
The architecture of Fitcrack
distributed password cracking system

Technical report

Radek Hranický, Lukáš Zobal, Vojtěch Večěra,
Matúš Múčka

Technical report n. FIT-TR-2018-03
Faculty of Information Technology,

Brno University of Technology

Last modified: January 18, 2019





Table of Contents

The architecture of Fitcrack distributed password cracking system . . . . . . 3
Radek Hranický, Lukáš Zobal, Vojtěch Večeřa, Matúš Múčka
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Structure of the document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1 Password cracking process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 The cracking network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Task distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Adaptive scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 The architecture of client and server . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Attack modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1 Dictionary attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Combination attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 Brute-force attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4 Hybrid attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Server-side subsystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.1 Server directory structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2 WebAdmin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3 WebAdmin frontend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.4 WebAdmin backend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.5 hashcat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.6 Hashvalidator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.7 maskprocessor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.8 XtoHashcat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.9 hcstat2gen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.10 Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.11 Validator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.12 Assimilator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.13 Trickler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.14 Transitioner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.15 Scheduler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.16 Feeder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.17 File deleter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5 Client-side subsystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.1 BOINC Client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.2 BOINC Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.3 Runner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.4 hashcat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6 Client-server communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.1 Files transferred from server to client . . . . . . . . . . . . . . . . . . . . . . . . . 40



6.2 Files transferred from client to server . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.3 Trickle messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

7 MySQL database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.1 The overview of BOINC tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.2 The overview of Fitcrack tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
7.3 fc_benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
7.4 fc_charset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
7.5 fc_dictionary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.6 fc_hash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.7 fc_hcstats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.8 fc_host . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.9 fc_host_activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.10 fc_host_status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.11 fc_job . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.12 fc_job_dictionary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.13 fc_job_graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.14 fc_mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.15 fc_masks_set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
7.16 fc_notification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.17 fc_protected_file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.18 fc_role . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.19 fc_rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
7.20 fc_settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
7.21 fc_user . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
7.22 fc_user_permissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
7.23 fc_workunit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2



The architecture of Fitcrack distributed password
cracking system

Radek Hranický, Lukáš Zobal, Vojtěch Večeřa, Matúš Múčka

Brno University of Technology, email:
{ihranicky,izobal}@fit.vutbr.cz, {xvecer18,xmucka03}@stud.fit.vutbr.cz

Abstract. This technical report describes the architecture of Fitcrack
distributed password cracking system developed within Integrated plat-
form for analysis of digital data from security incidents project. Fitcrack
serves as an open-source solution for recovering plaintext passwords from
various cryptographic hashes, as well as a platform for research and devel-
opment of new password cracking methodologies. The report documents
both server and client sides of the system, provides detailed description
of all subsystems and their interfaces, and clarifies the protocols used for
communication between the server and clients.

1 Introduction

Fitcrack was initially created as a proof-of-concept tool for demonstrating the
feasibility of using Berkeley Open Infrastructure for Network Computing (BOINC)1
[2] as a task distribution platform for password cracking. The goal was to create
an efficient, flexible, and scalable GPU-accelerated solution which is not lim-
ited to specific hardware and number of nodes. BOINC was initially designed
as a public-resource computing solution, however, in our previous research, we
have shown its applicability in password cracking even in private distributed
networks [5]. In our use-case, BOINC handles the authentication of computing
nodes, provides the distribution and automatic updates of executable binaries,
OpenCL2 kernels implementing the cryptographic algoritms for GPUs, and the
input/output data of each cracking task [5].

The original version used a custom OpenCL-based software solution for com-
puting hashes on the client side. The Fitcrack client was a C++ application ca-
pable of cracking password hashes from the following encrypted formats: PKZIP,
WinZIP, SecureZIP, 7z, RAR versions 3 and 5, PDF up to version 1.7 Extension
Level 3, and MS Office documents up to Office 2016. The algorithms for cracking
procedures were implemented in three variants: i. a CPU-only implementation;
ii. an OpenCL implementation for all formats; and iii. a CUDA3 implementation

1 https://boinc.berkeley.edu/
2 https://www.khronos.org/opencl/
3 https://developer.nvidia.com/cuda-zone

3

https://boinc.berkeley.edu/
https://www.khronos.org/opencl/
https://developer.nvidia.com/cuda-zone


for all formats except 7z and RAR. Some of the GPU kernels were adopted from
our single-machine tool Wrathion [6].

To achieve higher cracking speeds and get support for more hash formats, we
replaced the original Fitcrack client with hashcat4, a self-proclaimed “World’s
fastest password cracker”. Considering speed, team hashcat won 5 of 7 years
of Crack me if you can (CMIYC5) contest. Assessing features, hashcat supports
over 200 different hash formats, and several different attack types: brute-force at-
tack, dictionary attack, combinator attack and hybrid attacks; moreover, it sup-
ports the use of password-mangling rules including the ones used by popular John
the Ripper6 tool. All cracking algorithms are implemented using OpenCL which
allows computing all OpenCL-compatible CPUs, GPUs, FPGAs, and DSPs.

This report documents the new hashcat-based version of Fitcrack, its ar-
chitcture, the distribution of cracking tasks, and the implementation of various
hashcat-compatible attack types.

1.1 Terminology

The document uses various terms which will be described in the following sec-
tions. Some of them may have different names in other cracking solutions. The
most important are:

• Fitcrack - a distributed hash cracking software developed by Fitcrack team.
• BOINC - a framework for distributed computing used in Fitcrack.
• hashcat - world’s fastest password cracker used for hash cracking in Fitcrack.
• Attack mode (or attack type) - the type of an attack signifying how the

candidate passwords are obtained. Fitcrack supports the same attack types
as hashcat:
◦ Dictionary attack - taking passwords from a text file,
◦ Combination attack - combining two dictionaries,
◦ Brute-force attack - the exhaustive search,
◦ Hybrid attacks - combine the previous types.

• Job - a single cracking task defined by a name, attack type, attack options
and one or more hashes to be cracked.
• Workunit - a single piece of cracking work assigned to a host. It is a chunk

created from keyspace by defining the range od password indexes.
• Host (client, cracking node) - computer used for the cracking.
• Targeting - a technique of creating concrete workunits for specific nodes

only.
• Password - a sequence of characters serving as the plaintext input of the

hash function.
• Hash - an output of the cryptographic hash function. The input for cracking.
• Hash type - a unique number7 representing the format of a hash.

4 https://hashcat.net/
5 https://contest.korelogic.com/
6 http://www.openwall.com/john/
7 https://hashcat.net/wiki/doku.php?id=example_hashes

4

https://hashcat.net/
https://contest.korelogic.com/
http://www.openwall.com/john/
https://hashcat.net/wiki/doku.php?id=example_hashes


• Input hash - a hash that serves as the input of a cracking task. The goal
is to find the plaintext string from which the hash was computed.

• Correct password - a password that we search for in a cracking task; the
hash of the correct password is the input hash.

• Candidate password - a password which we test for correctness.
• Candidate hash - a cryprographic hash of the candidate password. The
• Keyspace - the number of candidate passwords implicating the complexity

of a job. Higher keyspace means the job is more complex.
• Password index - a number within the keyspace representing a concrete

candidate password. In brute-force attack, each workunit is defined by a range
of password indexes signifying where to start and where to stop.

• Dictionary - a text file containing a password on each line.
• Password-mangling rule - a rule for modifying candidate password by

replacing, inserting, or deleting characters. The rules were introduced within
Jogn the ripper tool, and adopted to hashcat.

• Character set (charset) - a set of characters used for generating password
candidates. For hahscat, charset files have ‘.hcchr‘ extension.

• Mask - a sequence of characters defining how candidate passwords may look
like. Mask are used in brute-force attack and hybrid attacks.

• Markov chain - a stochastic mathematical model used for generating can-
didate passwords within a brute-force attack. Its states are represented by
probability matrixes stored within a ‘.hcstat2‘ file.

• User - A person having an account to access the Fitcrack webadmin.

1.2 Structure of the document

The technical report is structured as follows. Section 2 provides the overview
the password cracking process and the principles of work distribution used in
Fitcrack. It also includes the basic scheme of a distributed network and defines
two main participants: the server and clients. The subsystems implemented on
the server-side are described in section 4, while section 5 aims at the client-side.
The protocols used for communication between the two sides are described in
section 6. Section 7 describes the schema of the SQL database used on the server
to store all job-related information. Section 8 concludes the document.

5



2 Overview

This section describes the basic principles of password cracking followed by the
principles of task distribution used in Fitcrack. Least but not last, it describes
the architecture of a generic cracking network.

2.1 Password cracking process

The password cracking is based on systematic selection of candidate passwords
(passwords we want to try), while each selected candidate password is verified for
correctness. Eventually, the process ends with a correct password found, or with
an exhausted set of assumed passwords, i.e. no password found. An algorithm
or tool selecting the passwords could be called a password generator. Different
attack types (see section 3) use different types of generators. Depending on the
assignment, we have two types of cracking tasks:

• cracking a raw hash,
• cracking an encrypted medium.

Raw hashes are used for various purposes which include storing user passwords
in web services, operating systems, and other software. Cracking a raw hash is
quite straightforward. We continuously generate candidate passwords and from
each password, we calculate a cryptographic hash called candidate hash and
compared it with the hash we want to crack. Please note, that it is necessary to
know the hash function used. The complexity of a task depends on the number
of candidate passwords, as well as on the cryptographic function used. The speed
of cracking may differ notably between various existing algorithms. For example,
using hashcat and NVIDIA GTX 1080Ti GPU, the cracking speed8 (in hashes
per second: H/s) of MD5 [14] is about 31 GH/s, however the cracking speed of
Bcrypt [12] with 4 rounds is 20 kH/s, which is more than 1,000,000 times slower.

Encrypted media include documents (Office, PDF, etc.), archives (ZIP, 7z,
RAR, etc.), and other containers including disk partitions encrypted by Ver-
aCrypt9 or other software. The recovery process itself depends on the encrypted
media type, concrete format and algorithms defined by the format’s manufac-
turer. For most documents and archives only metadata is needed to verify the
password. For example, encrypted PDF documents store the hash of the (mod-
ified) password we are looking for. The hash is called a verification value [1].

This is the simplest case and is depicted in figure 1. From each generated
password, we need to compute one or more specific hash functions. Many formats
like Office Open XML use thousands of hashing algorithm iterations [17]. The
number of iterations is chosen to be high enough to make a possible attack more
difficult, but low enough to prevent delays of a regular content viewing a with
known password. The resulting hash is then compared with the verification value.

8 https://gist.github.com/epixoip/973da7352f4cc005746c627527e4d073
9 https://www.veracrypt.fr/

6

https://gist.github.com/epixoip/973da7352f4cc005746c627527e4d073
https://www.veracrypt.fr/


If they match, the password is considered correct. If not, another password is
tried.

In some cases, the hashing block has additional input called salt, which is
usually a random value located inside the document, and is a part of encryption
metadata denoted above. The simplest way of use is to concatenate the salt with
the password. The purpose of the salt is to make the attack harder and resistant
to the use of rainbow tables [15]. Before comparison with the verification value,
for some formats, the resulting hash is mixed with another value, often called
pepper. The purpose is again, to increase the difficulty of an attack.

  

Password
generator

password

=

hash

?

verification
value
(hash)

(salt)

encrypted medium

(pepper)

+

Specific hash function(s)

Fig. 1. Password cracking of encrypted media

2.2 The cracking network

The architecture of a distributed network consists of a project server and multi-
ple clients. A client may use one or more OpenCL devices. Each device may be of
a different type (CPU, GPU, FPGA, DSP), manufacturer (Intel, AMD, NVIDIA,
etc.), and model (e.g. NVIDIA GTX 1080 Ti vs. RTX 2080 Ti). An example of
such network is shown in figure 2.

If all nodes are equal, we say the network is homogenous; if they differ, teh
network is heterogenous. If there are nodes of different OpenCL-device types,
e.g. both GPU-equipped, and CPU-only nodes, we call this environment a hybrid
network [7].

In Fitcrack, the actual computation of cryptographic hashes (as mentioned
in section 2.1) is performed by the clients only. The server figures as a controller
of the cracking process. The main objective of the server is to distribute work.

7



Server

Clients

GPUs

Fig. 2. An example of a cracking network

2.3 Task distribution

In our terminology, a job represents a single cracking task added by the adminis-
trator. Each job is defined by an attack type (see section 3), attack settings (e.g.
which dictionary should be used), and one or more password hashes of the same
type (e.g. SHA-1). There are three basic approaches how to distribute a job over
multiple nodes:

• Hash distribution described by Pippin et. al. [11] uses the same candidate
passwords on all nodes, however each node is cracking a different hash. Since
hashcat is capable of cracking multiple hashes for each candidate password
while the candidate hash is only generated once, we assume this approach
ineffective.
• Static chunk distribution introduced by Lim et. al [8] divides the set of all

candidate passwords into a number of chunks and assignes a chunk to each
client. The division is done only once at the beginning. The method has low
overhead, but cannot handle changes in cracking network. If a chunk is lost,
it has to be recomputed from the beginning, if no method of checkpointing
is implemented.
• Dynamic chunk distribution does not divide the entire set of candidate

passwords at start. Instead, it generates and assigns smaller chunks called
workunits progressively. This method is used in Fitcrack since it better han-
dles dynamic and unstable environment. The dynamic approach allow to
create workunits which are fine-tailored for the current client speed (see sec-

8



tion 2.4). Moreover, losing the result of a workunit has lower impact due to
its size.

The total number of candidate passwords within a cracking task is called keyspace.
Let us assume that every candidate password p is a string over Σ alphabet, thus
p ∈ Σ∗. The set of all candidate passwords is P ⊂ Σ∗, and |P | is the keyspace
of the job. The cardinality and elements of P depend on the type of attack. For
the purpose of task distribution, let us assume that P is always a finite ordered
set.

Based on the definitions above, we define a password generator function g(i) :
N 7→ P , where i ∈ 〈0, |P | − 1〉 and i is called a password index.

Let us consider a simple incremental incremental brute-force attack (also
known as exhaustive search) [5], where we want to generate all password of
lenghts between 1 and 3 over alphabet Σ = {a, b, c, . . . , z}. Then:

g(0) = a, . . . , g(25) = z

g(26) = aa, . . . , g(701) = zz

g(702) = aaa, . . . , g(18277) = zzz.

(1)

Each workunit in Fitcrack is defined by the range of indexes: imin a imax while

0 ≤ imin ≤ imax ≤ (|P | − 1). (2)

The actual work lies in trying ever possible passwords given by generator g(i)
where i ∈ 〈imin, imax〉. The workunit may end in two ways:

• One of candidate passwords is correct (or more, if we crack multiple
hashes) - the client informs the server that it has found the correct password.
If all hashes are cracked, the client stops.
• No candidate password is correct - client tried every password within

the range, but none of them was correct.

The job may end in two possible ways:

• Sucess, if the correct password was found within a workunit.
• No sucess, if all workunits were processed, however the correct password

was not found.

In Fitcrack, the creation of workunits is handled by the Generator module (see
section 4.10) which specifies the range of indexes for each workunit. The size of
the workunit is calculated using the adaptive scheduling algorithm described in
section 2.4.

Hashcat tool used for the actual cracking is controlled by Runner subsystem
on the client side. The range of indexes defined above can be set by --skip and
--limit parameters. While --skip corresponds to imin, --limit defines the
keyspace to be processed within a workunit, i.e. should be equal to imax− imin.

While for dictionary attack without the use of password-mangling rules (see
3.1), hashcat’s keyspace equals the actual number of candidate passwords, for

9



other attack modes, it may not match. This unexpected behavior is used by the
internal optimization of hashcat. The hashcat’s cracking process is implemented
as two nested loops: i) the base loop and ii.) the modifier loop. While the base
loop is compute on host machine’s CPU, the modifier loop is implemented within
OpenCL GPU kernels. Hashcat’s keyspace is equal to the number of iterations
of the base loop.

For example, assume a brute-force attack using mask (see section 3.3) ?d?d
which stands for two digits. We can generate 10 different digits on each position,
so the keyspace of the mask should be 10 ∗ 10 = 100, however in hashcat, it
is only 10 since it computes 10 iterations within the base loop, and the other
10 within the nested modifier loop. In that case, running hashcat with --limit
1 causes to try 10 passwords, not only one. To overcome this obstacle, we let
hashcat calculate the keyspace on the server before the actual work is assigned
to the clients. And in our database (see 7), we store both hashcat’s keyspace
which is used for distributing work, and the actual keyspace, to inform the user
about the actual number of passwords processed.

2.4 Adaptive scheduling

A process called targeting defines which workunit is assigned to which host.
BOINC supports two types of workunits based on the targeting:

• non-targeted - the workunit is created without targeting, and will be as-
signed to any host who asks the server for work;
• targeted - the workunit is created for a specific host, and will be assigned

to this host only. This approach is used in Fitcrack, and will be described in
the following paragraphs.

In dynamic heterogeneous environment working nodes have different perfor-
mance based on their hardware. They can also dynamically join and leave the
computing. In addition, the performance of a node can change over time. Our
goal is to propose such distribution strategy that will maximize effectivity of
working clients. It means that the higher-performance clients would receive a
larger workunit than the lower-performance clients.

Solving such situation requires the use of targeted workunits. Our approach
of adaptive time calculation estimates how much time it would take to verify
the remaining candidate passwords on all the active clients. Based on this time,
each active node will be assigned an appropriate size of the keyspace P . The size
depends on the node performance (speed). More formally, let tp be a process
time (in sec) describing how much time would remaining verification take, si be
the number of passwords (size) assigned to node i, and vi be the current speed
of node i in passwords per second.

Based on the speed, node i will be assigned a subset of keyspace P for veri-
fication, i.e., si = tp · vi. Speed vi is determined based on the previously solved
task, i.e., vi =

sprev
tprev

.

10



The problem is how to choose vi for a newly connected client. One solution
is to run a benchmark on the client to calculate its performance.

Estimation of remaining process time tp cannot be determined by the node
performance only. Too low or too high value can make the computing less effec-
tive:

• Lower tp is more suitable for unstable environment where clients frequently
disconnect or change their performance. Thus, the impact of a lost task is
lower, and the task can be assigned to another client. On the other hand,
lower tp implies higher overhead because more communication between the
server and clients.

• Higher tp decreases communication overhead and clients spend more time
by computing. In case of lost connection, recovery is longer. Higher tp also
causes less effective task distribution, namely at the end of the project. E.g.,
suppose 20 clients where only 10 nodes are computing. These active nodes
will be computing for another hour while others stop working since there is
no more task to be assigned to them.

For efficient task distribution, we define function proctime(tJ , sR, k) that adap-
tively computes expected process time tp till the end of the keyspace processing.
Parameter tJ is an elapsed time of the computing, sR is a number of remaining
passwords to be verified and k is a number of active nodes that participate on the
computing. Parameters tJ , sR and k change over time. The function proctime
is computed using algorithm 1. Based on remaining time tp, each node will be
assigned appropriate keyspace si = vi.tp. Thus, the remaining keyspace will be
distributed among working nodes according to their performance. In optimal
case, all nodes complete their tasks in tp as estimated.

Lines 2 to 7 of the algorithm compute the entire speed of all active nodes.
Line 8 is a bit tricky. Normally, we would calculated tp as tp = sR

vsum
. Here,

we add parameter α called distribution coefficient that ranges from 0 to 1. In
other words we say that not the entire remaining keyspace will be assigned,
only its fraction. E.g., for α = 0.1, 10% of the keyspace P is assigned among
currently active nodes. Why not the entire keyspace is assigned? The answer lies
in dynamic behavior of working nodes. In case that additional nodes connect to
the network, there would be no task for them and distributed solution would
become less effective. Thus, a part of the keyspace is put aside hoping that
more nodes will participate on the computing in the future. If not, the rest
of the keyspace will be distributed among current nodes according the above
mentioned algorithm.

Value of tp is limited by tpmin and tpmax. Parameter tpmin states, that the
computing shorter than this value is ineffective in distributed environment, so
the minimal task time is tpmin. Similarly, tpmax defines the maximal task time
so that also slower nodes can participate in the computing. Based on our exper-
iments, we recommend tpmin to be at least 1 minute and tpmax to be about 60
minutes. When creating a new job in Fitcrack WebAdmin (see section 4.3), the
administator can specify tp as the seconds per workunit option.

11



Algorithm 1: Adaptive calculation of tp
Input: tJ , sR, k
Output: tp
1: vsum = 0
2: forall clienti ∈ {0, . . . , k} do
3: if clienti is active then
4: vi =

sprev
tprev

5: vsum = vsum + vi

6: tp = sR
vsum

· α
7: if tp < tpmin then
8: tp = tpmin ; // minimal task time
9: else if tJ > tpmax then

10: tp = min(tp, tpmax) ; // maximal time
11: else
12: tp = min(tp, tJ) ; // smaller tasks

13: return tp

2.5 The architecture of client and server

The server and clients are interconnected by a TCP/IP network, not necessarily
only LAN which makes it possible to run a cracking task over-the-Internet on
nodes in geographically distant locations. While the server is responsible for
management of cracking jobs, clients serve as “workers” who run the cracking
process itself. Clients communicates with the server using an RPC-based BOINC
scheduling server protocol10 over HTTP(S). The current architecture of Fitcrack
is shown in figure 3, and is fairy different from the original one described in [5].
Each side consists of multiple subsystems which will be defined in the following
sections.

10 https://boinc.berkeley.edu/trac/wiki/RpcProtocol

12

https://boinc.berkeley.edu/trac/wiki/RpcProtocol


Server

WebAdmin frontend 

WebAdmin backend 

REST API

hashcat Hashvalidator maskprocessor XtoHashcat hcstatgen

Generator 

Assimilator 

Validator 
Transitioner

Scheduler

File deleter

Feeder

BOINC server built-in daemons 

hashcat
BOINC client

BOINC manager

Runner 

OpenCL kernel

CoreCLI

TCP/IP + HTTP(S) + BOINC RPC 

MySQL

Client(s)

Fitcrack-specific Related to hashcat BOINC

TCP/IP 
+ 

HTTP(S)

GUI

Local 
administrator 

System 
administrator

Fig. 3. The architecture of Fitcrack

13



3 Attack modes

As a cracking engine, Fitcrack uses hashcat version 4.2.1. The attack mode of
hashcat is selected by by a number passed with the -a parameter. The allowed
attack modes are: dictionary (straight) attack (0), combination attack (1), brute-
force (mask) attack (3), and hybrid attacks (6 and 7). In this section, we show
how we perform these attacks in the distributed environment of BOINC. In
Fitcrack, we support all hashcat’s attack modes, however, based on the attack
configuration, we represent them internally by two numbers:

• attack_mode - corresponding to hashcat’s attack mode,
• attack_submode - further specifying the attack.

As we discuss in section 3.4, we transform hashcat’s hybrid attacks to a combi-
nation attack, therefore for the five attack modes of hashcat, Fitcrack only three.
The numbering of modes and submodes is described by table 9.

mode submode description
0 0 Basic dictionary attack
0 1 Dictionary attack with password-mangling rules
1 0 Basic combination attack
1 1 Combination attack with left rule
1 2 Combination attack with right rule
1 3 Combination attack with left and right rule
3 0 Basic brute-force attack
3 1 Brute-force attack with custom hcstat file using 2D Markov
3 2 Brute-force attack with custom hcstat file using 3D Markov

Table 1. Attack modes and submodes in Fitcrack

For simplicity, we can merge the mode and submode together and define a unique
two-digit attack number, e.g. 13 stands for a combination attack with both rules,
32 stands for a brute-force attack with user-defined 3D Markov model, etc.

Since we consider users to be familiar with hashcat attack modes, the front-
end of Fitcrack WebAdmin (see section 4.3) provides an abstraction of Fitcrack’s
attack modes and thus the user controls the Fitcrack like hashcat.

The time and space complexity of the attacks is directly proportional to the
keyspace p = |P |, i.e. the number of all password candidates defined in section
2.3. A formula for the calculation of p will be shown for each attack mode.

3.1 Dictionary attack

A dictionary attack, also referred to as a wordlist attack or straight attack, uses
a text file called password dictionary. The dictionary contains password candi-
dates, each placed on a separate line. Hashcat successively reads the password

14



candidates, calculates their hashes, and compares the results with the input
hashes, i.e. those we are trying to crack, as described in section 2.1.

Such dictionaries may contain words from a native language, or real pass-
words obtained from various web service security leaks11. One of the most well-
known leaked dictionary is rockyou.txt containing over 15 milion passwords. The
dataset origins to the end of 2009 when user account information from RockYou
portal leaked due to an attack12.

Fitcrack supports the use of one, or multiple password dictionaries. From the
mathematical perspective, we can consider each dictionary as an ordered set D,
where the order is defined by the arrangement of passwords in the dictionary.
For n password dictionaries, the keyspace p can be calculated as the sum of their
cardinalities:

p =

n∑
i=1

|Di|

where Di is the i-th used dictionary.

3.1.1 Password-mangling rules The attack can be enhanced by the use of
password-mangling rules. The technique was first introduced in John the ripper
tool, and further extended in hashcat- Password-mangling rules define various
modifications of candidate passwords. Such alterations include replacing and
swapping of characters and substrings, password truncation, padding, etc. Hash-
cat currently include over 7013 different rules. Few examples of their practical
use are illustrated in table 2.

Rule Description Input Output
l Converts A–Z to lowercase p@SSw0rd p@ssw0rd
C Uppercases first letter, lowercases rest p@SSw0rd P@ssw0rd
t Makes lowercase uppercase and vice versa p@SSw0rd P@ssW0RD
r Reverses all characters p@SSw0rd dr0wSS@p
] Deletes the last character p@SSw0rd p@SSw0r
k Swaps last two characters p@SSw0rd p@SSw0dr

Table 2. An example of password-mangling rules

To use password-mangling rules, the user has to define a file called ruleset which
contains one or more rules on each line. The rules are applied to all candidate
passwords in the following way: the first candidate password is modified by rules
on the first line of the ruleset; the result is used. Then, the rules on the second line
of the ruleset are applied to the original password; the result is used. Eventually,

11 https://wiki.skullsecurity.org/Passwords
12 https://techcrunch.com/2009/12/14/rockyou-hack-security-myspace-facebook-passwords/
13 https://hashcat.net/wiki/doku.php?id=rule_based_attack

15

https://wiki.skullsecurity.org/Passwords
https://techcrunch.com/2009/12/14/rockyou-hack-security-myspace-facebook-passwords/
https://hashcat.net/wiki/doku.php?id=rule_based_attack


the entire ruleset is processed. The same password-mangling principle is applied
to the second candidate password, third candidate password, until we eventually
reach the end of the password dictionary.

The rules enhance the repertoire of passwords, however, increase the total
keyspace of the job. This is because Fitcrack applies every rule from the rule
file to each dictionary password. The total keyspace is calculated as the sum of
dictionary keyspaces multiplied by the number of rules in the rule file:

p =

n∑
i=1

(r ∗ |Di|)

where r is the number of lines in the ruleset.

3.1.2 Distributed dictionary attack In distributed cracking, it is neces-
sary to distribute the password candidates from the server to clients, i.e. the
computing nodes. This effort has significant overhead, and for less-complex hash
algorithms could lead to an inefficient distributed attack [7].

While it would be possible to send the whole dictionary to all hosts together
with indexes, we chose another approach. The reason is the candidate lists might
be very large and sending the whole file would increase the cracking time largely,
as each host needs only a portion of the original list.

Therefore, a fragment of the original dictionary is created for each host
with each workunit, which size depends on the host’s current computing power.
What’s more, this number can vary in time, reflecting each hosts’ performance
changes. You can see a simplified scheme of this attack in figure 4.

Fig. 4. Example of dictionary attack distribution

16



3.2 Combination attack

The combination attack, also referred to as combinator attack, uses two separate
password dictionaries: a left dictionary, and a right dictionary. Candidate pass-
words are crafted using a string concatenation: passwords from the left dictionary
are extended by passwords from the right one. The goal is to verify combina-
tions of all passwords in the two input dictionaries. An example of a combination
attack is shown in figure 5.

Fig. 5. Illustration of combination attack

Let D1 be the left dictionary, and D2 the right dictionary. Keyspace p can be
calculated as:

p = |D1| ∗ |D2|

When dealing with hashcat, we realized its keyspace computation doesn’t con-
sider the second dictionary. When the hashcat is supposed to verify one password
in combinator attack, it, in fact, verifies 1 × n passwords. With possibly huge
dictionaries, the workunit size would be uncontrollable.

A simple solution to this problem would require generating all possible com-
binations to a single dictionary, proceeding with a dictionary attack, described
above. This would, however, increase the space complexity in the sense of the
transmitted passwords from linear, ideallym+n passwords, to polynomial,m×n,
rapidly increasing the time needed to transfer data to all computing nodes.

To deal with this issue, we came up with the following solution. The first
dictionary is distributed as a whole to all computing nodes in the first workunit,

17



also referred as a chunk. Then, with each workunit, only a small portion of the
second dictionary is sent. This way, we can control the number of passwords
in the second dictionary – n, while we can still limit the number of verified
passwords in the first dictionary – m, using the hashcat mechanism. Also, we
keep the linear complexity of the whole attack. You can see a scheme of such an
attack in figure 6.

Fig. 6. Example of combinator attack distribution

3.3 Brute-force attack

The brute-force attack is an exhaustive search for correct password(s) trying
every possible password candidate. In hashcat, the attack is based on password
masks. The mask is a pattern defining the allowed form of candidate passwords
- i.e. how candidate passwords “may look like”. The user may define one or
more mask for an attack. The cracking process then consist of generating every
possible sequence of characters upon each mask.

3.3.1 Password mask A password mask is a template defining allowed char-
acters for each position of the password candidates. The mask has the form of
a string containing one or more symbols. A password mask m of length n is
defined as:

m = s1s2...sn

where si is the i-th symbol of the mask, and i ∈ [1, n]. Such mask can be used to
generate candidate passwords in the form of c1c2...cn where ci is the i-th symbol
of the candidate password. Obviously, the candidate passwords has the same
length n as the mask. For all i, the si symbol in the mask is:

18



• a concrete character (ci) - which is directly used in generated candidate
passwords on position i, or

• a substitute symbol (Si) for a character set (Ci) - which defines the
allowed values of ci - i.e. possible characters on position i in the generated
candidate passwords.

symbol description characters in set
?l lowercase Latin letters abcdefghijklmnopqrstuvwxyz
?u uppercase Latin letters ABCDEFGHIJKLMNOPQRSTUVWXYZ
?d digits 0123456789

?s special characters (space )!"#$%&’()*+,-./
:;<=>?@[\]^_ ‘{|}~

?h hexadecimal digits with small letters 0123456789abcdef
?H hexadecimal digits with big letters 0123456789ABCDEF
?a all standard ASCII characters: ?l, ?u, ?d, ?s
?b binary - all bytes with values between 0x00 and 0xFF
?1 user-defined character set no. 1
?2 user-defined character set no. 2
?3 user-defined character set no. 3
?4 user-defined character set no. 4

Table 3. The substitute symbols and corresponding character sets

A character set (or simply charset) is an order set of characters. In masks, we
use substitute symbols, each corresponding to a different character set. Table 3
lists the substitute symbols supported by hashcat with corresponding character
sets. Besides the standard character sets (?l, ?u, ?d, ?s, ?h, ?H, ?a, ?b), hashcat
supports up to four user-defined character sets (?1, ?2, ?3, ?4). Custom character
sets may contain both ASCII and non-ASCII characters - i.e. may be used in
combination with various national encodings.

An example of generating passwords using a mask is illistrated by figure 7.
If there are concrete characters in a mask, the same characters at the same
position are used in the generated candidate passwords – i.e. if for all i ∈ [1, n],
if si = ci, character ci is used at the i-th position in all candidate passwords. For
substitute symbols, all possible characters from corresponding character sets are
used. If there is more than one one substitute symbol, candidate passwords are
generated as a cartesian product of all used corresponding character sets.

For example, in mask Hi?u?d?d, the first two symbols are concrete characters
c1 = H and c2 = i. The rest is made of substitute symbols: S3 = ?u which
substitutes Cu = {A, ..., Z}, and S4 = S5 = ?d which substitutes Cd = {0, ..., 9}.
Therefore, the prefix of candidate passwords is fixed (Hi), the rest is generated
as Cu×Cd×Cd or {A, ..., Z}×{0, ..., 9}×{0, ..., 9}. So that, the mask generates

19



the following candidate passwords: HiA00, HiA01, ... HiA09, HiA10, HiA11, ...
HiA99, HiB00, HiB01, ..., HiZ99. In brute-force attack, the number of possible
candidate passwords can be calculated as:

p =

ns∏
i=1

|Ci|

where ns is the number of substitute symbols in the mask, and Ci is the character
set substituted by symbol Si. For the previous mask Hi?u?d?d:

p =

3∏
i=1

|Ci| = |Cu| ∗ |Cd| ∗ |Cd| = 26 ∗ 10 ∗ 10 = 2600

we have 2600 possible password candidates.

Fig. 7. Illustration of a brute-force mask attack

3.3.2 Markov chains In hashcat, the candidate passwords are not generated
by the lexicographical order of the character sets. Instead, an algorithm based
on Markov chain [10, 4] mathematical model, is used. The entire idea behind
Markov chains is to use knowledge obtained by learning on existing wordlists to
generate more probable passwords first. The difference between the two
approaches is illustrated in figure 8 which shows examples of generated candidate
passwords.

Markov model uses a matrix with character order statistics, saved inside
a .hcstat file. Starting from hashcat 4.0.0, hashcat uses14 LZMA15 compression,
and the extension changed from .hcstat to .hcstat2. The default file used for
brute-force attack is hashcat.hcstat, respectively hashcat.hcstat2. However,
--markov-hcstat option allows the user to specify a custom file.
14 https://hashcat.net/forum/thread-6965.html
15 https://www.7-zip.org/sdk.html

20

https://hashcat.net/forum/thread-6965.html
https://www.7-zip.org/sdk.html


Fig. 8. Candidate password order using Markov chains

An example of the Markov chain matrix is shown in figure 9. In each row,
the matrix shows different characters from the character set in order from the
most probable, to less probable. The first row entitled with ε shows the most
probable characters on the first position in the password. In the example, the
most probable character on the first position is n, the second most probable is
p, etc. The other rows show characters which will most probably succeed after
a certain character (entitling the row). In the example, a will be most probably
followed by y. The second most probable successor of a is a, the third on is e,
etc.

Fig. 9. Markov chain probability matrix

The matrix defines how the candidate passwords are generated. At the first
position, characters from ε row are used. The order is defined by position in the
matrix. In the matrix from figure 9, the first sequence of candidate passwords

21



would start with letter n. Once all passwords starting with n are generated, the
next sequence contains passwords starting with letter p, etc. For each character
c generated, the algorithm looks at the row entitled by c, and the next character
will be generated from that row.

In standard case, on each position, all possible characters are used, and the
keyspace is calculated as shown in section 3.3.1. In hashcat, however, it is possi-
ble to define a threshold value which can be used to limit the depth of character
lookup. The threshold says how many characters from each row are used. Natu-
rally, using the treshold affects the keyspace. If threshold is used, the least
probable passwords are not generated. If many cases, thresholding can save
processor time without bigger influence on success [4].

For now, let us ignore the keyspace optimization used by hashcat, described
in section 2.3 – i.e. assume the keyspace is the actual number of password candi-
dates. Figure 10 shows a matrix with threshold set to 3. In case of mask ?l?l?l,
the keyspace would be 26 ∗ 26 ∗ 26 = 17576, since |Cl| = 26. However, which
threshold set to 3, the keyspace is 3 ∗ 3 ∗ 3 = 27, since on each position, only
three characters are used.

ε
a
b
c
d
e
...



b n e g a u . . .
d t r n d v . . .
e a r u o i . . .
k i e o u a . . .
o m a y r p . . .
d c t z d n . . .
...
...
...
...
...
...
. . .


Fig. 10. Example of Markov matrix with threshold set to 3

The candidate passwords for mask ?l?l?l and threshold 3 are generated in
the following order: bed, bec, bet, bad, bat, bar, ... Note that password bez
is not generated since z is on the position 4 in e-row, and 4 > 3. In hashcat,
the threshold can be specified using the --markov-threshold option. For brute-
force attack with Markov chains, hashcat support two different models:

• 2D Markov model (classic) - uses a single matrix for a character set,
and works as described above. The technique is used if hashcat is run with
--markov-classic option.

• 3D Markov model (per-position) - is used by default in brute-force attack.
It utilizes the idea that character probability is influenced not only by the
previously generated character, but also by the position in the password.
The model uses multiple matrixes, one per each password position. If the
first character is generated, the first matrix is used, for second chracter,
second matrix is used, etc.

22



3.3.3 Distributed brute-force attack One of the biggest challenges of dis-
tributing the mask attack in hashcat was the way hashcat computes the keyspace
of each mask. This number depends on many factors, which in result doesn’t in-
form you about the real keyspace at all. However, the real keyspace is needed to
compute the size of each workunit, depending on each host’s current performance
measured in hashes per seconds.

To overcome this obstacle, the real keyspace is computed from the mask
before the attack starts, using our own algorithm. Comparing this number with
hascat keyspace, we can determine how many real passwords are represented by a
single hashcat index. With this knowledge, sending the mask with corresponding
index range to verify is no longer a problem.

For each workunit, the only information we need to distribute is the mask
with new index range. This makes a mask attack, in contrast with previously
described attacks, very efficient in a distributed environment.

3.4 Hybrid attacks

Hybrid attacks combine the dictionary attack (see section 3.1) with brute-force
attack (see section 3.3). There are two variations of hybrid attack supported by
hashcat. The first combines a dictionary on the left side with a mask on the
right side. The second hybrid attack works the opposite way, with the mask on
the left and dictionary on the right side. Both cases are illustrated in figure 11.

Fig. 11. The principle of hybrid attacks

For the dictionary-based part, passwords are taken from a password dictionary.
For the mask-based part, the passwords are generated using the brute-force tech-

23



nique. The generated candidate passwords are created using string concatenation
over the two parts. The resulting keyspace is:

p = |D| ∗
ns∏
i=1

|Ci|

where D is the dictionary used, ns is the number of substitute symbols in the
mask, and Ci is the character set substituted by symbol Si. So that, the com-
plexity equals to m × n, where m represents the size of the dictionary while n
is the number of passwords generated by the mask. Similar to the combinator
attack, hashcat does not provide us with the keyspace of the whole attack but
with the size of the dictionary only. This means, when instructed to verify one
password, in fact, hashcat checks one dictionary password combined with the
whole mask.

The same solution as in combination attack cannot be used, as there is no way
to send just a portion of the mask to each host. To avoid generating all possible
variants beforehand, which would cause the same problems described in the
combinator attack above, we use the following technique. Dictionary is generated
from the mask, using high performance maskprocessor16. This means, we have
two dictionaries on input and we can proceed with performing a combination
attack, as described in section 3.2. The mask transformation process can be seen
in figure 12.

Fig. 12. Example of hybrid attack distribution

Since we transform hybrid attacks to combination attacks, Fitcrack supports the
use of left and right password-mangling rule (see section 3.1.1) in the same way
as with the combination attack.

16 https://github.com/hashcat/maskprocessor

24

https://github.com/hashcat/maskprocessor


4 Server-side subsystems

The server is responsible for the management of cracking jobs, and assigning
work to clients. In terms of the client-server architecture, the service offered by
the server is a workunit assignment.

Server

WebAdmin frontend 

WebAdmin backend 

REST API

hashcat Hashvalidator maskprocessor XtoHashcat hcstatgen

Generator 

Assimilator 

Validator 
Transitioner

Scheduler

File deleter

Feeder

BOINC server built-in daemons 

 

TCP/IP + HTTP(S) + BOINC RPC 

MySQL

Fitcrack-specific Related to hashcat BOINC

TCP/IP 
+ 

HTTP(S)

System 
administrator

Connection to clients

Fig. 13. The architecture of Fitcrack server

While for client, we support both Windows, and Linux nodes, the server has
a Linux-only implementation. As illustrated in figure 13, Fitcrack server con-
sist of multiple subsystems: Generator (see section 4.10), Validator (see section
4.11), Assimilator (see section 4.12), and Trickler (see section 4.13) are the main
scheduling-related daemons implemented within Fitcrack. They closely relate to
BOINC built-in subsystems which are: Transitioner (see section 4.14), Scheduler
(see section 4.15), Feeder (see section 4.16), and File deleter (see section 4.17).
To perform basic operations and remotely manage the entire system, Fitcrack
provides a web-based user interface called Fitcrack WebAdmin (see section 4.2).
WebAdmin uses a set of external tools as depicted in figure 13: hashcat, Hash-
validator, maskprocessor, XtoHashcat, and hcstatgen.

For storing all cracking-related information we use a MySQL17 database.
The structure of the database is described in section 7. Since both the system
administrator, and BOINC client (on client-side) communicate via HTTP(S), we
use Apache18 HTTP server. Apache runs two applications: Fitcrack WebAdmin,
and the set of CGI scripts of the Scheduler subsystem. All subsystems are run
by one of two Linux users:

• Apache user (apache, or www-data by default) runs the Apache-based
subsystems: WebAdmin and Scheduler,

• BOINC user (boincadm by default) runs the rest.
17 https://www.mysql.com/
18 https://httpd.apache.org/

25

https://www.mysql.com/
https://httpd.apache.org/


4.1 Server directory structure

The subsystems are located in various directories:

• PROJECT_ROOT - the directory od BOINC Fitcrack project, by default:
/home/boincadm/projects/fitcrack
◦ apps - binaries of client applications: hashcat, and Runner
◦ bin - binaries of server daemons (Generator, Assimilator, ...)
◦ cgi-bin - CGI scripts of Scheduler,
◦ log_<hostname> - logs of server daemons,
◦ pid_<hostname> - PID files of server daemons,
◦ download - data to be downloaded by client,
◦ html - BOINC project website files,
◦ keys - encryption keys,
◦ upload - directory for client uploads,
◦ templates - templates defining workunits,

• APACHE_ROOT - the document root of Apache HTTP server, by default:
/var/www/html
◦ fitcrackFE - frontend of WebAdmin,
◦ fitcrackAPI - backend of WebAdmin with tools,
− src - Python scripts of backend,
− hashcat-4.2.1 - hashcat binaries,
− hashcat-utils - hashcat-related utilities,
− hashvalidator - the Hashvalidator tool,
− maskprocessor - the maskprocessor tool,
− xtohashcat - XtoHashcat hash extraction tool,

• COLLECTIONS_ROOT - the directory for shared data, by default:
/usr/share/collections.
◦ charsets - user-defined character sets,
◦ dictionaries - dictionaries for attacks,
◦ encrypted-files - the inputs of XtoHashcat,
◦ markov - user-defined Markov statistics files,
◦ masks - files with password masks,
◦ rules - files with password-mangling rules.

4.2 WebAdmin

We created a completely new solution for remote management of Fitcrack. The
application is called WebAdmin and consist of two separate parts: frontend de-
scribed in section 4.3 and backend described in section 4.4. The two parts com-
municate using a REST API.

26



4.3 WebAdmin frontend

The frontend is written in Vue.js and allows the administrator to manage dif-
ferent parts of the system as depicted in figure 14. Under Jobs tab, the admin-
istrator can add, modify and manage all cracking jobs. Hosts section provides
an overview of connected clients, their software and hardware specification, jobs
the clients were participating on, and workunits assigned to them. Every hash,
cracked or not, can be viewed in a summary within Hashes tab. Dictionaries
tab can be used to manage and add password dictionaries. Fitcrack supports
three ways of adding new dictionaries: i. importing directly from the server; ii.
uploading new via web using HTTP; iii. upload using SFTP/SCP, if config-
ured. Using Rules tab, the administrator can manage *.rule files contaning the
password-mangling rules for hashcat. Charsets and Masks tabs allows to manage
character sets and password masks used for mask attack. Since for mask attack,
hashcat generates passwords using Markov chains [10], it is necessary to provide
a *hcstat / *hcstat2 (for hashcat 4+) file with per-position character statistics.
In Markov chains tab, Fitcrack supports adding hcstat files either by uploading
an existing file, or by generating a new one. The second option stands for an au-
tomated training on a password dictionary using hcstat2gen tool. Least but not
last, in Users tab, WebAdmin allow to manage user accounts and permissions.

Fig. 14. The interface of Fitcrack WebAdmin

27



4.4 WebAdmin backend

The backend, written in Python 3, is based on Flask19 microframework, com-
municating with Apache or NGINX HTTP server using Web Server Gateway
Interface (WSGI). It implements all necessary endpoints of the REST API used
by the frontend, e.g. handles requests for creating new jobs, and others. Using
SQLAlchemy20, the backend operates a MySQL database which server as a stor-
age facility for all cracking-related data. For selected operations, the WebAdmin
uses a set of external utilities and programs:

• hashcat - for calculating the keyspace of masks (see section 5.4),
• HashValidator - for validating hash formats (see section 4.6),
• maskprocessor - for creating dictonaries from masks in hybrid attack (see

section 4.7),
• XtoHashcat - for hash extraction from (see section 4.8),
• hcstat2gen - for generating Markov statistics (see section 4.9).

For handling frontend requests, the backend provis the following endpoints:

• /charset - operations with charset collection,
• /charset/<id> - operations with specific charset,
• /dictionary - operations with dictionary collection,
• /dictionary/<id> - operations with specific dictionary,
• /graph/hostPercentage/<job_id> - fetch ratio of hosts work,
• /graph/hostsComputing - fetch hosts computed hashes,
• /graph/hostsComputing/<id> - fetch specific host, computed hashes,
• /graph/jonProgress - fetch data to draw jobs progress graph,
• /graph/jonProgress/<id> - fetch data to draw specific job progress graph,
• /hashcat/hashTypes - get supported hashtypes,
• /hashes - fetch page of hashes added to system,
• /hosts - operations with host collection,
• /hosts/<id> - operations with specific host,
• /hosts/info - fetch info about hosts,
• /job - operations with job collection,
• /job/<id> - operations with specific job,
• /job/<id>/action - operations with job (start, stop, restart),
• /job/<id>/host - fetch hosts for specific job,
• /job/<id>/workunit - fetch workunits for specific job,
• /job/crackingTime - get estimated cracking time for job,
• /job/info - fetch info about jobs,
• /job/verifyHash - validate hash in HashValidator (see 4.6),
• /markovChains - operations with hcstat2 files collection,
• /markovChains/<id> - operations with specifix hcstat2 file,
• /markovChains/makeFromDictionary - make hcstat2 file from dictionary,
• /masks - operations with mask files collection,

19 http://flask.pocoo.org/
20 https://www.sqlalchemy.org/

28

http://flask.pocoo.org/
https://www.sqlalchemy.org/


• /masks/<id> - operations with specific mask file,
• /masks/<id>/download - download hcstat2 file,
• /notifications - fetch netifications,
• /notifications/count - fetch unseen notifications count,
• /protectedFiles - upload encrypted file a get it’s hash,
• /rule - operations with rule collection,
• /rule/<id> - operations with specific rule,
• /serverInfo - fetch server info,
• /user - operations with user collection,
• /user/<id> - operations with specific user,
• /user/isLoggedIn - find out if user is logged in system,
• /user/login - login user to system,
• /user/logout - logout user from system,
• /user/role - operations with user role collection,
• /user/role/<id> - operations with specific user role.

4.5 hashcat

Since the keyspace computed by hashcat may differ form the actual number
of checked passwords, as described in 2.3, we need hashcat on the server-side
as well. Every time the WebAdmin needs to calculate the keyspace for a given
attack, it runs hashcat with the --keyspace argument. For more about hashcat
see section 5.4.

4.6 Hashvalidator

HashValidator is our custom tool mostly based on the original hashcat sources.
HashValidator is able to verify the syntax of input hashes. The tool is used by
WebAdmin at the time of creating a new cracking job. Whenever a user enters
one or more input hashes, Hashvalidator is called to verify the syntax. The usage
is defined as follows:s

./ hashValidator -m <hash_type > [ <hash > | <hash_file > ]

where hash_type is a unique number defining the type of hash (see section 1.1).
The next argument is either a hash to be verified, or a text file containing hahes
- one per line.

4.7 maskprocessor

For generating dictonaries from masks in the hybrid attack, we use maskproces-
sor21. It is high-performance word generator which can be used to transform
masks to password dictionaries. For a given mask, it produces a dictionary of
all candidate passwords generated from the mask. It has built-in charsets for
standard symbol groups, namely ?l, ?u, ?d, ?s, ?a, ?b, and support for up to
four custom character sets like in hashcat’s brute-force attack (see section 3.3).
21 https://hashcat.net/wiki/doku.php?id=maskprocessor

29

https://hashcat.net/wiki/doku.php?id=maskprocessor


4.8 XtoHashcat

To get a password securing an encrypted container, it is necessary to extract all
cracking-related metadata, as described in section 2.1. For using hashcat, users
need to extract hashes manually, e.g. using third-party scripts. For easier use,
Fitcrack provides an abstraction over this process, and thus accepts even the
original encrypted containers as an input.

This is, where XtoHashcat comes to use. XtoHashcat is our custom tool
written in Python 3. The tool can automatically detect the format of input
encrypted media, and extract the hash necessary for cracking. For detection, it
scans file signatures and optionally file extensions. Once the format is detected,
one of the open-source scripts22,23 is used to extract the hash.

Thanks to this approach, the uploading and cracking of the supported file is
transparent for the user. The hash is extracted in the background without the
need of entering the format number or running external extraction scripts. The
usage is defined as follows:

./ XtoHashcat.py <path > [-f <hash_type >]

The first argument, path, describes the location of the encrypted input file. The
second argument, hash_type is optional, and can be used to specify the format
in hashcat hash type format (see section 1.1). At the time of writing this report,
XtoHashcat supports the following input formats:

• MS Office documents (-f 9400-9800) [17, 18],
• PDF documents (-f 10400-10700) [1],
• RAR archives (-f 12500/13000) [13, 9],
• ZIP archives (-f 1300) [3],
• 7z archives (-f 11600) [16].

If the inputs are processed successfully, the output has two lines. The first one
contains the extracted hash, and the second contains a number representing the
detected hash type.

4.9 hcstat2gen

As described in section 3.3, brute-force attack uses Markov chains to generate
symbols in password candidates. The technique requires a .hcstat2 file with
Markov statistics in the form of character probability matrixes. The user can
either use a default hashcat.hcstat2 one, or select a custom statistics file.

Fitcrack WebAdmin supports automatic creation of new .hcstat2 files by
processing existing dictionaries. For this purpose, it uses a utility called hc-
stat2gen24. This tool generates a custom Markov statistics file from selected
dictionary. The usage is:
22 https://github.com/stricture/hashstack-server-plugin-hashcat
23 https://github.com/magnumripper/JohnTheRipper/
24 https://hashcat.net/wiki/doku.php?id=hashcat_utils#hcstat2gen

30

https://github.com/stricture/hashstack-server-plugin-hashcat
https://github.com/magnumripper/JohnTheRipper/
https://hashcat.net/wiki/doku.php?id=hashcat_utils##hcstat2gen


./ hcstat2gen.bin hcstat2_output_raw.bin < dictionary.txt

Starting from version 4.x, hashcat reqires the file to be LZMA-compressed25

compression. . The compression can be done in the following way:

lzma --compress --format=raw --stdout -9e
hcstat2_output_raw.bin > output.hcstat2

4.10 Generator

Generator is a server daemon responsible for creating new workunits for hosts.
There are two types of workunits – benchmark and normal cracking tasks. The
details of workunit types and parameters are described in section 6. The bench-
mark can be run for one format only or for all supported formats. The second
case is called a complete benchmark, and is performed only once whenever a new
client is connected to the server. The goal of the complete benchmark is to mea-
sure client’s capabilities, i.e. achieveable cracking speeds for all hash supported
algorithms.

The classical benchmark for a single format is run always at the start of the
job to measure the current speed of connected hosts. The complete benchmark is
run automatically after new host connects to server, when default_bench_all
flag is set in fc_settings table. Results are saved and then used for computing
the expected attack duration before the attack itself starts.

There are always two cracking workunits ready for the job. One is sent to the
host. The second one is generated beforehand, so the host can start working on it
right after the first one is completed. This way, we minimize the communication
overhead.

This daemon also deals with disconnected hosts and computation errors.
When an incorrect result is delivered by a host or a workunit deadline is reached,
this workunit is tagged with retry flag and a new copy is generated.

The Generator communicates with the rest of the server using the database
only. This approach is similar to most of the BOINC daemons. The generator
also creates the input files, which are sent to the hosts. The number of these files
varies, depending on the type of the attack. data and config files are always sent,
containing input hashcat hash and needed metadata respectively. For dictionary
and combinator attacks, dict1 and dict2 input files may be needed, containing
list of passwords. If the administrator wants to apply rules to the dictionary, rules
input file is created. For a mask attacks using Markov chains, markov input file,

25 https://en.wikipedia.org/wiki/Lempel%E2%80%93Ziv%E2%80%93Markov_chain_
algorithm

31

https://en.wikipedia.org/wiki/Lempel%E2%80%93Ziv%E2%80%93Markov_chain_algorithm
https://en.wikipedia.org/wiki/Lempel%E2%80%93Ziv%E2%80%93Markov_chain_algorithm


containing hcstat2 file is created. The simplified functionality of the Generator
daemon is described by algorithm 2.

Algorithm 2: Generator daemon algorithm
1 while (1) do
2 // Inicialization
3 if Any Jobs reached deadline then
4 Set them to Finishing status (12)

5 foreach Running Job (status ≥ 10) do
6 Load all corresponding masks or dictionaries
7 // Benchmark
8 foreach Host in Benchmark status (0) do
9 if Benchmark is not planned then

10 Plan a benchmark

11 // Cracking
12 foreach Host in Normal status (1) do
13 if Number of planned workunits ≥ 2 then
14 Continue to next Host

15 if Host is in Running status (10) then
16 Generate a new workunit or a make a copy from retry
17 if No workunits could be generated then
18 Set Job to Finishing status (12)

19 if Host is in Finishing status (12) then
20 Try to copy a retry workunit, otherwise set Host to Done

status (3)

21 // Job finished
22 if Job status is Finishing (12) and no Jobs are generated then
23 Check the end conditions

(Finished/Exhausted/Timeout/Paused)

24 Wait a short time interval before the next iteration

4.11 Validator

Incoming BOINC results must be validated before parsing. This process may
validate syntax only or may compare multiple results for the same workunit.
This way, we can detect the corrupted nodes, which supply us with incorrect
results. However, with each host receiving the same workunit, the speed halves.
Fitcrack system was designed to be used in private networks, so this functionality
is not used.

Because of this, Fitcrack uses default BOINC validator, which checks the
syntax of the result only.

32



4.12 Assimilator

Assimilator is a server daemon which parses the results supplied by hosts. As
mentioned in section 4.10, there are three possible results – the benchmark for
one format, complete benchmark, and a normal cracking job. The Assimilator,
depending on the type of result, is able to modify the database or cancel running
workunits.

The results are sent in a custom format, where pieces of information are
separated by a newline. The meaning of the lines varies, depending on the type
of workunit. However, the first two lines always inform us about the workunit
type and the result. At the first line, letter b is signalling a result from the
benchmark workunit, letter a result from complete benchmark, and letter n
result from a normal cracking task. At the second line, there is always a result
code. Generally, code 0 is signaling a successful result while codes greater than
two are signaling computation error. The simplified functionality of Assimilator
daemon is described by algorithm 3.

4.13 Trickler

Trickler daemon was created to enable information exchange between server and
clients even during the cracking. It is used to periodically send progress of the
current cracking workunit. This way, we know the current state of the cracking
even with several hours long workunits.

The messages are in XML format and are saved into the database. From
here, Trcikler daemon reads them and updates the Fitcrack table fc_workunit
with progress. The old entries in the database are periodically removed.

4.14 Transitioner

Transitionor is default BOINC daemon that keep databased synchronized. It
updates workunits and their results when needed. All other daemons depends
on Transitioner’s work. Fitcrack system uses deafult BOINC implementation
without any modifications.

4.15 Scheduler

Scheduler is another BOINC program. It is responsible for communication with
hosts. The communication consists of periodical exchange of scheduler request
and reply messages in XML format. In those, all information is sent, includ-
ing new workunits. In this case, the workunit must be generated first by the
Generator daemon.

Although Fitcrack system uses the default Scheduler implementation, some
adjustments were made. Most importantly, the program was modified so that
with every reply sent to host, the Fitcrack fc_host_status table is updated
with the current timestamp. Using this modification, we can see which hosts are
currently up and running.

33



Algorithm 3: Assimilator daemon algorithm
1 while (1) do
2 Read the result type
3 switch type do
4 case benchmark do
5 if Result is OK (code 0) then
6 Read the power and save it to database
7 else
8 Plan a new benchmark

9 case normal do
10 if One or more passwords found (code 0)) then
11 Read the password(s) and save them to database
12 Switch the Job state to Finished (1)
13 Cancel all running Workunits of the Job
14 Set finished flag to all Workunits
15 Read the cracking time and save it
16 else
17 if No passwords found (code 1) then
18 Modify the workunit size according to 1.
19 Update the current index used for planning
20 else
21 // Computation error
22 Cancel host workunints
23 Set Host status to Benchmark (0)

24 case bench_all do
25 if Result is OK (code 0) then
26 Read the power list and save it to database
27 else
28 Plan a new benchmark

34



4.16 Feeder

Fitcrack system uses default BOINC implementation of Feeder daemon. It works
closely with Scheduler and is responsible for distributing chunks of shared mem-
ory.

4.17 File deleter

File deleter is one of many BOINC server daemons. Fitcrack system uses default
BOINC implementation of this daemon. It’s responsibility lies in deleting input
and output files of completed and assimilated workunits. This daemon can be
run periodically in user defined intervals to clear the disk space.

35



5 Client-side subsystems

Clients represent the actual cracking nodes. Fitcrack can be run on any machine
with Windows, or Linux OS, and at least one OpenCL-compatible device with
proper drivers installed. The only piece of software that needs to be installed is
BOINC Client (see section 5.1), and optionally BOINC Manager (see section )
providing a graphical user interface to BOINC Client.

Once the BOINC Clients connects and authenticates to the server, all neces-
sary binaries are downloaded automatically before the actual work is assigned.
The binaries involve two applications: hashcat as the “cracking engine” (see sec-
tion 5.4), and Runner (see section 5.3) which server as a wrapper encapsulating
and controlling operations with hashcat. The architecture of Fitcrack client is
illustrated in figure 15.

hashcat
BOINC client

BOINC manager

Runner 

OpenCL kernel

CoreCLI

 

TCP/IP + HTTP(S) + BOINC RPC 
Client(s)

Fitcrack-specific Related to hashcat BOINC

GUI

Local 
administrator 

Connection to server 

Fig. 15. The architecture of Fitcrack server

5.1 BOINC Client

BOINC Client26, also referred to as core client, is the main host application
of Fitcrack system. It is required to be manually installed to the host system.
The application ensures communication with the project server. Both the ini-
tialization of project on the host and the retrieving and reporting of individual
workunits. Project initialization consists of the authentication of user, download
of the project specific binaries and information.

Another job of the application is the execution of project specific host appli-
cations. On receive of every new workunit it:

1. Creates copy of the default project files into new empty directory.
2. Downloads the workunit specific file from the server.
3. Adds files containing soft-links to workunit specific files as to the directory

created in item 1.
26 https://boinc.berkeley.edu/wiki/BOINC_Client

36

https://boinc.berkeley.edu/wiki/BOINC_Client


4. Executes the host application in that directory with specified parameters.
5. Retrieves the exit code of the host application.
6. Reports the generated result to the server.
7. Deletes the created directory with all of its subfolders and files.

BOINC Client can be configured to run the computations only when certain
conditions are met. Some of them are processor utilization, disk space usage,
network transfer limits, exclusive applications aren’t running. Also, it is possible
to set daily schedules and others.

BOINC Client can be executed as daemon by cron, manually or at the startup
of the system. It can also run as CLI application in terminal. It communicates
with the server via BOINC scheduling server protocol using either HTTP or
HTTPS. It executes and controls the host application via system calls.

5.2 BOINC Manager

BOINC Manager27 is in general graphical interface of BOINC Clien. It allows
to add projects, control progress of tasks, review application logs, configure user
setting and logging preferences. It communicates with the client over graphical
user interface remoter procedure calls (GUI RPS).

BOINC Manager can be run either at the system start-up or manually and
can be shutdown at any time without affecting the computation process. It
requires BOINC Client to be running for its proper functioning.

5.3 Runner

Runner is a wrapper of hashcat, designed to be used as either standalone tool,
simplifying control of hashcat, or as middleware in BOINC system. The code
uses the C++98 standard extended by few functions from C99 standard. It is
written in the way to be compilable into a static binary for both Linux and
Windows.

5.3.1 Basic operation Once runner is started, it:

1. reads the config file (see section 6.1), and coverts the options to hashcat
parameters,

2. launches hashcat,
3. monitors the cracking progress of cracking,
4. gathers results, and creates and output file (see section 6.2) which is passed

to BOINC.

Runner is launched by the BOINC client. All information needed by the appli-
cation is stored in several files which are required to be in the same directory as
the executable. The files are:
27 https://boinc.berkeley.edu/wiki/BOINC_Manager

37

https://boinc.berkeley.edu/wiki/BOINC_Manager


• required files:
◦ hashcat_files_v421_1.zip - containing all hashcat file like OpenCL

kernels, *.hcstat, *.hctune, etc.,
◦ config - the workunit input configuration file – see section 6.1,
◦ data - file with hashcat acceptable hash to be cracked,

• optional files:
◦ dict[1-2] - files with the dictionary of passwords saved in them, in
hashcat acceptable format,

◦ rules - a file with password-mangling rules (see section 3.1.1),
◦ markov - a .hcstat2 file with Markov character statistics (see section

3.3.2),
• output files:
◦ out - this output file with cracking results in the server understandable

format – see section 6.2,
◦ stderr.txt - execution log.

All mentioned files can contain BOINC -like soft-link to the real file. Soft-link
may be created by making text files with following XML element with path to
the real file as its value <soft_link></soft_link>. Runner resolves such soft-
link to the absolute path of the file which it then uses instead of the soft-link
file.

The arguments of hashcat, and the behavior of Runner depends on selected
attack mode, attack submode, and options specificied in the workunit config
file. For detailed information, see section 6.1.

5.3.2 Host specific configuration Runner also supports host specific spec-
ification of hashcat parameters. It is designed to be used for the specification of
workload-w), which OpenCL devices to use(-d), whether should hashcat ignore
errors(--force) and such thing which aren’t generalized for all host by their
nature.

File with such additional configurations has to be placed at /etc/<BOINC_-
project_name>.conf on Linux and under C:\ProgramData\BOINC\<BOINC_-
project_name>.conf on Windows. If you would like to run Runner as stan-
dalone then create config using the same directories but name it standalone.conf.
It is just inlined into hashcat command.

5.4 hashcat

Fitcrack uses hashcat as a tool realizing the actual password recovery. It allows
the system to support a lot of the hash formats / algorithms. Also, it uses
the kernels written in OpenCL C for the implementation of hash function and
alogrithm. OpenCL enables the use of the hardware accelerators such as graphics
cards and feild programmable gate arrays (FPGA) or even CPUs. For hashcat
to function correctly the proper driver with OpenCL support has to be installed
for chosen processing device. The tool itself doesn’t have to be install as the
system ships its own hashcat binaries to the clients.

38



The hashcat tool is executed via the module Runner(section 5.3). The module
sets the execution parameters and processes the outputs of the tool and its exit
code.

39



6 Client-server communication

While the underlaying communication is handled by BOINC using BOINC schedul-
ing server protocol28, the inputs and outputs of each workunit are controled by
Fitcrack. For each job, Fitcrack defines a number of input and output files.
Which files are used depends on the attack mode. The attack modes and their
numbers are defined in section 3.

In BOINC, all workunit-related files are described by input and output tem-
plates29 located on the server in PROJECT_ROOT/templates directory (see sec-
tion 4.1). While input templates define input files downloaded by a client from
the server before a workunit is started, the output templates define the output
files which are sent by the client back to the server after the job is finished. In
Fitcrack, we have three types of workunits:

• Benchmark workunit - is sent to each client at the beginning of each job.
The goal is to determine the client’s current speed which is used in the
adaptive scheduling algorithm (see section 2.4). Once finished, the result of
the benchmark for given hash type is stored in fc_benchmark table within
the database (see 7). If the record already exists, it is updated by the newly-
measured one. In workunit config file (see below), the computation mode is
set to “b”.
• Benchmark all - is a workunit which lets the client perform the benchmark

over all supported hash algorithms. It is used only within a special (hidden)
job called BENCH_ALL which is always present in the system. By default, the
complete benchmark is performed only once, and is started whenever a new
client is connected to the server. The goal is to scan the capabilities of the
client. The resulting speeds for all hash types are saved to fc_benchmark
table within the database (see 7). In workunit config file, the computation
mode is se to “a” which stands for “all”.
• Normal workunit - is a regular piece of cracking work sent to the client.

What hash type and how exactly is cracked specifies the config file described
in section 6.1. In workunit config file, the computation mode is set to “n”.

6.1 Files transferred from server to client

In Fitcrack, we have six different input templates. The bench_in template used
for bechmarking. For rest, each template corresponds to a number of attack
modes and submobdes (represented by the attack number - see 3):

• bench_in - used for benchmark workunits (no attack),
• dict_in - used for dictionary attacks (00),
• rule_in - used for dictionary attacks with rules (01),
• combinator_in - used for combination attacks (10, 11, 12, 13),

28 https://boinc.berkeley.edu/trac/wiki/RpcProtocol
29 https://boinc.berkeley.edu/trac/wiki/JobTemplates

40

https://boinc.berkeley.edu/trac/wiki/RpcProtocol
https://boinc.berkeley.edu/trac/wiki/JobTemplates


• mask_in - used for brute-force attacks with mask (30),
• markov_in - used for brute-force attacks with mask and user-defined Markov

statistics file (31, 32).

Each template defines the use of one of more of the following input files:

• config - a configuration of the workunit (see below),
• data - a file containing one, or more input hashes,
• dict1 - a password dictionary number one,
• dict2 - a password dictionary number two,
• rules - a file with password-mangling rules,
• markov - a .hcstat file with Markov statistics (see section 3.3).

Table 4 shows the relationship between templates, attack modes, and input files.
Each row stands for a single template. The first column shows the name of the
template. The second column contains numbers of attacks in which the template
is used. For each input file, there is a column containing “X” if the file is used
within the template. For example, template mask_in define the use of two input
files: config and data.

template attacks config data dict1 dict2 rules markov
bench_in X
dict_in 00 X X
rule_in 01 X X X X
comb_in 10, 11, 12, 13 X X X X
mask_in 30 X X
markov_in 31, 32 X X X

Table 4. Input templates used by boinc

The config is a text file defining the workunit, e.g. its attack mode and keyspace
(see 2.3). For easy parsing on the client-side, we use the Type-length-value30

(TLV) representation. Each line of the config file has the following syntax:

||| name|type|length|value |||

The name identifies the configration parameter. Allowed names are listed in
table 6. The type matches one of the data types defined in table 5. The length
says how many characters are in the value part. For example:

||| hash_type|UInt |4|9400|||

describes parameter names hash_type which should be saved as a 32-bit un-
signed integer. The value is 9400 of 4 digits.
30 https://named-data.net/doc/NDN-packet-spec/current/tlv.html

41

https://named-data.net/doc/NDN-packet-spec/current/tlv.html


On the client-side, the configuration parameters are interpreted by the Run-
ner subsystem (see 5.3). Many of them affect the arguments hashcat is started
with. Table 6 shows all workunit parameters supported by Fitcrack together
with hashcat’s arguments they are related to. For example, we can see the con-
nection of the start_index and hc_keyspace parameters to hashcat’s --skip
and --limit arguments, as discussed in section 2.3.

Bool Boolean: 0 means FALSE, 1 means TRUE
Char C-like 8-bit unsigned char
String C-like sequence of chars
Int 32-bit signed integer
UInt 32-bit unsigned integer
BigInt 64-bit signed integer
BigUInt 64-bit unsigned integer

Table 5. Data types supported in Fitcrack config

name describtion hashcat arg.
attack_mode attack mode (see 3) -a

attack_submode attack submode (see 3)
hash_type type of the hash (see 1.1) -m

name the name of the cracking job
charset1 user-defined charset number 1 (see 3.3) -1 charset1
charset2 user-defined charset number 2 -2 charset2
charset3 user-defined charset number 3 -3 charset3
charset4 user-defined charset number 4 -4 charset4
rule_left rule for the left dictionary (see 3.2) -j
rule_right rule for the right dictionary -k
start_index starting password index (see 2.3) --skip
hc_keyspace keyspace of the workunit --limit

mask_hc_keyspace keyspace of the entire mask
dict_hc_keyspace keyspace of the dictionary fragment
markov_threshold threshold for Markov model (see3.3) --markov-threshold

Table 6. Parameters used in the config file

Not all config parameters are used in every workunit, e.g. in dictionary attack,
we have no mask, etc. Table 7 shows in which attack modes and submodes
the parameters are used. If a parameter is used in given mode and submode,
“X” is displayed in the corresponding column. For example, mask_hc_keyspace
parameter defining the hascat’s keyspace of a given mask is only used within
a brute-force attack, so “X” is in columns related to attack mode number 3. For

42



benchmark workunits, the attack mode and attack submode are both set to letter
“B” in the table.

Another important aspect of the workunit config parameters is by which part
of Fitcrack system they were added, and in which context they are considered
valid. Depending on their nature and origin, we can distinguish between two
types of parameters:

• job-wide parameters - which remain valid and constant throughout the
lifetime of the entire job. Such parameters include attack_mode, hash_type,
name of the job, etc. These parameters are added to the config only once
by by WebAdmin. In the “O” column (meaning the origin of the parameter),
these parameters have letter “W” which stands for WebAdmin.

• workunit-specific parameters - are valid and constant only within each
workunit, e.g. start_index, or hc_keyspace defining the range of indexes, as
described in section 2.3. In other workunits of the same job, these parametrs
may have completely different values. When the Generator subsystem (see
section 4.10) creates a new workunit, it creates the input configuration file
(named config) by first filling it with all job-wide parameters, and then it
appends the workunit-specific ones. In the “O” column, the workunit-specific
parameters have letter “G”, since there are added by the Generator.

attack mode B 0 1 3
attack submode B 0 1 0 1 2 3 0 1 2

name type O
attack_mode UInt W X X X X X X X X X X

attack_submode UInt W X X X X X X X X X X
hash_type UInt W X X X X X X X X X X

name UInt W X X X X X X X X X X
charset1 String W X X X
charset2 String W X X X
charset3 String W X X X
charset4 String W X X X
rule_left String W X X
rule_right String W X X

mask String G X X X
start_index BigUInt G X X X X X X X X X
hc_keyspace BigUInt G X X X X X X X X X

mask_hc_keyspace BigUInt G X X X
mode String G X X X X X X X X X X

markov_threshold UInt G X X

Table 7. Use of config parameters within different attacks

43



An example of a concrete workunit config file is:

||| attack_mode|UInt |1|0|||
||| attack_submode|UInt |1|0|||
||| hash_type|UInt |4|9400|||
||| name|String |4| test |||
||| start_index|BigUInt |1|0|||
||| hc_keyspace|BigUInt |6|135985|||
||| mode|String |1|n|||

The config defines a workunit within a cracking job named test. Attack mode
0 defines a dictionary attack, attack submode 0 stands for the classic dictionary
attack without the use of password-mangling rules. Start index equal is typical
in dictinary attack, since we only send fragments of the original dictionary, as
described in section 3.1. The total hashcat’s keyspace, in this case the number
of passwords in dictionary fragment, is 135985. The mode is set to “n” which
stands for (n)ormal cracking.

6.2 Files transferred from client to server

While workunits have multiple input files, the output file described by app_out
template is only one - the out file containing:

<mode >
<status_code >
<info >

where mode refers to the computational mode: i) “b” for benchmark, ii) “a” for
benchmark all, and ii) “n” for normal tasks. The meaning of status codes is
described in table 8.

code benchmark (b) benchmark all (a) normal task (n)
0 successfull (partial) success at least one hash cracked
1 - - finished, no hash cracked
3 - - input error
4 computation error computation error computation errror

Table 8. Meaning of codes in out file.

The info part is different for each computational mode and status code. The
contents of the info part is defined as follows:

• Benchmark workunits (mode = b); the allowed status codes are:
◦ 0 - means the benchmark was successfull, the info part consist of two

lines: the first one contains the cracking speed in hashes per second (inte-
ger), the seconds one contains the total time of the benchmark (double).
The contents of the out are:

44



b
0
<cracking_speed(power)> - integer
<cracking_time > - double

◦ 4 - is used if an error occured during the benchmark. The info part con-
sist of two lines: the first one contains hashcat’s return code, the seconds
one contains the error message returned by hashcat. The contents of the
out are:

b
4
<hashcat_exit_codes > - integer
<hashcat_exit_info > - string (may be empty)

• Benchmark all workunits (mode = a); the allowed status codes are:
◦ 0 - means the complete benchmark was successfull at least for some hash

types. The info part consist of lines containing the number of a hash type
number, colon (:), and measured cracking speed in hashes per second:

a
0
<cracking_time > - double
<hash_type >:<cracking_speed >
<hash_type >:<cracking_speed >
<hash_type >:<cracking_speed >
...

If benchmarking of any hash type encountered an error, the cracking_speed
is set to 0.

◦ 4 - the benchmark was not successful for any hash type. This means
that no run of hashcat was successful. The info part contains the error
message returned by hashcat. The contents of the out are:

a
4
<hashcat_exit_info >

• Normal workunits (mode = n); the allowed status codes are:
◦ 0 - means the password was found for one or more hashes. The info part

consist of a line contaning the cracking time in hashes per second, and
one or more lines containing the cracked hash, a semicolon (:), and the
cracked password in hex form. The out file has the following contents:

n
0
<cracking_time > - double
<cracked_hash >:<password(hexa encoded)> - string
<cracked_hash >:<password(hexa encoded)> - string
<cracked_hash >:<password(hexa encoded)> - string
...

45



◦ 1 - no password was found within the workunit. The info part contains
the cracking speed in hashes per second. The out file has the following
contents:

n
1
<cracking_time > - double

◦ 3 - means the client has encountered an error due to incorrect inputs, and
thus hashcat was not able to start successfully. The info part contains
two lines. The first line contains the exit code of hascat, while the second
line contains the error message displayed by hashcat. The out file has
the following contents:

n
3
<hashcat_exit_code > - integer
<hashcat_error_info > - string

◦ 4 - means a computational error occured within the cracking. The info
part contains two lines. The first line contains the exit code of hascat,
while the second line contains the error message displayed by hashcat.
The out file has the following contents:

n
4
<hashcat_exit_code > - integer
<hashcat_error_info > - string

6.3 Trickle messages

Whereas previous sections described client-server communication done before
a workunit is started, and after the workunit is finished, the client-side also
informs the server about partial progress on currently-computer workunit. This
is performed in Runner subystem (see section 5.3) using BOINC Trickle message
API 31 which is used to send trickle messages to the server. The messages are
processed by the Trickler daemon (see section 4.13). Each trickle message has
the following syntax:

<workunit_name >wuName </ workunit_name >
<progress >wuProgress </progress >
<speed >wuSpeed </speed >

where wuName corresponds to the name of the workunit in BOINC workunit
tabe, wuProgress is a value from 0.0 to 100.0 defining the current progress on
the workunit, and wuSpeed stands for the cracking speed in hashes per second.

31 https://boinc.berkeley.edu/trac/wiki/TrickleApi

46

https://boinc.berkeley.edu/trac/wiki/TrickleApi


7 MySQL database

To store all cracking-related information, Fitcrack server (see section 4) uses
a MySQL database. At the time of writing this technical report, Fitcrack is
compatible with MySQL32 server 4.0.9 or higher, respectively MariaDB33 server
10.0 or higher. The database contains two types of tables:

• BOINC tables - created by BOINC make_project script and maintained
by BOINC server daemons: Transitioner, Scheduler, Feeder, and File Deleter
(see section 4). Fitcrack-specific subsystems use only read-only access to
these tables. BOINC tables are described in section 7.1.

• Fitcrack tables - created by SQL scripts of Fitcrack server, respectively
Fitcrack installer, and used by Fitcrack WebAdmin, Generator, Assimilator,
Validator, and Trickler. Fitcrack tables are described in section 7.2.

7.1 The overview of BOINC tables

BOINC tables respect the BOINC database scheme34. The most important ta-
bles are:

• platform - defining compilation targets of the core client and/or applica-
tions. The core client is treated as an application; its name is core_client.

• app_version - defining versions of client-side application binaries. Each
record contains an URL which the BOINC client uses for downloading the
binaries, and the MD5 checksum to verify application integrity.

• user - describes user accounts used by BOINC client/manager to authenti-
cate with Fitcrack server.

• host - lists all hosts, also referred to as clients, or cracking nodes. BOINC
Scheduler daemon automatically adds new record to the database, whenever
a new host is connected to the cracking network described in section 2.2.

• workunit - contains workunits, the smallest pieces of work assigned to hosts
in terms of BOINC. The records include the count of results linked to the
workunit, the number of workunits sent, succeeded, and failed.

• result - is filled with workunit results, whenever a result is dispatched by
a host. The reords store information about CPU time spent within the
workunit, exist status, and validation status.

There are also other tables used by the BOINC, defined on the BOINC website35.

32 https://www.mysql.com/
33 https://mariadb.org/
34 https://boinc.berkeley.edu/trac/wiki/DataBase
35 https://boinc.berkeley.edu/

47

https://www.mysql.com/
https://mariadb.org/
https://boinc.berkeley.edu/trac/wiki/DataBase
https://boinc.berkeley.edu/


7.2 The overview of Fitcrack tables

Besides the default BOINC tables, Fitcrack uses the following additional tables:

• fc_benchmark - tady bude nejaky popis
• fc_charset - character sets,
• fc_dictionary - password dictionaries,
• fc_hash - password hashes,
• fc_hcstats - Markov statistics files,
• fc_host - actively cracking hosts,
• fc_host_activity - mapping of hosts to jobs,
• fc_host_status - status of hosts,
• fc_job - cracking jobs,
• fc_job_dictionary - mapping dictionaries to jobs,
• fc_job_graph - points in job progress graph,
• fc_mask - password masks,
• fc_masks_set - sets of password masks,
• fc_notification - various notifications,
• fc_protected_file - input files to XtoHashcat,
• fc_role - user roles in WebAdmin,
• fc_rule - files with password-mangling rules,
• fc_settings - global server sertings,
• fc_user - user accounts in WebAdmin,
• fc_user_permissions - per-job user permissions,
• fc_workunit - workunits (chunks of keyspace).

7.3 fc_benchmark

The table is used to store benchmarking results of hosts. Each record represents
the cracking speed of given host and given hash algorithm. The structure of the
table is defined as follows:

• id - primary key,
• boinc_host_id - host ID in BOINC host table,
• hash_type - hashcat’s number36 of hash algorithm,
• power - measured cracking speed in hashes per second,
• last_update - time of last update of the record.

7.4 fc_charset

This table stores information about user-defined character sets used for brute-
force attack and hybrid attacks (see section 3). Each record corresponds to a sin-
gle charset file located in COLLECTIONS_ROOT/charsets directory. The structure
of the table is defined as follows:

• id - primary key,
• name - name of the charset (displayed in WebAdmin),
• path - the real name of the charset file,
• time - time the charset file was added to the system,
• deleted - flag (0/1) saying if the charset was deleted.

36 https://hashcat.net/wiki/doku.php?id=example_hashes

48

https://hashcat.net/wiki/doku.php?id=example_hashes


7.5 fc_dictionary

This table stores information about password dictionaries used for dictionary
attack and hybrid attacks (see section 3). Each record corresponds to a sin-
gle dictionary file located in COLLECTIONS_ROOT/dictionaries directory. The
structure of the table is defined as follows:

• id - primary key,
• name - name of the dictionary (display in WebAdmin),
• path - the real name of the dictionary file,
• keyspace - the number of passwords in the dictionary,
• time - time the dictionary was added to the system,
• deleted - flag (0/1) saying if the charset was deleted.
• modification_time - last modification time of the dictionary file; used for

decision, if the keyspace should be updated or not.

7.6 fc_hash

The table contains various hashes which are cracked within the jobs. Each record
stands for a single hash. The structure of the table is defined as follows:

• id - primary key,
• job_id - ID of the corresponding job fb_job table,
• hash_type - hashcat’s number defining the type of the hash,
• hash - the value of the hash,
• result - plaintext input defining the correct password, if found.
• added - time the hash was added to the system,
• time_cracked - time the hash was was cracked.

7.7 fc_hcstats

This table stores information about Markov .hcstat2 statistics files used for
brute-force and hybrid attacks (see section 3). Each record corresponds to a single
.hcstat2 located in COLLECTIONS_ROOT/markov directory. The structure of the
table is defined as follows:

• id - primary key,
• name - name of the Markov statistics file (displayed in WebAdmin),
• path - the real name of the .hcstat2 file,
• time - time the file was added to the system,
• deleted - flag (0/1) saying if the file was deleted.

49



7.8 fc_host

Is the table for storing information about active BOINC hosts (also referred to as
clients, or cracking nodes) which are currently working on a cracking job. Each
record represents an involvement of a host in a cracking job. In other words, the
table binds records in BOINC host table to the records in fc_job table. The
structure of the table is defined as follows:

• id - primary key,
• boinc_host_id - host ID in BOINC host table,
• power - cracking speed measured within host’s last benchmark,
• job_id - ID of the job, the host is currently working on,
• status - the status of the host’s involvement. Allowed states are:
◦ 0 - benchmark - the host is waiting for, or working on a benchmark,
◦ 1 - normal - the hosts is working on a cracking job,
◦ 2 - validation (currently not used) - the host was asked to validate if

a password is truly correct (NOTE: designed as a solution to untrusted
environment),

◦ 3 - done - the host has finished all work on the given job, and is not
participating on the job anymore,

◦ 4 - error - the host encountered an error during the computation,
• time - time the record was added to the database.

7.9 fc_host_activity

While fc_host table says which hosts are “currently working on” which job,
fc_host_activity says which host “should participate” in which job. The table
is strongly connected to host mapping section in Fitcrack WebAdmin. Every
time a user assings a host to a job, a new record in this table is created. The
structure of the table is defined as follows:

• id - primary key,
• boinc_host_id - host ID in BOINC host table,
• job_id - ID of the job, the host is mapped to.

7.10 fc_host_status

The table is used for displaying online/offline status of hosts in Fitcrack WebAd-
min. Each record represents a state of the host (cracking node). The structure
of the table is defined as follows:

• id - primary key,
• boinc_host_id - host ID in BOINC host table,
• last_seen - time the host was last seen online,
• deleted - flag (0/1) representing if the host is hidden from WebAdmin, or

not.

50



7.11 fc_job

The table is used to store cracking jobs. Each record represents a cracking job
with a defined attack mode, submode. Within a job, we have one or more hashes
(stored in fc_hash table) of the same hash type. The structure of the table is
defined as follows:

• id - primary key,
• token - unique identifier of a user WebAdmin session within which the job

was created. It is calculated as a SHA-256 hash of current timestamp con-
catenated with user’s IP address and job ID.
• attack_mode - attack mode (see section 3), a value from table 9,
• attack_submode - attack submode (see section 3), a value from table 10,
• hash_type - number of hashcat’s hash type,
• status - job status code, a value from table 9,
• keyspace - the real number of candidate passwords,
• hc_keyspace - hashcat’s normalized keyspace (see section 2.3),
• indexes_verified - nuber of processed hashcat-indexes form keyspace,
• current_index - keyspace index from which the next workunit will start,

a number in range 0..(hc_keyspace − 1). In combination attack, it is the
offset in the second dictionary,
• current_index_2 - offset in the first dictionary (for combination attack),
• time - time the job was added to the database,
• name - name of the job,
• comment - optional user comment,
• time_start - timestamp defining when the job should start,
• time_end - timestamp defining then the job has to end,
• cracking_time - total sum of host cracking times,
• seconds_per_workunit - time period for a workunit used in the adaptive

scheduling algorithm (see 2.4),
• config - WebAdmin-filled part of workunit config (see 6),
• dict1 - password dictionary no. 1,
• dict2 - password dictionary no. 2,
• charset1 - user-defined character set no. 1 in hex form,
• charset2 - user-defined character set no. 2 in hex form,
• charset3 - user-defined character set no. 3 in hex form,
• charset4 - user-defined character set no. 4 in hex form,
• rules - name of the file with password-mangling rules (for attack 01), or

NULL (for others),
• rule_left - left password-mangling rule (for attacks 11, 13),
• rule_right - right password-mangling rule (for attacks 11, 13),
• markov_hcstat - name of the Markov .hcstat2 file,
• markov_threshold - threshold liming the number of states processed within

the Markov model (0 = no limit aka “full brute-force”),
• replicate_factor - says how many hosts should work on a single workunit

(1 = no replication),
• deleted - flag (0/1) defining if the job was hidden, or not.

51



mode submode description
0 0 Basic dictionary attack
0 1 Dictionary attack with password-mangling rules
1 0 Basic combination attack
1 1 Combination attack with left rule
1 2 Combination attack with right rule
1 3 Combination attack with left and right rule
3 0 Basic brute-force attack
3 1 Brute-force attack with custom hcstat file using 2D Markov
3 2 Brute-force attack with custom hcstat file using 3D Markov

Table 9. Attack modes and submodes in Fitcrack

status name description
0 ready Job is ready to be started.
1 finished Job is finished, one or more hashes cracked.
2 exhausted Job is finished, no password found.
3 malformed Malformed due to incorrect input.
4 timeout Job was stopped due due to exceeded time_end.
10 running Computation is in progress.
11 validating Validating hashes. (not used)
12 finishing All keyspace assigned, some hosts still compute.

Table 10. Job status codes in Fitcrack

52



7.12 fc_job_dictionary

This allows Fitcrack to use multiple dictionaries within a dictionary or a com-
bination attack. Generator subsystem (see section 4.10) loads all dictionaries
which are not processed yet (current_index 6= keyspace in fc_dictionary),
and continuously creates fragments, as described in section 3. The structure of
the table is defined as follows:

• id - primary key,
• job_id - job ID in fc_jobs table,
• dictionary_id - dictionary ID in fc_dictionary table,
• current_index - current index in a dictionary,
• is_left - flag (0/1) defining it is a left dictionary in a combination attack.

7.13 fc_job_graph

The table is used for displaying progress graph in Fitcrack WebAdmin (see sec-
tion 4.2). Each record represents a point in the graph. The structure is defined
as follows:

• id - primary key,
• progress - job progress as a double between 0 and 1,
• job_id - job ID from fc_job table,
• time - time the point was added to the graph.

7.14 fc_mask

The table stores password masks which are used in a brute-force attack and
combination attacks, as described in section 3. Each record represents a single
password mask. The structure of the table is defined as follows:

• id - primary key,
• job_id - job ID from fc_job table,
• mask - the password mask,
• current_index - keyspace index from which the next workunit will start,

a number in range 0..(hc_keyspace− 1).
• keyspace - the real number of password candidates generated from the

mask,
• hc_keyspace - hashcat’s keyspace of the mask.

7.15 fc_masks_set

Since the WebAdmin allows to import and export set of masks in the form of
text files with .hcmask extension, it is necessary to store information about mask
files present in the system. Each record corresponds to a single mask file located
in COLLECTIONS_ROOT/masks directory. The structure of the table is defined as
follows:

53



• id - primary key,
• name - name of the mask set (displayed in WebAdmin),
• path - the real name of the mask set file,
• time - time the mask set was added to the system,
• deleted - flag (0/1) saying if the mask set file was deleted.

7.16 fc_notification

To inform the user about important events (e.g. cracking job is finished, etc.),
Fitcrack uses a system of notifications which are display in WebAdmin. Each
record in the table represents a single notification. The structure of the table is
defined as follows:

• id - primary key,
• user_id - ID of a recipient (in fc_user table) of the noficitaion,
• source_type - type of the source (0 = job, others not used yet),
• source_id - ID of the source, e.g. job ID from fc_job,
• old_value - original value (for notifications about value change),
• new_value - new value (for notifications about value change),
• seen - flag (0/1) saying if the recipient has seen the notification,
• time - time the notification was created in the system.

7.17 fc_protected_file

Since Fitcrack WebAdmin also supports password-protected files (e.g. encrypted
containers) as an input, it is necessary to store them in the database before the
files are processed by XtoHashcat tool (see section 4.8). Each record in the table
represents a single protected file. The structure of the table is defined as follows:

• id - primary key,
• name - name of the protected file (displayed in WebAdmin),
• path - the real name of the protected file,
• hash - hash exported from the file by XtoHashcat,
• hash_type - hashcat’s number defining the type of hash,
• time - time the protected file was added to the system.

7.18 fc_role

Each user of Fitcrack WebAdmin is assigned a role. The role defines user’s per-
missions - what the used is allowed to do. Each record represents a role defined
by ID, name and a list of permission flags. The structure of the table is defined
as follows:

• id - primary key,
• name - name of the role (e.g. administrator),
• MANAGE_USERS - flag (0/1) allowing the user to manage users and

roles,

54



• ADD_NEW_JOB - flag (0/1) allowing to add new jobs,
• UPLOAD_DICTIONARIES - flag (0/1) allowing the user to add new

password dictionaries to the system,
• VIEW_ALL_JOBS - flag (0/1) allowing the user to view all jobs,
• EDIT_ALL_JOBS - flag (0/1) allowing the user to edit all jobs,
• OPERATE_ALL_JOBS - flag (0/1) allowing the user to operate (start,

stop, restart, etc.) all jobs,
• ADD_USER_PERMISSIONS_TO_JOB - flag (0/1) allowing the

user to add job-specific permissions (NOTE: not implemented yet !).

7.19 fc_rule

In dictionary attack (see 3.1), the user can select a ruleset. Each ruleset has
the form of file containing a list of password-mangling rules. On client-side the
rules are applied to all candidate passwords. Each record in the table defines
a single file with password-mangling rules. The structure of the table is defined
as follows:

• id - primary key,
• name - name of the ruleset (displayed in WebAdmin),
• path - the real name of the ruleset file,
• time - time the ruleset was added to the system,
• deleted - flag (0/1) saying if the ruleset was deleted.

7.20 fc_settings

This table contains global settings of the Fitcrack server. The settings define
the behavior for creating and handling cracking jobs, as well as default values
of various job parameters. The table has only one record. The structure of the
table is defined as follows:

• id - primary key,
• delete_finished_workunits - flag (0/1, default: 0) defining if the system

should delete (1) or preserve (0) finished workunits,
• default_seconds_per_workunit - number of seconds (default: 3600)

specifying the default value for seconds_per_workunit job parameter,
• default_replicate_factor - the default value for replicate_factor job

parameter,
• default_verify_hash_format - flag (0/1, default: 1) defining if WebAd-

min should verify the format of input hashes using HashValidator tool (see
section 4.6),

• default_check_hashcache - flag (0/1, default: 1) defining if the system
should search for each has in the already cracked hashes before it starts
cracking,

• default_workunit_timeout_factor - the number (default: 1) multiply-
ing the workunit timeout - the time after a workunit is considered failed
(and re-assignedú, if no result is received.

• default_bench_all - flag (0/1, default: 1) - defining if the newly-connected
hosts should perform the complete benchmark, as described in section 6.

55



7.21 fc_user

This table is used to store accounts of users who have access to Fitcrack We-
bAdmin. Each record represents a single user account with a given username,
e-mial, password, and role. The structure of the table is defined as follows:

• id - primary key,
• username - name of the user,
• password - hash of user password created using PBKDF2 with 50000 iter-

ations of SHA-256 algorithm,
• mail - e-mail address of the user,
• role_id - ID of user’s role (from fc_role table),
• deleted - flag (0/1) saying if the user was deleted.

7.22 fc_user_permissions

The table is designed to store per-job (non-global) user permisions, however this
feature has not been implemented yet. Each record represents a permission of
a user to do specific operation with a specific job. The structure of the table is
defined as follows:

• id - primary key,
• job_id - ID of the job (from fc_job) which is operated,
• user_id - ID of the user (from fc_user),
• view - flag (0/1) allowing the user to view the job,
• modify - flag (0/1) allowing the user to modify the job,
• operate - flag (0/1) allowing the user to operate the job,

7.23 fc_workunit

In Fitcrack, a workunit is a single piece of cracking work. Workunits are cre-
ated continuously by the Generator daemon. Every workunit belongs to a job
from which the workunit was created. Every record in fc_workunit table is con-
nected to an existing record in BOINC workunit table. Each record represents
a workunit created within a given job. The structure of the table is defined as
follows:

• id - primary key,
• job_id - ID of a job in fc_job table,
• workunit_id - ID of a record in BOINC workunit table,
• host_id - ID of a host to which the workunit is assigned,
• boinc_host_id - BOINC ID of the host,
• start_index - starting password index from the job keyspace (imin value

from section 2.3); defines where the computation starts; in combination at-
tack, the value represents the offset in the second dictionary,

• start_index_2 - offset for the first dictionary in combination attack (see
section 3.2),

56



• hc_keyspace - hashcat’s keyspace of the workunit,
• progress - host’s progress on the workunit (value between 0 and 1),
• mask_id - ID of a mask, if used,
• dictionary_id - ID of a dictionary, if used,
• duplicated - flag (0/1) defining if the job was split to multiple ones due to

exceeded timeout (currently not ued),
• duplicate - if duplicated=1, contains the ID of the original workunit,
• time - time the workunit was added to the database,
• cracking_time - time spend by the host by computing the workunit,
• retry - flag (0/1) defining if it is a re-assigned workunit,
• finished - flag (0/1) defining if the workunit was completed.

57



8 Conclusion

Fitcrack is a software system for distributed password cracking, also referred
to as password recovery. It uses BOINC as a framework for task-distribution,
and hashcat as the client-side cracking engine. The technical report described
the basic principles of hash cracking, task distribution, and most importantly -
described the design of the proposed system.

All other relevant information is located on Fitcrack website37. The most
recent version of Fitcrack is located on NES@FIT GitHub page38

References

[1] Adobe Systems Incorporated. Document management — Portable docu-
ment format — Part 1: PDF 1.7. 32000-1:2008. Geneva, Switzerland: ISO,
July 2008.

[2] D. P. Anderson. “BOINC: a system for public-resource computing and
storage”. In: Grid Computing, 2004. Proceedings. Fifth IEEE/ACM Inter-
national Workshop on. Nov. 2004, pp. 4–10.

[3] Corel Corporation. AES Encryption Information: Encryption Specification
AE-1 an AE-2. Version 1.04. Jan. 2009.

[4] Peter Gazdík. “Use of Heuristics for Password Recovery with GPU Acceler-
ation”. Czech. Bachelor’s thesis. Brno, CZ: Faculty of Information Technol-
ogy, Brno University of Technology, 2015. url: http://www.fit.vutbr.
cz/study/DP/BP.php?id=18210.

[5] Radek Hranický, Martin Holkovič, Petr Matoušek, and Ondřej Ryšavý.
“On Efficiency of Distributed Password Recovery”. In: The Journal of Dig-
ital Forensics, Security and Law 11.2 (2016), pp. 79–96. issn: 1558-7215.
url: http://www.fit.vutbr.cz/research/view_pub.php.cs?id=
11276.

[6] Radek Hranický, Petr Matoušek, Ondřej Ryšavý, and Vladimír Veselý.
“Experimental Evaluation of Password Recovery in Encrypted Documents”.
In: Proceedings of ICISSP 2016. Roma, IT: SciTePress - Science and Tech-
nology Publications, 2016, pp. 299–306. isbn: 978-989-758-167-0. url: http:
//www.fit.vutbr.cz/research/view_pub.php.cs?id=11052.

[7] Radek Hranický, Lukáš Zobal, Vojtěch Večeřa, and Petr Matoušek. “Dis-
tributed Password Cracking in a Hybrid Environment”. In: Proceedings of
SPI 2017. Brno, CZ: University of defence in Brno, 2017, pp. 75–90. isbn:
978-80-7231-414-0. url: http://www.fit.vutbr.cz/research/view_
pub.php?id=11358.

[8] Ryan Lim. “Parallelization of John the Ripper (JtR) using MPI”. In: Ne-
braska: University of Nebraska (2004).

37 https://fitcrack.fit.vutbr.cz/
38 https://github.com/nesfit/fitcrack

58

http://www.fit.vutbr.cz/study/DP/BP.php?id=18210
http://www.fit.vutbr.cz/study/DP/BP.php?id=18210
http://www.fit.vutbr.cz/research/view_pub.php.cs?id=11276
http://www.fit.vutbr.cz/research/view_pub.php.cs?id=11276
http://www.fit.vutbr.cz/research/view_pub.php.cs?id=11052
http://www.fit.vutbr.cz/research/view_pub.php.cs?id=11052
http://www.fit.vutbr.cz/research/view_pub.php?id=11358
http://www.fit.vutbr.cz/research/view_pub.php?id=11358
https://fitcrack.fit.vutbr.cz/
https://github.com/nesfit/fitcrack


[9] Dávid Mikuš. “Password Recovery of RAR, BZIP, and GZIP Archives
Using GPU”. Czech. Bachelor’s thesis. Brno, CZ: Faculty of Information
Technology, Brno University of Technology, 2015. url: http://www.fit.
vutbr.cz/study/DP/BP.php?id=18740.

[10] Arvind Narayanan and Vitaly Shmatikov. “Fast Dictionary Attacks on
Passwords Using Time-space Tradeoff”. In: Proceedings of the 12th ACM
Conference on Computer and Communications Security. CCS ’05. Alexan-
dria, VA, USA: ACM, 2005, pp. 364–372. isbn: 1-59593-226-7. doi: 10.
1145/1102120.1102168. url: http://doi.acm.org/10.1145/1102120.
1102168.

[11] Andy Pippin, Brent Hall, and Wilson Chen. Parallelization of John the
Ripper Using MPI (Final Report). Tech. rep. 2006.

[12] Niels Provos and David Mazieres. “A Future-Adaptable Password Scheme.”
In: USENIX Annual Technical Conference, FREENIX Track. 1999, pp. 81–
91.

[13] RAR file format. [Online; accessed 2017-01-03]. url: http://acritum.
com/winrar/rar-format.

[14] R. Rivest. The MD5 Message-Digest Algorithm. Tech. rep. 1321. Updated
by RFC 6151. Apr. 1992. url: http://www.ietf.org/rfc/rfc1321.txt.

[15] V. L. Thing and H.-M. Ying. “Making a faster cryptanalytic time-memory
trade-off”. In: Advances in Cryptology (2003), pp. 617–630.

[16] Vojtěch Večeřa. “Password Recovery of ZIP Archives Using GPU”. Czech.
Bachelor’s thesis. Brno, CZ: Faculty of Information Technology, Brno Uni-
versity of Technology, 2015. url: http://www.fit.vutbr.cz/study/DP/
BP.php?id=18211.

[17] X. Wu, J. Hong, and Y. Zhang. “Analysis of OpenXML-based office en-
cryption mechanism”. In: 2012 7th International Conference on Computer
Science Education (ICCSE). July 2012, pp. 521–524. doi: 10.1109/ICCSE.
2012.6295128.

[18] Lukáš Zobal. “Microsoft Office Password Recovery Using GPU”. Czech.
Bachelor’s thesis. Brno, CZ: Faculty of Information Technology, Brno Uni-
versity of Technology, 2015. url: http://www.fit.vutbr.cz/study/DP/
BP.php?id=18341.

59

http://www.fit.vutbr.cz/study/DP/BP.php?id=18740
http://www.fit.vutbr.cz/study/DP/BP.php?id=18740
https://doi.org/10.1145/1102120.1102168
https://doi.org/10.1145/1102120.1102168
http://doi.acm.org/10.1145/1102120.1102168
http://doi.acm.org/10.1145/1102120.1102168
http://acritum.com/winrar/rar-format
http://acritum.com/winrar/rar-format
http://www.ietf.org/rfc/rfc1321.txt
http://www.fit.vutbr.cz/study/DP/BP.php?id=18211
http://www.fit.vutbr.cz/study/DP/BP.php?id=18211
https://doi.org/10.1109/ICCSE.2012.6295128
https://doi.org/10.1109/ICCSE.2012.6295128
http://www.fit.vutbr.cz/study/DP/BP.php?id=18341
http://www.fit.vutbr.cz/study/DP/BP.php?id=18341

	The architecture of Fitcrack distributed password cracking system
	Radek Hranický, Lukáš Zobal, Vojtěch Večeřa, Matúš Múčka
	Introduction
	Terminology
	Structure of the document

	Overview
	Password cracking process
	The cracking network
	Task distribution
	Adaptive scheduling
	The architecture of client and server

	Attack modes
	Dictionary attack
	Combination attack
	Brute-force attack
	Hybrid attacks

	Server-side subsystems
	Server directory structure
	WebAdmin
	WebAdmin frontend
	WebAdmin backend
	hashcat
	Hashvalidator
	maskprocessor
	XtoHashcat
	hcstat2gen
	Generator
	Validator
	Assimilator
	Trickler
	Transitioner
	Scheduler
	Feeder
	File deleter

	Client-side subsystems
	BOINC Client
	BOINC Manager
	Runner
	hashcat

	Client-server communication
	Files transferred from server to client
	Files transferred from client to server
	Trickle messages

	MySQL database
	The overview of BOINC tables
	The overview of Fitcrack tables
	fc_benchmark
	fc_charset
	fc_dictionary
	fc_hash
	fc_hcstats
	fc_host
	fc_host_activity
	fc_host_status
	fc_job
	fc_job_dictionary
	fc_job_graph
	fc_mask
	fc_masks_set
	fc_notification
	fc_protected_file
	fc_role
	fc_rule
	fc_settings
	fc_user
	fc_user_permissions
	fc_workunit

	Conclusion
	References



