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Accurately representing acoustic source distributions is an important part of ultrasound simulation. This

is challenging for grid-based collocation methods when such distributions do not coincide with the grid

points, for instance when the source is a curved, two-dimensional surface embedded in a three-

dimensional domain. Typically, grid points close to the source surface are defined as source points, but

this can result in “staircasing” and substantial errors in the resulting acoustic fields. This paper describes

a technique for accurately representing arbitrary source distributions within Fourier collocation meth-

ods. The method works by applying a discrete, band-limiting convolution operator to the continuous

source distribution, after which source grid weights can be generated. This allows arbitrarily shaped

sources, for example, focused bowls and circular pistons, to be defined on the grid without staircasing

errors. The technique is examined through simulations of a range of ultrasound sources, and compari-

sons with analytical solutions show excellent accuracy and convergence rates. Extensions of the tech-

nique are also discussed, including application to initial value problems, distributed sensors, and

moving sources. VC 2019 Author(s). All article content, except where otherwise noted, is licensed
under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/
4.0/). https://doi.org/10.1121/1.5116132
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I. INTRODUCTION

One of the fundamental tasks in numerical acoustics is

to compute solutions p(x,t) to the wave equation
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pðx; tÞ ¼ Sðx; tÞ: (1)

Here, p(x,t) is the acoustic pressure at position x 2 Rd (in d-

dimensions) and time t 2 Rþ, and the acoustic medium is

specified by a constant scalar sound-speed c0. A source term

S(x,t) is also included. In many cases, the source can be sep-

arated into a spatial distribution s(x) and a temporal wave-

form f(t), where

Sðx; tÞ ¼ sðxÞf ðtÞ: (2)

Several different classes of numerical techniques are avail-

able for solving the wave equation. For time-domain model-

ing, collocation methods are popular. These are numerical

methods that find approximate solutions, which satisfy the

model equations at a finite number of grid points.1 This

paper is concerned in particular with Fourier spectral collo-

cation methods,2 which use an equispaced, orthogonal, grid

of collocation points {xj} covering the domain. For example,

in one-dimension, the set of discrete grid points can be

written as xj ¼ jDx, where Dx is the grid spacing, j ¼ 0, 1,…,

N� 1, and N is the number of grid points.

Fourier collocation methods seek an approximate solu-

tion to the wave equation whose spatial part can be written

as a Fourier series. As well as leading to efficient numerical

algorithms based on the fast Fourier transform,3–5 Fourier

schemes have the advantage that the nature of the approxi-

mation has a clear physical interpretation: the spatial part of

any solution must be in the set B of functions that are sup-

ported by the set of wavenumbers bounded from above and

below by 6p/Dx (where the grid spacing has been assumed

to be equal in each dimension).2

Despite their widespread use, one question that has not

been widely studied is how sources in Fourier schemes should

be modelled. In particular, how can a source be incorporated if

it is not spatially band limited, i.e., sðxÞ 62 B? For example,

consider a source distribution corresponding to the surface of a

physical ultrasound transducer, which may be a bowl or a pla-

nar disk. In this case, the support of the source—the region in

which s(x) is non-zero—is a two-dimensional surface embed-

ded in R3 and is therefore not band limited. Furthermore, it is

likely that few, if any, grid points coincide exactly with this

surface. This highlights a related question: as the source in a

collocation method can only be defined by assigning values at

the grid points, which of the grid points should be used as

source points, and what should the source grid weights sj be to

best approximate the source distribution s(x)? In typical practi-

cal applications, grid points close to the required source surface

are defined as source points,6 but this naive approach can result

in “staircasing” and serious errors in the acoustic field.7

a)Portions of this work were presented in “Staircase-free acoustic sources for

grid-based models of wave propagation,” IEEE International Ultrasonics

Symposium, Washington, DC, September 6–9, 2017.
b)Electronic mail: b.treeby@ucl.ac.uk
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Progress can be made by realising that the closest approx-

imation to a source that can be made within a Fourier colloca-

tion method is the projection of the source distribution onto

the set of band limited functions B. Thus, a band limited

source distribution can be defined, and the source grid weights

can be generated by sampling this distribution at the grid

points. This paper describes a method for performing this

band-limiting operation, and examines the process using a

range of examples relevant to problems in ultrasound. Section

II describes how the band-limiting is performed via convolu-

tion of the source shape with the band limited delta function.

Section III then provides several numerical experiments

which demonstrate the accuracy and convergence of this

approach for different shaped ultrasound sources.

II. BAND-LIMITING SOURCE DISTRIBUTIONS

A. Band-limiting via convolution

Any source can be written as a convolution of the source

distribution function with a point source. Let dðx; nÞ denote

a delta function centred on a point n 2 Rd. The spatial distri-

bution of the source is then, trivially

sðxÞ ¼
ð

C
dðx; nÞsðnÞ dn; (3)

where C ¼ supp(s) is the support of s(x). To band-limit this

source, the delta function d 62 B should be replaced with its

band limited version b 2 B, which is the projection of d onto

B. This gives

~sðxÞ ¼
ð

C
bðx; nÞsðnÞ dn; (4)

where ~sðxÞ is the band limited source distribution. In the

general case this convolution cannot be solved exactly, and

so it must be numerically approximated. This can be done by

replacing the integral with a discrete sum,

sj ¼
XM

i¼1

Cibðxj; niÞsðniÞ; (5)

where sj is the source grid weight at the jth grid point xj, i are a

set of M indices (where M is the number of integration points),

Ci are quadrature weights, and ni are the integration points.

Computing the discrete convolution given in Eq. (5)

involves two main tasks. First, an analytical expression is

required for the band limited approximant bðx; nÞ to a Dirac

delta function centred at an arbitrary point n. Second, a strat-

egy is needed for effectively and efficiently discretising

the convolution. This involves choosing discrete integration

points ni covering C (see Fig. 1), and selecting correspond-

ing quadrature weights Ci.

B. The band limited delta function

There have been a number of past works which have

attempted to represent delta functions in the context of par-

ticular numerical methods. For example, Wald�en,8 approxi-

mated one-dimensional delta functions in space within

finite-difference and finite-element methods using compactly

supported functions that satisfied some number of moment

conditions. Similarly, Tornberg and Engquist9 did this for the

finite-difference method in the multidimensional case. Petersson

et al.10 note that discretisations that only satisfy moment condi-

tions will introduce spurious oscillations, and so add a number

of smoothness conditions to their delta function approximations.

For Fourier collocation methods, the band-limiting of delta

functions can be accomplished analytically.

The one-dimensional delta function (positioned at the

origin) has a Fourier transform which is equal to one for all

wavenumbers. However, in Fourier collocation methods, the

wavenumbers are restricted to a finite set. Specifically, the

use of discrete Fourier transforms leads to the set of spatial

wavenumbers

kj ¼
2p

NDx
j;

where j ¼
�n;�nþ 1;…; n if N is odd;

�n;�nþ 1;…; n� 1 if N is even;

(

and n ¼

N � 1

2
if N is odd;

N

2
if N is even:

8>>><
>>>:

(6)

It follows then that the band limited approximation to a delta

function is the function whose Fourier transform is equal to

one for all supported wavenumbers, and equal to zero for all

others.

To translate the band limited delta function to an arbi-

trary position, a Fourier-space shifting operator can be

applied. To begin with, consider a one-dimensional grid in

which the number of grid points N is odd. In Fourier-space,

FIG. 1. (Color online) An arbitrary source distribution. The support of the

source is indicated in blue, and potential integration points ni for Eq. (5) are

indicated with black dots. The background grid represents the discretised

domain, with grid points xj at the intersection of grid lines.
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the jth component of the band limited delta function is then

simply given by the shift operator

b̂ðkj; nÞ ¼ e�ikjn: (7)

To get an expression for b(x;n), the Fourier series is evalu-

ated including the shift operator

bðx; nÞ ¼ 1

N

Xn

j¼�n

eikjðx�nÞ: (8)

The imaginary components in this sum cancel because of

conjugate symmetry about j ¼ 0, which gives

bðx; nÞ ¼ 1

N
1þ 2

Xn

j¼1

cosðkjðx� nÞÞ
 !

; (9)

and the series simplifies to yield

bðx; nÞ ¼
sin

pðx� nÞ
Dx

� �

N sin
pðx� nÞ

NDx

� � : (10)

A scaled version of this function is often referred to as

the Dirichlet kernel, appearing in many texts including

Hesthaven et al.11

If the number of grid points N is even, further steps are

required. As a real-valued point source should have a real-

valued representation on the grid, the Fourier coefficients of the

band limited delta function must be conjugate symmetric. A

full derivation follows in the Appendix, but in short, the imagi-

nary part of the Nyquist coefficient must be dropped so that

b̂ðkj; nÞ ¼
cosðkjnÞ if j ¼ �n;

e�ikjn otherwise:

(
(11)

The Fourier series then sums to

bðx; nÞ ¼ 1

N

sin
pðx� nÞ

Dx

� �

tan
pðx� nÞ

NDx

� �� sin
pn
Dx

� �
sin

px

Dx

� �0
BBB@

þi cos
pn
Dx

� �
sin

px

Dx

� �1CCCA: (12)

This band limited delta function expression contains an

imaginary sinusoid, but this is zero at the grid points for any

shift n. It also contains a real-valued Nyquist sinusoid that is

zero at the grid points. Note that bðx; nÞ 6¼ bðx� n; 0Þ in the

even case, except when n is a multiple of Dx. Figure 2

depicts the odd and even (real component only) band limited

delta functions in one dimension.

The band limited delta functions given in Eqs. (10) and

(12) can be extended into higher dimensions via the product

of one-dimensional band limited delta functions

bðx; nÞ ¼
Yd

p¼1

bðxðpÞ; nðpÞÞ; (13)

where d is the number of dimensions, and x(p) denotes the

pth component of the vector x.

C. Discretisation of the band-limiting convolution

Discretisation of the band-limiting convolution in Eq. (5)

requires a number of steps. First is the selection of a finite

number of integration points ni. In general, these should be

placed according to a given quadrature rule. In this paper, a

uniform sampling strategy is used, with the spacing between

integration points being equal (or nearly equal if this is not fea-

sible), and the outermost integration points being offset from

the source boundary by half the inter-point spacing. The latter

ensures that outer and inner integration points cover equal por-

tions of the source region. To avoid staircasing effects, integra-

tion points are placed such that they also conform to the

source boundary, rather than to the computational grid.

Second, the quadrature weights Ci must be chosen. These

account for any difference in the spacing of the integration

points relative to the grid spacing, and are all equal to the ratio

of these spacings with a uniform sampling strategy. As an

example, for a two-dimensional source embedded in a three-

dimensional domain, the quadrature weights are given by

Ci ¼
Mgrid

Mintegration

; Mgrid ¼
A

ðDxÞ2
; (14)

where A is the area of the source’s support, Mgrid is the area

of the source in units of grid squares, and Mintegration is the

number of integration points that has been used. Note that

the number of integration points will be measured relative to

the grid in this paper. The phrase “integration point density”

FIG. 2. (Color online) Illustration of the band limited delta functions given

by Eqs. (10) and (12) derived in Sec. II B. (a) Band limited delta function

with an odd number of samples. (b) Band limited delta function with an

even number of samples. (c) Band limited delta functions (even samples),

shifted in space by an integer number of grid points (black solid line) and a

non-integer number of grid points (red dashed line).
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will refer to the ratio Mintegration/Mgrid, and a source will be

referred to as upsampled if Mintegration/Mgrid > 1 and under-

sampled if Mintegration/Mgrid < 1.

D. Truncation of source grid weights

A set of grid points fxlg � fxjg must be chosen over

which the band limited source ~s is evaluated to give the

source grid weights sl ¼ ~sðxlÞ. In principle, every grid point

should be used because band-limiting means that suppð~sÞ
¼ Rd (a function with compact support in the wavenumber

domain will have infinite support in the spatial domain, and

vice versa). However, it can be computationally beneficial to

restrict the discretised source to grid points which lie near

the support of the true source. This limits the number of

band limited delta function evaluations and the subsequent

memory requirements for the source grid weights. To see

why the number of grid points used to discretise the source

can be considerably reduced without introducing substantial

error, note that for a large domain size, the band limited delta

functions given in Eqs. (10) and (12) can be approximated

by a sinc function

bðx; nÞ � sinc
pðx� nÞ

Dx

� �
: (15)

In an analogous manner to Eqs. (10) and (12), this function

derives from the continuous inverse Fourier transform of a

boxcar function whose limits are the minimum and maxi-

mum supported wavenumbers. Figure 3 illustrates the accu-

racy of this approximation as N increases for a shift distance

of n ¼ Dx/2. It can be seen that the error drops below 1%

when the grid size reaches approximately 100 grid points,

which is a relatively modest size in the context of ultrasound

simulation.7

The envelope of the sinc approximation decays at a rate

of approximately Dx=pjx� nj, thus a magnitude threshold

can be defined beyond which contributions from a given

integration point can be ignored. Denoting this threshold e, a

given band limited delta function thus only needs to be eval-

uated to

m ¼ 1

p�

� �
; (16)

grid points on either side of the centre of the integration

point ni. For example, with � ¼ 10% each band limited delta

function needs to be evaluated to a distance of only m ¼ 4

grid points, and for � ¼ 1% this becomes m ¼ 32 grid points.

Note that in multiple dimensions the benefit of truncation

compounds, as diagonal decay rates are higher than those

along the grid axes. The benefit of truncation also increases

with domain size, as the truncation distance m is independent

of this. Figure 4 depicts the distance at which the truncation

thresholds lie in two dimensions, illustrating the reduction in

extent that truncation provides.

III. NUMERICAL EXPERIMENTS

A. Overview

To demonstrate the accuracy and utility of using source

grid weights calculated using the approach described in Sec. II,

a series of numerical experiments was conducted using spatial

source distributions relevant to ultrasound. For each numerical

experiment, the wave equation was solved using one of two

Fourier collocation methods. The first was the acoustic field

propagator (AFP),5 which uses a Green’s function method to

solve Eq. (1) when the source is time-harmonic. Free-space is

approximated by evaluating the field at a time when it has prop-

agated over the whole domain, but with computations per-

formed using an extended domain to prevent periodic wrapping

effects. The second was the open-source k-Wave toolbox,12

which is not restricted to time-harmonic problems and uses a

dispersion-corrected finite-difference scheme for time-step-

ping.4 Here, free-space is approximated using a perfectly

matched layer. Note, for time-harmonic problems, the AFP and

k-Wave give solutions that match to a high degree of accuracy.

FIG. 3. (Color online) Maximum error in approximating the band limited

delta functions for odd and even numbers of grid points with a sinc function

(based on a shift distance of n ¼ Dx/2). The sinc approximation converges

algebraically with the domain size, and the error reduces to 1% when the

grid size reaches approximately 100 grid points.

FIG. 4. The truncation distance for a two-dimensional domain beyond

which the magnitude of sinc approximations to band limited delta functions

decay below various tolerances.
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B. On-grid and off-grid sources

To distinguish the band limited source distributions

from the conventional approach of using the nearest avail-

able grid points to represent the source shape, the following

terminology is introduced. When the integration points are

allowed to lie anywhere within the support of the true

source, the resulting set of source grid weights will be called

an off-grid source. When the integration points are instead

restricted to the grid points (e.g., nearby to the true source),

the resulting set of source grid weights will be called an on-
grid source. On-grid sources will often be subject to staircas-

ing effects and the errors that result from this. Figure 5

depicts distributions of integration points for both on- and

off-grid sources with different geometries:

(1) (Top-left) An on-grid approximation to an arc source.

Here, the integration points are restricted to the grid

points and are thus misaligned with the true source,

resulting in staircasing.

(2) (Top-right) A staircase-free, off-grid arc source. The

integration points are spread equally over the arc, with

the end points offset from the ends of the source by half

the inter-point spacing. The integration point spacing is

approximately half that of the grid spacing.

(3) (Bottom-left) A disk source. The integration points are

chosen as concentric circles whose number increases lin-

early with radius. This ensures all points are approxi-

mately equidistant from their neighbours. The outermost

points are offset from the edge of the source, and the

integration point spacing is approximately half that of

the grid spacing.

(4) (Bottom-right) A square source that is not aligned with

the grid. Here the integration points form a regular grid,

but one which is aligned with the source boundaries

rather than the computational grid. Once again the outer-

most points are offset from the edge of the source, and

the integration point spacing is approximately half that

of the grid spacing.

C. Illustration and correction of staircasing errors

To illustrate the elimination of staircasing errors when

off-grid sources are used, the field from a 5 mm line source

was simulated in two dimensions using the AFP. A 12.6 mm

square domain was discretised using a grid spacing of 98 lm

giving a grid size of 128 � 128 grid points. The source was

placed 5 mm from the centre of the grid and emitted a con-

tinuous sinusoidal pressure waveform at 3 MHz (correspond-

ing to 5 spatial points per wavelength or PPW). The source

was then rotated around the centre of the grid and the acous-

tic field was computed for each rotation angle. Both on- and

off-grid sources were used. For the off-grid approach, source

grid weights were calculated using an integration point spac-

ing half that of the grid spacing, and were based on the exact,

untruncated band limited delta functions.

Figure 6 depicts the time-harmonic amplitude of the

field generated by the on- and off-grid line sources at an

angle of 30�. The on-grid source produces considerable stair-

casing errors. Of particular note is the irregular interference

pattern in the near-field. This is caused by phase errors

resulting from forcing the integration points to lie on nearby

grid points. In contrast, the field generated with an off-grid

source shows no evidence of staircasing errors and appears

symmetric about the beam axis.

Figure 7 depicts the amplitude and phase at the centre of

the grid for each angle of rotation of the source. Significant

phase errors are evident for the on-grid source, and an angu-

lar dependence is seen in the amplitude due to the larger

spacing between on-grid integration points as the source

becomes diagonal to the grid. In contrast, the amplitude and

phase for the off-grid source remains constant regardless of

the orientation of the source relative to the grid.

D. Convergence for a circular piston

As described in Sec. II C, the integration points used to

discretise the band-limiting convolution need not be chosen

with the same spacing as the grid points. To investigate how

the integration point density affects accuracy, a circular pis-

ton was simulated in three-dimensions. The piston diameter

was 20 mm and the driving waveform was a 1 MHz sinusoid.

The sound speed was 1500 m s�1. The wavefield was com-

puted using the AFP to a distance of 50 mm, at spatial reso-

lutions of 3, 5, and 7 PPW. The source grid weights were

computed using exact, untruncated band limited delta func-

tions centred on integration points distributed like those of

the disk source in Fig. 5. The source was positioned such

that it aligned with the grid along the axial direction. An

FIG. 5. (Color online) Examples of on- and off-grid integration point distri-

butions in two-dimensions. (Top-left) A staircased arc. (Top-right to bot-

tom-right) An evenly sampled circular arc, disk, and square. Black dots

indicate integration points, red lines indicate the boundaries of each source’s

region of support. The background grid represents the discretised domain.

The off-grid integration points can be seen to uniformly cover and conform

to the support of their respective sources.
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analytical reference solution for the axial pressure given by

Pierce13 was used to compute the errors.

Figure 8 depicts the relative L1 error in the axial pres-

sure amplitude with a varying integration point density for

the off-grid sources. The error can be seen to converge alge-

braically as the integration point density increases, with less

than 2% error achieved for all three PPWs at an upsampling

rate of approximately Mintegration/Mgrid ¼ 4. This corresponds

to an integration point spacing that is half that of the grid

spacing, since the source is a two-dimensional surface.

E. Convergence for a focused bowl source

To demonstrate the convergence of the band limited

source distribution on the true source distribution as the grid

resolution increases, a focused bowl source was simulated.

This source geometry is especially prone to staircasing errors,

as it is impossible to align any portion of it with an orthogonal

grid.6 The bowl had an aperture diameter of 20 mm, a radius

of curvature of 20 mm, and was driven by a 1 MHz sinusoid.

The sound speed was set to 1500 m s�1. The wavefield was

computed with the AFP to a distance of 47 mm, using a vary-

ing number of PPW for the grid spacing. The off-grid sources

used integration points that were generated with a spiral phyl-

lotaxis pattern (this can produce uniform samples covering any

surface of revolution). This pattern is depicted in Fig. 9, along

with illustrative source grid weight slices. A reference solution

given by O’Neil14 was used for the axial pressure (ignoring the

first two wavelengths, as these fall behind the bowl’s aperture

plane where the reference solution is inaccurate). This refer-

ence is valid when the transducer diameter is large compared

to both the transducer height and acoustic wavelength, as is the

case here.

Figure 10 depicts the convergence of the relative L1

error in the axial pressure amplitude with an increasing num-

ber of PPW for three different source discretisations. The

on-grid source converges slowly and produces considerably

higher errors than either off-grid source. Indeed, it is known

that this error will not converge to zero, because diagonally-

aligned portions of the source will be undersampled and

hence produce lower amplitudes than they should.6 The off-

grid sources used exact, untruncated band limited delta func-

tions. They differed in their density of integration points rel-

ative to the grid points, with one being undersampled

(0.25�) and one being upsampled (4�). The errors resulting

from an undersampled off-grid source are considerably

worse than those produced by an upsampled off-grid source,

but are nonetheless much better than those resulting from an

on-grid source. The errors resulting from both off-grid sour-

ces also decrease steadily as the PPW increases (for a fixed

integration point density), unlike those resulting from an on-

grid source. The upsampled off-grid source converges much

more quickly than the others, dropping below 0.3% relative

error with only 3 PPW.

Figure 11(a) shows the axial pressure amplitude for the

on-grid and undersampled off-grid sources at 3 PPW. For

the on-grid source, the amplitude is substantially underesti-

mated at the focus due to the undersampling of portions of

the source which are diagonally-aligned with the grid.6 In

the near-field, some of the local pressure maxima are also

overestimated, likely due to phase errors, and there is a mis-

alignment of the zero-amplitude points that occur due to

destructive interference. In contrast, the undersampled off-

grid source produces pressures which are visually indistin-

guishable from the reference solution in the far-field, and

produces very small errors in the near-field. To show this in

more detail, Fig. 11(b) depicts the relative error for the

undersampled and upsampled off-grid sources. It can be

seen that the errors for both off-grid sources are greatest in

the near-field, and that the pressure resulting from the

upsampled off-grid source oscillates about the reference

solution. The error arising from the undersampled off-grid

source also oscillates but with an offset from zero, indicat-

ing a misalignment of the two solutions.

To examine the use of the sinc approximation to the

band limited delta functions given in Eq. (15), and in partic-

ular to determine an appropriate truncation threshold �, the

FIG. 6. (Color online) Time-harmonic acoustic pressure amplitude generated by a line source in two dimensions. The integration points are indicated by the

red line, and the location of the centre of the grid (point of rotation) is indicated with a red circle. Phase errors are evident in the near-field generated by an on-

grid source (left). These errors are not present in the field generated by an off-grid source (right).
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focused bowl simulations above were repeated using a num-

ber of sinc-based off-grid sources. The error convergence

for these simulations is shown in Fig. 12. The exact band

limited delta functions and untruncated sinc approximation

can be seen to produce nearly identical levels of error. This

is expected, as the domain size is large enough that the sinc

approximation is accurate (all dimensions had more than

100 grid points). With a truncation threshold, the error

resulting from sinc approximations is considerably higher

than produced by exact band limited delta functions.

However, at � ¼ 1% the error drops below 1% by 3 PPW

and reaches 0.2% by 7 PPW. To give a sense of the differ-

ence in compute times between these source discretisations,

the time taken to compute source grid weights was recorded.

At 2 PPW, it took approximately the same time to generate

a source using an untruncated sinc approximation as it did

using the exact band limited delta function. However, with a

sinc truncation threshold of �¼ 1% the source generation

was around 9� faster, and with �¼ 10% it was around

130� faster. At 7 PPW these advantages become 326� and

4760�, respectively, demonstrating that the computational

benefit improves with domain size, as expected.

F. Application to initial value problems

Thus far, all of the examples in this paper have included

time-harmonic source terms. However, the discretisation

procedure described here can be used to band-limit any

FIG. 8. (Color online) (Top) Two-dimensional slice through the three-

dimensional acoustic pressure amplitude generated by a circular piston.

(Bottom) Convergence of the on-axis pressure generated by off-grid sources

with a varying integration point density (relative to the grid spacing), and

varying spatial grid resolutions (PPW). The errors converge algebraically,

with less than 2% error achieved for all three PPWs when the integration

point density is approximately 4� that of the grid points.

FIG. 9. (Color online) Close-up view of integration points (left) and source

grid weight slices (right) generated for an off-grid bowl source at 3 PPW.

Integration points are for an undersampled source, grid weights are for an

upsampled source.

FIG. 7. (Color online) (a) Amplitude and (b) phase at the centre of the grid

(corresponding to the point of rotation) for the rotating line source simula-

tion depicted in Fig. 6. Significant amplitude and phase errors are evident

with an on-grid source which is eliminated with an off-grid source. For the

on-grid source, the amplitude reduces as the source becomes diagonal to the

grid due to the larger spacing between integration points.
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spatial distribution. Hence, it can also be applied to initial

value problems such as those arising in photoacoustics.

Indeed, an initial value condition is equivalent to a source

term of the form Sðx; tÞ ¼ sðxÞð@=@tÞdðtÞ. To demonstrate

this, a disk-shaped initial pressure distribution was simulated

in two dimensions using k-Wave. The pressure over the disk

was 1 Pa, and the disk radius was 0.4 mm, or 4 times the grid

spacing. A sensor was placed 3.2 mm from the disk to record

the waveform that was generated. Both on- and off-grid dis-

cretisations of the initial condition were used, with the off-

grid initial condition using the sinc approximation to the

band limited delta functions with a truncation threshold of �
¼ 1%. A high-resolution reference solution was generated

using an on-grid initial condition with the grid spacing reduced

by a factor of 64�. Note that the initial condition in the refer-

ence simulation was filtered in the wavenumber domain such

that only the wavenumbers which were supported in the low-

resolution simulations were present. This procedure ensures

that no higher-frequency waves propagate.

Figure 13 depicts the recorded waveforms for all three ini-

tial conditions. The off-grid initial condition can be seen to

produce a waveform which is nearly identical to the reference.

In contrast, there are significant deviations in the waveform

generated by the on-grid initial condition. The oscillations that

are present in all three waveforms correspond to the band lim-

ited nature of the simulation, as expected.

G. Application to distributed sensors

The band-limiting operation introduced in Sec. II to

generate source grid weights can equally be applied to

modeling acoustic sensors. In this case, the source (now sen-

sor) grid weights sl should be used as quadrature weights.

For example, if the sensor is a two-dimensional surface with

area A, then the average pressure over the sensor is given by

psensor ¼
Dx2

A

X
l

plsl; (17)

where pl are the pressure values on the grid. Note that the

sensor distribution s(x) in Eq. (5) encodes the sensitivity of

the sensor, and can be used to model spatially varying sensi-

tivities, or to convert between units such as pressure and

FIG. 10. (Color online) (Top) Two-dimensional slice through the three-

dimensional acoustic pressure amplitude generated by a focused bowl

source. (Bottom) Convergence of the on-axis pressure generated by on- and

off-grid (under- and upsampled) sources with a varying spatial grid resolu-

tion (PPW). The error resulting from an on-grid source is high and does not

converge to zero. The errors resulting from off-grid sources are much lower,

with the error from the upsampled off-grid source dropping below 0.3%

with only 3 PPW. FIG. 11. (Color online) (Top) On-axis pressure generated by on- and off-

grid discretisation of a focused bowl source, compared with an analytical

reference solution. For the on-grid source, a large amplitude error is evident,

particularly at the focus. There is also a misalignment of the null points in

the near-field. The undersampled off-grid source shows only a small amount

of error in the near-field, and is visually indistinguishable from the reference

solution in the far-field. (Bottom) Error in the on-axis pressure generated by

off-grid sources.
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voltage. If a simple average of the field variable is desired,

then s(x) should be made equal to one over its region of

support.

To illustrate the elimination of staircasing errors using

off-grid sensors, a 5 mm line sensor was simulated in two

dimensions using the AFP. This sensor was placed in the path

of a 1.2 MHz time-harmonic plane wave, and the average pres-

sure over the sensor was computed for a number of orientation

angles. The sound speed was 1500 m s�1, making the sensor

length 4� the source wavelength. This experiment measures

the sensor’s directivity, or directional sensitivity, and an exact

reference solution is given by Blackstock.15 Both on- and off-

grid sensors were used. For the off-grid sensor, grid weights

were calculated using a uniform integration point spacing that

was half that of the grid spacing, and were based on the exact,

untruncated band limited delta functions. The centre of the

sensor was placed on a grid point, so that the on-grid sensor

was aligned with the grid whenever the orientation angle was a

multiple of p/2. The domain was discretised at 8.3 PPW so

that the sensor length was an odd multiple of the grid spacing.

Figure 14 depicts the pressure recorded at multiple ori-

entation angles, normalised relative to values recorded with

a point sensor. The directivity of the on-grid sensor exhibits

considerable staircasing errors, as multiple orientations pro-

duce the same sensor grid weights. In contrast, the directivity

of the off-grid sensor shows no evidence of staircasing

errors, and matches the reference solution.

IV. DISCUSSION

A. Acoustic interpretation of integration points

An alternative viewpoint on the source discretisation

procedure described in Sec. II can be had by reinterpreting

the discrete source convolution given in Eq. (5) in terms of

the Huygens–Fresnel principle. Instead of considering each

point ni to be an integration point, it can be considered as the

location of a point source emitting the desired waveform.

The task of source discretisation is then to define a weighted

collection of off-grid point sources that cover the true

source. This interpretation also gives some insight into the

required number of integration points since, as the number

of point sources increases, the Huygens–Fresnel principle

becomes better satisfied. It may also explain why errors are

greatest in the near field: when a finite number of integration

points are used, it will take some distance before spherical

spreading causes the individual point source wavefronts to

merge.

B. Memory requirements for source grid weights

One aspect of the proposed source discretisation method

that warrants discussion is its computational expense.

Specifically, off-grid source discretisations have a wider

FIG. 13. (Color online) Pressure waveform recorded nearby a disk-shaped

initial pressure distribution in two-dimensions. The off-grid initial condition

produces a waveform which is visually indistinguishable from the reference

solution. In contrast, significant errors arise from an on-grid initial condi-

tion. All three waveforms show oscillations that correspond to the band lim-

ited nature of the simulation, as expected.

FIG. 12. (Color online) Effect of using a truncated sinc approximation to the

band limited delta function on the error in the on-axis pressure amplitude

generated by an off-grid focused bowl source. The domain size is evidently

large enough that the sinc function is an accurate approximation, and a trun-

cation threshold of 1% ensures the error drops below 1% by 3 PPW and

reaches 0.2% by 7 PPW.

FIG. 14. (Color online) Directivity of a line sensor in two-dimensions.

Staircasing errors are evident with on-grid sensor, whereas an off-grid sen-

sor matches the reference solution.
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region of support than on-grid discretisations, which means

memory requirements may be increased. While it has

already been said that the use of a truncated sinc approxima-

tion to the band limited delta functions provides substantial

computational savings by reducing both the number of eval-

uation points and the subsequent number of source grid

weights, there are additional implementations that may com-

plement this in certain circumstances. The most obvious is

that source grid weights need not be computed in advance,

and instead can be added to the pressure field on-the-fly (and

in parallel if the computer hardware supports this). In addi-

tion, a middle-ground between on-the-fly computation and

full precomputation is possible. Each band limited delta

function can be decomposed into a separable product across

the spatial dimensions. This means the corresponding source

grid weights can be stored as a set of vectors, one for each

dimension. For Np integration points in a three-dimensional

simulation, the overall memory required is then O(Np(Nx

þ Ny þ Nz)), which will typically be less than the O(NxNyNz)

required for a fully precomputed set of source grid weights.

To reconstruct the full set of source grid weights from the

set of vectors, a tensor product must be performed for each

integration point, followed by a sum over all of the integra-

tion points. This approach also allows one-off, precomputa-

tion of expensive trigonometric operations (to compute the

vector set for each integration point), and subsequent

element-wise elementary arithmetic at each time-step to

reassemble the full set of source grid weights.

C. Multiple and moving sources

The derivation given in Sec. II only considered individ-

ual source distributions. However, the techniques described

straightforwardly extend to the case of multiple sources

(each with their own waveform) due to linearity

Sðx; tÞ ¼
XP

p¼1

spðxÞfpðtÞ: (18)

Thus, each source distribution can be individually discre-

tised, and the resulting source terms can be summed at each

time-step in the simulation.

In addition, consideration has only been given to acous-

tic sources which are fixed in space, and which can be sepa-

rated into a product S(x,t)¼ s(x)f(t). However, moving

sources can also be accommodated in time-stepping models

by considering the moving source as a series of stationary

off-grid sources separately defined at each time-step.

D. Application to other model equations

The examples given in Sec. III all relate to pressure

sources in a homogeneous and lossless medium. However,

the proposed method for defining the source grid weights is

equally applicable to more complex wave equations, to

particle-velocity sources (and the staggered spatial grids

they are often implemented on), to problems beyond ultra-

sound, and indeed any problem to which a Fourier colloca-

tion method is applied. In addition, this paper has also only

considered sources for which s(x) is constant over its sup-

port, but the discrete convolution in Eq. (5) allows for a

source distribution to take an arbitrarily complex form. One

such example would be an apodised ultrasound transducer.

V. CONCLUSION

A method for band-limiting arbitrary source distribu-

tions has been derived. The process is based on a discrete

convolution between the source distribution and a band lim-

ited delta function. This allows for the accurate discretisation

of sources with regions of support that do not conform to the

equispaced, orthogonal grids that are used with Fourier col-

location methods. When applied to a range of source geome-

tries, simulated acoustic fields converge much more quickly

than those resulting from staircased source discretisations.

The technique was also applied to initial value problems and

acoustic sensors, with similarly good results observed for

both. A number of codes that implement the ideas in this

paper will be released as part of the open-source k-Wave

toolbox.12
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APPENDIX: DERIVATION OF THE BAND LIMITED
DELTA FUNCTION FOR EVEN N

Let b0ðx; nÞ be a band limited delta function that is derived

assuming the number of grid points N is even. Without conju-

gate symmetry, this is defined in Fourier-space by

b̂
0ðkj; nÞ ¼ e�ikjn; (A1)

for which the Fourier series sums to

b0ðx;nÞ¼1

N

sinð�k�nðx�nÞÞ

tan �k�nðx�nÞ
N

� �þisinð�k�nðx�nÞÞ
0
B@

1
CA:

(A2)

To ensure that grid samples of this expression are real-

valued, an additional term f(x;n) is required that provides

conjugate symmetry in the Fourier-domain, i.e.,

b̂ðkj; nÞ ¼
cosðkjnÞ if j ¼ �n;

e�ikjn otherwise;

(
(A3)

where b ¼ b0 þ f . Comparing the Nyquist terms for b̂
0
and b̂,

the additional term can be seen to be
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f̂ ðkj; nÞ ¼
i sinðkjnÞ if j ¼ �n;

0 otherwise;

(
(A4)

for which

f ðx; nÞ ¼ 1

N
i sinðk�nnÞeik�nx

¼ 1

N
i sinðk�nnÞ cosðk�nxÞ þ i sinðk�nxÞð Þ

¼ 1

N
sinðk�nnÞ i cosðk�nxÞ � sinðk�nxÞð Þ:

Starting with the real components, adding f to b0 yields

Refbg¼Refb0gþReffg

¼ 1

N

sinð�k�nðx�nÞÞ

tan �k�nðx�nÞ
N

� ��sinðk�nnÞsinðk�nxÞ
0
B@

1
CA:

Now, the imaginary component of b0 is

Im b0f g ¼ 1

N
sinð�k�nðx� nÞÞ; (A5)

which can be expanded using the trigonometric product-to-

sum identities

Im b0f g ¼ 1

N
sinð�k�nxÞ cosðk�nnÞð

�cosð�k�nxÞ sinðk�nnÞÞ; (A6)

and rearranged to yield

Im b0f g ¼ 1

N
cosðk�nnÞ sinð�k�nxÞ � sinðk�nnÞ cosð�k�nxÞð Þ:

(A7)

Noting that cosð�k�nxÞ ¼ cosðk�nxÞ, the second term in this

expression can be seen to be negated by the imaginary com-

ponent of f

Im ff g ¼ 1

N
sinðk�nnÞ cosðk�nxÞ; (A8)

and hence it is clear that

Im bf g ¼ 1

N
cosðk�nnÞ sinð�k�nxÞ: (A9)

Finally, combining the real and imaginary components and

substituting the wavenumbers in Eq. (6) yields

bðx; nÞ ¼ 1

N

sin
pðx� nÞ

Dx

� �

tan
pðx� nÞ

NDx

� �� sin
pn
Dx

� �
sin

px

Dx

� �0
BBB@

þi cos
pn
Dx

� �
sin

px

Dx

� �1CCCA: (A10)

The last two terms in this expression are zero at all grid

points regardless of the shift n. For a shift that is a multiple

of the grid node spacing Dx, they are also zero between the

grid points. In this case, the expression matches that derived

by Trefethen16 using a modified Fourier series that treats

wavenumbers symmetrically.
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