
Design Space Exploration for Approximate
Implementations of Arithmetic Data Path Primitives

Lukas Sekanina, Vojtech Mrazek and Zdenek Vasicek
Brno University of Technology, Faculty of Information Technology, IT4Innovations Centre of Excellence

Brno, Czech Republic
Email: {sekanina, imrazek, vasicek}@fit.vutbr.cz

Abstract—While a detailed analysis of various approximation
strategies for elementary arithmetic circuits (such as adders
and multipliers) is widely covered in the literature, much less
is known about approximate arithmetic data path primitives
(such as Dot Product (DP) to name one example) because it
is difficult to exactly analyze their error and other parameters.
We provide a detailed analysis of approximation options if a two-
dimensional DP circuit is implemented using pre-characterized
approximate arithmetic circuits available in existing libraries of
approximate circuits. We propose a method capable to cheaply
estimate properties of candidate approximate implementations
of DP circuit. By a careful selection of approximate components,
hundreds of approximate DP circuits showing excellent tradeoffs
between key design objectives were obtained.

Index Terms—approximate computing, automated design, dig-
ital circuit, dot product, multiplier

I. INTRODUCTION

The current renewed interest in approximate implemen-
tations of circuits and systems is primarily caused by the
urgent need to reduce power consumption of computer systems
ranging from low power nodes of Internet of Things (IoT), via
mobile devices to supercomputers.

This paper deals with functional approximation of arith-
metic circuits in which the accurate (original) circuit im-
plementation is simplified in order to optimize power con-
sumption and other parameters. This topic has already been
intensively studied in different contexts: (i) For elementary
circuits, such as adders and multipliers, various ad hoc ap-
proximation strategies have been proposed and compared; see
a detailed survey and classification in [1]. (ii) More complex
arithmetic circuits—in this paper, collectively referred to as the
arithmetic data path primitives—such as Dot Product (DP),
Discrete Cosine Block (DCT) and Multiply-and-Accumulate
(MAC) structures were approximated by replacing their ac-
curate components (adders and multipliers) with pre-designed
approximate implementations, while keeping the structure of
the original circuit unchanged [2]. (iii) Both the elementary
circuits and the data path primitives were approximated using
general-purpose automated approximation methods, typically
performing approximate gate-level resynthesis and optimiza-
tion [3], [4].

All these approaches have to evaluate the approximation
error of the resulting circuits. As we deal with arithmetic
circuits, it is natural to analyze their error by means of
arithmetic error metrics such as the error rate, the mean

absolute error (MAE) and the worst case error (WCE). The
approximation error can exactly be calculated (if responses
for all possible inputs are checked or formal verification
methods are applied [3]) or estimated (by circuit simulation or
statistical analysis [2], [5], [6]). Obviously, the error estimation
methods are applicable to more complex circuits than the
exact error calculation methods. On the other hand, the error
estimation does not provide strong guarantees in terms of
error, especially when one has to deal with corner cases
which are hard to discover. It turns out that the tradeoffs that
can be obtained between the error and power consumption
(or other relevant circuit parameters) are better understood
for elementary circuits (because of many case studies were
conducted and formal guarantees were given) than for more
complex arithmetic circuits (only a few studies were conducted
and circuit parameters were estimated).

This paper focuses on a detailed analysis of approximation
options for combinational circuits that are composed of sev-
eral elementary arithmetic circuits (components)—data path
primitives. In particular, we will thoroughly investigate and
compare approximate implementations of a DP circuit com-
puting y = a ∗ b+ c ∗d, where all operands are 8 bit unsigned
numbers and the conventional (exact) implementation would
consists of two 8 bit multipliers and a single 16 bit adder.
DP has a number of applications, for example, it is a building
block of parallel implementations of the convolution operation
in configurable image filters or in the convolutional layers
of convolutional neural networks (CNN). As DP circuit has
32 inputs and contains two multiplication blocks, it would
be a hard target for automated circuit approximation methods
that provide formal guarantees in terms of the approximation
error. On the other hand, it is still possible to analyze the
DP response for all 232 input combinations in a reasonable
time (see Section IV). It means that thousands of approximate
implementations of DP can be characterized in terms of the
(exact) error and other circuit parameters (that can be assessed
by means of standard circuit design tools) using a common
personal computer.

In order to create these approximate implementations of DP,
we will employ approximate components that are available in
the EvoApprox8b library [4]. Every component of EvoAp-
prox8b is fully characterized in terms of the error (seven error
metrics provided), area, delay, power consumption and other
parameters for selected fabrication processes.

377978-1-5386-9562-3/18/$31.00 ©2018 IEEE

The goal of the paper is to identify approximate implemen-
tations of DP showing the best tradeoffs between the error
and other parameters. Furthermore, the proposed methodology
should enable us to analyze to what extent it is reliable to
estimate the error (resp. power consumption) of approximate
DPs solely on the basis of the parameters of its components.

II. APPROXIMATE CIRCUITS

Two major classes of circuit approximation methods are dis-
tinguished in the literature: timing induced approximation and
functional approximation. As it is difficult to systematically
adopt voltage over-scaling and predict its impact on timing
and approximation errors, most approaches currently use the
principles of functional approximation.

Various ad hoc approaches to functional approximation have
been developed for specific classes of circuits. For example,
the design of approximate adders and multipliers based on
various simplifications, precision scaling and pruning of cir-
cuit structures is quite well covered in the literature (see a
comprehensive survey in [1]). Our study showed that out of
these approaches a simple truncation and the so-called broken-
array multiplier (BAM) [7] provide the best tradeoffs between
WCE (MAE) and the power delay product (PDP) [3].

Because the manual ad hoc approach typically requires a
lot of human effort, fully automated functional approxima-
tion methods, applicable to broad classes of circuits or even
arbitrary circuits, have been proposed. Starting with a fully
functional circuit, an error metrics and a list of constraints, the
objective of the automated functional approximation is to pro-
vide circuit implementations showing good trade-offs between
key design objectives in an automated fashion. These methods
typically employ truncation, pruning, component replacement,
and approximate logic re-synthesis [2]–[4], [8].

The error calculation is often based on circuit simulation
using a randomly generated subset of all input vectors. How-
ever, this approach does not provide any guarantees in terms
of the result. The exact error can be obtained by formal
methods based on, e.g., Binary Decision Diagram analysis
and satisfiability (SAT) solvers [3], [8]. While the (exact)
WCE calculation scales up to 32-bit multipliers, it is an open
problem how to approximate circuits such as 12-bit multipliers
under the MAE metric [3]. It has to be noted that multipliers
are hard problem instances from the verification point of view
and, hence, they usually serve as good benchmarks.

Other error modeling approaches are based on probabilistic
and statistical analysis. They assume that (i) the circuit under
analysis (e.g. an approximate adder or a multiplier) has a
specific structure, (ii) it is possible to reliably model the error
of its sub-circuits and (iii) combine these error models using
statistical methods. For example, Mazahir et al. introduced the
error probability analysis for recursive approximate multipliers
with approximate partial products [6] and generic configurable
adders [5]. However, this approach cannot be applied if the
approximate implementation is obtained by an automated gate-
level approximation method because there are no common
sub-circuits preserved which an error model can be built for.

Furthermore, approximate circuits containing many regular
sub-structures are known to be far from the optimum in terms
of the error-power tradeoffs [3].

In some cases, this type of statistical error modelling can
be generalized for complex arithmetic approximate structures.
For example, a variance error model capable of capturing the
error propagation along the circuit structure, considering also
structural correlations, was introduced in the context of high
level synthesis [2].

III. EFFICIENT DESIGN SPACE EXPLORATION

Conducting the design space exploration for approximate
circuits is a highly non-trivial problem because, in addition to
traditional metrics (power, delay and area), the error metric
introduces a new search dimension. As quantifying the error
is usually computationally expensive, it determines how much
and in which quality the search can be performed. We deal
with approximate arithmetic circuits composed of several
elementary approximate components. It is assumed that these
approximate components are fully characterized in terms of
electrical parameters, their error is pre-calculated with respect
to several error metrics and their implementations are available
in a library. In our case, we will use EvoApprox8b library
containing hundreds of approximate 8 bit multipliers and
adders (in the fixed point number representation) that were
automatically created by means of genetic programming in
our previous work [4]. It means that nothing can be supposed
about their internal structure and hence the methodology
developed in [5], [6] is not applicable to model the error
distribution. The objective is to find the combination(s) of
approximate components showing the best tradeoffs among
design objectives at the level of the whole circuit.

A. Approximate Dot Product

Detailed design space exploration will be performed for the
approximate DP circuit, whose exact implementation consists
of two 8 bit multipliers and a 16 bit adder. In order to
create reference (exact) implementations of DP, we employed
common accurate multipliers and an adder synthesized using
the Verilog + operator. All results will be reported for 45 nm
technology (PDK) with Vcc = 1 V. As only 17% of power
consumption is due to the adder, we will keep it exact
and focus on the approximation process of the multipliers.
Three types of 8-bit multipliers will be considered: (i) exact
multipliers, (ii) approximate BAM and truncate multipliers
taken from the literature (these multipliers belong to the
best-performing approximate multipliers [1], [3]) and (iii)
approximate multipliers from EvoApprox8b library.

Let us suppose that k different 8-bit multipliers are avail-
able. Under this setup, an optimal solution is obtained if the
whole search space containing k(k + 1)/2 design points is
analyzed. We will synthesize all DP circuits to obtain their
electrical parameters. The (exact) approximation error will be
determined by the bit-wise parallel simulation (Section III-B).
However, the question is if we can skip this very time
consuming process and obtain the optimum combination(s)

378

of approximate multipliers in another way, for example, by
exploiting pre-computed parameters of the circuits available
in EvoApprox8b library.

B. Error Analysis

The (exact) error of a combinational gate-level circuit can be
obtained by bitwise parallel simulation conducted for all input
combinations. The idea of this kind of simulation is to utilize
bitwise operators operating on multiple bits in a high-level
language (such as C) to perform more than one evaluation
of a gate in a single step. The widely available Advanced
Vector Extension (AVX) instruction set allows us to operate
with 256-bit operands. It means that every circuit with eight
inputs can completely be simulated in one pass by applying a
single 256-bit test vector at each input. When a more complex
circuit has to be evaluated, multiple 256-bit vectors are applied
sequentially. The obtained speedup is w on a w-bit processor
(assuming 2inputs ≥ w). Although this technique does not
scale well, it is feasible to exactly evaluate the chosen 32-
input DP circuit.

In general, we try to avoid this expensive approach because
it makes the design space exploration inefficient. One of the
possibilities is to replace the exact error by a suitable error
estimation. We can estimate the error of DP in a constant time
using the known errors of the multipliers (precomputed in the
library); the adder can be omitted from the analysis because
its error is 0.

The worst-case error of an approximate multiplier M̃(a, b)
can be calculated as

WCEa∗̃b = max
∀a,b
|a∗̃b− a ∗ b|, (1)

where M̃(a, b) = a∗̃b denotes the approximate multiplication,
a, b ∈ {0, 2w − 1}, and w denotes the bit-width of the
multiplier. This equation can be rewritten to the following
expression

WCEa∗̃b = max{WCE+
a∗̃b,−WCE−a∗̃b}, (2)

where WCE+
a∗̃b denotes the maximum error magnitude and

WCE−a∗̃b the minimum error magnitude defined as follows:

WCE+
a∗̃b = max

∀a,b
(a∗̃b− a ∗ b)

WCE−a∗̃b = min
∀a,b

(a∗̃b− a ∗ b) (3)

The worst-case error of a DP circuit consisting of two ap-
proximate multipliers M̃1(a, b) and M̃2(c, d) and one accurate
adder is defined as

WCEDP = max
∀a,b,c,d

|(a∗̃b+ c∗̃d)− (a ∗ b+ c ∗ d)|. (4)

We can rearrange Eq. 4 and express the worst-case error using
the notation introduced in Eq. 3 as

WCEDP = max
∀a,b,c,d

|(a∗̃b− a ∗ b) + (c∗̃d− c ∗ d)|

= max{WCE+
a∗̃b +WCE+

c∗̃d,−WCE−a∗̃b −WCE−c∗̃d}
(5)

In order to obtain the exact value of WCE for DP, it is
thus necessary to know WCE+ and WCE− errors of the
approximate multipliers. However, they are easy to calculate
in the 8-bit case.

The mean error (ME) of DP is defined as

MEDP =
1

24w

∑
∀a,b,c,d

[(a∗̃b+ c∗̃d)− (a ∗ b+ c ∗ d)] (6)

and it can also be exactly determined because M̃(a, b) and
M̃(c, d) are independent random variables produced by mul-
tipliers M1 and M2. In this case, we obtain the expression

MEDP = MEM1 +MEM2 . (7)

For the mean absolute error of DP, however, the situation
gets complicated. In this case, we will simply estimate the
error as

MAEDP ≈ MAEM1 +MAEM2 (8)

because nothing is, in general, known about the distribution
of MAEM1

and MAEM2
.

C. Electrical Parameters

The electrical parameters of approximate DPs can be ob-
tained in a standard way, e.g. with Synopsys Design Compiler.
However, as this is a very time consuming procedure in our
case, it is preferred to call this tool only for the most promising
implementations. Hence, the electrical parameters of DPs will
be estimated using electrical parameters of the components
available in the library. The most straightforward estimate of
the area (resp. power consumption) lies in summing the areas
(resp. power consumptions) of all components involved in DP.
Delay dDP of an approximate DP is estimated as the delay
along the longest path

dDP = max{dM̃(a,b), dM̃(c,d)}+ µ.dadder, (9)

where d(.) denotes component’s delay and µ (µ ∈< 0, 1 >)
is a coefficient reflecting the adder’s contribution to the delay.

IV. RESULTS

The following characterization of the approximate DP cir-
cuit is based k = 174 multipliers: 128 approximate mul-
tipliers from the EvoApprox8b library (only non-dominated
multipliers were selected considering power and MAE as
the objectives), 36 approximate BAM multipliers, 7 truncated
multipliers and 3 exact multipliers. The design space then
contains 15 225 DP circuits whose parameters were estimated
using methods presented in Section III-B and III-C.

Then, we filtered out all dominated solutions with respect
to estimated values of WCE, MAE, area, delay and power
consumption. The remaining 1082 DP circuits were synthe-
sized with Synopsys Design Compiler to obtain their ‘exact’
electrical parameters and exhaustively simulated to get the
‘exact’ approximation error. Fig. 1 shows how PDP (the area,
power consumption and other parameters are omitted because
of limited space) depends on MAE and WCE for all 1 082 DP
circuits (only the ‘exact’ parameters were used to construct

379

Fig. 1). An important observation is that it is crucial to em-
ploy approximate multipliers from EvoApprox8b because their
usage has led to much better tradeoffs than the traditional well
structurally-understood approximate multipliers (such as BAM
and truncated multipliers) can provide. The design points
forming the Pareto front provide a wide spectrum of different
approximate implementations of DP from which the designer
can pick the right solution satisfying his/her requirements.

10 4 10 3 10 2 10 1 100 101 102

normalized MAEDP [%]

0.0

0.5

1.0

1.5

PD
P

[1
0

12
W

s]

Accurate
EvoApprox8b
BAM
Truncated

10 4 10 3 10 2 10 1 100 101 102

normalized WCEDP [%]

0.0

0.5

1.0

1.5

PD
P

[1
0

12
W

s]

Accurate
EvoApprox8b
BAM
Truncated

Fig. 1. Power delay product vs. MAE and WCE for approximate DP circuits.
All parameters were obtained by ‘exact’ methods.

In order to assess the quality of our parameter estimation
methods, we compared the ‘exact’ parameters with their
estimated values for all 15 225 DP circuits (their synthesis
took 13 hours and the ‘exact’ error analysis took 380 hours
when re-calculated to a single core processor time).

In the case of MAE estimation, Fig. 2 (top-left) shows
that our simple estimation method is too pessimistic, i.e.
approximate DP circuits usually exhibit lower MAE than we
estimated. However, Pearson correlation coefficient (PCC =
0.994) still indicates a quite good estimate. It has to be noted
that one blue point represents one DP circuit and the red line
represents the optimal solution.

While WCE of approximate DPs was estimated almost
perfectly (Fig. 2, top-right), the proposed power estimation
method shows some imperfections in the corner cases (Fig. 2,
left-down). We recognized that this phenomenon is caused
by our incorrect assumption that the adder is in the esti-
mation methods always considered as an exactly computing
circuit with two 16 bit operands (it is implemented with the
+ operator in our Verilog models). In reality, when more
aggressively approximated multipliers are created, some of
their outputs are becoming unused, the bit width of the adder
is adequately reduced by the Synopsis Design Compiler and
power consumption of DP is lowered. This simplification of
the adder, which is hard to predict, is not reflected in our
estimate (PCC = 0.989).

Delay estimation conducted for µ = 0.5 shows severe issues
as seen in Fig. 2, right-down. This is again caused by pruning
the 16 bit adder and our very simplified estimation of this
process (PCC = 0.764).

0 5 10 15 20
Exact

0

5

10

15

20

Es
tim

at
ed

normalized MAEDP [%]

0 20 40 60 80
After synthesis

0

10

20

30

40

50

60

70

80

Es
tim

at
ed

normalized WCEDP [%]

0.0 0.2 0.4 0.6 0.8 1.0 1.2
After synthesis

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Es
tim

at
ed

Power [mW]

0.0 0.5 1.0 1.5 2.0 2.5
After synthesis

0.0

0.5

1.0

1.5

2.0

2.5

Es
tim

at
ed

Delay [ns]

Fig. 2. Relations between estimated and exactly obtained parameters for all
15225 DP circuits

V. CONCLUSIONS

We provided a detailed analysis of approximation options
if a two-dimensional DP circuit is implemented using one
common adder and two approximate multipliers whose imple-
mentations are taken from a library of approximate circuits.
By means of the proposed estimation methods, we reduced
the number of design alternatives (that have to be exactly
evaluated) by 92% with respect to all possible designs.

Our future work will be devoted to improving our error
estimation methods and applying the proposed methodology
to the design of other approximate data path primitives. We
will apply advanced search methods such as evolutionary
algorithms to even reduce the number of candidate designs.

ACKNOWLEDGMENT

This work was supported by The Ministry of Education,
Youth and Sports, within the INTER-COST project LTC18053.

REFERENCES

[1] H. Jiang, C. Liu et al., “A review, classification, and comparative eval-
uation of approximate arithmetic circuits,” J. Emerg. Technol. Comput.
Syst., vol. 13, no. 4, Aug. 2017.

[2] C. Li, W. Luo et al., “Joint precision optimization and high level synthesis
for approximate computing,” in Proc. of DAC’15. ACM, 2015, pp. 1–6.

[3] M. Ceska, J. Matyas, V. Mrazek, L. Sekanina, Z. Vasicek, and T. Vojnar,
“Approximating complex arithmetic circuits with formal error guarantees:
32-bit multipliers accomplished,” in Proc. of 36th IEEE/ACM Int. Conf.
On Computer Aided Design. IEEE, 2017, pp. 416–423.

[4] V. Mrazek, R. Hrbacek et al., “Evoapprox8b: Library of approximate
adders and multipliers for circuit design and benchmarking of approxi-
mation methods,” in Proc. of DATE’17, 2017, pp. 258–261.

[5] S. Mazahir, O. Hasan, R. Hafiz, and M. Shafique, “Probabilistic error
analysis of approximate recursive multipliers,” IEEE Transactions on
Computers, vol. 66, no. 11, pp. 1982–1990, 2017.

[6] ——, “Probabilistic error analysis of approximate recursive multipliers,”
IEEE Transactions on Computers, vol. 66, no. 11, pp. 1982–1990, 2017.

[7] H. R. Mahdiani, A. Ahmadi, S. M. Fakhraie, and C. Lucas, “Bio-inspired
imprecise computational blocks for efficient vlsi implementation of soft-
computing applications,” IEEE Transactions on Circuits and Systems I:
Regular Papers, vol. 57, no. 4, pp. 850–862, April 2010.

[8] S. Venkataramani, A. Sabne et al., “SALSA: systematic logic synthesis
of approximate circuits,” in Proc. of DAC’12. ACM, 2012, pp. 796–801.

380

