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1 INTRODUCTION

Realistic ultrasound simulations have found a broad area of
applications in preoperative ultrasound and photoacoustic
screening [7, 8] as well as non-invasive ultrasound treatment
planing [1, 10]. However, a typical medical simulation requires
a set of partial differential equations to be solved over a do-
main with more than 10243 grid points for tens of thousands
of simulation steps. Five years ago, the only architecture
offering a sufficient amount of compute power, and more im-
portantly, sufficient main memory, was CPU-based clusters[3].
At SC 2017, we presented a poster on a GPU accelerated
simulation code reaching almost linear scaling on a cluster of
512 single-GPU nodes of the Piz Daint supercomputer.

The current trend in GPU accelerated computing is to-
wards the use of fat nodes with multiple GPUs per node,
as recently seen in Sierra1 and Summit2 supercomputers.
The performance of such systems is stunning. However, the
complex node architecture with multi-level NUMA places
high demands on the developers to properly orchestrate the
intra-node communication.

This paper investigates the benefits of CUDA-Aware MPI
[5] and CUDA peer-to-peer transfers [6] on such a multi-
GPU node. Our system is based on a dual socket PNY server
equipped with Intel CPU E5-2620v4 processors, 2×256 GB
of main memory, and 8 Nvidia Tesla P40 Pascal GPUs, each
with 3840 CUDA cores and 24 GB of memory. The 8 GPUs
are divided into two quads connected to particular CPUs by
32 line root PCI-Express hubs. The quads are further split
into pairs connected via second level PCI-Express hubs. The
communication between CPU sockets/root hubs is enabled
by the Intel QPI technology.

Combined, the server has a total GPU memory of 192 GB,
and a theoretical single-precision performance of 96 Tflops.
This is comparable to 1,200 Intel Haswell cores at 2.4GHz.

*corresponding author.
14 Volta GPUs per node, Lawrence Livermore National Lab, USA
26 Volta GPUs per node, Oak Ridge National Lab, USA
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Figure 1: Numerical error introduced by a single in-
terface between two subdomains for various overlap
sizes and bell shapes.

2 METHOD AND RESULTS

The multi-GPU version of the k-Wave acoustic toolbox is
based on local Fourier basis domain decomposition [2] where
the 3D simulation domain is partitioned into rectangular
cuboid blocks assigned to particular GPUs [4]. The partition-
ing can be done in one, two or three dimensions. The commu-
nication is done over the nearest neighbors on a 1/2/3D torus
by exchanging the overlaps including slabs, edges and corners.
The size of the overlaps is determined by the required preci-
sion and the shape of the bell function enforcing periodicity
on local subdomains, see Fig. 1. For medical applications,
the error on the order of 10−3 is acceptable.

The whole simulation is executed on GPUs using the
CUDA FFT library [9] and custom CUDA kernels. The CPU
is only responsible for controlling the simulation, progress re-
porting and storing simulation data. The simulation code uses
a non-blocking MPI framework to exchange overlaps amongst
subdomains, fast DMA transfers to download/upload overlaps
from/to a particular GPU, and CUDA kernels to pack/unpack
the overlaps into/from linear buffers. With this framework,
we have demonstrated almost linear scaling on GPU clusters
with a single GPU per node, e.g., Piz Daint3 or Anselm4.

3Up to 512 Nvidia P100 GPUs, CSCS, CH
4Up to 20 Nvidia K20m GPUs, IT4Innovations, CZ
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Figure 2: Simulation time breakdown of a single time
steps for a domain size of 10243 grid points (dataset
of approx. 120 GB). The left bar is for a 1D decom-
position while the right one is for a 3D one.

When testing this framework on an 8-GPU server, we
observed rather poor performance, see Fig. 2. Here, a 1D
decomposition over the 𝑍 dimension into 1×1×8 blocks and
a 3D decomposition into 2 × 2 × 2 blocks are investigated.
We can see a significant increase in the MPI and PCI com-
munication for bigger overlap sizes, especially for 16 and 32
grid points. Here, the communication takes between 66 and
80% of the simulation time. The difference in communication
time between the two decompositions is given by a different
number of neighbors (2 vs 27) and the size of the overlaps.
The variation of the computation time between different de-
compositions and overlap sizes is caused by the size of the
subdomains and their corresponding highest prime factors,
which strongly affects the performance of the FFT.

The key for good communication performance is to min-
imize the number of message copies during the overlap ex-
change (GPU → CPU → QPI/Net → CPU → GPU). The
first technique investigated employs CUDA-Aware MPI which
reduces the number of data copies by directly taking the over-
laps from the GPU memory and sending them to the other
GPU without staging in the main memory. In our case, this
technique has the potential to reduce the number of copies
by a factor of two. Moreover, it is generally applicable in
cluster environment even on single GPU nodes. However, in
multi-GPU configuration, a proper CPU and GPU binding is
crucial. For example, a favorable binding under 1D toroidal
decomposition only requires 4 overlaps to travel over the
Intel QPI. However, all 32 overlaps have to do so in the worst
case when the neighboring domains are distributed over the
PCI-E hubs in a round robin fashion. In our implementation,
the subdomains are topologically distributed over GPUs in a
way that minimizes the data transfers over the Intel QPI.

The second technique is direct peer-to-peer transfer be-
tween GPUs bypassing MPI. This allows overlaps to be trans-
ferred under the same PCI-Express hub by means of CUDA
direct memory transfers without the assistance of the CPU.
In this case, a proper binding is a must.
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Figure 3: Speedup achieved by replacing standard
MPI by CUDA-Aware MPI with peer-to-peer trans-
fers for different domain sizes and decompositions.

The replacement of the standard MPI5 by a CUDA-Aware
MPI has a great impact on the communication time, see
Fig. 3. The reduction of the simulation times depends on
the domain size, decomposition type, and the overlap size.
Since the computation dominates for small overlap sizes of
2 and 4 grid points, the reduction in the overall simulation
time is small, yet the speed-up reaches a factor of 1.8. When
running realistic simulations, a typical overlap size is between
8 and 16, and in simulations with many reflections even 32
grid points. Under these circumstances, the reduction of
communication overhead is eminent. The overall simulation
time is reduced by a factor of 2–3.6. The combination of
CUDA-Aware MPI and the peer-to-peer transfer only leads
to a marginal reduction in the communication overhead. The
speedup over the CUDA-Aware MPI in the most favorable
configuration is only 6%. This is very likely given by the
CUDA-Aware MPI already using the peer-to-peer transfers
when applicable.

3 CONCLUSIONS

The main contribution of this paper has been to experi-
mentally evaluate the benefits of CUDA-Aware MPI and
peer-to-peer transfers on an 8-GPU node. Under a proper
process binding and domain distribution, our experiments
with 1D and 3D data decompositions have shown a significant
speed up which linearly grows with the overlap size. This
allows higher precision to be achieved with similar compu-
tational requirements when bigger overlaps are used. The
highest speed up observed attains a factor of 3.6, which far
exceeds the expected values of about two (half of the mes-
sage copies were removed). One dimensional decomposition
reached higher acceleration than three dimensional one. This
is caused by fewer but bigger messages, which better utilize
the PCI-Express and QPI bandwidth. Peer-to-peer transfers
show only a marginal difference to the CUDA-Aware MPI.

5OpenMPI 1.10.7 without CUDA 9.2 support
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