

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

FACULTY OF INFORMATION TECHNOLOGY

ÚSTAV POČÍTAČOVÝCH SYSTÉMŮ

DEPARTMENT OF COMPUTER SYSTEMS

NEW METHODS FOR SYNTHESIS AND

APPROXIMATION OF LOGIC CIRCUITS

HABILITAČNÍ PRÁCE
HABILITATION THESIS

AUTOR PRÁCE

AUTHOR

 Ing. Zdeněk Vašíček, Ph.D.

BRNO 2016

Preface

This thesis presents seven research papers related to the synthesis of logic circuits which
I have published, mostly with my colleagues, since 2011. An overarching idea that ties
together the included papers is the application of unconventional techniques, in particular
evolutionary algorithms, in the area of synthesis and optimization of digital systems. This
work is motivated by the fact that the alternative approaches have inherent ability to provide
results that are unreachable by ordinary synthesis tools. Unfortunately, the evolutionary
algorithms are known to be computationally demanding. Hence, we are trying to combine
them with various formal approaches to improve scalability of the design process.

Two papers address the problem of evolutionary synthesis of common logic circuits. In
both papers satisfiability solvers were employed to improve scalability. The remaining five
papers belong to the relative young and rapidly growing research area known as approximate
computing. The goal of synthesis process is to approximate original circuits in order to
improve their energy efficiency while keeping introduced error at reasonable level. Two
papers discuss the approximation of key arithmetic circuit such as adders and multiplier. The
remaining three papers are devoted to the approximation of complex problem instances such
as median circuits, sorting networks or neural networks. In these papers, binary decision
diagrams are typically employed to exactly measure the error introduced by approximation.

Four of the presented papers were published in international journals with an impact fac-
tor including IEEE Transactions on Evolutionary Computation and Genetic Programming
and Evolvable Machines. The remaining three papers were presented at prestigious confer-
ences in the field such as International Conference On Computer Aided Design. One paper
without coauthors, presented at the leading European event on bio-inspired computation,
European Conference on Genetic Programming, was awarded Best Paper Award in 2015. In
addition to that, two journal papers were awarded Human-Competitive Award, a prestigious
award which is annually presented at the Genetic and Evolutionary Computation Conference
for outstanding results that have been obtained automatically using evolutionary approaches
and that are considered human-competitive.

The thesis contains an introductory part which is followed by an overview of the papers
constituting the core contribution of this research. The last part is concluded with discussion
about the future work. Reprints of the papers are enclosed in appendices.

Brno, October 5th, 2016 Zdeněk Vašı́ček

I

Acknowledgements

First of all, I would like to thank Lukáš Sekanina for sparking my interest in evolutionary
computation, for keeping my administrative workload as small as possible, for his permanent
availability for discussions and for giving me the great opportunity to work with him and
realize and develop my ideas without experiencing financial problems.

I also thank the members of the Computer Systems department at Faculty of Information
technology and members of Evolvable hardware group, for a great working environment. I
should not forget to thank our faculty for providing computer facilities and for technical
support using them. Without the cluster of super computers, this work would never exist.

During my time I had the pleasure to supervise several great students, but I would like
to thank especially to Vojtěch Mrázek for hard work and valuable contributions.

Finally, my greatest thanks go to my family and my wife Monika for her support, her
patience with me, and her never-ending love, my daughter Alexandra and my son Jan for
being a source of motivation and pleasure.

Parts of the work presented in this thesis have been supported by the Czech Science
Foundation under project P103/10/1517 (Natural Computing on Unconventional Platforms),
14-04197S (Advanced Methods for Evolutionary Design of Complex Digital Circuits), 16-
17538S (Relaxed equivalence checking for approximate computing), by the IT4Innovations
Centre of Excellence CZ.1.05/1.1.00/02.0070, by Ministry of Education, Youth and Sports
of the Czech Republic from the National Programme of Sustainability (NPU II), project
IT4Innovations excellence in science – LQ1602 and by Brno University of Technology un-
der Grant FIT-S-11-1 (Advanced secured, reliable and adaptive IT) and FIT-S-14-2297 (Ar-
chitecture of parallel and embedded computer systems).

II

Contents

1 Introduction 1
1.1 Logic synthesis and its efficiency . 3
1.2 From error resilience to power-aware logic synthesis 5
1.3 Research motivation . 6
1.4 Research objectives . 7
1.5 Thesis organization . 7

2 Evolvable hardware and logic synthesis 9

3 Evolutionary synthesis of logic circuits 13
3.1 Synthesis of logic circuits using satisfiability solvers 13
3.2 Synthesis of multi-functional logic circuits 16
3.3 Binary decision diagrams in synthesis of logic circuits 17
3.4 Area-aware logic synthesis . 18

4 Approximate computing 21
4.1 Functional approximation . 22
4.2 Current challenges . 23

5 Evolutionary synthesis of approximate logic circuits 25
5.1 Early approaches . 25
5.2 Principle of the evolutionary approximation 26
5.3 Area-oriented method . 27
5.4 Error-oriented method . 30
5.5 Multi-objective method . 32

6 Exact quality metrics based on binary decision diagrams 37
6.1 Hamming distance . 39
6.2 Average-case arithmetic error . 41
6.3 Problem-specific quality metrics . 42

7 Conclusions and future directions 45

III

IV CONTENTS

Appendices - Paper reprints

A Formal Verification of Candidate Solutions for Post-Synthesis Evolutionary Op-
timization in Evolvable Hardware 59

B Cartesian GP in Optimization of Combinational Circuits with Hundreds of In-
puts and Thousands of Gates 83

C Evolutionary Approach to Approximate Digital Circuits Design 97

D Evolutionary Design of Complex Approximate Combinational Circuits 111

E Trading between Quality and Non-functional Properties of Median Filter in
Embedded Systems 137

F Automatic Design of Arbitrary-Size Approximate Sorting Networks with Error
Guarantee 177

G Design of Power-Efficient Approximate Multipliers for Approximate Artificial
Neural Networks 187

Chapter 1

Introduction

With the increasing degree of integration and scaling, the power consumption of electronic
systems has emerged as a pressing issue. Energy efficiency is one of the major driving forces
of current semiconductor industry, which is relevant for supercomputers on the one hand, as
well as small portable personal electronics and sensors on the other hand.

Recently, the worldwide semiconductor industry formally acknowledged a fact which has
become more or less inevitable. Moore’s law, the principle that has powered the information-
technology revolution since the 1960s, is nearing its end [Wal16]. Moore’s law is seen as
a rule accepted and followed by the industry. It states that the number of transistors in an
integrated circuit will double almost every two years which generally means that the chip’s
performance will double too.

The exponential improvement that the law describes significantly transformed the elec-
tronic manufacturing industry, especially electronic circuit production. In the second half of
the 20th century, innovations in electronic computer systems made the personal computer
a reality. Each new generation of computers was cheaper to purchase, more powerful and
easier to operate. Thus the computers shortly became universal computing machines that
spread not only among the scientific community but also among the common users. The
progress achieved by the 21st century causes the electronic products had transformed the way
that people live, work, and communicate. A common cellular phone has been superseded
with the devices having the performance comparable with the personal computers and the
personal computers are gradually replaced with very popular portable devices. Nowadays,
we are surrounded with ubiquitous high-speed Internet, smartphones, intelligent appliances
such as TVs, refrigerators, cars or even buildings and many other devices that are able to
interoperate within the Internet.

The advances in technology enabled to place more and more transistors in the same area.
Recently released Intel Xeon E5-2600 has circuit features that are around 14 nanometres
across and contains approximately 7.2 billion transistors on 456 square millimeters. The
circuit density is remarkable, more than 15 million transistors are crammed on the square
millimeter. Compared to the technology available in 1975, the current technology enables
to place more than six orders of magnitude of transistors into the same area. Unfortunately,

1

2 CHAPTER 1. INTRODUCTION

the increasing integration density is inevitably connected with a side effect – increasing heat
dissipation. As electrons had to move faster and faster through silicon circuits that are smaller
and smaller, the chips began to get too hot.

Around 2004, the processors hit the power wall. Manufacturers decided to stop to in-
crease the clock frequency and had to break the frequency scaling to keep the amount of
dissipated heat at manageable level. To keep the chips moving along the Moore’s law per-
formance curve, the CPU manufacturers had to redesign their processors and propose an al-
ternative way to improve performance – multi-core processors. Despite of that, the doubling
started to falter as a natural response to the introduced frequency limit and other fundamen-
tal technology limits. Due to the huge amount of transistors, only a fraction of an integrated
circuit can actually be active at any given point in time without violating power constraints.
We gradually entered into the era of Dark silicon – the growing gap between the number
of transistors that can be placed into a chip with each advancement in technology and the
number of transistors we can actually use simultaneously with a given power budged. It ap-
pears that the only route to enable scaling is a specialization – spending a large fraction of
the area on specialized cores which are much faster at some useful tasks. The requirements
on computing increasingly becomes to be defined by the needs of server farms (known as
the cloud), high-end smartphones and tablets. Hence, specialized and energy efficient sub-
circuits needs to be introduced and embedded in the next-generation processors to keep up
with conflicting constraints, to prevent mobile devices from draining the battery on the one
hand and to avoid burning the chips in data centers on the other hand. Authors of the latest
technology roadmap for semiconductors predict that the increasing integration density and
computational potential of ubiquitous smart sensors allow not only to retrieve but also ana-
lyze, assemble and summarize information and provide actionable recommendations. The
energy efficiency thus plays and extremely important role to ensure a sustainable growth of
semiconductor industry.

The power consumption can be reduced at different levels including the architectural
level, circuit level, layout level, and the fabrication process technology level [RP09]. For
more than two decades the designers could rely more or less on the advances in technology
that are typically connected with drop in supply voltage resulting in decrease of power dis-
sipation. Around 2000, a new limiting factor of future microprocessor integration emerged
and disrupted this rule [K+03]. In order to explain this phenomenon, the nature of power
consumption in digital circuits needs to be discussed in a greater detail. The power dissipa-
tion in digital circuits can be decomposed to dynamic and static part. The dynamic power
arises from the logic transitions and is present only when a transistor is switching, that is,
when a gate is changing its output value, and charges or discharges the load capacitances.
The static power dissipation, sometimes denoted as leakage power, is caused by the current
that leaks through transistors even when they are turned off. When we decrease the supply
voltage, the dynamic power dissipated by common CMOS circuits decreases as well, but
quadratically. If an energy-efficient and low-power circuit were needed, the most efficient
approach would be to fabricate this circuit using the newest technology process that provides

1.1. LOGIC SYNTHESIS AND ITS EFFICIENCY 3

transistors with lower parasitic capacitances and lower supply voltage. In addition to that,
it would be beneficial to optimize the circuits for switching activity because the dynamic
power consumption constitutes a predominant part of the total power consumption. As the
features began to shrink below about 65 nm, the leakage power has become a top concern for
designers in deep submicron process technology nodes because it has increased to 30-50%
of the total power consumption [Sha12]. It means that not the internal activity of the circuit,
but the number of active transistors on a chip began to have significant impact on the total
power consumption.

An obvious method to reduce power consumption is to shut down a part of a circuit when
it is not in operating conditions, i.e. to introduce a power management strategy. Despite of
its efficiency, this approach, however, does not represent a universal solution that could be
applicable in any situation because not all circuits contain sub-circuits that can be turned
off. In addition to the reduction of load capacitances, power supply voltage reduction and
introducing an intelligent power management, a considerable potential for power saving ex-
ists at the circuit design level or architectural design level. Compared to the other methods,
the improvement of design techniques is very cost effective because the investment to reduce
power by design is relatively small [IP98]. The dynamic power dissipation can be reduced
by reducing the switching activity of a logic circuit which involves to alter (optimize) the
circuit’s structure. The leakage power consumption of digital circuits is, in general, propor-
tional to the area of the circuits [IP98; Mat+15]. Hence, when we optimize the circuits for
area, we can expect a reduction in the power consumption. One of the possibilities how to
improve the area of a circuit is to reduce its complexity provided that the Boolean function
captured by this circuit remains unchanged. This kind of optimization, typically performed
at gate-level, is widely supported by state-of-the-art synthesis tools. Another possibility is
to revise the algorithms and applications implemented on a chip in the top-down fashion.
It has been shown recently, for example, that about 83 % of runtime is spent in computa-
tions exhibiting an inherent tolerance to errors in computation [Chi+13]. The inherent error
resilience means that it is not always necessary to implement precise and usually area ex-
pensive circuits. Instead, much simpler, approximate, circuits may be used to solve a given
problem without any significant degradation in the output quality.

1.1 Logic synthesis and its efficiency
Logic synthesis, as understood by hardware community, is a process that transforms a high-
level description into a gate-level or transistor-level implementation [WCC09]. Due to the
complexity of the problem, the synthesis process is typically broken into a sequence of steps
which gradually transform the abstract description into an actual implementation. The trans-
formation steps are subdivided into three classes: operations on abstract representations
(high-level synthesis), operations on logic descriptions (logic-level synthesis) and opera-
tions on geometric representations (physical-design synthesis). The first two steps are part
of the so called frontend VLSI design flow. The third step is part of the backend process that
is responsible for the physical implementation.

4 CHAPTER 1. INTRODUCTION

In this thesis, we are interested only in the logic-level (i.e. logic) synthesis. The logic
synthesis typically starts with description given at register-transfer level (RTL) in the form
of a VHDL or Verilog code, but the specification can be given even at lower levels. For
example, a sub-optimal gate-level netlist can be the starting point. In such a case we speak
about logic optimization, because the goal of the logic optimization is to transform a sub-
optimal solution into an optimal gate-level implementation with respect to given synthesis
goals.

Logic synthesis is further subdivided into two phases – technology-independent phase
and technology-dependent phase (see Figure 1.1). First, the input description is optimized
using several technology-independent techniques before technology-dependent optimiza-
tions are performed. Due to the scalability issues, the problem is typically represented
using a suitable internal representation. The typical cost function during the technology-
independent optimizations is total literal count of the factored representation of the logic
function (which correlates quite well with circuit area). Then, the technology-dependent
optimization is employed. In this step, the internal representation is mapped into a network
of gates in a given technology. The simple cost estimates are replaced by more accurate ones.
Mapping is constrained by many factors such as the set of available gates (logic functions
and drive strength), delay, power, and area on a chip.

Figure 1.1: Traditional VLSI design flow

Current state-of-the-art logic synthesis tools, such as ABC [Mis12], represent circuits
using a directed acyclic graph composed of two-input AND nodes connected by direct or
negated edges denoted as and-inverter graph (AIG). The typical synthesis flow is as follows.
The gate-level circuits are loaded, translated and internally represented using AIG, followed
by optimization performed on top of AIG. Finally, the optimized AIG is mapped back to

1.2. FROM ERROR RESILIENCE TO POWER-AWARE LOGIC SYNTHESIS 5

gates. The goal of synthesis is to perform delay-aware minimization of the number of AND
nodes as this number correlates to the number of gates after implementation. Three basic
operations are employed to minimize AIG: refactoring, rewriting and balancing [MCB06].
The balancing is used to ensure that the number of logic levels is not increased after AIG
rewriting. The AIG representation is simple and scalable, and leads to simple algorithms.
At the same time, it suffers from an inherent bias in representation. While eight of ten
possible two-input logic gates may be represented by means of a single AIG node, XOR and
XNOR gate require three AIG nodes each. Despite of unquestionable advantages of several
dozens of algorithms developed on top of AIGs, the efficiency of synthesis is limited as it
mostly fully relies on local optimizations disallowing to increase the number of AIG nodes.
It has been shown that there exists a huge class of real-world circuits for which the synthesis
fails and provides very poor results, i.e. circuits whose size is far from optimum after the
synthesis [FS08]. Unfortunatelly, the ability to capture XOR gates is essential especially
for new emerging technologies enabling compact representation of arithmetic and XOR-
intensive logic [Gai+15].

The inherent inefficiency of state-of-the-art logic synthesis tools provides an opportunity
how to improve the synthesis results, decrease complexity of obtained circuits and conse-
quently reduce the area on a chip and power consumption. In order to improve the efficiency,
it is necessary to either introduce more advanced methods in traditional synthesis or employ
some of the unconventional synthesis techniques.

1.2 From error resilience to power-aware logic synthesis

The demand for energy-efficient systems led to a new paradigm known as approximate com-
puting. One of the approaches that belongs to this research area, is approximate logic syn-
thesis. The difference between the classical logic synthesis and approximate logic synthesis
is in the way how the synthesis process treats the specification. While the common logic
synthesis guarantees functional equivalence at all levels, i.e. the specification in the form of
a RTL description is functionally equivalent with gate-level as well as transistor-level imple-
mentation, the approximate approximate synthesis relaxes some of the strict rules at some
levels. In order to guarantee functional equivalence, the common logic synthesis typically
employs formal methods that are able to prove or disprove equivalence across various levels.
The approximate computing methods build on various error metrics that measures distance
between specification and approximate implementation because it is necessary to keep the
error under some level to obtain a reasonable implementation.

The logic synthesis tools originally aimed at performance optimization and area mini-
mization. However, the requirement for energy-efficient circuits forced designers to update
the available design methods and include power dissipation as the third design parameter.
Power optimization and power estimation were incorporated not only into the technology de-
pendent phase, but also into technology-independent part of the VLSI design flow. While the
power optimization techniques are applied to meet the design constrains, the role of power

6 CHAPTER 1. INTRODUCTION

estimation techniques is to evaluate the effect of design modifications on power consumption.
As discussed in [SPG02], the design becomes more difficult because speed and low power
dissipation are in most cases contradictory factors. Approximate design flow extends this
concept and introduces fourth design parameter – the error. The evolution of major design
parameters considered in VLSI design flow is summarized in Figure 1.2. In approximate
design flow, various error metrics are employed to quantify various aspects of “the quality”
of circuits. Typically an energy-accuracy trade-off is sought, but other trade-offs could be
obtained in such a complex design space.

Figure 1.2: Design parameters considered in a) traditional design flow, b) low-power design
flow and c) approximate design flow.

Error resilience of many real-world applications probably offers the greatest potential for
power savings. Unfortunately the conventional synthesis tools have never been constructed
to perform the synthesis of approximate circuits where no golden design exists for an approx-
imate circuit albeit logic synthesis and optimization represents the research area with more
than fifty years of history. One of the possibilities how to design energy efficient approximate
circuits is to constrain the number of available resources (gates) and let the synthesis tool to
produce a circuit with minimal error with respect to the accurate circuit. Interestingly, there
is no conventional method that could directly solve such an optimization problem.

1.3 Research motivation

In the beginning of nineties, a new field applying evolutionary techniques to hardware de-
sign and synthesis has been established. This multi-disciplinary field, reffered to as evolvable
hardware, offers a promising way how to overcome some of the drawbacks of conventional
synthesis algorithms [HLY06]. The evolutionary algorithms (EAs) do not require any auxil-
iary data structure and can operate directly on gate-level representation. The main feature of
EAs is that they do not employ any deterministic synthesis algorithm and all the optimiza-
tions are being done implicitly, without any structural biases as inevitable for transformations
with local scope. Evolutionary design is capable of constructing partially working solutions
even if sufficient resources which are required for implementing a fully functional solution
are not available. Despite of many advantages and great success stories in many different
areas, it is fair to say that there is an issue tightly connected with evolvable hardware since
its early beginnings – bad scalability. The most complex circuit that was directly evolved
at gate-level before 2010 consists of tens of gates and has around 20 inputs [SKL06a]. It is

1.4. RESEARCH OBJECTIVES 7

clear that those results could barely compete with conventional circuit design tools produc-
ing circuits counting thousands of gates and hundreds of inputs.

For more than 12 years, my research interests have revolved around application of evo-
lutionary approaches in the area of circuit design inspired, as many others, by many success
stories achieved within the field of evolutionary computation in the past. Since 2010, I have
been engaged in the problem of evolutionary synthesis of logic circuits, motivated partly by
the fact that the logic synthesis still represents an open problem and partly by the desire to
improve scalability of the evolutionary approach itself. Currently, I’m interested mainly in
the application of formal techniques in the area of evolutionary synthesis of digital circuits
as it seems to be the only solution that could address the scalability issues.

Nowadays, we can argue that we were able to break through the imaginary limits of
evolvable hardware and push this research field a bit closer to industry. It is fair to say,
however, that it would not happen without a bit of luck and many hours spent investigating
at first sight blind directions.

Note that the evolutionary community strictly distinguishes between two different prob-
lems. If the evolution starts with an existing conventional solution (a gate-level netlist, or
a RTL netlist, for example) and the goal is to improve some circuit parameters, we speak
about evolutionary optimization. In the case when only a behavioral specification, given for
example in the form of a truth table or some other canonical representation such as binary
decision diagram, is available, the evolution needs to be initialized using randomly generated
circuits and we speak about evolutionary design or evolution from scratch. The first goal is
to discover circuit structure and then optimize its properties.

1.4 Research objectives

The goal of this thesis is to map our progress and summarize the main results that we have
achieved in the area of evolutionary synthesis of accurate and approximate logic circuits.
As the evolutionary synthesis of logic circuits represents a multidisciplinary problem, the
contribution is twofold. We will discuss the achievements from the perspective of the evolu-
tionary community on the one hand, and achievements from the perspective of the hardware
community on the other hand.

1.5 Thesis organization

The rest of the thesis is organized as follows. First two chapters are devoted to the evolution-
ary synthesis of logic circuits. The next three chapters are then related to the approximate
computing. In Chapter 2, we provide a brief introduction to evolvable hardware, the essen-
tial concept tightly connected with this thesis, followed by a critical review of this research
field. The following chapter summarizes the results obtained in the area of evolutionary
synthesis of logic circuits. Chapter 4 introduces approximate computing and discusses the
main challenges. Results obtained in the context of approximate computing are divided into

8 CHAPTER 1. INTRODUCTION

two chapters. Chapter 5 describes the methods we proposed to cope with the problem of
design of approximate logic circuits. Chapter 6 summarizes the formal methods we devel-
oped to exactly assess the quality evaluation of approximate circuits. The thesis concludes
with prospects of future research. The research summary given in chapters 3, 5 and 6 is
accompanied by seven papers which provide more details about the discussed topics.

Chapter 2

Evolvable hardware and logic synthesis

Advancements in technology developed in the early nineties enabled researchers to sucess-
fully apply techniques of evolutionary computation in various problem domains. In the mid-
dle nineties, Higuchi and Thompson, two of the most prominent pioneers, demonstrated that
evolutionary algorithms are able to solve non-trivial hardware-related problems [Hig+93;
Tho96]. The achievements presented in the seminal paper of Higuchi et al. [Hig+93] mo-
tivated other scientists to intensively explore a new and promising research topic. As a
consequence of that a new research direction referred to as Evolvable hardware (EHW) has
emerged [GB02]. Evolvable hardware, a field of evolutionary computation, focuses on the
use of evolutionary algorithms to create specialized electronics without manual engineer-
ing. The vision of EHW is to replace expensive and sometimes unreliable designers and
develop robust, flexible and survivable autonomous systems. EHW draws inspiration from
three fields, namely, biology, computer science and electronic engineering.

Several schemes have been developed for classifying the evolvable harware [GB02].
Usually, two research areas are distinguished: evolutionary circuit design and evolvable
circuits. In the first case, evolutionary algorithms are used as a tool that is employed to de-
sign a system that meets a predefined specification. For example, genetic programming can
be used to discover an area-efficient implementation of a circuit whose function is specified
by a truth table. In the second case, the evolutionary algorithm is an inherent part of an
evolvable circuit. The resulting adaptive system is autonomously reconfigured with evolved
configurations to adapt or repair its functionality in a changing environment.

In the context of circuit design, the evolvable hardware is a very attractive approach as
it provides another option to the traditional design methodology – to use evolution to design
circuits for us. The key strength of the evolvable hardware is that it allows solutions to
be generated from a behavioral description. In addition to that, evolvable hardware can be
applied for designing solutions to poorly specified problems, i.e. problems that cannot be
fully specified a priori, but whose desired behavior is known. Signal filtering is a typical
example of a poorly specified problem. In this case, artificially created training data are
usually available and can be employed to specify the behavior of a filter. Another often
emphasized advantage of this approach is that circuits can be customized and adopted for a

9

10 CHAPTER 2. EVOLVABLE HARDWARE AND LOGIC SYNTHESIS

particular environment. For example, if we know that some input combinations in our target
application occur with a relative low probability, we can take this information into account,
simplify the specification and design a circuit which shows better parameters such as reduced
size, delay or power consumption.

The gate-level evolution has been addressed only rarely before the year 2000. The first
results in the area of digital circuit synthesis were reported by Koza in 1992, who inves-
tigated the evolutionary design of even-parity circuits in his extensive discussions of the
standard genetic programming (GP) paradigm [Koz92]. Later, Thompson used a form of di-
rect encoding loosely based on the structure of an FPGA in his experiment with evolution of
a square wave oscillator [Tho96]. Genetic algorithm has been employed also by Coello who
evolved various 2-bit adders and multipliers [CCA98]. Finally, Miller et al. demonstrated
that evolutionary design systems are not only able to rediscover standard designs as it has
been shown in past, but they can, in some cases, improve them [MTF97; Mil99a]. He was
interested in the evolutionary design of simple arithmetic circuits and digital filters.

The method of evolving digital circuits developed by Miller in 1997 [MTF97] was subse-
quently revised and a new evolutionary algorithm known as Cartesian genetic programming
(CGP) was introduced in 2000 [MT00]. CGP, which is a general form of genetic program-
ming, was designed to address two issues related to the efficiency of common tree-based
genetic programming. Firstly, as GP represents candidate solutions using trees, it does not
naturally capture the structure of digital circuits. Secondly, GP exhibits the so-called bloat
effect enabling the programs to grow uncontrollably until they reach the GP’s tree-depth
maximum. In order to avoid the bloat, Miller proposed to represent given problems using a
two-dimensional grid of nodes. Compared to the generic programming, the number of nodes
is fixed. Despite of that, the representation allows to capture any directed acyclic graph be-
cause not all the nodes need to be referenced in the path from inputs to outputs. CGP uses
a very simple yet efficient integer-based encoding scheme which can directly be used as an
intermediate code for an interpreter employed to determine response for a given input se-
quence. The search is performed using a mutation-based evolutionary strategy denoted as
(1 + λ)-ES that is operating with the population of 1 + λ individuals. The search strategy
works as follows. The initial population is created, evaluated using a fitness function and
the fittest individual is identified. The fitness value, calculated by the fitness function, indi-
cates how well a candidate solution fulfills the problem objective; in other words it indicates
how a particular candidate solution meets the specification. Then, every new population
consists of the best individual of the previous population and its λ offspring. The offspring
are created by a point mutation operator which modifies a predefined number of randomly
selected genes of the best individual and produces new, but valid, candidate solution. The
moment the population is created, the fitness value of each offspring is calculated. The fittest
individual in the population is selected and the evolutionary loop continues by creating of
new population. The evolution is terminated when the maximum number of generations is
exhausted or when a satisfactory solution is found. For detailed description of CGP, see
attached paper [Vas+11c] (Appendix A).

11

CGP has been used to demonstrate that evolutionary computing can improve results of
conventional circuit synthesis and optimization algorithms. As a proof-of-concept, small
arithmetic circuits were considered. A 4-bit multiplier was the most complex circuit evolved
in this category [VJM00]. For the next decade, however, the problems addressed by the
EHW community remained nearly of the same complexity. The most complex combinational
circuits that were directly evolved during the first two decades of EHW consisted of tens of
gates and had around 20 inputs [SKL06a].

During the next decade (since the 2000), many researchers invested an enormous effort
on proposing new ways enabling to simplify the problem for evolution in terms of finding
more effective approaches to explore the search space. Many novel techniques including
decomposition, development, modularization and even new problem representations have
been proposed [SKL06a; SP09; Mil11; ZJ06]. Despite of that, only a little progress was
achieved and the gap between the complexity of problems addressed in industry and EHW
continued to widen as the advancements in technology developed. This supported a belief
that evolutionary design works better for analogue circuits rather than digital circuits possibly
due to the fact that analogue behaviors provide relatively smoother search spaces [Sto+99].

In order to address the increasing complexity of real-world designs, some authors es-
caped from the gate-level representation and used function-level evolution. Instead of the
usage of simple gates, larger building blocks such as adders and multipliers are employed.
Several patentable implementations of digital circuits were discovered, especially in the area
of digital signal processing [Sek04; Mil11; Vas+13]. One of the most complex circuits
evolved by means of the function-level approach is a random shot noise image filter with 25
inputs consisting of more than 1,500 two-input gates when synthesized [Vas+13]. Despite
of that, evolvable hardware found itself in a critical stage around the year 2010 and it was not
clear whether there exists a path forward which would allow the field to progress [HT11].
The scalability problem has been identified as one of the most difficult problems the re-
searchers are faced in this field and that should be, among others, addressed by the next
generation of EHW.

The poor scalability typically causes that evolutionary algorithm is able to provide solu-
tions to small problem instances only and a partially working solution is usually returned in
other cases. The scalability problem can primarily be seen from two perspectives: scalabil-
ity of representation and scalability of fitness evaluation [TT15]. From the viewpoint of the
scalability of representation, the problem is that long chromosomes are usually required to
represent complex solutions. Long chromosomes, however, imply large search spaces that
are typically difficult to search. The scalability of fitness evaluation represents another big
challenge. The problem is that complex candidate solutions might require a lot of time to
be evaluated. As a consequence of that, only a small fraction of the search space may be
explored in a reasonable time.

Chapter 3

Evolutionary synthesis of logic circuits

Notwithstanding the pessimism surrounding the EHW community, researchers continued
to investigate how to overcome the scalability issues. Various techniques were proposed
in literature to improve the scalability of evaluation and increase the performance of the
evolutionary synthesis of logic circuits. Some authors coped with the bad scalability by
introducing various decomposition techniques that break complex problems into small in-
stances [SKL06b; SP09]. Other authors introduced CGP-based accelerators benefiting from
the fixed-length representation of CGP. In this category, FPGA-based [WCL08; Vas+10],
GPU-based [HB11] and even CPU-based [Vas+12b] accelerators were created. Unfortu-
natelly, none of these approaches has provided a general recipe how to solve the problem of
scale. The evolutionary synthesis naturally tends to produce sub-optimal solutions when a
decomposition is introduced. The proposed accelerators are able to deliver a substantial, yet
linear, speedup. Hence the limits of evolutionary design are pushed forward only slightly as
the time needed to evaluate a candidate solution typically grows exponentially.

Moreover, we noticed that there is an additional problem related to the scalability of
fitness evaluation, scalability of specification [Vas+14b]. The problem is that the frequently
used behavioral specification in the form of truth table does not scale itself. Not only is
it impossible to specify complex circuits in practice, it is also infeasible to evaluate their
response using a circuit simulator. The reason is that the amount of memory required to
store the whole truth table as well as the number of rows (and consequently the number of
input combinations that need to be checked against specification) grows exponentially with
the increasing number of inputs.

3.1 Synthesis of logic circuits using satisfiability solvers

Interestingly, the poor scalability of specification represents a problem that was overlooked
by the EHW community since introducing the concept of evolvable hardware. An increasing
number of researchers has been drawing attention to the another problem of scale – scala-
bility of representation that was believed to be the root preventing EAs to handle complex
problem instances. The most important feature of the evolutionary optimization is that each

13

14 CHAPTER 3. EVOLUTIONARY SYNTHESIS OF LOGIC CIRCUITS

candidate solution must be functionally equivalent with its parent in order to be further eval-
uated. This feature was first utilized in [Vas+11c] (Appendix A) and further elaborated in
[Vas+11a] where we demonstrated that it is feasible to handle complex digital circuits pro-
vided that a common truth table based fitness evaluation procedure is replaced with a formal
verification method. In order to reduce the time needed to determine the fitness value, an
approach routinely used in the area of logic synthesis known as combinational equivalence
checking was employed. In particular, combinational equivalence checking using satisfia-
bility solvers was employed. The combinational equivalence checking has a great potential
to improve the scalability of fitness evaluation and, at the same time, it enables to avoid truth
tables to specify circuit behavior. Any circuit implementing desired Boolean function (spec-
ification) could be employed instead. Such a circuit can easily be obtained by means of a
common synthesis tool. At this point, the reader is referred to paper [Vas+11c] (Appendix A)
which describes the proposed method. The following paragraphs provide additional obser-
vations.

Figure 3.1: Evolutionary synthesis of logic circuits.

But it was not the equivalence checking alone that enabled to achieve speedups of sev-
eral orders of magnitude. The proposed approach benefits from a tight connection between
the evolutionary algorithm and combinational equivalence checking [Vas+11a]. Since every
fitness evaluation is preceded by a mutation (as briefly explained in previous section), a list
of nodes that are different for the parent and its offspring can be calculated. This list can
be used to determine the set of outputs and gates that have to be compared with the refer-
ence circuit, and only these outputs and gates are checked. If an empty list is obtained (e.g.
some inactive gate was modified), the equivalence checking is skipped and the correspond-
ing offspring receives the same fitness as its parent. In addition to that, the parental circuit
serves simultaneously as a reference. This helps to improve the efficiency of equivalence
checking because the complexity of the optimized circuit typically decreases in the course
of evolution. All these tricks helped to significantly improve the scalability of the equiva-
lence checking even for a pathological cases of circuits where the SAT-based equivalence
checking does not scale well. Speedup factor higher than 3.6 thousands was reported for
evolutionary optimization of 11-bit multipliers [Vas+11a].

3.1. SYNTHESIS OF LOGIC CIRCUITS USING SATISFIABILITY SOLVERS 15

The performance of the proposed method can be discussed from two perspectives – the
ability to improve scalability of fitness evaluation and the ability to handle and optimize
large digital circuits. In order to compare the time of evaluation for the common fitness
function and the proposed SAT-based fitness function, the parity circuit optimization prob-
lem has been chosen. The evaluation performed on circuits having from 12 to 32 inputs
revealed that while the time of the improved functional equivalence checking increases lin-
early with the increasing number of inputs, the time required to evaluate response for all
input combinations grows exponentially. In the case of 30-input parity benchmark, the pro-
posed SAT-based method was able to evaluate about 138 thousands times more candidate
solutions per second. The speedup even increases with increasing the number of inputs.
With such an improvement in performance, common benchmark sets, routinely applied in
the area of logic synthesis for many years, could be optimized by CGP. The experiments
performed using the LGSynth93 benchmark set clearly demonstrated the hidden power of
evolutionary approaches on the one hand, and inefficiency of state-of-the-art synthesis al-
gorithms on the other hand. The proposed method achieved 37.8% reduction in the number
of gates (on average) across various benchmark circuits counting from 67 to 1408 gates and
having from 22 to 128 inputs [Vas+11c] (Appendix A). The results of an extended evalua-
tion were presented in [Vas+11a]. In this paper, a comparison with two academia and three
commercial conventional synthesis tools was included. Surprisingly, the results confirmed
that the CGP-based method is able to significantly outperform all the conventional tools.
There was only one case for which evolution produced slightly worse result. The evolved
circuit contains four more gates than the best result obtained by conventional tools. The
achieved reduction ranges from -0.7% to 40.4% despite the fact that all the synthesis tools
shared the same experimental setup. It seems that they are all based on the same principles
and algorithms. Apart from the ability to perform XOR decomposition, the advantage of
the evolutionary synthesis is that it enables to skip the whole technology-independent phase
(see Figure 3.1 and 1.1) which may introduce a bias. The optimization is performed directly
at the gate-level representation taking into account physical properties of the gates.

The efficiency of the SAT-based method was further improved in [Vas15] (Appendix B)
where we combined an adaptive high-performance circuit simulator with formal verification
in order to detect the functional non-equivalence of the parent and its offspring. This ap-
proach is based on the following observations. Firstly, candidate solutions that are not func-
tionally equivalent with a given specification form a predominant part of the total number of
generated candidate solutions. Secondly, the time needed to simulate a given candidate cir-
cuit using a limited set of test vectors is significantly lower than the time which is consumed
by a SAT solver. Hence we can employ a circuit simulator to quickly disprove the equiva-
lence between a candidate solution and its parent. The number of test vectors is adaptively
modified during evolution in order to achieve the best possible performance. An extensive
set of 100 real-world benchmarks circuits was used to evaluate the performance the proposed
method. The least complex circuit consisted of 106 gates and had 15 primary inputs and 38
outputs. The most complex circuit, an audio codec controller, contained 16,158 gates and

16 CHAPTER 3. EVOLUTIONARY SYNTHESIS OF LOGIC CIRCUITS

used 2,176 inputs and 2,136 outputs. One half of the benchmark circuits had more than 50
primary inputs and consisted of more than thousand gates. For more than half of the bench-
mark circuits, approximately five times higher number of evaluations was performed within
the same time period compared to the previous approach that utilizes only a SAT solver. Un-
fortunately, the value of speedup noticeably varies across the benchmarks. There are cases
for which the speedup factor exceeded 30. On the other hand, nearly no improvement was
obtained for five benchmarks. For more information, see Figure 6 in [Vas15] (Appendix B).
While the previous method was able to reduce these benchmark circuits by 21% in average,
the proposed method led to a 34% reduction in the number of gates. The results are sum-
marized in Figure 7 in [Vas15] (Appendix B). Considering the fact that the runtime of the
optimization process was 15 minutes, the obtained results are very encouraging.

3.2 Synthesis of multi-functional logic circuits

Obtaining flexibility, adaptation and multi-functionality directly at the hardware level repre-
sents another goal we can observe in the EHW field. One of possible approaches to achieving
a low cost reconfiguration could be based on multi-functional gates. The multi-functional
gates have special physical structures enabling to behave differently with respect to external
conditions. Multi-functional logic gates based on graphene P-N junctions were designed,
for example. These gates are capable of performing several logic functions just by adjust-
ing some control voltages [Tan+10]. In addition to that, CMOS-based polymorphic gates
controlled via power supply voltage (Vdd) or even temperature were fabricated [SZK01;
Sto+04]. As the Vdd-based control does not require any additional wires, the use of poly-
morphic gates could reduce interconnecting networks in reconfigurable chips significantly.
In order to address this problem, we have introduced a tool for evolutionary synthesis of poly-
morphic circuits consisting of polymorphic gates operating in two different modes [SV12].
The proposed tool is based on a SAT-based equivalence checking and it was designed to
address not only the performance bottleneck of the previously published evolutionary ap-
proaches [GS11], but also inefficiency of common synthesis approaches based on polymor-
phic multiplexing [GS11] or Poly-BDDs [GS11] that tend to produce far-from-optimum so-
lutions. The principle remains nearly the same as for SAT-based evolutionary synthesis of
logic circuits. The only difference is that it is necessary to perform the functional checking
twice because each polymorphic gate operates inherently in two modes. In fact, two speci-
fications are required – one specifying Boolean function implemented in the first mode and
the second one to specify behavior of the circuit when the gates are switched to the second
mode. The specification is derived from the reference solution. In order to perform the func-
tional equivalence check efficiently, only the cone of influence (COI) determined according
to the points of mutation enters the SAT solver. In fact, COI is computed for each mode in-
dependently and the result is combined to simplify the resulting CNF submitted to the SAT
solver. The optimization starts with a reference solution that is obtained by applying poly-
morphic multiplexing. The experimental evaluation was performed on sixteen benchmark

3.3. BINARY DECISION DIAGRAMS IN SYNTHESIS OF LOGIC CIRCUITS 17

circuits whose complexity ranges from 264 to 2325 gates having up to 49 inputs. Two exper-
imental sets were considered – benchmarks created using polymorphic multiplexing and the
same benchmarks optimized using ABC. Interestingly, very similar results were obtained in
both cases. Although the second set contains smaller circuits compared to the unoptimized
benchmark set, we obtained more compact circuit only in a few cases. The reference so-
lutions obtained using the state-of-the-art synthesis approaches were reduced by 35% (the
number of gates) in average.

3.3 Binary decision diagrams in synthesis of logic circuits

If we replace the SAT-based equivalence checking with equivalence checking based on bi-
nary decision diagrams (BDDs), it is possible to evolve digital circuits from scratch that
means without seeding the initial population with an already working circuit [Vas+14b]. It
is fair to admit, however, that obtaining a fully functional solution from a randomly seeded
population would consume in general a considerable time because the evolutionary design
approach exploits the generate-and-test principle and no additional knowledge about the
problem is available. Hence, the evolutionary synthesis from scratch can hardly compete
with conventional state-of-the-art synthesis tools when the time of synthesis is considered.
Despite of that, this problem represents an interesting research challenge that could also
serve as a good benchmark for performance evaluation of various evolutionary algorithms.
In addition to that, the evolutionary synthesis from scratch may be utilized in adaptive evolv-
able embedded systems where a simple logic circuit has to be created for some reason and
running a standard circuit design packages is usually infeasible on such systems.

Figure 3.2: Evolutionary synthesis of logic circuits from scratch.

Although there are some pathological cases of circuits for which BDDs do not scale well,
BDDs are known to be an efficient tool for representation and manipulation with digital
circuits. In contrast to the SAT-based equivalence checking, the BDD-based equivalence
checking enables not only prove the equivalence but also to determine Hamming distance

18 CHAPTER 3. EVOLUTIONARY SYNTHESIS OF LOGIC CIRCUITS

between a candidate circuit and specification. The reader is referred to Section 3.3 of paper
[Vas+16b] (Appendix D) for more details regarding to the determining of Hamming distance
using BDDs.

The principle of the evolutionary synthesis of logic circuits (from scratch) is depicted in
Figure 3.2. The synthesis process is typically broken into two phases. The goal of the first
phase is to evolve a fully functional circuit. It means to obtain a circuit that does not violate
the behavioral specification. In order to do that, the fitness function needs to measure the dis-
tance between a candidate solution and specification. This is achieved by means of a quality
metric. The quality is typically expressed in terms of Hamming distance, but some different
measure can be introduced. The only condition is that the measure needs to be determin-
istic and needs to provide a sufficient resolution to prevent evolution to get stuck in a local
extreme. As soon as a fully functional circuit is discovered, the circuit is optimized. While
the first phase is driven solely by the quality metric, the second phase takes also into account
circuit parameters. Note that both phases are conducted at the gate-level representation.

Our experiments confirmed that few milliseconds are required to calculate Hamming
distance even for circuits having more than 40 inputs [Vas+14b]. Compared to the well-
optimized common CGP, the proposed method achieves the speedup ranging from four to
seven orders of magnitude when circuits having from 23 to 41 inputs are considered. As the
proof-of-concept, 16 nontrivial circuits (fairly out of the scope of well-optimized standard
CGP utilizing simulation-based fitness function) were evolved. Correctly working circuits
were reported in twelve cases. In addition to that, it has been shown that the evolution
was able to improve the results of conventional synthesis tools. For example, the evolution
discovered a 28-input circuit having 57% less gates than the result obtained from the state-
of-the-art synthesis tool. An average gate reduction of 48.7% was reported for all evolved
circuits [Vas+14b].

3.4 Area-aware logic synthesis

At the beginning of our research, there was a simple goal – to improve scalability of the
methods designed during the first fifteen years of evolvable hardware, enable them to handle
more complex instances and repeat the success of Miller who demonstrated that evolutionary
approaches are capable to provide more compact solutions compared to the state-of-the-art
synthesis tools [VJM00].

Originally, the number of gates was the only criterion that was optimized within the evo-
lutionary circuit design community. This cost function arises from the theoretical computer
science. The number of gates and logic levels represent two metrics for assessment of the
complexity of Boolean functions. We adopted this approach also in our aforementioned work
as this represented the only way how to fairly compare our results across existing methods
and state-of-the-art synthesis tools.

The problem is that the circuit size does not directly correlate with the cost of this circuit
when implemented on a chip. Each gate, in general, requires a different area to be imple-

3.4. AREA-AWARE LOGIC SYNTHESIS 19

mented on a chip. A two-input XOR gate, for example, represents the most complex gate
which occupies typically two times larger area compared to NAND gate. It does not mean
that the results are invalid or worthless for the hardware community. This metric could, how-
ever, represent an issue for small or XOR-intesive circuits. In addition to that, the number
of gates is hardly applicable in the case when we need to reduce leakage power as discussed
in the first chapter.

We proposed a different cost function which applies a more realistic non-uniform mea-
surement of circuit size. The cost of gate is not constant but determined by the area needed to
implement a particular gate on a chip. The area is specified relatively to NAND gate. More
than twenty benchmark circuits taken from LGSynth93 benchmark suite were optimized by
CGP with SAT solver. The experimental results confirmed that CGP can significantly im-
prove the results of state-of-the-art synthesis tools even if a modified cost function is utilized
instead of the number of gates. In average, the circuits were improved by 24% in comparison
to conventional methods such as SIS and ABC [Vas+11b; Vas+12a].

Chapter 4

Approximate computing

The approaches discussed so far assumed that a circuit fully compliant with the specification
must be delivered. In recent years, a new research field was established to investigate how
computer systems can be made more energy efficient, faster, and less complex by relaxing
the requirement that they are exactly correct. This field, known as approximate comput-
ing, exploits the fact that many applications are error resilient and the errors in computing
are thus either invisible or acceptable. The concept of approximation has intensively been
studied, developed and applied not only in computer science, but also in mathematics and en-
gineering disciplines. However, it has never been applied in the areas in which only accurate
implementations have traditionally been accepted. Nowadays, the designers intentionally
introduce errors into computation to satisfy the never ending requirement for lowering of
power dissipation.

As one of the most promising energy-efficient computing paradigms that is able to cope
with current challenges of computer engineering, approximate computing has gained a lot of
research attention in the past few years. We can identify two main directions in approximate
computing: energy-efficient computing with unreliable components and approximation of
systems implemented on common platforms [Mit16].

In the first case, the problem is that the exact computing utilizing nanometer transistors
provided by recent technology nodes is extremely expensive in terms of energy require-
ments and reliable behavior. An open question is how to effectively and reliably compute
with a huge amount of unreliable components. This concept reflects the fact that after sev-
eral decades of continual scaling of technology nodes, intrinsic parameters variability of
transistors started to negatively influence chips’ properties in terms of intra-die or die-to-die
variations, fluctuations in power consumption and maximum operational frequency, suscep-
tibility to errors and yield.

The second research direction is motivated by the fact that many applications (typically
in the areas of multimedia, graphics, data mining, and big data processing) are inherently
error resilient. This resilience can be exploited in such a way that the error is exchanged for
improvements in power consumption, throughput or implementation cost. After analyzing
many applications, Chippa et al. [Chi+13] reported that about 83 % of runtime is spent in
computations that can be approximated.

21

22 CHAPTER 4. APPROXIMATE COMPUTING

Various approximation techniques have been proposed recently. A good survey of the
proposed approaches can be found, for instance, in [Mit16; XMK16]. According to the level
of the computer stack where the approximations are conducted, the approaches could be
roughly divided into software-level and hardware-level. At the software level, for example,
we could selectively ignore certain computations and/or memory accesses that are not critical
for obtaining desired quality of result. At the hardware layer, we could either use a less
accurate yet more energy-efficient circuit for computation or purposely reduce the supply
voltage for certain hardware components to trade-off energy and accuracy. In this thesis, we
restrict ourselves to the hardware-level techniques and in particular to approximate circuit
design.

As discussed in the first chapter, we could reduce energy consumption of a given circuit
by lowering its supply voltage without reducing the corresponding operational frequency. In
order to further decrease the energy consumption, one could use so-called overscaling tech-
nique for approximate computing. Overscaling means, that we let the supply voltage drop
even below a critical point that guarantees reliable operation. Unfortunately, overscaling-
induced timing errors occurring on critical paths often lead to large computational errors,
unless the circuit is designed in a scalability friendly manner [XMK16]. In addition to that,
the energy efficiency gain for such approximation method is relatively small. Consequently,
the researches are gradually turning away from overscaling and majority of the recently pro-
posed methods resorts to functional approximation.

4.1 Functional approximation

The principle of functional approximation is to implement a slightly different function to the
original one provided that the error is acceptable and key system parameters are improved.
A typical goal is to obtain a good energy-accuracy trade-off. Note that the functional approx-
imation can be conducted not only at the level of hardware but also at the software layer. An
approximate circuit is typically obtained by a heuristic procedure that modifies the original
implementation. Typically, the synthesis problem is formulated as finding the approximate
design with minimum area under a given error constraint [XMK16]. A logic synthesis ap-
proach to the design of combinational circuits that implement approximate versions of the
given Boolean function was proposed in [SG10]. The authors proposed a heuristic which
identifies min-terms complements that produce an approximate circuit version that has the
smallest number of literals for a given error rate threshold. Later, logic synthesis approach for
combinational circuits based on Boolean relation minimization was introduced [MGO13].
Other approaches utilize a different strategy. They start with an existing accurate circuit
that is subsequently refined to meet the error constraint. For example, SALSA [Ven+12]
introduces the quality function which takes the outputs from both the original circuit and
approximate circuit and decides if the quality constraints are satisfied. The quality function
outputs a single Boolean value. The SALSA algorithm attempts to modify the approxi-
mate circuit with the goal of keeping the output of the quality function unchanged. Another

4.2. CURRENT CHALLENGES 23

method, SASIMI, tries to identify signal pairs in the circuit that exhibit the same value with
a high probability, and substitutes one for the other [VRR13]. These substitutions introduce
functional approximations. Unused logic can be eliminated from the circuit which results in
area and power savings. The common feature of the currently available methods is that they
are error-oriented in the sense that all logic optimizations leading to an approximate solution
are constrained by a predefined error criterion.

4.2 Current challenges

The key challenge in approximate circuit synthesis is how to effectively represent quality
constraints and bring them into the synthesis procedure efficiently. There are basically two
issues connected with quality constraints that the researchers are currently facing with. First
issue is that there is no suitable error model for a general logic circuits. Unlike arithmetic
units where we can apply many arithmetic metrics to quantify the error, for example, there
does not exist well-accepted error model for arbitrary circuits. Introducing approximations
to general logic could be dangerous in many cases, especially for controllers and clearly it
needs to be applied with caution. The error probability, one of the most popular metrics, is
hardly applicable in this case. The second issue is the lack of formal methods that are able to
efficiently determine quality of a given circuit. In the field of digital system design, the use
of SAT solvers has been investigated for more than twenty years and many powerful SAT-
based methods have been developed. Nowadays, SAT-based equivalence checking routinely
handles complex circuit instances and represents an essential part of every logic synthesis
tools. Unfortunately, this approach is hardly applicable for quantifying errors because a
binary output is provided only. In order to escape from this problem, the authors typically
use simulation – they apply a randomly generated set of test vectors to assess the quality of an
approximate circuit. This approach, however, provides no guarantee on the error and make
it difficult to predict the behavior of an approximate circuit under different conditions (e.g.
when different data-width is used or data with different input distribution are processed).
Relaxed equivalence checking (equivalence checking performed up to some bound) thus
represents a problem that should be, among others, addressed in near future.

In this brief intro, we left undiscussed other crucial issues associated with the current
status of approximate computing, for example, testability, dependability, security, and man-
ufacturability of approximate circuits. For further details, the reader is referred to consult
[Mit16].

Chapter 5

Evolutionary synthesis of approximate logic
circuits

Synthesis of approximate circuits is in principle an incompletely specified problem. Among
others, design of image filters, classifiers or predictors represent typical examples of incom-
pletely specified problems. The common feature of this class of problems is that the target
logic circuit implementing the required behavior is unknown a priory. If we cannot specify
the problem, however, we cannot easily employ standard synthesis tools to design such a
circuit.

The main reasons why EHW has mainly been studied and developed include its ability
to (i) provide novel designs hardly reachable by means of conventional methods and (ii)
deliver good solutions for problems where the specification is inherently incomplete and
any golden solution does not exist. To address the problem of incomplete specification, an
artificial specification is typically created. The evolution employs a training set consisting
of known input-output pairs that are used to determine the quality of candidate solutions.
The goal is to minimize the difference between the specification and circuit response. The
evolutionary loop is terminated when a predefined amount of time was exhausted or when
required design constrains were met. Maximum acceptable difference is typically employed
as a design constrain.

5.1 Early approaches

Interestingly, not only functional approximation but also energy-efficient computing with
unreliable components can be traced in the history of evolvable hardware. In the middle
nineties, Adrian Thompson evolved a tone discriminator circuit directly in the FPGA chip.
The discriminator required significantly less resources than a common conventionally de-
signed solution [TLZ99]. Despite a huge effort, Thompson has never fully understood the
evolved design. The evolved discriminator was fully functional, but its robustness was lim-
ited. For example, a higher sensitivity to fluctuations in environment such as temperature or
power supply voltage was reported. This result, showing an innovative trade-off between the

25

26 CHAPTER 5. EVOLUTIONARY SYNTHESIS OF APPROXIMATE LOGIC CIRCUITS

robustness and the amount of resources in the FPGA can be considered as an early approach
to approximate circuit design by means of evolutionary algorithms.

The same FPGA platform was employed in another work that addressed the problem of
evolutionary design of digital circuits that can approximate real-valued mathematic func-
tions [MT98]. As the authors stated, the aim of this work was not to accurately build math-
ematical function circuits but to merely explore the degree to which evolved circuits could
approximate the desired real signal response in a stable way. An error-based fitness func-
tion with randomly generated test vectors was employed to determine approximation quality.
This approach would be called functional approximation nowadays.

In 1999, Julian Miller introduced a CGP-based method for finite impulse response filter
design [Mil99b]. In this method, candidate filters are composed of elementary logic gates,
ignoring thus completely the well-developed techniques based on multiply–and–accumulate
structures. Evolved networks of gates are extremely area-efficient (and thus potentially en-
ergy efficient) in comparison with conventional filters. However, only partial functionally
has been obtained because of the overall simplicity of the logic networks. The evolved cir-
cuits are not, in fact, filters. In most cases, they are combinational quasi-linear circuits
trained on some data.

Later, a new concept which is currently referred to as the evolution in materio has been
developed [MD02]. The evolution in materio was designed to automatically create useful
functions in a physical system without understanding the principles behind. In order to
study and exploit this concept in computer simulation, concept of messy gates has been
introduced. A messy gate is a gate-like component with added noise. CGP was extended
to support noise modeling and then used to evolve small combinational circuits composed
of messy gates. The experiments demonstrated that the evolution is able to discover circuits
exhibiting implicit fault tolerance. Moreover, surprisingly efficient and robust designs were
obtained for small combinational circuits.

Kneiper et al. investigated robustness of EHW-based classifiers [Kni+10]. A classifier
system was reported which is able to cope with changing resources at run-time. During
optimization, the number of pattern matching elements was modified and its influence on
classification accuracy was studied. The performance and accuracy was recognized as suf-
ficient as long as a certain amount of resources is present in the system.

In addition to these examples, there are many other approaches that could be nowadays
considered as methods of approximate computing. Despite of some nuances (e.g. suitable
error metric needs to be integrated into the fitness function), there is a high chance that the
EHW methods will be applicable not only for logic synthesis but also for approximate circuit
design.

5.2 Principle of the evolutionary approximation

The first EA-based design method that explicitly addressed the problem of approximate cir-
cuit synthesis was proposed in 2013 [Vas+15b] (Appendix C). The principle of the evolu-

5.3. AREA-ORIENTED METHOD 27

tionary synthesis of approximate circuits is illustrated in Figure 5.1. In fact, this method
represents a hybrid approach that combines some features of evolutionary optimization with
some other features of evolutionary design.

Figure 5.1: Evolutionary synthesis of approximate logic circuits.

Similarly to the evolutionary optimization (see Figure 3.1), this method starts with a
fully functional solution that is subsequently approximated and optimized. This scheme is
extended by a quality metric representing a typical feature of the evolutionary design from
scratch (shown in Figure 3.2). The quality metric (error measure) is employed to quantify
how far a given approximation is from the original solution. In addition to that, the impor-
tance of technology library increased. Technology library is in fact a mandatory part of the
whole system because it is necessary during evolution (at least to some extent) to determine
circuit parameters including power dissipation, area and delay. While the standard logic syn-
thesis flow needs to be substantially modified to support approximate circuit design, there is
no significant difference between evolutionary synthesis of logic circuits and evolutionary
synthesis of approximate logic circuits. In the simplest case, it is sufficient to appropriately
modify the fitness function to take the error into account.

The following sections will present three methods to digital circuit approximation that
we developed: a) area-oriented method (Section 5.3), b) error-oriented method (Section 5.4)
and c) multi-objective method (Section 5.5).

5.3 Area-oriented method

As a proof-of-concept, we first investigated whether EAs in general and CGP in particular
are able to approximate various arithmetic circuits, provide resonable tradeoffs and com-
pete with other approximate design methods proposed in literature [SV13]. The proposed
method exploits the fact that EA can produce a partially working solution even if sufficient
resources for constructing an exact circuit are not available. As power consumption is often
highly correlated with occupied resources, we can evolve a partially working circuit using
constrained resources and assume that the circuit’s power consumption will be reduced. This

28 CHAPTER 5. EVOLUTIONARY SYNTHESIS OF APPROXIMATE LOGIC CIRCUITS

assumption enables to simplify the design process because we can get rid of technology li-
brary. In principle, the evolution could start with a randomly generated initial point (as
followed in [SV13]), however, our extensive experimental evaluation demonstrated that it is
more efficient to start with an accurate gate-level circuit obtained by a common logic syn-
thesis tool [Vas+15b] (Appendix C). The benefits are not only in improving the quality of
evolved circuits, but also in reducing the time of optimization. For more complex problem
instances such as 25-input median for example, the results of randomly seeded CGP were
far from optimum.

The idea is elaborated as follows. Let |C| be the number of gates of a circuit C (origi-
nal accurate circuit) that implements a Boolean function that should be approximated. The
approximate circuit is synthesized using CGP which can use up to n gates (n < |C|) and
whose objective is to minimize the error. The parameter n represents a design constrain that
needs to be supplied externally by designer. If various other approximations are requested,
CGP is executed multiple times with a gradually reduced amount of available gates. The
designer thus obtains a set of approximate combinational circuits, each of which typically
exhibits different trade-offs between the functionality and the number of gates. The proposed
design approach can be considered as an area-oriented method because the user can control
the used area (and so power consumption) more comfortably than by means of the error-
oriented methods. The synthesis starts with C that is subsequently modified by a heuristic
procedure in order to obtain the initial design point C ′ consisting of n gates. The heuristic
procedure employed in our paper simply replaces appropriately chosen gates by wires with
the aim to reduce the number of gates while keeping the error as low as possible. The ob-
tained circuit C ′ is then optimized to minimize the error. For a more detailed description,
see Section III in [Vas+15b] (Appendix C).

The area-oriented method was employed to approximate single-output benchmark com-
binational circuits [SV13], small adders (up to 4 bits) [SV13], and small multipliers (up to 4
bits) [Vas+15b] (Appendix C). Two important error metrics were used to measure the qual-
ity of the approximate designs compared to the correct designs. Error rate was utilized to
assess the error of the combinational circuits. This metric counts for the percentage of input
assignments which the function value differs for. In the case of arithmetic circuits, average-
case arithmetic error was employed. The average-case arithmetic error is calculated as the
sum of absolute differences in magnitude between the correct and approximate circuit, av-
eraged over all input assignments. As only small circuit instances having up to 20 inputs
were considered, the exact error value was determined in both cases. In order to accelerate
the computation of quality metric, we adopted an approach that we proposed in [Vas+12b].
This method exploits the parallel simulation of candidate circuits [Sek12] and direct circuit
translation to the binary machine code. The main idea is to avoid running a time-consuming
CGP interpreter. As the modern CPUs are equipped with instructions enabling to process
up to 256-bit vectors in parallel, this method allows to calculate response for all 28 input
vectors in one pass. Consequently, few microseconds are required on a common processor
to determine the error.

5.3. AREA-ORIENTED METHOD 29

Paper [Vas+15b] (Appendix C) shows that we rediscovered by means of CGP one of the
first approximate multipliers – 2-bit manually designed multiplier consisting of five gates
that was then employed to create larger multipliers [KGE11]. This 2-bit multiplier produces
an erroneous output only when both inputs are equal to 3. Then, it returns 7 instead of 9. This
form of inaccuracy enables to improve not only area, but also reduce the number of output
signals and improve delay when employed in a large multiplier where long carry chains are
typically present. It is expectable, however, that better parameters can be achieved when
we directly approximate a 4-bit architecture. Unfortunately, such a multiplier contains more
than 60 gates which is too complex to be handled manually. By means of CGP, we were able
to directly evolve approximate 4-bit multipliers. The obtained approximate designs exhibit
significantly better trade-offs even if they are used in 8-bit and 16-bit multipliers [Vas+15b].
The 8-bit multipliers were approximated also in [VRR13], however as the authors utilized a
different technology, applied various technology dependent operations such as downsizing
of gates, and started with unspecified fully functional multipliers, it is not easy to provide a
fair comparison. However, the rough comparison performed in [Vas+15b] indicates that the
evolutionary approach is able to deliver better trade-offs.

In addition to that, we investigated the approximation of complex problem instances
such as 9-input and 25-input median circuits operating over 8 bits [Vas+15b]. Compared to
the arithmetic circuits where we employed a technology library consisting of common two-
input logic gates, more complex primitives were used – a minimum and maximum operation,
both operating on 8-bit. Each operation requires 66 two-input logic gates to be implemented.
The correct 9-input median has 72 inputs and consists of more than 2 500 gates when imple-
mented as a gate-level logic circuit. The 25-input median requires more than 14 500 gates.
In order to determine quality of approximate designs, the average-case arithmetic error was
used. In contrast to the previous case, the error was determined using randomly generated
test set because it is intractable to evaluate all possible input combinations (2569 and 25625

vectors). An interesting finding, at least from the theoretical point of view, was that it seems
that solving the 25-median design problem from scratch is impossible for any EA based
on direct encoding. Although CGP could utilize up to more than 200 operations, the most
complex circuit use half of them (see Figure 10 in [Vas+15b] (Appendix C)). Even if the ran-
domly generated initial design point comprised all gates, most of them were disconnected
in the course of evolution, reaching about 100 operations again. From the practical point of
view, very encouraging results were discovered. Median circuits are very good examples of
circuits for which it makes sense to introduce their approximate versions. The mean error
remains relatively low, even if many components are disconnected. Hence significant im-
provements in energy consumption are obtained. In addition to that, it is worth noting that
the methods such as SALSA or SASIMI cannot be competitive in approximation of circuits
such as the median because they are working at the bit level only.

The power consumption and delay were calculated at the end of the evolution using SIS.
Even if the number of gates is a relative rough measure of power consumption, a general
observation is that the power dissipation (and spread of power dissipation) decreases with

30 CHAPTER 5. EVOLUTIONARY SYNTHESIS OF APPROXIMATE LOGIC CIRCUITS

decreasing the number of available gates. It is fair to say, however, that the spread is relative
large especially for small arithmetic circuits implemented using a small number of gates.
When we reduce the number of gates of 4-bit multiplier to 50%, for example, the spread in
power consumption of various discovered approximate designs is around 40%. The proposed
approach is suitable for more complex circuit instances having hundreds of gates. When the
circuits shows some degree of complexity, the power dissipation strongly correlates with the
number of gates.

5.4 Error-oriented method

Later, we introduced a complementary design approach supporting the error-oriented design
scenario [Vas+14a]. At the beginning, the user is supposed to provide an accurate gate-level
circuit that ought to be approximated and specify the synthesis goal, i.e. circuit parameters
(or additional quality parameters) to be optimized such as area, power consumption or delay.
In addition to that, the user defines the target level of error and metrics that will be utilized
to guarantee the chosen error level. It means that he or she specifies, for example, that the
average-case error magnitude should be less or equal to ε. Then, CGP-based evolutionary
approximation is employed to obtain a circuit with the required quality. The goal of evolution
is to produce a gate-level implementation showing the required error level ε (or at least as
close as possible to ε) that is optimized with respect to the considered circuit parameters.

To achieve this objective, we had to cope with the problem that the evolutionary ap-
proximation represents in fact a multi-objective design problem in which the accuracy and
power consumption are conflicting design objectives. A straightforward approach to the
multi-objective optimization is converting the problem to a single objective one by means of
a weight function. The proper setting of weight is not an easy task and usually based on user
intuition [Vas+15a]. Another limitation of the weight function lies in the fact that certain
Pareto-optimal solutions are not reachable in the case of non-convex objective space. Since it
is difficult to detect whether the resulting objective space is non-convex, the weight function
has to be applied with caution. As a result of many experiments with various approaches,
we introduced a two-stage procedure that utilizes two fitness functions in a common CGP.
Our motivation was simple – to avoid a single fitness function combining the objectives us-
ing a weight function. The goal of the first phase is to modify the original circuit in order to
obtain an approximate circuit showing error as close as possible to the target error level. The
fitness function is expressed as the distance between ε and the error of a candidate approxi-
mate circuit. It means that the role of the error metric is to guide the evolution through the
design search space. After obtaining desired circuit, CGP continues by the second phase.
It can minimize the number of gates or other criteria providing that ε is left unchanged. A
different fitness function (optimization criterion) is employed in the second phase. The fit-
ness function considers only the circuit parameters specified by the designer. The error level
(error metric) servers as a design constrain. Circuits violating this constrain are discarded.
Note that the evolutionary approach is constructed in such a way that some small deviances

5.4. ERROR-ORIENTED METHOD 31

from ε are allowed in both phases otherwise the search could easily stuck in a local extreme.
The proposed method was extensively evaluated in the task of combinational approxi-

mate multiplier design [Vas+14a]. The goal was to approximate common 4-bit, 5-bit, 6-bit,
7-bit and 8-bit gate-level multipliers. The largest accurate circuit (8-bit multiplier) consists
of 320 gates. We analyzed three scenarios in order to deliver the most practically useful
solutions. The aim of the first scenario was to synthesize approximate multipliers showing
the required worst-case error and simultaneously having a minimal possible average-case
error. The second scenario was similar, however the goal was to obtain a solution which
occupies the minimum number of gates for a given worst-case error. The goal of the last
scenario was to evolve approximate multipliers which utilize the minimum number of gates
for a certain average-case error. Note that a 5% deviance from the required error level was
tolerated. This kind of flexibility was introduced also because for some multipliers it is not
possible to obtain an implementation which has exactly the specified error level.

Interestingly, the design of an approximate multiplier exhibiting the required error level
represents a problem that can be relatively easily solved. The CGP optimization took a few
minutes. Nevertheless, the third scenario required two orders of magnitude higher number
of generations in contrast with other scenarios. This indicates that the discovering of an
approximate circuit with a certain average-case error magnitude represents a more difficult
problem than the design of an approximate circuit with a certain worst-case error magni-
tude. In all three cases, the circuits obtained after the first optimization step exhibit a small
improvement of the utilized area. However, a different situation occurs during the second
phase of the optimization. While the first scenario did not achieve any consequent power
reduction, the remaining scenarios continued in improving of the occupied area. The reason
of this behavior is probably caused by the fact that more gates have to be employed to obtain
an approximate circuit which minimizes two error metrics simultaneously. An overall con-
clusion is that the error-oriented approach tends to be less computationally demanding than
the resources oriented method.

In contrast to the approximate circuits available in literature, very efficient approximate
multipliers were obtained. It was shown, for example, that the proposed design technique
is able to generate multipliers that are unreachable using the technique based on combining
of small 2-bit approximate multipliers [KGE11]. Our approach delivered circuits showing
one order of magnitude better errors for the equivalent power reduction. Comparison with
other approaches is a bit problematic due to the missing details in corresponding papers,
but let us give at least some examples. The authors of SALSA reported 80% reduction in
power consumption for 8-bit multiplier with worst-case error equal to 10% [Ven+12]. In our
case, 96% power reduction was obtained for the same error level. Using SASIMI approach,
approx. 45% power improvement was achieved for 8-bit multiplier average-case error equal
to 0.5% [VRR13]. We discovered an implementation with the same error showing 79%
power reduction.

Recent advances in artificial intelligence methods and a huge amount of computing re-
sources available on a single chip have led to a renewed interest in efficient implementations

32 CHAPTER 5. EVOLUTIONARY SYNTHESIS OF APPROXIMATE LOGIC CIRCUITS

of complex neuromorphic systems based on artificial neural networks (NNs). However, im-
plementing complex convolutional NNs in low power embedded systems requires careful
optimization strategies at various levels. In order to address this problem, the error-oriented
method has recently been used to design 7-bit and 11-bit multipliers optimized for the usage
in NNs [Mra+16] (Appendix G). Our extensive analysis of NNs revealed that it is necessary
to design approximate multipliers having one specific feature: the multiplication by zero
must be accurate. From the perspective of evolutionary synthesis, this requirement repre-
sents a simple constrain that can be easily incorporated into the CGP (as shown in Figure 5.1).
Candidate solutions violating this constrain are simply discarded. For more details about the
proposed method please consult Section 3 in [Mra+16] (Appendix G). This method helped
us to build a large database consisting of more than eight hundred of trade-offs between the
accuracy and power consumption. The multiplier were extended using one’s complement
and applied in the pretrained neural network (all accurate multipliers were replaced with the
evolved approximate multiplier). The results were remarkable, the approximate multipliers
introduced into NN enabled to reduce the power consumption of convolution sub-circuits
of NN by more than 80%. The classification accuracy decreased only by 1.89% for SVHN
dataset and 0.36% for MNIST dataset.

5.5 Multi-objective method

Let us conclude this chapter with a brief description of the most advanced method we have
developed to address the problem of evolutionary approximation of logic circuits.

As it was discussed in the previous part, approximation is in general a multi-objective
design problem. Because we are using conflicting objective functions, there does not exist
a single solution that simultaneously optimizes each objective. In fact, there possibly exists
a huge amount of so called Pareto optimal solutions [Deb01]. A good approximate circuit
design tool should provide a set of solutions which exhibit various trade-offs among key
circuit parameters. These solutions should, in an idealized scenario, perfectly match the so-
called Pareto optimal front. The available tools such as SALSA, SASIMI and ABACUS solve
this problem by multiple executions of approximation engines that are typically constructed
as single-objective optimizers. It is clear that when we need to obtain the whole Pareto
front, this approach may become very time consuming, especially when the Pareto dominant
solutions are not distributed evenly in the design space.

The multi-objective evolutionary optimization represents a well studied problem whose
roots can be traced to mid eighties. Since that, many powerful multi-objective evolutionary
algorithms (MOEAs) have been introduced, for example, Vector Evaluated Genetic Algo-
rithm (VEGA), Strength Pareto Evolutionary Algorithm (SPEA2) and non-dominated sort-
ing genetic algorithm (NSGA-II) [Deb+02]. Most of them are based on the idea of Pareto
dominance. Contrasted to the single-objective optimization algorithms, they internally sort
individuals according to the dominance relation, build archives of non-dominating solutions,
and ensure population diversity to avoid converging to a single solution. The goal of MOEAs

5.5. MULTI-OBJECTIVE METHOD 33

is to precisely approximate the whole Pareto-optimal front and obtain various diverse non-
dominate solutions in a single run of an optimizer. In the context of evolutionary circuit
design, multi-objective methods were utilized for digital as well as analogue designs [Mil11;
EMG05].

Instead of running evolution for every possible number of gates or error (as we have
seen in the previous two sections), we combined CGP encoding with NSGA-II, one of the
most efficient multi-objective evolutionary algorithms. The 1 + λ search strategy utilized
in CGP is replaced by procedures of NSGA-II which implement non-dominated sorting of
the population consisting of λ′ individuals and diversity preservation mechanisms [Vas+15a;
HMV16]. While λ is typically low in CGP, λ′ needs to be much higher as it has impact on the
number of Pareto dominant solutions obtained at the end. In the ideal situation, λ′ different
trade-offs should be produced. Note that the original non-dominated sorting algorithm was
adapted to allow the evolution to continue in searching for better solutions within the neutral
space which may prevent early stagnation of the algorithm. When all objectives of the fitness
score of a parent and its offspring remain unchanged, the offspring is classed as dominating
the parent, and is therefore ranked higher than the parent. The maximum allowed error which
the designer is going to observe and accept in the resulting Pareto fronts acts as a constraint.
One fitness function is constructed for each objective. In order to simplify the problem, all
the fitness functions are designed to be minimized.

As a proof-of-concept, we employed the proposed multi-objective CGP in the task of
4-bit and 8-bit adder and multiplier approximation [Vas+15a]. Three objectives were con-
sidered: error, area and delay. Similarly to the previous experiments, it was assumed that
the power consumption highly correlates with the area which seems to be valid at least for
the considered 350 nm technology nodes. The area and delay were calculated using the
parameters defined in the Liberty timing file. This file defines basic characteristic of cells,
i.e. logic gates, flip-flops, latches, and buffers, pertaining to a particular technology node.
Among others, functional definition, timing, power, and noise information are provided as a
result of characterization process.

The proposed multi-objective CGP was compared with single-objective CGP. The single-
objective CGP works exactly as the error-oriented approach; the only difference is that it
utilizes fitness function with weighted objectives in the second stage. Both methods were
initialized with accurate gate-level circuits. To construct a Pareto front, single objective CGP
was executed several times; one run for one error level. According to our expectations, it
was shown that the single-objective (SO) approach outperforms the multi-objective (MO)
approach when more time is available. We believe that the SO approach exploits the fact
that the error is fixed and the overall effort can be put into minimizing the area and delay.
On the other hand, MO has to cover the whole Pareto front and the available time seems
to be insufficient to compete with SO. If the number of evaluations is low, MO approach
produces substantially better results. It is worth noting, however, that we spend lot of time
by tuning the weights utilized in SO’s fitness function. We identified that the weight of the
area is extremely important and its unsuitable setting can substantially influence the quality

34 CHAPTER 5. EVOLUTIONARY SYNTHESIS OF APPROXIMATE LOGIC CIRCUITS

of the resulting Pareto front. More detailed evaluation and discussion related to the obtained
results can be found in [Vas+15a].

To be honest, there is no definite winner. Both methods have specific strengths and
weaknesses depending on the goal of synthesis. There are two possible scenarios in practice.
When the target error level is known by designer a priory, the error-oriented single-objective
approach is undoubtedly the method of the first choice. In this scenario, a single highly
optimized solution provided by CGP is sufficient. On the other hand, when the designer
does not exactly know the target error, it is beneficial to provide more trade-offs, i.e. execute
a single run of the multi-objective CGP. It also seems reasonable to combine both approaches
together. At the beginning, a multi-objective approach is employed to quickly explore the
design space. The designer then selects one or more design points that are further optimized
by means of the single objective optimizer.

The multi-objective method was further improved and applied to the evolution of 8-bit
adders and multipliers [HMV16]. In contrast with our previous study, 180 nm technology
nodes were utilized. Our goal was to obtain the best possible trade-offs. Hence, we al-
lowed CGP to utilize half and full adders as building blocks that are available in almost
every technology library. This step was motivated by the fact that these high-level cells are
highly optimized directly at transistor level. Consequently, they occupy lower area and ex-
hibit better energy-efficiency compared to their corresponding gate-level implementations.
Contrasted to the [Vas+15a], power dissipation was directly utilized as one of the design ob-
jectives. In addition to the power dissipation, area and delay were considered. We obtained
more than four hundreds of Pareto optimal implementations for adders as well as multipliers.
The obtained results confirmed that significant savings can be achieved when relaxing the
requirement of perfect functionality.

As we have mentioned in the introductory part, chip manufacturers need to take the
route of specialization to enable further scaling. However, specialization is connected with
the necessity to make a shift in the paradigm how the chips are developed. It was argued
that instead of starting from scratch each time, the designers should create new devices by
combining large chunks of existing circuitry that have known functionality [Wal16]. The
main motivation is that design of circuits is in general very time consuming and costly pro-
cess. It seems that this is also the case of the area of approximate computing in which
many different architectures were proposed in recent years. The authors of papers dealing
with approximate circuit design spent many hours by approximating various circuits, but the
resulting architectures are typically not available for download. The results are hardly com-
parable and hardly applicable from a practical point of view. Except of a single library of
few 16-bit adders, there does not exist an universal library containing ready-to-use approx-
imate components. The problem is that a few approximate implementations are typically
created from the original circuit and reported in literature. It is probably caused by the fact
that the process of approximation is typically a computationally demanding task especially
when simple heuristics are applied. Interestingly, our multi-objective approach enabled us
to obtain a rich library of adders and multipliers showing different errors and parameters in

5.5. MULTI-OBJECTIVE METHOD 35

a reasonable time. All the 400 Pareto optimal circuits were discovered in less than 300 CPU
hours (a cluster of Intel Xeon CPUs was employed). This library can be utilized in future
applications of approximate computing.

Chapter 6

Exact quality metrics based on binary
decision diagrams

So far we have discussed the approximation methods that evaluate the candidate solutions
by applying a set of input vectors and measuring the error of the output vectors with re-
spect to an exact solution. This approach is not, however, applicable when approximating
complex circuits. When a subset of all possible input vectors is adopted, the error is only
estimated. If the exact error of the approximation has to be determined, formal relaxed equiv-
alence checking is requested, stressing the fact that the considered systems will be checked
to be equal up to some bound w.r.t. a suitably chosen distance metric. This research area is
rather unexplored as almost all formal approaches have been developed for exact equivalence
checking [Hol+16]. Checking the worst error can be based on satisfiability (SAT) solving as
outlined in [Ven+11]. However, while violating the worst error can be detected, no efficient
method capable of establishing, for example, the average error using a SAT solver has been
proposed up to now. Hence, binary decision diagrams seem to be the only viable option, at
least for this moment.

To the best of our knowledge, there are three papers in which the authors employed BDDs
to determine some error metric. The average-case arithmetic error, worst-case arithmetic er-
ror and error rate were discussed in [Soe+16] and applied to approximate six benchmark
circuits. Later, the same approach for error rate was described in [YC16] and utilized to ap-
proximate 8-bit multipliers and various speculative and accuracy configurable 64-bit adders.
Finally, the bit-flip error was introduced in [Cha+16] and used for approximation of 8-bit and
16-bit circuits represented using AIG.

Decision diagrams, and especially Binary Decision Diagrams (BDDs), are the most fre-
quently used data structure for representation and manipulation of Boolean functions in the
area of digital circuit design. They are driven by the Shannon’s expansion to recursively de-
compose a Boolean function into cofactors until the constant logic values are encountered.
On a more abstract level, BDDs can be considered as a compact representation of sets or
relations. For BDD’s definition, see [DB13] or Section 3 of paper [Vas+16b] (Appendix D).
Even if the concept of BDDs dates back to the 1950s, it began attracting the attention of many

37

38 CHAPTER 6. EXACT QUALITY METRICS BASED ON BDDS

researchers in late eighties with the work of Randal Bryant who demonstrated how to ex-
ploit the full potential of this data structure [HS96]. Since 1986, when BDDs were unknown
in logic synthesis, BDDs have penetrated virtually every subfield in the areas of synthesis
and verification. Bryant extended the concept of BDDs by introducing some restrictions
(a fixed variable ordering) and efficient manipulation algorithms resulting in a canonical
form known as Reduced Ordered Binary Decision Diagrams (ROBDDs). This extension
significantly simplified otherwise expensive operations such as testing of equivalence or sat-
isfiability of logic circuits. This has led to significant breakthroughs in circuit optimization,
testing, and equivalence checking of combinational as well as sequential circuits.

Although the ROBDDs offer an efficient way of representing Boolean functions and
provide a tool for solving many practical problems in digital circuit design, it is fair to say
that there are situations in which BDDs perform unsatisfactory. It is the requirement of
canonicity which makes BDDs inefficient in representing certain classes of functions. For
example, multipliers are known for their exponential memory requirements for any variable
ordering. It was shown in [Bry91] that the BDD for the multiplier of two n-bit numbers
has at least 2n/8 nodes. It is also a well known fact that the size of BDD (i.e. the number
of non-terminal nodes) for a given function is very sensitive to the chosen variable order.
Depending on the actual variable order, there are Boolean functions for which the size of
the ROBDD can be either linear or exponential in the number of nodes [EFD00]. For this
reason, several extensions of BDDs have been suggested.

One of the advantages of ROBDDs is the possibility to efficiently perform many of the
operations needed for the manipulation of Boolean functions. The synthesis in general, and
Boolean operations in particular, probably represent the most important operations since
they can be used to construct ROBDDs. In order to treat the synthesis in a unified way, the
so-called If-Then-Else (ITE) operator was introduced. The implementation of the synthesis
operator depends on a particular BDD package. For example, Buddy or CUDD offer not only
ITE operator as function ite(f, g, h) which takes three ROBDDs as its arguments, but also
a ternary function apply(Ω, a, b) which is optimized for binary operations. This function
takes a binary operator Ω and two ROBDDs a and b as arguments and returns a ROBDD
corresponding with the result of a Ω b.

The ROBDDs also enable to efficiently implement operations for examining the set
of satisfying truth assignments sat(f) of a given function f . It means such assignments
a ∈ sat(f) that evaluate f(a) to true. There are three algorithms defined on top of ROB-
DDs: SATone, SATcount and AllSAT. The aim of the first operation, SATone, is to find an
input assignment a for which f(a) = 1 or inform that no such assignment exists. As it is
sufficient to consider a single path from a terminal node to the root node representing f , a
satisfying assignment can be easily computed in linear time with respect to the number of
BDD variables. The second algorithm, SATcount, computes the size of sat(f). This can
be done in linear time with respect to the number of BDD nodes. Finally, the AllSAT, finds
all satisfying truth-assignments leaving out irrelevant variables from the ordering. While
the BDD could be efficiently traversed, the result of AllSAT operation can be exponentially

6.1. HAMMING DISTANCE 39

large, so the running time exhibits exponential dependency on the number of BDD nodes.
Note that the equivalence test of two functions f and g can be done even in constant time
because almost every BDD package implements node sharing. Hence it is sufficient to check
whether pointers for f and g lead to the same node.

6.1 Hamming distance

In the context of evolutionary circuit design, the fitness function based on the Hamming dis-
tance computed using BDDs was firstly introduced in [Vas+14b]. Later, we applied a similar
method in the context of approximate computing where we dealt with the approximation of
general logic [Vas+16b] (Appendix D). As most error metrics are based on arithmetic errors,
we suppose in this work that no additional information is usually available to establish a suit-
able error metric for general logic. Hence we proposed to express the error of approximation
in terms of average Hamming distance between the output values produced by an approxi-
mate circuit and the accurate circuit. Introducing approximations to general logic could be
dangerous in many cases (e.g. for controllers), but there is still an important class of circuits
in which the error can safely be exchanged for energy reduction. Among others, various
pattern matching circuits and complex encoders represent instances that can be safely ap-
proximated in many real applications. In addition to that, approximate computing seems to
be a viable approach how to deal with the reduced reliability of digital circuits implemented
using nanometer technology nodes. For example, in [San+16], the authors demonstrated
how the approximate circuits can reduce overhead of dependable systems based on triple
modular redundancy. The main idea is to replace the exact modules with slightly different
approximate circuits provided that the resulting system will be still able to detect or correct
errors. In order to guarantee such a behavior, the logic function implemented by approxi-
mate circuits need to overlap with the original circuit to some extent. The degree of overlap
(i.e. the quality of an approximate circuit) was measured using Hamming distance.

The Hamming distance can be obtained by converting the approximate circuit and the
specification to corresponding ROBDD and calling suitable operators over ROBDD. Let us
briefly discuss this problem as it will help us to understand the metrics discussed in the next
sections.

Each combinational logic circuit with n inputs and m outputs computes a completely-
specified multiple-output Boolean function F : Bn → Bm, B = {0, 1}, that maps n-input
Boolean vector x = 〈x0, . . . , xn−1〉 to an m-output Boolean vector y = 〈y0, . . . , ym−1〉.
Let f : Bn → Bm be the specification that describes correct functionality and f̂ : Bn → Bm

be an approximate function, both implemented by two combinational circuits, namely F and
F̂. Using this notion, the average-case Hamming distance HDavg between F and F̂ can be
expressed as follows:

HDavg(f, f̂) =
1

2n

∑

x∈Bn

1 ′s(f(x)⊕ f̂(x)), (6.1)

40 CHAPTER 6. EXACT QUALITY METRICS BASED ON BDDS

This definition is based on the fact that the Boolean function f(x)⊕ f̂(x) returns a nonzero
value if and only if the approximate circuit F̂ provides a response that does not match the
response given by the specification. If we sum the number of bits set to 1 over all input
combinations (i.e. x ∈ Bn), we obtain the Hamming distance. The number of bits different
from the zero is defined as Hamming weight and denoted as 1 ′s .

As evident, the formula requires to enumerate all input assignments. This is feasible,
however, only for small circuits as the number of input assignments grows exponentially with
the increasing number of inputs (n). Fortunately, we are able to reformulate Equation 6.1 as
follows:

HDavg(f, f̂) =
1

2n

∑

x∈Bn

1′s(f(x)⊕ f̂(x)) =
1

2n

∑

x∈Bn

(∑

0≤i<m

fi(x)⊕ f̂i(x)

)

=
1

2n

∑

0≤i<m

(∑

x∈Bn

fi(x)⊕ f̂i(x)

)
=

1

2n

∑

0≤i<m

SATcount(fi ⊕ f̂i).

We have employed the fact that each Boolean function withm outputs can be represented
by m Boolean functions. In addition to that, we followed the definition of SATcount oper-
ation. From the practical point of view, it means that we have to build m ROBDDs for the
logic expression f ⊕ f̂ , call SATcount operation for each ROBDD to determine the number
of assignments that evaluate fi ⊕ f̂i to one and finally sum the obtained results. The re-
sulting value is equal to the Hamming distance. Since many of the available BDD packages
implement node sharing, it is assumed that this operation will be executed quickly for many
circuits relevant to practice as its complexity is linear with respect to the number of BDD
nodes.

The BDD-based quality metric was evaluated using 16 benchmark circuits which are
difficult for the previous evolutionary approximation methods, because they have too many
primary inputs (27 – 50 inputs) and gates (151 – 868 gates) [Vas+16b] (Appendix D). As
far as we know, this was the first paper that addressed the problem of approximation of non-
arithmetic circuits in the context of approximate computing. The problem was formulated as
a multi-objective optimization problem in which Pareto fronts showing trade offs between the
error, area and delay were sought. In order to construct Pareto front, we follow the approach
described in Section 5.4 in which a single-objective CGP (utilizing a linear aggregation of
objectives) is executed multiple times with different target errors. Among others, we mea-
sured the time needed to calculate the Hamming distance between two circuits with respect
to a given error. In most cases, the time was less than a few milliseconds. There were two
cases (partly arithmetic circuits) in which few hundreds or even thousands of milliseconds
were required to determine the Hamming distance. When we compared the mean runtime in
the first and second stage, we discovered that more evaluations per second can be performed
in the second stage of the optimization. The reason is that BDDs are in average smaller than
in the first stage. The BDD-based approach enabled us to achieve speedups in several orders
of magnitude in comparison with the simulation-based approach.

6.2. AVERAGE-CASE ARITHMETIC ERROR 41

There is another quality metric that can be determined in a similar way – the error rate.
The error rate is defined as the percentage of input vectors for which the approximate output
differs from the original one. It means that the output is classified as invalid if at least one
bit is different. It means that we do not need to inspect each output bit separately. Instead,
we combine them using logical disjunction. The error rate can be defined as follows:

ER(f, f̂) =
1

2n

∑

x∈Bn

(∨

0≤i<m

fi(x)⊕ f̂i(x)

)
=

1

2n
SATcount(

∨

0≤i<m

fi(x)⊕ f̂i(x))

The advantage of this metric is that it is general and can be applied to arithmetic as
well as logic circuits. Hence, many authors utilize the error rate to assess the quality of
approximation. Unfortunately, it seems to be difficult to interpret the results in practice.
For example, there can exist a an implementation slightly modifying one half of the output
values, but still providing good performance if used, for example, in image filtering (see
e.g. [Vas+16a]). On the other hand, there can exist circuits providing invalid output for few
input assignments, but the error magnitude can be enormous. Hence, we are trying to avoid
direct optimization for error rate in our work. Note that the same procedure for error rate, as
discussed herein, was introduced in [Soe+16] recently.

6.2 Average-case arithmetic error

The design of low-power variants of key arithmetic circuits such as adders and multipliers
represents an intensively studied problem not only in context of approximate computing. The
basic arithmetic operations are favorite targets of many researchers because they are widely
used in digital signal processing. Hence a small improvement of the energy efficiency of
these arithmetic blocks may yield a great power savings at the system level. It is therefore
no surprise that the researchers try to investigate how to exactly compute various metrics in
order to approximate large arithmetic blocks. Recently, a new BDD-based method for arith-
metic worst-case and average-case error analysis was introduced [Soe+16]. Independently
on that, we designed an alternative approach how to determine average-case arithmetic er-
ror. The main advantage of our method is that it does not involve to construct characteristic
function as it is required in [Soe+16].

The average-case error is defined as the sum of absolute differences in magnitude be-
tween the original and approximate circuits, averaged over all inputs. The average-case error
can be expressed using the notion introduced in the previous section as follows:

AEavg(f, f̂) =
1

2n

∑

x∈Bn

|nat(f(x))− nat(f̂(x))| = 1

2n

∑

x∈Bn

D(x), (6.2)

where nat(x) represents a function nat : Bm → Z returning a decimal value of the m-bit
binary vector x. We will consider natural binary representation, i.e. nat(x) =

∑
0≤i<m xi ·

2i. To simplify the next notion, let D(x) denote the absolute difference. It was argued in

42 CHAPTER 6. EXACT QUALITY METRICS BASED ON BDDS

[Soe+16] that this formula does not enable to construct an efficient algorithm because it
would be necessary to traverse all 2n rows of the truth table. We demonstrate, however, how
to reformulate this problem to be directly solved using BDDs.

It is necessary to realize that the value of D(x) is bounded by interval [0, 2m) and can
be thus represented usingm-bit vector. From the practical point of view,D(x) can be easily
obtained by a circuit consisting of one two’s complement subtractor followed by a circuit
which determines the absolute value. As the output of D(X) is a natural number, we can
substitute D(X) for its binary expansion D(x) =

∑
0≤i<m di(x) · 2i. Based on this idea,

we can modify Equation 6.2 as follows:

AEavg(f, f̂) =
1

2n

∑

x∈Bn

D(x) =
1

2n

∑

x∈Bn

(∑

0≤i<m

di(x) · 2i
)

=
1

2n

∑

0≤i<m

(
2i
∑

x∈Bn

di(x)

)
=

∑

0≤i<m

2i−n · SATcount(di)

To summarize this approach, we need to create a virtual circuit that is subsequently
represented using ROBDD. The virtual circuit takes the input x and produces D(x). The
average-case arithmetic error can be then obtained by m calls of SATcount operation, one
per each bit of D. Subtraction in virtual circuit can be calculated using m full-adders with
first carry-in set to 1 and inverting each bit of the subtrahend. The absolute value can be
computed using one m-bit subtractor and m− 1 XOR gates [And05].

This BDD-based metrics was applied in our initial experiments devoted to an efficient
implementation of Discrete Cosine Transform blocks employed in video compression based
on the High Efficiency Video Coding standard. In commonly-optimized DCT blocks, mul-
tiplication operations are replaced with additions, subtractions and shifts to reduce power
consumption. As video compression is, in principle, an error resilient application, DCT can
further be approximated. Our goal was to replace the accurate adders and subtractors with
their approximate versions. For 16-bit adders (i.e. circuits with 32 inputs), the achieved
speedup factor was greater than two hundreds compared to the highly optimized parallel
simulation. Considering the multipliers, the parallel simulation provides more than five
times better runtime even for 12-bit multiplier. Unfortunately, BDDs do not offer any way
to efficiently handle multipliers.

6.3 Problem-specific quality metrics

In mid fifties, the concept of comparator networks was introduced [Knu98]. A comparator
network is an abstract structure consisting of a sequence of elementary operations denoted
as compare-and-swap operations swapping the values on the wires if they are not in a desired
order. A comparator network that sorts all input elements is called sorting network. The key
feature of sorting networks is that the sequence of comparisons is defined in advance, regard-
less of the outcome of previous comparisons. This independence of comparison sequences is

6.3. PROBLEM-SPECIFIC QUALITY METRICS 43

useful for efficient execution in software as well as for parallel implementation in hardware.
Each sorting network can be understood as a structure that computes n quantiles in parallel.
As a special case of sorting network, median networks determining the median of the input
data can be constructed. For more details about sorting and median networks please refer
to the [Vas+16a] (Appendix E) and [MV16] (Appendix F). The following paragraphs deals
with approximate sorting and median networks.

The sorting networks are constructed in such a way that the sorting is data independent
process. The common problem of the generic metrics such as average-case arithmetic error
is that they do not reflect the quality of the sorting process because they are data depen-
dent. In order to investigate the impact of the approximations on the quality of obtained
results, regardless of the values of the input items, we introduced a new problem-specific
metric. It is guaranteed by construction that each comparison network produces a permu-
tation of the input sequence. It means that there exists one to one mapping between the
values obtained at the output of comparison network and the values at the input, so no new
value can arise during the exchanging performed by compare-and-swap elements. Formally,
C : π(x1, . . . , xn)→ π(x1, . . . , xn). Hence, every approximate sorting network must pro-
duce a partially ordered output for at least one input sequence. To model the error introduced
by the approximations, we can measure the distance between the rank of the returned ele-
ment and rank given by the specification. This metric was denoted distance error [Vas+16a].
Two additional metrics were inferred from the distance error: average-case distance error
defined as the sum of error distances averaged over all input combinations producing an
invalid output value and worst-case distance error defined as the maximal distance error
calculated over all input combinations.

In general, there exist 2wn different input sequences that can be processed by an n-input
comparator network operating at w-bits [Vas+16a]. We demonstrated that it is sufficient
to reduce the number of the possible input combinations to n! carefully chosen sequences
to exactly prove the validity of a sorting network and determine the distance error. This
claim was based on the existence of so called permutation principle that we introduced and
formally proved in [Vas+16a] (Appendix E). There exist infinite number of sequences, but the
most convenient sequence can be obtained by permuting the vector 〈−bn/2c, . . . , bn/2c〉.
Then, the output value is equals to the distance error in case of median networks. Although
this result allows us to exactly evaluate the quality of approximate comparator networks, it is
intractable for instances with more than n = 12 input elements. Hence, we sought a different
approach.

Literature shows that there is deep and complex theory behind sorting networks. The
invention of zero-one principle was probably one of the most important breakthroughs in
this domain. The zero-one principle states that if a sorting network with n inputs sorts all 2n

input sequences of 0’s and 1’s into a nondecreasing order, it will sort any arbitrary sequence
of n elements into a nondecreasing order [Knu98]. This claim substantially simplifies the
problem of verification of sorting networks. In order to verify that a comparison network is
a sorting network, it is sufficient to replace each compare-and-swap element with AND and

44 CHAPTER 6. EXACT QUALITY METRICS BASED ON BDDS

OR operations and use a SAT solver to check that the outputs are sorted. Based on zero-one
principle, we were able to construct an algorithm which is able to efficiently determine the
worst-case error using BDDs, but we spend a lot of time by finding a way how to exactly
determine the error distribution. The main problem is that we are not able to distinguish
which value comes from what input (there are only two values – 0’s and 1’s). For a median
network with a single output, we have problem to determine even the error rate. After many
experiments, we proposed an algorithm that is able exactly determine the mentioned error
metrics using BDDs. The main idea is outlined in [MV16] (Appendix F). It is based on the
fact, that we are able to formulate our problem as Pseudo-Boolean Constraint Satisfaction
Problem (CSP) that can be efficiently solved using BDDs. As a result, we are able to obtain
true error distribution even for large comparator networks. Few seconds are required to
compute the error distribution for n = 256 input median networks.

The proposed method was used to approximate sorting networks having 16, 256, 512 and
1024 inputs [MV16] (Appendix F). Experimental evaluation confirmed that sorting (median)
networks are highly error resilient. For example, 20% reduction in power consumption can
be achieved by introducing a small error in 256-input sorting network. The difference in rank
is proved to be no worse than 2 for more than 99% of input combinations. In the remaining
cases, it is guaranteed that the worst-case difference is not worse than six ranks.

Chapter 7

Conclusions and future directions

Logic synthesis and optimization is one of the most extensively and intensively studied prob-
lems in computer-aided design simply as it represents a fundamental task of many EDA tools.
In this thesis, we approached this problem from a different, unconventional, perspective. We
employed artificial intelligence to synthesize and optimize logic circuits. In particular, we
adopted Cartesian Genetic Programming, representing probably one of the most efficient
techniques developed within the field of evolvable hardware. Our main motivation for the
research reported in this thesis was exploring the ways how to overcome the main problem of
evolutionary computation – bad scalability – that prevents EAs to handle complex instances.

Very pessimistic future for EHW-based digital circuit synthesis was predicted in 2006
[GT06]. However, we have developed an approach easily overcoming the previous empirical
limitation of evolutionary design represented by a digital circuit having about twenty inputs
and up to hundred gates. Since that, we developed a robust tool which is able to handle
circuits having hundreds of inputs and thousands of gates [Vas15] (Appendix B). Contrasted
to the various FPGA-based or even GPU-based accelerators proposed to accelerate the sim-
ulation of logic circuits, the speedup factor in several orders of magnitude was achieved by
adopting the state-of-the-art formal approaches. Nowadays, we are able not only to optimize
complex circuits but also design them from scratch [Vas+14b]. Albeit the usage of the de-
sign from scratch is rather limited, it has been mentioned as one of the targets of the pioneers
of evolvable hardware field.

It has been known for many years that the EA-based synthesis is able to produce results
that are unreachable by conventional logic synthesis techniques [VJM00]. On the other hand,
there was no evidence that this claim is valid also for complex problems. There were some
indications related to the inefficiency of logic synthesis tools even in the hardware commu-
nity. It was shown, for example, that the state-of-the-art synthesis tools perform poorly for
a certain set of artificially created benchmark circuits with known optimal implementation
[CM07]. In our experiments with complex circuits, we confirmed the inherent inefficiency
of conventional synthesis manifesting itself in producing sub-optimal solutions. What is
worse, this inefficiency is not related to a specific class of synthetic benchmarks but it oc-
curs across a comprehensive set of benchmarks. We believe that this comes mainly from the

45

46 CHAPTER 7. CONCLUSIONS AND FUTURE DIRECTIONS

fact that the conventional algorithms rely on local transformations and that there is a bias in
AIG representation.

There is no doubt that the evolutionary approaches are able to provide results that have
never been reported in the literature dealing with conventional logic synthesis. As many
others, even our experiments demonstrated this fact. It is fair to admit, however, that the
attitude of hardware community to the evolutionary techniques seems to be a rather skepti-
cal. The evolutionary design of digital circuits is sometimes criticized due to its inherently
non-deterministic nature. To understand this attitude, it is sufficient to realize how the con-
ventional synthesis tools are implemented. Virtually all tools are based on applying of deter-
ministic transformations in an iterative manner. Despite the fact that EAs are routinely used
to solve real problems in various domains, the hardware community feel that the random
nature of EAs cannot provide any guarantee that a circuit of some quality will be obtained
when e.g. one hundred iterations are employed. One of the possibilities, how to reduce or
even break this mental barrier is to embed the evolutionary-based logic optimizer into widely
respected academia synthesis tools such as ABC or Yosys.

Interestingly enough, the same community seems to accept EAs when employed in the
approximate synthesis scenario. There are probably two reasonable explanations. While
there are about fifty years of history of logic synthesis, the conventional synthesis tools have
never been constructed to perform the synthesis of approximate circuits. In addition to that,
no golden design exists for an approximate circuit. Because of the nature of approximate
circuits (in fact, partially working circuits are sought) and principles of evolutionary circuit
design (evolutionary-based improving of partially working circuits), a search based method
such as EA seems to be the approach of the first choice. The second explanation is that the
approximate computing is strictly driven by motivation to create energy-efficient systems.
As the problem is inherently multi-objective and more difficult than conventional synthesis,
randomized global search based heuristics could be acceptable.

When we started to investigate the problem of approximate synthesis of logic circuits
in 2013, there was prevalence of manually created results. Since then the number of papers
presented each year on major hardware-related conferences sharply increased. In addition to
that, various events specific to the approximate computing such as WAPCO (Workshop On
Approximate Computing), WAX (Workshop on Approximate Computing Across the Stack)
or AC Workshop (Workshop on Approximate Computing) have emerged. Nowadays, sev-
eral automatic design methods for approximate synthesis are available. Compared to the
traditional logic synthesis, there has not yet been established a broadly recognized set of
benchmark circuits synthesized to various technology nodes. Consequently, the proposed
methods are only rarely compared against competitive approximation methods. Typically it
is hard or even impossible to perform such evaluation because either implementation of the
resulting (approximate) circuit is not available, or parameters (implementation) of the origi-
nal (accurate) circuit are unknown. Lack of formal methods of relaxed equivalence checking
represents another key issue that should be addressed in near future. As a temporary solu-
tion, a simulation-based approach is typically applied. It is typically unclear, however, if a

47

given number of test vectors used to evaluate approximate circuits is sufficient for obtaining
a trustworthy error quantification. Our experience in the evolutionary synthesis of logic cir-
cuits points out on the fact that if there is even a small degree of uncertainty in specification,
usually an unsatisfactory result is obtained.

Approximate computing is a research area that offers a great opportunity for evolution-
ary computing community which has a rich experience with single- and multi-objective op-
timization. Considering additional optimization criteria thus represents a well-known prob-
lem from the perspective of EAs. In our research and in this thesis, we focused only on
synthesis of approximate gate-level circuits. However, the approximation can be conducted
not only at the level of gates but also on different levels. The circuits can be synthesized, for
example, at function level, i.e. from high-level functions such as adders, subtracters or even
more complex blocks. At the lowest level of abstraction, approximate synthesis for post-
CMOS technology nodes represent a possible directions for future research. In addition to
that, the evolutionary approaches can be employed to approximate computer architectures,
memories or even software implementations.

Our work on presented publications revealed a number of possible directions for fu-
ture research and development. Let us mention two of them. The main handicap of the
evolutionary approaches is that they are time consuming and generally not scalable when
compared with methods of conventional logic synthesis. Very encouraging results were ob-
tained in [Vas15] (Appendix B), especially when we consider the fact that the runtime of the
optimization process was 15 minutes. At the same time, however, we revealed an enormous
inefficiency of the evolutionary approach itself. The ratio between the number of acceptable
functionally equivalent candidate solutions and invalid solutions violating specification was
worse than 1:180 in average. It means that approximately 99.5% of the whole runtime is
wasted by generating and evaluating invalid candidate circuits that are lying beyond the de-
sired space of potential solutions. Hence, introducing more domain knowledge in EA and
utilizing more advanced evolutionary operators seem to be a viable approach how to enable
evolvable hardware field to deal with this inherent inefficiency and cope with relentlessly
increasing complexity of digital circuits. The second problem is related to the evolution-
ary mechanisms responsible for the success in logic synthesis. It is well known fact that the
nature of a fitness landscape has a strong relationship with the effectiveness of the evolution-
ary search. Interestingly, only a little is known about the phenotypic search space of digital
circuits despite the fact that every search algorithm provides implicit assumptions about the
search space [HT11]. Even less is known for approximate circuits.

Bibliography

[And05] S. E. Anderson. Bit Twiddling Hacks.
http://graphics.stanford.edu/∼seander/bithacks.html. Accessed Oct, 2016. 2005.

[Bry91] R. E. Bryant. “On the complexity of VLSI implementations and graph repre-
sentations of Boolean functions with application to integer multiplication”. In:
IEEE Transactions on Computers 40.2 (Feb. 1991), pp. 205–213.

[CCA98] C. C. A. Coello, A. D. Christiansen, and A. H. Aguirre. “Automated Design
of Combinational Logic Circuits by Genetic Algorithms”. In: Artificial Neural
Nets and Genetic Algorithms: Proceedings of the International Conference in
Norwich, U.K., 1997. Vienna: Springer Vienna, 1998, pp. 333–336.

[Cha+16] A. Chandrasekharan et al. “Approximation-aware Rewriting of AIGs for Error
Tolerant Applications”. In: 35th International Conference On Computer Aided
Design (ICCAD). Austin, TX, US, 2016. to appear in.

[Chi+13] V. K. Chippa et al. “Analysis and characterization of inherent application re-
silience for approximate computing”. In: The 50th Annual Design Automation
Conference 2013, DAC’13. ACM, 2013, pp. 1–9.

[CM07] J. Cong and K. Minkovich. “Optimality Study of Logic Synthesis for LUT-
Based FPGAs”. In: IEEE Transactions on Computer-aided Design of Integrated
Circuits and Systems 26.2 (2007), pp. 230–239.

[DB13] R. Drechsler and B. Becker. Binary Decision Diagrams: Theory and Imple-
mentation. Springer US, 2013.

[Deb+02] K. Deb et al. “A fast and elitist multiobjective genetic algorithm: NSGA-II”.
In: IEEE Trans. Evol. Comput. 6.2 (2002), pp. 182–197.

[Deb01] K. Deb. Multi-Objective Optimization using Evolutionary Algorithms. Wiley,
2001.

[EFD00] R. Ebendt, G. Fey, and R. Drechsler. Advanced BDD Optimization. Berlin:
Springer, 2000.

[EMG05] T. Eeckelaert, T. McConaghy, and G. Gielen. “Efficient multiobjective synthe-
sis of analog circuits using hierarchical Pareto-optimal performance hypersur-
faces”. In: Design, Automation and Test in Europe, DATE 2005. IEEE, 2005,
pp. 1070–1075.

[FS08] P. Fiser and J. Schmidt. “Small but Nasty Logic Synthesis Examples”. In: Proc.
8th Int. Workshop on Boolean Problems. 2008, pp. 183–190.

49

50 BIBLIOGRAPHY

[Gai+15] P.-E. Gaillardon et al. “A Survey on Low-Power Techniques with Emerging
Technologies: From Devices to Systems”. In: J. Emerg. Technol. Comput. Syst.
12.2 (Sept. 2015), 12:1–12:26.

[GB02] T. G. W. Gordon and P. J. Bentley. “On evolvable hardware”. In: Soft Computing
in Industrial Electronics. Heidelberg, Germany: Physica-Verlag, 2002, pp. 279–
323.

[GS11] Z. Gajda and L. Sekanina. “On Evolutionary Synthesis of Compact Polymor-
phic Combinational Circuits”. In: Journal of Multiple-Valued Logic and Soft
Computing 17.6 (2011), pp. 607–631.

[GT06] G. W. Greenwood and A. M. Tyrrell. Introduction to Evolvable Hardware: A
Practical Guide for Designing Self-Adaptive Systems (IEEE Press Series on
Computational Intelligence). Wiley-IEEE Press, 2006.

[HB11] S. L. Harding and W. Banzhaf. “Hardware Acceleration for CGP: Graphics
Processing Units”. In: Cartesian Genetic Programming. Springer Science +
Business Media, 2011, pp. 231–253.

[Hig+93] T. Higuchi et al. “Evolving Hardware with Genetic Learning: A First Step To-
wards Building a Darwin Machine”. In: Proc. of the 2nd International Confer-
ence on Simulated Adaptive Behaviour. MIT Press, 1993, pp. 417–424.

[HLY06] T. Higuchi, Y. Liu, and X. Yao, eds. Evolvable Hardware. Springer Science+Media
LLC, New York, 2006.

[HMV16] R. Hrbacek, V. Mrazek, and Z. Vasicek. “Automatic Design of Approximate
Circuits by Means of Multi-Objective Evolutionary Algorithms”. In: Proc.of
the 11th Int. Conf. on Design and Technology of Integrated Systems in Nanoscale
Era. IEEE, 2016, pp. 239–244.

[Hol+16] L. Holik et al. “Towards Formal Relaxed Equivalence Checking in Approxi-
mate Computing Methodology”. In: 2nd Workshop on Approximate Computing
(WAPCO 2016). HiPEAC, 2016, pp. 1–6.

[HS96] G. D. Hachtel and F. Somenzi. Logic Synthesis and Verification Algorithms.
Springer US, 1996, p. 564.

[HT11] P. C. Haddow and A. Tyrrell. “Challenges of evolvable hardware: past, present
and the path to a promising future”. In: Genetic Programming and Evolvable
Machines 12 (3 2011), pp. 183–215.

[IP98] S. Iman and M. Pedram. Logic Synthesis for Low Power VLSI Designs. Springer
Science + Business Media, 1998.

[K+03] N. S. Kim, T. Austin, D. Blaauw, et al. “Leakage Current: Moore’s Law Meets
Static Power”. In: Computer 36.12 (Dec. 2003), pp. 68–75.

[KGE11] P. Kulkarni, P. Gupta, and M. D. Ercegovac. “Trading Accuracy for Power in
a Multiplier Architecture”. In: J. Low Power Electronics 7.4 (2011), pp. 490–
501.

[Kni+10] T. Knieper et al. “Coping with Resource Fluctuations: The Run-time Reconfig-
urable Functional Unit Row Classifier Architecture”. In: Proc. of the 9th Int.
Conf. on Evolvable Systems: ¿From Biology to Hardware. Vol. 6274. LNCS.
Springer, 2010, pp. 250–261.

BIBLIOGRAPHY 51

[Knu98] D. E. Knuth. The Art of Computer Programming, Volume 3: (2Nd Ed.) Sorting
and Searching. Addison Wesley Longman Publishing Co., Inc., 1998.

[Koz92] J. R. Koza. Genetic Programming: On the Programming of Computers by Means
of Natural Selection. Cambridge, MA: MIT Press, 1992.

[Mat+15] J. M. Matos et al. “Mapping Circuits with Simple Cells from Xor-And-Inverter
Graphs”. In: Proc. of the 24th International Workshop on Logic and Synthesis.
2015.

[MCB06] A. Mishchenko, S. Chatterjee, and R. Brayton. “DAG-aware AIG Rewriting a
Fresh Look at Combinational Logic Synthesis”. In: Proceedings of the 43rd
Annual Design Automation Conference. DAC ’06. San Francisco, CA, USA:
ACM, 2006, pp. 532–535.

[MD02] J. F. Miller and K. Downing. “Evolution in Materio: Looking Beyond the Sil-
icon Box”. In: Proceedings of the 2002 NASA/DoD Conference on Evolvable
Hardware (EH’02). IEEE Computer Society, 2002, pp. 167–176.

[MGO13] J. Miao, A. Gerstlauer, and M. Orshansky. “Approximate Logic Synthesis Un-
der General Error Magnitude and Frequency Constraints”. In: Proceedings of
the International Conference on Computer-Aided Design. ICCAD ’13. San Jose,
California: IEEE Press, 2013, pp. 779–786.

[Mil11] J. F. Miller. Cartesian Genetic Programming. Springer-Verlag, 2011.
[Mil99a] J. F. Miller. “Digital Filter Design at Gate-level Using Evolutionary Algorithms”.

In: Proceedings of the Genetic and Evolutionary Computation Conference,
GECCO 1999. Morgan Kaufmann, 1999, pp. 1127–1134.

[Mil99b] J. F. Miller. “On the Filtering Properties of Evolved Gate Arrays”. In: 1st NASA-
DoD Workshop on Evolvable Hardware. IEEE Computer Society, 1999, pp. 2–
11.

[Mis12] A. Mishchenko. ABC: A System for Sequential Synthesis and verification, Berkley
Logic Synthesis and Verification Group. 2012.

[Mit16] S. Mittal. “A Survey of Techniques for Approximate Computing”. In: ACM
Comput. Surv. 48.4 (2016), 62:1–62:33.

[Mra+16] V. Mrazek et al. “Design of Power-Efficient Approximate Multipliers for Ap-
proximate Artificial Neural Networks”. In: Proceedings of the 35th IEEE/ACM
International Conference on Computer-Aided Design (ICCAD). Austin, TX,
US, 2016. to appear in.

[MT00] J. F. Miller and P. Thomson. “Cartesian Genetic Programming”. In: Proc. of the
3rd European Conference on Genetic Programming EuroGP2000. Vol. 1802.
LNCS. Springer, 2000, pp. 121–132.

[MT98] J. F. Miller and P. Thomson. “Evolving Digital Electronic Circuits for Real-
Valued Function Generation using a Genetic Algorithm”. In: University of Wis-
consin. Morgan Kaufmann, 1998, pp. 863–868.

[MTF97] J. F. Miller, P. Thomson, and T. Fogarty. “Designing Electronic Circuits Us-
ing Evolutionary Algorithms. Arithmetic Circuits: A Case Study”. In: Genetic
Algorithms and Evolution Strategies in Engineering and Computer Science.
Wiley, 1997, pp. 105–131.

52 BIBLIOGRAPHY

[MV16] V. Mrazek and Z. Vasicek. “Automatic Design of Arbitrary-Size Approximate
Sorting Networks with Error Guarantee”. In: 26rd International Workshop on
Power and Timing Modeling, Optimization and Simulation (PATMOS), 2016.
Bremen, DE: IEEE Computer Society, 2016, (to appear).

[RP09] K. Roy and S. Prasad. Low-Power Cmos VLSI Circuit Design. Wiley India Pvt.
Limited, 2009.

[San+16] A. J. Sanchez-Clemente et al. “Error Mitigation Using Approximate Logic Cir-
cuits: A Comparison of Probabilistic and Evolutionary Approaches”. In: IEEE
Transactions on Reliability online first (2016), pp. 1–13.

[Sek04] L. Sekanina. Evolvable Components: From Theory to Hardware Implementa-
tions. Natural Computing Series, Springer Verlag, 2004.

[Sek12] L. Sekanina. “Evolvable hardware”. In: Handbook of Natural Computing. Berlin,
DE: Springer Verlag, 2012, pp. 1657–1705.

[SG10] D. Shin and S. K. Gupta. “Approximate logic synthesis for error tolerant appli-
cations”. In: Design, Automation and Test in Europe, DATE 2010. IEEE, 2010,
pp. 957–960.

[Sha12] E. N. Shauly. “CMOS Leakage and Power Reduction in Transistors and Cir-
cuits: Process and Layout Considerations”. In: Journal of Low Power Electron-
ics and Applications 2.1 (2012), p. 1.

[SKL06a] E. Stomeo, T. Kalganova, and C. Lambert. “Generalized Disjunction Decom-
position for Evolvable Hardware”. In: IEEE Transaction Systems, Man and Cy-
bernetics, Part B 36.5 (2006), pp. 1024–1043.

[SKL06b] E. Stomeo, T. Kalganova, and C. Lambert. “Generalized Disjunction Decom-
position for Evolvable Hardware”. In: IEEE Transaction Systems, Man and Cy-
bernetics, Part B 36.5 (2006), pp. 1024–1043.

[Soe+16] M. Soeken et al. “BDD Minimization for Approximate Computing”. In: Pro-
ceedings of the 21st Asia and South Pacific Design Automation Conference
(ASP-DAC 2016). Macao SAR, China: IEEE, Jan. 2016, pp. 474–479.

[SP09] A. P. Shanthi and R. Parthasarathi. “Practical and scalable evolution of digital
circuits”. In: Applied Soft Computing 9.2 (2009), pp. 618–624.

[SPG02] D. Soudris, C. Piguet, and C. Goutis. Designing CMOS Circuits for Low Power.
European low-power initiative for electronic system design. Springer, 2002.

[Sto+04] A. Stoica et al. “Taking evolutionary circuit design from experimentation to im-
plementation: some useful techniques and a silicon demonstration”. In: Com-
puters and Digital Techniques, IEE Proceedings - Volume 151, Issue 4. 2004,
pp. 295–300.

[Sto+99] A. Stoica et al. “Evolutionary Experiments with a Fine-Grained Reconfigurable
Architecture for Analog and Digital CMOS Circuits”. In: Proceedings of the
1st NASA/DOD workshop on Evolvable Hardware. EH 1999. Washington, DC,
USA: IEEE Computer Society, 1999, pp. 76–84.

BIBLIOGRAPHY 53

[SV12] L. Sekanina and Z. Vasicek. “A SAT-based Fitness Function for Evolution-
ary Optimization of Polymorphic Circuits”. In: Proc. of the Design, Automa-
tion and Test in Europe, DATE. European Design and Automation Association,
2012, pp. 715–720.

[SV13] L. Sekanina and Z. Vasicek. “Approximate circuit design by means of evolvable
hardware”. In: Evolvable Systems (ICES), IEEE International Conference on.
Singapur, SG: IEEE Computer Society, Apr. 2013, pp. 21–28.

[SZK01] A. Stoica, R. S. Zebulum, and D. Keymeulen. “Polymorphic Electronics”. In:
Proc. of International Conference on Evolvable Systems: From Biology to Hard-
ware, Lecture Notes in Computer Science, volume 2210. Springer-Verlag, 2001,
pp. 291–302.

[Tan+10] S. Tanachutiwat et al. “Reconfigurable Multi-Function Logic Based on Graphene
P-N Junctions”. In: Design Automation Conference, DAC. ACM, 2010, pp. 883–
888.

[Tho96] A. Thompson. “Silicon evolution”. In: Proceedings of the First Annual Confer-
ence on Genetic Programming. GECCO ’96. Stanford, California: MIT Press,
1996, pp. 444–452.

[TLZ99] A. Thompson, P. Layzell, and S. Zebulum. “Explorations in Design Space:
Unconventional Electronics Design Through Artificial Evolution”. In: IEEE
Transactions on Evolutionary Computation 3.3 (1999), pp. 167–196.

[TT15] M. A. Trefzer and A. M. Tyrrell. Evolvable Hardware: From Practice to Appli-
cation. Springer-Verlag Berlin Heidelberg, 2015.

[Vas+10] Z. Vasicek and L. Sekanina. “Hardware Accelerator of Cartesian Genetic Pro-
gramming with Multiple Fitness Units”. In: Computing and Informatics 29.7
(2010), pp. 1359–1371.

[Vas+11a] Z. Vasicek and L. Sekanina. “A Global Postsynthesis Optimization Method for
Combinational Circuits”. In: Proc. of the Design, Automation and Test in Eu-
rope, DATE. IEEE Computer Society, 2011, pp. 1525–1528.

[Vas+11b] Z. Vasicek and L. Sekanina. “Extensions of Cartesian Genetic Programming
for Optimization of Complex Combinational Circuits”. In: Proc. of the 20th
International Workshop on Logic and Synthesis. San Diego, US: University of
California San Diego, 2011, pp. 55–61.

[Vas+11c] Z. Vasicek and L. Sekanina. “Formal Verification of Candidate Solutions for
Post-Synthesis Evolutionary Optimization in Evolvable Hardware”. In: Genetic
Programming and Evolvable Machines 12.3 (2011), pp. 305–327.

[Vas+12a] Z. Vasicek and L. Sekanina. “On area minimization of complex combinational
circuits using cartesian genetic programming”. In: 2012 IEEE Congress on
Evolutionary Computation. June 2012, pp. 1–8.

[Vas+12b] Z. Vasicek and K. Slany. “Efficient Phenotype Evaluation in Cartesian Genetic
Programming”. In: Proc. of the 15th European Conference on Genetic Pro-
gramming. LNCS 7244. Springer Verlag, 2012, pp. 266–278.

[Vas+13] Z. Vasicek, M. Bidlo, and L. Sekanina. “Evolution of efficient real-time non-
linear image filters for FPGAs”. In: Soft Computing 17.11 (2013), pp. 2163–
2180.

54 BIBLIOGRAPHY

[Vas+14a] Z. Vasicek and L. Sekanina. “Evolutionary Design of Approximate Multipliers
Under Different Error Metrics”. In: IEEE International Symposium on Design
and Diagnostics of Electronic Circuits and Systems 2013. IEEE, 2014, pp. 135–
140.

[Vas+14b] Z. Vasicek and L. Sekanina. “How to Evolve Complex Combinational Circuits
From Scratch?” In: 2014 IEEE International Conference on Evolvable Systems
Proceedings. IEEE, 2014, pp. 133–140.

[Vas+15a] Z. Vasicek and L. Sekanina. “Circuit Approximation Using Single- and Multi-
Objective Cartesian GP”. In: Proc. of the 18th European Conference on Genetic
Programming – EuroGP. LNCS 9025. Springer, 2015, pp. 217–229.

[Vas+15b] Z. Vasicek and L. Sekanina. “Evolutionary Approach to Approximate Digital
Circuits Design”. In: IEEE Transactions on Evolutionary Computation 19.3
(2015), pp. 432–444.

[Vas+16a] Z. Vasicek and V. Mrazek. “Trading between Quality and Non-functional Prop-
erties of Median Filter in Embedded Systems”. In: Genetic Programming and
Evolvable Machines 2016.3 (2016), pp. 1–38.

[Vas+16b] Z. Vasicek and L. Sekanina. “Evolutionary Design of Complex Approximate
Combinational Circuits”. In: Genetic Programming and Evolvable Machines
17.2 (2016), pp. 169–192.

[Vas15] Z. Vasicek. “Cartesian GP in Optimization of Combinational Circuits with Hun-
dreds of Inputs and Thousands of Gates”. In: Proceedings of the 18th European
Conference on Genetic Programming – EuroGP. LCNS 9025. Springer Inter-
national Publishing, 2015, pp. 139–150.

[Ven+11] R. Venkatesan et al. “MACACO: Modeling and analysis of circuits for approxi-
mate computing”. In: 2011 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD). IEEE, 2011, pp. 667–673.

[Ven+12] S. Venkataramani et al. “SALSA: systematic logic synthesis of approximate
circuits”. In: The 49th Annual Design Automation Conference 2012, DAC ’12.
ACM, 2012, pp. 796–801.

[VJM00] V. Vassilev, D. Job, and J. F. Miller. “Towards the Automatic Design of More
Efficient Digital Circuits”. In: Proc. of the 2nd NASA/DoD Workshop on Evolv-
able Hardware. Ed. by J. Lohn et al. Los Alamitos, CA, USA: IEEE Computer
Society, 2000, pp. 151–160.

[VRR13] S. Venkataramani, K. Roy, and A. Raghunathan. “Substitute-and-simplify: a
unified design paradigm for approximate and quality configurable circuits”. In:
Design, Automation and Test in Europe, DATE’13. EDA Consortium San Jose,
CA, USA, 2013, pp. 1367–1372.

[Wal16] M. M. Waldrop. “The chips are down for Moore’s law”. In: Nature 530.7589
(Feb. 2016), pp. 144–147.

[WCC09] L.-T. Wang, Y.-W. Chang, and K.-T. (Cheng, eds. Electronic Design Automa-
tion: Synthesis, Verification, and Test. San Francisco, CA, USA: Morgan Kauf-
mann Publishers Inc., 2009.

BIBLIOGRAPHY 55

[WCL08] J. Wang, Q. S. Chen, and C. H. Lee. “Design and implementation of a vir-
tual reconfigurable architecture for different applications of intrinsic evolvable
hardware”. In: IET computers and digital techniques 2.5 (2008), pp. 386–400.

[XMK16] Q. Xu, T. Mytkowicz, and N. S. Kim. “Approximate Computing: A Survey”.
In: IEEE Design Test 33.1 (Feb. 2016), pp. 8–22.

[YC16] C. Yu and M. Ciesielski. “Analyzing Imprecise Adders Using BDDs – A Case
Study”. In: 2016 IEEE Computer Society Annual Symposium on VLSI (ISVLSI).
July 2016, pp. 152–157.

[ZJ06] S. Zhao and L. Jiao. “Multi-objective evolutionary design and knowledge dis-
covery of logic circuits based on an adaptive genetic algorithm”. In: Genetic
Programming and Evolvable Machines 7.3 (2006), pp. 195–210.

Appendices - Paper reprints

Appendix A

Formal Verification of Candidate Solutions
for Post-Synthesis Evolutionary
Optimization in Evolvable Hardware

VASICEK, Zdenek and SEKANINA, Lukas. “Formal Verification of Candidate Solutions
for Post-Synthesis Evolutionary Optimization in Evolvable Hardware”. In: Genetic Pro-
gramming and Evolvable Machines 12.3 (2011), pp. 305–327.

IF=1.000 (2011), contribution of the author of the thesis: 50%

Referenced on pages: 10, 14, 15

59

Formal verification of candidate solutions
for post-synthesis evolutionary optimization
in evolvable hardware

Zdenek Vasicek • Lukas Sekanina

Received: 1 September 2010 / Revised: 15 February 2011 / Published online: 13 March 2011

� Springer Science+Business Media, LLC 2011

Abstract We propose to utilize a formal verification algorithm to reduce the

fitness evaluation time for evolutionary post-synthesis optimization in evolvable

hardware. The proposed method assumes that a fully functional digital circuit is

available. A post-synthesis optimization is then conducted using Cartesian Genetic

Programming (CGP) which utilizes a satisfiability problem solver to decide whether

a candidate solution is functionally correct or not. It is demonstrated that the method

can optimize digital circuits of tens of inputs and thousands of gates. Furthermore,

the number of gates was reduced for the LGSynth93 benchmark circuits by 37.8%

on average with respect to results of the conventional SIS tool.

Keywords Cartesian genetic programming � Circuit optimization � SAT solver �
Evolvable hardware

1 Introduction

In the evolvable hardware field, evolutionary algorithms (and other bio-inspired

algorithms) are applied either for automated hardware design or dynamic hardware

adaptation or repair [16, 20, 30, 39, 53, 54]. According to Gordon and Bentley, the

field of evolvable hardware originates from the intersection of computer science,

electronic engineering and biology and typically includes aspects of hardware

design and optimization techniques, particularly logic synthesis, technology

mapping, placing and routing [14].

Z. Vasicek � L. Sekanina (&)

Faculty of Information Technology, Brno University of Technology, Brno, Czech Republic

e-mail: sekanina@fit.vutbr.cz

Z. Vasicek

e-mail: vasicek@fit.vutbr.cz

123

Genet Program Evolvable Mach (2011) 12:305–327

DOI 10.1007/s10710-011-9132-7

In this article we will only deal with evolvable hardware as a method for

automated design, i.e. with a scenario in which the evolutionary algorithm is used

only in design and optimization phase of a product. In this context, evolvable

hardware potentially offers promising solutions to logic synthesis and optimization

where new problems have recently been identified. It was shown that commonly

used logic synthesis algorithms are not capable of efficient synthesis and

optimization for some circuit classes, especially for large circuits and circuits

containing hard-to-synthesize substructures [5, 10]. In some cases the size of

synthesized circuits is of orders of magnitude greater than the optimum.

The scalability problem has been identified as one of the most difficult problems

the researchers are faced with in the evolvable hardware field. The scalability

problem means such situation in which the evolutionary algorithm is able to provide

a solution to a small problem instance; however, only unsatisfactory solutions can

be generated for larger problem instances. Although various methods have been

proposed to eliminate the scalability problem (see Sect. 2), only a partial success has

been achieved in some domains.

We will consider a subarea of the scalability problem—the scalability of
evaluation, in the context of optimization problems. We will show that it can

reasonably be eliminated in a task of gate-level post-synthesis optimization of

complex combinational circuits consisting of thousands of gates and having tens of

inputs and outputs. The method assumes that a fully functional circuit is available in

a standard netlist format which can be obtained using a conventional synthesis

algorithm. The main goal is to reduce the number of gates.

We propose to use modern formal verification methods that have been

overlooked by the evolvable hardware community so far. The proposed method

utilizes equivalence checking algorithms (those used by conventional synthesis

algorithms) that allow a significant acceleration of the fitness evaluation procedure.

Particularly, the method is based on a post-synthesis optimization of combinational

circuit conducted using Cartesian genetic programming (CGP) [34] which evaluates

candidate solutions using the satisfiability (SAT) solver [9]. The technique relies on

functional correctness of an initial solution (a seed for CGP). Note that not all

applications of evolvable hardware fall into this category because such a seed is not

generally available. We have also introduced some techniques that explore the CGP

representation and operators to reduce the number of clauses for the SAT solver and

thus further shorten the evaluation time.

Optimized circuits are compared with the most compact circuits that we obtained

from iterative application of decomposition and re-synthesis process which is

conducted by conventional synthesis tools such as ABC and SIS.

The plan for this article is as follows. Section 2 introduces the concept of

evolvable hardware and surveys the scalability problems. In Sect. 3, the proposed

method is explained. The key contribution of this article, the construction of the

fitness function on the basis of formal verification techniques is introduced in Sect. 4

The experimental evaluation of the proposed method represents the content of Sect.

5. Some practical aspects of the method are discussed in Sect. 6. Section 7 gives our

conclusions from the experimental evaluation and also some suggestions for further

work.

306 Genet Program Evolvable Mach (2011) 12:305–327

123

2 Evolvable hardware and its scalability

2.1 Motivation for circuit evolution

Figure 1 explains the concept of evolvable hardware: Electronic circuits that are

encoded as finite strings of symbols are constructed and optimized by the

evolutionary algorithm to obtain a circuit implementation satisfying a specification

given by designer. Since the introduction of evolvable hardware at the beginning of

nineties [11, 21], the main motivation for circuit evolution can be seen in the fact

that evolutionary approach can lead to fully functional designs without being

instructed how to construct them. Hence one of the goals is to evolve as complex

circuit as possible with a minimum computational effort and domain knowledge

supplied [41, 43, 51]. A typical application could be a reactive robot controller

which is evolved in a sufficiently large reconfigurable device where there is no need

to optimize the number of gates and delay [27].

In many applications a perfect circuit response must by obtained for all requested

assignments to the inputs. The fitness function is usually constructed in such a way

that all requested assignments are applied to the inputs of a candidate circuit and the

fitness value is defined as the number of bits that the candidate circuit computes

correctly. When target functionality is obtained additional criteria can be optimized.

Evolution of arithmetic circuits is a typical example of that class [32, 49]. To give

examples where partially imperfect solutions are acceptable we can mention

evolution of image filters, classifiers or predictors [12, 19, 38]. In addition to

functionality, another goal can be to obtain a solution which exhibits a better quality

in some aspects with respect to existing designs of the same category. For example,

a solution would occupy a smaller area on a chip, compute faster, provide a better

precision, reduce the energy consumption, increase the reliability etc.

Fig. 1 The principle of evolvable hardware

Genet Program Evolvable Mach (2011) 12:305–327 307

123

2.2 Scalability of fitness evaluation

In case of combinational circuit evolution, the evaluation time of a candidate circuit

grows exponentially with the increasing number of inputs (assuming that all

possible input combinations are tested in the fitness function). This fitness

calculation method is currently applicable for circuits with up to 10–20 inputs

(depending on a particular target function) [37, 41, 43, 49, 51]. In order to reduce

the time of evaluation, various techniques can be adopted:

• Only a subset of all possible input vectors is utilized. That is typical for synthesis

of filters, classifiers or robot controllers. Unfortunately, the approach is not

applicable for synthesis of arithmetic circuits as it does not ensure that correct

responses will be obtained for those input combinations which were not used

during evolution [23].

• In some cases it is sufficient to evaluate only some structural properties (not the

functionality!) of candidate circuits which can be done with a reasonable time

overhead. For example, because testability of a candidate circuit can be

calculated in the quadratic time complexity, very large benchmark circuits with

predefined testability properties (more than 1 million gates) were evolved [36].

• In case that a target system is linear, it is possible to perfectly evaluate a

candidate circuit using a single input vector independently of the circuit

complexity. Multiple-constant multipliers composed of adders, subtractors and

shifters were evolved for a 16-bit input and tens of 16-bit outputs [48].

An obvious conclusion is that the evaluation time becomes the main bottleneck

of the evolutionary approach when complex digital circuits with many inputs are

evolved or optimized.

2.3 Scalability of representation

From the viewpoint of the scalability of representation, the problem is that long

chromosomes which are usually required to represent complex solutions imply large

search spaces that are typically difficult to search. In order to evolve large designs

and simultaneously keep the size of chromosome small, various techniques have

been proposed, including functional-level evolution [35, 39], incremental evolution

[43, 44, 45], modularization [26, 51] and their combinations [12, 41]. Despite the

fact that a new field of computational development has attracted a lot of attention in

this area and brought some theoretical as well as practical results [15, 17, 18, 22, 29,

31, 42, 47, 55] the problem of scalability is still an open issue.

3 Proposed method

The goal of proposed method is to minimize the number of gates in a functionally

correct combinational circuit that is typically obtained using a conventional

synthesis tool. The method consists of three main steps that will be described in

detail in the following sections:

308 Genet Program Evolvable Mach (2011) 12:305–327

123

1. Perform the synthesis/optimization using a conventional synthesis algorithm.

2. Convert resulting circuit to the CGP representation and use it to seed the initial

population of CGP.

3. Run CGP that uses a formal verification method that will be described in Sect. 4

to reduce the number of gates. CGP is terminated if either the maximum

allowed number of generations has been exhausted or a solution that fulfills the

requirements has been discovered.

3.1 Conventional circuit synthesis

Combinational logic functions are commonly specified by PLA files where PLA

stands for programmable logic array. The PLA file is an abbreviated truth table

where all inputs are specified. However, it does not list products for which all the

outputs are zero or undefined combinations. A circuit can also be represented as a

netlist of gates in BLIF (Berkeley Logic Interchange Format) format. BLIF lists all

interconnected combinational gates (and latches in case of sequential circuits).

Since proposed method is intended for a gate-level optimization, other steps of

the circuit design process such as mapping, routing, placement and subsequent

technology-specific optimizations are not considered in this paper. From conven-

tional and routinely used synthesis methods we have chosen the SIS [40] tool

(version sis1.2) which provided in most cases better results than other tools such as

ABC [3] (version abc70930) or Espresso [4].

Implementations of synthesis tools support various operations with circuits, for

example, it is possible to convert PLA to BLIF and vice versa. Circuits specified in

BLIF can also be mapped on a chosen set of gates or look-up tables. The ABC and

SIS tools are deterministic. They attempt to apply various circuit decomposition and

re-synthesis techniques to transform a circuit under optimization and generate

optimized netlist. We have used them with recommended (standard) setting which is

represented by synthesis scripts given in Table 1. In order to improve their results

we applied them on their own results iteratively as suggested in [3]. That technique

will be discussed in Sect. 5.5.

3.2 Cartesian genetic programming

Cartesian Genetic Programming is a widely-used method for evolution of digital

circuits [32, 34]. CGP was originally defined for gate-level evolution; however, it

can easily be extended for functional level evolution [38]. In its basic version,

candidate circuits are directly represented in the chromosome. The following

paragraphs describe how we have used CGP in the proposed method.

3.2.1 Representation

A candidate entity (circuit) is modeled as an array of nc (columns) 9 nr (rows) of

programmable nodes (gates). The number of inputs, ni, and outputs, no, is fixed.

Each node input can be connected either to the output of a node placed in the

Genet Program Evolvable Mach (2011) 12:305–327 309

123

previous l columns or to one of the circuit inputs. The l-back parameter, in fact,

defines the level of connectivity and thus reduces/extends the search space. For

example, if l = 1 only neighboring columns may be connected; if nr = 1 and

nc = l, full connectivity is enabled. Feedback is not allowed. Each node is

programmed to perform one of na-input functions defined in the set C (nf denotes

jCj). As Fig. 2 shows, while the size of chromosome is fixed, the size of phenotype

is variable (i.e. some nodes are not used). Every individual is encoded using

nc 9 nr 9 (na ? 1) ? no integers.

3.2.2 Search algorithm

CGP operates with the population of 1 ? k individuals (typically, k = 4). The

initial solution (the seed) is constructed by means of mapping of the circuit obtained

Table 1 Synthesis scripts for

the SIS and ABC method
SIS ABC

read PLA file read PLA file

script_rugged script_choice

map map

script_rugged: script_choice:

sweep; eliminate -1 fraig_store;

simplify -m nocomp resyn; fraig_store;

eliminate -1 resyn2; fraig_store;

sweep; eliminate 5 resyn2rs; fraig_store;

simplify -m nocomp share; fraig_store;

resub -a fraig_restore

fx

resub -a; sweep

eliminate -1; sweep

full_simplify -m nocomp

Fig. 2 Example of a candidate circuit. CGP parameters are as follows: l ¼ 3; nc ¼ 4;
ni ¼ 3; no ¼ 2; nr ¼ 2; C = {AND (0), OR (1)}. Nodes 5, 7 and 9 are not utilized. Chromosome: 1,2,1,
2,0,0, 1,3,1, 3,4,0 1,6,0, 1,6,1, 1,7,0, 2,8,1, 6, 10. The last two integers indicate the outputs of circuit. The
function of a gate is typed in bold

310 Genet Program Evolvable Mach (2011) 12:305–327

123

from conventional synthesis and specified in the BLIF format to the CGP

representation. The mapping is straightforward since the CGP representation is in

fact a netlist. If the initial circuit consists of m gates, each of them possessing up to c
inputs, then CGP will operate with parameters nc = m, nr = 1, l = nc, na = c. The

circuit is also transformed into the conjunctive normal form in order to create a

reference solution for the formal verification (see the method in Sect. 4 and Fig. 5).

The seed together with k offspring created using a point mutation operator form

the initial population which has to be evaluated. Every new population consists of

the best individual of the previous population and its k offspring. In case when two

or more individuals have received the same highest fitness score in the previous

generation, one of individuals which have not served as a parent in the previous

population will be selected as a new parent. This strategy is important because it

contributes to ensuring the diversity of population [33].

3.2.3 Fitness function

When the objective is to minimize the number of gates the fitness value of a

candidate circuit may be defined in CGP as [24]:

fitness ¼ Bþ ðncnr � zÞ ð1Þ

where B is the number of correct output bits obtained as response for all possible

assignments to the inputs, z denotes the number of gates utilized in a particular

candidate circuit and nc.nr is the total number of gates available. The last term

ncnr - z is considered only if the circuit behavior is perfect, i.e. B ¼ no2ni .

The fitness calculation carried out by the proposed method differs from

equation 1. Instead of evaluating all possible assignments to the inputs, a candidate

circuit is verified against a reference circuit as described in Sect. 4. The result of the

verification algorithm is a Boolean value. If the value is negative then the fitness

score is the worst-possible value. If the value is positive, the fitness value is just the

number of utilized gates (assuming that the goal is to minimize here) which can

easily be obtained from the CGP representation of a candidate solution.

3.2.4 Acceleration techniques for standard CGP

We will also utilize fitness calculation according to (1) in order to compare the

results with the formal verification-based fitness calculation. However, two

modifications are incorporated to the implementation of (1) to reduce the

computational overhead:

Because the initial population already contains a fully functional solution and the

elitism is implicit for CGP, there will be at least one perfectly working solution in

each population. Hence we can now consider CGP as a circuit optimizer rather than

a tool for discovering new circuit implementations from a randomly generated

initial population. The fitness evaluation procedure which probes every assignment

to the inputs (i.e., 0. . .2ni � 1 test cases) is time consuming. In order to make the

evaluation of a candidate circuit as short as possible, it is only tested whether a

candidate circuit is working correctly or incorrectly. In case that a candidate circuit

Genet Program Evolvable Mach (2011) 12:305–327 311

123

does not produce a correct output value for the jth input vector, j 2 f0. . .2ni � 1g,
during the evaluation, the remaining 2ni � j� 1 vectors are not evaluated and the

circuit gets the worst possible score (0). Experimental results show that this

technique reduces the computational overhead (see Table 3), but it does not

significantly contribute to solving the scalability problems. Note that this technique

cannot be applied for the randomly initialized CGP because we have to know the

fitness score as precisely as possible (i.e. the exact number of bits has to be

calculated that can be generated by a particular candidate circuit) in order to obtain

a reasonably smooth fitness landscape.

Parallel simulation is another technique that can be used to accelerate circuit

evaluation [32, 37]. The idea of parallel simulation is to utilize bitwise operators

operating on multiple bits in a high-level language (such as C) to perform more than

one evaluation of a gate in a single step. For example, when a combinational circuit

under simulation has three inputs and it is possible to concurrently perform bitwise

operations over 23 = 8 bits in a simulator then the circuit can completely be

simulated by applying a single 8-bit test vector at each input (see the encoding in

Fig. 3). In contrast, when it is impossible then eight three-bit test vectors must be

applied sequentially. Current processors allow us to operate with 64 bit operands,

i.e. it is possible to evaluate a truth table of a six-input circuit by applying a single

64-bit test vector at each input. Therefore, the obtained speedup is 64 against the

sequential simulation. In case that the circuit has more than 6 inputs then the

speedup is constant, i.e. 64.

4 Formal verification approach in the fitness function

We propose to replace the fitness calculation approach based on testing of all

possible assignments to the inputs by a functional equivalence checking algorithm.

In order to specify the problem, a set of Boolean functions F ¼ ff1; f2; . . .; fng can be

used. Let each function fi represent Boolean function of the ith output of a candidate

circuit. Then the set F can be used to check whether a candidate solution meets the

specification or not.

Fig. 3 Parallel simulation of a combinational circuit. The values y0 and y1 are the results of simulation;
r0 and r1 are the required outputs

312 Genet Program Evolvable Mach (2011) 12:305–327

123

4.1 Functional equivalence checking

Determining whether two Boolean functions are functionally equivalent represents a

fundamental problem in formal verification. Although the functional equivalence

checking is an NP-complete problem, several approaches have been proposed so far

to reduce the computational requirement for practical circuit instances.

Most of proposed techniques are based on representing a circuit by means of its

canonical representation. Generally, two Boolean functions are equivalent if and

only if canonical representations of their output functions are equivalent. The

Reduced Ordered Binary Decision Diagrams (ROBDD) represent a widely used

canonical representation in formal verification [52]. ROBDD is a directed acyclic

graph that can be obtained by applying certain transformations on the ordered binary

decision diagram. Determining whether two circuits represent the same Boolean

function is equivalent to determining whether two ROBDDS are isomorphic. Some

of methods developed to determine whether two ROBDDS are isomorphic are based

on graph-based algorithms. Other methods are based on the combination of

ROBDDs with the XOR operation (see Fig. 4) and checking whether the resulting

ROBDD is a constant node (zero). And-or-invert graphs represent another canonic

representation with similar properties. All these graph-based approaches rely on the

fact, that the number of nodes in the resulting graph will be relative small,

otherwise, the time of the ROBDD construction as well as the time of comparison

will be enormous. In practice, these methods are rarely implemented directly

without any further circuit preprocessing. The main problems are the need for high

memory resources due to a huge number of BDD nodes and significant time

requirements. Although many functions in practice can be represented by

polynomial number of BDD nodes with respect to the number of inputs, there are

functions (e.g. multipliers) that always have the number of nodes exponentially

related to the number of inputs [7]. The verification of such functions still represents

a challenge.

High consumption of memory resources has motivated researchers to look for

alternative methods. Since the satisfiability (SAT) solvers were significantly

improved during the last few years, the SAT-based equivalence checking becomes

Fig. 4 Equivalence checking of two combinational circuits using the all outputs approach

Genet Program Evolvable Mach (2011) 12:305–327 313

123

to be a promising alternative to the BDD-based checking. In this case, circuits to be

checked are transformed into one Boolean formula which is satisfiable if and only if

the circuits are functionally equivalent [13]. In this article we will use the SAT-

based equivalence checking because: (1) combinational circuits represented by CGP

can be converted to Boolean formula in linear time with respect to the number of

CGP nodes, (2) several optimization techniques specific for the evolutionary design

can be applied and (3) the SAT-based checking becomes to be a preferred method as

it outperforms the BDD-based approaches.

SAT solvers assume that the equivalence checking problem is expressed using

Boolean formula in conjunctive normal form (CNF). CNF formula u consists of a

conjunction of clauses denoted as x. Each clause contains a disjunction of literals. A

literal is either variable xi or its complement :xi. Each clause can contain up to n
literals providing there exists exactly n variables.

For our purposes, the most suitable transformation of the circuit to CNF is

represented by Tseitin’s algorithm proposed in [46] that works as follows: Let us

consider a combinational circuit CA with k inputs that is composed of n
interconnected logic gates. Without loss of generality, let us restrict the set of all

possible gates to the following one-input and two-input gates: NOT, AND, OR,

XOR, NAND, and NOR only. Let yi ¼ Xðxi1; xi2Þ denote a gate i of CA with

function X, output yi and two inputs xi1 and xi2 (1 B i1, i2 B k ? n). The Tseitin

transformation is based on the fact that the CNF representation u captures the valid

assignments between the primary inputs and outputs of a given circuit. This can be

expressed using a set of valid assignments for every gate. In particular, u ¼
x1 ^ x2 ^ . . . ^ xn where xi(yi, xi1, xi2) = 1 if and only if the corresponding

predicate yi ¼ Xðxi1; xi2Þ holds true. During the transformation a new auxiliary

variable is introduced for every signal of CA. Hence CNF contains exactly k ? n
variables and the size of the resulting CNF is linear with respect to the size of CA.

Table 2 contains the CNF representation for the gates utilized in this article.

In order to check whether two circuits are functionally equivalent, the following

scheme is usually used. Let CA and CB be combinational circuits, both with k inputs

denoted as x1. . .xk and m outputs denoted as y1. . .ym and y01. . .y0m respectively. For SAT

based equivalence checking of two circuits, corresponding primary outputs yi and yi
0

are connected using the XOR-gate. This gate is denoted as a miter. The corresponding

primary inputs are connected as well. The goal is to obtain one circuit that has only k
primary inputs x1. . .xk and m primary outputs z1. . .zm; zi ¼ XORðyi; y

0
iÞ. In order to

Table 2 CNF representation of

some common gates
Gate Corresponding CNF representation

y = NOT(x1) ð:y _ :x1Þ ^ ðy _ x1Þ
y = AND(x1,x2) ðy _ :x1 _ :x2Þ ^ ð:y _ x1Þ ^ ð:y _ x2Þ
y = OR(x1,x2) ð:y _ x1 _ x2Þ ^ ðy _ :x1Þ ^ ðy _ :x2Þ
y = XOR(x1,x2) ð:y _ :x1 _ :x2Þ ^ ð:y _ x1 _ x2Þ^

ðy _ :x1 _ x2Þ ^ ðy _ x1 _ :x2Þ
y = NAND(x1,x2) ð:y _ :x1 _ :x2Þ ^ ðy _ x1Þ ^ ðy _ x2Þ
y = NOR(x1,x2) ðy _ x1 _ x2Þ ^ ð:y _ :x1Þ ^ ð:y _ :x2Þ

314 Genet Program Evolvable Mach (2011) 12:305–327

123

disprove the equivalence, it is necessary to identify at least one miter which evaluates

to 1 for an input assignment, i.e. it is necessary to find an input assignment for which

the corresponding outputs yi and yi
0 provide different values and thus zi = 1. This can

be done by checking one miter after another (i.e. a CNF is created and solved for each

miter output separately) or by the all outputs approach (all miter outputs are connected

using the m-input OR gate; thus one CNF is created and solved only). Note that both

approaches are used in practice. Figure 4 shows the all output approach adopted in this

article.

4.2 Proposed fitness function

Assume that C is a k-input/m-output circuit composed of n logic gates and the goal

is to reduce the number of gates. The first step involves creating a reference solution

by converting C to the corresponding CNF u1 using the approach described above.

Let X ¼ fx1; x2; . . .; xNg be a set containing the variables used within u1 and

|X| = N = k ? n. The variables corresponding with the primary inputs will be

denoted as x1; . . .; xk and the auxiliary variables generated during the transformation

process will be denoted as xkþ1; . . .; xkþn. Let the last m variables xN�mþ1; . . .; xN

correspond with the primary outputs of C (see Fig. 5a).

The fitness calculation consists of the following steps:

1. A new instance of the SAT solver is created and initialized with the reference

circuit. This comprises creating of N new variables and submitting all clauses of

u1 into the SAT solver.

2. A candidate solution is transformed to a list of clauses that are submitted into

the SAT solver (see Fig. 5b). The transformation includes reading the CGP

representation according to the indexes of the nodes. If a CGP node contributes

to the phenotype, it is converted to the corresponding CNF according to

Table 2, otherwise it is skipped. In particular, for each node a new variable is

created and a list of corresponding CNF clauses is submitted into the SAT

solver. The following input mapping is used in order to form a CNF: If an input

of the node situated in row ir and column ic is connected to the primary input i,
variable xi is used; otherwise variable xN?i is used where i = (ic - 1).nr ? ir
denotes the index of the corresponding node. Let variables corresponding with

the primary outputs of a candidate solution be denoted xN 0�mþ1; . . .; xN0 where

N0 is the number of converted CGP nodes.

Note that although it is possible to include unused gates to CNF without

affecting the reasoning, it is preferred to minimize the number of clauses and

variables of the resulting CNF since it can decrease the decision time.

3. Miters are created. The XOR gates are applied to each output pair which means

that m new variables denoted as y1; . . .; ym have to be created and CNFs of XOR

gates yi ¼ XORðxN�i; xN0�iÞ; i ¼ 0. . .m� 1 have to be submitted to the SAT

solver (see Fig. 5c).

4. In order to guarantee that the resulting CNF will be satisfiable if and only if at

least one miter is evaluated to 1, the outputs of the miters generated in the

previous step have to be combined together. The solution is based on combining

Genet Program Evolvable Mach (2011) 12:305–327 315

123

the outputs by m-input OR gate z ¼ ORðy1; . . .; ymÞ. The corresponding CNF

representation has the form of ð:z _ x1 _ � � � _ xkÞ ^
Vk

i¼1ð:xi _ zÞ. In order to

provide a CNF instance capable of the equivalence checking, it is necessary to

append the clause (z) that implies z = 1, thus ð:z _ y1 _ � � � _ ykÞ^
Vk

i¼1ð:yi _ zÞ ^ ðzÞ ¼ ðy1 _ � � � _ ykÞ. So, in order to finish the CNF, clause

ðy1 _ � � � _ ykÞ has to be submitted to the SAT solver (see last clause in

Fig. 5c).

5. The SAT solver determines whether the submitted set of clauses is satisfiable or

not. If the CNF is satisfiable, the fitness function returns 0 (the candidate circuit

and the reference circuit are not equivalent); otherwise the number of utilized

gates is returned.

(a)

(b)

(c)

Fig. 5 Example of transformation of reference circuit, candidate circuit and miter to CNF

316 Genet Program Evolvable Mach (2011) 12:305–327

123

4.3 Time of candidate circuit evaluation

In order to compare the time of evaluation for the common fitness function (Eq. 1) and

the proposed SAT based fitness function, the parity circuit optimization problem

has been chosen. The design of a parity circuit consisting of AND, OR and NOT

gates only is considered as a standard benchmark problem for genetic program-

ming [28]. The relevant CGP parameters are as follows: k ¼ 4; C ¼
fAND, OR, NOT, Identityg; l ¼ Ng; nc ¼ Ng and nr = 1 where Ng is the number

of gates of the reference circuit. One gene of the chromosome undergoes the mutation

only. The CGP implementation uses the parallel evaluation described in Sect. 3.2.4.

The initial circuit (seed) has been obtained by mapping a parity circuit consisting of

XOR gates (parity tree) to the 2-inputs gates using ABC. Table 3 gives the mean

evaluation time (out of 100 runs) for three fitness functions—the standard fitness

function of CGP (tcgp), the optimized and accelerated evaluation (tocgp, see Sect. 3.2.4)

and the SAT-based method (tsat). Last two columns contain the achieved speedup of

proposed approach against the common and accelerated CGP. The experiments were

carried out on Intel Core 2 Duo 2.26 GHz processor. For ni C 26 only extrapolated

values are given as running the experiments is not practical. The MiniSAT 2 (version

070721) has been used as a SAT solver [9] because it can be effectively embedded into

a custom application.

Since tcgp increases exponentially with the increasing number of circuit inputs,

the standard CGP approach provides a reasonable evaluation time for parity circuits

that contain up to 22 inputs. The optimized evaluation is applicable for up to 24

inputs. In case of the SAT-based approach the evaluation time is almost similar

independently of the number of candidate circuit inputs.

Table 3 The mean evaluation time for the standard fitness function of CGP tcgp, CGP with optimized

and accelerated evaluation tocgp and the SAT-based CGP tsat

ni seed [gates] tcgp [ms] tocgp [ms] tsat [ms] tcgp:tsatspeedup tocgp:tsat speedup

12 69 0.13 0.04 0.348 0.3 0.1

14 87 0.54 0.16 0.438 1.2 0.4

16 103 2.54 0.27 0.531 4.8 0.5

18 115 11.45 1.20 0.722 15.9 1.7

20 125 51.44 5.17 0.776 66.3 6.7

22 135 220 25.11 0.804 273.6 31.2

24 145 1,328 139 0.903 1,471 153.9

26 171 5,962* 626* 1.028 5,799 608

28 181 26,748* 2,820* 1.195 22,383 2,359

30 199 119,996* 12,703* 1.211 99,088 10,489

32 215 538,327* 57,207* 1.348 399,352 42,438

Symbol ‘*’ denotes extrapolated values

Genet Program Evolvable Mach (2011) 12:305–327 317

123

4.4 CGP-specific performance improvement techniques

Although the system can be used directly as it was proposed in the previous section,

we have introduced some techniques allowing the SAT solver even to increase the

performance.

The speed of the SAT-based equivalence checking depends mainly on the

number of paths that have to be traversed in order to prove or disprove the

satisfiability. The number of paths increases with the increasing number of outputs

to be compared, i.e. more outputs to be compared more time the SAT-solver needs

for the decision. In order to simplify the decision problem and increase the

performance, CNF reduction based on finding structural similarities were proposed

in literature.

In our case we can apply a very elegant and simple solution. Since every fitness

evaluation is preceded by a mutation, a list of nodes that are different for the parent

and its offspring can be calculated. This list can be used to determine the set of

outputs that have to be compared with the reference circuit and only these outputs

are included into CNF. This can be achieved by omitting the unnecessary outputs

during the miter creation phase.

In order to decrease the number of variables as well as the number of clauses in

NOT-intensive circuits, the following approach is proposed. Let yi = NOT(xi), then

the NOT gate can be subsumed to CNF of every gate that is connected directly to

output yi. Using literal :xi instead of yi and literal xi instead of :yi respectively

solves the problem.

Note that proposed approach can easily be combined with other methods

designed to speedup the SAT-based equivalence checking, e.g. circuit preprocess-

ing, incremental approach or improved CNF transformation [2, 6, 8, 50].

In order to evaluate the impact of proposed improvements, four complex circuits

have been selected for experiments from the LGSynth93 benchmark set. This

benchmark set includes nontrivial circuits specified in BLIF format that are

traditionally used by engineers to evaluate quality of synthesis algorithms. The

benchmark circuits were mapped to 2-input gates using SIS. Parameters of selected

circuits as well as obtained results are summarized in Table 4. It can be seen that

even if the circuits exhibit higher level of complexity in comparison with parity

circuits, the average time needed to perform the fitness evaluation remains still

reasonable. Note that the same experimental setup mentioned in Sect. 4.3 has been

utilized. Obtained results show that the average time needed to evaluate a candidate

Table 4 The mean time needed to evaluate a candidate solution for plain and optimized SAT-based

fitness method

Circuit ni no seed [gates] tsat [ms] tosat [ms] tsat:tosat speedup

Apex1 45 45 1,408 49.80 15.52 3.21

Apex2 39 3 235 3.54 2.52 1.40

Apex3 54 50 1,407 34.56 13.93 2.48

Apex5 117 87 784 17.45 5.07 3.44

318 Genet Program Evolvable Mach (2011) 12:305–327

123

solution has been reduced three times in average by means of applying the proposed

steps during the transformation of a candidate solution to corresponding CNF.

5 Results

This section surveys experiments performed to further evaluate the proposed

method. In particular, the effect of population sizing, CGP grid sizing, mutation rate

and time allowed to evolution are analyzed for benchmark circuits. In all

experiments we used the optimized SAT-based fitness function.

5.1 Population size

Table 5 surveys the best (minimum) and mean number of gates obtained for k = 1

and k = 4 out of 100 independent runs. The number of evaluations was limited to

400,000 which corresponds with 100,000 generations for ES(1?4) and 400,000

generations for ES(1?1). The mutation operator modified 1 gene of the

chromosome, l = nc and C ¼ fIdentity, AND, OR, NOT, XOR, NAND, NORg.
The best values as well as mean values indicate that ES(1?1) performs better than

ES(1?4) which corresponds with our intuitive assumption of very rugged fitness

landscape.

5.2 Mutation rate and CGP grid size

Table 6 gives the best (minimum) and mean number of gates obtained for different

mutation rates (1, 2, 5, 10, 15 genes) and CGP grid setting (nc 9 1 versus nc 9 nr
(i)).

It will be seen below that the number of rows nr
(i) is variable. The number of

evaluations was limited to 400,000 and results were calculated out of 100

independent runs of ES(1?1). Table 6 also includes the mean number of bits that

were included to create miters and the mean time of a candidate circuit evaluation.

The best results were obtained for the lowest mutation rate. The higher mutation

rate the higher mean number of gates in the final circuit. While the mean number of

miters grows with increasing of the mutation rate, the mean evaluation time is

reduced. This phenomenon can be explained by the fact that higher mutation rate

Table 5 The best and mean number of gates for different population sizing

Circuit ni no Seed [gates] ES 1?4 ES 1?1

Best Mean Best Mean

Apex1 45 45 1,408 1,240 1,267 1,201 1,255

Apex2 39 3 235 138 155 132 146

Apex3 54 50 1,407 1,336 1,350 1,331 1,347

Apex5 117 87 784 736 746 730 743

Mean 959 863 880 849 873

Genet Program Evolvable Mach (2011) 12:305–327 319

123

implies more changes that are performed in circuits and thus more miters have to be

considered. On the other hand, because of many (mostly harmful) changes in a

circuit it is easier to disprove the equivalence for SAT solver and so reduce the

evaluation time.

The settings nc 9 1 or nc 9 nr do not have a significant impact on the resulting

number of gates on average. Recall that the values of nc and nr are given by the

circuit topology which is created by the SIS tool. The number of rows (nr
(i)) is

considered as variable for a given circuit in order to represent the circuit optimally.

For example, the 1408 gates of the apex1 benchmark is mapped on the array of

19x189 nodes; however only 1, 5, 7, 14, 17, 26, 43, 57, 84, 117, 142, 177, 189, 187,

139, 89, 51, 27, 40 gates are utilized in columns i ¼ 1. . .19. The advantage of using

nr [1 is that delay of the circuit is implicitly controlled to be below a given

maximum value.

5.3 Parity benchmarks

In Sect. 4.3 we compared the evaluation time of the standard fitness function and the

SAT-based fitness function in the task of parity circuits optimization. Table 7 shows

Table 6 The best (minimum) and mean number of gates, the mean number of miters and the mean

evaluation time for different mutation rates (1–20 genes) and CGP grid setting (nc 9 1 versus nc 9 nr
(i))

Mutated genes (nc 9 1) Mutated genes (nc 9 nr
(i))

1 2 5 10 15 20 1 2 5 10 15 20

Apex1 - 1408x1 Apex1 - 19x189

Best 1,240 1,290 1,351 1,377 1,382 1,393 1,260 1,290 1,351 1,379 1,385 1,392

Mean 1,269 1,313 1,367 1,387 1,396 1,399 1,287 1,326 1,369 1,390 1,395 1,399

Mean (miters) 3.8 5 8.2 12.3 15.3 17.6 3.6 4.8 8 12.2 15.2 17.6

Mean tosat [ms] 15.8 11.2 8.8 7.7 7.7 7.2 11.8 11.5 9.7 7.8 7.9 6.7

Apex2 - 235x1 Apex2 - 22x23

Best 164 159 166 181 195 200 165 167 172 186 194 201

Mean 170 172 181 195 203 209 171 174 182 195 205 209

Mean (miters) 1.8 2.1 2.5 2.7 2.8 2.9 1.8 2 2.5 2.7 2.8 2.9

Mean tosat [ms] 1.7 1.7 1.4 1.2 1.1 0.9 1.7 1.6 1.4 1.2 1.0 1.0

Apex3 - 1407x1 Apex3 - 24x193

Best 1,341 1,358 1,383 1,392 1,395 1,396 1,345 1,362 1,383 1,392 1,396 1,398

Mean 1,354 1,369 1,389 1,397 1,399 1,400 1,357 1,372 1,390 1,397 1,400 1,401

Mean (miters) 2.6 3.6 6.2 9.4 12 14 2.6 3.5 6.1 9.4 11.9 14.1

Meantosat [ms] 10.5 10.1 9.0 11.4 8.3 8.0 10.5 10.3 9.8 8.8 9.8 7.2

Apex5- 784x1 Apex5 - 34x117

Best 740 741 755 765 767 774 741 750 757 767 768 771

Mean 748 753 764 773 775 779 751 757 766 773 775 777

Mean (miters) 4.6 6.4 11.1 18.1 23.7 28.4 4.6 6.4 11.2 18.1 23.7 28.4

Mean tosat [ms] 3.3 3.1 3.0 2.9 2.9 2.7 3.1 3.2 2.9 3.0 3.2 2.9

320 Genet Program Evolvable Mach (2011) 12:305–327

123

concrete results—the minimum number of gates that were obtained for 12–38 input

parity circuits by running the proposed method for 3, 6, 9 and 12 h on a 2.4 GHz

processor. The results are averaged from 100 independent runs of CGP with the

following setting: ES(1?1), 1 mutated gene/chromosome, C ¼ fIdentity, AND,

OR, NOTg, and CGP array of nc 9 1 nodes where nc is the number of gates in the

seed—the initial circuit created by SIS. Column TG denotes the number of gates of

the optimal solution which is known in this case. It can be calculated as 4w where w
is the number of XOR gates in the optimized parity tree and 4 denotes the number of

gates from C needed to form a single XOR gate.

We can observe that the proposed method provides an optimal solution for

ni B 20 and almost optimal solution for larger problem instances. Last column

shows that the proposed method improves the original solution of SIS by 28–42 %.

5.4 LGSynth93 benchmarks

Table 8 shows the minimum and mean number of gates that were obtained for real-

world benchmark circuits of the LGSynth93 suite (we have selected those with more

than 20 inputs) by running the proposed method for 3, 6, 9 and 12 h on a 2.4 GHz

processor. The results are averaged from 100 independent runs of CGP with the

following setting: ES(1?1), 1 mutated gate/chromosome, C ¼ fIdentity, AND,

OR, NOT, XOR, NAND, NORg, and CGP array of nc 9 1 nodes where nc is the

number of gates in the seed circuit. The initial circuit was obtained by converting

the PLA files of LGSynth93 circuits to the 2-input gates of C and optimizing them

Table 7 The minimum number of gates that were obtained for parity circuits by running the proposed

method for 3, 6, 9 and 12 h. TG gives the optimum solution

ni Seed [gates] Run-time TG [gates] Relative

improv. (%)
3 h 6 h 9 h 12 h

12 69 45 44 44 44 44 36

14 87 54 53 52 52 52 40

16 103 64 61 60 60 60 42

18 115 74 70 69 69 68 40

20 125 82 79 77 76 76 39

22 135 95 91 88 87 84 36

24 145 110 101 98 96 92 34

26 171 134 120 114 111 100 35

28 181 151 132 124 121 108 33

30 199 165 140 132 129 116 35

32 215 186 169 159 143 124 33

34 227 214 187 172 160 132 30

36 237 220 192 168 162 140 32

38 247 235 219 193 177 148 28

Genet Program Evolvable Mach (2011) 12:305–327 321

123

by SIS. Last column shows that the proposed method improves the original

solutions obtained from SIS by 22–58%.

5.5 Seeding the initial population

In order to investigate the role of seeding of the initial population we have used two

seeds obtained after 1 and 1,000 iterations of the SIS script. Figure 6 shows that

convergence curves for two selected benchmark circuits—apex1 (the largest one)

and ex4p (the highest number of inputs)—are very similar for those seeds. We can

also observe how the progress of evolution is influenced by restarting CGP (every 3

h; using the best solution out of 100 independent runs) which can be also considered

as a new seeding. Figure 6 shows that repeating the synthesis scripts (SIS and ABC

are compared) quickly lead to a small reduction of the circuit size; however, no

further improvements have been observed in next 1 h.

Table 8 The minimum (even rows) and mean number (odd rows) of gates for LGSynth93 circuits

obtained from the proposed method after 3, 6, 9 and 12 h

Circuit ni no Seed [gates] Run-time Relative

improv. (%)
3 h 6 h 9 h 12 h

Apex1 45 45 1,408 1,179 1,083 1,026 990 30

1,230 1,108 1,042 1,001 29

Apex2 39 3 235 104 101 99 98 58

119 102 100 98 58

Apex3 54 50 1,407 1,280 1,223 1,189 1,167 17

1,333 1,240 1,202 1,175 16

Apex5 117 87 784 675 649 640 633 19

692 661 644 636 19

Cordic 23 2 67 32 32 32 32 52

33 32 32 32 52

cps 24 109 1,128 870 788 737 698 38

909 806 757 713 37

Duke 22 29 430 286 274 270 268 38

296 279 272 269 37

e64 65 65 192 133 130 129 129 33

139 131 129 129 33

ex4p 128 28 500 404 399 396 394 21

414 401 397 395 21

Misex2 25 18 111 76 73 72 70 37

82 74 72 71 36

vg2 25 8 95 79 75 74 74 22

83 77 74 74 22

322 Genet Program Evolvable Mach (2011) 12:305–327

123

Fig. 6 Convergence curves for
the apex1 and ex4p benchmarks.
The mean, minimum and
maximum number of gates from
100 independent runs of CGP
when seeded using the result of
the 1st iteration and the best
result out of 1,000 iterations of
the SIS tool. ABC and SIS were
repeated until stable results
observed

Genet Program Evolvable Mach (2011) 12:305–327 323

123

6 Discussion

Applying the SAT solver in the fitness function allowed us to significantly reduce

the computational requirements of the fitness function for such combinational

circuit optimization problems for which a fully functional initial solution exists

before the optimization is started. In this category of problems, we were able to

optimize much larger circuit instances than standard CGP. Furthermore, we reduced

the number of gates in solutions that can be delivered by conventional synthesis

methods. However, proposed method requires significantly more computational

time in comparison to conventional synthesis tools.

Although the results for LGSynth93 benchmarks are very encouraging, the

SAT-based combinational equivalence checking can definitely perform unsatisfac-

tory for some problem instances, for example for multipliers where the number of

paths traversed by the SAT solver grows enormously with the increasing number of

inputs. In order to improve performance of the SAT solver in this particular case,

various techniques have been proposed to reduce the equivalence checking time

[1, 2]. The proposed method is assumed to be able to handle large-scale multipliers

optimization if more advanced version of SAT solver is utilized. Other techniques

exist that can be employed to improve the proposed fitness function, e.g. CNF

preprocessing, BDD-based checking, hierarchical equivalence checking etc. [25].

7 Conclusions

We demonstrated that some applications of evolvable hardware could benefit from

formal verification techniques. The main advantage of our method is that the time of

evaluation can significantly be reduced in comparison to the standard fitness

function in cases when a fully functional solution exists before optimization is

started. Consequently, we demonstrated that the circuit post-synthesis optimization

conducted by CGP is applicable on complex digital circuits. CGP reduced the

number of gates for the LGSynth93 benchmark circuits by 37.8% on average with

respect to the SIS tool. Future research will be oriented towards improving the

formal verification module by using more sophisticated verification algorithms and

applying the proposed method in various domains, including software evolution,

developmental CGP and numerous real-world evolvable hardware problems.

Acknowledgments This work was partially supported by the Czech Science Foundation under projects

Natural Computing on Unconventional Platforms P103/10/1517 and Mathematical and Engineering
Approaches to Developing Reliable and Secure Concurrent and Distributed Computer Systems GD102/

09/H042 and by the research programme Security-Oriented Research in Information Technology MSM

0021630528.

References

1. F.V. Andrade, M.C.M. Oliveira, A.O. Fernandes, C.J.N. Coelho, Sat-based equivalence checking

based on circuit partitioning and special approaches for conflict clause reuse, in IEEE Design and
Diagnostics of Electronic Circuits and Systems (IEEE Comp. Society, 2007), pp. 1–6

324 Genet Program Evolvable Mach (2011) 12:305–327

123

2. F.V. Andrade, L.M. Silva, A.O. Fernandes, in 26th International Conference on Computer Design,
ICCD 2008. Improving SAT-based combinational equivalence checking through circuit prepro-

cessing, 40–45 (2008)

3. Berkley Logic Synthesis and Verification Group: ABC: A System for Sequential Synthesis and

verification. http://www.eecs.berkeley.edu/*alanmi/abc/

7. R.K. Brayton, G.D. Hachtel, C.T. McMullen, A.L. Sangiovanni-Vincentelli, Logic Minimization

Algorithms for VLSI Synthesis. (Kluwer, Boston, MA, USA, 1984)

5. J. Cong, K. Minkovich, Optimality study of logic synthesis for LUT-based FPGAs. IEEE Trans.

Comput. Aided Des. Integ. Circuits Syst. 26(2), 230–239 (2007)

6. S. Disch, C. Schollm, in Asia and South Pacific Design Automation Conference. Combinational

equivalence checking using incremental SAT solving, output ordering, and resets (2007),

pp. 938–943

7. R. Ebendt, G. Fey, R. Drechsler, Advanced BDD Optimization. (Springer, Berlin, 2000)

8. N. Een, A. Mishchenko, N. Sorensson, Applying logic synthesis for speeding up SAT, in Theory and
Applications of Satisfiability Testing, LNCS, vol. 4501 (Springer, Berlin, 2007), pp. 272–286

9. N. Een, N. Sorensson, MiniSAT. http://minisat.se

10. P. Fiser, J. Schmidt, in Proceedings of 8th International Workshop on Boolean Problems. Small but

nasty logic synthesis examples (2008), pp. 183–190

11. H. de Garis, in International Conference on Artificial Neural Networks and Genetic Algorithms
ICANNGA’93. Evolvable Hardware—Genetic Programming of a Darwin Machine. Innsbruck,

Austria (1993)

12. K. Glette, J. Torresen, M. Yasunaga, in Applications of Evolutinary Computing, EvoWorkshops 2007,
LNCS, vol. 4448. An Online EHW Pattern Recognition System Applied to Face Image Recognition

(Springer, 2007), pp. 271–280

13. E. Goldberg, M. Prasad, R. Brayton, in DATE ’01: Proceedings of the Conference on Design,
Automation and Test in Europe. Using SAT for combinational equivalence checking (IEEE Press,

Piscataway, NJ, USA, 2001), pp. 114–121

14. T.G.H. Gordon, P.J. Bentley, in Handbook of Nature-Inspired and Innovative Computing, ed. by

A.Y. Zomaya. Evolving hardware (Springer, UK, 2006), pp. 387–432

15. T.G.W. Gordon, P.J. Bentley, in Proceedings of the 2002 NASA/DoD Conference on Evolvable
Hardware. Towards development in evolvable hardware (IEEE Computer Society Press, Washing-

ton, DC, US 2002), pp. 241–250

16. G. Greenwood, A.M. Tyrrell, Introduction to Evolvable Hardware. (IEEE Press, New York, 2007)

17. P.C. Haddow, G. Tufte, P. van Remortel, in Proceedings of the 4th International Conference on
Evolvable Systems: From Biology to Hardware, LNCS, vol. 2210. Shrinking the genotype: L-systems

for EHW? (Springer, Berlin, 2001), pp. 128–139

18. S. Harding, J.F. Miller, W. Banzhaf, in 2009 IEEE Congress on Evolutionary Computation. Self

Modifying Cartesian Genetic Programming: Parity (IEEE Press, New York, 2009), pp. 285–292

19. T. Higuchi, M. Iwata, D. Keymeulen, H. Sakanashi, M. Murakawa, I. Kajitani, E. Takahashi, K.

Toda, M. Salami, N. Kajihara, N. Otsu, Real-world applications of analog and digital evolvable

hardware. IEEE Trans. Evol. Comput. 3(3), 220–235 (1999)

20. T. Higuchi, Y. Liu, X. Yao, Evolvable Hardware. (Springer, Berlin, 2006)

21. T. Higuchi, T. Niwa, T. Tanaka, H. Iba, H. de Garis, T. Furuya, in Proceedings of the 2nd Inter-
national Conference on Simulated Adaptive Behaviour. Evolving Hardware with Genetic Learning:

A First Step Towards Building a Darwin Machine (MIT Press, 1993), pp. 417–424

22. G. Hornby, A. Globus, D. Linden, J. Lohn, in Proc. 2006 AIAA Space Conference. Automated

Antenna Design with Evolutionary Algorithms (AIAA, San Jose, CA, 2006), p. 8

23. K. Imamura, J.A. Foster, A.W. Krings, in Proceedings of the 2nd NASA/DoD Workshop on Evolvable
Hardware. The Test Vector Problem and Limitations to Evolving Digital Circuits (IEEE Computer

Society Press, 2000), pp. 75–79

24. T. Kalganova, J.F. Miller, in The First NASA/DoD Workshop on Evolvable Hardware. Evolving

More Efficient Digital Circuits by Allowing Circuit Layout Evolution and Multi-Objective Fitness

(IEEE Computer Society, Pasadena, California, 1999), pp. 54–63

25. H. Katebi, I.L. Markov, in Design, Automation and Test in Europe, DATE 2010. Large-Scale Boolean

Matching (IEEE, 2010), pp. 771–776

26. P. Kaufmann, M. Platzner, Proceedings of Genetic and Evolutionary Computation Conference,
GECCO 2008. Advanced Techniques for the Creation and Propagation of Modules in Cartesian

Genetic Programming (ACM, 2008), pp. 1219–1226

Genet Program Evolvable Mach (2011) 12:305–327 325

123

27. D. Keymeulen, M. Durantez, K. Konaka, Y. Kuniyoshi, T. Higuchi, in Proceedings of the 1st
International Conference on Evolvable Systems: From Biology to Hardware ICES’96, LNCS, vol.

1259, eds. by T. Higuchi, M. Iwata, W. Liu. An Evolutionary Robot Navigation System Using a

Gate-Level Evolvable Hardware (Springer, Tsukuba, Japan, 1997), pp. 195–209

28. J.R. Koza, Genetic Programming II: Automatic Discovery of Reusable Programs. (MIT Press,

Cambridge, MA, 1994)

29. J.R. Koza, F.H. Bennett, D. Andre, M.A. Keane, Genetic Programming III: Darwinian Invention and

Problem Solving. (Morgan Kaufmann Publishers, San Francisco, CA, 1999)

30. J.R. Koza, M.A. Keane, M.J. Streeter, W. Mydlowec, J. Yu, G. Lanza, Genetic Programming IV:

Routine Human-Competitive Machine Intelligence. (Kluwer, Dordrecht, 2003)

31. D. Mange, M. Sipper, A. Stauffer, G. Tempesti, Towards robust integrated circuits: the embryonics

approach. Proc. IEEE 88(4), 516–541 (2000)

32. J.F. Miller, D. Job, V.K. Vassilev, Principles in the evolutionary design of digital circuits—part I.

Genetic Programm. Evol. Mach. 1(1), 8–35 (2000)

33. J.F. Miller, S.L. Smith, Redundancy and computational efficiency in cartesian genetic programming.

IEEE Trans. Evol. Comput. 10(2), 167–174 (2006)

34. J.F. Miller, P. Thomson, in Proceedings of the 3rd European Conference on Genetic Programming
EuroGP2000, LNCS, vol. 1802. Cartesian Genetic Programming (Springer, 2000), pp. 121–132

35. M. Murakawa, S. Yoshizawa, I. Kajitani, T. Furuya, M. Iwata, T. Higuchi, in Parallel Problem
Solving from Nature—PPSN IV, LNCS, vol. 1141. Evolvable Hardware at Function Level (Springer,

1996), pp. 62–71

36. T. Pecenka, L. Sekanina, Z. Kotasek, Evolution of synthetic RTL benchmark circuits with predefined

testability. ACM Trans. Des. Autom. Electron. Syst. 13(3), 1–21 (2008)

37. R. Poli, J. Page, Solving high-order boolean parity problems with smooth uniform crossover, sub-

machine code gp and demes. Genetic Programm. Evol. Mach. 1(1–2), 37–56 (2000)

38. L. Sekanina, in Applications of Evolutionary Computing—Proceedings of the 4th Workshop on
Evolutionary Computation in Image Analysis and Signal Processing EvoIASP’02, LNCS, vol. 2279.

Image Filter Design with Evolvable Hardware (Springer Verlag, Kinsale, Ireland, 2002), pp. 255–266

39. L. Sekanina, Evolvable Components: From Theory to Hardware Implementations. (Natural Com-

puting Series, Springer, Berlin, 2004)

40. E.M. Sentovich, K.J. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha, H. Savoj, P.R. Stephan,

R.K. Brayton, A. Sangiovanni-vincentelli, Sis: A system for sequential circuit synthesis. Technical

report, University California, Berkeley (1992)

41. A.P. Shanthi, R. Parthasarathi, Practical and scalable evolution of digital circuits. Appl. Soft Comput.

9(2), 618–624 (2009)

42. K.O. Stanley, R. Miikkulainen, A taxonomy for artificial embryogeny. Artif. Life 9, 93–130 (2003)

43. E. Stomeo, T. Kalganova, C. Lambert, Generalized disjunction decomposition for evolvable hard-

ware. IEEE Trans. Syst. Man Cybernet. Part B 36(5), 1024–1043 (2006)

44. J. Torresen, in Proceedings of the 2nd International Conference on Evolvable Systems: From Biology
to Hardware ICES’98, LNCS, vol. 1478, eds. by M. Sipper, D. Mange, A. Perez-Uribe. A Divide-

and-Conquer Approach to Evolvable Hardware (Springer, Lausanne, Switzerland, 1998), pp. 57–65

45. J. Torresen, A scalable approach to evolvable hardware. Genetic Programm. Evol. Mach. 3(3),

259–282 (2002)

46. G.S. Tseitin, in Studies in Constructive Mathematics and Mathematical Logic, Part II. On the

Complexity of Derivation in Propositional Calculus (1968), pp. 115–125

47. G. Tufte, P.C. Haddow, Towards development on a silicon-based cellular computing machine. Nat.

Comput. 4(4), 387–416 (2005)

48. Z. Vasicek, M. Zadnik, L. Sekanina, J. Tobola, in Proceedings of the 8th Conference on Evolvable
Systems: From Biology to Hardware, LNCS, vol. 5216. On Evolutionary Synthesis of Linear

Transforms in FPGA (Springer, Berlin, 2008), pp. 141–152

49. V. Vassilev, D. Job, J.F. Miller, in Proceedings of the 2nd NASA/DoD Workshop on Evolvable
Hardware, eds. by J. Lohn, A. Stoica, D. Keymeulen, S. Colombano. Towards the Automatic Design

of More Efficient Digital Circuits (IEEE Computer Society, Los Alamitos, CA, USA, 2000),

pp. 151–160

50. M.N. Velev, Efficient translation of boolean formulas to CNF in formal verification of micropro-

cessors, in Asia South Pacific Design Automation Conference (IEEE Computer Society, 2004),

pp. 310–315

326 Genet Program Evolvable Mach (2011) 12:305–327

123

51. J.A. Walker, J.F. Miller, The automatic acquisition, evolution and re-use of modules in cartesian

genetic programming. IEEE Trans. Evol. Comput. 12(4), 397–417 (2008)

52. S. Yanushkevich, D.M. Miller, V.P. Shmerko, R.S. Stankovic, Decision Diagram Techniques for

Micro- and Nanoelectronic Design Handbook. (CRC, Boca Raton, 2006)

53. X. Yao, T. Higuchi, Promises and challenges of evolvable hardware. IEEE Trans. Syst. Man

Cybernet. Part C 29(1), 87–97 (1999)

54. R. Zebulum, M. Pacheco, M. Vellasco, Evolutionary Electronics—Automatic Design of Electronic

Circuits and Systems by Genetic Algorithms. (The CRC Press International Series on Computational

Intelligence, Boca Raton, 2002)

55. S. Zhan, J.F. Miller, A.M. Tyrrell, in Proc. of the 8th Int. Conference on Evolvable Systems: From
Biology to Hardware, LNCS,, vol. 5216. A Developmental Gene Regulation Network for Con-

structing Electronic Circuits (Springer, Berlin, 2008), pp. 177–188

Genet Program Evolvable Mach (2011) 12:305–327 327

123

Appendix B

Cartesian GP in Optimization of
Combinational Circuits with Hundreds of
Inputs and Thousands of Gates

VASICEK, Zdenek. “Cartesian GP in Optimization of Combinational Circuits with Hun-
dreds of Inputs and Thousands of Gates”. In: Proceedings of the 18th European Conference
on Genetic Programming – EuroGP. LCNS 9025. Springer International Publishing, 2015,
pp. 139–150.

acceptance rate: 33%, this paper received best paper award

Referenced on pages: 15, 16, 45, 47

83

Cartesian GP in Optimization of Combinational
Circuits with Hundreds of Inputs

and Thousands of Gates

Zdenek Vasicek(B)

Faculty of Information Technology, IT4Innovations Centre of Excellence,
Brno University of Technology, Brno, Czech Republic

vasicek@fit.vutbr.cz

Abstract. A new approach to the evolutionary optimization of large
digital circuits is introduced in this paper. In contrast with evolution-
ary circuit design, the goal of the evolutionary circuit optimization is
to minimize the number of gates (or other non-functional parameters)
of already functional circuit. The method combines a circuit simulation
with a formal verification in order to detect the functional inequivalence
of the parent and its offspring. An extensive set of 100 benchmarks cir-
cuits is used to evaluate the performance of the method as well as the
utilized evolutionary approach. Moreover, the role of neutral mutations
in the context of evolutionary optimization is investigated. In average,
the method enabled a 34 % reduction in gate count even if the optimizer
was executed only for 15 min.

Keywords: Genetic programming · Cartesian Genetic Programming ·
Evolutionary optimization · Combinational circuits · Formal verification

1 Introduction

One of the most serious problems of evolvable hardware, especially in the area
of evolutionary synthesis of logic circuits, is a very time consuming evaluation
of candidate circuits. This problem is known as the problem of scalability. It
causes that the evolutionary synthesis can handle only small and usually simple
problems that are far from real-world problem instances.

In order to improve the scalability of evaluation, application-specific hard-
ware as well as software methods were designed to increase the performance
of the evolutionary optimization and design of logic circuits, see e.g. [2,4–6,9].
These methods enabled to increase the complexity of problem instances that can
be solved in a reasonable time. Unfortunately, the methods are not scalable. The
time needed to evaluate a candidate solution usually grows exponentially with
the increasing number of primary inputs, but the accelerators are usually able to
deliver a linear speedup only. Introducing more domain knowledge and utilizing
more advanced evolutionary methods seem to be the only viable approach for
dealing with the real-world problem instances. A breakthrough in the field of

c© Springer International Publishing Switzerland 2015
P. Machado et al. (Eds.): EuroGP 2015, LNCS 9025, pp. 139–150, 2015.
DOI: 10.1007/978-3-319-16501-1 12

140 Z. Vasicek

evolvable hardware was achieved with the introduction of a method which ties
formal verification together with evolutionary optimization and substantially
reduces the scalability issue of the evaluation [7]. Vasicek and Sekanina demon-
strated that the previous empirical limitation of evolutionary design represented
by a digital circuit having about 20 inputs can easily be overcome.

The goal of this paper is to introduce and evaluate a new approach which
extends the method published in [8]. The advantage of the improved approach,
which combines formal verification with simulation-based verification, is the abil-
ity to optimize digital circuits (i.e. to reduce the number of gates, improve power
consumption, delay, etc.) represented at the gate level having hundreds of inputs
and consisting of thousands of gates. The circuits of such a complexity have never
been either evolved or optimized in the field of evolvable hardware at the gate
level directly. In contrast with previously published works which are evaluated
using a few benchmark circuits, an extensive set of 100 benchmarks circuits is
used to evaluate the performance the proposed method. In addition to that, we
would like to identify the key weaknesses of the evolutionary approach and pro-
pose future directions that could help the evolutionary approaches to penetrate
into the area of real applications. In particular, we analyzed the role of neutral
mutations in the context of evolutionary optimization.

2 Evolutionary Optimization of Combinational Circuits

2.1 Cartesian Genetic Programming

Cartesian Genetic Programming can be considered as one of the most efficient
methods for evolutionary design and optimization of digital combinational cir-
cuits [3]. A candidate circuit is represented using an array of gates arranged
in a matrix consisting of nc columns and nr rows. Each gate can be connected
either to the output of a gate placed in previous l columns or to one of the
circuit inputs. It means that no feedback is allowed. This requirement guaran-
tees that only the combinational circuits will arise. Each gate is programmed to
perform one of na-input functions defined in the set Γ . The number of circuit
inputs, ni, and outputs, no, is fixed. Every candidate circuit is encoded using
nc · nr · (na + 1) + no integers. The main advantage of the utilized encoding is
that the size of phenotype is variable even if the size of chromosome is fixed.
The variability is given by the fact that some nodes need not be employed in
encoded circuit.

CGP operates with the population of 1+λ individuals. The initial population
is usually seeded randomly. However, in order to optimize a known circuit (i.e.
to minimize the number of gates), it is useful to seed the initial population by
this circuit. Every new population consists of the best individual of the previous
population and its λ offspring individuals. The offspring individuals are created
using a point mutation operator which modifies h randomly selected genes of
the chromosome. An important rule for selection of the new parent is utilized.
In the case when two or more individuals can serve as the parent, an individual
which has not served as the parent in the previous generation will be selected

Cartesian GP in Optimization of Combinational Circuits 141

as a new parent. This strategy is important because it ensures the diversity
of population [3]. The algorithm is terminated when the maximum number of
generations is exhausted or a sufficient solution is obtained.

In case of digital circuit evolution, the fitness value of a candidate circuit
is defined as follows. If a fully functional solution is evolved, the fitness value
consist of the number of correct output bits obtained as response for all possible
assignments to the inputs plus the number of unused CGP nodes. Otherwise,
only the number of correct output bits is used. It means that the evolution has
to discover a perfectly working solution firstly while the size of circuit is not
important. Then, the number of gates is optimized. Similarly, delay or power
consumption may be optimized.

2.2 Speeding up the Fitness Evaluation Using a SAT Solver

Contrary to the evolutionary design, the evolutionary optimization of digital
circuits begins with the population seeded by a fully functional circuit. Usually,
the goal is to minimize the number of gates. The most important feature of the
evolutionary optimization is that each candidate solution created by means of
genetic operators must be functionally equivalent with its parent in order to be
further evaluated. This feature was utilized in [7] and furthermore elaborated
in [8]. Equivalence checking was applied to decide whether a candidate circuit
is functionally correct or not. In order to calculate the fitness value, the can-
didate circuit as well as its parent are converted to a Boolean formula whose
satisfiability is investigated using a SAT solver. In fact, the parent serves as
a golden reference for combinational equivalence checking. The advanced ver-
sion, introduced in [8], utilizes another feature of evolutionary-based approach –
the knowledge of the points in a candidate circuit that may break the correct
function. This information is available because each offspring was created by a
mutation from its parent. Hence, only a ‘difference’ (so-called cone of influence)
between the candidate solution and its parent can be calculated. The Boolean
formula can be derived from this ‘difference’. Since the cone of influence usually
represents only a small part of the candidate circuit, the time needed to decide
the satisfiability of the Boolean formula can significantly be reduced.

If the obtained Boolean formula is satisfiable, a negative fitness value is assig-
ned to the candidate circuit because the candidate circuit captures a different
Boolean function. Otherwise, the candidate circuit is functionally equivalent with
the specification and the fitness value is calculated according to the objective of
the optimization. For example, the number of utilized gates was used in [7,8].

The usage of SAT solver helped to reduce the most time consuming part of
the evolutionary algorithm, the evaluation of candidate solutions. In contrast
with a common fitness function based on computing a Truth table, the time of
evolution was reduced by several orders depending on the circuit parameters [8].

3 Proposed Method

In order to improve the performance of the evolutionary optimizer, i.e. to increase
the number of candidate solutions that can be evaluated within a period of time,

142 Z. Vasicek

we suggest to combine SAT solver with a circuit simulator which will be used
to disprove the equivalence between a candidate solution and its parent. This
approach is based on the assumption that the time needed to simulate a given
candidate circuit using NV (NV � 2ni) test vectors (tsim) is significantly lower
than the time which is consumed by a SAT solver (tsat).

The correctness of a candidate solution is determined as follows. Firstly, a
circuit simulator is applied to the difference circuit between a candidate solution
and its parent (difference circuit is calculated according to [8]). The simulator
can use up to NV randomly generated test vectors. If there is a test vector which
evaluates the output of the difference to one, the simulator is terminated and a
negative fitness value is assigned to the corresponding candidate solution. Since
it is guaranteed that the candidate solution is not functionally equivalent with
its parent, it is not necessary to call SAT solver to prove that fact. Otherwise,
when all NV test vectors are applied and the output of the difference evaluates
to zero in all the cases, a SAT solver has to be used to prove or disprove the
equivalence because the limited number of test vectors cannot guarantee that
there is not a vector that differentiates the circuits.

The speedup of the proposed method combining a simulator and SAT solver
can be defined as follows:

gain =
tsat

tsim + σfailtsat
=

1

tsim/tsat + σfail
, (1)

where σfail = [0, 1] is a coefficient which determines the fail-rate of the
simulation-based equivalence checking. The σfail may also be understood as
the probability of occurrence of an undetected fault.

If we want to maximize the gain, i.e. the overall performance of the optimizer,
we need to minimize not only the value of the ratio tsim/tsat, but also the
value of σfail. Even if the simulator is e.g. 1000 times faster than SAT solver,
a negligible improvement will be achieved if the value of σfail is close to one.
The value of tsim as well as σfail depend on the number of test vectors that
can be used in the simulator to disprove the equivalence. While tsim increases
linearly with increasing NV and the size of the difference entering the simulator,
σfail decreases with increasing NV . Hence, appropriate value of NV has to be
determined in order to maximize the gain.

4 Experimental Results

4.1 Benchmark Circuits

In order to evaluate the performance of the proposed method, we utilized a set of
100 randomly chosen circuits form QUIP, WLSI and ACM/SIGDA benchmark
set (only circuits with 15 and more primary inputs are considered). These circuits
were synthesized and optimized by ABC1 using ‘choice’ script. The result of ABC
was utilized as the input to the evolutionary optimizer.

1 ABC is a system for sequential synthesis and verification by A. Mishchenko.

Cartesian GP in Optimization of Combinational Circuits 143

Fig. 1. The number of primary inputs (NPI), primary outputs (NPO) and gates (NG,
right axis) for each benchmark circuit. The X-axis contains the index of benchmark
circuit. The benchmarks are arranged according to the increasing complexity expressed
as 2NP I NG. Note that both Y-axes have a logarithmic scale (The list of benchmark
circuits is available at http://www.fit.vutbr.cz/∼vasicek/gp15).

The basic parameters of the benchmark circuits are given in Fig. 1. The
circuits are arranged according to the increasing complexity. The complexity is
expressed as a time needed to evaluate a candidate solution using a common
fitness function (i.e. the fitness function based on a truth table). In such a case,
the evaluation time is dependent on two factors: the number of primary inputs
(NPI), and the number of gates (NG). As the time needed to evaluate a candidate
solution increases exponentially with the increasing number of primary inputs,
NPI represents the key parameter which has a great impact on the total time.

The least complex circuit, ‘alcom’ circuit with index 1, consists of 106 gates
and utilizes 15 primary inputs and 38 outputs. The most complex circuit, audio
codec controller ‘ac97 ctrl’ with index 100, contains 16158 gates and uses 2176
inputs and 2136 outputs. One half of the benchmark circuits have more than 50
primary inputs and consist of more than 1000 gates.

4.2 Role of Neutral Mutations

The objective of the first experiment was to confirm or reject hypothesis about
the importance of neutral mutations in evolutionary optimization of combi-
national circuits. Two variants of the mutation operator were implemented in
order to evaluate the significance of neutrality. The first implementation does not
impose any special limitations on the mutation operator. The only requirement
is to modify the value of a randomly chosen gene to a different one (but legal).
On the other hand, three restrictions are applied in the second implementation:
(1) inactive gates are never modified; (2) it is not possible to connect an active
gate (or primary output) to an inactive gate; (3) the gene which encodes the
connection of the second input of a single-input gate is never mutated. These
restrictions were introduced in order to mitigate the neutral mutations.

The CGP parameters were chosen as follows: nc = NG, nr = 1, l = NG,
λ = 1, h = 2, Γ = {BUF, INV, AND, OR, XOR, NAND, NOR, XNOR}. These
parameters were chosen according to the [8]. No redundancy in CGP encoding

144 Z. Vasicek

is used; the number of nodes is equal to the size of a benchmark circuit obtained
from ABC. The goal of CGP is to minimize the number of utilized gates, i.e.
the fitness value is equal to the number of active CGP nodes. The fitness func-
tion utilizes SAT solver only. In order to perform a statistical evaluation, fifteen
independent evolutionary runs were executed for each benchmark circuit. Note
that median value will be used to analyze the impact of a particular parame-
ter because no Gaussian distribution can be observed among the benchmarks.
The evolution is terminated after 15 min2. We do not use the number of evalu-
ations as a termination condition because this number is very sensitive to the
structural properties of an optimized circuit and it is impossible to determine
an appropriate value in advance.

The performance of both approaches is evaluated using the number of gener-
ations (Gimpr) that enabled an improvement of the fitness value. This parameter
can be seen as a measure of mutation operator’s performance (i.e. the ability to
generate a candidate solution which is valid and simultaneously improved). The
reason behind the usage of this metric is that the number of evaluations can-
not be compared directly because the neutral mutations are detected and the
created candidate solutions do not enter the time-consuming fitness evaluation
procedure (it is guaranteed that they have the same fitness value as their parent)
resulting in the fact that significantly more generations can be produced if the
occurrence of neutral mutations is high.

Let G = Gvalid + Ginvalid be the total number of generations where Gvalid

is the number of generations in which a valid candidate solution (i.e. function-
ally equivalent with a parental circuit) is generated from a parental solution
by applying the mutation operator. Then, Gvalid can be expressed as Gvalid =
Gimpr+Gnoimpr+Gneutral, where Gneutral is the number of neutral mutations in
the sense defined in previous paragraphs. Gnoimpr represents the candidate solu-
tions in which at least a single gene was changed but the fitness value remained
unchanged. Note that Gneutral = 0 in the second implementation because no
neutral mutations are allowed.

The evaluation of both variants of the mutation operator is shown in Fig. 2.
The performance is expressed as the ratio Gimpr/(Gvalid − Gneutral) calculated
at the end of each 15-minute evolutionary run, averaged over all fifteen runs.
Despite the stochastic nature of evolutionary algorithm which leads to some
variances (see the error bars in Fig. 2 showing the magnitude of standard devia-
tion), we can conclude that the performance of both implementations is almost
identical. In average, 2.34 % of valid generations were produced when the neutral
mutations were enabled and 2.42 % for the opposite case. For 75 benchmarks,
the variant with disabled neutral mutations performs approx. (30 ± 35) % better
in average. The performance was worsened in 25 cases by approx. (9 ± 10) % in
average.

According to the obtained results, we can conclude that it has no advantage
to support neutral mutations in this scenario (i.e. if the goal is to minimize the

2 A PC equipped with Intel Xeon X5670 (24 cores, 2.93 GHz, 12 MB cache), 32GB
RAM and 64-bit CentOS Linux was used.

Cartesian GP in Optimization of Combinational Circuits 145

Fig. 2. The mean number of generations that enabled an improvement of fitness
value when the neutral mutations were enabled (disabled). It is expressed as the ratio
Gimpr/(Gvalid −Gneutral). The mean value obtained as an average over all benchmarks
is represented by dotted line whereas the median value is depicted by dash-line.

number of gates in a fully functional circuit). In fact, the neutral mutations have
a negative impact on overall performance because the probability of mutation of
an active gene decreases with the increasing number of inactive genes. Even if
the neutral mutations are detected and the corresponding candidate solutions do
not enter the time-consuming fitness evaluation procedure, the performance of
the evolutionary optimizer deteriorates as the circuit is reduced because a great
portion of neutral mutations is generated.

Looking at the results shown in Fig. 2, we can identify that the performance
of the mutation operator is very sensitive to the optimized circuit. One can
admit that this issue could be related to the impossibility to improve the num-
ber of gates of a given benchmark circuit, but this is certainly not the case. It
can be easily shown that the utilized circuits are not optimal if the number of
gates is considered. Taking into account that the ratio between Gvalid and G is
approx. 0.5 % in average (see Fig. 3), there are circuits for which the mutation

Fig. 3. The number of generations in which a valid candidate solution was produced,
represented as a ratio Gvalid/(Gvalid + Ginvalid). The results are obtained from the
second implementation, where the neutral mutations are disabled. The median value
is shown using a dash-line.

146 Z. Vasicek

operator performs very poorly. Less than 0.007 % of the total number of genera-
tions enabled the improvement of the fitness value for one half of the benchmark
circuits. On the other hand, there are instances showing a significantly better
convergence, e.g. more than 0.12 % of the total number of generations leading
to the improvement of the fitness value were produced in the case of circuit 66.

Unfortunately, there is no obvious relation between the circuit complexity (as
defined in Sect. 4.1) and performance of the mutation operator. Thus, we believe
that the performance of the mutation operator is in a close relation with the
internal structure of an optimized circuit. Hence there are two possibilities how
to improve the performance of the evolutionary optimizer. We can (a) increase
the number of generations that can be evaluated within a time period and/or
(b) to design a new mutation operator with better performance.

4.3 Efficiency of the Proposed Approach

To determine the value of σfail and its dependency on NV , three experiments
were performed. A 64-bit parallel simulator which is able to calculate response to
64 input combinations in a single pass was utilized. The simulator was enabled
to use (a) a single pass (NV = 64), (b) up to 16 passes (NV = 1024), and
(c) up to 32 passes (NV = 2048) to disprove the equivalence. Only the cone of
influence determined according to the points of mutation enters the simulator.
The experimental setup and CGP parameters were the same as described in
previous section. The mutation operator with suppressed neutral mutations was
employed.

The obtained results are shown in Fig. 4. The value of σfail was calculated
at the end of fifteen 15 min evolutionary runs. The median value of NV can
be approximated by the exponential trendline σfail ≈ 3.2693NV

−0.611 with
R-squared equal to 0.9955. It means that σfail noticeably decreases at the begin-
ning (i.e. for small NV) and then, as NV increases, the yield is smaller and
smaller. In most cases, σfail is lower than 0.1 even if a single pass is used. How-
ever, there are cases with surprisingly high ratio of σfail that remains above 50 %

Fig. 4. Fail-rate σfail of simulation-based equivalence checking shown for various num-
ber of randomly generated test vectors (NV) that are utilized by the circuit simulator
to disprove functional equivalence between candidate solution and its parent.

Cartesian GP in Optimization of Combinational Circuits 147

Fig. 5. Average time needed to perform equivalence checking using (a) SAT solver (see
tsat) and (b) simulator with a single pass (see tsim).

even if 2048 randomly generated input combinations were utilized (see bench-
marks 26, 47, 55, 77 and 84). Considering the parameters of those circuits (see
Fig. 1), we suppose that this issue is probably related to the high number of
utilized gates which may contribute to a fault masking effect.

The σfail corresponding to the number of test vectors that are used to max-
imize value of Eq. 1 is represented by lines labeled as NV = auto in Fig. 4. We
can observe that less than 16 passes (i.e. less than 1024 test vectors) were used
in most cases. These instances can easily be identified by comparing the value
of σfail for NV = auto and NV = 1024; the lower number of test vector implies
higher σfail. Unfortunately, the ratio tsat/tsim remains very low for the five
benchmarks discussed in previous paragraph (see Fig. 5). Hence only a few test
vectors can be utilized which results in the fact that the fail-rate remains very
high. Thus only a negligible speedup is expected in these cases.

The speedup of the proposed method combining SAT solver with simulator is
given in Fig. 6. The speedup is calculated using the number of candidate solutions
that can be evaluated within 15 min. The number of test vectors was determined
adaptively during the evolution as follows. At the beginning of the evolution, a

Fig. 6. Speedup of the proposed method which combines SAT-based and simulation-
based equivalence checking in the fitness function. For more than 50 benchmark circuits,
adaptive setting of the number of test vectors (see NV = auto) increased the speedup
approx. twice compared to a single-pass simulation (i.e. 64 test vectors). Note that the
y-axis has a logarithmic scale.

148 Z. Vasicek

single pass (i.e. 64 test vectors) is utilized. Then, the number of passes doubles
every 10 s until a decrease in the performance is detected. Finally, the best value
is determined and used. The number of test vectors is adaptively modified during
evolution if there exists a different value which provides better performance.

According to the obtained results, the achieved speedup is higher than 5.28
for half of the benchmark circuits. The performance of the implementation
which utilizes the adaptive number of test vectors is approximately two times
higher compared to the implementation with fixed number of test vectors whose
speedup factor is approx. 2.34. This finding can be considered as a very posi-
tive result since the introduction of the simulator can remarkably improve the
performance of the evolutionary optimizer.

Similarly to our previous findings regarding σfail, the value of speedup notice-
ably varies across the benchmarks. There are cases for which the speedup factor
exceeded 30. On the other hand, nearly no improvement was obtained for bench-
marks 26, 47, 55, 77, and 84. According to our expectation, the speedup is close
to 1.0 in these cases.

We analyzed the obtained results and identified that there is a relation
between σfail and speedup. If σfail ≥ 0.05, the higher σfail implies a lower
speedup. However, this relation does not hold for σfail < 0.05 where the speedup
varies in one order independently on the value of σfail. In addition to that, we
can observe decreasing of the tsat/tsim ratio as the complexity of a benchmark
circuit increases. Even if tsat remains relative stable across the benchmarks (see
Fig. 5), tsim increases with the increasing complexity. The ratio tsat/tsim was
decreasing from approx. 350 for less complex circuits to 10 for the most complex
circuit. As a consequence of that, a relative small number of test vectors should
be used in the simulator.

4.4 Performance of the Circuit Optimizer

The impact of the proposed method on the quality of optimization is shown in
Fig. 7. The implementation which utilizes SAT solver and circuit simulator with

Fig. 7. Reduction of the benchmark circuits (relative to the original size) obtained after
15 min of the optimization is shown for (a) sat-based optimizer and (b) the proposed
approach which combines SAT solver with simulator. The best results obtained from
a 24-hour evolutionary optimization are denoted by triangles.

Cartesian GP in Optimization of Combinational Circuits 149

adaptive number of test vectors is compared against the SAT-based implemen-
tation introduced in [8]. No neutral mutations were enabled. The experimental
setup is the same as used in previous section.

In all cases, the combination of a SAT solver and circuit simulator brought
an improvement. The size was reduced by 13 % in average. Still, there are cases
showing a very slow convergence caused mainly by the time consuming evalua-
tion. If we compare average Gvalid of the four aforementioned benchmarks (26,
47, 55, 77, and 84) with Gvalid of the rest of the benchmarks, we can observe
that the value is two orders of a magnitude lower. This explains why nearly no
improvement was achieved within 15 min in these cases.

5 Conclusion

We introduced a new approach to the evolutionary optimization of large digital
circuits which exploits the combination of a circuit simulator and a formal verifi-
cation. Due to the usage of a simulator with adaptive number of test vectors, the
time of evaluation was significantly reduced for 100 complex benchmark circuits
in comparison with a method published in [8]. In the worst case, the time of
evaluation remains the same.

In addition to that, we investigated the role of neutral mutations that are
believed to be an important part of CGP. According to the obtained results, we
have concluded that it has no advantage to support neutral mutations for circuit
optimization (i.e. in the case that the number of gates is minimized for a fully
functional circuit). This can be understood as an important result not only from
theoretical but also from practical point of view because the neutral mutations in
fact have negative impact on the performance of the evolutionary optimization.
Our findings related to the role of neutrality correspond with observations on
the evolutionary design of parity circuits [1].

The performance of the proposed method was evaluated on an extensive set
of real-world benchmark circuits having tens to hundreds of inputs and consisting
of hundreds to thousands of gates. For more than half of the benchmark circuits,
approximately five times higher number of evaluations was performed within the
same time period compared to the approach that utilizes only a formal approach.
While the latter method was able to reduce the circuits by 21 % in average, the
proposed method is able to reduce the circuits by 34 % using the same amount
of time. Considering the fact that the runtime of the optimization process was
15 min, the obtained results are very encouraging.

We demonstrated that the circuit optimization conducted by CGP is applica-
ble on complex real-world digital circuits. However, we simultaneously shown
that there are instances for which the proposed method can bring only a mar-
ginal or none improvement in the performance. Our method is based on the
assumption that evolutionary-based approach generates a large number of invalid
candidate solutions that can be detected very quickly by means of applying a
few test vectors on the inputs (i.e. that the time consuming formal verification
can be replaced with a faster simulation-based approach). While this assumption

150 Z. Vasicek

is valid and an enormous number of invalid candidate solutions are generated
during evolution, there exist circuits that are hard for the simulation-based veri-
fication. We believe that the evolutionary-based approach requires to generate a
large number of candidate solutions to compensate the poor performance of the
mutation operator. We observed that at least 5 · 104 valid candidate solutions
were generated within 15 min for problem instances exhibiting a reasonable con-
vergence. Unfortunately, approx. two orders of a magnitude (i.e. 106) candidate
solutions have to be generated to obtain 5 · 104 valid candidate solutions.

One of the possibilities how to substantially improve performance of the
evolutionary optimization is to orient the future research towards improving of
the mutation’s operator performance. Another option is to replace the randomly
generated test vectors with a smart selection of test vectors which can quickly
detect the inequivalence. One of the possibilities is to build a database of test
vectors using the counter examples that are produced by a SAT solver during
verification.

Acknowledgments. This work was supported by the Czech science foundation
project 14-04197S.

References

1. Collins, M.: Finding needles in haystacks is harder with neutrality. Genet. Program.
Evolvable Mach. 7(2), 131–144 (2006)

2. Harding, S., Miller, J.F., Banzhaf, W.: Self modifying Cartesian genetic program-
ming: parity. In: 2009 IEEE Congress on Evolutionary Computation, pp. 285–292.
IEEE Press (2009)

3. Miller, J.F.: Cartesian Genetic Programming. Springer, Heidelberg (2011)
4. Shanthi, A.P., Parthasarathi, R.: Practical and scalable evolution of digital circuits.

Appl. Soft Comput. 9(2), 618–624 (2009)
5. Stomeo, E., Kalganova, T., Lambert, C.: Generalized disjunction decomposition

for evolvable hardware. IEEE Trans. Syst. Man Cybern. Part B 36(5), 1024–1043
(2006)

6. Vasicek, Z., Sekanina, L.: Hardware accelerators for Cartesian genetic programming.
In: O’Neill, M., Vanneschi, L., Gustafson, S., Esparcia Alcázar, A.I., De Falco, I.,
Della Cioppa, A., Tarantino, E. (eds.) EuroGP 2008. LNCS, vol. 4971, pp. 230–241.
Springer, Heidelberg (2008)

7. Vasicek, Z., Sekanina, L.: Formal verification of candidate solutions for post-
synthesis evolutionary optimization in evolvable hardware. Genet. Program. Evolv-
able Mach. 12(3), 305–327 (2011)

8. Vasicek, Z., Sekanina, L.: A global postsynthesis optimization method for combi-
national circuits. In: Proceedings of the Design, Automation and Test in Europe,
DATE, pp. 1525–1528. IEEE Computer Society (2011)

9. Walker, J.A., Miller, J.F.: The automatic acquisition, evolution and re-use of mod-
ules in Cartesian genetic programming. IEEE Trans. Evol. Comput. 12(4), 397–417
(2008)

Appendix C

Evolutionary Approach to Approximate
Digital Circuits Design

VASICEK, Zdenek and SEKANINA, Lukas. “Evolutionary Approach to Approximate Dig-
ital Circuits Design”. In: IEEE Transactions on Evolutionary Computation 19.3 (2015),
pp. 432–444.

IF=5.908 (2015), contribution of the author of the thesis: 50%

Referenced on pages: 26, 28, 29

97

432 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 19, NO. 3, JUNE 2015

Evolutionary Approach to Approximate
Digital Circuits Design

Zdenek Vasicek and Lukas Sekanina, Senior Member, IEEE

Abstract—In approximate computing, the requirement of per-
fect functional behavior can be relaxed because some applications
are inherently error resilient. Approximate circuits, which fall
into the approximate computing paradigm, are designed in such a
way that they do not fully implement the logic behavior given by
the specification and, hence, their accuracy can be exchanged for
lower area, delay or power consumption. In order to automate the
design process, we propose to evolve approximate digital circuits
that show a minimal error for a supplied amount of resources. The
design process, which is based on Cartesian genetic programming
(CGP), can be repeated many times in order to obtain various
tradeoffs between the accuracy and area. A heuristic seeding
mechanism is introduced to CGP, which allows for improving
not only the quality of evolved circuits, but also reducing the time
of evolution. The efficiency of the proposed method is evaluated
for the gate as well as the functional level evolution. In particular,
approximate multipliers and median circuits that show very good
parameters in comparison with other available implementations
were constructed by means of the proposed method.

Index Terms—Approximate computing, Cartesian genetic pro-
gramming (CGP), digital circuits, population seeding.

I. INTRODUCTION

APPROXIMATE computing is a new design paradigm
emerging as a response to the never-ending need for

performance and energy efficiency of computing systems [1].
It exploits the fact that the requirement of perfect func-
tional behavior (i.e., accuracy) can be relaxed because some
applications are inherently error resilient. The errors are not
recognizable as human perception capabilities are limited
(e.g., in multimedia applications), no golden solution is avail-
able for validation of results (e.g., in data mining applications),
or users are willing to accept some inaccuracies (e.g., when
the battery of a mobile phone is almost depleted, but at least
a basic functionality is still requested). Therefore, this accu-
racy can be used as a design metric, traded for area, delay,
throughput, or power consumption.

In approximate computing systems, approximations can
be introduced at all design levels, starting from the circuit
via the architecture and operating system to programming
language. Examples of applications in which the princi-
ples of approximate computing are utilized range from

Manuscript received July 26, 2013; revised May 30, 2014 and
June 25, 2014; accepted June 27, 2014. Date of publication July 8, 2014;
date of current version May 27, 2015. This work was supported in part by
IT4Innovations Centre of Excellence under Grant CZ.1.05/1.1.00/02.0070 and
in part by Brno University of Technology under Grant FIT-S-14-2297.

The authors are with the Faculty of Information Technology, IT4Innovations
Centre of Excellence, Brno University of Technology, Brno 61266, Czech
Republic (e-mail: vasicek@fit.vutbr.cz; sekanina@fit.vutbr.cz).

Digital Object Identifier 10.1109/TEVC.2014.2336175

inaccurate arithmetic circuits (e.g., adders [2], multipli-
ers [3]) via high-level processing blocks (e.g., image compres-
sion [3], discrete cosine transform, finite and infinite impulse
response filters [4]) to general purpose approximate comput-
ing machines [5] and programming languages [6]. The circuits
that are intentionally designed in such a way that the specifica-
tion is not met in terms of functionality and some savings are
expected in terms of energy, performance, or area are called
approximate circuits.

Approximate computing as a field is in an early stage
of development and without an established methodology.
Approximate circuits have initially been constructed manually,
by removing those parts of existing fully functional designs
that did not contribute to the result significantly [3]. The
current trend is to create general design methods (such as
SALSA [4] and SASIMI [7]) that are capable of construct-
ing approximate circuits that never exceed a predefined error.
These error-oriented approaches, however, represent only one
of the possible approaches in order to approximate circuits
design.

Evolutionary circuit design was successful in the task of
designing a specific class of electronic circuits which has been
documented in numerous survey articles (see [8] and [9]). The
aim of this paper is to show that the approximate circuit design
methodology based on principles of evolutionary design can
produce efficient and competitive approximate gate-level as
well as functional level combinational circuits. Because of the
nature of approximate circuits (in fact, partially working cir-
cuits are sought) and principles of evolutionary circuit design
(evolutionary-based improving of partially working circuits),
we expect a synergy effect that could lead to establishing
an evolutionary design as a competitive design method for
approximate circuits.

In our previous work, we took advantage of the fact that
the evolutionary design always provides a partially working
solution even when resources needed for constructing a fully
functional solution are not available [10]. It has to be noted
that conventional methods do not usually provide any result
when allocated resources are insufficient. As power consump-
tion is often highly correlated with occupied resources, we can
evolve a partially working circuit using constrained resources
and assume that the circuit’s power consumption will be
reduced.

This idea is further elaborated as follows. Let n be the
(minimum) number of gates required to implement a given
logic circuit. The approximate circuit is created by means
of randomly seeded Cartesian genetic programming (CGP)

1089-778X c© 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VASICEK AND SEKANINA: EVOLUTIONARY APPROACH TO APPROXIMATE DIGITAL CIRCUITS DESIGN 433

whose objective is to minimize a given error function and
which can use up to m gates (m < n). If various other
approximations are requested, CGP is executed multiple times
with a gradually reduced amount of available gates. The
user thus obtains a set of approximate combinational cir-
cuits, each of which typically exhibits different tradeoffs
between the functionality and the number of gates. The pro-
posed design approach can be considered as an area-oriented
method because the user can control the used area (and so
power consumption) more comfortably than by means of the
error-oriented methods. Another important contribution of this
article is a new method of seeding the initial population of
CGP, which enables us to significantly reduce the time of
evolution.

In order to demonstrate a wider applicability of our
approach, the proposed method will be evaluated for gate-level
as well as functional-level circuits. It should be noted that sys-
tematic methods have only been introduced for the bit (gate)
level design of approximate circuits. Hence two case studies
will be reported: the design of approximate combinational par-
allel multipliers (the gate level) and the design of a median
computing circuit (the functional level). We will study the
tradeoff between the correctness, area, and power consumption
for 2-bit, 3-bit, and 4-bit multipliers. These small multipli-
ers will be used as building blocks for larger multipliers, and
again, the correctness will be traded for power consumption
and area. The median computing circuit is a key component for
median filters in image processing. It is expected that approx-
imate median circuits can lead to a significant area reduction
while the error of filtering remains small. In summary, the key
contributions of this article are as follows.

1) We propose a new methodology for approximate circuit
design that exploits the area-oriented design approach
and CGP seeded by heuristically created approximate
circuits.

2) We propose to extend the concept of approximate circuit
evolution from the gate level to the functional level.

3) We present novel implementations of approximate com-
binational multipliers created by CGP. These multipliers
show very good parameters in comparison with similar
multipliers reported in the literature.

4) We present novel implementations of approximate
median circuits created by CGP.

The rest of the paper is organized as follows. Section II
surveys relevant research in areas of approximate circuits and
evolutionary circuit design. The proposed design methodology
is introduced in Section III. An experimental framework is
presented together with obtained results in Section IV. After
discussing the impact of this paper, the conclusion is given in
Section V.

II. RELATED WORK

Only a few papers on evolutionary circuit design have
directly or indirectly addressed the problem of approximate
circuit design. Before introducing them in Section II-B we
will give an overview of current (conventional) approximate
circuit design techniques in Section II-A.

A. Approximate Circuits: Overview
Power consumption reduction is one of the key challenges

of the current chip design industry. Conventional approaches
to power reduction of digital circuits are applied at all
design levels, starting from the architecture via the circuit
to the technology [11]. Further reductions can be obtained
by approximating the original circuit function by a new one
whose implementation is more energy efficient. The require-
ment on functional equivalence between the specification and
implementation is thus relaxed in order to minimize energy
consumption, accelerate computations, or reduce the area on
a chip. The concept of approximate circuits is similar to
probabilistic circuits that take into account the importance of
bits of the circuit’s output with respect to the complexity of
their implementation [12]. However, approximate computing
does not involve assumptions on the stochastic nature of any
underlying processes implementing the system [1].

The next subsections will present basic design techniques
(over-scaling and functional approximation), systematic design
methodologies, and error metrics used in approximate circuit
designs.

1) Over-Scaling: In the case of over-scaling, circuits are
designed to be working perfectly under a normal environment.
However, their energy consumption can be reduced by volt-
age over-scaling (i.e., using deliberately lower power supply
voltage in which the circuit is known to occasionally produce
erroneous outputs). Similarly, performance can be increased
when the circuit is over-clocked. Timing-induced errors are
due to the fact that some paths in the circuit fail to meet
the delay constraints. The combination of scaling the sup-
ply voltage and clock frequency is known as dynamic voltage
scaling.

2) Functional Approximation: Functional approximation
means that the circuit is designed in such a way that it does not
fully implement the logic behavior given by the specification.
A simple method is to reduce the precision of computations in
the case of arithmetic circuits by ignoring the least significant
bits. However, only insignificant area savings can be obtained
for some key circuits such as multipliers. Other methods adopt
logic synthesis scenarios in which implementations that satisfy
the specification almost perfectly are sought, but the amount
of resources is significantly reduced (see [2] and [7]).

For example, a two-bit multiplier was manually constructed,
which consists of five gates only and exhibits a delay of 2d,
where d is a unit delay. Its output is correct for 15 out of 16
possible inputs. A usual conventional solution requires eight
gates and exhibits a delay of 3d. This approximate multi-
plier has been used in larger approximate multipliers and then
employed in approximate image processing applications [3].

3) Systematic Design Methodologies: As the manual
redesign is not a universal and efficient method, systematic
methods to synthesize approximate circuits are currently being
developed.

The systematic methodology for automatic logic synthe-
sis of approximate circuits (SALSA) starts with an RT-level
description of the exact version of the circuit and an error
constraint that specifies the type and amount of error that the
implementation can exhibit [4]. The methodology introduces

434 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 19, NO. 3, JUNE 2015

the so-called Q-function, which takes the outputs from both
the original and approximate circuits and decides if the qual-
ity constraints are satisfied. The Q-function outputs a single
Boolean value. The SALSA algorithm attempts to modify the
approximate circuit with the goal of keeping the output of the
Q-function unchanged.

Another systematic approach, substitute-and-simplify
(SASIMI), tries to identify signal pairs in the circuit that
exhibit the same value with a high probability, and substitutes
one for the other [7]. These substitutions introduce functional
approximations. Unused logic can be eliminated from the
circuit, which results in area and power savings. The method
is combined with technology-level optimizations such as
downsizing of gates (i.e., creating smaller than normally
sized gates to reduce power consumption, in exchange for
increased delay) on critical paths and voltage over-scaling,
which results in additional significant area and power savings.

SASIMI and SALSA are very new methods and, unfortu-
nately, are not currently available to the public.

4) Error Metrics: The above methods are error-oriented in
the sense that all logic optimizations leading to an approximate
solution are constrained by a predefined error criterion. The
error can be expressed by various metrics such as worst case
error, average error, and error probability [13]. The design
process has to be repeated when a new error criterion is
established.

B. Evolutionary Circuit Design

Recent surveys on evolutionary circuit design
(see [8] and [9]) clearly demonstrate that although some
evolved implementations of target circuits can be considered
as innovative, the evolutionary design approach fails in
producing useful implementations of complex circuits. In
order to at least partially eliminate this disadvantage, various
approaches have been proposed to improve the problem
representation and genetic operators (such as functional level
representations [14], [15], decomposition [16], and develop-
mental encodings [17]) and accelerate the fitness computation
(such as partial evaluation [18], formal functional equivalence
checking [19], and phenotype precompilation [20]).

1) Previous Works Related on Approximate Circuits: There
are some examples of evolutionary circuit design that could be
considered as approximate circuit design. For example, Miller
evolved finite impulse response filters at the gate level where
functionality was traded for area [21]. In fault-tolerant applica-
tions, if a critical number of elements is damaged, the original
function cannot fully be recovered; however, a partial func-
tionality can be obtained by means of evolutionary design.
This concept has been surveyed in [22]. In another research,
Kneiper et al. investigated the robustness of evolved classi-
fiers [23]. A classifier system was reported, which is able to
cope with changing resources at run-time. During optimization,
the number of pattern matching elements was modified and its
influence on classification accuracy was studied (i.e., there is
a tradeoff between the classification accuracy and area).

Thompson’s famous evolutionary design of a tone dis-
criminator circuit in the XC6216 field-programmable gate
array (FPGA) belongs to this class of applications too.

Thompson’s evolutionary algorithm discovered a tone dis-
criminator requiring significantly fewer resources than usual
solutions would occupy in the same FPGA [24]. Though the
evolved discriminator was fully functional, its robustness was
limited. Higher sensitivity to fluctuations in the environment
(external temperature, power supply voltage) and dependabil-
ity on a particular piece of FPGA were reported. Hence we
can observe a tradeoff between the robustness and the amount
of resources in the FPGA.

All of these approaches and applications have something in
common with approximate circuits. None of them, however,
has fully exploited the capability of evolutionary design as a
systematic method for an approximate circuit design.

2) Direct Evolution of Approximate Circuits: Finally, this
section summarizes our previous work on evolutionary design
of approximate circuits.

In [10] we evolved approximate implementations of small
combinational circuits (3-bit and 4-bit adders and single out-
put circuits) using randomly seeded CGP operating at the gate
level. In order to provide solutions for every possible number
of gates, CGP was repeatedly executed with gradually reduced
resources available for implementation. The objective was to
minimize the mean absolute error with respect to a fully func-
tional circuit. Because the utilized power estimation algorithm
(which is embedded into the SIS tool [25]) is very time con-
suming, it has not been included in the fitness function directly.
Power consumption was calculated at the end of evolution for
the best evolved approximate circuits.

An inherently multiobjective approach to evolutionary
design of approximate multiplierless multiple constant mul-
tipliers (MCMs) was proposed in [26]. Three design
objectives—accuracy, area, and delay—were optimized by
multiobjective CGP, where the area was inexpensively esti-
mated as the number of utilized components and delay as the
number of components along the longest path between the
input and the output.

Both approaches utilized randomly generated initial
populations, which led to relatively time consuming evo-
lutionary runs. Seeding the initial population by suitable
pregenerated designs is one contribution of our work reported
in the following sections. Another feature is that for circuits
from papers [10], [26], we could check in the fitness function
their responses for all possible input combinations, which is
impossible for complex circuits such as median circuits.

III. PROPOSED METHOD

After emphasizing key features of the current approach to
approximate circuit design, this section introduces the over-
all idea of the proposed method, the utilized evolutionary
algorithm, and the heuristic population-seeding procedure.

A. Initial Considerations

Existing systematic approximate circuit synthesis methods
(such as [4] and [7]) always begin with a fully functional cir-
cuit C and a given quality constraint (acceptable error) e. Then
C undergoes the approximating procedure and an approxi-
mate circuit C1 is generated. It is ensured that the predefined

VASICEK AND SEKANINA: EVOLUTIONARY APPROACH TO APPROXIMATE DIGITAL CIRCUITS DESIGN 435

error e is not exceeded by C1. As the acceptable error (and a
corresponding power consumption reduction) can be difficult
to define for a given application in advance, the design pro-
cess is usually repeated for several error values e2, e3, . . . , ek,
yielding approximate circuits C2,C3, . . . ,Ck. The solution
that exhibits the most suitable tradeoff between design objec-
tives is then the resulting approximate circuit. However, the
area, power consumption, and delay are not directly under the
control of the approximating procedure.

This is inherently a multiobjective circuit design problem
that could be solved by a suitable multiobjective evolution-
ary algorithm (MOEA); for example, algorithms reported for
evolution of conventional circuits in [26] and [27] are based
on NSGA-II [28]. It is expected that MOEAs will have diffi-
culty with delivering really compact approximate circuits for
complex problem instances because of the following reasons.

1) Evolutionary design of non-trivial combinational cir-
cuits (e.g., 4-bit multipliers) from scratch is a difficult
problem. Only a small fraction of runs usually pro-
duce a working circuit because corresponding fitness
landscapes are very rugged [29].

2) It is even harder to evolve a working circuit (e.g., 4-bit
multiplier) that is better than a conventional design
according to a chosen criterion (i.e., the number of gates
in our case) [30].

3) A reasonably reliable estimate of power consumption,
which is important for building trustworthy Pareto fronts
in MOEA, can be very time consuming for complex cir-
cuits. For example, while the evaluation of a candidate
4-bit multiplier takes 35 μs, power consumption simula-
tion by SIS requires 0.59 s (average numbers calculated
on a 3 GHz processor are given).

Another difficulty lies in the scalability problem of the
evolutionary circuit design. In this paper, we adopted two
approaches: 1) complex approximate median circuits are
evolved by means of the functional-level evolution and 2) in
the case of gate-level circuits, we focus on arithmetic circuits
and adopt the approach introduced in [3] in which relatively
small approximate circuits are used as building blocks of com-
plex approximate circuits. In our case, these small approximate
circuits are evolved by CGP.

B. Approximate Circuit Evolution

The main features of the proposed area-oriented method,
which address the mentioned problems, are as follows.

1) The direct control of the resulting area (and possibly
power consumption) could be very useful for some
application scenarios (e.g., computing with the mini-
mum error for a given power budget in a mobile phone).
Hence the proposed method generates approximate cir-
cuits as a function of the area rather than the error.
This area-oriented approach cannot be accomplished
by conventional circuit design tools because they do
not provide any solution when available resources are
insufficient.

2) The proposed method works as follows. Let us suppose
that P is a procedure capable of creating an approximate

version of a fully functional circuit C, which consists of
n components (gates). P is employed to construct an
approximate circuit C1 using m1 components with the
aim of minimizing the predefined error criterion. This
approximation exhibits the error e1. Similar to error-
oriented methods, such as SALSA and SASIMI, the
design procedure can be repeated; however, here it is
for various number of gates (not for various errors)
in order to obtain different tradeoffs among design
objectives. Approximate circuits C2,C3, . . . ,Ck are then
constructed by P wherein m2,m3, . . . ,mk gates are sup-
plied; mk is the number of gates in the smallest required
approximation of C. It is expected that the resulting
errors are e1 ≤ e2 ≤ · · · ≤ ek. If m is successively
n − 1, n − 2, . . . , 2, and 1, an approximate circuit is
constructed for every possible number of gates.

3) In order to implement P, from available evolutionary cir-
cuit design methods we choose a single-objective CGP
that enables the gate as well as functional level evo-
lution [31]. Multiple runs of CGP are performed for
a given amount of resources in order to find a circuit
that exhibits the smallest possible error. Multiobjective
NSGA-II-based CGP [26] will be used for comparative
purposes in Section IV.

4) The following features of the proposed method enable
us to accelerate the whole design process.

a) The initial population is seeded by approximate cir-
cuits (created according to Section III-E) in order
to find much better solutions than a randomly
seeded CGP.

b) Power consumption is computed only for selected
best circuits at the end of CGP runs.

c) Fitness evaluation exploits the idea of parallel sim-
ulation of candidate circuits and circuit translation
to the binary machine code [20].

d) Multiple runs are executed on a computer cluster
(p runs on p processors).

C. Cartesian Genetic Programming

CGP and its various versions are probably the most popu-
lar methods for the evolutionary circuit design [30], [31]. In
this paper, we utilize the standard CGP for combinational cir-
cuit evolution with a few modifications, as explained in the
following paragraphs.

1) Circuit Representation in the Chromosome: A candidate
circuit is modeled by means of an array of processing nodes
arranged in nc columns and nr rows. The processing elements
can be either elementary gates or functional level components
such as adders, comparators, and shifters. The nc.nr product
is constrained by the maximum number of available nodes in
the case of approximate circuit evolution.

The set of functions implemented by processing elements
will be denoted �. The circuit utilizes ni primary inputs and
no primary outputs. All signals are defined over b bits, where
b = 1 for the gate level evolution.

Primary inputs and processing node outputs are labeled
0, 1, . . . , ni − 1 and ni, ni + 1, . . . , ni + nc.nr − 1, respectively.

436 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 19, NO. 3, JUNE 2015

Fig. 1. Candidate 2-bit multiplier, with inputs b1b0a1a0 and outputs
p3p2p1p0, represented by CGP with parameters: ni = no = 4, nc = 6,
nr = 1, l = 4, � = {0AND, 1OR}. Chromosome: 1, 3, 0; 0, 2, 0; 1, 2, 0; 0, 1,
0; 7, 6, 1; 8, 8, 1; 5, 8, 4, ‘0’.

Each node input can be connected either to the output of
a gate placed in the previous l columns or to one of the
primary circuit inputs. A candidate solution consisting of two-
input nodes is represented in the chromosome by nc.nr triplets
(x1, x2, ψ) determining for each processing node its function
ψ , and addresses of nodes x1 and x2 which its inputs are
connected to. The last part of the chromosome contains no

integers specifying either the nodes, to which the primary out-
puts are connected, or logic constants (‘0’ and ‘1’), which can
be directly connected to the primary output. The support of
logic constants at the primary outputs is crucial for evolving
some approximate circuits.

In order to illustrate the CGP encoding in Fig. 1, we choose
the approximate 5-gate multiplier discussed in Section II-A2.
One important feature of CGP is that not all gates have to be
included in the phenotype (e.g., gate 9). The CGP encoding
is redundant; according to some studies [32], this enables us
to improve the quality of the search.

D. Fitness Function

The goal of evolution is to maximize the functionality of
approximate circuits whose size is constrained by the nc.nr

product. The fitness is then defined as error to be minimized as

f =
K∑

j=1

|y(j)− t(j)| (1)

where y is candidate circuit’s no-bit response and t is target
response. The number of fitness cases is K = 2ni , because we
have to evaluate circuit responses for all possible combina-
tions of operands for arithmetic circuits. This definition of the
fitness function is preferred over the Hamming distance based
function because a better performance has been reported in
in [10].

In the functional level evolution, the design problem is often
understood as a symbolic regression problem. Then, K is the
number of fitness cases in the training set.

1) Search Algorithm: We will use the (1+λ) search method
as recommended in [31].

1) The initial population of the size 1 + λ is created.
2) The fitness function f is called for each candidate circuit.
3) The highest-scored candidate circuit is selected as the

new parent. It has to be noted that the previous parent
α is never selected as the new parent if there are more
individuals with fitness f (α) and f (α) is the best fitness
value in a given population [31].

4) By applying a point mutation, λ offspring individuals
are generated from the parent. In this type of mutation,
h genes (integers) undergo a mutation.

5) Steps 2–4 are repeated until the termination condition is
not satisfied.

E. Heuristic Population Seeding

Let C be a fully functional circuit consisting of n two-input
gates. Let us suppose that CGP has to minimize the error (f)
and only up to n − 1 gates can be utilized. The proposed
heuristic for seeding the initial population is based on a local
search and works as follows.

Every single gate of C is independently replaced by a wire
connection (the upper input is connected to the output of the
gate), which results in n approximate circuits consisting of
n − 1 gates. The fitness values are then calculated for all n
circuits. The whole procedure is repeated, but now the lower
input is connected to the output for all the gates. In total, 2n
new approximate versions of C, each containing n − 1 gates,
are obtained. The circuit producing the smallest error is taken
as the seed for CGP.

A natural extension of this heuristic for a circuit in which n
gates have to be reduced to n−k gates consists of: 1) a random
selection of k gates and their replacement by wire connections;
2) calculating the fitness value of the modified circuit; and
3) repeating steps 1) and 2) N times (where N is a suitable
constant) and outputting the circuit with the best fitness value.
This approach is suitable for complex circuits (thousands of
gates or more) in which modifying all the gates could be very
time consuming.

F. Embedding the Heuristic Into CGP

Providing a single approximate circuit is not usually the
most valuable output of approximate circuit design methods.
Designers are looking for various tradeoffs among the design
objectives. In order to find approximate circuits for every pos-
sible number of gates, the proposed approximate circuit design
flow will call CGP several times. We have developed two
approaches for embedding the heuristic into CGP in order to
obtain approximate circuits containing n − 1, n − 2, . . . , 2, 1
gates. Together with the random population seeding, we thus
propose and compare the following three scenarios for seeding
the initial populations of CGP.

1) RS: All initial populations are randomly generated.
2) HS1: Heuristic seeding, according to Section III-E, in

which the best result of CGP containing m gates is
used by the heuristic to build a new seed containing
m − 1 gates. Applying HS1 means that each CGP run
is, therefore, interleaved by a single run of the heuristic
procedure removing just one gate from the best evolved
solution.

3) HS2: Heuristic seeding, according to Section III-E, in
which the heuristic is applied iteratively on its previous
result in order to build a set of seeds containing n − 1,
n − 2, . . . , 1 gates. This means that all requested seeds
are firstly generated by the heuristic and independent
CGP runs are then initialized using the created seeds.

The initial, fully functional solution, with which the heuristics
HS1 and HS2 begin, is a conventional implementation of target
circuits.

VASICEK AND SEKANINA: EVOLUTIONARY APPROACH TO APPROXIMATE DIGITAL CIRCUITS DESIGN 437

Fig. 2. Error of the randomly generated seeds (left column) and error of the evolved solutions (right column) for 2-bit, 3-bit and 4-bit approximate multiplier
in the RS scenario.

TABLE I
RELATIVE ERROR εmrt [%] FOR VARIOUS BIT WIDTHS w AND DIFFERENT

NUMBER OF CGP COLUMNS nc FOR TWO SELECTED ARITHMETIC

CIRCUITS (200 INDEPENDENT RUNS)

IV. EXPERIMENTAL RESULTS

Several papers have addressed the evolutionary design of
small combinational parallel w-bit multipliers with the goal of
minimizing the number of gates (see [30] and [33]). This task
is considered as a very difficult benchmark for evolutionary

circuit design methods; much more difficult than the evolution
of adders, multiplexers, or parity circuits. Hence results com-
petitive with conventional synthesis algorithms were reported
for up to 4-bit multipliers. This section extends these results
by considering approximate versions of the multiplier circuits.
Moreover, it presents a comparison of the proposed single
objective CGP with MOEA. The second case study deals
with the synthesis and optimization of approximate median
circuits with nine inputs (9-median, for short) and 25 inputs
(25-median) working over 8 bits. Results will be reported for
every possible number of gates (components) in order to show
all available tradeoffs.

A. Approximate Multipliers

The goal of CGP is to design a multiplier showing the low-
est possible error for a given number of gates. The error is
expressed according to Eq. 1. The CGP parameters are initial-
ized as nr = 1, l = nc, λ = 4, h = 5%, and � = {BUF, NOT,
AND, OR, XOR, NAND, NOR, XNOR}, where BUF stands

438 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 19, NO. 3, JUNE 2015

Fig. 3. Error of the seeds (left column) and error of the evolved solutions (right column) for 4-bit approximate multiplier in HS1 (top) and HS2 (bottom)
scenarios.

Fig. 4. Convergence curves for the best 4-bit multipliers in all 50 evolutionary
runs (nc = 58, RS strategy).

for an identity function. The setting of the CGP parameters is
based on experiments conducted in our previous research [10].
The evolutionary algorithm stops when the predefined num-
ber of generations gmax is exhausted. All the experiments were
performed on a cluster of computation nodes equipped with
Intel Xeon processors running at 3 GHz.

CGP, seeded by the RS strategy, is applied as follows. Let
nbst be the number of two-input gates required to implement a
conventional fully functional multiplier. All experiments were
conducted for nbst = 7, 23, and 59, corresponding to the
2-bit, 3-bit, and 4-bit multiplier constructed according to the
conventional Ripple-Carry-Array multipliers. For each w-bit
multiplier, we performed nbst independent experiments con-
sisting of 50 independent CGP runs each. The parameter

Fig. 5. Convergence curves for the best 4-bit multipliers in all 50 evolutionary
runs (nc = 58, HS1 strategy).

nc = nbst, nbst − 1, . . . , 1 is used in these experiments. The
initial population is always randomly generated. The maxi-
mum number of generations is limited to gmax = 800 · 106,
500 · 106 and 350 · 106 for the 4-bit, 3-bit, and 2-bit multipli-
ers (which is consistent with [30]), corresponding to a single
evolutionary run of 24 h, 3 h, and 50 min, respectively.

In the case of the HS1 and HS2 strategies, all the evo-
lutionary runs of the first experiment (when nc = nbst − 1)
are seeded with the same initial circuit obtained from a con-
ventional solution by removing exactly one gate. Seeding the
initial population means that the number of generations can
be reduced (see below). Hence we chose gmax = 200 · 106,
100 · 106, and 100 · 106 for 4-bit, 3-bit, and 2-bit multipliers,
respectively. The corresponding runtime of a single CGP run
is 2 h, 30 min, and 30 min, respectively.

VASICEK AND SEKANINA: EVOLUTIONARY APPROACH TO APPROXIMATE DIGITAL CIRCUITS DESIGN 439

Fig. 6. Error of the best 3-bit (top) and 4-bit (bottom) approximate multi-
pliers obtained by the proposed seeding strategies and in the multiobjective
optimization scenario (MOR, MOB).

TABLE II
PARAMETERS OF THE BEST FULLY FUNCTIONAL MULTIPLIERS

1) Random Seeding: Fig. 2 depicts fitness values of the ran-
domly generated seeds and resulting fitness values at the end
of evolution for all approximate multipliers in all runs. The
column on the left in Fig. 2 shows that the fitness values of
seeds are distributed similarly for all problem instances, inde-
pendent of the number of gates. The fitness values of evolved
circuits (the right column) are one order of the magnitude
smaller than in the case of the seeding circuits. However, the
errors are still relatively high, especially for the 4-bit mul-
tiplier. With decreasing amount of resources, the spread of
fitness values becomes smaller.

One can observe that the mean fitness fmean of the initial
seed (calculated over all runs) is practically independent of
the number of available gates for a given multiplier. In addi-
tional experiments, we analyzed this phenomenon in detail for
various multipliers and adders. Table I gives the mean relative
error

εmrt = fmean

2ni(2no − 1)
(2)

Fig. 7. Power consumption and error of the best evolved approximate 2-bit
multipliers for a given number of gates. The mean power reduction is shown
as a dotted line.

Fig. 8. Power consumption and error of the best evolved approximate 3-bit
multipliers for a given number of gates.

Fig. 9. Power consumption and error of the best evolved approximate 4-bit
multipliers for a given number of gates.

of randomly generated circuits consisting of one gate (nc = 1)
and nbst gates. It seems that εmrt ≈ 25% is a reasonable
error estimation, not only for multipliers, but also for other
approximate arithmetic circuits such as adders that are ran-
domly generated using the proposed method, independent of
the number of used gates. This is an important experimental
outcome that should help to establish the initial error of any
approximation of small combinational circuits performed by
means of CGP.

2) Heuristic Seeding: Because the HS1 strategy starts with
already preoptimized circuits, it can provide seeds that are

440 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 19, NO. 3, JUNE 2015

TABLE III
PARAMETERS OF MANUALLY CREATED AND EVOLVED APPROXIMATE

MULTIPLIERS FOR LARGER BIT-WIDTHS (w)

TABLE IV
RELATIVE ERROR DEVIATION OF TEN EVOLVED MEDIAN CIRCUITS FOR

VARIOUS NUMBERS OF TEST VECTORS

very close to resulting circuits (Fig. 3, above). Contrasted
to a very large spread of error values in RS (Fig. 2, right
column), it can be seen in HS1 that the CGP runs often
converge to one or two fitness values (errors). This is valu-
able for practice because it means that a single run almost
always provides a high-quality solution. The quality of seed-
ing by HS2 is 2–4 times worse as all seeds are generated
before the CGP is employed and no intermediate results
from CGP can influence the HS2 procedure (the y-axis in
Fig. 3, bottom left). The CGP runs converge to several solu-
tions with different fitness values (errors). However, in both
cases the error of the generated seeds is significantly lower
than the error of the randomly generated seeds (see last row
of Figs. 2 and 3).

3) Convergence Curves: Figs. 4 and 5 show convergence
curves of all runs in the case where the 4-bit multiplier can
utilize 58 gates (nbst = 59). Random seeding leads to long
convergence times (the best fitness value f stagnates after
104 generations) and relatively high errors (see the y-axis of
Fig. 4). The HS1 strategy starts with error f =128 and ends
with error f =32 in most cases (see the y-axis of Fig. 5).
The average error at the end of evolution seeded by RS is

approximately 50 times higher than in the case of the HS1
strategy.

4) Overall Comparison: Fig. 6 compares the best solutions
obtained in scenarios RS, HS1, and HS2 for 3-bit and 4-bit
approximate multipliers. We also included the best results
obtained from 50 independent runs of MOEA, which was
seeded randomly (MOR) and, in another series of 50 runs,
using conventional implementations of multipliers (MOB).

The utilized MOEA implements NSGA-II according to [26]
and employs a 50-member population. In order to allow
the same number of evaluations as in the proposed CGP,
gmax = 40 · 106 and 64 · 106 for 3-bit and 4-bit multipliers,
respectively, in the case of random seeding. The number of
generations was decreased to gmax = 8 · 106 and 16 · 106 in
the case of seeding by conventional implementations.

While performance of all the methods is similar on the
3-bit multiplier, HS1 and HS2 seeding strategies clearly out-
perform RS and both MOEAs in terms of quality of results
on the 4-bit multiplier. The gap is significant, especially when
60–90% gates remain in the circuit, which is a typical situation
in practice.

Another improvement is in terms of time: RS requires 15
times more generations to reach a solution of the same quality
as HS1 and HS2.

A detailed analysis of the best evolved approximate circuits
revealed that a circuit containing k gates can exhibit a higher
error than a circuit containing k − 1 gates (see, for example,
the small peak in the fitness function for circuits containing
16 gates and 17 gates in Fig. 6, HS1, w = 4). In practice, the
circuit containing 16 gates should be taken, even if 17 gates are
allowed. There are two explanations for this behavior. Either
the evolutionary algorithm did not find a better solution for
17 gates under our setup or a better solution for 17 gates does
not exist at all.

5) Power Consumption Versus Error Versus Area: Using
the SIS software [25], we calculated dynamic power consump-
tion and delay for the best fully functional conventional as
well as evolved multipliers (Table II), which will be serving
as reference solutions in the following comparisons. The cal-
culations are valid for the MCNC library [25], Vdd = 5 V
and 20 MHz. The relative area of the used gates is: INV-A
0.67, BUF 0.0, NAND2 and NOR2 1.00, AND2 and OR2 1.33,
XOR2 2.00, XNOR2 1.66. The sum of relative areas of gates
connected into a particular circuit will be denoted area and
will represent the total circuit area relatively to the area of a
single NAND gate in the following text.

Power consumption and error of the best evolved approx-
imate 2-bit multipliers are analyzed for a given number of
gates in Fig. 7. Power consumption is given relatively to the
best conventional solution from Table II. The 7-gate imple-
mentations are fully functional. It makes no sense to choose a
6-gate (3-gate, respectively) implementation because the same
error can be obtained using a 5-gate (2-gate, respectively)
implementation. The evolved 5-gate solution (error = 2) is
identical (in terms of structure as well as parameters) with
the approximate 2-bit multiplier discovered manually in [3]
(see Section II-A2). Contrasted to 7-, 6-, 4-, and 3-gate imple-
mentations, there is only one (we believe that truly optimal)

VASICEK AND SEKANINA: EVOLUTIONARY APPROACH TO APPROXIMATE DIGITAL CIRCUITS DESIGN 441

Fig. 10. Error of the seeds (left column) and error of the evolved solutions (right column) for 9-input (top) and 25-input (bottom) median circuits.

Fig. 11. Error of the best 9-input (top) and 25-input (bottom) approximate
median circuits obtained by the proposed strategies.

unique solution in terms of power consumption and error
composed of 5 gates.

Figs. 8 and 9 show power consumption and error of the
best evolved 3-bit and 4-bit approximate multipliers. A general
observation is that the amount of different implementations
(and spread of power consumption) decreases with reducing
available resources.

TABLE V
PARAMETERS OF THE BEST CONVENTIONAL MEDIAN CIRCUITS

Fig. 12. Power consumption and error of the best evolved approximate
9-median for a given number of components.

6) Comparison With Other Approximate Multipliers: We
rediscovered the manually created 2-bit approximate multiplier
consisting of five gates (it is denoted M2 in Table III) [3].
Contrasted to the manual design we were able to find very
good approximate 4-bit multipliers using CGP (see E4a and
E4b in Table III). In order to demonstrate the quality of the
evolved solutions, we composed (by the method introduced
in [3]) larger approximate multipliers (4-bit, 8-bit, and 16-bit)
using M2, E4a, and E4b. The approximate multipliers E4a and

442 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 19, NO. 3, JUNE 2015

Fig. 13. Power consumption and error of the best evolved approximate
25-median for a given number of components.

E4b were included in the table because they match the number
of gates (47 in the case of E4a) and the average error (1.23%
in the case of E4b) of the 4-bit approximate multiplier (C4)
composed of M2 multipliers.

Table III gives the resulting area and error of the cho-
sen approximate multipliers. The errors are given relative to
the corresponding maximum values. The maximum value of
the worst case error as well as average error is equal to
emax = 22w − 1. The average error is the total error (as defined
in Eq. 1) averaged over all 22w inputs.

Approximate multipliers composed of evolved approximate
4-bit multipliers show a better tradeoff between the area
and error than approximate multipliers composed of M2. For
example, the 8-bit multiplier (E8a) composed of evolved 4-bit
multipliers E4a exhibits the average error 0.32%, while the
average error of the 8-bit multiplier (C8) composed of M2 is
1.38%. Moreover, the worst case error of E8a is 5 times lower.
Both 8-bit multipliers, however, consists of 276 gates. A more
compact implementation E8b (208 gates) shows an average
error of 1.28%, which is even better than C8 can provide.

Our results are hardly comparable with the SASIMI method,
because SASIMI employs a different technology library
and applies various technology-dependent operations such as
downsizing of gates, which allows for an additional area reduc-
tion. For example, an 8-bit multiplier initially consisting of
1055 gates was processed by SASIMI, which resulted in a
37% area reduction (it roughly corresponding to an approxi-
mate multiplier consisting of 664 gates) and the average error
of 0.32% [7]. For the same average error, our 8-bit approxi-
mate multiplier E8a consists of 276 gates only. It thus exhibits
a reduction of 13% of gates in comparison with a different
initial implementation containing 319 gates.

B. Approximate Median Circuits

As it is intractable to evaluate all possible input combina-
tions (2569 and 25625 vectors) for candidate median circuits,
we randomly generated 104 training vectors for the 9-median
circuit and 105 vectors for the 25-median circuit. These val-
ues were selected according to Table IV, which shows the
average deviation of the error if a certain number of ran-
domly generated test vectors is applied to evaluate the quality
of these circuits. In order to eliminate the dependency on a

Fig. 14. Relation between the number of gates and power consumption (top)
and delay (bottom) for all evolved approximate 4-bit multipliers.

certain solution, ten evolved median circuits utilizing 50% of
the resources were used. Each circuit was evaluated using a set
of ten different randomly generated test vectors. It can be seen
that if we apply at least 104 test vectors multiple times to eval-
uate the error of the 9-median circuit, the obtained deviation
is less than 1%.

CGP operates with parameters nr = 1, l = nc, λ = 4,
h = 5%, and � = {BUF, MIN, MAX}. All components and
connections are defined over 8 bits. Fully functional imple-
mentations with nbst = 37 for the 9-median and nbst = 221 for
the 25-median were constructed using the bitonic sorter algo-
rithm [34]. The number of generations of the RS-based CGP is
limited by gmax = 3·106 for the 9-median and gmax = 300·103

for the 25-median which corresponds to 3 h CGP runs in both
cases. CGP exploiting HS1 and HS2 utilized only 1/3 of the
previously mentioned time budget. Each CGP run is repeated
50 times.

1) Role of Seeding: The randomly seeded CGP led to fully
functional solutions for the 9-median while no correct solution
was discovered for the 25-median. It seems that solving the
25-median design problem from scratch is impossible for any
evolutionary algorithm based on a direct encoding. Although
CGP could utilize up to nbst = 221 components, the most com-
plex circuits only use 106 components (Fig. 10). In order to
investigate this phenomenon, we conducted an another experi-
ment and seeded CGP by randomly created circuits that utilize
all 221 components, but most were disconnected in the course
of evolution, thus reaching 106 components again.

Fig. 10 shows the fitness values of all randomly created
circuits and the resulting evolved approximate median circuits.
Compared to the multiplier problem, the error values of the
randomly generated circuits are not distributed uniformly.

VASICEK AND SEKANINA: EVOLUTIONARY APPROACH TO APPROXIMATE DIGITAL CIRCUITS DESIGN 443

The effect of RS, HS1, and HS2 seeding strategies is com-
pared in Fig. 11, which gives the error of the best evolved
solution for a given number of components. All strategies per-
form almost identically for the 9-median when the number of
components is lower than 20. RS is clearly outperformed by
HS1 for the 25-median. We can again observe the situation
in which a circuit containing k components exhibits a higher
error than a circuit containing k − 1 components.

2) Best Approximate Median Circuits: Power consump-
tion, area, and delay of the best evolved fully functional
solutions are summarized in Table V. These circuits are com-
posed of 8-bit subcomponents: minimum and maximum. Each
is represented as a netlist containing the gates presented
in Section IV-A5. All the circuit parameters were obtained
from the SIS tool. Power consumption is given for 320 000
randomly generated input vectors.

Figs. 12 and 13 show power consumption and error of the
best evolved approximate median circuits. The error is cal-
culated using 106 test vectors. Power consumption is given
relatively to the fully functional circuit showing the lowest
power consumption.

Median circuits are very good examples of circuits for
which it makes sense to introduce their approximate versions.
The mean error remains relatively low, even for significant
reductions of available gates. Hence, significant improvements
in energy consumption are obtained.

V. CONCLUSION

The proposed method and experimental results can be inter-
preted from several points of view. First the proposed method
is a new systematic method for the design of approximate
circuits. Its main contribution lies in the area rather than the
error-oriented approach to approximate circuit design, which
enables the user to comfortably control the used resources. It
is useful, for example, when an image filter has to be approxi-
mated because the conventional implementation does not fit in
the available space on a chip. The method works at the logic
level and no special technology-oriented techniques (such as
downsizing of gates) were considered during our experimental
evaluation. Second, because the method is based on evolu-
tionary computation, it can naturally provide more tradeoffs
than current methods based on manual modifications of exist-
ing designs or reusing conventional synthesis tools. Third,
we evolved new approximate implementations of key circuits
(multipliers, median computing circuits) that can immediately
be used in various applications. These circuits, together with
approximate adders and other approximate combinational cir-
cuits presented in our previous work [10], demonstrate that the
CGP-based method is suitable for approximate circuits design.
Fourth, we have shown that the proposed method can easily
be extended from the gate to the functional level evolution.
Conventional methods (such as SALSA and SASIMI) work at
the bit level only and hence they cannot be applied to directly
approximate circuits such as the median. Fifth, we provided
detailed analyses of selected features of CGP, particularly the
population seeding, which had not been done before.

Our initial assumption that the power consumption is highly
correlated with area (see Section III-A) and that the proposed

methodology can be based on reducing the number of gates
was positively confirmed. Fig. 14 shows the dependence for
evolved multipliers. By considering the area (amount of gates)
only, without calculating power consumption for every can-
didate circuit, we obtained very good approximations in a
relatively short time.

Experimental results confirmed the superiority of heuristic
seeding of the initial population over random seeding. The
benefits are not only in improving the quality of evolved cir-
cuits, but also in reducing the time of optimization. Another
advantage is that each run of CGP seeded by the HS1 strategy
provides a high-quality solution. For more complex prob-
lem instances (such as the 25-median), the randomly seeded
standard CGP did not provide satisfactory results. A suitable
seeding approach thus remains a method to overcome this
limitation.

The execution time is certainly the most critical disadvan-
tage of the proposed method. It mainly depends on the number
of inputs and size of the circuit. When a suitable seeding of
the initial population is available, then CGP runtimes are typ-
ically in the order of tens of minutes on a common desktop
computer. As no execution times were reported for SASIMI,
we give the execution times of SALSA that, on a server with
an AMD Opteron 6176 (2.29 GHz) processor, ranged from 4
min to 2.5 h depending on the circuit complexity.

Our future research will focus on applying selected
approaches (such as incremental evolution, functional equiv-
alence checking) introduced to eliminate the scalability prob-
lems of evolutionary circuit design to evolutionary design
methods intended for approximate circuits. We believe that
the notion of approximate computing offers new applications
for genetic programming (such as a design of underdesigned
software for embedded systems) that should be explored in
future research.

REFERENCES

[1] J. Han and M. Orshansky, “Approximate computing: An emerging
paradigm for energy-efficient design,” in Proc. 18th IEEE Eur. Test
Symp., Avignon, France, 2013, pp. 1–6.

[2] V. Gupta, D. Mohapatra, A. Raghunathan, and K. Roy, “Low-power digi-
tal signal processing using approximate adders,” IEEE Trans. Computer-
Aided Design Integr. Circuits Syst., vol. 32, no. 1, pp. 124–137,
Jan. 2013.

[3] P. Kulkarni, P. Gupta, and M. D. Ercegovac, “Trading accuracy for
power in a multiplier architecture,” J. Low Power Electron., vol. 7, no. 4,
pp. 490–501, 2011.

[4] S. Venkataramani, A. Sabne, V. J. Kozhikkottu, K. Roy, and
A. Raghunathan, “SALSA: Systematic logic synthesis of approxi-
mate circuits,” in Proc. 49th Annu. Design Autom. Conf. (DAC),
San Francisco, CA, USA, 2012, pp. 796–801.

[5] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Neural accel-
eration for general-purpose approximate programs,” in Proc. 2012 45th
Annu. IEEE/ACM Int. Symp. Microarchitect., Vancouver, BC, Canada,
pp. 449–460.

[6] A. Sampson et al., “EnerJ: Approximate data types for safe and general
low-power computation,” in Proc. 32nd ACM SIGPLAN Conf. Program.
Lang. Design Implement., San Jose, CA, USA, 2011, pp. 164–174.

[7] S. Venkataramani, K. Roy, and A. Raghunathan, “Substitute-and-
simplify: A unified design paradigm for approximate and quality
configurable circuits,” in Design Autom. Test Europe (DATE), Grenoble,
France, 2013, pp. 1367–1372.

[8] J. D. Lohn and G. S. Hornby, “Evolvable hardware: Using evolutionary
computation to design and optimize hardware systems,” IEEE Comput.
Intell. Mag., vol. 1, no. 1, pp. 19–27, Feb. 2006.

444 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 19, NO. 3, JUNE 2015

[9] P. C. Haddow and A. M. Tyrrell, “Challenges of evolvable hardware:
Past, present and the path to a promising future,” Genet. Program.
Evolvable Mach., vol. 12, no. 3, pp. 183–215, 2011.

[10] L. Sekanina and Z. Vasicek, “Approximate circuits by means of
evolvable hardware,” in Proc. 2013 IEEE Int. Conf. Evolvable Syst.,
pp. 21–28.

[11] V. Venkatachalam and M. Franz, “Power reduction techniques for micro-
processor systems,” ACM Comput. Surv., vol. 37, no. 3, pp. 195–237,
2005.

[12] N. R. Shanbhag, R. A. Abdallah, R. Kumar, and D. L. Jones,
“Stochastic computation,” in Proc. 47th Annu. Design Autom. Conf.
(DAC), Anaheim, CA, USA, 2010, pp. 859–867.

[13] R. Venkatesan, A. Agarwal, K. Roy, and A. Raghunathan, “MACACO:
Modeling and analysis of circuits for approximate computing,” in Proc.
2011 IEEE/ACM Int. Conf. Comput.-Aided Design (ICCAD), San Jose,
CA, USA, pp. 667–673.

[14] M. Murakawa et al., “Evolvable hardware at function level,” in Parallel
Problem Solving from Nature—PPSN IV, LNCS 1141. Berlin, Germany:
Springer Verlag, 1996, pp. 62–71.

[15] A. P. Shanthi and R. Parthasarathi, “Practical and scalable evolution of
digital circuits,” Appl. Soft Comput., vol. 9, no. 2, pp. 618–624, 2009.

[16] E. Stomeo, T. Kalganova, and C. Lambert, “Generalized disjunction
decomposition for evolvable hardware,” IEEE Trans. Syst., Man, Cybern.
B, Cybern., vol. 36, no. 5, pp. 1024–1043, Oct. 2006.

[17] T. Gordon, “Exploiting development to enhance the scalability of hard-
ware evolution,” Ph.D. dissertation, Dept. Comput. Sci., Univ. College
London, London, U.K., 2005.

[18] K. Imamura, J. A. Foster, and A. W. Krings, “The test vector problem
and limitations to evolving digital circuits,” in Proc. 2nd NASA/DoD
Workshop Evolvable Hardware, Palo Alto, CA, USA, 2000, pp. 75–79.

[19] Z. Vasicek and L. Sekanina, “Formal verification of candidate solutions
for post-synthesis evolutionary optimization in evolvable hardware,”
Genet. Program. Evolvable Mach., vol. 12, no. 3, pp. 305–327, 2011.

[20] Z. Vasicek and K. Slany, “Efficient phenotype evaluation in Cartesian
genetic programming,” in Proc. 15th Eur. Conf. Genet. Program.,
Malaga, Spain, 2012, pp. 266–278.

[21] J. F. Miller, “On the filtering properties of evolved gate arrays,” in Proc.
1st NASA-DoD Workshop Evolvable Hardw., Pasadena, CA, USA, 1999,
pp. 2–11.

[22] G. Greenwood and A. M. Tyrrell, Introduction to Evolvable Hardware.
Piscataway, NJ, USA: IEEE Press, 2007.

[23] T. Knieper, P. Kaufmann, K. Glette, M. Platzner, and J. Torresen,
“Coping with resource fluctuations: The run-time reconfigurable func-
tional unit row classifier architecture,” in Proc. 9th Int. Conf. Evolvable
Syst., LNCS 6274. York, U.K., 2010, pp. 250–261.

[24] A. Thompson, P. Layzell, and S. Zebulum, “Explorations in design
space: Unconventional electronics design through artificial evolution,”
IEEE Trans. Evol. Comput., vol. 3, no. 3, pp. 167–196, Sep. 1999.

[25] E. M. Sentovich, “SIS: A system for sequential circuit synthesis,”
EECS Dept., Univ. California, Berkeley, Berkeley, CA, USA, Tech. Rep.
UCB/ERL M92/41, 1992.

[26] J. Petrlik and L. Sekanina, “Multiobjective evolution of approxi-
mate multiple constant multipliers,” in Proc. IEEE Int. Symp. Design
Diagnostics Electron. Circuits Syst., Karlovy Vary, Czech Republic,
2013, pp. 116–119.

[27] J. Hilder, J. Walker, and A. Tyrrell, “Use of a multi-objective fitness
function to improve Cartesian genetic programming circuits,” in Proc.
NASA/ESA Conf. Adapt. Hardw. Syst., Anaheim, CA, USA, 2010,
pp. 179–185.

[28] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput.,
vol. 6, no. 2, pp. 182–197, Apr. 2002.

[29] J. F. Miller, D. Job, and V. K. Vassilev, “Principles in the evolutionary
design of digital circuits—Part II,” Genet. Program. Evolvable Mach.,
vol. 1, no. 3, pp. 259–288, 2000.

[30] J. F. Miller, D. Job, and V. K. Vassilev, “Principles in the evolutionary
design of digital circuits—Part I,” Genet. Program. Evolvable Mach.,
vol. 1, no. 1, pp. 8–35, 2000.

[31] J. F. Miller, Cartesian Genetic Programming. New York, NY, USA:
Springer-Verlag, 2011.

[32] J. F. Miller and S. L. Smith, “Redundancy and computational efficiency
in Cartesian genetic programming,” IEEE Trans. Evol. Comput., vol. 10,
no. 2, pp. 167–174, Apr. 2006.

[33] S. Zhao and L. Jiao, “Multi-objective evolutionary design and knowl-
edge discovery of logic circuits based on an adaptive genetic algorithm,”
Genet. Program. Evolvable Mach., vol. 7, no. 3, pp. 195–210, 2006.

[34] D. E. Knuth, The Art of Computer Programming: Sorting and Searching,
2nd ed. Reading, MA, USA: Addison Wesley, 1998.

Zdenek Vasicek received the M.Sc. and Ph.D.
degrees in electrical engineering and computer sci-
ence from the Faculty of Information Technology,
Brno University of Technology, Brno, Czech
Republic, in 2006 and 2012.

He is an Assistant Professor with the Faculty
of Information Technology, Brno University of
Technology. His research interests include evolu-
tionary design and optimization of complex digital
circuits and systems. He has authored or co-authored
over 30 conference/journal papers focused on evolv-

able hardware and hardware design.
Mr. Vasicek received numerous awards for his research in evolvable hard-

ware, including the Joseph Fourier Award in 2011 for research in computer
science and engineering.

Lukas Sekanina (M’02–SM’12) received the
M.Eng. and Ph.D. degrees from Brno University
of Technology, Brno, Czech Republic, in 1999 and
2002, respectively.

He is a Full Professor with the Faculty
of Information Technology, Brno University of
Technology. His research interests include evolu-
tionary design and evolvable hardware. He was a
Visiting Lecturer with Pennsylvania State University,
The Behrend College, PA, USA, and a Visiting
Researcher with the University of Oslo, Oslo,

Norway, in 2001. He has co-authored over 150 papers, mainly on evolvable
hardware.

He received a Fulbright Scholarship to work with NASA Jet Propulsion
Laboratory, Pasadena, CA, USA, in 2004. He was an Associate Editor of
IEEE TRANSACTIONS OF EVOLUTIONARY COMPUTATION and an Editorial
Board Member of Genetic Programming and Evolvable Machines and
International Journal of Innovative Computing and Applications.

Appendix D

Evolutionary Design of Complex
Approximate Combinational Circuits

VASICEK, Zdenek and SEKANINA, Lukas. “Evolutionary Design of Complex Approx-
imate Combinational Circuits”. In: Genetic Programming and Evolvable Machines 17.2
(2016), pp. 169–192.

IF=1.143 (2015), contribution of the author of the thesis: 60%

Referenced on pages: 18, 37, 39, 40

111

Evolutionary design of complex approximate
combinational circuits

Zdenek Vasicek1 • Lukas Sekanina1

Received: 30 June 2015 / Revised: 13 November 2015 / Published online: 12 December 2015

� Springer Science+Business Media New York 2015

Abstract Functional approximation is one of the methods allowing designers to

approximate circuits at the level of logic behavior. By introducing a suitable func-

tional approximation, power consumption, area or delay of a circuit can be reduced

if some errors are acceptable in a particular application. As the error quantification

is usually based on an arithmetic error metric in existing approximation methods,

these methods are primarily suitable for the approximation of arithmetic and signal

processing circuits. This paper deals with the approximation of general logic (such

as pattern matching circuits and complex encoders) in which no additional infor-

mation is usually available to establish a suitable error metric and hence the error of

approximation is expressed in terms of Hamming distance between the output

values produced by a candidate approximate circuit and the accurate circuit. We

propose a circuit approximation method based on Cartesian genetic programming in

which gate-level circuits are internally represented using directed acyclic graphs. In

order to eliminate the well-known scalability problems of evolutionary circuit

design, the error of approximation is determined by binary decision diagrams. The

method is analyzed in terms of computational time and quality of approximation. It

is able to deliver detailed Pareto fronts showing various compromises between the

area, delay and error. Results are presented for 16 circuits (with 27–50 inputs) that

are too complex to be approximated by means of existing evolutionary circuit

design methods.

& Lukas Sekanina

sekanina@fit.vutbr.cz

Zdenek Vasicek

vasicek@fit.vutbr.cz

1 Faculty of Information Technology, IT4Innovations Centre of Excellence, Brno University of

Technology, Brno, Czech Republic

123

Genet Program Evolvable Mach (2016) 17:169–192

DOI 10.1007/s10710-015-9257-1

Keywords Approximate circuit � Cartesian genetic programming � Binary
decision diagram � Fitness function

1 Introduction

Reducing of energy consumption in integrated circuits is one of the key challenges

of current chip design industry [4]. Hence, various approaches to energy

consumption reduction have been developed. Energy consumption reduction can

be tackled at different system levels (such as circuit, architecture, operating system,

and software) with significantly different methodologies. One of them is approx-

imate computing trying to exploit the error resilience which is displayed by many

applications [11]. If one can relax the precision constraints, or tolerate some errors,

hardware and software can be simplified and work with less energy. Suitable ap-

plications for approximate computing were identified in the areas of multimedia,

database search, fault tolerant systems and others. They exploit the fact that human

users, as major consumers of data outputs, have limited perception capabilities and

no golden solution is usually available for validation of results [6]. An open

question is how to automate the approximation of circuits and software in order to

obtain desired quality of service (i.e. an acceptable error) and optimize available

resources.

The functional approximation is one of methods allowing designers to

approximate circuits at the level of logic behavior [40]. The idea behind the

functional approximation is that a less complex function than the original one is

implemented and used, providing that the error is acceptable and power

consumption, area on the chip or other parameters are improved adequately. The

approximations are obtained by a heuristic procedure which modifies the original,

accurate circuit. Applying genetic programming as a heuristic method for circuit

approximation has already led to finding high-quality compromises between key

circuit parameters, see, for example [35, 36].

As the vast majority of approximation methods employ an arithmetic error

metric, these methods are primarily suitable for the approximation of arithmetic

circuits (adders, multipliers) and digital signal processing circuits. This paper deals

with the approximation of general logic in which no additional information is

usually available to establish a suitable error metric. Introducing approximations to

general logic could be dangerous in many cases (e.g. for controllers), but there is

still an important class of circuits (such as combinational logic of pattern matching

circuits or complex encoders) in which the error can safely be exchanged for

reducing the energy consumption or the area on a chip. For example, see an

approximate pattern matching circuit optimized for fast classification of application

protocols in high-speed networks [9]. In these cases, the error of approximation has

to be expressed using a more general function, for example, as the average

Hamming distance between the output values produced by a candidate approximate

circuit and the accurate circuit.

170 Genet Program Evolvable Mach (2016) 17:169–192

123

The current literature describes various approaches to the digital circuit

approximation. Regarding the methodological and evaluation approaches, two

scenarios are dominating:

1. Ad hoc methods employed for the approximation of a (single) particular circuit.

For example, see the approaches proposed to approximate multipliers [17] and

adders [10].

2. Design automation methods developed for the approximation of a class of

circuits (for example, SALSA [40], SASIMI [39] and ABACUS [23]).

In the first scenario, a lot of knowledge about a particular circuit and its typical

utilization can be incorporated into the approximation method. However, it is

difficult to apply the method for approximation of other circuits. In the second

scenario, the approximations are performed using the same procedure for all

problem instances of a given class. Approximate circuits showing different

compromises between considered circuit parameters (area, delay, power consump-

tion and errors of different types) are generated and presented to the user whose

responsibility is to choose the most suitable approximate circuit for a given

application. A detailed analysis of the impact of the approximation procedure on

circuit parameters that were not considered during the approximation is also left on

the user.

The goal of this work is to propose and evaluate an automated circuit

approximation method (scenario 2) in which the error is expressed in terms of the

average Hamming distance. We opted for the evolutionary approach based on

genetic programming because it was capable of delivering high quality approx-

imations in our previous work [35, 36]. In our method, gate-level circuits are

evolved using Cartesian genetic programming (CGP) and internally represented

using directed acyclic graphs. The method is thus suitable for approximation of

combinational circuits, i.e. digital circuits in which the output values only depend

on current input values. In the case of sequential circuits containing memory

elements, the proposed method can be applied to a combinational part of the

circuit.

The evolutionary circuit design methods in which candidate circuits are

evaluated by checking their responses for all possible input combinations are not

scalable. The main reason is that the evaluation time grows exponentially with the

number of inputs. A naı̈ve approach to evolve approximate circuits would be to

identify a suitable subset of all possible input vectors, establish the fitness value

using this subset and evolve a circuit showing a good trade-off between the error

(for this subset) and the number of gates (or area). However, as it is reasonable to

evaluate only up to about 220 test vectors for each candidate circuit in a single CGP

run on a common desktop computer [34], the resulting error would be extremely

unreliable for circuits with, for example, 30 primary inputs.

In order to overcome this problem, we propose to determine the error of

approximation by an equivalence checking algorithm operating over binary decision

diagrams (BDD) representing the candidate approximate circuit and the accurate

Genet Program Evolvable Mach (2016) 17:169–192 171

123

circuit. The main advantage of BDDs is that the Hamming distance can be

determined in linear time with respect to the BDD size. Converting a candidate

circuit to BDD and performing the functionality comparison against the accurate

circuit, expressed again as BDD, can be performed relatively quickly for many

circuits relevant to practice. The proposed method is analyzed in terms of

computational time and quality of approximation.

The method is evaluated using 16 benchmark combinational circuits which are

difficult for the previous evolutionary approximation methods, because they have

too many primary inputs (27–50 inputs) and gates. Pareto fronts showing obtained

trade offs between the error, area and delay are also reported. Another contribution

of our work is that it is focused on general (i.e. non-arithmetic) approximate circuits

which has not been done before.

The rest of the paper is organized as follows. Section 2 summarizes relevant

work in the areas of functional approximation and digital circuit evolution. The

principles of BDD are defined in Sect. 3. The proposed method based on CGP is

introduced in Sect. 4. The experimental setup, benchmark circuits and results of

evolutionary design are presented in Sect. 5. Conclusions are given in Sect. 6.

2 Related work

This section briefly surveys conventional approaches introduced for functional

approximation and evolutionary design methods developed for the design of

common and approximate digital circuits. The survey is primarily focused on

combinational circuits as no other circuits are relevant for this paper.

2.1 Functional approximation

The goal of functional approximation is to modify a given logic circuit in such a

way that obtained error is minimal and key circuit parameters (such as delay, area

and power consumption) are improved with respect to the original logic circuit. The

approximations have been conducted manually or using systematic algorithmic

methods. The manual approximation methods whose example results are approx-

imate multipliers presented in [17] have recently been replaced by fully automated

systematic methods in order to increase the design productivity as well as the

quality and complexity of circuits that can be approximated.

The systematic design automation methods (such as SALSA [40], SASIMI [39]

and ABACUS [23]) produce Pareto fronts showing various compromise solutions

with respect to the optimized parameters (error, delay, and power consumption). It

allows the user to select the best compromise solution for a given application.

A typical automated method starts with a fully functional circuit which is

modified by means of a problem specific heuristic in order to improve key circuit

parameters, and keep the error within predefined bounds. The Pareto front is

obtained from multiple runs of a single-objective approximation (heuristic)

algorithm initialized using different parameters (for example, five target errors

are considered). Parameters of resulting approximate circuits are obtained by means

172 Genet Program Evolvable Mach (2016) 17:169–192

123

of professional design tools. As only tens to hundreds of design alternatives are

generated, the resulting solutions do not cover the whole Pareto front and they are

typically centered around a few dominant design alternatives (e.g. [23]). The

available literature describing these methods does not present any detailed analyses

of resulting Pareto fronts, i.e. it is unknown whether and how much the obtained

results can be improved if, for example, more execution time were invested.

The key issue seems to be an efficient and reliable evaluation of candidate

approximate circuits. Various error functions have been used, for example, worst

error, relative error, average error magnitude, and error probability. While these

errors can be computed for small circuits by analyzing circuit responses for all

possible input vectors, formal methods have to be introduced to determine the error

of complex arithmetic circuits. For example, an auxiliary circuit is constructed

which instantiates the candidate approximate circuit and the accurate (golden)

circuit and compares their outputs to quantify the error for any given input. In order

to check whether a predefined worst error is violated by the candidate approximate

circuit, Boolean satisfiability (SAT) solver is employed [41]. However, for example,

no method capable of establishing the average error using a SAT solver has been

proposed up to now.

Contrasted to the methods precisely calculating the error (which were described in

the previous paragraph), the error of approximation is also often estimated using

training data sets. This is typical for image and signal processing components (filters,

classifiers) because suitable training data are usually available and calculating the

exact error is intractable because of the overall complexity of these components [23].

Fault tolerant systems are another natural class of applications of approximate

computing. Redundant circuits which are present in such systems can be

approximated in order obtain a good trade off between dependability parameters

and power consumption or area on the chip [25].

2.2 Evolutionary circuit design

The idea of evolvable hardware and digital circuit evolution was introduced by

Higuchi et al. [12], in which the evolution of a six-input multiplexer using a circuit

simulator was presented. Thompson reported first circuits evolved directly in the

hardware in 1996 [29].

A significant development of evolutionary circuit design is connected to

Cartesian genetic programming, a branch of genetic programming whose problem

representation was inspired by digital circuits. In CGP, candidate circuits are

encoded as arrays of integers and evolved using a simple search strategy. The

standard CGP, its extensions (such as self-modifying CGP) and typical applications

have been surveyed in a monograph [19]. Miller et al. demonstrated that CGP can

improve results (in terms of the number of gates and delay) of conventional circuit

synthesis and optimization algorithms in the case of small arithmetic circuits. A 4-b

multiplier was the most complex circuit evolved in this category [38].

After the year 2000, various digital (predominately combinational) circuits were

evolved. These circuits can be classified into two categories—completely specified

and incompletely specified circuits. Completely specified circuits are arithmetic

Genet Program Evolvable Mach (2016) 17:169–192 173

123

circuits and general logic circuits in which a perfect response is requested for every

legal input vector. On the other hand, incompletely specified circuits are used in

applications such as classification, filtering, hashing and prediction in which the

correctness can only be verified using a subset of all possible input vectors.

In comparison with conventional methods, the evolutionary design method is less

scalable. It has several reasons. First, long chromosomes are needed to represent

complex circuits, and consequently, huge search spaces have to be explored in

which it is difficult to find useful designs. Second, the evaluation of complex circuits

is very time consuming. In a typical approach, 2n input vectors are applied (and

simulated) to calculate the fitness of an n-input combinational circuit. In current

practice, the maximum complexity of evolved circuits is low (about 20 inputs and

100 gates).

Several methods have been proposed to increase the complexity of circuits that

can be obtained using evolutionary algorithms (EA). Functional level evolution [22]

and decomposition methods [28, 30] enabled to reduce the search space. Combining

functional level evolution with decomposition led to another increment in the

complexity of evolved circuits [27]. Regarding the completely defined circuits,

examples of the most complex circuits evolved so far are 22-b parity [24], 9-b adder

[14] and 5-b multiplier [14]. The most complex circuit evolved using decomposition

is a 135-b multiplexer which was obtained with a learning classifier system

operating with complex building blocks. The correctness of resulting circuits was,

however, estimated using simulation and manual inspection because it was

impossible to get responses for all 2135 input vectors [15].

More promising results have been obtained by methods which try to reduce the

fitness evaluation time using formal approaches in the fitness function.

In order to minimize the number of gates in fully functional circuits produced by

well-tuned common synthesis and optimization tools, Vasicek and Sekanina [32]

proposed to replace the circuit simulation by functional equivalence checking

algorithms. For each candidate circuit and its parent, a SAT problem instance was

created and solved using a SAT solver. If both circuits are functionally equivalent,

the fitness of the candidate circuit is defined as the number of gates (with the aim to

minimize them); otherwise, the candidate circuit is discarded. This approach led to a

significant reduction in gate count for circuits having hundreds of inputs and

containing thousands of gates [31], which is unreachable by the state of the art logic

synthesis tools such as ABC [21]. The most complex circuit optimized using this

method contains 16,158 gates and has 2176 inputs and 2136 outputs [31].

The SAT-based method is applicable only if a fully functional circuit is available.

If a circuit has to be evolved from scratch (i.e. when no structural information about

the circuit is provided, but responses are defined for all possible input combina-

tions), Vasicek and Sekanina [34] combined CGP with BDD and developed a tool

which allowed for evolving circuits with tens of inputs. The BDDs in the fitness

function enable to effectively determine the Hamming distance between the output

vectors of two circuits for many important problem instances (see Sect. 3). A

28-input circuit was successfully evolved from scratch without any kind of

decomposition technique. In addition to that, the obtained circuit had less gates (a

174 Genet Program Evolvable Mach (2016) 17:169–192

123

57 % reduction) than the result of a conventional optimization conducted by the

state-of-the-art tool.

2.3 Evolutionary circuit approximation

The use of evolutionary algorithms for functional approximation was surveyed in

[26]. Employing evolutionary algorithms seems to be natural with respect to the

goal of the approximation task. Small modifications introduced in the progress of

evolution via genetic operators to a population of circuits and the principle of the

survival of the fittest naturally lead to discovering such circuits which show very

good compromises between the error and area (power consumption). Available

evolutionary approximation methods employ CGP, which can operate either as a

single-objective or multi-objective evolutionary optimizer. Within a given time

which is available for the design, the single objective CGP provided more compact

circuits than its multi-objective version [13, 35, 36].

Because of the scalability problems, the evolutionary approach allowed obtaining

only relatively small approximate combinational circuits and arithmetic circuits (up

to 8-b adders and multipliers [33, 35] when seeded by conventional implementa-

tions). More complex circuits, such as a 25-input median circuit, were then

approximated by an evolutionary algorithm estimating the error of approximation

using a small subset (105 vectors) of all possible input vectors (1060) [36]. However,

the method evaluating candidate circuits using a subset of input vectors is not

applicable to approximate arithmetic circuits and other circuits that we treated as

completely defined in Sect. 2.2.

In order to approximate complex circuits (belonging to the class of completely

defined circuits) using the Hamming distance as a metric, we will use BDDs in the

fitness function. This idea was initially proposed in our paper [37], but without a

detailed experimental evaluation.

3 Binary decision diagrams in circuit design

3.1 Binary decision diagrams

A BDD is one of possible representations of logic functions. A BDD is a directed

acyclic graph with one root, non-terminal nodes and two terminal nodes that are

referred to ‘0’ and ‘1’. Each non-terminal node is labeled by a primary input

variable xi. If xi ¼ 0 then the outgoing zero-edge is taken; if xi ¼ 1 then the

outgoing one-edge is taken. By tracing a path from the root to terminal node ‘1’ one

obtains an assignment to input variables for which the function is evaluated to 1. An

ordered binary decision diagram (OBDD) is a BDD where variables occur along

every path from the root to a terminal node in strictly ascending order, with regard

to fixed ordering. A reduced ordered binary decision diagram (ROBDD) is an

OBDD where each node represents a unique logic function, i.e. it contains neither

isomorphic subgraphs nor nodes with isomorphic descendants. Figure 1 shows a

Genet Program Evolvable Mach (2016) 17:169–192 175

123

Boolean function represented by truth table and corresponding BDD and ROBDD.

Two or more logic functions can be represented by a single ROBDD (i.e. there are

several root nodes) in which some subgraphs are shared by some of the functions.

ROBDDs are important because they are canonical, i.e. if two logic functions

have the same truth table, their ROBDDs are isomorphic. Unfortunately, the size of

ROBDD (i.e. the number of non-terminal nodes) for a given function is very

sensitive to the chosen variable order; in some cases it is linear, in other cases is

exponential with respect to the number of inputs [5]. Moreover, multipliers are

known for their exponential memory requirements for any variable ordering [1]. In

order to optimize the size of ROBDD, various minimization algorithms were

proposed [5]. The most efficient method is sifting, an iterative algorithm which is

based on finding the optimum position of each variable assuming that all other

variables remain fixed.

BDDs and evolutionary computing have been combined in the past. For example,

variable ordering of an BDD was optimized by EA [2], and an EA that learns

heuristics for BDD minimization was proposed in [3]. Detailed survey is available

in [5].

3.2 Operations over BDDs

ROBDDs are equipped with several operations. Let us mention two basic operations

that are relevant to our paper: apply and Sat-Count.

The apply(op, f, g) operation enables to construct a ROBDD from existing

ROBDDs. It takes a binary operator op and two ROBDDs f and g as arguments and

returns a ROBDD corresponding with the result of f op g [18]. In fact, apply is a

complex operation which can remove some nodes, add new nodes, and rearrange

existing nodes to guarantee that the resulting BDD is a ROBDD.

The Sat-Count operation computes the number of input assignments for which f

is evaluated to ‘1’, i.e. it determines the number of elements in the so-called Onset

of f. Sat-Count can be performed in time O(|F|), where F is a ROBDD

corresponding to f, just by following the leftmost path in F that leads to a non-

Fig. 1 Logic function f ¼ acþ bc expressed using truth table, BDD and ROBDD

176 Genet Program Evolvable Mach (2016) 17:169–192

123

zero terminal. It means that the Sat-Count operator can be implemented in such a

way that the number of input assignments for which f ¼ 1 is obtained with linear

time with respect to the size of ROBDD constructed for f. This is a very important

feature in the context of evolutionary circuit design. Obtaining the same result using

simulation requires 2njCj steps for n-input circuit C containing |C| gates. On the

other hand, it has to be noted that the worst case time complexity of BDD

construction is exponential (see [5]), but it is not usually the case of circuits used in

practice.

Several libraries have been developed to effectively construct (RO)BDDs and

perform operations over them. In this work, Buddy package is employed [18].

3.3 Hamming distance using BDDs

BDDs are often used to decide whether two combinational circuits are functionally

equivalent. Let us suppose that both circuits have k inputs denoted x1. . .xk and m

outputs denoted y1. . .ym and y01. . .y
0
m, respectively. Corresponding primary inputs of

both circuits are aligned and corresponding primary outputs yi and y0i are connected
using the XOR gates. The goal is to obtain one (auxiliary) circuit with k primary

inputs x1. . .xk and m primary outputs z1. . .zm, zi ¼ yi XOR y0i. In order to disprove

the equivalence, it is then sufficient to identify at least one output zi whose OnsetðziÞ
is not empty, i.e. to find an input assignment x for which the corresponding outputs

yi and y0i provide different values. An example is given in Fig. 2 where two circuits

CA and CB with four inputs and two outputs are checked for Boolean equivalence.

Because y2 and y02 capture the same Boolean function, the ROBDD constructed for

z2 consists of a single pointer to the zero node. The outputs y1 and y01, however,
represent different Boolean functions. The ROBDD constructed for z1 thus consists

of non-zero number of nodes and there exists at least one path from the root node

determined by pointer z1 to the node 1.

The auxiliary circuit used to perform the combinational equivalence checking

can be applied to determine the Hamming distance between truth tables of circuit

Fig. 2 Auxiliary circuit used to perform equivalence checking of two combinational circuits CA and CB

(left) and ROBDD constructed for z1 and z2 (right)

Genet Program Evolvable Mach (2016) 17:169–192 177

123

CA and CB. The Hamming distance can be obtained by applying the Sat-Count

operation on every output zi and counting up all the results. In the example shown in

Fig. 2, Sat-Count will return 2 for z1 and 0 for z2, i.e. the Hamming distance is

0þ 2 ¼ 2. It can easily be checked that if x 2 f0000; 0110g, the circuits provide

different output values. The Hamming distance is obtained in linear time with

respect to the number of outputs.

4 Proposed method

The proposed method is based on the standard CGP [19]. The main contribution of

this work is redefining the fitness calculation procedure in such a way that it can

handle circuits with tens to hundreds of inputs, and showing how various

compromises between the error, area and delay can be found.

Because many candidate approximate circuits have to be generated and evaluated

during a typical CGP run, it is impossible to evaluate everyone using a professional

design tool. Hence circuit parameters are estimated. This strategy was validated in

[35].

It is assumed that the specification (i.e. an accurate circuit behavior) is given in a

form of ROBDD (let us denote it r). If not, a corresponding ROBDD is created from

the accurate circuit using the apply operator as described in Sect. 3.2.

4.1 Circuit representation

A gate-level ni-input/no-output circuit is represented using a directed acyclic graph

which is encoded in a 1D array consisting of nc gates. The number of rows, which is

one of CGP parameters, is set to nr ¼ 1. This graph is internally stored using a string

of integers, the so-called chromosome. The set of available logic functions is

denoted C. The primary inputs are labeled 0. . .ni � 1 and the gates are labeled

ni; ni þ 1; . . .; ni þ nc � 1. For each gate, the chromosome contains three integers—

two labels specifying where the gate inputs are connected to and a code of function

in C. The last part of the chromosome contains no integers specifying either the

nodes where the primary outputs are connected to or logic constants (‘0’ and ‘1’)

which can directly be connected to the primary outputs. Example is given in Fig. 3.

AND

2

3
5

OR

2

4
6

OR

5

2
7

XOR

7

6
8

OR

7

4
9

x0

x1

x2

x3

y1 (7)

y2 (8)

x4

Fig. 3 Example of a circuit in CGP with parameters: ni ¼ 5; no ¼ 2, nc ¼ 5, C ¼ f0and; 1or; 2xorg.
Chromosome: 2, 3, 0; 2, 4, 1; 5, 2, 1; 7, 6, 2; 7, 4, 1; 7, 8. Gate 9 is not used. Its logic behavior is:
y1 ¼ ðx2 and x3Þ or x2; y2 ¼ y1 xor ðx2 or x4Þ

178 Genet Program Evolvable Mach (2016) 17:169–192

123

The chromosome size is 3nc þ no genes (integers) if two-input gates are used.

The main feature of this encoding is that the size of the chromosome is constant for

a given ni; no and nc. However, the size of circuits represented by this chromosome

is variable as some gates can remain disconnected. The gates which are included

into the circuit after reading the chromosome are called the active gates.

4.2 From chromosome to ROBDD

Let circuit A be a candidate circuit represented using CGP. A new ROBDD, a,
which is functionally equivalent with A has to be constructed. In order to do so, the

number of BDD variables is defined firstly. Then, the apply function is called for

every active gate Nj of circuit A. It consumes the logic function performed by Nj and

two operands of Nj which are interpreted as pointers to appropriate ROBDD nodes

or input variables. The function yields a pointer to a new ROBDD which represents

the Boolean function at the output of gate Nj. Depending on the logic function of Nj,

one or several new ROBDD nodes are thus included into a by means of one call of

apply. The active nodes of A have to be processed from left to right in order to

construct the ROBDD correctly.

4.3 Design objectives

There are three design objectives considered in this work: functionality (error),

delay, and area.

4.3.1 Functionality

Circuit functionality is evaluated at the level of ROBDD and measured as the

Hamming distance between the output bits generated by a and r for all possible

input combinations. The procedure follows the principle described and illustrated

(Fig. 2) in Sect. 3.3. In particular, corresponding outputs of a and r are connected to

a set of exclusive-or gates, i.e. zi ¼ yai xor yri for i ¼ 1; 2; . . .; no. By means of the

Sat-Count operation, one can obtain the number of assignments bi to the inputs

which evaluate zi to 1. Finally, the Hamming distance between a and r, i.e. the
fitness (functionality) of A, is the sum of bi (see Eq. 1).

In order to accelerate this procedure, the ROBDD construction is optimized. We

exploit the fact that the accurate circuit and candidate circuit (which was, in fact,

created by a sequence of mutations over the accurate circuit) contain some identical

subcircuits which can be removed for purposes of the Hamming distance

calculation. ROBDD is then constructed using only those subcircuits which are

not present in both circuits, i.e. the size of ROBDD is reduced.

4.3.2 Delay

In order to estimate the electrical parameters of circuit A, the area and delay are

calculated using the parameters defined in the liberty timing file available for a

Genet Program Evolvable Mach (2016) 17:169–192 179

123

given semiconductor technology. Delay of a gate is modeled as a function of its

input transition time and capacitive load on the output of the gate. Delay of the

whole circuit is determined as delay along the longest path.

4.3.3 Relative area

The area of a candidate circuit is calculated relatively to the area of a nand gate. The

following gates are considered in C: and, or, xor, nand, nor, xnor, buf, inv, with
corresponding relative areas 1.333, 1.333, 2, 1, 1, 2, 1.333, and 0.667. It is assumed

that power consumption is highly correlated with the area and hence it is sufficient

to optimize for the area as proposed in [35].

4.4 Search method

The search method follows the standard CGP approach [19]. The initial population

is seeded by the accurate circuit. In order to generate a new population, k offspring

individuals are created by a point mutation operator modifying h genes of the parent

individual. The parent is either the accurate circuit (in the first generation) or the

best circuit of the previous generation (in remaining generations).

One mutation can affect either the gate function, gate input connection, or

primary output connection. A mutation is called neutral if it does not affect the

circuit’s fitness. If a mutation hits a non-used part of the chromosome, it is detected

and the circuit is not evaluated in terms of functionality because it has the same

fitness as its parent. Otherwise, the error is calculated. The best individual of current

population serves as the parent of new population. The process is repeated until a

given number of generations (or evaluations) is not exhausted.

The role of mutation is significant in CGP (see detailed analysis in [8, 20]). A

series of neutral mutations can accumulate useful circuit structures in the part of the

chromosome which is not currently used. One adaptive mutation can then connect

these structures with active gates which could lead to discovering new useful

circuits. It has to be noted that the mutation operates over chromosomes (not at the

level of BDDs).

In order to construct Pareto front, we follow the approach in which a single-

objective CGP (utilizing a linear aggregation of objectives) is executed multiple

times with different target errors ei (ei [0). It is assumed that Pareto front has to be

constructed for v different errors e1. . .ev (each expressed as a percentage of the

average Hamming distance). An obvious criticism of this approach is that some

solutions are never obtained and a classic multi-objective EA such as NSGA-II has

to be used. Despite the fact that some hybridizations of NSGA-II and CGP have

been proposed [13, 16], our previous studies in the area of evolutionary circuit

approximation have shown that single-objective approaches provide better results

[35, 36].

We propose a two-stage procedure for evolving an approximate circuit showing

target error ei using a single-objective CGP.

The first stage starts with a fully functional solution which is always available in

practice. The goal is to gradually modify the accurate circuit and produce an

180 Genet Program Evolvable Mach (2016) 17:169–192

123

approximate circuit showing desired error ei providing that a 5 % difference is

tolerated with respect to ei (tolerating a small error is acceptable; otherwise the

search could easily stuck in a local extreme). The 5% error tolerance means that if,

for example, ei ¼ 0:3 % then we accept all circuits showing the error

0:285. . .0:315 %. The fitness function fit1 used in the first stage is thus solely

based on the average Hamming distance (see Sect. 4.3.1),

fit1 ¼ ErrorðAÞ ¼
Pno

i¼1 bi

2ni
: ð1Þ

In the second stage, which begins after obtaining a circuit with the target error,

the fitness function reflects not only the error, but also the area and delay. Each

objective is normalized to the interval h0; 1i and multiplied with weights we, wa and

wd, respectively (we þ wa þ wd ¼ 1). Then,

fit2ðAÞ ¼ weErrorðAÞ þ waAreaðAÞ þ wdDelayðAÞ: ð2Þ

It is requested that the Error remains within 5 % tolerance with respect to ei.

Candidate circuits violating this hard constraint are discarded.

5 Results

This section firstly introduces benchmark circuits and CGP parameters used in all

experiments. In order to check whether CGP can improve the results of

conventional optimization and simultaneously obtain high-quality fully functional

circuits which will be good starting points for subsequent approximations, CGP was

employed to optimize the parameters of original (accurate) benchmark circuits. All

results of approximations are represented as points in figures showing the objective

space. Pareto fronts are constructed using the best obtained solutions.

5.1 Benchmarks

In order to evaluate the proposed approximation method which employs the

Hamming distance to determine the error, we selected different types of

combinational circuits from LGSynth, ITC and ISCAS libraries [7]. Even some

arithmetic circuits (e.g. c3540) which should be approximated under an arithmetic

error metric are included. The chosen circuits are difficult for the standard CGP,

because ni [25 and more than 150 gates are involved [19].

At the beginning, all benchmark circuits were optimized using BDS [42] to get a

reference solution from a ‘‘conventional’’ state-of-the art logic optimizer. Table 1

gives the number of primary inputs (ni) and primary outputs (no), and then the

number of gates (ng) and delay (in terms of logic levels) after the optimization

conducted by BDS. Table 1 also gives parameters of corresponding BDDs which

serve as reference implementations used for Hamming distance calculations. The

BDD size (see column |BDD|), obtained using [18], ranges from 321 nodes (itc_b10)

to more than one million nodes (c3540). Because the size of BDD used as a

Genet Program Evolvable Mach (2016) 17:169–192 181

123

reference influences how fast the Hamming distance calculation and the whole

evolutionary design can be, it is beneficial to optimize the BDD. The operations

over small and optimized BDDs will then be performed faster than over original

BDDs. Hence, we applyied sifting minimization algorithm to reduce the size of

BDD. The results are reported in column jBDDoptj. The improvement due sifting,

which is 75.4 % on average, is given in the gainopt column. The last column topt is

the time spent in the sifting procedure (in s). As it can be seen, the optimization of

the variable order is able to ensure significant savings in the number of BDD nodes

required to represent a reference circuit for a small cost of runtime. Note that this

optimization is performed just once, before CGP is executed.

5.2 CGP setup

As the purpose of this paper is not to perform a detailed analysis of the CGP

parameters setting, we used CGP with parameters that are usually reported in the

literature. According to [26], the weights are chosen to be we ¼ 0:12, wa ¼ 0:5,
wd ¼ 0:38 and the CGP setup is: k ¼ 4, h ¼ 5, C as defined in Sect. 4.3.3, and nc is

the number of gates in a particular benchmark circuit (according to Table 1). The

experiments were conducted on a 64-b Linux machine running on Intel Xeon X5670

CPU (2.93 GHz, 12 MB cache) equipped with 32 GB RAM. CGP is implemented

as a single-thread application.

Table 1 Parameters of benchmark circuits

Circuit Circuit parameters Reference circuit

ni no Gates Levels |BDD| jBDDoptj gainopt (%) topt

apex1 45 45 823 15 7073 1344 81 2.5

c1355 41 32 186 11 148,003 38,481 74 4.3

c3540 50 22 868 27 1,014,533 30,436 97 57.9

c432 36 7 159 25 167,300 1673 99 9.5

clmba 46 33 641 19 6966 627 91 2.3

itc_b05a 34 56 427 24 18,788 1691 91 1.3

itc_b07a 49 49 312 25 11,055 995 91 3.1

itc_b10a 27 17 166 10 321 222 31 1.1

itc_b11a 37 31 421 18 1552 652 58 1.3

s1238a 31 31 483 18 1822 729 60 1.2

s635a 34 33 151 10 394 134 66 0.7

signet 39 8 630 17 11,471 1606 86 1.3

too_large 38 3 771 18 3508 807 77 3.3

x1dn 27 6 164 18 896 260 71 0.9

x6dn 39 5 318 14 3685 258 93 1.7

x9dn 27 7 168 20 484 218 55 0.5

The circuits that originally come from sequential benchmarks (i.e. represent a combinational subcircuit of

a sequential circuit) are marked by superscript a

182 Genet Program Evolvable Mach (2016) 17:169–192

123

5.3 Optimization of accurate circuits

First, CGP was employed to optimize the original benchmark circuits, i.e. no errors

tolerated, ErrorðAÞ ¼ 0. This step was performed because it has been known that a

significant area reduction can be obtained by means of CGP [32].

A single CGP run was terminated after 30 min which seems to be a good

compromise between requirements of practitioners expecting short optimization

times and resources-demanding CGP. The number of generations was not specified

as the termination criterion because the benchmark circuits have significantly

different properties and, for example, different time is needed to process

corresponding BDDs.

Table 2 gives parameters of the best and average circuit (obtained out of ten

independent runs) with respect to parameters of original benchmarks: fitness (fit2),

the generation in which the best circuit was reached, and time to obtain the best

circuit (runtime). It can be seen that the evolutionary optimization can lead in many

cases to a significant delay, area (and, consequently, energy) reduction without

introducing any error into the circuit. For example, an 80 % area improvement is

reported for too_large benchmark circuit with respect to BDS. This particular circuit

is hard for conventional optimization methods. Moreover, the parameters of the

average circuits (determined as a median of all the runs) are close to the parameters

of the best obtained circuit. C3540 and C1315 circuits represent the only exception

where nearly none improvement is reported. A single gate was removed during

optimization in both cases. Because the runtimes are close to the time limit, the

majority of the benchmark circuits would be probably improved if more time is

available to the evolution.

5.4 Evolutionary approximation

The circuits evolved in Sect. 5.3 will be used as (reference) accurate circuits in

Pareto fronts. CGP-based approximations are performed from these accurate circuits

for errors from e1 ¼ 0:1 to e9 ¼ 0:9 % given in terms of the Hamming distance.

Results are presented from ten independent 30 min runs (one run one thread).

Firstly, we analyzed the first stage of the approximation. We calculated the time

required to get an approximate circuit showing desired error ei providing that an

accurate circuit is used as a seed. In most cases,\1 s is required to find such a

circuit. This corresponds with hundreds to few thousands of evaluated generations.

Table 3 summarizes the cases in which more than 1 s is needed. The most difficult

cases are c1355, c3540 and c432, and in particular 0.1–0.51 % error in case of c432,

where some of the CGP runs spent more than 5 min. This was expected for c3540

and c1355 circuits because they are large and their BDDs are complex. A possible

explanation for C432 is that the target error is too small. This findings is based on

the fact that the number of evaluated generations is high (more than 15,000

genenerations) and that the achieved reduction in the area is low compared to the

other benchmarks (see Fig. 4). We can, however, conclude that desired approxi-

mations can be reached relatively quickly if the other objectives are not taken into

account. The chosen search strategy seems to be very efficient in this task despite

Genet Program Evolvable Mach (2016) 17:169–192 183

123

T
a
b
le

2
P
ar
am

et
er
s
o
f
th
e
b
es
t
an
d
av
er
ag
e
ac
cu
ra
te

ci
rc
u
it
s
o
b
ta
in
ed

u
si
n
g
C
G
P

C
ir
cu
it

B
es
t
o
b
ta
in
ed

ci
rc
u
it

A
v
er
ag
e
ci
rc
u
it
(m

ed
ia
n
)

fi
t 2

G
en
er
at
io
n

R
u
n
ti
m
e
(m

in
)

Im
p
ro
v
em

en
t

fi
t 2

R
u
n
ti
m
e
(m

in
)

Im
p
ro
v
em

en
t

G
at
es

(%
)

A
re
a
(%

)
D
el
ay

(%
)

G
at
es

(%
)

A
re
a
(%

)
D
el
ay

(%
)

ap
ex
1

0
.9
6

1
.6

9
1
0
6

2
8

3
3

5
0
.9
6

2
6

2
3

5

c1
3
5
5

1
.0
0

7
.6

9
1
0
3

2
8

\
1

\
1

0
1
.0
0

2
1

0
0

\
1

c3
5
4
0

1
.0
0

4
.9

9
1
0
3

1
1

\
1

\
1

0
1
.0
0

0
0

0
0

c4
3
2

0
.9
7

6
3
.4

9
1
0
3

1
8

2
3

2
0
.9
7

1
7

1
2

3

cl
m
b

0
.6
5

2
.9

9
1
0
6

2
9

3
6

3
6

2
6

0
.7
0

2
9

3
1

3
2

2
0

it
c_
b
0
5

0
.9
4

0
.5

9
1
0
6

2
9

5
6

1
0
.9
5

2
8

4
5

1

it
c_
b
0
7

0
.9
7

0
.4

9
1
0
6

7
\
1

1
7

0
.9
7

8
\
1

1
6

it
c_
b
1
0

0
.9
1

3
.7

9
1
0
6

1
3

7
6

1
8

0
.9
1

2
1

7
6

1
6

it
c_
b
1
1

0
.9
6

2
.5

9
1
0
6

2
6

4
4

1
0
.9
7

2
9

3
3

1

s1
2
3
8

0
.8
5

2
.8

9
1
0
6

2
8

1
3

1
5

1
2

0
.8
6

2
9

1
3

1
4

1
3

s6
3
5

0
.9
4

1
0
.0

9
1
0
6

2
5

3
2

2
4

0
.9
6

2
4

4
3

6

si
g
n
et

0
.5
8

1
.2

9
1
0
6

2
9

4
3

4
5

3
0

0
.6
2

2
8

4
1

4
2

1
8

to
o
_
la
rg
e

0
.3
0

1
.0

9
1
0
6

2
9

7
9

8
0

2
8

0
.3
3

2
5

7
6

7
7

2
6

x
1
d
n

0
.5
1

4
.7

9
1
0
6

2
0

4
8

5
0

4
5

0
.6
3

2
7

3
2

3
6

3
9

x
6
d
n

0
.9
0

2
.9

9
1
0
6

2
5

1
1

1
2

3
0
.9
2

2
6

8
9

3

x
9
d
n

0
.8
0

3
.5

9
1
0
6

2
4

2
0

2
3

8
0
.8
2

1
5

2
0

2
0

8

184 Genet Program Evolvable Mach (2016) 17:169–192

123

Table 3 Time (in s) spent in the first stage of the optimization

Circuit e1 ¼ 0:1 % e3 ¼ 0:3 % e5 ¼ 0:5 % e7 ¼ 0:7 % e9 ¼ 0:9 %

tQ1 tmed tQ3 tQ1 tmed tQ3 tQ1 tmed tQ3 tQ1 tmed tQ3 tQ1 tmed tQ3

c1355 9.2 27 82 32 58 100 12 48 383 12 19 30 3.2 3.2 3.2

c3540 5.9 86 168 17 70 145 7.2 17 36 18 24 49 7.7 29 56

c432 10 33 305 24 41 478 5.8 173 492 4.8 50 223 16 33 201

itc_b05 \1 \1 \1 \1 \1 2.2 \1 \1 1.6 \1 \1 1.3 \1 \1 2.3

itc_b07 \1 \1 1.3 \1 \1 1.3 \1 \1 \1 \1 \1 \1 \1 \1 \1

x1dn \1 \1 \1 \1 \1 \1 \1 \1 4.1 \1 \1 \1 \1 \1 \1

The median value (tmed), the lower bound (tQ1) and upper bound (tQ3) of the interquartile range are

calculated using all runs

50

60

70

80

90

100

ar
ea

 [%
]

478 gates

791 gates

apex1
ni = 45, no = 41

0.1 0.3 0.5 0.7 0.9
85

90

95

100

de
la

y
[%

]

147 gates
155 gates

c432
ni = 36, no = 7

0.1 0.3 0.5 0.7 0.9

687 gates

867 gates

c3540
ni = 50, no = 14

0.1 0.3 0.5 0.7 0.9

0

20

40

60

80

100

ar
ea

 [%
]

129 gates

410 gates
clmb

ni = 46, no = 33

0.1 0.3 0.5 0.7 0.9

error [%]

40

50

60

70

80

90

100

de
la

y
[%

]

53 gates

160 gates too_large
ni = 38, no = 3

0.1 0.3 0.5 0.7 0.9

error [%]

36 gates

85 gates

x1dn
ni = 27, no = 6

0.1 0.3 0.5 0.7 0.9

error [%]

Fig. 4 Pareto fronts for benchmarks apex1, c432, c3540, clmb, too_large and x1dn

Genet Program Evolvable Mach (2016) 17:169–192 185

123

the fact that finding a circuit exhibiting a required error is in general a nontrivial

task.

Next we measured the time needed to calculate the Hamming distance between

two circuits with respect to a given error. This time (expressed as a median value)

summarized from all the experiments is given in Table 4. This value influences how

many candidate solutions can be evaluated within a period of time in average. The

lower value, the higher number of evaluated candidate solutions. Stages 1

(searching for a circuit with a given error) and 2 (optimizing the area, and delay

of the circuit) are handled separately. In most cases, the time is less than a few

milliseconds. There are two cases (c1355, c3540) in which few 100s (1000s for

c1355) of milliseconds are required to determine the Hamming distance. A

consequence is that fewer generations can be produced within a given time for this

circuit. This effect is clearly visible in Fig. 5 where the resulting circuit

approximations are mostly far from the optimum (see black dots for errors higher

than 0.4 %).

If we compare the mean time needed to determine the Hamming distance in the

first and second stage (see last five columns of Table 4 showing the ratio between

the first and second stage), it is evident that more evaluations per second can be

performed in the second stage of the optimization. The reason is that BDDs are in

average smaller than in the first stage. However, it can be also seen that the time

needed to evaluate the Hamming distance of c1355 benchmark circuit increases

with the increasing error. Thousands of milliseconds are needed in this particular

case.

The resulting Pareto fronts are displayed in Figs. 4, 5, 6 and 7 (solid lines). For

each circuit, two plots are presented: the best obtained area versus error and delay

versus error, relatively to the fully functional circuit from Table 2 labeled by 100 %.

The result of a single 30-min CGP run consisting of two stages is shown using a

black dot. The plus symbol (?) indicates the results of the first stage. In several

cases, the ? symbols are not visible because they are outside the plotted areas.

However, for example, the plot for s635 clearly shows that in most cases the first

stage produced circuits within about 80–100 % in the area axis (corresponding to

\1 s in average according to Table 3) while the second stage led in remaining

29.9 min (on average) to a significant improvement (about 30 % in the area axis).

Figures 4, 5, 6 and 7 contain the best compromises from independent CGP runs in

which all circuits parameters (error, area and delay) are optimized together. For

some applications it is interesting to know the best compromises for two objectives

only (error vs. delay and area vs. delay). These compromises are plotted as

additional Pareto fronts (dashed line). The number of gates is explicitly given for the

biggest and smallest circuits.

For example, by increasing the error, the area was reduced by 70 % in the case of

clmb circuit providing that the delay is adequately reduced. A general observation is

that an improvement in delay is smaller than in area when the error is increasing.

The reason is that fully functional benchmark circuits exhibit a relatively small

delay and hence there is a little space to improve it. Two interesting cases are c432

and c3540 because their area requirements are high even for reduced accuracy. One

reason could be that errors\1 % are too small to get a reasonable approximation.

186 Genet Program Evolvable Mach (2016) 17:169–192

123

T
a
b
le

4
T
im

e
(i
n
m
s)

re
q
u
ir
ed

to
ca
lc
u
la
te

th
e
H
am

m
in
g
d
is
ta
n
ce

in
st
ag
e
1
(t
m
ed
;t

Q
3
)
an
d
st
ag
e
2
(t
� m
ed
)

C
ir
cu
it

e 1
¼

0
:1

%
e 3

¼
0
:3

%
e 5

¼
0
:5

%
e 7

¼
0
:7

%
e 9

¼
0
:9

%
t m

ed
=
t� m

ed

t m
ed

t Q
3

t m
ed

t Q
3

t m
ed

t Q
3

t m
ed

t Q
3

t m
ed

t Q
3

e 1
e 3

e 5
e 7

e 9

ap
ex
1

1
.3

1
.5

1
.2

1
.5

1
.2

1
.4

1
.4

1
.9

1
.4

1
.6

1
.4

1
.3

1
.8

1
.7

2
.0

c1
3
5
5

1
9
8

2
1
5

2
7
8

3
8
9

6
4
0

3
0
8
3

5
8
3

7
0
4

6
6
5

6
6
5

1
.5

4
.6

0
.3

0
.1

0
.1

c3
5
4
0

1
6
2

2
0
0

1
7
3

1
9
2

1
5
5

1
6
1

1
9
5

2
1
5

1
9
7

2
1
6

1
.0

1
.1

1
.1

1
.3

1
.3

c4
3
2

1
6

1
7

1
6

1
7

1
9

2
0

1
6

1
8

1
7

1
9

1
.3

1
.2

1
.3

1
.2

1
.5

cl
m
b

0
.7

1
.1

1
.2

1
.6

1
.3

2
.1

1
.5

2
.5

1
.1

1
.4

3
.7

6
.0

6
.7

1
4

1
0

it
c_
b
0
5

5
.2

5
.5

4
.5

5
.8

8
.6

1
1

5
.5

7
.9

5
.2

5
.8

2
.3

2
.4

5
.7

3
.2

4
.4

it
c_
b
0
7

1
.2

1
.6

1
.2

1
.6

1
.3

1
.9

1
.2

1
.3

1
.4

1
.7

2
.0

1
.7

2
.1

2
.3

2
.5

it
c_
b
1
0

0
.2

0
.3

0
.2

0
.2

0
.2

0
.2

0
.2

0
.3

0
.2

0
.2

1
.0

1
.0

0
.8

1
.0

1
.0

it
c_
b
1
1

0
.6

0
.7

0
.6

0
.8

0
.6

0
.9

0
.5

0
.6

0
.7

0
.8

1
.1

1
.1

1
.2

1
.1

1
.4

s1
2
3
8

0
.7

0
.7

0
.8

0
.9

0
.7

0
.9

0
.7

1
.2

0
.7

0
.8

1
.7

2
.0

2
.4

2
.4

2
.2

s6
3
5

0
.2

0
.3

0
.1

0
.3

0
.2

0
.3

0
.3

0
.8

0
.2

0
.3

2
.2

1
.3

2
.2

2
.6

2
.0

si
g
n
et

1
.9

2
.6

2
.2

2
.5

2
.8

3
.6

2
.7

4
.0

2
.2

2
.7

1
.5

1
.8

2
.3

2
.4

2
.5

to
o
_
la
rg
e

7
.9

8
.8

8
.5

1
1

8
.7

1
0

1
2

1
7

8
.4

1
1

2
2

2
8

2
8

4
1

4
2

x
1
d
n

0
.4

0
.6

0
.3

0
.4

0
.3

0
.4

0
.8

1
.1

0
.3

0
.6

2
.7

3
.1

3
.5

5
.1

3
.5

x
6
d
n

0
.2

0
.4

0
.3

0
.4

0
.3

0
.4

0
.4

0
.5

0
.2

0
.3

0
.6

0
.9

1
.0

1
.1

1
.1

x
9
d
n

0
.5

0
.7

0
.5

0
.5

0
.3

0
.5

0
.6

1
.2

0
.4

0
.5

1
.6

1
.8

1
.7

3
.2

3
.9

T
h
e
m
ed
ia
n
v
al
u
e
(t
m
ed
,
t� m

ed
)
an
d
u
p
p
er

b
o
u
n
d
(t
Q
3
)
o
f
th
e
in
te
rq
u
ar
ti
le

ra
n
g
e
ar
e
ca
lc
u
la
te
d
fr
o
m

ru
n
-t
im

e
o
f
al
l
fi
tn
es
s
fu
n
ct
io
n
ca
ll
s

Genet Program Evolvable Mach (2016) 17:169–192 187

123

Another reason could be that more generations are required to reduce the area.

Hence we tried to prolong the evolution six times. However, no significant changes

in the Pareto front have been observed (not shown in the paper). On the other hand,

0.4 % seems to be a huge error for c1355 because it allowed CGP to remove almost

all gates from the circuit.

In some cases (e.g. apex1, c3540, s635), the independent CGP runs led to very

similar results for a given ei (see the black dots). In other cases (e.g. itc_b05, x1dn,

c1355), the spread in the area and delay is quite large. This indicates that circuits

have different structural properties and that their selection to our benchmark set is

justified.

Figure 7 shows a detailed analysis of some of the discovered approximations for

itc_b10 benchmark. For each of five target errors, three evolved circuits were

0

20

40

60

80

100

ar
ea

 [%
]

37 gates

139 gates

s635
ni = 34, no = 33

0.1 0.3 0.5 0.7 0.9
0

20

40

60

80

100

de
la

y
[%

]

0 gates

185 gates
c1355

ni = 41, no = 32

0.1 0.3 0.5 0.7 0.9

188 gates

357 gates signet
ni = 39, no = 8

0.1 0.3 0.5 0.7 0.9

50

60

70

80

90

100

ar
ea

 [%
]

280 gates

404 gates

itc_b05
ni = 34, no = 56

0.1 0.3 0.5 0.7 0.9

error [%]

50

60

70

80

90

100

de
la

y
[%

]

204 gates

309 gates

itc_b07
ni = 49, no = 49

0.1 0.3 0.5 0.7 0.9

error [%]

310 gates

402 gates

itc_b11
ni = 37, no = 31

0.1 0.3 0.5 0.7 0.9

error [%]

Fig. 5 Pareto fronts for benchmarks s635, c1355, signet, itc_b05, itc_b07 and itc_b11

188 Genet Program Evolvable Mach (2016) 17:169–192

123

chosen and their Hamming distances were calculated independently for all 17

outputs. It can be seen that the obtained solutions have in general different

properties. The same solution was obtained only in the case of e1 ¼ 0:1 %, where

run 2 and run 3 discovered a circuit with error in two outputs. The first run produced

a completely different circuit. Although five output signals are affected by error in

this case, the worst-case difference (Hamming distance) is not worse than 0.7 %.

Finally, we raised a question whether it is better to intensively optimize accurate

circuits or introduce approximations in order to reduce the area. Table 5 shows how

20

30

40

50

60

70

80

90

100

ar
ea

 [%
]

207 gates

416 gates s1238
ni = 31, no = 31

0.1 0.3 0.5 0.7 0.9
50

60

70

80

90

100

de
la

y
[%

]

142 gates

282 gates x6dn
ni = 38, no = 5

0.1 0.3 0.5 0.7 0.9

54 gates

133 gates

x9dn
ni = 27, no = 7

0.1 0.3 0.5 0.7 0.9

Fig. 6 Pareto fronts for benchmarks s1238, x6dn, and x9dn

0
1
2
3
4
5 e9 = 0. 9%

run 1 run 2 run 3

0
1
2
3
4
5 e7 = 0. 7%

0
1
2
3
4
5

H
am

m
in

g
di

st
an

ce
 [%

]

e5 = 0. 5%

0
1
2
3
4
5 e3 = 0. 3%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

output

0
1
2
3
4
5 e1 = 0. 1%

60

70

80

90

100

ar
ea

 [%
]

105 gates

154 gates

itc_b10
ni = 27, no = 17

0.1 0.3 0.5 0.7 0.9

error [%]

80

85

90

95

100

105

de
la

y
[%

]

Fig. 7 Pareto front for benchmark itc_b10 (left) and the detailed analysis (Hamming distance of each
output) of three evolved approximations for e1; e3; e5; e7 and e9 (right)

Genet Program Evolvable Mach (2016) 17:169–192 189

123

subsequent optimizations reduced the number of gates in circuits displaying at least

10 % area improvement with respect to BDS. For example, CGP-based optimiza-

tion of too_large circuit caused that 80 % gates were removed without any impact

on the accuracy. A subsequent approximation (error ¼ 0.1 %) removed only 8 %

gates. It turns out that the impact of a proper logic optimization conducted in the

standard scenario (no errors are allowed) can be, in fact, higher than when the

approximations are introduced.

6 Conclusions

In this paper, we proposed a new CGP-based method which allowed us to approximate

non-trivial combinational circuits. Employing a BDD package in the fitness function

enabled to reduce the fitness evaluation time, which is the most contributing component

to the total time of evolution. The error was expressed in terms of the Hamming

distance—the error measure which can be applied for general logic approximation.

Pareto fronts show reasonable tradeoffs between key circuit parameters which one

would expect for combinational approximate circuits. Unfortunately, no results

compatible with our scenario are available in the literature for comparison.

Our method consists of two stages. In the first stage, a circuit showing desired

error is evolved from a fully functional solution. As the initial approximation is

performed in order of seconds (10s–100s of seconds in the case of more complex

circuits), the user thus quickly obtains a circuit with desired functionality.

Additional optimizations of the area and delay are then performed in the second

stage which can be terminated when a suitable tradeoff is reached. This approach

allowed us to find high quality solutions in a relatively short time, which is

important for practice. It was also shown that a significant area reduction can be

obtained just by enabling the evolutionary optimization of the accurate circuit after

performing its usual conventional optimization (Table 2).

Despite the fact that by means of BDDs we were able to approximate relatively

complex circuits (10s of inputs, 100s of gates), the usage of BDDs represents an

inherent weakness of the method. As we pointed out in Sect. 3, BDDs can grow

exponentially for some functions. Hence it is important to find a more

Table 5 The number of gates when subsequent optimizations are applied

Method BDS CGP

Error 0 % 0 % 0.1 % 0.5 % 0.9 %

clmb 641 (100 %) 410 (63 %) 250 (39 %) 167 (26 %) 129 (20 %)

s1238 483 (100 %) 416 (86 %) 298 (61 %) 241 (49 %) 213 (44 %)

signet 630 (100 %) 357 (56 %) 288 (45 %) 223 (35 %) 188 (29 %)

too_large 771 (100 %) 160 (20 %) 94 (12 %) 55 (7 %) 56 (7 %)

x1dn 164 (100 %) 85 (51 %) 61 (37 %) 44 (26 %) 36 (21 %)

x6dn 318 (100 %) 282 (88 %) 254 (79 %) 196 (61 %) 142 (44 %)

x9dn 168 (100 %) 133 (79 %) 103 (61 %) 72 (42 %) 54 (32 %)

190 Genet Program Evolvable Mach (2016) 17:169–192

123

suitable formal model and corresponding algorithms which will allow us to further

extend the class of circuits that can be approximated by CGP.

In our future work, we also plan to combine our method with a truly

multiobjective evolutionary algorithm in order to obtain a Pareto front in a single

run. We will evaluate if the overhead associated with the multiobjective optimizer

can lead to results which are competitive with the obtained ones.

Acknowledgments This work was supported by the Czech science foundation Project 14-04197S.

References

1. R.E. Bryant, On the complexity of VLSI implementations and graph representations of Boolean

functions with application to integer multiplication. IEEE Trans. Comput. 40(2), 205–213 (1991)

2. R. Drechsler, B. Becker, N. Göckel, Genetic algorithm for variable ordering of obdds. IEE Proc.

Comput. Digit. Tech. 143(6), 364–368 (1996)

3. R. Drechsler, N. Göckel, B. Becker, in Learning Heuristics for OBDD Minimization by Evolutionary

Algorithms. Parallel Problem Solving from Nature—PPSN IV. Lecture Notes in Computer Science,

vol. 1141 (Springer, Berlin, 1996), pp. 730–739

4. M. Duranton, K. DeBosschere, A. Cohen, J. Maebe, H. Munk, in Hipeac Vision 2015. Technical

report (HiPEAC Network of Excellence, 2015). https://www.hipeac.net/publications/vision/

5. R. Ebendt, G. Fey, R. Drechsler, Advanced BDD Optimization (Springer, Berlin, 2000)

6. H. Esmaeilzadeh, A. Sampson, L. Ceze, D. Burger, Neural acceleration for general-purpose

approximate programs. Commun. ACM 58(1), 105–115 (2015)

7. P. Fiser, Collection of Digital Design Benchmarks (Czech Technical University in Prague, Prague).

http://ddd.fit.cvut.cz/prj/Benchmarks

8. B.W. Goldman, W.F. Punch, Analysis of cartesian genetic programming’s evolutionary mechanisms.

IEEE Trans. Evol. Comput. 19(3), 359–373 (2015)

9. D. Grochol, L. Sekanina, M. Zadnik, J. Korenek, V. Kosar, Evolutionary circuit design for fast

FPGA-based classification of network application protocols. Appl. Soft Comput. 38, 933–941 (2016).
doi:10.1016/j.asoc.2015.09.046

10. V. Gupta, D. Mohapatra, A. Raghunathan, K. Roy, Low-power digital signal processing using

approximate adders. IEEE Trans. CAD Integr. Circuits Syst. 32(1), 124–137 (2013)

11. J. Han, M. Orshansky, in Approximate Computing: An Emerging Paradigm for Energy-Efficient

Design. Proceedings of the 18th IEEE European Test Symposium (IEEE, 2013), pp. 1–6

12. T. Higuchi, T. Niwa, T. Tanaka, H. Iba, H. de Garis, T. Furuya, in Evolving Hardware with Genetic

Learning: A First Step Towards Building a Darwin Machine. Proceedings of the 2nd International

Conference on Simulated Adaptive Behaviour (MIT Press, Cambridge, 1993), pp. 417–424

13. R. Hrbacek, inParallel Multi-objective Evolutionary Design of Approximate Circuits. Proceedings of the

2015 Conference on Genetic and Evolutionary Computation (GECCO ’15) (ACM, 2015), pp. 687–694

14. R. Hrbacek, L. Sekanina, in Towards Highly Optimized Cartesian Genetic Programming: From

Sequential Via SIMD and Thread to Massive Parallel Implementation. Proceedings of the Conference

on Genetic and Evolutionary Computation (ACM, 2014), pp. 1015–1022

15. M. Iqbal, W.N. Browne, M. Zhang, Reusing building blocks of extracted knowledge to solve

complex, large-scale Boolean problems. IEEE Trans. Evol. Comput. 18(4), 465–480 (2014)

16. P. Kaufmann, T. Knieper, M. Platzner, in A Novel Hybrid Evolutionary Strategy and Its Periodization

with Multi-objective Genetic Optimizers. IEEE Congress on Evolutionary Computation (CEC)

(IEEE, 2010), pp. 1–8

17. P. Kulkarni, P. Gupta, M.D. Ercegovac, Trading accuracy for power in a multiplier architecture.

J. Low Power Electron. 7(4), 490–501 (2011)

18. J. Lind-Nielsen, H. Cohen, in BuDDy—A Binary Decision Diagram Package. http://sourceforge.net/

projects/buddy/

19. J.F. Miller, Cartesian Genetic Programming (Springer, Berlin, 2011)

20. J.F. Miller, S.L. Smith, Redundancy and computational efficiency in cartesian genetic programming.

IEEE Trans. Evol. Comput. 10(2), 167–174 (2006)

Genet Program Evolvable Mach (2016) 17:169–192 191

123

21. A. Mishchenko, in ABC: A System for Sequential Synthesis and Verification (Berkeley Logic Syn-

thesis and Verification Group, University of California, Berkeley, CA, US, 2012). http://www.eecs.

berkeley.edu/*alanmi/abc/

22. M. Murakawa, S. Yoshizawa, I. Kajitani, T. Furuya, M. Iwata, T. Higuchi, in Evolvable Hardware at

Function Level. Parallel Problem Solving from Nature (PPSN IV). LNCS, vol. 1141 (Springer,

Berlin, 1996), pp. 62–71

23. K. Nepal, Y. Li, R.I. Bahar, S. Reda, in Abacus: A Technique for Automated Behavioral Synthesis of

Approximate Computing Circuits. Proceedings of the Conference on Design, Automation and Test in

Europe (DATE ’14) (EDA Consortium, 2014), pp. 1–6

24. R. Poli, J. Page, Solving high-order Boolean parity problems with smooth uniform crossover, sub-

machine code GP and demes. Genet. Program. Evol. Mach. 1(1–2), 37–56 (2000)

25. A. Sanchez-Clemente, L. Entrena, M. Garcia-Valderas, in Error Masking with Approximate Logic

Circuits Using Dynamic Probability Estimations. 20th International On-Line Testing Symposium

(IOLTS) (IEEE, 2014), pp. 134–139

26. L. Sekanina, Z. Vasicek, in Evolutionary Computing in Approximate Circuit Design and Opti-

mization. 1st Workshop on Approximate Computing (WAPCO 2015) (2015), pp. 1–6

27. A.P. Shanthi, R. Parthasarathi, Practical and scalable evolution of digital circuits. Appl. Soft Comput.

9(2), 618–624 (2009)

28. E. Stomeo, T. Kalganova, C. Lambert, Generalized disjunction decomposition for evolvable hard-

ware. IEEE Trans. Syst. Man Cybern. Part B 36(5), 1024–1043 (2006)

29. A. Thompson, P. Layzell, S. Zebulum, Explorations in design space: unconventional electronics

design through artificial evolution. IEEE Trans. Evol. Comput. 3(3), 167–196 (1999)

30. J. Torresen, A scalable approach to evolvable hardware. Genet. Program. Evol. Mach. 3(3), 259–282
(2002)

31. Z. Vasicek, in Cartesian GP in Optimization of Combinational Circuits with Hundreds of Inputs and

Thousands of Gates. Proceedings of the 18th European Conference on Genetic Programming—

EuroGP, LCNS no. 9025 (Springer, Berlin, 2015), pp. 139–150

32. Z. Vasicek, L. Sekanina, Formal verification of candidate solutions for post-synthesis evolutionary

optimization in evolvable hardware. Genet. Program. Evol. Mach. 12(3), 305–327 (2011)

33. Z. Vasicek, L. Sekanina, in Evolutionary Design of Approximate Multipliers Under Different Error

Metrics. IEEE International Symposium on Design and Diagnostics of Electronic Circuits and

Systems (IEEE, 2014), pp. 135–140

34. Z. Vasicek, L. Sekanina, in How to Evolve Complex Combinational Circuits from Scratch? IEEE

International Conference on Evolvable Systems Proceedings (IEEE, 2014), pp. 133–140

35. Z. Vasicek, L. Sekanina, in Circuit Approximation Using single- and Multi-objective Cartesian GP.

Proceedings of the 18th European Conference on Genetic Programming— (EuroGP), LNCS no. 9025

(Springer, Berlin, 2015), pp. 217–229

36. Z. Vasicek, L. Sekanina, Evolutionary approach to approximate digital circuits design. IEEE Trans.

Evol. Comput. 19(3), 432–444 (2015)

37. Z. Vasicek, L. Sekanina, in Evolutionary Approximation of Complex Digital Circuits. Genetic and

Evolutionary Computing Conference (ACM, 2015), pp. 1505–1506

38. V. Vassilev, D. Job, J.F. Miller, in Towards the Automatic Design of More Efficient Digital Circuits.

Proceedings of the 2nd NASA/DoDWorkshop on Evolvable Hardware (IEEE Computer Society, Los

Alamitos, 2000), pp. 151–160

39. S. Venkataramani, K. Roy, A. Raghunathan, in Substitute-and-Simplify: A Unified Design Paradigm

for Approximate and Quality Configurable Circuits. Design, Automation and Test in Europe (DATE

’13) (EDA Consortium, San Jose, 2013), pp. 1367–1372

40. S. Venkataramani, A. Sabne, V.J. Kozhikkottu, K. Roy, A. Raghunathan, in SALSA: Systematic Logic

Synthesis of Approximate Circuits. The 49th Annual Design Automation Conference (DAC ’12)

(ACM, 2012), pp. 796–801

41. R. Venkatesan, A. Agarwal, K. Roy, A. Raghunathan, in MACACO: Modeling and Analysis of

Circuits for Approximate Computing. IEEE/ACM International Conference on Computer-Aided

Design (ICCAD) (IEEE, 2011), pp. 667–673

42. C. Yang, M. Ciesielski, BDS: a BDD-based logic optimization system. IEEE Trans. Comput. Aided

Des. Integr. Circuits Syst. 21(7), 866–876 (2002)

192 Genet Program Evolvable Mach (2016) 17:169–192

123

Appendix E

Trading between Quality and Non-functional
Properties of Median Filter in Embedded
Systems

VASICEK, Zdenek and MRAZEK, Vojtech. “Trading between Quality and Non-functional
Properties of Median Filter in Embedded Systems”. In: Genetic Programming and Evolv-
able Machines 2016.3 (2016), pp. 1–38.

IF=1.143 (2015), contribution of the author of the thesis: 50%

Referenced on pages: 41, 43

137

Trading between quality and non-functional properties
of median filter in embedded systems

Zdenek Vasicek1 • Vojtech Mrazek1

Received: 20 December 2015 / Revised: 6 July 2016

� Springer Science+Business Media New York 2016

Abstract Genetic improvement has been used to improve functional and non-

functional properties of software. In this paper, we propose a new approach that

applies a genetic programming (GP)-based genetic improvement to trade between

functional and non-functional properties of existing software. The paper investigates

possibilities and opportunities for improving non-functional parameters such as

execution time, code size, or power consumption of median functions implemented

using comparator networks. In general, it is impossible to improve non-functional

parameters of the median function without accepting occasional errors in results

because optimal implementations are available. In order to address this issue, we

proposed a method providing suitable compromises between accuracy, execution

time and power consumption. Traditionally, a randomly generated set of test vectors

is employed so as to assess the quality of GP individuals. We demonstrated that

such an approach may produce biased solutions if the test vectors are generated

inappropriately. In order to measure the accuracy of determining a median value and

avoid such a bias, we propose and formally analyze new quality metrics which are

based on the positional error calculated using the permutation principle introduced

in this paper. It is shown that the proposed method enables the discovery of solu-

tions which show a significant improvement in execution time, power consumption,

or size with respect to the accurate median function while keeping errors at a

moderate level. Non-functional properties of the discovered solutions are estimated

using data sets and validated by physical measurements on physical microcon-

trollers. The benefits of the evolved implementations are demonstrated on two real-

& Zdenek Vasicek

vasicek@fit.vutbr.cz

Vojtech Mrazek

imrazek@fit.vutbr.cz

1 Faculty of Information Technology, IT4Innovations Centre of Excellence, Brno University of

Technology, Brno, Czech Republic

123

Genet Program Evolvable Mach

DOI 10.1007/s10710-016-9275-7

world problems—sensor data processing and image processing. It is concluded that

data processing software modules offer a great opportunity for genetic improve-

ment. The results revealed that it is not even necessary to determine the median

value exactly in many cases which helps to reduce power consumption or increase

performance. The discovered implementations of accurate, as well as approximate

median functions, are available as C functions for download and can be employed in

a custom application (http://www.fit.vutbr.cz/research/groups/ehw/median).

Keywords Genetic programming � Genetic improvement � Cartesian genetic

programming � Median function � Comparison network � Permutation principle �
Median filter

1 Introduction

Genetic programming (GP) has traditionally been used to evolve entirely new

expressions or functions to solve a particular problem which is usually specified by

a training data set [23]. With the development of search based software engineering,

GP has been applied to repair errors in software and assist in numerous tasks of

software engineering [10]. The successful applications of GP in search based

software engineering have attracted more and more researchers which has resulted

in the establishment of a new research direction called Genetic improvement (GI).

The Genetic improvement of software is defined as the application of evolutionary

and search-based optimization methods with the aim of improving functional and/or

non-functional properties of existing software [38].

The number of lines of code, execution time, memory usage, or power

consumption represent the typical non-functional properties of software. These

properties can be improved, for example, by replacing the existing code fragments

by newly evolved code fragments that are semantically equivalent. The improve-

ment of existing software by optimizing its non-functional properties was first

addressed by White et al. [38]. Eight different target functions were considered in

the paper. The authors showed that GP was able to discover code optimization tricks

that are probably unreachable by current compilers. These tricks enabled slight

improvements in the execution time of the chosen functions. Recently, Cody-Kenny

et al. [3] demonstrated that GP was able to reduce the number of instructions for

various manually constructed off-the-shelf implementations of a sort and prefix-

code programs written in Java. Genetic Improvement has also been used to evolve

an improved version of C?? code using automated code transplantation [22]. The

authors evolved a faster version of Boolean satisfiability solver MiniSAT which is

specialized for solving a particular problem known as Combinatorial interaction

testing. Finally, the reduction of energy consumption of non-trivial programs was

addressed in [26]. The authors introduced a system which can further optimize the

low level Intel X86 code generated by optimizing compilers. While the previous

examples have dealt with non-functional improvements, Langdon and Harman

showed that GP can, in addition to non-functional parameters, improve the

functionality of existing code [15]. The authors demonstrated that GP was able to

Genet Program Evolvable Mach

123

automatically improve behaviour (i.e. accuracy) of a widely-used DNA sequencing

system consisting of 50,000 lines of C?? code.

A similar research direction has been explored in the field of approximate

computing which is a promising approach to obtain energy-efficient computer

systems. In constrast to Genetic improvements that preserve the code functionality,

approximate computing exploits the fact that many applications are error resilient

and do not require a perfect output to be produced. Hence a suitable compromise is

sought between the error (quality), power consumption and performance. The

approximations can be introduced at the level of hardware as well as software. An

approximate solution is typically obtained by a heuristic procedure that modifies the

original implementation. For instance, artificial neural networks were used to

approximate software modules [7] in order to accelerate computations and reduce

power consumption. In addition, search-based methods were allowed to approxi-

mate hardware components [21, 36]. Using GP in the context of approximate

computing has been reported for digital circuit approximation [29, 34].

In this paper, we deal with GP-based improvements of non-functional properties

of programs (C functions) that are intended for low-cost microcontrollers. As we

seek significant improvements mainly of power consumption and execution time,

we consider the approximate computing scenario and accept some errors in the

outputs. The function to be approximated is the median filter which is crucial in

signal processing, image processing and sensor data processing. The goal of the GP-

based search strategy is to improve the existing, in most cases even functionaly

optimal, median implementations and find programs showing suitable compromises

between the accuracy, execution time and power consumption for various median

functions when implemented on a microcontroller. This paper develops our previous

results that were presented at the first GI workshop [20]. In contrast to our

previously published work, a more efficient GI method based on a two-stage

optimization process is introduced. The quality of the candidate solutions is

measured as a distance between the candidate program and a fully-working median

implementation. A generalized version of the zero–one principle [14] denoted as

permutation principle is used to determine this distance. The permutation principle,

first introduced in this paper, is formally proven in Sect. 4.2. Compared to the

previous results, the quality of the obtained solutions is improved significantly. In

addition, the benefit of GI approach is demonstrated using two real-world problems

that are typically handled by embedded systems—sensor data processing and image

processing. The obtained results are evaluated using data sets and by physical

measurements on physical microcontrollers.

In the context of this work, one can observe that the evolutionary design and/or

optimization of an (accurate) median outputting program has been carried out by GP

only rarely [27]. However, a considerable number of research papers were devoted

to the design and optimization of sorting algorithms (e.g., [1, 38]) and sorting

networks (e.g. [11, 12, 28, 33]), which are useful structures when the median value

has to be obtained. As checking whether a specification (i.e. an original code) and a

candidate solution are semantically equivalent is time consuming, exact equivalence

checking is not performed in the fitness function. The fitness is usually based on

evaluating candidate solutions using a training data set and subsequent testing at the

Genet Program Evolvable Mach

123

end of evolution using other data sets. According to the zero–one principle, the

training data are typically restricted to binary input vectors. A genetic improvement

of two different implementations of Bubble-Sort algorithm was demonstrated in

[38], where GP enabled the discovery of code optimization tricks probably

unreachable by current compilers. These tricks enabled slightly improved execution

time of the chosen sorting functions.

The rest of the paper is organized as follows. Section 2 briefly surveys genetic

improvement and its relation to the approximate computing. Then an overview of

the key areas related to this paper is given in Sect. 3. In particular, the median

function and possibilities for the improvement are discussed. In Sect. 4, the

permutation principle is introduced. The proposed method is described in Sect. 5.

Section 6 introduces the experimental setup. The results are presented and analyzed

in Sect. 7. Then, the obtained medians are applied to solve real-world problems. A

detailed discussion is given in Sect. 8. Finally, Sect. 9 concludes the paper.

2 From genetic improvement to approximate computing

In contrast to approximate computing that has been developed to improve energy

efficiency and performance for the cost of accuracy, GI has always kept the code

functionality identical with the original software. In approximate computing,

software and hardware is approximated (i.e. simplified with respect to fully accurate

implementations) in order to reduce power consumption or increase performance.

As a consequence, errors can emerge during computations. In many cases errors can

be tolerated because human perception capabilities are limited, no golden solution is

available for validation of results, or users are willing to accept some inaccuracies.

Therefore, the error (accuracy of computations) can be used as a design metric and

traded for area on a chip, delay, throughput, or power consumption.

One way to reduce energy consumption is by allowing timing errors by voltage

over scaling or frequency over clocking. Another approximation technique, which is

relevant for this paper, is functional approximation. The idea of functional

approximation is to implement a slightly different function to the original one,

provided that the error is acceptable and the non-functional parameters are improved

adequately. Functional approximation can be conducted at the level of software as

well as hardware.

After introducing several approximate circuits that were created manually [9],

researchers started to develop more efficient systematic semi-automatic and fully-

automatic methods. EnerJ [24], an extension of Java that adds approximate data

types, represents one of the semi-automatic methods. Using these types, the system

automatically maps approximate variables to low-power storage, uses low-power

operations, and even applies more energy-efficient algorithms provided by the

programmer. Axilog is a set of language annotations that provide the necessary

syntax and semantics for an approximate hardware design and reuse in Verilog [39].

Axilog enables the designer to relax the accuracy requirements in certain parts of

the design, while keeping the critical parts strictly precise. In contrast to fully-

automatic methods, an approximate solution is typically obtained by a heuristic

Genet Program Evolvable Mach

123

procedure that modifies the original implementation. For example, artificial neural

networks were proposed in [7] to learn to behave like a general-purpose code

written in an imperative language. The trained network then replaced the original

code. There are also general search-based methods that allows us to approximate

hardware components [21, 36].

While the approximate problem has already been addressed by GP community

[30, 34], GI has been used to improve functional and non-functional properties of

software so far. However, by having the fitness function of GP-based GI permit

errors, one can easily obtain approximate solutions. Applying the GI methodology

for approximate computing (particularly for approximate software) seems to be

straightforward. The main outcomes would be to obtain better trade-offs among key

system parameters (note that the search-based methods are not constrained by

various assumptions of mathematically rigorous methodologies) and reducing the

optimization time with respect to commonly used solvers such as ILP. The key

advantage is that the GI systems can be constructed as multi-objective (i.e. they

provide a Pareto front showing the best trade-offs among the error, speed, memory

usage, energy consumption, network loading, etc.) at the end of each run.

3 Background

In this section, we give an overview of the key areas related to this paper, especially

the median function, construction of median networks and possibilities for the

improvement of median functions. The section is concluded with problem

formulation.

3.1 Median of a data set

Given a finite sequence of data samples, the median is defined as a value separating

the higher half of data samples from the lower half. The median is of central

importance in robust statistics [16], as it is the statistic that is the most resistant to

outliers that could be presented in a given sequence. Contrasted to the mean, the

median is a robust measure of central tendency. The main feature of the robust

methods is their high efficiency in a neighbourhood of the assumed statistical model

which is widely exploited in signal processing where the median is usually

employed to filter the measured data.

There exists two basic approaches to determine the median of a given sequence.

A straightforward and naı̈ve approach is to employ a generic sorting algorithm, for

example, the most popular and efficient quicksort algorithm. Implementations of

sorting algorithms are very compact and robust, however, the execution time needed

to determine the median value may vary with the values of the elements in a

particular input sequence. This kind of nondeterminism may be problematic in real-

time applications intended for microcontrollers having limited computing power. In

addition, the sorting of the whole input sequence generates an substantial overhead.

In order to eliminate the overhead, a more efficient in-place algorithm known as

Quick select can be applied [14].

Genet Program Evolvable Mach

123

An alternative way of calculating the median value is to use a median network.

The median network is a kind of sorting network whose concept is deeply

elaborated in [14]. A sorting network is defined as a sequence of elementary

compare-swap operations that sorts all input sequences. The sequence of compara-

tors is fixed and depends only on the number of elements to be sorted, not on the

values of the elements. Similarly, a median network is a sequence of elementary

compare-swap operations that calculates the median for all input sequences. A

compare-swap operation of two elements (a, b) compares a and b and exchanges (if

it is necessary) the elements in order to obtain a sorted sequence.

3.2 Construction of median networks

A sorting network with n inputs and n outputs can be constructed using an instance

of the sorting algorithm which is operating over a sequence of n items. The only

condition is that the algorithm must be data independent. Bitonic-sorting and

Batcher’s odd-even merge sorting are examples of such algorithms.

A median network can be constructed from a sorting network by removing the

useless compare-swap operations (i.e. operations that do not contribute to the output

value). Aside from this, an optimal sequence of compare-swap operations is known

for some median networks [4, 31]. Generally, the direct design of the median and

sorting networks is a nontrivial task, especially for larger values of N.

In order to illustrate the difference among the results produced by various

algorithms, let us suppose that we need to construct a 9-median network (i.e. a

median network for n ¼ 9 inputs). When Bitonic-sorting algoritm is used, we obtain

a sequence of 23 operations. The Batcher’s odd-even merge sorting produces the

median network consisting of 22 operations (see Fig. 1a). The optimal 9-median

dtype median9_22(dtype *din)
{

CS(0 ,1); CS(3,4); CS(5,6);
CS(7 ,8); CS(0,2); CS(5,7);
CS(6 ,8); CS(0,3); CS(1,2);
CS(6 ,7); CS(0,5); CS(1,4);
CS(2 ,3); CS(1,2); CS(3,4);
CS(1 ,6); CS(2,7); CS(3,8);
CS(4 ,5); CS(2,4); CS(3,6);
CS(3,4)
return din [4];

}

dtype median9_19(dtype *din)
{

CS(1,2); CS(4,5); CS(7 ,8);
CS(0,1); CS(3,4); CS(6 ,7);
CS(0,3); CS(1,2); CS(4 ,5);
CS(7,8); CS(3,6); CS(4 ,7);
CS(5,8); CS(1,4); CS(2 ,5);
CS(4,7); CS(4,2); CS(6 ,4);
CS(4,2)

return din [4];
}

(a) (b)

Fig. 1 Two instances of a median network for 9 inputs. The compare-swap operation is implemented
using macro CS(a, b) which assigns the lower value to din[a] and higher value to din[b]. One of the
possible implementations of CS is the following one:

if (z din[b] − din[a]) < 0 then din[a] ← din[a] + z;

din[b] ← din[b] − z; end

a Median constructed using Batcher’s odd-even merge sorting. b Optimal implementation of 9-input
median [4]

Genet Program Evolvable Mach

123

network consists, however, of 19 operations (see Fig. 1b). The corresponding codes

in C language are shown in Fig. 1. Note that various implementations can be

utilized. If there is a requirement to preserve the input data samples (i.e. to avoid the

usage of in-place computations), two temporary variables have to be associated with

each output of the CS operation.

Alternativelly, each compare-swap operation can be replaced by two basic

operations—minimum and maximum. This allows us to furthermore decrease the

total number of required instructions because not every output value calculated by

the compare-swap element is subsequently utilized. For example, the last operation

shown in Fig. 1b calculates din[2] and din[4]. It is evident that it makes no sense to

determine the value of din[2] because only din[4] is returned at the end. The

representation based on the minimum/maximum operations enables us to reduce the

code size of the 9-median shown in Fig. 1b by 21 % provided that the minimum and

maximum macros share the code required to determine the relation between both

input values.

3.3 Power-aware improvement of median networks

It is clear that the performance as well as power consumption of a particular median

network implementation directly depends on the number of operations a given

median network consists of. The higher number of operations results in a higher

power consumption as well as a longer execution time. This relation can easily be

revealed, for example, by inspecting the implementations shown in Fig. 1. The

median networks shown consist of a fixed number of operations. Each operation is

executed in the same number of clock cycles on average if it is measured at the level

of machine code instructions.

Decreasing the number of operations represents the only way to improve the

performance and power consumption. Unfortunately, a reduction of the number of

operations is not possible without accepting some errors in the outputs produced by

a median function. In other words, we have to search for a sequence of compare-

swap operations that are capable of approximating the median. Let us call such a

sequence a comparator network.

Two possible approaches can be applied to achieve our goal. One way to obtain

an improved median network with a reduced number of operations is to construct a

comparator network completely from scratch. It means to employ a variant of GP

(e.g. linear GP, cartesian GP, etc.) and evolve programs satisfying the required

quality as well as target size constraints (i.e. consisting of the required number of

operations). The other possibility is to apply evolutionary techniques to reduce the

number of operations of already existing median networks provided that the quality

is maximized. In this scenario, a fully working median network used as a starting

point is gradually modified according to the genetic improvement methodology. At

the end of this process, a comparator network of the highest possible quality

consisting of the required number of operations is expected. The question is which

of these approaches performs better.

It seems to be natural to employ the first approach, however, due to the limited

scalability of the evolutionary design, this approach seems to be extremely

Genet Program Evolvable Mach

123

inefficient. As shown in [34], randomly seeded GP discovered fully functional

solutions for the 9-median, however, no correct solution was discovered for the

25-median. While the evolutionary design of a 9-median is a relatively simple

problem, a 25-median consisting of more than 200 operations seems to be outside of

the range of possibilities of the evolutionary design approach. If a median consisting

of more than 100 operations is required, then direct evolution is unable to

accomplish the goal. The authors claimed that solving the larger instances from

scratch seems to be impossible for any evolutionary algorithm based on direct

encoding.

3.4 Problem formulation

Given an existing median network N, i.e. a sequence of compare-swap operations of

length n, and the target number of compare-swap operations m, find an alternative

sequence of compare-swap operations M of length m s that this sequence maximizes

the functional objective (quality) and minimizes the non-functional objectives.

In general, the problem can be understood as a single-objective as well as a

multiple-objective optimization problem. The number of operations and time of

execution and power consumption represent the typical software-related non-

functional objectives. In addition, the number of stages required to determine the

output value can be considered. This parameter is, however, important only when

the comparator networks are intended for hardware implementation.

4 The quality of the improved median networks

In this section, we give an overview of approaches that enable us to assess the

quality of partially working software and hardware. Then we discuss how to

determine the quality of the improved median networks. We introduce and prove the

permutation principle which gives a clue on how to determine the quality of median

functions efficiently. In order to measure the distance between an original and

improved version of the median, a problem-specific quality metric is proposed.

4.1 Common quality metrics

Various approaches to evaluate the quality of partially working software and

hardware have been proposed in the literature.

The error probability (error rate) and Hamming distance represent metrics

typically used to measure the quality of digital circuits. The error rate (Hamming

distance) is defined as the percentage of input vectors (bits of output) for which the

approximate output differs from the original one. In general, 2wn input combinations

exist for an n-input median network operating with elements encoded using w-bit

integers. Clearly, it is intractable to evaluate all possible input combinations,

however, the number of input combinations can substantially be reduced by

applying the zero–one principle. The zero–one principle states that if a sorting

network with n inputs sorts all 2n input sequences of 0’s and 1’s into a

Genet Program Evolvable Mach

123

nondecreasing order, it will sort any arbitrary sequence of n elements into a

nondecreasing order [14]. As a consequence, 2n input combinations are sufficient to

determine the error rate. Unfortunately, it seems to be difficult to apply this metric

in practice. For example, there can exist a candidate implementation slightly

modifying one half of the output values, but still providing good performance if

used, for example, in image filtering.

The average error magnitude is another metric which is used for determining the

quality of arithmetic circuits, not only in the field of evolutionary design, but also in

the approximate computing. The average error magnitude is defined as the sum of

absolute differences in magnitude between the original and approximate circuits,

averaged over all inputs. Two complex issues are, however, connected with this

parameter when used to evaluate the quality of a median network. Firstly, it is not

possible to apply the zero–one principle in this case. As a consequence, we are

unable to determine the exact value of this metric. In practice, we have to use a

subset of all possible input combinations which helps us to estimate the value of the

average error magnitude. The selection of the input vectors must be done carefully

because it influences the precision of the estimate. Secondly, the averaging may

hide situations in which completely wrong results are returned.

The common problem of the previously discussed generic metrics is that they do not

reflect the quality of selecting the median value. In order to investigate the impact of the

approximations on the quality of obtained results, regardless of the values of the input

items, we introduce a new problem-specific metric. Let us recall that the median of a

finite list of numbers can be found by arranging all the numbers from the lowest value to

the highest value and picking themiddle one. In otherwords, themedian of a finite list of

numbers consisting of 2k þ 1 items is equal to the ðk þ 1Þth lowest value. The most

important property of the median functions implemented in accordance with Sect. 3.2

is that the output always equals one of the input values. Let the output value equal to the

jth lowest value. To describe the quality of an approximate median function, we can

introduce distance error defined as the distance of the item chosen as the output value

(i.e. jth lowest value) from the median (i.e. ðk þ 1Þth lowest value) calculated as

jj� k þ 1j. Two additional metrics can be inferred from the distance error: average

distance error defined as the sum of error distances averaged over all input

combinations producing an invalid output value andworst case distance error defined

as the maximal distance error calculated over all input combinations.

Note that it is not necessary to investigate all possible input combinations in

practice. The permutation principle introduced in Sect. 4.2 permits one to

substantially reduce the total number of input combinations that has to be

investigated for a given comparator network in order to precisely determine the

properties of the network. According to the permutation principle, the aforemen-

tioned distance errors can be determined using the permutations of a set S consisting

of 2k þ 1 different values. To determine the quality, we propose to use a set

S ¼ f�k;�k þ 1; . . .; 0; . . .; k � 1; kg. The set S consists of 2k þ 1 successive

integers starting at the value �k. This particular arrangements enable to calculate

the average distance error in the same way as the average error magnitude. This is

possible because the median of S is equal to zero and the distance between jth

lowest item (i.e. the value j� ðk þ 1Þ) and ðk þ 1Þth lowest item (i.e. median of S)

Genet Program Evolvable Mach

123

is equal to j� ðk þ 1Þ. Compared to the process of determining the average error

magnitude, however, a substantially lower number of input combinations is required

to be processed by a candidate median implementation.

4.2 The permutation principle

Definition 1 Let R be an ordered alphabet. A comparator network is a directed

acyclic graph with n inputs and n outputs (n� 2), where each node has two inputs

ðx1; x2Þ and two outputs ðy1; y2Þ. The function of a node is defined as

y1 ¼ minðx1; x2Þ ^ y2 ¼ maxðx1; x2Þ, where x1; x2 2 R.

Definition 2 A sorting network is a comparator network that monotically sorts

every input sequence.

Definition 3 Let A ¼ ða1; . . .; anÞ be a sequence of n different elements, A 2 R�.
Let dA: R� ! N be a mapping which assigns each element ai 2 A the position of

this element in the sorted variant of A. Let dA be defined as follows:

dAðxÞ ¼ 0 , 8a 2 A:x\a

dAðxÞ ¼ jAj � 1 , 8a 2 A:x[a

8 1� i; j� n:ai\aj , dAðaÞ\dAðbÞ

For simplicity, let dðAÞ denote the sequence ðdAða1Þ; dAða2Þ; . . .; dAðanÞÞ.

Lemma 1 ([14]) Let N be a sorting network with n inputs that transforms a

sequence A ¼ ða1; a2; a3; . . .; anÞ to a sequence B ¼ ðb1; b2; b3; . . .; bnÞ. If a

monotonic mapping f is applied to the sequence A, the network N transforms a

sequence A0 ¼ ðf ða1Þ; f ða2Þ; f ða3Þ; . . .; f ðanÞ) to B0 ¼ ðf ðb1Þ; f ðb2Þ; f ðb3Þ; . . .;
f ðbnÞÞ.

Theorem 1 Let N be a comparator network with n inputs. Let S be a set consisting

of n distinct values. If every permutation of a set S is sorted by N, then every

arbitrary sequence is sorted by N.

Proof Suppose A ¼ ða1; . . .; anÞ is an arbitrary sequence which is not sorted by N.

This means NðAÞ ¼ B ¼ ðb1; . . .; bnÞ is unsorted, i.e. there is a position k such that

bkþ1\bk. Clearly, mapping dA is monotonic. By applying Lemma 1 and dA, the
following holds dAðbkþ1Þ\dAðbkÞ, i.e. dðBÞ ¼ dðNðAÞÞ is unsorted. This means that

NðdðAÞÞ is unsorted or, in other words, that the sequence dðAÞ is not sorted by the

comparator network N.

We have shown that, if there is an arbitrary sequence A that is not sorted by N,

then there is a sequence dðAÞ, i.e. a sequence of ð0; . . .; n� 1Þ values, that is not

sorted by N. Equivalently, if there is no ð0; . . .; n� 1Þ-sequence that is not sorted by

N, then there can be no sequence A whatsoever that is not sorted by N. Equivalently

again, if all ð0; . . .; n� 1Þ-sequences are sorted by N, then all arbitrary sequences

are sorted by N.

Clearly, there exists a bijection between all permutations of S and all

ð0; . . .; n� 1Þ-sequences as follows from the definition of S. In particular, dS

Genet Program Evolvable Mach

123

ensures the bijective mapping. This means that if all permutations of S are sorted by

N, then all arbitrary sequences are sorted by N. h

4.3 The permutation principle and distance error

The permutation principle introduced in the previous section can be employed to

determine the distance between an arbitrary comparator network (e.g. partially

working sorting network) and a sorting network as follows.

Theorem 2 Let C be a comparator network, and N be a sorting network, both with

n inputs. Let A be an arbitrary sequence A ¼ ða1; . . .; anÞ. Let D ¼ CðdðAÞÞ �
NðdðAÞÞ ¼ ðd1; . . .; dnÞ be a mapping which assigns each element ai a number di.

Then, di is error expressed as the number of positions that are required to shift ai to

the right in sequence CðdðAÞÞ to obtain sorted variant of sequence A.

Proof Let B ¼ NðAÞ and B0 ¼ CðAÞ. For each element b0k 2 B0 holds that

difference between a correct position and position of b0k in a sorted variant of

sequence A is equal to dk ¼ dAðb0kÞ � k. As N is a sorting network, it holds that

dAðbkÞ ¼ k which implies that dk can be expressed as dk ¼ dAðb0kÞ � k ¼
dAðb0kÞ � dAðbkÞ. By applying Lemma 1, it holds that D ¼ CðdðAÞÞ � NðdðAÞÞ: h

Definition 4 Let A and B be two sequences of elements. Let � d denote an

equivalence relation on the set of all sequences defined as follows:

A� dB , jAj ¼ jBj ^ dðAÞ ¼ dðBÞ

To conclude this part, let us give a simple example which illustrates the principle

of determining the position error for a comparator network with 4 inputs and 4

outputs and two chosen sequences A and B.

Example 1 Let A and B be two sequences consisting of 4 items defined as

A ¼ ð25; 14; 36; 8Þ, B ¼ ð16; 12; 20; 2Þ. Let N denotes the sorting network and C be

a comparator network both with 4 inputs and 4 outputs, where C is defined as

follows: Cða1; a2; a3; a4Þ ¼ ðminða1; a2Þ;maxða1; a2Þ; a3; a4Þ:
According to the Definition 3, dðAÞ ¼ ð2; 1; 3; 0Þ and NðdAðAÞÞ ¼ ð0; 1; 2; 3Þ

which follows fromNðAÞ ¼ ð8; 14; 25; 36ÞwhereN(A) denotes the sorted sequenceA.
As the output of C is equal to CðAÞ ¼ ð14; 25; 36; 8Þ, the CðdðAÞÞ ¼ dðCðAÞÞ ¼
ð1; 2; 3; 0Þ. To calculate the positional differencesDCðAÞ, we apply Theorem 2 which

yields the following resultDCðAÞ ¼ CðdðAÞÞ � NðdðAÞÞ ¼ ð1; 2; 3; 0Þ�ð0; 1; 2; 3Þ ¼
ð1; 1; 1;�3Þ. The result can be interpreted in such a way that each of the first three

elements of the partially sorted sequence C(A) should be shifted one position to the

right and the last element should be shifted three positions to the left. If all the shifts are

applied, we obtain a sorted sequence.

The same sequence of steps applied to B yields DCðBÞ ¼ CðdðBÞÞ � NðdðBÞÞ ¼
ð1; 2; 3; 0Þ �ð0; 1; 2; 3Þ ¼ ð1; 1; 1;�3Þ. It reveals that DCðBÞ ¼ DCðAÞ, i.e. the same

Genet Program Evolvable Mach

123

sequence as for Awas obtained. It means that we have applied the sequence within the

same equivalence class, i.e. A� dB. This fact can be easily checked by comparing the

output of dðAÞ and dðBÞ. It holds that dðBÞ ¼ dðAÞ.

4.4 Final remarks

In general, there exist 2wn input combinations that can be processed by an n-input

comparator network operating at w-bits. We have shown that it is sufficient to

reduce the number of the possible input combinations to n! to prove the validity of a

sorting network due to the existence of permutation principle (see Theorem 1).

According to the zero–one principle, the validity of a sorting network can, however,

be checked using 2n binary vectors. As it can easily be checked, the 2n is for n� 4

lower than n!, hence it seems that the proposed permutation principle does not offer

an advantage. However, the problem of zero–one principle is that the binary vectors

cannot probably be used to evaluate the quality of a comparator network. The reason

is that we are not able to distinguish which value comes from what input (there are

only two values—0’s and 1’s). To address this problem, Theorem 2 helps to

determine the so called position error (distance error) which can be used as a basis

of an error metric.

The impact of the introduced permutation principle can be seen from theoretical

as well as practical point of view. From the theoretical point of view, it was proven

that we can use this principle to evaluate the quality of candidate solutions without

loss of generality (i.e. it is not necessary to evaluate responses for all w-bit input

combinations). The permutation principle significantly reduces the number input

vectors that have to be applied to obtain the fitness. In particular, 362, 880 vectors

instead of 2569 vectors are sufficient to precisely determine quality of a 9-input

comparator network operating at 8-bits. From the practical point of view, the

permutation principle (if properly applied) extremely simplifies the evaluation of

candidate solutions because the response of a comparison network (i.e. output

value) is equal to the distance from the median value. It means that we can avoid

precomputing and storing of a training dataset.

Example 1 illustrates that no additional information about an investigated

network is obtained when we try to check some property of a comparator network

using sequences belonging to the same equivalence classes. This may happen when

randomly generated test cases are used to determine this property. In fact, the

randomly generated input sequenced may introduce a bias when used to evaluate

quality of a comparison network. The probability of occurrence such cases is

relatively high, because only the relation among the values within a generated

sequence is important (i.e. not values themselves). Let us give an example. We

created 106 test vectors consisting of nine randomly generated 8-bit values. Then,

we calculated the number of covered equivalence classes according to Definition 4.

It revealed that only 337,751 out of 362,880 (i.e. 93 %) of all possible equivalence

classes were covered despite the fact that we generated approximately three times

more test vectors than the number of equivalence classes. It means that there is

many test vectors belonging to the same equivalence class.

Genet Program Evolvable Mach

123

The permutation principle and the obtained conclusions can directly be applied

not only to comparator networks discussed in this section but also to comparator

networks with a single output. In other words, the permutation principle can be used

to assess the quality of partially working median as well as sorting networks.

5 The proposed method

In order to search for solutions with some improved level of a non-functional

property, we must be able to quantify that property. In our case, the execution time

and power consumption are considered. To estimate these non-functional properties,

we can use the number of operations of which the median function consists of. This

is a fairly reliable high-level estimate not only of execution time but also of power

consumption. A more detailed simulation employing an accurate simulator would

be necessary in general, however, our programs are designed as a sequence of min

and max operations. It is supposed that each operation is transformed by compiler to

a sequence of instructions that requires exactly the same number of clock cycles to

perform this operation. In addition to that it also reflects the nature of modern

embedded systems (e.g. ARM) whose instruction set predominantly consists of

instructions that can be executed within one clock cycle.

In this paper, the task is formulated as a single objective optimization problem

where the number of operations en represents a constraint specified by designer.

Because both considered non-fuctional objectives linearly depend on this constraint,

it is not necessary to include these objectives in the fitness function. This represents

the main advantage of the constraint-oriented approach. In addition to this, the

constrain-oriented approach is relevant to practice where the designers usually

wants to achieve a particular power reduction in order to improve the performance

of the whole embedded system.

To achieve our goal, we propose to use cartesian GP (CGP) in its linear form

[18]. The linear form seems to be preferred approach compared to the traditional

form of CGP representing the solved problems using two-dimensional array of

nodes.

5.1 Representation of comparator networks

Each comparator network with n inputs can be represented using a directed acyclic

graph consisting of k nodes. In order to encode such a graph, we can map the nodes

to a 1D array of N nodes (N � k) that can be encoded using cartesian GP

representation as follows. The number of rows, which is one of CGP parameters, is

set to nr ¼ 1. The number of columns nc is equal to the number of nodes, i.e.

nc ¼ N.

The 1D array of nodes can be encoded using a string of integers, the so-called

chromosome. The inputs are labelled ð0; 1; . . .; n� 1Þ and the nodes are labelled

ðn; nþ 1; . . .; nþ nc � 1Þ. Each node has two inputs and is encoded in the

chromosome using three integers—two labels specifying where the node inputs are

connected to and a single label specifying the function of the node. Finally, the

Genet Program Evolvable Mach

123

chromosome contains a single integer specifying the label of a node where the

output is connected. The chromosome consists of 3nc þ 1 integers (i.e. genes).

The main feature of CGP is that nc as well as nr (i.e. the total number of nodes N)

are constant during evolution. It means that the size of the chromosome is constant

because it depends only on nc. On the other hand, the size of graph represented by

this chromosome is variable as some nodes may become inactive. The nodes which

do not contribute to the output value are called the inactive nodes. Example is given

in Fig. 2 where only 4 out of 5 nodes are active.

Each node can act as minimum or maximum function. The inputs of a node can

be connected either to the output of a node placed in previous l columns or to one of

the input variables. This restriction ensures that no feedbacks are allowed. The

output can be connected to output of any node. The l-back parameter will be

unrestricted, i.e. l ¼ nc.

5.2 Quality of candidate solutions

The computational effort of EA directly depends on the number of test cases that are

used for fitness evaluation of the GP individuals. Even if we apply the permutation

principle which substantially reduces the number of all possible test cases that have

to be investigated, we cannot run all of these due to time constraints. Thus, the

number of test cases is fixed and specified at the beginning of the evolution. Based

on the preliminary experiments and in accordance with observations related to the

minimum number of test vectors required to evaluate candidate solutions [34], we

determine the number of test cases as T ¼ 103 � n2, where n is the number of input

variables. The number of test cases is chosen in such a way that we are able to

relatively precisely estimate the quality of the individuals while the time of fitness

evaluation remains reasonable. Surprisingly, this simplification does not have any

significant effect in practice provided that a reasonable number of unique

permutations is used. The example given in Fig. 3 demonstrates how the number

of test cases influences the shape of distribution of distance error for an approximate

version of 25-input median. If more than 104 test vectors are used, the distributions

are almost identical.

The first generated test case is the sequence S ¼ ð�k;�k þ 1; . . .; 0; . . .; k � 1; kÞ
where n ¼ 2k þ 1. The next test case is obtained by swapping two randomly chosen

items. This step ensures that a permutation of S is obtained. Note that the process of

MIN

2

3
5 MAX

1

4
6

0

5
7

7

6
8

7

4
9

i0

i1

i2

i3

o (8)

i4

MAX MAXMIN

0

1

2

3

4

Fig. 2 Example of a 5-input comparator network encoded using cartesian GP with parameters: k ¼ 5,
nc ¼ 5, l ¼ 4. Chromosome: 2, 3, min; 1, 4, max; 0, 5, max; 7, 6, min; 7, 4, max; 8. Node 9 is not used.
The behaviour of the encoded comparator network is defined as:
o ¼ minðmaxði0;minði2; i3ÞÞ;maxði1; i4ÞÞ

Genet Program Evolvable Mach

123

generating the test cases have to be deterministic because we have to guarantee that

exactly the same fitness score is obtained for individuals that represent the same

behaviour. In order to satisfy this requirement, a separate random generator is used

to perform the random exchanges. This generator is reinitialized with the same seed

whenever we begin to generate the permutations.

The quality of the GP individuals is determined as follows. For each test case, the

chromosome is interpreted. This step requires to successively determine the value at

the output of each node. Finally, the response of a comparator network encoded by

the individual is calculated. Because the permutations of a set proposed in Sect. 4.1

are applied to the inputs, the obtained response equals to the distance error

determined for a given test case. In order to prefer the implementations with the

lowest worst case distance error, we propose to calculate a histogram of distance

errors and summarize the obtained results as follows:

qðCÞ ¼ hðC; 0Þ �
X

k

i¼�k

hðC; iÞi2; ð1Þ

where q(C) denotes the quality of a comparator network C and h(C, i) represents the

number of occurrences of a case for which the distance error equals to i, formally:

hðC; iÞ ¼
X

t2T

1; ifCðtÞ ¼ i:

0; otherwise:

�

ð2Þ

where C(t) denotes the response of the comparator network C obtained for a test

case t 2 T and T is a set of considered permutations of S. There are two reasons for

including i2. Firstly, only positive numbers are summed. Secondly, a natural weight

is provided in order to emphasize the most important part of the histogram.

5.3 Search method

The search method follows the standard CGP approach [18], i.e. the evolutionary

strategy 1þ k is applied. The initial population is seeded by an existing median

−12 −11 −10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11 12

Distance error

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

R
el

at
iv

e
fre

qu
en

cy
T= 103

T= 104

T= 105

T= 108

Fig. 3 Distribution of distance error for an approximate version of 25-input median as a function of the
number of test cases T

Genet Program Evolvable Mach

123

network. In order to generate a new population, k offspring individuals are created

by a point mutation operator modifying h genes of the parent individual. The best

individual of the current population (i.e. the parent individual together with k
offspring) serves as the parent of new population. The process is repeated until a

given number of generations is not exhausted.

One mutation can alter either the function of a node, node input connection, or

output connection. If a mutation hits a non-active node, this is detected and the

candidate solution is not evaluated in terms of functionality because it has the same

fitness as its parent. Mutations that do not affect the fitness score are called neutral

and seem to be important in CGP because a series of neutral mutations can

accumulate useful structures in the part of the chromosome which is not currently

active (see detailed analysis in [8, 19]). In order to support this kind of neutrality,

neutral mutants always replace their parent in CGP. One adaptive mutation can then

connect these structures with active nodes which could lead to discovering new

useful implementations.

In order to obtain an approximate version of median function M, we propose to

apply a two-stage procedure. At the beginning, the designer specifies the target

reduction that should be achieved, e.g. 15 %. The specified value is internally

understood as the number of operations L of the approximate median function. In

our example, L is equal to 85 % of the number of operations in the original median

function.

The first stage starts with a fully functional solution. As has been discussed in

Sect. 3.2, the initial solution can always be obtained in practice. In this stage, the

goal is to gradually modify the initial sequence consisting of minimum and

maximum operations and produce a reduced sequence of length L providing that a

5 % difference is tolerated with respect to L (tolerating a small deviance in the

number of operations is acceptable; otherwise the search could easily stuck in a

local extreme). The fitness function fit1 used in the first stage is thus solely based on

the number of operations

fit1ðCÞ ¼ jCj; ð3Þ

where C denotes a candidate solution implemented using |C| operations.

In the second stage, which begins after obtaining an implementation consisting of

the target number of operations, the fitness function reflects not only the size, but

also the quality:

fit2ðCÞ ¼
qðCÞ; if 0:95L� jCj � 1:05L:

�1; otherwise:

�

ð4Þ

It is requested that the number of operations remains within 5 % tolerance with

respect to L. Candidate circuits violating this hard constraint are discarded.

The proposed two-stage method eliminates the problem with seeding of initial

population which may be considered as a limitation of the resource-oriented method

[20]. The advantage of our method is that we do not need to implement a heuristics

for generating the initial solution consisting of L operations. Instead, a fully working

median function obtained by pruning a sorting-network is used as the start point. In

Genet Program Evolvable Mach

123

addition to this, it was demonstrated that the randomly seeded CGP was unable to

produce reasonable solutions when the complexity of the problem to be solved

increases. The role of seeding was investigated for example in [34]. The benefits of

the two-stage method are not only in improving the quality of evolved circuits, but

also in reducing the time of evolution.

6 Experimental setup

In order to evaluate the performance of the proposed approach, i.e. the ability to

improve the considered non-functional parameters of the existing median functions,

namely time of execution and power consumption, we have chosen four instances of

the median filter that are common in practice. The results of optimization for

9-median, 11-median, 13-median, and 25-median will be reported. While the

9-input and 25-input medians are typically employed in image processing, the

9-input, 11-input and 13-input medians represent instances used to filter data

coming from sensors. We did not consider the lower number of inputs because there

is nearly no potential for improvement due to the small code complexity.

As previously mentioned, the designer has to specify the target reduction that

ought to be achieved by reducing the number of instructions. Eight to eleven design

points (i.e. different values of L) were considered for each problem. We carried out

100 repetitions of CGP at each design point to evaluate the variation in the output

caused by the random seed. In total, 4000 experimental runs were performed. To be

able to evaluate all runs in a reasonable time, the number of generations was limited

to gmax ¼ 1� 104. The number of generations is based on the initial experiments

and represents a compromise between the ability to demonstrate the advantage of

the genetic improvement in the solving of the chosen problem and the amount of

required computational resources. If the objective is to find the best possible

implementation for a certain design point, we recommend to increase the number of

generations. In order to improve the efficiency of the fitness function, approach

proposed in [35] was employed.

The following settings was used for the search strategy: Twenty offspring

individuals are generated from the parent (i.e. k ¼ 20) using the mutation operator

that modifies up to 5 % of the chromosome genes. The number of columns nc is

fixed for each design point and is initialized according to the number of operations

of the original median function. In the case of 9-input and 25-input median, the

optimal implementations consisting of the minimal number of compare-swap

elements were used from [4]. Each compare-swap element was replaced by

minimum and maximum operation and the worthless operations were removed as

mentioned in Sect. 3.2. The obtained sequence of minimum and maximum

operations was used as a starting point for seeding the evolutionary algorithm. In

remaining cases, the initial fully working median networks were derived from a

25-input median network by reducing the number of inputs and removing redundant

operations. We have verified that this approach produces more compact median

networks compared to the results obtained using the approach employing a sorting

algorithm. The parameters of the initial networks are summarized in Table 1.

Genet Program Evolvable Mach

123

7 Results

The results of the evolution are summarized in Fig. 4. For each problem and each

design point, the normalized fitness score is given. This score is calculated

according to Eq. 4, however, the results are normalized by the total number of test

Table 1 Parameters of the fully working median functions used to seed the evolution and the range in

which the design points are sampled

Parameter 9-Median 11-Median 13-Median 25-Median

Number of compare-swaps elements 19 33 43 99

Number of min/max operations 30 56 74 174

Number of min operations 15 (50 %) 28 (50 %) 37 (50 %) 87 (50 %)

Number of max operations 15 (50 %) 28 (50 %) 37 (50 %) 87 (50 %)

Minimum value of L 8 8 10 50

Maximum value of L 30 56 74 174

Number of design points 11 8 8 13

9 11 13 15 17 19 21 23 25 27 29

Size limit L

−6

−5

−4

−3

−2

−1

0

1

N
or

m
al

iz
ed

 fi
tn

es
s

9 input median

11 17 23 29 35 41 47 53

Size limit L

−8

−6

−4

−2

0

N
or

m
al

iz
ed

 fi
tn

es
s

11 input median

14 22 30 38 46 54 62 70

Size limit L

−10

−8

−6

−4

−2

0

N
or

m
al

iz
ed

 fi
tn

es
s

13 input median

55 65 75 85 95 105 115 125 135 145 155 165 175

Size limit L

−20

−15

−10

−5

0

N
or

m
al

iz
ed

 fi
tn

es
s

25 input median

Fig. 4 The fitness score of the evolved comparator networks (approximate median function) based on
100 experimental runs performed for each design point. The dash line represents target Pareto frontier

Genet Program Evolvable Mach

123

cases. The interpretation of the y-axis is as follows. While the fully working median

functions represented by the fittest solutions have their fitness score equal to one, the

solutions of lower quality have assigned the fitness score lower than one.

For each problem, we sampled the design space equidistantly to be able to

construct the Pareto frontier which helps us to discuss the performance of the

method. As mentioned earlier, the maximum value of L is bounded by the size of the

initial solution. Conversely, it makes no sense to explore situations where L is lower

than the number of input variables because it means that some inputs will not be

involved in computation. In the case of 25-input median, we restricted the lower

bound even more because it would be computationally expensive to perform

evolution for all cases. According to the measurements, 8.8 ms are required in

average to calculate fit2 for 9-input median. This time, however, increases up to

368.3 ms in the case of 25-input median. The experiments were conducted on a

64-bit Linux machine running on Intel Xeon X5670 CPU (2.93 GHz, 12 MB cache)

equipped with 32 GB RAM.

Interestingly, compared to the resource-oriented method [34], our method is

extremely efficient if the time required to obtain an implementation consisting of

L operations is considered. According to the experiment, the average duration of the

first stage is less than 10 ms in the case of 9-median and less than 373 ms in the case

of 25-median.

The obtained results given in Fig. 4 are presented using boxplots which illustrate

distribution of the normalized fitness calculated independently for each considered

design point. As it can be seen, the variance of the fitness score is quite low for each

design point. Taking into account that the number of generations was relatively low,

these results demonstrate the robustness and stability of our method. The only

exception is the 25-input median where we can see higher variance primarily at both

extremes of L. In order to analyse this situation more thoroughly, we created a target

pareto frontier (see dashed lines in Fig. 4) representing the goal of evolution. This

Pareto frontier was obtained by interpolation of the fittest implementations obtained

for 9-input, 11-input and 13-input median. The obtained regression models were

generalized and projected backward to the plots. In most cases, we were able to find

solutions that are very close to this imaginary pareto frontier. Unfortunately, in the

case of 25-median (see Fig. 4, bottom right), we can see that there are cases in

which the fitness score of the obtained results is far from the expected one. This is

evident especially for cases where L is between 125 and 155. To investigate the

reason of this gap, we tried to prolong the time of evolution for few of these cases

and we discovered that this problem is caused by the insufficient number of

generations. In order to obtain better results, it would be necessary to increase ng
adequately (at least by two orders of magnitude).

Whilst the initial implementations of 9-input and 25-input median networks

remained unchanged, which was in fact expected as it is believed that the

corresponding sequences of compare-swap elements are optimal, the evolution

discovered improved versions of 11-input fully functional median function

consisting of 50 operations and improved version of 13-input fully functional

median counting 66 operations which yields 11 % reduction in both cases.

Genet Program Evolvable Mach

123

A more detailed analysis of the quality of discovered solutions is shown in Fig. 5

where we present histograms of the error distribution for each problem. The

histograms are created using the best solutions obtained from all experimental runs.

It means that for each design point, the fittest solution was identified and chosen.

The quality is expressed in terms of the distance error. The histogram of distance

errors are calculated for each discovered solution using 1000 times more

permutations compared to the number of permutations utilized to determine fit2;

this enables to obtain precise results exhibiting the error in the order of 10�3.

Let us discuss, for example, the results for 11-input median (see Fig. 5, top right).

If we reduce the number of operations by 12 % (i.e. to 44 operations), the output

value is determined correctly in more than 93 % all possible cases. In the rest of the

cases (i.e. 6 %), the output value is determined incorrectly as the 4th lowest item of

a sorted list of numbers. In less than 0.9 % of cases, the 6th lowest item is returned.

Because the median value corresponds with 5th lowest item, the distance between

median and output value is equal to 1 in both cases. If the number of operations is

reduced to 20 (60 %), the worst case error increases to 2. According to the

distribution of errors, this error, which is caused by outputting 3th or 7th lowest

item, occurs in 3.6 % of all input cases only. The remaining 47.2 % erroneous

outputs are caused by selecting 4th or 6th lowest item.

An interesting feature of the discovered solutions is the asymmetric distribution

of the errors. This is more evident if we look at the histogram for 25-input

-4 -3 -2 -1 0 1 2 3 4

Distance error

30 %

33 %

47 %

53 %

67 %

73 %

87 %

100 %

op

er
at

io
ns

9-input median

-5 -4 -3 -2 -1 0 1 2 3 4 5

Distance error

28 %

40 %

50 %

60 %

64 %

76 %

88 %

100 %

op

er
at

io
ns

11-input median

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

Distance error

26 %

39 %

52 %

58 %

62 %

73 %

88 %

100 %

op

er
at

io
ns

13-input median

-12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12

Distance error

34 %

40 %

51 %

61 %

86 %

92 %

94 %

100 %

op

er
at

io
ns

25-input median

0.5 % 10 % 20 % 30 % 40 % 50 % 60 % 70 % 80 % 90 % 100 %

Fig. 5 The quality of the best discovered solutions consisting of a different number of operations
expressed in terms of the distance error. The zero error means that the 5th, 6th, 7th, and 13th lowest item
of input sequence was returned for 9-input, 11-input, 13-input, and 25-input median respectively

Genet Program Evolvable Mach

123

comparator network consisting of 150, i.e. 86 %, operations (see Fig. 5, bottom

right). While the 4th lowest item is returned in 20 % of cases, the 6th lowest item is

returned in more than 29 % of cases. We have not investigated the exact reason

because it does not represent a real problem, however, it is worth noting that we

have obtained many solutions with the same fitness score and it may happen that

there is a solution with the same or slightly lower fitness score having a symmetric

distribution of errors.

We can conclude that the obtained reduced median networks are of high quality.

Even in the extreme case, where approximately 50 % of operations are removed, the

error is not worse than one position for 9-input median, 2 positions for 11-input

median, and 3 positions for 13-input and 25-input median respectively. The 25-input

median consisting of more than 170 operations offers the largest possibilities for

improvement. We can remove more than 25 % operations without a significant

decrease in the quality. For more than 75 % of all possible input combinations, the

median value or the values next to the median are returned.

To have a notion of properties of the discussed error metrics, Table 2 reports the

error probability, mean distance error, and left and right worst case distance error for

9-input median. It can be seen that as the number of operations decreases, the error

probability as well as the distance error are increasing. The mean value increases,

however, it is not easy to a priori specify the required target value. The same is valid

even for the error probability which gives the number of invalid output values, i.e.

the amount of cases in which a value different from median was returned. Looking

at the results shown in Fig. 5, it can easily be revealed that the issue with the mean

value is that the distribution of errors is not the Gaussian distribution, especially for

cases with a small reduction of the number of operations.

8 Improved medians in real embedded systems

Because the medians are typically employed to solve some real problem, we take

the best discovered approximated median filters whose quality was discussed in the

previous section and evaluated their performance in two different real-world

Table 2 Parameters of the improved implementations of 9-input median

No. of

operations

Achieved

improvement (%)

Error

probability(%)

Distance error

Mean Left/right Worst-case

9 70.00 68.11 0:871	 0:702 �2 2

10 66.67 63.36 0:776	 0:677 �2 2

14 53.33 53.12 0:591	 0:601 �2 2

16 46.67 42.85 0:428	 0:495 �1 1

20 33.33 30.93 0:321	 0:491 �1 2

22 26.67 25.26 0:253	 0:434 �1 1

26 13.33 21.53 0:215	 0:411 �1 1

Genet Program Evolvable Mach

123

problems—processing of data acquired by sensor devices, and removing of noise in

image data.

For each case study, the problem is briefly introduced first. Then, non-functional

parameters of evolved as well as commonly used implementations are analysed and

discussed. Finally, the impact of the approximate medians on quality and

performance is evaluated providing that the approximate medians are employed

as the main component which process data.

Four microcontrollers were chosen to evaluate the non-functional parameters of

the evolved median functions. The microcontrollers were programmed using the

complied C codes of discovered implementations discussed in the previous sections.

Two non-functional parameters were measured: (a) the time that each microcon-

troller spends in a routine which computes the median value, and (b) energy

consumed by the microcontroller to execute this routine.

A specific program was implemented, compiled and executed by the microcon-

trollers to perform the measurements. The program is designed as follows. Firstly,

an input vector consisting of n integers is randomly initialized and fed to the

routines calculating the median. Note that n is equal to the number of inputs of

median. Then, an infinite loop is executed, which contains calling of the routine

calculating the median value followed by a code modifying a randomly chosen

value of the input vector to another value. Passing one iteration of the loop is

indicated by inverting the logic value on a given pin. The execution time is then

obtained using an oscilloscope by monitoring the period of the signal on the pin.

The average execution time is reported.

In order to precisely determine an average energy needed to calculate the median

value, all unused peripheral devices are switched off. Only those external

components remain used which are necessary for program execution. Energy

consumption was measured using Agilent N6705B DC Power Analyzer displaying

the error lower than 0.025 % for voltage as well as current measurements.

8.1 Microcontrollers used for testing

In order to evaluate the non-functional parameters, we have chosen the following

common-off-the-shelf microcontrollers available in our lab: 8-bit microcontroller of

Microchip PIC family with code name PIC16F628A, 16-bit PIC24F08KA102, low-

power 16-bit microcontroller MSP430F2617 from Texas Instruments and 32-bit

ARM-based microcontroller STM32F100RB produced by STMicroelectronics. The

goal is to present results for various architectures because there typically exist

variations in the performance caused by different instruction sets on the one side and

different internal architecture on the other side. To be able to interpret the obtained

results, the main features of the microcontrollers are briefly discussed in this section.

The 8-bit PIC equipped with 3.5 kB of FLASH and 224 B of RAM is optimized

for low-cost applications. Hence, a simple accumulator architecture without a stack

is used. The instruction set consists of 35 instructions encoded using a 14-bit wide

instruction word. The two-stage instruction pipeline allows all instructions to be

executed in a single cycle, except for program branches. The chosen chip has an

internal oscillator running at 4 MHz and consuming about 10 nA in the sleep mode

Genet Program Evolvable Mach

123

and about 565 lA in the active mode. Note that these values were measured when

all the peripherals were deactivated.

The 16-bit PIC represents a class of microcontrollers with a register architecture

consisting of 16 general-purpose 16-bit registers and 7 special registers. The

instructions are encoded using a 24-bit instruction word with a variable length of the

opcode field. The chosen chip contains 8 kB of FLASH memory, 1.5 kB of RAM

memory and employs an internal oscillator running at 8 MHz. The instructions

require from 1 to 3 clock cycles and are executed at 4 MHz. Our chip consumes

about 4 mA in the active mode and 25 nA in the sleep mode.

The MSP430F2 is a 16-bit ultralow-power RISC microcontroller with register

architecture optimized for processing data from sensor devices. The chosen CPU

consists of 16 registers, is equipped with 92 kB of FLASH memory and 4kB of

RAM, and can operate at 16 MHz. The calibrated digitally controlled internal

oscillator can be configured to generate up to 8 MHz signal for system clock. The

instruction set consists of 51 instructions with three formats and seven address

modes. In contrast with PIC, there are instructions that enable to access two memory

operands. The instructions require from 1 to 6 cycles to be executed. The

instructions working with registers require a single clock cycle, the instructions

addressing memory require 3 or 6 (when two memory accesses are required) cycles.

The chip consumes 365 lA in the active mode at 1 MHz and 500 nA in the standby

mode. In order to exploit the low-power capabilities, we configure the internal

oscillator to operate at 1 MHz.

The STM32F100RB incorporates a high-performance RISC ARM Cortex M3

core offering twelve 32-bit general-purpose registers. This core builds on the

ARMv7-M architecture and shows higher computational power compared to the

aforementioned chips. For example, a single-cycle multiplication and a hardware

division are supported. STM32 is equipped with 128 kB of FLASH memory, 8 kB

of RAM and operates at 24 MHz. The maximum current consumption in the sleep

mode is approx. 3.8 mA. When the peripherals are enabled, the current increases to

9.6 mA. The current in active mode ranges from 10 to 150 mA depending on the

state of peripherals.

8.2 Evolved code on different microcontrollers

The process of obtaining C code from a chromosome is straightforward. Every

active node, starting from one with the lowest index, corresponds with a single line

of code containing a call of min or max function whose operands are taken from the

input sequence or the outputs of preceding operations.

The min and max functions are defined as two macros outputting the minimal and

maximal value for two operands. The compiler is then able to unroll the code and

optimize it in terms of register assignment and overall performance.

8.3 Processing data from sensor devices with approximated median filters

When we look at signals coming from various devices such as A/D converters,

temperature sensors, or accelerometers, the data are noisy even in a perfect

Genet Program Evolvable Mach

123

environment. In a real situation, where the accelerometers are, for example, used to

stabilize various flight vehicles, the situation is even worse because of various

vibrations caused by motors or propellers that are for example out of balance. When

such a sensor acts as a central element controlling a process, it is necessary to

remove the noise so as to prevent unwanted behaviour.

There are many filters that can be applied to smooth the measured data, for

example, a variant of low-pass filter. The filter tries to keep the low frequency data

while removing the high frequency noise (i.e. spikes). A low-pass filter usually is

implemented in a situation where a limited number of computational resources are

available because its implementation is simple. It can be implemented as an

exponentially weighted moving average xtþ1 ¼ ayt þ ð1� aÞxt where yt represents

data measured at time t and xt the output value obtained at time t. Alternatively, a

more robust Kalman filter may be used [13]. In contrast to the low-pass filter which

has a fixed parameter a, Kalman filter is an adaptive estimator which minimizes the

mean square error of the estimated parameters according to the previous state and

actual measured value. Given only the mean and standard deviation of noise, the

Kalman filter is the best linear estimator.

Unfortunately, there are two issues connected with the usage of linear filters. The

first problem is that the data is being delayed by the filter which is a feature of linear

filters when they are set to have a strong filtering effect. The second issue is that the

filtered signal does not seem to follow the original measured data very well. To

avoid the delay and provide results of high quality, we can employ an instance of

median filter to smooth the measured data.

A relatively small number of samples are sufficient to be able to filter the

measured data and remove the outliers. To demonstrate the benefits of the

discovered approximations, we will apply the evolved 11-input and 13-input

medians to filter the outliers presented in a signal captured by an accelerometer

sensor. The obtained non-functional parameters are summarized in Tables 3 and 4.

As the non-functional parameters are manually evaluated on real systems, only

some of the Pareto dominant discovered solutions are investigated. It should be

noted that only the number of operations and the quality defined by Eq. 1 was

considered during construction of the Pareto set. We have implemented and

measured not only the evolved solutions, but also three common approaches to

determine median value—the quicksort algorithm, quickselect algorithm and the so

called running median. While quicksort represents a sorting algorithm, the

quickselect is a selection algorithm which is able to find the kth smallest element

in an unordered list [4]. The quickselect uses the same overall approach as

quicksort, however, it only recurses into one side of the input sequence which

reduces the average complexity. The running median attempts to minimize

processing time by maintaining a data list that is sorted from the smallest value to

the largest value [25]. When a new sample is submitted, it replaces the oldest

sample. The new sample is then shifted in the sorted list to bring it to the correct

location.

Firstly, let us discuss size of the machine code of the complied C codes. If we

compare the amount of bytes occupied by median networks and common

approaches such as quicksort, quickselect and running median, we can easily

Genet Program Evolvable Mach

123

T
a
b
le

3
N
o
n
-f
u
n
ct
io
n
al

p
ar
am

et
er
s
o
f
ac
cu
ra
te

(e
m
p
h
as
iz
ed
)
an
d
ap
p
ro
x
im

at
ed

im
p
le
m
en
ta
ti
o
n
s
o
f
1
1
-i
n
p
u
t
m
ed
ia
n
fu
n
ct
io
n
m
ea
su
re
d
o
n
d
if
fe
re
n
t
M
C
U
s

Im
p
l.

M
ac
h
in
e
co
d
e
si
ze

[B
]

E
x
ec
u
ti
o
n
ti
m
e
[l
s]

C
o
n
su
m
ed

en
er
g
y
[n
W
s]

S
T
M
3
2

P
IC
2
4

P
IC
1
6

T
I4
3
0

S
T
M
3
2

P
IC
2
4

P
IC
1
6

T
I4
3
0

S
T
M
3
2

P
IC
2
4

P
IC
1
6

T
I4
3
0

1
4
-o
p
s

1
1
8

3
2
4

3
2
8

1
5
6

4
.0

8
8

3
4
1

3
1
0

1
2
0

6
0
4

6
8
2

2
4
9

2
0
-o
p
s

1
5
8

4
4
1

4
5
2

2
2
4

4
.6

1
0
8

4
5
0

3
5
6

1
4
0

7
4
5

9
0
0

2
8
6

2
5
-o
p
s

2
0
6

5
4
9

5
6
7

2
7
6

5
.5

1
2
7

5
5
2

3
7
5

1
6
9

8
7
8

1
1
0
5

3
0
1

3
0
-o
p
s

2
3
2

6
4
8

6
8
4

3
1
8

5
.9

1
4
4

6
5
9

4
1
0

1
7
9

9
9
5

1
3
1
8

3
2
9

3
2
-o
p
s

2
5
4

6
9
6

8
4
5

3
4
2

6
.2

1
5
3

7
9
1

4
2
0

1
8
8

1
0
5
7

1
5
8
2

3
3
7

3
8
-o
p
s

2
9
4

8
1
9

1
0
6
5

4
0
0

6
.8

1
7
5

9
8
2

4
5
0

2
0
7

1
2
0
8

1
9
6
4

3
6
1

4
4
-o
p
s

3
2
8

9
0
0

1
2
0
0

4
3
4

7
.5

1
8
7

1
1
0
5

4
6
5

2
3
0

1
2
9
0

2
2
1
0

3
7
3

5
0
-o
p
s

3
7
8

1
0
3
2

1
3
2
0

4
7
2

8
.6

2
1
0

1
2
2
0

4
8
0

2
6
1

1
4
4
9

2
4
4
0

3
8
5

q
so
rt

1
2
8

3
3
3

–
1
9
6

4
0
.5

9
5
8

–
1
5
1
5

1
2
3
5

6
6
1
0

–
1
2
1
7

q
se
le
ct

2
1
2

8
4
9

6
0
7

2
7
6

1
7
.5

4
8
8

2
9
1
0

7
0
5

5
3
5

3
3
6
7

5
8
2
0

5
6
6

ru
n
n
in
g

2
3
6

7
2
9

4
1
2

3
4
4

1
4
.2

2
7
4

7
8
5

6
9
0

4
3
5

1
8
8
7

1
5
7
0

5
5
4

A
n
im

p
le
m
en
ta
ti
o
n
la
b
el
le
d
as

n
-o
p
s
d
en
o
te
s
ev
o
lv
ed

co
m
p
ar
at
o
r
n
et
w
o
rk

co
n
si
st
in
g
o
f
n
o
p
er
at
io
n
s

Genet Program Evolvable Mach

123

T
a
b
le

4
N
o
n
-f
u
n
ct
io
n
al

p
ar
am

et
er
s
o
f
ac
cu
ra
te

(e
m
p
h
as
iz
ed
)
an
d
ap
p
ro
x
im

at
ed

im
p
le
m
en
ta
ti
o
n
s
o
f
1
3
-i
n
p
u
t
m
ed
ia
n
fu
n
ct
io
n
m
ea
su
re
d
o
n
d
if
fe
re
n
t
M
C
U
s

Im
p
l.

M
ac
h
in
e
co
d
e
si
ze

[B
]

E
x
ec
u
ti
o
n
ti
m
e
[l
s]

C
o
n
su
m
ed

en
er
g
y
[n
W
s]

S
T
M
3
2

P
IC
2
4

P
IC
1
6

T
I4
3
0

S
T
M
3
2

P
IC
2
4

P
IC
1
6

T
I4
3
0

S
T
M
3
2

P
IC
2
4

P
IC
1
6

T
I4
3
0

1
7
-o
p
s

1
3
8

3
7
8

3
8
7

1
9
2

4
.4

9
6

3
7
5

3
3
5

1
3
5

6
6
6

7
5
0

2
6
9

2
6
-o
p
s

2
1
4

5
8
8

5
9
4

2
8
8

5
.6

1
3
6

5
8
7

3
9
0

1
7
2

9
3
5

1
1
7
4

3
1
3

3
4
-o
p
s

2
8
8

7
4
7

9
2
2

4
0
2

7
.0

1
6
3

8
8
0

4
7
0

2
1
5

1
1
2
5

1
7
6
0

3
7
7

3
8
-o
p
s

3
3
0

8
2
5

1
0
5
4

4
3
4

8
.0

1
7
6

9
8
0

4
8
0

2
4
4

1
2
1
8

1
9
6
0

3
8
5

4
1
-o
p
s

3
3
2

8
9
4

1
1
4
4

5
1
6

8
.0

1
9
0

1
0
5
8

5
3
0

2
4
5

1
3
0
9

2
1
1
5

4
2
6

4
8
-o
p
s

3
9
8

1
0
2
0

1
3
0
6

5
7
4

8
.8

2
1
0

1
2
0
5

5
6
5

2
7
0

1
4
5
2

2
4
1
0

4
5
4

5
8
-o
p
s

4
7
8

1
2
0
9

1
5
9
0

6
4
2

9
.5

2
4
2

1
6
9
0

5
8
5

2
9
0

1
6
7
2

3
3
8
0

4
7
0

6
6
-o
p
s

4
9
6

1
3
5
3

1
8
5
4

6
6
6

1
0
.2

2
6
6

1
6
9
0

5
6
0

3
1
1

1
8
3
5

3
3
8
0

4
5
0

q
so
rt

1
2
8

3
3
3

–
1
9
6

5
1
.6

1
1
7
8

–
1
8
0
0

1
5
7
4

8
1
2
8

–
1
4
4
5

q
se
le
ct

2
1
2

8
4
9

6
0
7

2
7
6

2
1
.4

6
1
0

4
0
6
0

8
0
0

6
5
2

4
2
1
2

8
1
2
0

6
4
2

ru
n
n
in
g

2
3
6

7
3
2

3
9
4

3
4
4

1
3
.1

5
5
2

1
1
0
0

7
5
0

4
0
0

3
8
0
9

2
2
0
0

6
0
2

Genet Program Evolvable Mach

123

determine that these implementations are more compact compared to the accurate

median filter implemented using the median network consisting of 50 min/max

operations for the 11-input median and 66 operations for the 13-input median. The

size of the quicksort routine is equal to the size of the 11-input approximate median

consisting of 14 operations. To sum up, quicksort is the most compact algorithm.

Nevertheless, it is interesting to note that PIC16 does not allow one to execute the

quicksort algorithm because its implementation relies on the recursion which cannot

fit the in-memory emulated stack. The implementation of the running median

occupies approximately a 1.8 times higher number of bytes on average compared to

the quicksort. Quickselect consumes a bit more except for STM32 and MSP430

where the algorithm requires a lower number of bytes to be implemented.

The number of operations of the approximate median functions correlates with

the machine code size. There is only one exception. The 13-input comparator

network consisting of 38 operations implemented on STM32 exhibits nearly no

reduction compared to the code consisting of 41 operations. It seems that some

optimization tricks were discovered by the ARM compiler.

If we compare the size of machine code across all considered microcontrollers,

the ARM architecture has an extremely efficient mechanism of instruction

encoding. In addition, it revealed that the ARM compiler contains a very effective

optimization engine. Similarly, the code generated by the MSP430 GCC compiler is

very compact compared to the code for PIC microcontrollers. It is worth noting that

it is extremely important to enable GCC optimizations. Otherwise, not only the size

of the machine code, but also computation time increases by 60 % on average

without changing a line of C code. When we take into account the fact that MSP430

is equipped with an exceptionally large FLASH memory (see Sect. 8.1), it seems to

be a very powerful low-cost microcontroller.

The average execution time and average energy consumption measured for

various implementations of 11-input and 13-input accurate as well as approximate

median functions are given in the second and third part of Tables 3 and 4. Let us

first discuss the parameters of the accurate implementations. During the measure-

ments, it turned out that the energy consumption pattern remains almost invariant

because all approximations use identical sequences of instructions. Consumed

energy thus mainly depends on the execution time which is shorter when more

aggressive approximations are applied. The average power consumption, when an

accurate median is calculated, is 0.8 mW for MSP430, 2 mW for PIC16, 6.9 mW

for PIC24 and 30.5 mW for ARM. In the case of the 11-input median function

implemented on PIC24, the median network is 4.5 times faster than the quicksort

algorithm and the consumed energy was reduced from 6610 to 1449 nWs (i.e. by

78 %). The median network is 4.7 times faster than quicksort on the STM32 and the

energy was also reduced by 78 %. A little bit worse situation is at MSP430. The

median network is 3.1 times faster than quicksort, but its energy consumption

decreases by 68 %. Similar results were obtained for the 13-input median. The

median network implemented on PIC24 is 4.4 times faster than the quicksort

algorithm and the consumed energy was reduced by 77 %. At STM32, the quicksort

algorithm exhibits 5 times worse execution time and an 80 % higher energy

consumption compared to the median calculated using 66 min/max operations. At

Genet Program Evolvable Mach

123

MSP430, the median network is executed 3.2 times faster than quicksort. While

there is a relative large performance gain of median networks compared to the

quicksort algorithm, the execution time of running median is comparable with the

median networks. The best improvement is achieved at STM32 where the

implementations of median networks are executed 1.7 times faster than running

median. For the rest, the gain varies around 1.4 on average.

Let us now move on to the execution time and energy consumption of the

evolved approximate median functions. At first glance, it is evident that the

execution time decreases with the decreasing number of operations. The situation is,

however, a little bit complicated here. Let us compare the execution time of, for

example, an 11-input accurate median network consisting of 50 operations and an

11-input reduced network consisting of 25 operations. While the number of

operations is reduced by 50 %, the execution time is adequately decreased only at

PIC16, where a 54 % improvement was achieved. STM32 and PIC microcontrollers

exhibit improvement which is less than 39 %. In the case of MSP430, only a 22 %

reduction was achieved. In order to better understand this phenomenon, we have to

firstly investigate the dependence between the number of min/max operations and

the number of generated instructions for MSP430. The implementation of an

accurate median network consists of 219 instructions and the reduced median

network consists of 122 instructions which leads to a 44 % improvement.

Unfortunately, the difference between the improvement at the level of instructions

(44 %) and improvement at the level of operations (50 %) is relatively small. In

order to determine the root source of such a discrepancy, it is necessary to perform

an analysis at the level of a machine code. It has been revealed that two different

mechanisms were used to implement the min/max operations. Some operations are

implemented using indirect addressing, other operations are optimized and consists

of instructions only manipulated with registers. This makes a huge difference in the

number of clock cycles required to execute a single min/max operation. Some

operations are evaluated within 5 cycles, others require up to 11 clock cycles.

Despite this finding, there is linear dependence between the energy consumption and

time of execution and longer times imply a higher energy demand.

Despite the fact that STM32 has the largest current consumption in active mode,

it provides the best results from the perspective of energy consumption. Even if the

MSP430 is declared as an ultralow-power microcontroller, it requires about a 1.7

times higher amount of energy to execute the same code. It is necessary to note,

however, that higher energy consumption is in close relation with the time of

execution which is more than 60 times higher compared to STM32. Compared to

PIC16 and PIC24, MSP430 consumes from 3 to 6 times lower energy to accomplish

the same task. On the other hand, PIC24 is able to produce about five times more

results within the same period of time at the cost of 30 % higher energy

consumption compared to MSP430. In order to avoid misinterpretation, it is worth

noting that MSP430 operates at 1 MHz while PIC24 operates at 4 MHz. When we

increase the frequency to 4 MHz, the time of execution decreases four times with no

additional cost (the energy consumption remains at the same level).

Figure 6 gives an example of real data filtered by various implementations of

11-input and 13-input median filters. The data were obtained from an accelerometer

Genet Program Evolvable Mach

123

whose output signal was sampled at 8 kHz. Taking into account the sample rate, the

considered accurate median filters introduce a delay not worse than 1.7 ms which

represents a reasonable value. When six operations (12 %) are removed from the

11-input median network, the resulting approximate median produces an output that

is nearly similar to the output of accurate implementation. There are only neglible

differences that do not prevent us from applying this inaccurate implementation in

an embedded application to filter the outliers and save energy. In the case of

implementation at STM32, for example, we can reduce the consumed energy by

11.8 % by introducing the approximated median network consisting of 44

operations.

Interestingly, the median network which consists of 20 operations (60 %)

produces a signal which is very similar to the output of an accurate median, despite

the fact that the measured signal is very noisy. It seems that the output is of a better

visual quality compared to the output of a network having 30 operations. In contrast

to the output of an accurate median, there are some small oscillations around 1.7

seconds caused by the oscillations in a signal coming from the accelerometer.

Nevertheless, the trend in data is reliably followed. In case these small differences

do not represent a real problem for a target application, it is worth implementing the

improved median network which is able to offer a 40 % reduction of power

consumption on the one hand, its approximately 1.8 times faster execution time on

the other hand.

The approximate versions of the 13-input median also performs very well. Only

small differences are observable when a median network with 38 % removed

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

time [s]

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

ac
ce

le
ra

tio
n

11-input median

20 ops (40 %) 30 ops (60 %) 44 ops (88 %) accurate median measured data

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

time [s]

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

ac
ce

le
ra

tio
n

13-input median

17 ops (25 %) 34 ops (51 %) 41 ops (62 %) 58 ops (87 %) accurate median

Fig. 6 Example of data filtered using accurate as well as approximate versions of 11-input and 13-input
median filter. Note that only some of the measured points are shown because of readability

Genet Program Evolvable Mach

123

operations is used. Compared to a commonly used running median, we obtain a

solution which has 38 % lower power consumption when implemented on a STM32

microcontroller. Interestingly, the approximate median networks which consists of

17 and 58 operations exhibit lower delay compared to the fully working 13-input

median. It can be seen that the filtered data appears to be shifted to the left when

these filters are used.

It can be concluded that the observations on real examples are consistent with

conclusions given in Sect. 7. As the quality of an approximate median defined by

Eq. 1 decreases, the amount of inaccuracies in the output signal increases. The

processing of the sensor data seems to be an application with great potential for

genetic improvement. As was previously shown, we are able to significantly

improve energy consumed by the filters for a cost of small differences in the output

data. In fact, any of the presented approximations can be used to filter the input

signal because no golden solution is available for the validation of the obtained

outputs. The filtration is typically used to avoid high variances in output signal (i.e.

to reduce sensitivity of the output signal to the outliers). In this sense, we can

employ approximate medians consisting of 50 % (or even less) operations to

accomplish this task because they are able to sufficiently remove the outliers.

8.4 Median in image processing

The processes of acquiring, transmitting and storing images in computer systems are

not always ideal and hence some pixels or groups of pixels can be corrupted. Hence,

noise elimination is a typical low level image processing task. In many applications,

the noise elimination has to be implemented by non-linear functions because the

noise contained in the images is inherently non-linear [6]. A typical representative

of non-linear noise is a shot noise which manifests itself by setting some individual

pixels to a random value. Median-based non-linear filters play a prominent role

among the filters utilized to suppress the shot noise [2]. Traditionally, a simple

median filter applied to every pixel of the input image is employed. In advanced

image filters (e.g. switching filters [32]) the filtering function is only applied if a

noise detector, implemented typically using a median, detects some noise.

The image filters operate with pixel values in the neighbourhood of the centre

pixel. The process of filtration is based on a sliding window, a square window of an

odd size (2k þ 1), that moves along the image. More formally, let I be an image

consisting of m� n pixels xði; jÞ 2 I, where 1� i�m; 1� j� n. Then, each pixel of

the filtered image I0 is calculated as yðm; nÞ ¼ medianðWIðm; nÞÞ, where WIðm; nÞ ¼
fxðmþ i; nþ jÞ 2 I j �k\i; j\kg is a sliding window function. It is evident that

the median value is calculated using ð2k þ 1Þ2 pixels. The typical sliding windows

employed in image processing consists of 3� 3 and 5� 5 pixels which corresponds

with 9-input and 25-input filtering functions.

The measured non-functional parameters of various implementations of 9-input

accurate as well as approximate median filters are summarized in Table 5. Apart

from the evolved implementations, two common approaches to determine a median

value are evaluated—the quicksort algorithm and the quickselect algorithm. The

Genet Program Evolvable Mach

123

T
a
b
le

5
N
o
n
-f
u
n
ct
io
n
al

p
ar
am

et
er
s
o
f
ac
cu
ra
te

(e
m
p
h
as
iz
ed
)
an
d
ap
p
ro
x
im

at
ed

im
p
le
m
en
ta
ti
o
n
s
o
f
9
-i
n
p
u
t
m
ed
ia
n
fu
n
ct
io
n
m
ea
su
re
d
o
n
d
if
fe
re
n
t
M
C
U
s

Im
p
l.

M
ac
h
in
e
co
d
e
si
ze

[B
]

E
x
ec
u
ti
o
n
ti
m
e
[l
s]

C
o
n
su
m
ed

en
er
g
y
[n
W
s]

S
T
M
3
2

P
IC
2
4

P
IC
1
6

T
I4
3
0

S
T
M
3
2

P
IC
2
4

P
IC
1
6

T
I4
3
0

S
T
M
3
2

P
IC
2
4

P
IC
1
6

T
I4
3
0

9
-o
p
s

7
8

2
0
4

2
0
7

9
6

3
.2

6
5

2
2
8

2
7
4

9
7

4
5
0

4
5
7

2
2
0

1
0
-o
p
s

8
4

2
3
4

2
3
8

1
0
8

3
.3

7
1

2
5
6

2
8
0

1
0
2

4
9
2

5
1
2

2
2
5

1
4
-o
p
s

1
1
2

3
1
5

3
2
4

1
5
6

3
.9

8
6

3
3
8

3
1
0

1
1
8

5
9
0

6
7
5

2
4
9

1
6
-o
p
s

1
2
6

3
7
2

3
7
6

1
7
6

4
.1

9
6

3
8
6

3
2
4

1
2
6

6
6
6

7
7
1

2
6
0

2
0
-o
p
s

1
5
8

4
4
1

4
5
4

2
0
8

4
.6

1
0
8

4
5
2

3
4
0

1
4
1

7
4
5

9
0
5

2
7
3

2
2
-o
p
s

1
8
0

4
9
5

5
0
2

2
3
4

5
.0

1
1
8

5
0
6

3
6
0

1
5
1

8
1
8

1
0
1
2

2
8
9

2
6
-o
p
s

2
0
8

5
7
3

5
8
6

2
8
0

5
.4

1
3
2

5
7
6

3
8
8

1
6
5

9
0
9

1
1
5
3

3
1
2

3
0
-o
p
s

2
4
0

6
4
5

6
7
6

3
3
0

6
.4

1
4
4

6
5
0

4
1
2

1
9
6

9
9
4

1
2
9
9

3
3
1

q
so
rt

1
2
8

3
3
3

–
1
9
6

2
6
.8

8
3
0

–
1
3
2
5

8
1
6

5
7
2
7

–
1
0
6
4

q
se
le
ct

2
1
2

8
4
9

6
0
7

2
7
2

1
5
.3

4
6
6

2
2
5
5

6
9
0

4
6
7

3
2
1
9

4
5
1
0

5
5
4

Genet Program Evolvable Mach

123

running median discussed in the previous section is not applicable in this case

because more than one value has to be removed/added between two subsequent

processing windows. The discussion that has been given for the implementation of

the 11-input median and its variants is also valid for the 9-input alternative whose

parameters are included in Table 5. There is nearly a linear dependency between the

number of operations used to approximate the median value and the execution time

as well as power consumption.

The results for the 25-input median and its alternative implementations are given

in Table 6. In contrast with the 13-input approximate medians, the difference

between the improvement achieved at the level of operations and improvement at

the level of instructions does not exceed 5 %. Similarly, the time of execution

decreases linearly with a decreasing number of operations with one exception—

implementation compiled for MSP430 which suffers from issues observed also for

13-input approximate medians. There is an 18 % difference between the reduction

at the level of instructions and the reduction of execution time (see the execution

time for 174-ops and 60-ops implementations). Since the response of other

architectures to a reduced number of operations is as expected, it may suggest that

there may be a problem with the quality of the compiled code. We did not analyse

this problem in detail as it is outside the scope of this paper.

The chosen problem nicely demonstrates the overhead of median networks

implemented in the software. The accurate median function implemented using 174

operations occupies ten times more bytes than the quicksort algorithm. Even if we

remove half of the operations, the machine code is more than six times larger. This

is the price that must be sacrificed for greater speed of the algorithm based on a

median network. As regards the execution time, the median can be calculated 70 %

faster when the median network which consists of 174 operations is used instead of

the quicksort algorithm and 31 % faster when compared to the quickselect

Table 6 Non-functional parameters of accurate (emphasized) and approximated implementations of

25-input median function measured on different MCUs

Impl. Machine code size [B] Execution time [ls] Consumed energy [nWs]

STM32 PIC24 TI430 STM32 PIC24 TI430 STM32 PIC24 TI430

60-ops 502 1302 742 10.9 262 665 333 1808 534

70-ops 596 1527 912 12.3 303 785 375 2091 630

88-ops 796 1887 1180 16.4 366 955 501 2525 767

107-ops 920 2250 1438 18.4 428 1100 562 2953 883

150-ops 1264 3015 1688 23.9 554 1130 727 3823 907

160-ops 1378 3195 1818 24.6 584 1200 751 4030 964

164-ops 1454 3255 1826 26.0 596 1240 793 4109 996

174-ops 1524 3423 1864 27.6 619 1270 841 4271 1020

qsort 128 333 196 104.0 2430 2610 3172 16,767 2096

qselect 212 849 276 39.1 1040 1685 1194 7176 1353

Note that PIC16 is not included in this table due to small amount of available RAM memory

Genet Program Evolvable Mach

123

algorithm. The 25-median implemented using 150 operations enables us to reduce

the energy by more than 10 %. According to the distribution of errors shown in

Fig. 5, this implementation provides an output of high quality with a low percentage

of erroneous outputs that are close to the median value.

In order to evaluate the filtering quality as well as robustness of the evolved

approximate medians, the medians were employed as median filters and evaluated

using 25 randomly selected test images (384x256 pixels) from [17] that were

corrupted by random valued shot noise. Because the removal of random valued shot

noise represents a difficult problem, it usually is used to compare the performance of

various median filters [5]. Considering the fact that a sliding window is used, more

than two million test cases were in fact used for quality assessment. There exists

several approaches to measure the quality of filtered images. The structural

similarity index (SSIM) represents probably the most advanced approach which

attempts to quantify the visibility of errors (differences) between a distorted image

and a reference image[37].

Boxplots of the structural similarity index calculated for 9-input and 25-input

accurate as well as approximate median networks used as image filters are given in

Fig. 7. As is evident from the results, there is a relatively large variance in the

similarity index of accurate as well as inaccurate median filters. The index of

similarity for images produced by accurate an 9-input median filter is 88.6 % in

average. The average similarity index decreases with the decreasing number of

operations. Interestingly, it decreases very slightly without any radical change in

variance. When we reduce the number of operation to 16 (53 %), the average

similarity index decreases to 87.5 %. The results suggest that it is possible to use an

approximate median network consisting of half the number of operations instead of

an accurate median. The impact on quality of the filtered images is negligible.

Figure 8 illustrates filtering capabilities of various filters on an image corrupted

by random valued shot noise where 10 % of the pixels are affected. The output of

the median filter and approximate median filter is visually indistinguishable. Nearly

all of the noisy pixels were successfully detected and removed, even for a median

with 16 operations. When we reduce the number of operations to 14, a few noisy

pixels remain in the filtered image. This behaviour corresponds with the distribution

9 10 14 16 20 22 26 30

operations

60

65

70

75

80

85

90

95

100

S
S

IM
 [%

]

59 60 70 88 107 150 160 164 174

operations

60

65

70

75

80

85

90

95

100

(a) (b)

Fig. 7 Boxplots illustrating the distribution of structural similarity index for evolved median networks
calculated using a set of test images corrupted by 10 % random valued shot noise. a 9-input median. b 25-
Input median

Genet Program Evolvable Mach

123

of errors shown in Fig. 5 and a detailed analysis provided in Table 2. The 9-input

approximate median with 16 operations exhibits the worst-case distance error equal

to one, while the 14-ops implementation has the worst-case distance error equal to

two.

If we compare the distribution of the similarity index for a 9-input and 25-input

median filter, it is evident that the 25-input median filters provide results of lower

quality. The similarity index of the accurate implementation consisting of 174

operations is equal to 80.3 %. The reason is obvious. Increasing the size of the

filtering window allows for the common median filter to remove a great deal of

noisy pixels, however, because the standard median filters modify almost all pixels,

images become smudged and less detailed. Nevertheless, this fact does not prevent

the employment of the 25-input median filter as a robust noise detector.

Interestingly, there is only a small degradation in quality of the reduced 25-input

median filters. When we remove 50 % of operations, the similarity index decreases

to 79.4 % on average. This approximation yields a 40 % reduction in power

consumption when implemented on STM32 microcontroller.

Similar conclusions may be inferred even if we use the peak signal-to-noise ratio

(PSNR) which represents another commonly used quality metric. In contrast to

structural similarity, PSNR does not respect a psycho-visual model of the human

optical system. While PSNR of the images filtered by the accurate 9-input median

filter is equal to 29.4 dB in average, PSNR of the images obtained by the 14-ops (9-

ops) filter drops by 1.3 dB (3.5 dB). The PSNR of the images filtered by the accurate

25-input median filter is equal to 25.9 dB. When the number of operations is

reduced to 59, the PSNR only decreases by 0.7 dB.

The results demonstrate how robust the evolved implementations are and that

there is great space for improvement of the non-functional parameters in practice. In

Fig. 8 Detail of an image a corrupted by 10% random valued shot noise filtered by b 9-input accurate
median filter and approximated median filters consisting of c 22 (73 %) operations, d 16 (53 %), e 14
(46 %) and f 10 (33 %) operations

Genet Program Evolvable Mach

123

most cases, it is not even necessary to exactly determine the median value which

helps us to reduce the power consumption or increase the performance (i.e. speed)

of a given piece of software.

9 Conclusions

In this paper, we presented a new approach to improve non-functional properties of

software. In particular, we concentrated on improvements in the execution time and

power consumption of various instances of the median function. In general, it is

impossible to improve non-functional parameters of the median function without

accepting occasional errors in results since optimal implementations of typical

instances are available. In order to address this problem, we adopted the

approximate computing scenario which allows us to accept some errors in the

outputs.

In approximate computing, software and hardware is approximated, i.e.

simplified with respect to fully accurate implementations, in order to reduce power

consumption or increase performance. As a consequence, errors can emerge during

computations which is tolerable in many real applications. When an approximation

should be introduced, the common approach is to remove the less significant bits

and reduce data widths. This paper shows that the approximation conducted at the

level of function (algorithm) that are based on EA is able to deliver significantly

better results.

The median is implemented using a sequence of elementary operations that forms

a median network. The task is formulated as a single objective optimization problem

where the number of operations represents constraints specified by the designer. The

constrains-oriented approach is relevant to practice where the designers usually

wants to achieve a particular power reduction in order to improve the performance

of the whole embedded system. The method is based on cartesian GP and exploits

the fact that GP is able to find a good trade-off between the error and number of

operations, even if the number of operations is intentionally constrained.

In order to avoid problem with seeding (only fully functional implementations of

various instances of median filter exist), we proposed to apply a two-stage

procedure. The first stage starts with a fully functional median network and

gradually reduces the number of employed operations in order to satisfy constraints

given by a designer. As soon as a satisfactory candidate solution is found, the

second stage responsible for maximizing the quality of partially working

implementations is used.

The accuracy of determining a median value is measured by means of a problem-

specific quality metric. The proposed metric is based on the positional error

calculated using the permutation principle introduced in this paper. The impact of

the permutation principle was discussed from a theoretical as well as a practical

point of view. Firstly, the permutation principle helps us to reduce the computa-

tional complexity of the fitness evaluation. Secondly, the permutation principle

enables one to construct a metric approaching the quality of selecting the median

value and, what is important, which can be efficiently calculated. Finally, the

Genet Program Evolvable Mach

123

permutation principle helps to understand how to avoid biased solutions that may be

produced when we generate test vectors used to determine the fitness score

inappropriately (randomly). In order to understand this phenomenon, it is necessary

to realize that the median value is determined according to a set of values (i.e. the

ordering of input values is completely ignored). It was illustrated and discussed that

it is necessary to generate test vectors from different equivalence classes so as to

avoid any bias.

The problem of trading between quality and non-functional parameters was

demonstrated in four different instances of the median function that are typically

employed in practice. The performance of the best discovered approximated median

filters was evaluated in two real-world problems—sensor data processing and image

processing. The non-functional parameters were measured for four microcontrollers

so as to avoid misleading conclusions. The results confirmed that median functions

are very good examples of functions for which it makes sense to introduce their

approximate versions. When the approximate medians are employed in a particular

application, the output quality remains relatively high, even for significant

reductions of the number of operations. Hence significant improvements in energy

consumption can be obtained.

Even though the permutation principle as well as the proposed error metric are

problem specific, this paper demonstrated the ability of GI to provide competitive

solutions for a chosen real-world problem from the area of approximate computing.

This opens a complete new application area for GI. The ability to deliver partially

working solutions seems to be natural for evolutionary techniques. Hence the

approximate computing seems to have a great potential for these techniques.

There are several directions for future research. Execution time and power

consumption are two possible non-functional criteria that can be optimized. There

are additional criteria such as delay that need to be considered, especially if median

networks would be implemented in the hardware. Despite the fact that the proposed

permutation principle helps to significantly improve the time required to determine

the fitness value, the test based approach used to calculate the fitness score

represents a bottleneck of the whole framework. Unfortunately, this is a general

problem of all generate-and-test-based evolutionary approaches. As a consequence

of that, only a subset of all possible permutations was used for quality assessment.

This simplification introduces two issues. Firstly, it means that we are not able to

guarantee the worst-case error unless all the input permutations are tested. Secondly,

it may happen that the quality of a given network is worse than determined.

Suprisingly, the experiments revealed that our simplification does not have any

significant effect in practice. We are convinced, however, that these issues can be

completely eliminated by introducing a formal method based on BDDs to the fitness

function.

Acknowledgments This work was supported by the Czech science foundation project 14-04197S—

Advanced Methods for Evolutionary Design of Complex Digital Circuits.

Genet Program Evolvable Mach

123

References

1. A. Agapitos, S.M. Lucas, Evolving efficient recursive sorting algorithms, in IEEE Congress on

Evolutionary Computation, pp. 2677–2684 (2006)

2. R.H. Chan, C.W. Ho, M. Nikolova, Salt-and-pepper noise removal by median-type noise detectors

and edge-preserving regularization. IEEE Trans. Image Process. 14, 1479–1485 (2005)

3. B. Cody-Kenny, E.G. Lopez, S. Barrett, locoGP: improving performance by genetic programming

java source code, in Genetic Improvement 2015 Workshop, ed. by W.B. Langdon, J. Petke, D.R.

White (ACM, Madrid, 2015), pp. 811–818

4. N. Devillard, Fast Median Search: An ANSI C Implementation (1998). http://ndevilla.free.fr/median/

median.pdf

5. Y. Dong, A new directional weighted median filter for removal of random-valued impulse noise.

IEEE Signal Process. Lett. 14(3), 193–196 (2007)

6. E.R. Dougherty, J.T. Astola, (eds.) Nonlinear Filters for Image Processing. SPIE/IEEE Series on

Imaging Science and Engineering. SPIE/IEEE (1999)

7. H. Esmaeilzadeh, A. Sampson, L. Ceze, D. Burger, Neural acceleration for general-purpose

approximate programs. Commun. ACM 58(1), 105–115 (2014)

8. B.W. Goldman, W.F. Punch, Analysis of cartesian genetic programming’s evolutionary mechanisms.

IEEE Trans. Evol. Comput. 19(3), 359–373 (2015)

9. J. Han, M. Orshansky, Approximate computing: An emerging paradigm for energy-efficient design,

in Proceedings of the 18th IEEE European Test Symposium, pp. 1–6. IEEE (2013)

10. M. Harman, B.J. Jones, Search-based software engineering. Inf. Softw. Technol. 43, 833–839 (2001)

11. W.D. Hillis, Co-evolving parasites improve simulated evolution as an optimization procedure. Phys.

D 42(1–3), 228–234 (1990)

12. H. Juille, Evolution of non-deterministic incremental algorithms as a new approach for search in state

spaces, in Genetic Algorithms: Proceedings of the 6th International Conference (ICGA95), ed. by L.

Eshelman (Morgan Kaufmann, Pittsburgh, PA, USA, 1995), pp. 351–358

13. R.E. Kalman, A new approach to linear filtering and prediction problems. Trans. ASME J. Basic Eng.

82(Series D), 35–45 (1960)

14. D.E. Knuth, The Art of Computer Programming, vol. 3, 2nd edn. (Sorting and Searching. Addison

Wesley Longman Publishing Co., Inc, Redwood City, 1998)

15. W.B. Langdon, M. Harman, Optimizing existing software with genetic programming. IEEE Trans.

Evol. Comput. 19(1), 118–135 (2015)

16. R. Maronna, D. Martin, V. Yohai, Robust Statistics: Theory and Methods, Wiley Series in Probability

and Statistics (Wiley, New Jersey, 2006)

17. D. Martin, C. Fowlkes, D. Tal, J. Malik, A database of human segmented natural images and its

application to evaluating segmentation algorithms and measuring ecological statistics, in Proceedings

of the 8th International Conference Computer Vision, vol. 2, pp. 416–423 (2001)

18. J.F. Miller, Cartesian Genetic Programming (Springer, Berlin, 2011)

19. J.F. Miller, S.L. Smith, Redundancy and computational efficiency in cartesian genetic programming.

IEEE Trans. Evol. Comput. 10(2), 167–174 (2006)

20. V. Mrazek, Z. Vasicek, L. Sekanina, Evolutionary approximation of software for embedded systems:

Median function, in Genetic Improvement 2015 Workshop, ed. by W.B. Langdon, J. Petke, D.R.

White (ACM, Madrid, 2015), pp. 795–801

21. K. Nepal, Y. Li, R.I. Bahar, S. Reda, Abacus: A technique for automated behavioral synthesis of

approximate computing circuits, in Proceedings of the Conference on Design, Automation and Test

in Europe, DATE ’14, pp. 1–6. EDA Consortium (2014)

22. J. Petke, M. Harman, W.B. Langdon, W. Weimer, Using genetic improvement and code transplants

to specialise a C?? program to a problem class, in 17th European Conference on Genetic Pro-

gramming, LNCS, vol. 8599, ed. by Miguel Nicolau, et al. (Springer, Granada, Spain, 2014),

pp. 137–149

23. R. Poli, W.B. Langdon, N.F. McPhee, A Field Guide to Genetic Programming.Published via http://

lulu.com and http://www.gp-field-guide.org.uk (2008)

24. A. Sampson, W. Dietl, E. Fortuna, Gnanapragasam, D., Ceze, L., Grossman, D.: Enerj: Approximate

data types for safe and general low-power computation, in Proceedings of the 32nd ACM SIGPLAN

Conference on Programming Language Design and Implementation, pp. 164–174. ACM (2011)

Genet Program Evolvable Mach

123

25. P. Schmidt, Simple median filter library designed for the arduino platform (2014). https://github.com/

daPhoosa/MedianFilter

26. E. Schulte, J. Dorn, S. Harding, S. Forrest, W. Weimer, Post-compiler software optimization for

reducing energy, in Proceedings of the 19th International Conference on Architectural Support for

Programming Languages and Operating Systems, ASPLOS’14 (ACM, Salt Lake City, 2014),

pp. 639–652

27. L. Sekanina, Evolutionary design space exploration for median circuits, in Applications of Evolu-

tionary Computing, LNCS 3005, pp. 240–249. Springer (2004)

28. L. Sekanina, M. Bidlo, Evolutionary design of arbitrarily large sorting networks using development.

Genet. Progr. Evolv. Mach. 6(3), 319–347 (2005)

29. L. Sekanina, Z. Vasicek, Approximate circuits by means of evolvable hardware. in Proceedings of

the 2013 IEEE Symposium Series on Computational Intelligence (SSCI), 2013 IEEE International

Conference on Evolvable Systems, pp. 21–28. IEEE CIS (2013)

30. P. Sitthi-Amorn, N. Modly, W. Weimer, J. Lawrence, Genetic programming for shader simplifica-

tion. ACM Trans. Gr. 30(6), 152:1–152:12 (2011)

31. J.L. Smith, Implementing median filters in xc4000e fpgas. XCell 23(1), 16 (1996)

32. T. Sun, Y. Neuvo, Detail-preserving median based filters in image processing. Pattern Recognit. Lett.

16, 341–347 (1994)

33. V.K. Valsalam, R. Miikkulainen, Using symmetry and evolutionary search to minimize sorting

networks. J. Mach. Learn. Res. 14(1), 303–331 (2013)

34. Z. Vasicek, L. Sekanina, Evolutionary approach to approximate digital circuits design. IEEE Trans.

Evol. Comput. 19(3), 432–444 (2015)

35. Z. Vasicek, K. Slany, Efficient phenotype evaluation in cartesian genetic programming, in Pro-

ceedings of the 15th European Conference on Genetic Programming, LNCS 7244, pp. 266–278.

Springer Verlag (2012)

36. S. Venkataramani, A. Sabne, V.J. Kozhikkottu, K. Roy, A. Raghunathan, Salsa: systematic logic

synthesis of approximate circuits, in The 49th Annual Design Automation Conference 2012, DAC

’12, pp. 796–801. ACM (2012)

37. Z. Wang, A. Bovik, H. Sheikh, E. Simoncelli, Image quality assessment: from error visibility to

structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

38. D.R. White, A. Arcuri, A. John, Evolutionary improvement of programs. IEEE Trans. Evol. Comput.

15(4), 515–538 (2011)

39. A. Yazdanbakhsh, D. Mahajan, B. Thwaites, J. Park, A. Nagendrakumar, S. Sethuraman, K.

Ramkrishnan, N. Ravindran, R. Jariwala, A. Rahimi, H. Esmailzadeh, K. Bazargan, Axilog: Lan-

guage support for approximate hardware design, in Design, Automation and Test in Europe,

DATE’15, pp. 1–6. EDA Consortium (2015)

Genet Program Evolvable Mach

123

Appendix F

Automatic Design of Arbitrary-Size
Approximate Sorting Networks with Error
Guarantee

MRAZEK, Vojtech and VASICEK, Zdenek. “Automatic Design of Arbitrary-Size Approx-
imate Sorting Networks with Error Guarantee”. In: 26rd International Workshop on Power
and Timing Modeling, Optimization and Simulation (PATMOS), 2016. Bremen, DE: IEEE
Computer Society, 2016, (to appear).

acceptance rate: 34%, contribution of the author of the thesis: 50%

Referenced on pages: 43, 44

177

Automatic Design of Arbitrary-Size Approximate
Sorting Networks with Error Guarantee

Vojtech Mrazek
Brno University of Technology,

Faculty of Information Technology,
Centre of Excellence IT4Innovations

Email: imrazek@fit.vutbr.cz

Zdenek Vasicek
Brno University of Technology,

Faculty of Information Technology,
Centre of Excellence IT4Innovations

Email: vasicek@fit.vutbr.cz

Abstract—Despite the fact that hardware sorters offer great
performance, they become expensive as the number of inputs
increases. In order to address the problem of high-performance
and power-efficient computing, we propose a scalable method
for construction of power-efficient sorting networks suitable for
hardware implementation. The proposed approach exploits the
error resilience which is present in many real-world applications
such as digital signal processing, biological computing and large-
scale scientific computing. The method is based on recursive
construction of large sorting networks using smaller instances
of approximate sorting networks. The design process is tunable
and enables to achieve desired tradeoffs between the accuracy
and power consumption or implementation cost. A search-
based design method is used to obtain approximate sorting
networks. To measure and analyze the accuracy of approximate
networks, three data-independent quality metrics are proposed.
Namely, guarantee of error probability, worst-case error and
error distribution are discussed. A significant improvement in
the implementation cost and power consumption was obtained.
For example, 20% reduction in power consumption was achieved
by introducing a small error in 256-input sorter. The difference in
rank is proved to be not worse than 2 with probability at least
99%. In addition to that, it is guaranteed that the worst-case
difference is equal to 6.

I. INTRODUCTION

Sorting is one of the most fundamental operations that
is widely used in many applications in computer science
including digital signal processing, biological computing and
large-scale scientific computing [1].

The hardware sorters are typically employed to improve the
performance of applications operating over big data sequences.
The sorters can be used either to sort a given sequence [2], [3]
or to compute quantiles [4], [5]. These operations represent a
typical task performed in database systems, machine learning
or business intelligence to distill summary information from
huge data sets [4]. In these areas, FPGA-based systems have
become popular due to their inherent ability to achieve various
trade-offs between throughput and power consumption [1], [3].

On the other hand, the sorting is employed in solving
completely different problems. Switching networks, multi-
access memories and multiprocessors can be implemented us-
ing hardware sorters [6]. In addition to that, sigma-delta digital
modulators and various sorter-based arithmetic circuits such as
adders, exponential, hyperbolic and logarithmic functions have
been proposed recently [7].

The hardware sorters can be classified to two main cate-
gories – linear sorters and sorting networks [2]. While linear
sorters process one element at a time, sorting networks operate
in parallel over the input elements. As a consequence of
that, the hardware implementation of linear sorters is usually
compact but it fails to scale in performance. On the contrary,
sorting networks offer great performance but they become
expensive as the number of inputs increases.

Several techniques have been proposed to reduce the area
and power consumption of sorting networks. For example,
Zuluaga et. al. [2] proposed a domain-specific language and
compiler that automatically generates hardware implementa-
tions of sorting networks with reduced area optimized for
latency or throughput. The area reduction was achieved by
reusing the common parts of sorting networks. Chen et. al. [1]
introduced a concept of streaming permutation network that
was obtained by folding the Clos network. The permutation
network was used to construct a high-throughput and a low
cost architecture. Compared to [2], significantly better memory
as well as energy efficiency was achieved.

Although a lot of effort has been put into the improvement
of cost of sorters, it has been demonstrated that many appli-
cations from signal processing, computer vision and machine
learning exhibit an inherent tolerance to errors in computa-
tion [8]. As the power consumption become a critical factor for
digital designs, inexact or approximate computing seems to be
a viable approach to reduce consumption of many real-world
systems and improve the overall efficiency of computers.

Despite the fact that many papers have been published in
the field of approximate computing, there is no paper that
explicitly addressed the problem of trading the quality of
hardware sorters for power efficiency even if there is potential
for doing that. The only paper that addressed the problem of
approximate sorting was introduced by Leighton and Plaxton
in early nineties [9]. The authors theoretically proved existence
of an n-input sorting circuit of depth 7.44 log n that sorts
all but superpolynomially small fraction of the all possible
input permutations. Unfortunately, the hardware implementa-
tion remains impractical due to the fact that there is a trade-
off between the value of the multiplicative constant and the
success probability, and a significant increase in the constant
is required for practical instance sizes [9].

A. Our contributions elaborated in this paper

We introduce a scalable method for a construction of
arbitrary-size approximate sorting networks. In order to build
a large approximate sorting network, smaller instances of
approximate or accurate sorting networks are employed. The
principle of construction based on recursive bitonic algorithm
is inherently tunable to the level of accuracy required for a
target application because various approximate as well as ac-
curate sorting networks can be combined together. This gives
us the opportunity to obtain approximate sorting networks ex-
hibiting various trade-offs between quality and implementation
cost.

In order to design small approximate sorting networks hav-
ing up to 32 inputs, a systematic search-based design method
is proposed. The method works in such a way that it starts with
a known architecture of accurate sorting network (generated
using bitonic algorithm) that is subsequently optimized (i.e.
reduced) to meet the target constraints while introducing
a minimal error. The constraints specified by designer can
include target implementation cost or target power reduction.
The obtained approximate networks can either be applied to
construct a larger network or employed autonomously.

Traditionally, a randomly generated set of test vectors is
applied to assess the quality of an approximate circuit. This
approach, unfortunately, provides no guarantee on the error
and make it difficult to predict the behavior of an approximate
circuit under different conditions (e.g. when different data-
width is used or data with different input distribution are
processed). In order to address this problem, we have intro-
duced a method that is able to formally prove and guarantee
worst-case error. In addition to that, error distribution can be
calculated. Both metrics are based on an extension of zero-one
and permutation principle.

II. SORTING NETWORKS

The concept of sorting networks was originally studied
in 1950s by Armstrong, Nelson and O’Connor and deeply
elaborated in 1960s by Knuth [10]. Sorting network is de-
fined as a network consisting of a sequence of elementary
operations denoted as compare-and-swap (CS) operations that
sorts all input sequences. A compare-and-swap operation of
two elements, a and b, compares a and b and exchanges (if it
is necessary) the elements in order to obtain sorted sequence
(a′, b′), i.e. a′ = min(a, b), b′ = max(a, b). In hardware, CS
is implemented using two multiplexers that are controlled by
means of a comparator that determines the maximum of the
two (see Figure. 1a).

The sequence of compare-swap operations executed by a
sorting network depends only on the number of elements to
be sorted, not on the values of the elements. It means that
the sequence of comparisons is fixed. This fact represents the
main advantage of sorting networks because such a structure
can be efficiently implemented using a parallel pipelined
hardware architecture. Compared to the linear sorters, the
sorting networks do not require to implement a control logic.

A. Representation of sorting networks

The sorting networks are composed solely of wires and
comparators. In fact, each comparator implements a two-input
sorter. In order to represent sorting networks efficiently, Knuth
introduced a notation consisting of vertical segments and
horizontal wires [10]. Each vertical segment connecting the
two elements being compared represents a single CS operation
with arrow determining the larger value (see Figure 1b). A
horizontal wire represents an element of input sequence and
transmits values from place to place. The unsorted elements
(inputs) appear on the left and the sorted sequence is obtained
on the right, with the smaller input element appearing on
the top output and the larger input element appearing on
the bottom output. All comparisons that can be performed in
parallel represents a single stage.

B. Construction of sorting networks

Sorting networks can be generated from basic sorting al-
gorithms such as bubble or insertion sort. Both algorithms
provide structurally equivalent architectures [3]. Unfortunately,
networks generated by these approaches are inefficient like
their algorithmic counterparts and consist of many comparator
elements.

In order to improve the efficacy, various algorithms have
been proposed in literature [10]. The Batcher odd-even merge-
sort and bitonic sort represent two simple, yet most efficient
algorithms. These algorithms produce sorting networks of the
same asymptotic complexity O(n log2 n) and the same depth
O(log2 n) which makes them efficient for parallel implemen-
tation. Although the bitonic sorters contain a little bit more
comparators, they hardware implementation is the preferred
one because all signal paths are of the same length. In addition
to that, the same number of comparisons is used in each stage.

Bitonic sorting algorithm is based on repeatedly merging
two bitonic sequences to form a larger bitonic sequence.
A sequence is bitonic if it can be split to two parts such
that the first part is monotically increasing and the second
part monotically decreasing, or it can be circularly shifted to
become so. The merging operation representing a key step of
algorithm is called bitonic merge. The input to this operation is
a pair of sequences that are sorted in opposite directions, one
in ascending order and the other in descending order, so that
together they form a bitonic sequence. Bitonic merge takes this
bitonic sequence and from it forms a single sorted sequence. A

Fig. 1. Compare-and-swap operation: (a) hardware implementation, (b) two
equivalent schematic representations using Knuth’s notation.

complete sorter can be constructed from small bitonic sorters
by successively bitonic sorting and merging smaller sequences
into larger sequences until we have a bitonic sequence of size
n.

In order to reduce high implementation cost, various modifi-
cations of bitonic sorting algorithm have been proposed. Stone
[11] suggested to employ the perfect shuffle enabling the reuse
of n/2 processing elements. This approach substantially im-
proved the implementation cost but log2 n cycles are required
to obtain the sorted sequence. In [12], Lee et al. have improved
the time complexity of Stone’s algorithm to 1

2 log n(log n+1)
introducing an additional logic. The latest modification has
been proposed by Chen et.al. [1]. The authors employed a
streaming permutation network based on Clos network which
is programmable and performs all the data permutations in the
bitonic sorting network.

C. Optimal sorting networks

Although a complete and deep theory has been developed
around sorting networks, nobody has discovered a sorting
algorithm producing the optimal (i.e. minimal) sequence of
comparison operators. Even if the best known sorting algo-
rithms such as Bitonic sorting exhibit an optimal asymptotic
complexity, there is a large constant factor hidden in the
asymptotic bound. The optimal sequence of comparison oper-
ators is known only for some instances. The construction of
optimal sorting networks is extremely difficult problem even
for small number of inputs. For long time, nobody was able
to prove the optimality of sorting networks introduced more
than 40 years ago by Knuth in [10]. Recently, Bundala and
Zavodny proposed a method that is able to construct optimal-
depth networks for n ≤ 16 in reasonable time [13]. Then,
Ehlers et al. proved existence of optimal-depth sorting network
for n = 17 and discovered faster networks for 17, 19 and
20 inputs than the previously known best ones [14]. In [15],
Codish et al. proved the optimality of 9-input and 10-input
sorting network consisting of 25 and 29 comparators found
by Floyd and Waksman in the seventies.

III. QUALITY OF APPROXIMATE SORTERS

One of the main issues in the approximate computing is the
assessment of quality of approximations. The most popular
measure for quality is the mean squared difference between
the specification and the output of the approximate circuit that
is estimated using a set of test vectors.

The problem of the general quality measures is that they
do not assess the quality of sorting process. What’s worse,
the obtained result depends on a particular set of test vectors.
In addition to that, there is no guarantee on the error (e.g.
the worst-case error) because only a fraction of all possible
input vector was used. In order to address these problems,
three data-independent quality measures are introduced in this
section.

Let us recall the basic properties of the accurate as well
as approximate sorting networks, i.e. comparison networks in
general. Let C(x1, . . . , xn) be a comparison network with

n inputs, xi ∈ A and A be a totally ordered set of ele-
ments. It is guaranteed by construction that each comparison
network produces a permutation of the input sequence. It
means that there exists one to one mapping between the
values obtained at the output of comparison network and
the values at the input, so no new value can arise during
the exchanging performed by compare-and-swap elements.
Formally, C : π(x1, . . . , xn) → π(x1, . . . , xn). Hence, every
approximate sorting network must produce a partially ordered
output for at least one input sequence. In such a case, there
must exist at least two outputs that are returning an invalid
value.

In general, 2wn input combinations exist to evaluate an
n-input sorting network operating with elements encoded
using w-bit integers. Clearly, it is intractable to evaluate all
possible input combinations, however, the number of input
combinations can substantially be reduced by applying the
zero-one principle [10] and permutation principle [16].

A. Error probability

According to zero-one principle, 2n binary sequences are
sufficient to determine the error rate. Let C(x)[i] denote value
of i-ith output (1 ≤ i ≤ n) of an n-input n-output comparison
network C. Let Ei ⊆ {0, 1}n be the set of all possible input
assignments x ∈ {0, 1}n for whose an invalid output value is
produced, where

Ei = {x : C(x)[i] = 0 ∧ (x1 + . . .+ xn) > (n− i)} ∪
{x : C(x)[i] = 1 ∧ (x1 + . . .+ xn) ≤ (n− i)}

(1)
Then, ei = 2−n · |Ei| is the probability that an invalid value
is obtained at the i-th output of C. The overall accuracy, i.e.
the relative number of correct responses, is equal to

accuracy = 1− 1

n

n∑

i=1

ei (2)

Although it is impractical to determine the size of Ei explic-
itly by enumerating the assignments satisfying the condition
given in Equation 1 (the number of input assignments grows
exponentially with the increasing number of inputs n), the
number of such assignments, i.e. |Ei|, can be calculated easily
using a Constaint satisfaction problem (CSP) solver or Binary-
Decision Diagrams (BDDs) even for large instances.

Note that the error probability has to be evaluated carefully
in practice because there can exist a network with high error
rate, but still providing good performance because nearly
sorted sequences are produced in most cases.

B. Approximation guarantees

A sorting network can be understood as a structure that
computes n quantiles in parallel. The first quantile represents
the minimum and the last quantile represents the maximum.
Then, we can investigate the difference in rank between the
true quantile produced by the accurate sorting network and
that of the output produced by the approximate network.

Let us give a simple example. Let x = (1, 4, 3, 0, 2) be an
input sequence, S be sorting network and C be an approximate
sorting network producing output C(x) = (0, 2, 1, 3, 4). It is
clear that C returned a partially sorted sequence because the
second and third items are invalid, i.e. C(x)[2] 6= S(x)[2]
and C(x)[3] 6= S(x)[3]. The second output returned the third
lowest item of x (i.e. C(x)[2] = S(x)[3]) and the third output
returned the second lowest item (i.e. C(x)[3] = S(x)[2]). In
both cases, the difference in rank is equal to one.

Zero-one principle and CSP solver can be employed to
perform formal worst-case error analysis efficiently. Since
asymmetric difference in rank may occur at some outputs, it
seems to be reasonable to investigate the left (δL) and right
(δR) worst-case distances separately. Firstly, let us define two
predicates

PL(x, i, d) : C(x)[i] = 0 ∧ (x1 + · · ·+ xn) = n− i+ d
PR(x, i, d) : C(x)[i] = 1 ∧ (x1 + · · ·+ xn) = n− i− d+ 1

(3)
The problem of the worst-case error analysis can be formu-

lated using Pseudo-Boolean CSP as follows. For each output
i ∈ {1, . . . , n} find maximal δ ∈ {0, . . . , n − i − 1} such
that ∃x ∈ {0, 1}n : PL(x, i, δ). Then, δL[i] = δ is the left
worst-case distance for i-th output. Similarly, the right bound
δR[i] can be determined using PR(x, i, δ) instead. Note that
it is beneficial to use binary search algorithm to maximize δ
because it significantly reduces the number of CSP queries.

Knowledge of the worst-case error alone will not suffice
since its probability of occurrence could be negligible. To
address this problem, we propose a technique to obtain an error
distribution that would provide information about probability
of occurrence of errors of different distances. Although it is
possible to determine the true error distribution (by counting
the number of input assignments that satisfy PL and PR,
similarly as it was discussed in the previous section), it is
practically sufficient and computationally significantly faster
to estimate the error distribution. In order to do that, we can
adopt permutation principle introduced in [16] and employed
to determine the distance between an arbitrary comparator
network (i.e. approximate sorting network) and a sorting
network. The permutation principle states that it is sufficient
to prove response to the permutations of a set consisting of n
distinct elements to precisely determine quality of an arbitrary
comparison network.

Let us give an example for n = 3. Let S be sorting
network and C be approximate sorting network consisting
of two compare-and-swap operation. Let the first comparator
be connected to the first and second horizontal wire, the
second comparator be connected to the second and third
horizontal wire. In our case, A = {1, 2, 3} which gives us
six possible permutations that have to be be considered, i.e.
|π(A)| = 6. We can easily determine that C(x) = S(x) iff
x ∈ π(A) \ {(2, 3, 1), (3, 2, 1)}, i.e. for 4 out of 6 cases. In
the remaining two cases, the output of C equals to (2, 1, 3).
It means that the first as well as the second output produce
erroneous value whose difference in rank is equal to one in

both directions (left and right). The results can be summarized
using a matrix H which captures the number of input assign-
ments that cause error at output i whose difference in rank is
equal to j. Note that j = 0 means that correct response was
obtained. The number of correct responses for each output is
given in the main diagonal. For example, h3,3 = 1 because
the third output produces always correct result; h1,1 = 4/6
because there are two cases for that an incorrect response is
returned by the first output. The complete H(C) is as follows:

H(C) =
1

6

4 2 0
2 4 0
0 0 6

 (4)

Interestingly, a relative small subset of all possible permu-
tations is required in practice to obtain a reasonable estimate
of error distribution. For example, only 10000 out of more
than 1077 vectors are required in average to obtain an estimate
exhibiting 0.3% relative error (in worst-case) compared to the
true error distribution H computed using BDDs for n = 256.

IV. CONSTRUCTION OF APPROXIMATE SORTERS

In order to construct approximate sorting networks, we
propose to modify the Bitonic sorting algorithm as follows.

Algorithm 1: Approximate bitonic sorting
Input: unsorted sequence X , direction dir ∈ {↑, ↓}
Output: sorted sequence X

1 Function sort(dir, X)
2 if |X| = 1 then
3 return X;
4 else if |X| = 2B then
5 return b-sort(dir, X);
6 else
7 h← |X| ÷ 2;
8 a← sort(↑, (x0, . . . , xh−1));
9 b← sort(↓, (xh, . . . , x2h−1));

10 return merge(dir, (a0, . . . , ah−1, b0, . . . , bh−1));

11 Function merge(dir, X)
12 if |X| = 1 then
13 return X;
14 else if |X| = 2M then
15 return b-merge(dir, X);
16 else
17 h← |X| ÷ 2;
18 for i = 0 to h− 1 do
19 if xi > x(h+i) ⇔ dir =↑ then
20 swap xi, x(h+i)

21 a← merge(dir, (x0, . . . , xh−1));
22 b← merge(dir, (xh, . . . , x2h−1));
23 return (a0, . . . , ah−1, b0, . . . , bh−1);

The algorithm consists of two parts – sorting and merging.
The input sequence is successively divided into two halves

B
=

3,
M

=
0

B
=

4,
M

=
0

B
=

5,
M

=
0

B
=

0,
M

=
3

B
=

3,
M

=
3

B
=

4,
M

=
3

B
=

5,
M

=
3

B
=

0,
M

=
4

B
=

3,
M

=
4

B
=

4,
M

=
4

B
=

5,
M

=
4

B
=

0,
M

=
5

B
=

3,
M

=
5

B
=

4,
M

=
5

B
=

5,
M

=
5

B
=

3,
M

=
0

B
=

4,
M

=
0

B
=

5,
M

=
0

B
=

0,
M

=
3

B
=

3,
M

=
3

B
=

4,
M

=
3

B
=

5,
M

=
3

B
=

0,
M

=
4

B
=

3,
M

=
4

B
=

4,
M

=
4

B
=

5,
M

=
4

B
=

0,
M

=
5

B
=

3,
M

=
5

B
=

4,
M

=
5

B
=

5,
M

=
5

B
=

3,
M

=
0

B
=

4,
M

=
0

B
=

5,
M

=
0

B
=

0,
M

=
3

B
=

3,
M

=
3

B
=

4,
M

=
3

B
=

5,
M

=
3

B
=

0,
M

=
4

B
=

3,
M

=
4

B
=

4,
M

=
4

B
=

5,
M

=
4

B
=

0,
M

=
5

B
=

3,
M

=
5

B
=

4,
M

=
5

B
=

5,
M

=
5

B
=

3,
M

=
0

B
=

4,
M

=
0

B
=

5,
M

=
0

B
=

0,
M

=
3

B
=

3,
M

=
3

B
=

4,
M

=
3

B
=

5,
M

=
3

B
=

0,
M

=
4

B
=

3,
M

=
4

B
=

4,
M

=
4

B
=

5,
M

=
4

B
=

0,
M

=
5

B
=

3,
M

=
5

B
=

4,
M

=
5

B
=

5,
M

=
5

B
=

3,
M

=
0

B
=

4,
M

=
0

B
=

5,
M

=
0

B
=

0,
M

=
3

B
=

3,
M

=
3

B
=

4,
M

=
3

B
=

5,
M

=
3

B
=

0,
M

=
4

B
=

3,
M

=
4

B
=

4,
M

=
4

B
=

5,
M

=
4

B
=

0,
M

=
5

B
=

3,
M

=
5

B
=

4,
M

=
5

B
=

5,
M

=
5

0. 0%

20. 0%

40. 0%

60. 0%

80. 0%

100. 0%
n= 128 n= 256 n= 512 n= 1024 n= 2048

Fig. 2. The relative number of compare-and-swap elements occupied by 2M -input b-mergers (see) and 2B-input b-sorters (see) compared to
the total number of compare-and-swap elements for various number of inputs n, and selected values of B and M .

until two elements remain. Then, these halves are succes-
sively merged until a single sorted sequence is obtained.
Two subcircuits can be identified in the resulting sorter –
let us call them b-sorters and b-mergers. Our goal is to
replace the 2B-input b-sorters and 2M -input b-mergers with
their approximate versions (see Figure 3). Such a substitution
reduces not only the total number of comparisons but may
also decrease quality of the sorter. Hence a reasonable trade-
off needs to be identified. The designer has the possibility
to tune both parameters because various values of B and M
can be chosen. In addition to that, approximate networks (i.e.
b-sorters and b-mergers) of different quality can be employed.

Fig. 3. Sub-circuits (b-sorters and b-mergers) in the 16-input sorter generated
using Bitonic algorithm for B = 2 and M = 3. In addition to that, eight
compare-and-swap operations are required. Each b-sorter can be replaced with
various 4-input comparison networks, sorter (a) or some approximation (b,c).

As it is non-trivial to predict what values yields the best
trade-offs, Figure 2 shows the distribution of compare-and-
swap operations for sorting networks having from n = 128 to
n = 2048 inputs. The total number of CSs consists of three
groups – the CSs that are required to implement 2B-input
b-sorters, the CSs that are required to implement 2M -input
b-mergers and the remaining ones. The distribution shows
the possible area reduction that can be achieved by choosing
various values of B and M The upper-bound is limited by
the number of comparators that can’t be approximated. For
n = 128, B = 5 and M = 0, for example, 27% reduction in
the total number of CSs can be achieved when the 32-input b-
sorters are replaced with their approximate versions occupying
half of the resources. Such a reduction is possible because the
b-sorters comprise 54% of the total number of CSs.

A. Design of approximate b-sorters and b-mergers

As evident, there is a great potential for improvement in the
implementation costs as well as power consumption of sorters
especially when larger values of B and M are employed. The
only problem is how to obtain high-quality approximations of
b-mergers and b-sorters blocks.

The problem of finding an approximate network can be
formulated as a constrained optimization problem where the
goal is to find a comparison network C exhibiting maximum
quality for a target number of compare-swap operations. In
order to solve this problem efficiently, we propose to employ
Cartesian genetic programming (CGP) [17]. CGP is easy to
implement, it can easily handle constraints, it is naturally
multi-objective and high-quality approximate circuits have
already been obtained in literature [18].

We propose to apply a two-stage procedure. At the begin-
ning, the designer specifies the target reduction that should
be achieved. The first stage starts with an exact and accurate
solution (i.e. b-sorter or b-merger). The goal is to gradually
modify the initial solution and obtain a reduced network of the
target cost. In the second stage, which begins as soon as the
target reduction was achieved, the search method reflects not
only the implementation cost, but also the quality. The second
stage aims to improve the quality as much as possible.

CGP employs a simple population-oriented search method.
The λ candidate solutions that forms the population are
generated from the parental solution (i.e. the best individual
discovered so far) using a mutation operator slightly modifying
the candidate solutions (up to h randomly chosen genes are
modified). Then, the candidate solutions are evaluated and
each member receives the so-called fitness score. The highest-
scored individual becomes a new parent of the next population.
The fitness function F (C) summarize the quality of candidate
solutions into a single value and is defined as follows:

F (C) = −
{
∞ if constraint is violated∑n

i,j=1hi,j(i− j)2 otherwise,
(5)

where hi,j is an element of the error matrix H(C) calculated
for a candidate comparison network C. The constraint is rep-
resented by the target number of compare-swap operation. The
fitness function is designed in such a way that the individuals
of higher quality receive higher score. In addition to that,

TABLE I
PARAMETERS OF ACCURATE AND FIVE APPROXIMATE 16-INPUT SORTERS

Impl. CSs Depth Quality indicators FPGA Synthesis results ASIC Synthesis results
N D accuracy ∆avg ∆95 ∆99 ∆L ∆R #LUTs #REGs Power (W) Area (µm2) Power (mW)

C1 60 (100%) 10 100% 0.00 0 0 0 0 769 (100%) 1120 (100%) 0.24 (100%) 68945 (100%) 1.22 (100%)

C2 49 (81%) 10 49% 0.63 2 3 6 6 621 (81%) 1112 (99%) 0.23 (97%) 58863 (85%) 1.09 (89%)

C3 39 (65%) 10 30% 1.13 3 4 8 8 525 (68%) 1104 (99%) 0.22 (92%) 49698 (72%) 0.96 (79%)

C4 29 (48%) 8 20% 1.70 4 6 9 9 445 (58%) 784 (70%) 0.20 (86%) 37851 (55%) 0.75 (62%)

C5 24 (40%) 5 17% 2.05 5 7 10 10 289 (38%) 640 (57%) 0.20 (82%) 29247 (42%) 0.54 (45%)

C6 19 (31%) 5 16% 2.31 6 8 11 11 253 (33%) 592 (53%) 0.19 (80%) 24664 (36%) 0.48 (40%)

it promotes solutions having narrower error distribution. The
fitness score of an accurate b-sorter (b-merger) is equal to zero.

The candidate solutions consists of 2-input elements that
can act as compare-and-swap operation or simple buffer. The
following encoding of candidate solutions is proposed. Each
element is encoded using a triplet consisting of three integers
(s, l, f). The first integer s ∈ {1, . . . , n} defines the index of
a horizontal wire where the first input is connected to. The
second integer l ∈ {1, . . . , n−s} determines the length of the
corresponding vertical segment. The value, in fact, indirectly
encodes the index of horizontal wire where the second input
is connected to. Finally, the last integer f ∈ {0noop, 1↑, 2↓}
determines the operation of the encoded element. In case
that f=0, the element is treated as empty operation and is
ignored. Otherwise, a compare-and-swap operation with a
given direction is utilized. ASAP scheduling is employed
to obtain corresponding comparison network. The proposed
encoding guarantee that a valid comparison network is always
captured. The number of triplets is defined by the initial
solution and remains fixed during the whole search process.
The mutation operator modifies values of up to h randomly
chosen integers.

The sorting network shown in Figure 3a can be encoded,
for example, using 8 triplets as (0,1,1↓) (2,1,2↑) (1,3,0noop)
(1,2,2↑) (0,2,2↑) (1,3,1↓) (2,3,0noop) (2,1,2↑). Note that there
are two inactive elements (encoded by 3rd and 7th triplet) that
do not have any impact on the structure of resulting network.

V. EXPERIMENTAL RESULTS

Firstly, we approximated small sorting networks. In par-
ticular, 8, 16 and 32 inputs were considered. The number
of inputs was chosen in accordance with the analysis shown
in Figure 2 and corresponds with B = 3, 4, 5. The search
algorithm uses population consisting of λ = 20 individuals.
Up to h = 5 integers are modified by mutation operator. The
fitness function is calculated using 64 × 104, 256 × 104 and
1024×104 randomly generated permutations for n = 8, 16, 32,
respectively. The optimization process is terminated either
when no improvement in fitness score is achieved within the
last 15 minutes or the maximum amount of time (2 hours) is
exhausted. In case of 8-input (16-input) sorters, the optimiza-
tion was initialized with the optimal known sorter consisting
of 19 (60) compare-and-swap operations. The reference 32-
input sorter was obtained using Bitonic sorting algorithm.
Ten design points (i.e. design constraint) are considered for

each problem instance. The goal is to find approximate sorters
consisting of about 95%, 90%, 80%, 70%, 60%, 50%, 40%,
30% and 20% compare-and-swap operations compared to the
number of operations of the initial solutions. In addition to
that, it is requested that the depth of the approximate sorters
is not worse than the depth of the initial accurate sorter.

In total, 30 independent experimental runs were performed
and more than 3 · 9 · 30 = 810 unique approximate solutions
were discovered. The Pareto-optimal solutions were identified
and implemented as fully streaming pipeline architectures
in Virtex-7 FPGA XC7VX330T using Xilinx Vivado and
as 45nm VLSI circuits using Cadence Encounter. Then, we
conducted the post-place-and-route power analysis performed
at 250 MHz (900 MHz for ASIC). Switching activity analysis
was employed to improve the accuracy of power estimation.

Due to the limited space, let us discuss the results obtained
for 16-input instance. Table I summarizes the parameters of
the accurate (C1) and five chosen Pareto-optimal approximate
(C2-C6) sorters. Namely, it contains the number of compare-
and-swap operations (N), depth (D), quality indicators and
sythesis results for FPGA and VLSI. The quality indicators
include the accuracy and five differences in rank – mean
(∆avg), 0.95-quantile (∆95), 0.99-quantile (∆99) and both
worst-cases (∆L and ∆R); all determined over all outputs.
The percentages in parentheses indicate the ratio of the value
in that column compared to the accurate sorter. As evident, the
accuracy gradually decreases with the increasing amount of
removed compare-and-swap operations. The same observation
is also valid for the implementation cost in ASIC as well
as FPGA (see the number of LUT tables and the number
of registers). As expected, the implementation cost correlates
with N in both cases. A slightly different situation is in the
case of power consumption. Because the 16-input sorters are
relative small circuits, static part of power consumption dom-
inates in FPGA the dynamic one. As a consequence of that,
only 20% improvement in power consumption was achieved
for implementation C6 despite more than 50% reduction in
implementation cost. No such discrepancy is observable for
sorters implemented as ASIC.

Figure 4 depicts the quality matrices of the discovered
implementations. Contrasted to the quality indicators, the
quality matrices helps to better understand the quality of
approximations. The interpretation of H is as follows. All
possible input sequences are correctly sorted in the case of
exact sorter (implementation C1). In all cases, the i-th output

1 2 3 4 5 6 7 8 9
1

0
1

1
1

2
1

3
1

4
1

5
1

6

Output rank

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

O
u
tp

u
t

in
d
e
x

implementation C1

1 2 3 4 5 6 7 8 9
1

0
1

1
1

2
1

3
1

4
1

5
1

6

Output rank

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

implementation C2

1 2 3 4 5 6 7 8 9
1

0
1

1
1

2
1

3
1

4
1

5
1

6

Output rank

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

implementation C3

1 2 3 4 5 6 7 8 9
1

0
1

1
1

2
1

3
1

4
1

5
1

6

Output rank

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

implementation C4

1 2 3 4 5 6 7 8 9
1

0
1

1
1

2
1

3
1

4
1

5
1

6

Output rank

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

implementation C5

>0 %
10 %
20 %
30 %
40 %
50 %
60 %
70 %
80 %
90 %
100 %

Fig. 4. Quality matrices H of accurate (C1) and four approximate (C2–C5) 16-input sorting networks

returned the i-th smallest element. It means that only main
diagonal contains non-zero values.

Let us discuss the implementation C2 consisting of 49
compare-and-swap operations, i.e. about 18% less compared to
the exact sorter. According to the eight column of H, the eight
smallest element (i.e. the element with rank 8) is returned by
the eight output with probability 33%. This element, however,
can be for some input sequence returned also by the output
seven (or nine) in 29.3% (17.9%) cases. It means that the
difference in one rank occurs in 47.2% in practice. Difference
in two ranks (elements is returned by 6th or 10th output)
occurs in 19.8% cases. According to the first row of H, it
can be determined that the minimum is correctly identified in
more than 87.4% cases. In the rest of the cases, the second
or third smallest element is returned with prob. 11.8% and
0.8%, respectively. We can conclude that this approximation
is of a high quality despite the fact that the worst-case error
is equal to 6. According to the quality matrix and ∆99, the
difference in rank is not worse than 3 for more than 99% input
sequences.

The same principle was applied to approximate 8-input, 16-
input and 32-input b-mergers. The initial accurate b-mergers
were extracted from the sorters generated using Bitonic sorting
algorithm. The experimental setup was kept the same as in the
case of sorters. Only the test vectors utilized in the fitness
functions are generated in different way. Since two sorted
sequences are expected at the input of each merger, it is not
necessary to test all the input permutations. Only

(
n
n
2

)
input

sequences are required to exhaustively evaluate the quality.

A. Construction of large approximate sorters

The approximate sorters and mergers discovered in the
previous experiments were used to construct large approxi-
mate sorters for n = 256, 512, 1024 and 2048 inputs. The
sorters were constructed according to the Algorithm 1. The
following parameters were considered: B = {0, 3, 4, 5} and
M = {0, 3, 4, 5}. To simplify the problem, ten Pareto-optimal
implementations of various sorter (merger) instances were
chosen to act as b-sorter (b-merger). In total, 121 architectures
were generated and analyzed for each n.

The results for n = 256 are summarized in Table II. In
addition to the parameters discussed earlier, the value of B and
M parameter and the number of compare-and-swap operations
required by b-sorters and b-mergers are included. While the
whole range of B was utilized, smaller values of M are
preferred. It seems that the inaccuracy introduced into the
larger mergers has a negative impact on the overall quality.
Hence, the majority of architectures employ a variant of 8-
input merger (i.e. M=3). The b-sorters represent 10% to 31%
the total number of CSs. Compared to the b-sorters, b-mergers
occupy significantly larger portion of the CSs especially when
the accuracy is higher than 50%. The implementation cost
as well as power consumption decreases with decreasing N
linearly.

Interestingly, it seems to be nontrivial to predict the quality
of the constructed approximate network according to the qual-

TABLE II
PARAMETERS OF ACCURATE AND ELEVEN APPROXIMATE 256-INPUT SORTERS

Impl. Width Compare-swap operations Depth Quality indicators FPGA Synthesis results
B M sorters mergers N D accuracy ∆avg ∆95 ∆99 ∆L ∆R #LUTs #REGs Power (W)

S1 — — 0% 0% 4608 (100%) 36 100% 0.00 0 0 0 0 55297 (100%) 73728 (100%) 5.997 (100%)

S2 C2 4 4 19% 50% 4112 (89%) 36 92% 0.08 1 1 3 3 49857 (90%) 72320 (98%) 5.433 (91%)

S3 5 4 31% 40% 3880 (84%) 36 85% 0.16 1 1 6 6 47713 (86%) 70784 (96%) 5.154 (86%)

S4 3 3 11% 36% 3584 (78%) 35 60% 0.44 1 2 6 4 44033 (80%) 69376 (94%) 4.826 (80%)

S5 5 3 24% 29% 3288 (71%) 35 47% 0.93 3 6 9 10 41985 (76%) 67328 (91%) 4.505 (75%)

S6 5 3 25% 27% 3192 (69%) 38 32% 1.24 4 6 10 11 41449 (75%) 67272 (91%) 4.424 (74%)

S7 C6 4 3 10% 33% 3120 (68%) 33 28% 1.42 4 6 15 13 38977 (70%) 64256 (87%) 4.238 (71%)

S8 5 3 22% 26% 2936 (64%) 35 20% 1.78 5 7 14 17 38497 (70%) 62400 (85%) 4.012 (67%)

S9 C5 4 3 14% 19% 2688 (58%) 27 18% 2.05 6 8 20 16 32491 (59%) 50924 (69%) 3.601 (60%)

S10 C5 4 3 15% 15% 2560 (56%) 27 12% 2.42 6 9 20 18 30991 (56%) 46610 (63%) 3.553 (59%)

S11 5 3 14% 17% 2232 (48%) 23 9% 3.70 9 13 32 28 27133 (49%) 43358 (59%) 3.024 (50%)

S12 5 3 15% 13% 2136 (46%) 23 7% 4.27 10 13 32 29 26717 (48%) 40509 (55%) 2.897 (48%)

1
1

7
3

3
4

9
6

5
8

1
9

7
1

1
3

1
2

9
1

4
5

1
6

1
1

7
7

1
9

3
2

0
9

2
2

5
2

4
1

2
5

6

Output rank

1
17
33
49
65
81
97

113
129
145
161
177
193
209
225
241
256

O
u
tp

u
t

in
d
e
x

implementation S2_C2

1
1

7
3

3
4

9
6

5
8

1
9

7
1

1
3

1
2

9
1

4
5

1
6

1
1

7
7

1
9

3
2

0
9

2
2

5
2

4
1

2
5

6

Output rank

1
17
33
49
65
81
97

113
129
145
161
177
193
209
225
241
256

implementation S12

>0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

Fig. 5. Quality matrices of two approximate 256-input sorters

ity of the small b-sorters. For example, b-sorters in S2 C2 are
implemented using approximate sorters C2. While C2 exhibits
only 49% accuracy, S2 C2 provides the correct response for
92% of all possible input sequences. Not only the accuracy
was improved, but also the worst-case error is significantly
lower (see ∆L and ∆R). The same effect is observable also
for S7 C6. On the contrary, similar quality is achieved for
S9 C5 and S10 C5. These findings suggest that if a b-merger
of higher quality is applied, the quality of b-sorter could be
improved significantly.

The quality matrices for two chosen implementations are
shown in Figure 5. It can be concluded, that the large approx-
imate networks are of high quality even when the number
of CSs was reduced significantly. In particular, architecture
S2 C2 achieves 10% reduction in power consumption with
hardly visible error. In at least 99.9%, the difference in rank is
not worse than 1. Implementation S4 exhibiting 20% reduction
in power consumption guarantees that the difference is not
worse than 2 (5) with probability at least 99% (99.9%), see
∆99. Finally, even implementation S12 could be safely used
in many non-critical applications (see Figure 5).

VI. CONCLUSION AND REMARKS

We addressed the problem of design of approximate sort-
ing networks suitable for hardware implementation exhibit-
ing trade-off between the quality and power consumption.
Intuitively, it seems to be sufficient to successively remove
the first stages of sorting networks. Unfortunately, our initial
experiments revealed that this approach yields non-optimal
solutions. Hence, we proposed a scalable method for con-
struction of approximate sorting networks exhibiting trade-
off between the quality and power consumption. The method
is based on recursive construction of large sorting networks
using smaller instances of approximate sorting networks that
are designed using a search-based design method.

Many approximate circuits have been proposed in recent
years. The correctness, however, is typically guaranteed for
precise data and only some estimation is promised for the
approximate data [8]. The designers are then reluctant to use
such circuits. The strength of our method is that the quality of
the approximate networks is guaranteed and formally proved
for arbitrary data widths.

Although the power consumption was optimized indirectly
by reducing the number of compare-and-swap operations, we

have experimentally confirmed that a significant improvement
in power consumption can be achieved for sorters implemented
not only in FPGAs but also as VLSI circuits. Naturally, the
discovered sorters can be employed to improve the computa-
tion efficiency of algorithms running on CPUs and GPUs.

Probably due to the lack of a formal apparatus for analysis
of approximation guarantees, no survey devoted to the approx-
imate sorters and their applications has been published up to
now. Let us mention two applications offering a great space for
lowering the computational effort (e.g., energy consumption).
Firstly, the small approximate sorters can directly be employed
to improve the power consumption of many sorter-based
arithmetic circuits or network arbiters [7]. On the other hand,
our method can be adopted to produce large networks for
power-efficient approximate processing of massive quantile
queries, a problem with many real-world applications [5]. In
order to do that, the fitness function should reflect the quality
of some outputs only.

ACKNOWLEDGMENT

This research was supported by the Czech science founda-
tion project GA16-17538S and Brno University of Technology
project FIT-S-14-2297.

REFERENCES

[1] R. Chen, S. Siriyal, and V. Prasanna, “Energy and memory efficient mapping of
bitonic sorting on FPGA,” in Proceedings of the 2015 ACM/SIGDA Int. Symp.
on Field-Programmable Gate Arrays, ser. FPGA ’15. New York, NY, USA:
ACM, 2015, pp. 240–249.

[2] M. Zuluaga, P. A. Milder, and M. Püschel, “Computer generation of streaming
sorting networks,” in Design Automation Conference, 2012, pp. 1245–1253.

[3] R. Mueller, J. Teubner, and G. Alonso, “Sorting networks on FPGAs,” The
VLDB Journal, vol. 21, no. 1, pp. 1–23, 2012.

[4] G. S. Manku, S. Rajagopalan, and B. G. Lindsay, “Approximate medians and
other quantiles in one pass and with limited memory,” in Proc. ACM SIGMOD
Int. Conf. on Management of Data. New York, USA: ACM, 1998, pp. 426–435.

[5] X. Lin, J. Xu et al., “Approximate processing of massive continuous quantile
queries over high-speed data streams,” IEEE Trans. Knowl. Data Eng., vol. 18,
no. 5, pp. 683–698, 2006.

[6] K. E. Batcher, “Sorting networks and their applications,” in Proc. of the spring
Joint Comp. Conf., ser. AFIPS ’68. New York, USA: ACM, 1968, pp. 307–314.

[7] H. Fujisaka, T. Kamio, C. J. Ahn et al., “Sorter-based arithmetic circuits for
sigma-delta domain signal processing – part I: Addition, approximate tran-
scendental functions, and log-domain operations,” IEEE Trans. on Circuits and
Systems I: Regular Papers, vol. 59, no. 9, pp. 1952–1965, Sept 2012.

[8] S. Mittal, “A survey of techniques for approximate computing,” ACM Comput.
Surv., vol. 48, no. 4, pp. 62:1–62:33, 2016.

[9] T. Leighton and C. G. Plaxton, “A (fairly) simple circuit that (usually) sorts,” in
Proc. 31st Annu. Symp. Foundations of Computer Science, 1990, pp. 264–274.

[10] D. E. Knuth, The Art of Computer Programming, Volume 3: (2Nd Ed.) Sorting
and Searching. Redwood City, CA, USA: Addison Wesley Longman Publish-
ing Co., Inc., 1998.

[11] H. S. Stone, “Parallel processing with the perfect shuffle,” IEEE Trans. Comput.,
vol. 20, no. 2, pp. 153–161, Feb. 1971.

[12] J.-D. Lee and K. E. Batcher, “Minimizing communication in the bitonic sort,”
IEEE Trans. Parallel Distrib. Syst., vol. 11, no. 5, pp. 459–474, May 2000.

[13] D. Bundala and J. Závodný, “Optimal sorting networks,” in Proc. of the Lan-
guage and Automata Theory and Applications: 8th International Conference.
Cham: Springer International Publishing, 2014, pp. 236–247.

[14] T. Ehlers and M. Müller, “New bounds on optimal sorting networks,” in Proc.
Evolving Computability: 11th Conference on Computability in Europe, CiE
2015. Cham: Springer Int. Publishing, 2015, pp. 167–176.

[15] M. Codish, L. Cruz-Filipe, M. Frank, and P. Schneider-Kamp, “Twenty-five
comparators is optimal when sorting nine inputs (and twenty-nine for ten),” in
26th IEEE Int. Conf. Tools with Artificial Intelligence, ICTAI 2014, pp. 186–193.

[16] Z. Vasicek and V. Mrazek, “Trading between quality and non-functional
properties of median filter in embedded systems,” Genetic Programming and
Evolvable Machines, 2016 (to be published).

[17] J. F. Miller, Cartesian Genetic Programming. Springer-Verlag, 2011.
[18] Z. Vasicek and L. Sekanina, “Evolutionary approach to approximate digital

circuits design,” IEEE Trans. Evol. Comput., vol. 19, no. 3, pp. 432–444, June
2015.

Appendix G

Design of Power-Efficient Approximate
Multipliers for Approximate Artificial
Neural Networks

MRAZEK, Vojtech, SARWAR, Shakib Syed, SEKANINA, Lukas, VASICEK, Zdenek, and
ROY, Kaushik. “Design of Power-Efficient Approximate Multipliers for Approximate Arti-
ficial Neural Networks”. In: Proceedings of the 35th IEEE/ACM International Conference
on Computer-Aided Design (ICCAD). Austin, TX, US, 2016. to appear in.

acceptance rate: 25% (2015), contribution of the author of the thesis: 10%

Referenced on pages: 32

187

Design of Power-Efficient Approximate Multipliers for
Approximate Artificial Neural Networks

Vojtech Mrazek1

imrazek@fit.vutbr.cz
Syed Shakib Sarwar2
sarwar@purdue.edu

Lukas Sekanina1

sekanina@fit.vutbr.cz

Zdenek Vasicek1

vasicek@fit.vutbr.cz
Kaushik Roy2

kaushik@purdue.edu
1Faculty of Information Technology, Centre of Excellence IT4Innovations

Brno University of Technology
Brno, Czech Republic

2School of Electrical and Computer Engineering
Purdue University

West Lafayette, IN, USA

ABSTRACT
Artificial neural networks (NN) have shown a significant
promise in difficult tasks like image classification or speech
recognition. Even well-optimized hardware implementations
of digital NNs show significant power consumption. It is
mainly due to non-uniform pipeline structures and inherent
redundancy of numerous arithmetic operations that have to
be performed to produce each single output vector. This pa-
per provides a methodology for the design of well-optimized
power-efficient NNs with a uniform structure suitable for
hardware implementation. An error resilience analysis was
performed in order to determine key constraints for the de-
sign of approximate multipliers that are employed in the
resulting structure of NN. By means of a search based ap-
proximation method, approximate multipliers showing de-
sired tradeoffs between the accuracy and implementation
cost were created. Resulting approximate NNs, containing
the approximate multipliers, were evaluated using standard
benchmarks (MNIST dataset) and a real-world classifica-
tion problem of Street-View House Numbers. Significant
improvement in power efficiency was obtained in both cases
with respect to regular NNs. In some cases, 91% power re-
duction of multiplication led to classification accuracy degra-
dation of less than 2.80%. Moreover, the paper showed
the capability of the back propagation learning algorithm
to adapt with NNs containing the approximate multipliers.

Categories and Subject Descriptors
B.6.3 [Hardware]: Logic Design—Automatic synthesis; I.2.6
[Computing Methodologies]: Artificial Intelligence

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICCAD ’16, November 07-10, 2016, Austin, TX, USA
c© 2016 ACM. ISBN 978-1-4503-4466-1/16/11. . . $15.00

DOI: http://dx.doi.org/10.1145/2966986.2967021

1. INTRODUCTION
Recent advances in artificial intelligence methods and a

huge amount of computing resources available on a single
chip have led to a renewed interest in efficient implemen-
tations of complex neuromorphic systems based on artifi-
cial neural networks (NNs). Implementing complex NNs in
low power embedded systems requires careful optimization
strategies at various levels including neurons, interconnects,
learning algorithms, data storage and memory access. This
work is focused on reducing power consumption of computa-
tions performed in neurons, which is of the same importance
as optimizing the data storage and memory access [7].

Inexact or approximate computing has been adopted in
recent years as a viable approach to reduce power consump-
tion and improve the overall efficiency of computers. In
approximate computing, circuits are not implemented ex-
actly according to the specification, but they are simplified
in order to reduce power consumption or increase operation
frequency. It is assumed that the errors occurring in simpli-
fied circuits are acceptable, which is typical for error resilient
application domains such as multimedia, classification and
data mining. Applications based on NNs have proven to be
highly error resilient [2].

This paper provides a methodology for the design of well-
optimized power-efficient NNs that have a uniform structure
(i.e. all nodes are identical in all layers) which is thus suit-
able for hardware implementation. An error resilience anal-
ysis is performed in order to determine key constraints for
the design of approximate multipliers that are employed in
the resulting structure of NN. In order to avoid a manual
approximation of accurate multipliers, systematic methods
capable of performing approximations have been introduced
recently [21, 20, 14]. These methods typically start with
a gate-level description of the accurate circuit and an er-
ror constraint that specifies the type of error that can be
accepted. The approximation algorithm is typically con-
structed as a design space exploration algorithm directly
approximating some parts of the circuit [11] or the whole
circuit [18]. The search is guided by an error metric such as
the average error magnitude or maximum arithmetic error.

In addition to developing highly-optimized power efficient

NNs, an automated design space exploration method is pro-
posed. The method is capable to design approximate multi-
pliers in such a way that the resulting multipliers satisfy not
only a given error, but also a set of other application-specific
constraints.

2. ARTIFICIAL NEURAL NETWORKS
In machine learning, artificial neural networks are a family

of models inspired by biological neural networks. A typical
artificial neural network consists of an input layer of neu-
rons, several hidden layers of neurons and an output layer
of neurons.

2.1 Artificial Neuron
A typical structure of neuron is as follows [4, 22]. The

output hi of neuron i is defined as hi = σ(
∑N

j=1 wijxj − θ),
where σ(·) is an activation function, N is the number of in-
puts of the neuron, wij is weight of the link, xj is the j-th
input and θ is a threshold or bias. The purpose of the ac-
tivation function is (in addition to introducing non-linearity
into NN) to map the resulting values into the interval (−1, 1)
or (0, 1). The activation can be a threshold function, semi-
linear or non-linear function. A common example of the
non-linear function, which is used in this work, is sigmoid

function σ(x) = (1 + e−x)
−1

.

2.2 Architecture and learning
The NNs are classified into feed-forward neural networks

(FNNs), recurrent neural networks (RNN) and their combi-
nation. In RNNs, there is at least one feedback connection.
The earliest and the simplest architecture is the perception
model which utilizes just one layer of output neurons that
are connected with all the inputs. The extended version, the
multilayer perception model (MLP), uses one or more layers
(a.k.a. hidden layers) of neurons between the input and out-
put layers. In the hidden layer, each neuron is directly linked
to the outputs of the previous layer. An important contribu-
tion to the state of the art in NNs has been the development
of large-scale NNs such as the convolutional NNs introduced
by LeCun [9], where more types of layers (e.g. convolutional
layers) are employed. Another type of layers is the average
pooling layer which is used for weighted subsampling. Nowa-
days there are many different application-specific layers in-
tended for, e.g., image classification [8], segmentation [1],
speech processing [6] etc.

Learning is the most important capability of neural net-
works. It is performed by an algorithm that iteratively up-
dates the synapses (weights) and other parameters of neural
network. Determining the most suitable parameters and
weights of NN can be viewed as a complex nonlinear op-
timization problem. Learning methods are usually divided
into supervised, unsupervised, reinforcement, and evolution-
ary methods [4]. The most popular algorithms for super-
vised learning, which we will employ, are the least mean
squares method and back propagation algorithm [4].

2.3 Approximations in NNs
As neural networks are inherently error-resilient, various

approaches have been proposed to approximate them [13].
Venkataramani et al. [19] proposed a methodology of iden-

tifying error-resilient neurons based on the backpropagation

gradients. For the error-resilient neurons, an approxima-
tion using precision modification and piecewise-linear ap-
proximation of activation function was applied to create an
approximate neural network. Since training is by itself an
error-healing process, after creating the approximate ver-
sion, the NN is retrained. They also proposed a neuro-
morphic processing engine platform to determine the best
tradeoff between the precision and energy.

Zhang et al. [24] used a different approach for critical neu-
ron identification. A neuron is considered as critical, if small
jitters on the neuron’s computation introduce large output
quality degradation; otherwise, the neuron is resilient. They
presented a theoretical approach for finding the critical neu-
rons. The least critical neurons are candidates for approxi-
mation. Due to the tight interconnection between the neu-
rons, the ranking of candidate neurons is updated after ap-
proximation of each neuron. Hence, an iterative algorithm
for the criticality ranking and approximation was developed.
Three approximation strategies were used – precision scal-
ing, memory access skipping and approximating the multi-
plier circuits.

Du et al. [5] proposed an inexact Neural Network accel-
erator showing that it is possible to use inexact multipliers
in NNs. The multipliers were designed using an inexact
logic minimization algorithm [11]. For small fully connected
neural networks, their strategies were able to find good con-
figurations. They exploited the fact that the output layer
has a small number of neurons and since there is no synap-
tic weight after these neurons, lowering the errors through
retraining is difficult [13].

Judd et al. [7] showed that computations and memory ac-
cesses significantly contribute to power consumption. Hence
they used bit-precise weights reduction in standard multipli-
cation and reduced memory accesses of standard memories
in their implementation for GPUs and ASIC.

Power consumption of the synaptic weight memory was
optimized by Srinivasan et al. [17] who applied a conven-
tional 6T SRAM that is known to be susceptible to bit-cell
failures due to voltage over-scaling. A significance driven hy-
brid 8T-6T SRAM was proposed wherein the sensitive MSBs
are stored in robust 8T bit-cells. The memory access power
reduction was exchanged for a small loss in the classification
accuracy.

Sarwar et al. [16] introduced approximate multipliers
based on alphabet-set multiplication. The weights were di-
vided into parts having 4 bits. Multiplication by each 4-
bit part of the weight was implemented by shifting a pre-
computed input value and followed by summation. Authors
showed that reducing the set of precomputed values has a
significant impact on power consumption and a small impact
on the total accuracy of neural network. This architecture
is suitable for an efficient hardware implementation because
the resulting NN shows a uniform structure and each neuron
has the same architecture.

In summary, the first four approaches presented in this
section have shown that it is possible to approximate some
neurons. The resulting NNs can be characterized as non-
uniform NNs. However, for an efficient VLSI implementa-
tion and for implementing a general-purpose NN (not an
application specific one), all (or almost all) neurons have to
be uniform. Moreover, the selected components were ap-
proximated manually and independently of a target NN. It
was also shown that not only multiplication but also the

memory access has a significant impact on the total power
consumption.

2.4 Approximate multipliers in NNs
Since NN contains hundreds of thousands multiplications,

it seems to be useful to introduce approximate multipliers
to reduce power consumption. In order to determine the
impact of inexact multiplication on NNs’ accuracy, the fol-
lowing sensitivity analysis has been carried out.

A non-trivial MLP network (1 hidden layer, 100 hidden
neurons) trained for recognizing handwritten numbers of
MNIST dataset (described in Section 4.2.1) was chosen as
our benchmark problem and evaluated using DeepLearn-
Toolbox.1. Its accurate implementation shows the classifi-
cation accuracy 94.16% when precise 8-bit multipliers are
used.

To emulate imprecise multiplication, a jitter function ∆ :
N × N → N is introduced. Let the output of inexact multi-
plier m be defined as m(a, b) = a ·b+∆(a, b). To ensure that
the relative worst-case error of 8-bit multiplier m is 5.2%,
the range of the jitter function ∆ is bounded by ±852, calcu-
lated as 5.2% · 22·7. Note that this worst-case error was cho-
sen according to approximate multipliers proposed in [18].

When function m is used instead of accurate multiplica-
tion and no retraining is applied, the classification accuracy
of the network decreased to 10.77%. A detailed analysis re-
vealed that there are more than 80% cases where one of the
input operands of multiplication is zero. The random jitter
then provides a non-zero output value and this error is ac-
cumulated. Hence we hypothesized that the multiplication
must be accurate if at least one of the operands is zero.

To investigate this hypothesis, we re-defined the approxi-
mate multiplier m to m′, where:

m′(a, b) =

{
m(a, b) if a · b 6= 0

0 otherwise
(1)

Now the original NN which employs approximate multipliers
m′ exhibits the classification accuracy of 94.20%. Although
the impact of approximate multipliers on the accuracy is
application-specific, this benchmark showed that it is nec-
essary to have the accurate multiplication by 0. Figure 1
shows the absolute difference between outputs of the same
neurons in the case that approximate multipliers provide (a)
inexact and (b) exact multiplication by 0.

3. PROPOSED DESIGN METHOD
The proposed method is based on uniform NNs that utilize

approximate multipliers. In this section, we will define fea-
sible approximate multipliers, describe a design space explo-
ration search method for obtaining the feasible multipliers,
and introduce the overall methodology for NN approxima-
tion.

3.1 Constraints and cost function
A digital combinational circuit with n inputs and m out-

puts computes a completely-specified Boolean function F :
Bn → Bm, B = {0, 1}, that maps n-input Boolean vec-
tor x = 〈x1, x2, . . . xn〉 to an m-output Boolean vector y =
〈y1, y2, . . . ym〉 with associated hardware cost. Let n-bit ac-
curate multiplier be represented by a function M : Bn ×
1https://github.com/rasmusbergpalm/DeepLearnToolbox

20

40

60

80

100

120

140

160

180

200
10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100

Neuron

Sa
m

p
le

Neuron

Output error of neurons in the hidden layer

00

0

(a) (b)

0

0.2

0.4

0.6

0.8

1

A
b

so
lu

te
 e

rr
o

r

Figure 1: The error of the output neurons in the approxi-
mate NN in comparison with the original NN. The approx-
imate NN utilizes approximate multipliers showing a 5.2%
error and (a) inaccurate and (b) accurate multiplication by
zero

Bn → Bn+n and let δ : Bm → N assign a natural number
to an m-bit Boolean vector.

The error metric is defined as maximal relative error ε, i.e.
it is requested that the maximal arithmetic error of multi-
plication for each combination of operands is lower than ε
on the whole output range (which is 0 . . . (22n − 1)). This
error ε will be one of the input parameters of the algorithm
designing approximate multiplies.

A candidate approximate multiplierM′ is a feasible solu-
tion is two conditions hold. (i) The error is acceptable:

∀(a,b)∈Bn×Bn : |δ(M(a, b))−δ(M′(a, b))|≤ ε ·(22n−1). (2)

and (ii) multiplication by 0 is accurate:

∀a∈Bn : M(a, {0}n) =M′(a, {0}n) ∧
M({0}n, a) =M′({0}n, a). (3)

In the approximation process, the implementation cost
of multiplier SM′ will be estimated as the number of used
gates. The number of two-input gates is a sufficient metric
because the circuits are relatively simple (as it will be seen
in Section 5). The number of used gates SM′ is determined
recursively as follows: (1) the gate is used if its output is
connected to output of the circuit; (2) the gate is connected
if its output is connected to an input of any used gate.

The cost function for the approximation process is defined
as

CM′ =

{
SM′ if constraints (2) and (3) are met

∞ otherwise
. (4)

3.2 Approximate multiplier design
In order to approximate an accurate multiplier, various

approaches have been proposed. In this work, we employ
Cartesian Genetic Programming (CGP) [12] because it can
easily handle constraints given on candidate circuits, the
method is naturally multi-objective and high-quality ap-
proximate circuits have already been obtained with it [18].

The standard CGP is a branch of genetic programming
which represents candidate designs using directed acyclic
graphs [12]. A candidate circuit is modeled using a 2D array
of programmable nodes with nc columns and nr rows. In our
case, the nodes will be 2-input Boolean functions, where Γ is
the set of available functions. The circuit utilizes ni primary

inputs and no primary outputs. Feedback connections are
not enabled.

The primary inputs and the outputs of the nodes are la-
beled 0, 1 . . . nc ·nr+ni−1 and considered as addresses which
the node inputs can be connected to. A candidate solution
is represented in the so-called chromosome (which is, in fact,
a netlist) by nr · nc triplets (x1, x2, ψ) determining for each
node its function ψ (ψ ∈ Γ) and input connections. The last
part of the chromosome contains no integers specifying the
nodes where the primary outputs are connected to. While
the chromosome size s is constant s = ncnr(na + 1) + no,
the circuit size is variable and measured as the number of
active (i.e. used) nodes. See an example in Fig. 2. The set
of valid chromosomes (netlists) represents the whole search
space.

OR

3

0

1
6

2

3
XOR

4

3

2
AND

5

1

2
OR

x0

x1

x2

y0 (4)

y1 (5)

Figure 2: Example of a circuit in CGP with parameters:
ni = 3, no = 2, nc = 4, nr = 1, Γ = {0and, 1or, 2xor}.
Chromosome: 0, 1, 1; 3, 2, 2; 1, 2, 0; 2, 3, 1; 4, 5. Gate 6 is
not used. Logic behavior of the circuit is:

y0 = ((x0 or x1) xor x2); y1 = x1 and x2.

CGP employs a simple search method . In our case, the
initial population P of CGP contains one of various imple-
mentations of accurate multipliers and a few circuits gen-
erated using mutation of the accurate multiplier. Creating
the accurate multiplier in the initial population is trivial as
there is a one-to-one mapping between multiplier netlists
and CGP chromosomes. The next step consists in the eval-
uation of candidate circuits using the fitness function. Each
member of P then receives the so-called fitness score and
the highest-scored individual becomes a new parent of the
next population. From this parent, λ candidate solutions
are generated using mutation. The termination criterion is
given by the number of iterations.

Despite many attempts to propose a suitable crossover
operator to CGP, the mutation is still used as the crucial
genetic operator. The mutation operator modifies up to h
randomly chosen genes (integers) of the chromosome. Their
new values are generated randomly, but it is checked whether
the new values are valid. One mutation can affect either
the gate function, gate input connection, or primary output
connection.

In order to approximate multipliers, the fitness is defined
as fitness(M′) = −CM′ and Γ = {NAND, NOR, XNOR,
AND,OR, XOR, NOT, identity}.

3.3 Evaluation platform
This section describes the evaluation platform used for

simulations of the proposed approximate NNs. The software
framework is based on C++ project tiny-cnn2. We have im-
plemented two new types of layers to NNs: the approximate
fully connected layer and approximate convolution layer. In
the software simulation, the approximate multiplication was
realized using a lookup table. The framework uses weights
and inputs with double floating point precision. We rounded
them to the fixed point representation in the range 〈−1, 1〉.
All numbers are unsigned, the sign is determined after the
computation.
2https://github.com/nyanp/tiny-cnn

We have also synthetised multipliers for neural network.
The multipliers were implemented at the Register-Transfer
Level (RTL) in Verilog and mapped to the IBM 45nm tech-
nology using Synopsys Design Compiler Ultra. The hard-
ware multiplication unit utilizes a combinational approxi-
mate unsigned multiplier circuit and logic for the sign ex-
tension. We have utilized the one’s complement method
which is easy to calculate (4n XOR gates), but provides
lower accuracy w.r.t. the two’s complement method (extra
three one-subtractors) used in standard applications. The
framework can estimate energy consumption and area under
iso-speed conditions. The clock frequency for 8 bit neurons
is 3 GHz and 2.5 GHz for 12 bit neurons.

There are equal count of multiplications and additions and
one activation function in the neuron computational model.
Since the count of operations is big (tens or hundreds) and
the multiplication consumes significantly more energy than
addition, the multiplication is the most consuming part and
power reduction of this part significantly contributes to the
overall power consumption reduction.

3.4 Overall design methodology
Finally, the overall methodology for design of approxi-

mate multipliers that will be used in approximate NNs is
presented in Figure 3. The inputs to the methodology are
the accurate neural network (with accuracy J), training and
testing data, quality constraint Q, accurate multiplier and
initial error ε. The whole procedure is as follows. The CGP
algorithm is utilized for creating a set of approximate mul-
tipliers from the accurate one. The approximate multipliers
are used in the pretrained network. In order to achieve the
best quality results, the network is retrained. The NN im-
plementation showing the best accuracy K is selected. The
accuracy K is checked if it meets the quality constraint Q
w.r.t. accurate neural network with accuracy J . If the con-

NN

Train data

Pretrained
NN

init

ε

Test data

Test

Test

Test

Test

B
e
st

 s
e
le

ct
io

n

Retrain

Retrain

Retrain

Train

CGP

CGP

CGP

X

AxMultiplier NN Accuracy

Quality Constraint Q

Accuracy J

K ≥ J x Q

Decrease maximal error ε

K yes

no

Trained NN... ...

Figure 3: Overview of approximate multiplier design for ap-
proximate NNs

straint is not met, the relative maximal approximation error
ε is decreased and next iteration is performed. Due to non-
deterministic generation of approximate multipliers by CGP,
it is necessary to generate several approximate multipliers
and then re-evaluate the accuracy of NN.

4. EXPERIMENTAL SETUP
The goal of the experiments is to investigate the impact of

proposed approximation methods on the accuracy and power

consumption of NNs. This section provides the experimental
setup and benchmark problems description.

4.1 CGP configuration
CGP will be used to design 7 bit and 11 bit unsigned

multipliers. The sign extension, i.e. 8 bit and 12 bit-width
multipliers, will be designed manually using the one’s com-
plement method. The maximum target arithmetic error ε
of approximate multipliers is taken from the set {0.5%, 1%,
2%, 5%, 10%, 15%, 20%}. We did not employ arithmetic
error beyond 20% for approximate multipliers since the clas-
sification accuracy drops significantly. The approximation
process starts with accurate multipliers (Ripple Carry Ar-
ray, Carry Save Array with RCA and CSA adders, Wallace
Tree with RCA, CSA and CLA adders [23]) which constitute
the so-called initial population. Considering two bit widths,
7 target errors and 6 types of initial multiplier architectures,
there are 84 initial configurations in total.

4.2 NN Accuracy analysis
The accurate multipliers are replaced with candidate ap-

proximate multipliers in the NN which is then retrained in
the supervised learning scenario. Two types of NN and two
classification datasets are utilized for the accuracy analysis.

4.2.1 Handwritten numbers
The first dataset is MNIST (Mixed National Institute of

Standards and Technology) database of handwritten num-
bers [10] which consists of two sets of data. The first one
is the training data set containing 60,000 28 × 28 images
and their labels. The second one contains 10,000 test pairs.
The digits are normalized and centered in fixed-sized images.
The dataset is very popular for quantifying the accuracy of
classification methods. It was shown that neural networks
are able to provide the error rate as low as 0.27% using con-
volutional networks [3]. In this case, we used a MLP network
with 28× 28 input neurons, 300 neurons in the hidden layer
and 10 output neurons whose outputs are interpreted as the
probability of each of 10 target classes (0 – 9).

4.2.2 House numbers
The second dataset is SVHN (Street View House Num-

bers) which is obtained from house numbers in Google Street
View images [15]. The images come from a significantly
harder, unsolved, real-world environment. The dataset con-
tains 73,257 digits for training and 26,032 digits for testing.
Each digit is represented as a pair of 32 × 32 RGB image
and label. While MLP does not provide good accuracy in
this case, LeNet-6 (a 6 layer NN in Figure 4 [9]) is able to
classify the images with a very small error. The network con-
sumes a 32× 32 grayscale image as an input. In order to re-
duce the complexity, we transformed original RGB images to
grayscale using an equation Y = 0.299R+ 0.587G+ 0.114B.

Input image
32x32

6@28x28 6@14x14 16@10x10 16@5x5 120@1x1 10 values

L1 – Convolutional
117,600 mult.

L2 – Subsampling
4,704 mult.

L3 – Convolutional
150,000 mult.

L4 – Subsampling
1,600 mult.

L5 – Convolutional
3,000 mult.

L6 – Fully connected
1,200 mult.

Figure 4: LeNet structure, where L1, L3, L5 and L6 contain
approximate multipliers, i.e. 98 % of multiplications are
approximated.

Layers L1, L3 and L5 perform the convolution. The L3 em-
ploys a special table that indicates which feature map from
6 previous maps is used for generating each of 16 output fea-
ture maps. Last layer (L6) connects all 120 values with each
neuron of the output layer. Convolutional and fully con-
nected layers represent 98 % of all multiplications performed
in the network. Hence, the approximation was applied only
for this layers. Layers L2 and L4 perform a subsampling
by weighted average, but this process was not approximated
because it has a small impact on power consumption.

5. RESULTS
The first part of this section is devoted to the results of

the proposed CGP-based approximation of multipliers. The
second part deals with approximate NNs. We also report
detailed parameters of approximate multipliers.

5.1 Multiplier approximation with CGP
CGP is used with settings given in Section 3.2. Five cir-

cuits (λ = 5) are evaluated in each iteration and new cir-
cuits are created by modifying just 1 integer in the chro-
mosome (h = 1) of the parent circuit. CGP operates with
nc×nr = 900 and nc×nr = 300 (respectively) nodes for 11-
bit and 7-bit multiplier (respectively). The evaluation of a
candidate 11 bit approximate multiplier requires evaluation
of 256x more test vectors than for the 7 bit multiplier (222

vs. 214). Hence, the maximal time for CGP was set to 120
minutes for 11 bit multipliers and 30 minutes for 7 bit mul-
tipliers. CGP performed 1,343 (and 122,773) iterations on
average for 11 (and 7) bit multiplier. The setting of CGP
corresponds with typical values used in the literature [12,
18].

0.0% 0.5% 1.0% 2.0% 5.0% 10.0% 15.0% 20.0%
Approximation ε

0

50

100

150

200

250

300

#
 g

a
te

s

Size of unsigned multipliers (w = 7)

0.0% 0.5% 1.0% 2.0% 5.0% 10.0% 15.0% 20.0%
Approximation ε

100

200

300

400

500

600

700

800

900

#
 g

a
te

s

Size of unsigned multipliers (w = 11)

Figure 5: The number of gates in approximate multipliers

Figure 5 gives the number of gates in approximate multi-
pliers as boxplots showing the results from 60 independent
runs for a given error ε. If the error is zero only 6 values
are presented which corresponds with gate counts in our ac-
curate multipliers. In addition to obtaining many different
tradeoffs between the error and the number of gates, the pro-
posed method guarantees the exact multiplication by zero
in all approximate multipliers. The spread in obtained gate
counts is high especially for the 11-bit multipliers. Please

note that the approximate multipliers do not prolong delay
of the original accurate multipliers.

5.2 Approximate NNs
For constructing the approximate NNs, each of designed

approximate multipliers was utilized. In total, we thus ob-
tained 2×852 NNs (LeNet6 and MLP with (28×28)-100-10
layers) using 852 approximate multipliers which were sub-
sequently extended to signed versions using the one’s com-
plement. The accuracy of approximate NNs is presented in
Figure 6 for a pretrained network (column initial) and then
for 5 and 10 retrains, respectively, using the backpropaga-
tion algorithm. Each boxplot represents 60 multipliers, e.g.
in MNIST w = 8, ε = 15%, there is one multiplier lead-
ing to the accuracy 20% and another to 97% in the initial
placement in pretrained neural network.

Because it is infeasible to estimate power consumption of
each of 852 circuits, we did a precise power analysis in the
following way. We have selected circuits for each error ε and
bit-width w that have one of top three best accuracies for
SVHN. Then we selected a circuits from the top three sets
that provide the best tradeoff between MNIST accuracy and
the number of used gates. The accuracy of NNs utilizing the
selected approximate multipliers is shown in Figure 7. The
accuracy is normalized w.r.t. a circuit with the same bit-
width and ε = 0%. We have followed the alphabet-reduced

initial 1 2 3 4 5
Retraining

10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

C
la

ss
if
ic

a
ti

o
n
 a

cc
u
ra

cy

MNIST w=8 ε=15 %

initial 1 2 3 4 5
Retraining

20%

30%

40%

50%

60%

70%

80%

90%

100%

C
la

ss
if
ic

a
ti

o
n
 a

cc
u
ra

cy

MNIST w=12 ε=15 %

initial 1 2 3 4 5 6 7 8 9 10
Retraining

20%

30%

40%

50%

60%

70%

80%

90%

C
la

ss
if
ic

a
ti

o
n
 a

cc
u
ra

cy

SVHN w=8 ε=15 %

initial 1 2 3 4 5 6 7 8 9 10
Retraining

55%

60%

65%

70%

75%

80%

85%

90%

C
la

ss
if
ic

a
ti

o
n
 a

cc
u
ra

cy

SVHN w=12 ε=15 %

Figure 6: Accuracy of NNs for several configurations during
the retraining process. The data shows statistical informa-
tion for all designed multipliers with selected w and ε.

0% 0.5% 1% 2% 5% 10% 15% 20% {1,3,5,7}{1,3} {1}
Approximation "

94%

96%

98%

100%

102%

N
o
rm

a
liz

e
d
 a

cc
u
ra

cy

Alphabet [16]

MNIST w = 8 MNIST w = 12 SVHN w = 8 SVHN w = 12

Figure 7: Normalized accuracy of NNs utilizing the best
approximate multipliers developed by the proposed method
for a given ε and its comparison with [16]. For each con-
figuration, the accuracy is normalized w.r.t. NN employing
accurate multipliers (ε = 0).

approach proposed in [16] and perform the simulation. The
reduced alphabet {1} enables to employ just 40 out of 256
weights for w = 8 and 200 out of 4, 096 weights for w = 12.
It can be seen that results from [16] are very similar for the
proposed approach when ε = 5%.

Error Power Area Accuracy Accuracy
ε µW µm SVHN MNIST

0 % 250.0 440.0 87.00 97.67
0.5 % 201.0 367.7 87.15 97.66
1 % 175.0 316.6 87.08 97.68
2 % 107.0 218.3 87.07 97.65
5 % 58.6 129.9 86.54 97.58
10 % 45.2 109.5 85.11 97.31
15 % 22.3 63.2 84.20 97.42
20 % 22.9 65.8 82.52 97.22

(a)

Error Power Area Accuracy Accuracy
ε µW µm SVHN MNIST

0 % 831.0 1175.0 87.04 97.70
0.5 % 417.0 664.9 87.15 97.69
1 % 475.0 720.8 87.22 97.71
2 % 284.0 523.8 87.06 97.71
5 % 247.0 483.0 86.68 97.61
10 % 125.0 285.0 85.81 97.48
15 % 115.0 262.4 84.95 97.38
20 % 111.0 252.5 83.06 96.18

(b)

Table 1: Power consumption and area of (a) 8-bit and (b) 12-
bit sign-extended approximate multipliers and the absolute
accuracy of NNs utilizing these multipliers.

Table 1 gives power consumption of selected approximate
multipliers (in IBM 45nm process) and the accuracy of NNs
that are utilizing these multipliers in two classification tasks.
In comparison with the original NNs (which utilize the accu-
rate multiplication), one can observe that approximate NN
(w = 8, ε = 10%) provides 81.9% power reduction of multi-
plication process while its accuracy decreases by 1.89% for
SVHN and 0.36% for MNIST. If the error of multiplication
remains below 20% the accuracy is only slightly decreased
(in some cases it is even improved, but the improvement
is negligible) for the MNIST problem. The NN trained for
the SVHN dataset is more sensitive to approximations. The
reason is that SVHN is a significantly harder classification
problem than MNIST, because SVHN contains natural scene
images with a high variability. However, the accuracy degra-
dation of NN is around 1% if ε ≤ 5%. And finally, for ex-
ample, 91% multiplier power reduction (w = 8, ε = 15%)
corresponds with the accuracy degradation of NN less than
2.80%.

To summarise the results, it was shown in Section 3.3 that
the multiplication has a significant impact on total power
consumption of calculation. When the calculation of LeNet
consumes approximately 44% [7], 91% reduction of multipli-
cation power leads to a significant total power consumption
reduction of the NN.

6. CONCLUSION
This paper provided a methodology for the design of power-

efficient NNs with approximate multipliers. An analysis
of error resiliency of neural networks showed the feasibil-
ity of using the proposed multipliers to achieve trade-off
between classification accuracy versus energy consumption.
By means of CGP, approximate multipliers were designed to
achieve the desired tradeoffs between the accuracy and im-
plementation cost. Resulting approximate NNs, containing
the approximate multipliers, were evaluated using standard
benchmarks (MNIST dataset) and a real-world classification
problem of Street-View House Numbers (SVHN). A signif-
icant improvement in power efficiency was obtained com-
pared to the exact (or original) NNs. In some cases, 91%
power reduction of multiplication was obtained with clas-
sification accuracy degradation less than 2.80% for SVHN
dataset.

7. ACKNOWLEDGMENTS
This work was supported by the Czech science founda-

tion project 14-04197S and by The Ministry of Education,
Youth and Sports of the Czech Republic from the National
Programme of Sustainability (NPU II); project IT4Innov-
ations excellence in science - LQ1602. Syed Shakib Sarwar
and Kaushik Roy’s research were funded in part by National
Science Foundation.

8. REFERENCES
[1] L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and

A. L. Yuille. Semantic image segmentation with deep
convolutional nets and fully connected CRFs. CoRR,
abs/1412.7062, 2014.

[2] V. K. Chippa, S. T. Chakradhar, K. Roy, and
A. Raghunathan. Analysis and characterization of
inherent application resilience for approximate
computing. In DAC ’13, pages 113:1–113:9, 2013.

[3] D. C. Ciresan, U. Meier, L. M. Gambardella, and
J. Schmidhuber. Convolutional neural network
committees for handwritten character classification. In
ICDAR, 2011.

[4] K.-L. Du and M. Swamy. Neural Networks in a
Softcomputing Framework. Springer London, 2006.

[5] Z. Du, K. Palem, A. Lingamneni, O. Temam,
Y. Chen, and C. Wu. Leveraging the error resilience of
machine-learning applications for designing highly
energy efficient accelerators. In ASP-DAC ’14, 2014.

[6] G. Hinton, L. Deng, D. Yu, et al. Deep neural
networks for acoustic modeling in speech recognition:
The shared views of four research groups. IEEE Signal
Processing Magazine, 29(6):82–97, Nov 2012.

[7] P. Judd, J. Albericio, T. H. Hetherington, T. M.
Aamodt, N. D. E. Jerger, R. Urtasun, and
A. Moshovos. Reduced-precision strategies for
bounded memory in deep neural nets. In HiPEAC
WAPCO ’16, 2016.

[8] A. Krizhevsky, I. Sutskever, and G. E. Hinton.
Imagenet classification with deep convolutional neural
networks. In Advances in neural information
processing systems, pages 1097–1105, 2012.

[9] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner.
Gradient-based learning applied to document
recognition. the IEEE, 86(11):2278–2324, Nov 1998.

[10] Y. LeCun, C. Cortes, and C. J. Burges. The MNIST
database of handwritten digits.
http://yann.lecun.com/exdb/mnist/.

[11] A. Lingamneni, A. Basu, C. Enz, K. V. Palem, and
C. Piguet. Improving energy gains of inexact dsp
hardware through reciprocative error compensation. In
DAC ’13, 2013.

[12] J. F. Miller. Cartesian Genetic Programming.
Springer-Verlag, 2011.

[13] S. Mittal. A survey of techniques for approximate
computing. ACM Comput. Surv., 48(4), Mar. 2016.

[14] K. Nepal, Y. Li, R. I. Bahar, and S. Reda. Abacus: A
technique for automated behavioral synthesis of
approximate computing circuits. In DATE ’14, 2014.

[15] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu,
and A. Y. Ng. Reading digits in natural images with
unsupervised feature learning. In NIPS Workshop
2011, 2011.

[16] S. S. Sarwar, S. Venkataramani, A. Raghunathan, and
K. Roy. Multiplier-less artificial neurons exploiting
error resiliency for energy-efficient neural computing.
In DATE ’16, pages 145–150, 2016.

[17] G. Srinivasan, P. Wijesinghe, S. S. Sarwar, A. Jaiswal,
and K. Roy. Significance driven hybrid 8T-6T SRAM
for energy-efficient synaptic storage in artificial neural
networks. In DATE ’16, pages 151–156, 2016.

[18] Z. Vasicek and L. Sekanina. Evolutionary approach to
approximate digital circuits design. IEEE Tr. on
Evolutionary Computation, 19(3):432–444, 2015.

[19] S. Venkataramani, A. Ranjan, K. Roy, and
A. Raghunathan. Axnn: Energy-efficient
neuromorphic systems using approximate computing.
In ISLPED ’15, 2014.

[20] S. Venkataramani, K. Roy, and A. Raghunathan.
Substitute-and-simplify: a unified design paradigm for
approximate and quality configurable circuits. In
DATE’13, 2013.

[21] S. Venkataramani, A. Sabne, V. J. Kozhikkottu,
K. Roy, and A. Raghunathan. Salsa: systematic logic
synthesis of approximate circuits. In DAC ’12, pages
796–801.

[22] S.-C. Wang. Interdisciplinary Computing in Java
Programming, chapter Artificial Neural Network,
pages 81–100. Springer US, Boston, MA, 2003.

[23] N. Weste and D. Harris. CMOS VLSI Design: A
Circuits and Systems Perspective. Addison-Wesley
Publishing Company, USA, 4th edition, 2010.

[24] Q. Zhang, T. Wang, Y. Tian, F. Yuan, and Q. Xu.
Approxann: An approximate computing framework
for artificial neural network. In DATE ’15, 2015.

	Introduction
	Logic synthesis and its efficiency
	From error resilience to power-aware logic synthesis
	Research motivation
	Research objectives
	Thesis organization

	Evolvable hardware and logic synthesis
	Evolutionary synthesis of logic circuits
	Synthesis of logic circuits using satisfiability solvers
	Synthesis of multi-functional logic circuits
	Binary decision diagrams in synthesis of logic circuits
	Area-aware logic synthesis

	Approximate computing
	Functional approximation
	Current challenges

	Evolutionary synthesis of approximate logic circuits
	Early approaches
	Principle of the evolutionary approximation
	Area-oriented method
	Error-oriented method
	Multi-objective method

	Exact quality metrics based on binary decision diagrams
	Hamming distance
	Average-case arithmetic error
	Problem-specific quality metrics

	Conclusions and future directions
	vasicek:sekanina:genp:2011
	vasicek:eurogp15
	vasicek:sekanina:tec
	vasicek:gpem16ax
	vasicek:gpem16med
	mrazek:patmos16
	mrazek:iccad16

