],
[25], [26], [27]. There is a configuration port (e.g. Internal
Configuration Access Port in Xilinx Virtex chips) which
enables to accomplish the partial reconfiguration from a device
(e.g. a processor) located inside the FPGA. The elementary
unit of the FPGA which can undergo the reconfiguration is
represented by the so-called frame. As one frame typically
contains thousands of bits, the reconfiguration time is long
even if only a minimal change in the FPGA configuration
is requested. There are many constraints imposed on the
configuration process in order to perform the reconfiguration
safely. Hence, DPR is relatively a time demanding operation.

A different approach is to reconfigure a virtual recon-
figurable circuit (VRC) which is built on the top of the
FPGA using multiplexers and application-specific processing
elements [28], [29]. Here, the reconfiguration means just
writing a set of registers that holds the control signals for
the multiplexers. Virtual reconfigurable circuits have been
developed in order to avoid slow and not-well-supported

reconfiguration mechanisms existing in former FPGAs. An
obvious disadvantage is that the multiplexers needed to ensure
the reconfiguration introduce additional area and delay over-
head in the resulting circuits. A recent trend is to combine
DPR with VRC to gain benefits from both the approaches and
eliminate their disadvantages [26], [30].

The EA is implemented either outside the FPGA (e.g. in
a personal computer [24]) or inside the FPGA. The second
option is currently a preferred solution as the EA is, in fact, a
software which can be executed in on-chip processors such
ARM or MicroBlaze [27], [30], [31]. Another approach is
to implement the EA as a specialized circuit using resources
available in the FPGA. However, this solution is useful only in
very specific applications. The EA implemented in software is
easy to modify and configure. Its performance is usually suffi-
cient because executing the genetic operators typically requires
a fraction of the time with respect to the candidate circuit
evaluation which is typically accelerated in the programmable
logic.

In the context of FPGA-based evolvable hardware systems,
various implementation options for the circuit evaluation,
fitness calculation and genetic operators were surveyed and
analyzed [23], [27], [30]. The state of the art approach is
to implement the EA as a program executed in an on-chip
processor and evaluate candidate circuits by means of DPR,
VRC or their combination. This approach is also suitable
for Xilinx’s reconfigurable Zynq chip [32]. Zynq integrates
a programmable logic (PL), a dual-core ARM Cortex A-
9 processor and numerous I/O subsystems and memories.
It also utilizes new reconfiguration options by means of a
processor configuration access port (PCAP) which can manage
reconfigurations from the embedded ARM cores. PCAP has
been used for purposes of evolvable hardware, for example,
in [26], [30].

D. Hardware Implementation of Randomness Testing Methods

General-purpose state-of-the-art randomness testing frame-
works (such as FIPS, NIST STS and Dieharder) are typically
implemented on common processors and used for off-line
randomness testing. Full hardware implementations of these
frameworks are quite rare. Four tests of the first version
of the FIPS 140-2 standard were implemented on the Actel
Fusion FPGA [33]. Four overlapping tests out of 16 Diehard
battery tests required 16,518 LUTs of the Xilinx Virtex 5
FPGA chip running at 151 MHz. Almost complete hardware
implementation of the NIST STS suite was presented in [34],
where the authors employed DPR to squeeze 14 tests of
NIST STS into a Xilinx Virtex II Pro FPGA V2P30 chip.
Their implementation of all tests would require 32,230 LUTs
(estimated according to [34]), but thanks to the use of DPR
the tests were executed on an FPGA containing only 27,392
LUTs.

Other FPGA-based implementations of randomness testing
are focused on revealing specific weaknesses in the (pseudo
or true) random data streams produced directly on a chip.
One of these approaches is to implement only a subset of
a commonly used test battery (such as NIST STS tests [35],
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[36]). The objective is to provide fast and compact, but in
principle simplified on-the-fly randomness testing. It has to
be noted that although the hardware implementation of some
tests is simplified with respect to the standard software version,
no experimental analysis of the quality of testing on real
data was reported in these papers. Another approach in this
direction is developing completely new hardware architec-
tures for randomness testing. A new architecture suitable for
learning cumulative distribution functions that was applied to
nonparametric run-time testing for bias in RNGs was presented
in [37]. The authors pointed out that “a notable drawback
of our algorithm is that in order to function optimally it
requires the stream under analysis to generate variates in a time
independent manner”. In addition to statistical randomness
testing, some implementations also test the internal quality of
the entropy source in the case of True RNGs [38], but these
approaches are out of the scope of this paper.

We can conclude this part by emphasizing the fact that
the on-the-fly simplified implementations discussed in the
previous paragraph cannot be considered as implementations
of general-purpose randomness testing frameworks. As the
randomness testing showing the quality comparable with NIST
STS is needed in various on-chip applications and in low
cost portable systems and existing implementations of this
type are obsolete [33], [34], [39], we propose a new FPGA
implementation based on Boolean distisguishers in this paper.

III. BOOLEAN FUNCTIONS AS RANDOMNESS
DISTINGUISHERS

Based on constructing suitable Boolean functions, Sys et
al. [1] introduced a method looking for distinguisher of a
(tested) bit stream (TBS) and a random bit stream (RBS).
These Boolean functions are represented in an ANF and eval-
uated by means of the Z-score. This section introduces ANF
for Boolean functions, Z-score and two methods developed for
constructing desired Boolean distinguishers.

A. Algebraic Normal Form

ANF is a canonical polynomial representation of a Boolean
function. Formally, every Boolean function f : {0,1}" —
{0,1} can uniquely be represented by a polynomial in n

variables:
_ I _ .
) xn) - arxr = ar Ty,

f(r,...
I1eP(M) Iep(M) el

where @ is the exclusive-or operator, P(M) denotes the
powerset of M = {1,...,n}, n denotes the number of
variables, and a; € {0,1}. The product z! is denoted as
monomial. The algebraic degree of f, denoted by deg(f),
is the maximum of the degrees of the monomials in f.
Considering ANF representation and lexicographically ordered
powerset P(M), every Boolean function can uniquely be
represented by the binary sequence (ag, a1, - . ., ap;) of length
2", where the coefficient ay corresponds with the empty set
and aj; corresponds to the set M.

For example, Boolean function g(z1, x2, 23) = z1® 125
xoxg is in ANEF, its algebraic degree is deg(g) = 2 and it con-
sists of three monomials (|I| = 3). This function is uniquely
determined by I = {{1},{1,3},{2,3}} € P({1,2,3}) and
it can be represented as (ao, a1, aq, a3, a12, a13, A3, 4123) =
(0,1,0,0,0,1,1,0).

The reasons for choosing ANF for representing a Boolean
distinguisher are: (i) a logic expression in ANF can easily be
interpreted by human (which is important for cryptanalysts)
and (ii) the search space induced by the ANF representation
is naturally constrained for a given n by the requirements
imposed on the ANF.

B. Z-score

The quality of a Boolean distinguisher is measured in terms
of the so-called Z-score, which is a generalization of the
Monobit test that counts the number of ones (#1) and zeros
(#0) in the analyzed TBS and examines whether the numbers
are close to each other as it would be expected for random
data. The N-bit data stream to be analyzed is divided to B
non-overlapping blocks consisting of n bits (N = B - n). The
blocks serve as inputs for Boolean function f(xq,--- ).
The sum #1 of results of f when applied to the blocks, is
computed. The #1 together with the probability of evaluating
f to one for random input (denoted as p) is used to compute
Z-score: 41— B

p(l-p)B

Fig. 1 shows how Z-score is computed by a 3-input Boolean
distinguisher when sequences TBS (7') and RBS (R) contain
B 4 blocks. Z-score was employed as it normalizes a
binomial distribution of #1 [1]. In addition to that, it defines the
statistical distance between observed and expected numbers of
ones for random data.

Sys et al. proposed to use the computed test statistic directly
as the measure of the strength of distinguishers [1]. The Z-
score of tested data is compared with the Z-score calculated
for a random data that serves as a baseline for randomness
comparison. A bigger (absolute) difference of these Z-scores
then indicates a stronger randomness distinguisher and con-
versely.

Z-score =

(D

C. Brute Force Method

A heuristic method, based on the brute force search, was
proposed to find suitable Boolean distinguishers, i.e. n-input
Boolean functions represented in ANF [1]. The method con-
sists of two phases. The goal of the first phase is to enumerate
all monomials whose degree is less or equal to d, where
d is very small (usually d = 3) to make the enumeration
feasible. From all these results, a set of top 10 (or 100
or 1000, depending on experiment) monomials showing the
best Z-score is selected. In the second phase, more complex
distinguishers are constructed from the top monomials, again
by enumeration. The monomials are combined together to
obtain a Boolean distinguisher in the form f =0, & --- @ by,
where b is a pre-selected monomial and k& < 3. Although this
algorithm significantly reduced the set of distinguishers that
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Fig. 1. Determining the fitness score (Z-score) of Boolean distinguisher g
represented using logic function 1 @ x2x3 @ x1x3. Test sequence 1" and
random sequence R consist of B = 4 samples.

are considered by the evaluation, it was shown in [1] that
resulting distinguishers can reveal non-randomness of various
difficult TBSs.

BoolTest' [11] is a software implementation of the brute
force search method. The performance (strength and speed)
of the BoolTest significantly depends on the used parameters
(k, d). BoolTest provides comparable randomness testing to the
NIST STS test suite in terms of strength (comparable number
of rounds for 20 tested cryptographic functions) as stated
in [1], but the time is radically decreased. The randomness
analysis of 100 Mib of data (regardless of its randomness
quality) with the NIST STS (default setting) takes 8.5 min
on ordinary laptop®. BoolTest with four very simple configu-
rations (k,d € {1,2}, but with larger n € {384,512}) used
in [1] takes 5 s, 6.6 s, 3.8 s and 3.9 s respectively. However,
for a more challenging configuration with n = 128,k = 3 and
d = 3 the time needed to process 100 Mib of data is about 1.1
min. This underlines necessity to employ an efficient heuristics
such as EA.

In summary, BoolTest can be used as a fast alternative to
existing batteries and/or to complement their results. More-
over, with decreasing amount of the available data BoolTest
outperforms NIST STS battery more and more. The direct
interpretability of a Boolean function based distinguisher adds
benefit for a human cryptologist interested in the more detailed
analysis of weaknesses present in inspected cryptographic
function. Among others, the previously unknown bias in the
output of C rand() and Java Random generators was discovered
using BoolTest [1].

D. Evolutionary Design of Distinguishers

The evolutionary algorithm presented in [2] is based on
a (1 + A) search strategy known from Cartesian genetic
programming [13]. In this algorithm, A offspring individuals

! github.com/crocs-muni/booltest
2Processor Intel(R) Core(TM) i5-8250U CPU @ 1.60 GHz

are created by a point mutation from one parent — the highest
scored individual of the previous population.

In order to encode a Boolean function containing up to
k monomials with degree d, a string of genes (integers)
consisting of d x k items is employed. The items are divided
into k tuples. Each tuple is associated with a single monomial
and defines its inputs. The positive value of a gene determines
the index of the input variable involved in the monomial. The
negative value means that this item is ignored. For example,
a candidate Boolean function

g = 21Z5T40 D T20T75 D To9T76 D Ts6
is encoded as
(1,5,40; 20,75, —30;99, —55,76; —1, 56, —112)

for n = 128,d = 3 and k = 4. When the mutation operator is
applied, up to h genes can be modified. The mutation either
inverts the sign of a chosen gene or replaces its value by a
randomly generated, but valid integer.

Mrazek et al. [2] compared the aforementioned EA (denoted
EVO in [2]), the two-stage brute force approach (denoted
BF/BF) and the brute force approach combined with EA, in
which either the first or the second stage was performed by
EA (denoted EVO/BF and BF/EVO). The best results were
reported for the EVO approach which was tested for d < 10
and k£ < 20. On seven complex data sets analyzed in [2],
EVO provided better distinguishers and the execution time
was in practice reduced 40 times with respect to the BF
approach. Moreover, EVO enabled to construct more complex
distinguishers utilizing higher polynomial degrees, which is
intractable by the brute force approach.

IV. EVOLUTIONARY DESIGN OF BOOLEAN
DISTINGUISHERS IN FPGA

This section presents a new Zyng-based platform for the
evolutionary design of randomness distinguishers. As Fig. 2
shows, after the random initialization, the platform automat-
ically generates candidate polynomials (randomness distin-
guishers) that are evaluated (simulated) using the test and
random bit streams available on the platform. The evaluation
is accelerated in the FPGA. The Z-score is calculated for each
candidate distinguisher and the best of them («) is compared
against the best-scoring distinguisher (p) obtained so far. The
globally best-scoring distinguisher is used as the parent for the
next generation of distinguishers. The process is repeated for
a predefined number of iterations. Details of the mapping of
this process on the resources available in the Zynq chip are
provided in the following sections. Together with the hardware
implementation, a purely software implementation in C has
been developed in order to find suitable parameters of EA
and tune the performance before a real hardware design is
conducted.

We have developed two use cases for the platform. It can
be applied for

o offline randomness testing of bit streams stored in a local

memory (Use Case I) or

 online randomness testing of bit streams generated by an

on-chip component (Use Case II).
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Use Case I is motivated by the need to create a portable
and low-power general-purpose randomness testing system
(i.e. neither laptop-based testing nor simplified test batteries
are acceptable) that could be used as a component in an
FPGA (or eventually in an application specific circuit — ASIC)
for randomness testing of various sequences produced or
processed on a complex chip. Hence, we suppose that the
data are created somewhere on a chip and available in a local
memory. One of the applications of such a system is online
testing of (pseudo) random data generated by RNGs which is
the Use Case II (i.e. no local memory is used). However, the
local memory can also work as a buffer if the data generated
on the chip are produced much faster or much slower than
Boolean distinguishers can process. While this section deals
with Use Case I, Use Case II is presented in Section VI.

A. Platform Overview

On-chip randomness testing

Programmable logic (FPGA)

Tested #1
bit stream Simulator T
(TBS)
5 Z-score analyzer
Select a with the
Random #1 highest Z-score
bit stream Simulator —
(RBS)
L)
yes ~Z-score(a)=

A

]

Generate

Initialization

(random p) candidate

polynomials

Terminate?

yes

Z-score(p)
Fig. 2. Basic functionality of the platform developed for on-chip randomness
testing

The concept of Boolean distinguishers is, in principle, well
suited for a hardware implementation because a candidate
Boolean distinguisher can straightforwardly be implemented
in a reconfigurable combinational circuit in order to ensure
its fast evaluation. As the structure of the distinguishers
is strictly dictated by ANF, we propose to implement the
distinguisher as a combinational pipelined circuit and employ
the multiplexers to select the inputs of the monomials. This
strategy, corresponding to the VRC principles, supports fast
data processing (because of pipelined circuits) and fast recon-
figuration (by means of writing to the configuration register).
Moreover, if the FPGA is sufficiently large, several VRCs can
be implemented on the chip to enable a parallel evaluation of
the entire population.

In Use Case I, both bit streams — TBS (tested) and RBS
(reference random) — are stored in a local memory (called
BlockRAM or BRAM) of the FPGA. With respect to available
resources on the Zynq chip, the chosen size of TBS as well as
RBS is V = 800 kbits, i.e. the total memory capacity allocated
for bit streams is 2 x 100 kB.

Fig. 3 shows the proposed implementation of the platform,
which can evolve Boolean distinguishers with up to 128
inputs in the FPGA. In order to process TBS and RBS in

parallel, there are two independent copies of the configurable
Boolean distinguisher (CBD and CBD2) implemented in the
programmable logic. They are configured to operate identi-
cally, i.e. both copies implement the same candidate Boolean
distinguisher whose configuration is generated by EA. Each
of them is equipped with a simple counter of ones (CNT) as
the number of ones is needed to calculate the Z-score. These
counters are enabled by TEN and REN signals if CBD is
outputting logic 1. The memory holding TBS and RBS is
organized in such a way that 128 bits can be fetched from
each bit stream in one clock cycle.

If the FPGA capacity is sufficient, multiple CBD pairs
can be instantiated to evaluate more individuals in parallel
as shown in Fig. 3. A common utilization of the platform is
that the number of CBD pairs equals the number of offspring
(A). TBS and RBS stored in BRAM are then shared by the
CBD pairs (see Sect. IV-C).

The ARM core is employed to calculate the Z-score from
the results produced by candidate distinguisher(s). The ARM
core also implements the EA and configures CBDs according
to evolved configurations.

1 I
REG TD’;R: FSM CONTROLLER
REG DONE TIN RIN TEN REN RST
11
ADDR |4kt CONF VRS 12 12 12
CBD
BRAM 128
ARM 200 kB OATA EN  CNT
Cortex A9 AT 3'5: CONF VRC1 P{RST  vRCi
CBD2 i
294 —TEn CNT
REGVRCL | DATA (random data) _.
32
REGVRCT
766 MHz REGVRCT 32
REGVRC A o W
7| oata BN CNT
P RST  VRC2
CONF VRC2
cBp2  — T et
128 b[RST vreC2
Th 32 (random data)
REG
100 MHz VRC2| 2
REG 250 MHz

Fig. 3. Platform for evolutionary design of Boolean distinguishers in the
XC7Z020 Zynq chip. A pair of CBDs is devoted to the evaluation of a
single candidate distinguisher. Multiple CBD pairs are used to evaluate more
distinguishers in parallel (shown for A = 2).

B. Configurable Boolean Distinguisher

According to its configuration, CBD is designed to imple-
ment one Boolean distinguisher from a set of Boolean dis-
tinguishers that are determined by three parameters (n,d, k),
where n is the number of input bits of Boolean distinguisher,
d is the maximum degree and k is the maximum number of
monomials in the corresponding ANF.

With respect to available resources in Zynq and typical
sizes of Boolean distinguishers analyzed in [2], CBD is
implemented as a combinational circuit for n = 128,d = 6
and k£ = 6. Figure 4 shows that six monomials (kq,...,kg)
are processed in parallel and their outputs are summed in a 6-
input Exclusive-OR gate. A monomial is implemented with a
6-input AND gate whose inputs are selected from the 128-bit
input vector by means of six 128-input multiplexers. A single



IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

128-input multiplexer is implemented using 34 LUTs and 28
embedded multiplexers (the so-called F7 and F8 multiplexers
in Zynq).

CLK CONF DATA

294 128
B6x7 1 " 1 1 1 B — |

A\ MUX MUX fom 11w MUX fomepem 111 e MUX MUX o 1ir e MUX
36
6 ; d; ; d> ; de d; d, de

| m— e
J -~
k1 CLK b k5 CLK
CBD

ouT

Fig. 4. Configurable Boolean Distinguisher for n = 128, d = 6 and k = 6.
Configuration register CONF controls the inputs of the Exclusive-OR (6 bits)
and 6 monomials (6 x (6 + 6 x 7) bits). One monomial needs six bits to
control the inputs of the AND gate and, for each input, 7 bits are needed to
select one of the 128 DATA inputs by the multiplexers. The OR gates enable
to disconnect a particular variable in a monomial.

Six OR gates used in each monomial are capable of discon-
necting appropriate inputs from the AND gates. This ensures
that each AND can effectively process from O to 6 inputs,
i.e. the whole monomial can eventually be disconnected. If all
the inputs are disconnected, the AND generates logic 1. The
inputs of the Exclusive-OR can analogically be disconnected.
If all the inputs are disconnected, the Exclusive-OR gate
generates logic 0. In order to support pipelined processing,
several stages of D registers are inserted into CBD. One stage
of D registers is also included to the implementation of 128-
input multiplexers.

One pair of CBDs is configured using a configuration
register containing the control bits for multiplexers and con-
figuration gates. The configuration register size is 294 bits,
where six bits control the inputs of the Exclusive-OR and
6 X (6 + 6 x 7) bits control six monomials. One monomial
needs six bits to control the inputs of the AND gate and, for
each input, 7 bits are needed to select one of the 128 primary
inputs by the multiplexer. If A CBD pairs are employed, the
total configuration register size is 294\ bits.

C. Evolutionary Algorithm

We adopted the search method (1 + \) used in [2] and
similar FPGA-based accelerators of EA (e.g., [13], [26]). As
Algorithm 1 shows, the search method which is implemented
in the ARM core, starts with a randomly generated population
of candidate Boolean distinguishers (line 1), each of them
represented using 294 bits. The population is evaluated in
CBDs ceither sequentially or in parallel, depending on the
number of CBD pairs on the chip (line 2). The Z-score,
representing the fitness value, is assigned to each individual.
The best-scored individual () is selected as a parent of the
new population (lines 6 — 8). A\ offspring are then generated

from the parent by means of the mutation operator modifying
h genes (integers) of the chromosome and evaluated (lines 9
— 10). The body of the while loop is repeated n, times, where
ng is a predefined number of generations. The highest scored
individual is the result of the evolutionary algorithm.

The execution time of EA is dominated by the number
of evaluations (n, X ) because creating a new population
and other supporting tasks conducted by the processor are
negligible in the total execution time.

D. Accelerated Evaluation of Distinguishers

Let us assume that only one CBD pair is instantiated in the
FPGA. In order to evaluate a candidate Boolean distinguisher,
the following steps are performed. The processor sends the
chromosome to the configuration registers of both CBDs in
294/32 ~ 11 clock cycles. It has to be noted that the processor
can send only 32 bits/clock cycle (at 100 MHz) to PL. In PL,
the evaluation is finished in 10+ N/n clock cycles, where 10
is the initial latency of CBD (i.e. the number of stages in the
pipeline), N is the bit stream length and n is the number of
inputs bits of the distinguisher. The outcome of the evaluation
(i.e. the number of ones in TBS and in RBS) is sent back
to the processor (in 2 clock cycles) in which the resulting Z-
score is determined and assigned as the fitness value to the
chromosome.

If A CBD pairs are available in the FPGA, the evaluation
time (104 N/n clock cycles) remains unchanged, but A distin-
guishers instead of one distinguisher are now evaluated within
this time. The configuration time and the result storing time
are, however, increased proportionally with A (see Section V-A
for detailed evaluation).

V. RESULTS

This section summarizes results of synthesis and experimen-
tal evaluation of the proposed implementation. It deals with
Use Case I in which the bit streams are stored in on-chip
BRAM memory blocks.

A. Implementation and Synthesis Results

The proposed platform was described in VHDL, synthesized
with Xilinx Vivado 2018 and implemented on the ZC702

Algorithm 1: Search algorithm

1 P + RandomlyCreatelnitialPopulation;

2 EvaluatePopulation(P) in FPGA;

3 fitness(p) < —oo;

4 1=0;

5 while (i < ny) do

6 a < Select Highest-scored-individual(P);
7 if fimess(a) > fitness(p) then

8 | pe o

9 P <+ {p} U {\ offspring of p created by mutation};
10 EvaluatePopulation(P) in FPGA;

11 1=14+1;

12 return fitness(p);
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TABLE I
THE NUMBER OF CLOCK CYCLES (REQUIRED FOR CONFIGURATION, EVALUATION AND STORING THE RESULT), THE EVALUATION TIME FOR A
DISTINGUISHERS AND THE TOTAL EA EXECUTION TIME IF 40,000 CANDIDATE INDIVIDUALS ARE GENERATED AND EVALUATED USING 1-5 CBD PAIRS.

CBD pairs Clock Cycles Eval. time EA time  Speedup
(=N Configuration  Evaluation  Store result [us] [s] [-]

1 11 6260 2 25.17 1.0068 1.00

2 21 6260 4 25.29 0.5058 1.99

3 31 6260 6 25.41 0.3388 2.97

4 41 6260 8 25.53 0.2553 3.94

5 51 6260 10 25.65 0.2052 491

Evaluation Kit containing XC7Z020-CLG484-1 chip. The EA TABLE II

was implemented in the ARM core with parameters adjusted
according to [2]: A = 4, h = 5 and n, = 10*. If not explicitly
stated otherwise, all results are reported for distinguishers that
can fit into a CBD configured with n = 128, d < 6 and k£ < 6.

Due to the pipeline processing, PL can operate at 250
MHz. Up to five CBD pairs can be instantiated in PL. For
N = 800,000 and n = 128, the evaluation time of a single
candidate distinguisher using one CBD pair (see A = 1 in
Table I) requires 10 + 800,000/128 = 6260 clock cycles which
corresponds with 25 ps. Some additional time is required
for the CBDs configuration (11 clock cycles) and storing
the result to the processor (2 clock cycles). The execution
time of EA which produces and evaluates ng, x A = 40,000
candidate distinguishers is then 1.0068 s. Table I summarizes
these numbers if 1-5 CBD pairs evaluating 1-5 candidate
distinguishers in parallel are instantiated in PL. The obtained
speedup with respect to the baseline implementation (i.e.
A =1 corresponding with Speedup = 1.00 in Table I) scales
almost perfectly with the number of CBD pairs.

Table II gives resources utilization for & = 6, d = 6,
N = 800,000 and n = 128, where the dominant consumer
is BRAM needed to store TBS and RBS. Depending on
the number of CBDs, our design requires from 12.80% to
33.26% slice LUTs. We were unable to fit more than five
CBD pairs to PL because of complicated routing associated
with the requirement of high operational frequency. Increasing
the complexity of CBD can in some cases slightly improve
the quality of randomness testing as reported in [2], but it
immediately reduces the speedup in terms of Table I. For our
FPGA, only one CBD pair can be instantiated in the PL if
d = k = 10. This configuration leads to a 66% resources
overhead (with respect to d = £ = 6 and ‘CBD pairs’ = 1
reported in Table II) and power consumption is also higher
(2.7 W). A compromise configuration with d = 6 and k£ = 10
enables instantiating up to three CBDs with a 25% increase
in resources.

B. Data Sets

The method is evaluated on the data (i.e. TBSs) generated
by means of the stream cipher (RC4), block cipher (AES)
and hash functions (SHA-256, MD6, Keccak). In order to
detect some non-random sequences in our experiments, we
intentionally limited the number of rounds that are performed
by these primitives. The test data were generated as the
standard keystream for RC4. For the remaining cases, a special
stream consisting of 128-bit blocks of minimal Hamming

RESULTS OF SYNTHESIS FOR 1-5 CBD PAIRS (k = d = 6, N = 800,000
AND n. = 128) INSTANTIATED IN THE XC7Z020 CHIP

Available Chip utilization for 1-5 CBD pairs [%]
Site type 1 2 3 4 5
Slice LUTs 53200 | 12.80 17.52  23.17 28.19 33.26
Flip Flops 106400 6.61 7.97 933 10.68 12.08
F7 Muxes 26600 4.55 8.88 1321 1754 21.87
F8 Muxes 13300 4.79 9.12 1345 1778 22.11
Block RAMs 140 | 47.14 47.14 47.14 47.14 47.14
Power [W] | -] 235 2.54 2.76 2.94 3.24

weight was employed at the inputs. This sequence starts with
block By = 700---0”. Each of next 128 blocks consists
of 127 bits ”0” and one bit ’1” on different positions i.e.
By =700---017,By = "700---107,--- , Byog = 7100---".
Next blocks consist of 126 bits with ”0” and 2 bits of the value
”1” etc. The test data were generated as blocks of the sequence
processed by one of the functions (SHA-256, etc.) separately.
In addition to that, a sequence of random data obtained from
/dev/urandom (which is a special file that serves as a pseudo
random number generator in Unix-like operating systems) is
considered. The generator is cryptographically secure [40]
which means that the numbers it produces can be used in
cryptographic applications where high quality random data are
required. In all cases, 100 kB of data is used as this memory
capacity is supported in the proposed implementation.

C. Results of EA and BF

For the EA setting given in Section V-A, we analyzed how
the Z-score depends on d (d = {3,6}), k (k =1,...,6) and
selected data streams. Fig. 5 shows box plots of the Z-score
constructed from 10 independent runs of EA. For d < 3 it is
possible to run the BF method whose results are shown as the
red crosses. For example, BF evaluated 349,632 monomials
with d < 3 in the first phase of the BF algorithm introduced in
Section III-C. If & > 1, the number of distinguishers evaluated
by BF is (Z), where s is the number of top monomials selected
in the first phase.

Our results are consistent with [2] because we implemented
the same EA. If d < 3 and k& < 3 then BF is able to find better
solutions than EA. The reason is that there are usually only
a few “the best solutions” which BF can always detect while
EA does not usually reach them, but EA is very close. If
the number of monomial is increased (d = 3,k = {4,5,6}),
the monomials selected by BF in the first phase are not good
enough to constitute good distinguishers in the second phase
of BF. Hence, EA provides much better results. These results
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are then significantly improved for d = 6 and £ > 2. We
do not report any results for BF with d = 6 because it is
intractable to run BF in these cases.
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Fig. 6. Z-score of the best, median and worst distinguishers from the EA runs
conducted for four analyzed data streams and d = k = 6.

TABLE III
Z-SCORE OF THE BEST DISCOVERED DISTINGUISHERS FOR DATA STREAMS

Fig. 5. Z-score obtained for four tested data streams using evolved Boolean
distinguishers with various settings of d and k. The red cross shows the best
solution from the brute force method.

Figure 6 shows the fitness (i.e. Z-score) of the best, median
and worst distinguishers from the EA runs conducted for four
data streams and d = k = 6. It can be seen that 10% is
a sufficient number of generations to converge as the best
solutions stop improving well before this limit (it has to be
noted that we used the logarithmic scale on the Generation
axis). This behaviour is visible in both the basic cases that we
investigate, i.e. for testing of (a) high randomness bit streams
(Keccak(3), RC4, Random) in which the Z-score is around
20.0 for our setup of CBD and (b) low randomness bit streams
(SHA-256(3)) in which the Z-score is much higher than 20.0.

D. Performance Analysis

We can observe that the Z-score is improving with increas-
ing the number of monomials (k) and degree (d). Higher k
and d permit the evolution to search for more complex dis-
tinguishers capable of discovering more tricky dependencies
among the bits. This is the main advantage of the EA with
respect to the BF algorithm.

For 12 data sets, Table III summarizes Z-scores of the
best distinguishers obtained using (i) the EA operating in the
space of all possible functions permitted by CBD, (ii) the EA
operating in a restricted search space (d < 3) and (iii) BF in
which the best 100 monomials were used in the second phase
of the brute force method introduced in Section III-C. Based
on the comparison with the baseline Z-score of the random
sequence (denoted ‘random’), one can observe that all three
methods give consistent results, but EVO (d < 6,k < 6)
provides the strongest distinguishers. For example, the data

PRODUCED BY VARIOUS CRYPTOGRAPHIC FUNCTIONS.

Source of data EVO EVO BF
(rounds) d<6,k<6 d<3,k<6 s=100
AES(3) 21.51 12.6 12.2
Keccak(2) 84.92 58.7 64.0
Keccak(3) 21.35 12.2 10.8
Keccak(4) 23.12 13.4 11.2
MD6(8) 22.33 13.2 11.2
MD6(9) 20.83 11.5 10.8
MD6(10) 22.57 11.8 12.9
MD6(11) 23.10 12.3 11.4
RC4 22.31 11.5 11.2
SHA-256(3) 56.67 25.1 22.8
SHA-256(4) 21.43 11.8 12.4
random 20.53 11.0 10.7

streams produced by three rounds of SHA-256 cryptographic
function or two rounds of Keccak are far from random.

For d = 6, Kk = 6, n = 128, 100 kB data streams and
A x ng = 4.10%, the execution time is 1 sec if a single pair
of CBDs is instantiated. If four pairs of CBDs are employed
the proposed system is faster than a highly optimized single-
core software implementation running on a 64 bit Xeon ES5-
2670 @ 2.6 GHz whose execution time is 0.3 s. However, the
main contribution of this paper is that the whole system can be
implemented as an embedded solution for sensitive on-demand
statistical test requiring a fraction of energy in comparison to
a personal computer.

E. Comparison with State of the Art

The estimated complexity of the almost complete NIST STS
battery implementation is 32,230 LUTs on a Xilinx Virtex
II Pro FPGA V2P30 chip [34]. However, state of the art
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implementations of randomness testing typically employ a
simplified subset of commonly used test batteries [35], [36].
For example, 8 NIST STS simplified tests (denoted as NIST-
STS-8 in this section) implemented on the Xilinx Spartan-6
XC6SLX45 chip required between 44 and 757 LUTs (1920
LUTSs in sum, no other circuits such as controllers or memory
interfaces considered) and operated at frequencies between
121 MHz and 203 MHz [35]. Although this approach is
clearly less complex than the proposed Boolean distinguishers
(requiring 6,808 LUTSs for one CBD pair running at 250 MHz
as given in Section V-A), it cannot provide randomness testing
of the same quality as the proposed Boolean distinguishers.
In order to demonstrate this property, we generated data
streams (TBSs) using various cryptographic functions (23
block ciphers and 13 hash functions). These functions process
different types of inputs (such as blocks of counter values,
blocks of minimal Hamming weight and random blocks where
consecutive blocks differ in one bit etc.), but reduce the
number of internal rounds to get data with bias on the edge
of detectability. In total, we generated 443 TBSs whose ran-
domness was tested using the proposed Boolean distinguishers
and NIST-STS-8, but NIST-STS-8 was implemented according
to the original software version of NIST STS. Therefore,
we did not consider the simplifications introduced in [35]
because the corresponding hardware implementation is not
fully documented.

Results of Boolean distinguishers (with a very basic con-
figuration d < 4,k < 2,n = 128) and NIST-STS-8 are
evaluated according to the most significant results for 100
kB TBSs, i.e. the biggest Z-score and the smallest p-value
are counted. We consider that a TBS failed NIST-STS-8 test
if at least one of computed p-values is below the signif-
icance level (0.001). In order to find critical Z-score (for
significance level 0.001) we generated 1000 random TBSs
(using ’/dev/urandom’) and computed corresponding maximal
Z-scores. Based on this experiment we can consider that
a TBS failed a Boolean distinguisher-based test if the Z-
score is greater than 7.66. Note that Z-score < 7.66 re-
liably represents as a random sequence for d < 4,k <
2,n 128, N = 100kB. Z-score of TBS generated by,
for example, AES(3) is 5.15 and we classified this sequence
as “random” which is consistent (as for other cases) with
more detailed testing reported in Table III. Despite a very
basic configuration of Boolean distinguishers, the proposed
method was able to detect non-randomness for 24 different
TBSs which successfully passed NIST-STS-8 (i.e. ARIA(2),
CAST(3), Grostl(1), Grostl(2), IDEA(1), KUZNYECHIK(1),
MD5(7), MD5(8), MD6(8), RIPEMD160(8), SERPENT(3),
SHA1(11),SHA2(6), SIMON(13), SIMON(14), SPECK(7),
3DES (2), TWOFISH(2); CAMELLIA-hw(3), Grostl-hw(2),
MD6-hw(8), SHACAL2-hw(7), SIMON-hw(13), SPECK-
hw(6)). On the other hand, NIST-STS-8 detected 10 non-
random TBSs that successfully passed Boolean distinguisher
based testing. The remaining TBSs were evaluated identically
by both approaches.

VI. ONLINE RANDOMNESS TESTING OF ON-CHIP PSEUDO
RNGs

In order to evaluate the proposed implementation in Use
Case II, we replaced the BRAMs storing TBS and RBS with
a hardware implementation of two pseudo RNGs (PRNGs):
(i) PRNG,..s which is a reference PRNG producing uniformly
distributed values and (ii) PRNGy.,; which is subject of ran-
domness testing. PRNG,..; is implemented according to [41]
as a Linear Feedback Shift-Register (LFSR) producing a 128
bit vector in one clock cycle. In particular, a new input value
of PRNG,.; is generated by means of XNOR-ing of bits 99,
101, 126 and 128 of a maximum length cycle LFSR.

PRNG:,..s requires 2145 LUTs of the PL, which is 29% of
the whole design if a single CBD pair is instantiated. If both
PRNGs were identical then they would occupy 58% of the
whole design. As the usage of PRNGs leads to less complex
routing than for the BRAM-based solution, we were able to
instantiate up to seven CBD pairs in PL. It has to be noted
that the execution time (and the number of clock cycles) is
the same as for the BRAM-based solution if the same number
of CBD pairs is instantiated. For four pairs of CBDs, power
consumption is 2.79 W which is comparable to the BRAM-
based solution (2.94 W).

The evaluation was performed with the EA having the same
setting as reported in Section V-A. We tested three PRNGs on
the position of PRNGys:

e (A) a PRNG working as PRNG,., but with a stuck-at-1
at bit 7 (this setup emulates a faulty circuit);

e (B) alow quality short-cycle 128-bit PRNG working with
bits 2, 4, 5 and 8 as generators of a new bit in next clock
cycle;

e (C) PRNG,. seeded using a different initial value.

In cases (A) and (B), a very high Z-score is expected as these
PRNGs are of a low quality. On the other hand, the Z-score
obtained for the case (C) should be around 20.0. Figure 7,
showing box plots of Z-score calculated from 10 independent
runs of EA, confirms this hypothesis.

—

10 T ' -
A B C
Fig. 7. Z-score obtained from randomness testing of (A) PRNG,..; with a

stuck-at-1 at bit 7; (B) a low quality short-cycle PRNG; (C) PRNG;..  seeded
using a different initial value.

VII. CONCLUSIONS

An evolvable hardware platform was proposed which is
capable of evolving efficient randomness distinguishers di-
rectly in the FPGA. We investigated two use cases: (i) the
platform is used to evaluate bit streams that are stored in
local BRAMs and (ii) the bit streams are online generated
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and immediately processed by evolving distinguishers. In
both cases, we analyzed the quality of randomness testing,
performance and resources utilization. The main contribution
of this paper is that the software implementation developed for
randomness testing and described in [2] can be implemented as
an embedded solution for more sensitive on-demand statistical
test (compared to NIST FIPS 140-2 tests) of randomness. The
proposed tests are also energy efficient requiring a fraction of
energy in comparison to a personal computer. Finally, evolved
distinguishers can easily be interpreted by an expert to identify
sources of non-randomness which is almost impossible to find
out when other randomness testing methods are employed.

Our future work will focus on using our platform for
randomness testing of bit streams that are produced by various
components on a chip. In particular, we plan to integrate
the proposed solution to new implementations of hardware
random number generators, which generate genuinely random
numbers, in order to test their properties in various physical
environments.
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