
BRNO UNIVERSITY OF TECHNOLOGY

Faculty of Information Technology

HABILITATION THESIS

Brno, 2018 Ing. Jan Kořenek, Ph.D.

BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF COMPUTER SYSTEMS

ÚSTAV POČÍTAČOVÝCH SYSTÉMŮ

HARDWAREACCELERATION INCOMPUTERNETWORKS
HARDWAROVÁ AKCELEARCE V POČÍTAČOVÝCH SÍTÍCH

HABILITATION THESIS

HABILITAČNÍ PRÁCE

AUTHOR Ing. JAN KOŘENEK, Ph.D.

AUTOR PRÁCE

BRNO 2018

Abstract
The speed of network traffic processing is a crucial parameter for most devices and systems,
because any packet drop can cause lower quality of network services, affect precise mon-
itoring or disallow detection of security threats. General purpose processors are not able
to process all data on high-speed network links. For 100 Gbps links, every packet has to
be processed in less than 5 ns. Network devices widely use hardware acceleration to speed
up time-critical operations. Therefore, this thesis deals with five widely used time-critical
operations together with corresponding hardware architectures, which are able to achieve
wire-speed 10, 40 or even 100 Gbps throughput. In particular, the thesis deals with packet
parsing and header fields extraction, longest prefix matching (IP look-up), packet classifica-
tion, pattern matching and deep packet inspection. All these operations are widely used in
precise network monitoring systems, network security devices and also in the infrastructure
of data centres. The thesis introduces how deep pipelines, perfect hashing and pipelined au-
tomata can help to achieve 100 Gbps throughput and decrease hardware resources. A novel
concept is introduced to accelerate deep packet inspection. The concept provides software
flexibility together with high performance, because fast packet processing is controlled at
the level of flows by software modules. Moreover, proposed concept and hardware archi-
tectures are used in hardware accelerated network security and monitoring devices, which
has been transferred to successful commercial products and used to monitor and protect
CESNET2 academic network.

Keywords
Hardware, acceleration, networks, monitoring, security, Ethernet, FPGA, card.

Abstrakt
Rychlost zpracování síťové provozu je pro většinu síťových zařízení klíčovým parametrem,
neboť při velkém objemu dat a nízké výkonnosti zařízení může docházet ke ztrátám paketů.
Ztráta paketu se pak sekundárně může projevit nižší kvalitou poskytovaných služeb, nižší
přesností monitorování sítě nebo může zamezit detekci bezpečnostních hrozeb. Současné
procesory nejsou dostatečně výkonné pro zpracování síťového provozu na dnešních vysoko-
rychlostních síťových linkách. Pro zpracování síťového provozu na rychlosti 100 Gb/s musí
být každý paket zpracován za méně než 5 ns. Aby bylo možné zajistit zpracování paketu
v takto krátkém čase, využívají síťová zařízení k urychlení časově kritických operací hard-
warovou akceleraci. Práce se proto zabývá hardwarovou akceleraci pěti nejčastěji použí-
vanými časově kritickými operacemi a představuje hardwarové architektury, které jsou
schopny zajisti pro tyto operace zpracování síťového provozu na plné rychlosti 100 Gb/s.
Konkrétně se jedná o operace pro analýzu a extrakci položek z hlaviček paketů, operaci
hledání nejdelšího společného prefixu (prefixů IP adres), klasifikaci paketů, hledání řetězců
a o analýzu na úrovni aplikačních protokolů. Všechny tyto operace se používají v systémech
pro přesné monitorování sítí, bezpečnostních zařízeních, ale například i v infrastruktuře
datových center. Práce ukazuje jak je možné s využitím hlubokých zřetězených linek, per-
fektních hash funkcí a zřetězených automatů dosáhnout plné propustnosti 100 Gb/s a snížit
nároky na hardwarové zdroje. Současně je představen nový koncept pro analýzu síťového
provozu na úrovni aplikačních protokolů. Navržený koncept poskytuje kromě vysoké výkon-
nosti flexibilitu na úrovni softwarového zpracování, neboť hardwarová akcelerace je řízena
na úrovni síťových toků pomocí softwarových modulů. Navržený koncept a hardwarové
architektury byly již použity pro urychlení monitorovacích a bezpečnostních nástrojů, byly
integrovány do několika komerčně úspěšných zařízení a jsou využity i pro ochranu a moni-
torování akademické sítě CESNET2.

Klíčová slova
Hardware, akcelerace, sítě, monitorování, bezpečnost, Ethernet, FPGA, card.

Reference
KOŘENEK, Jan. Hardware Acceleration in Computer Networks. Brno, 2018. Habilitation
thesis. Brno University of Technology, Faculty of Information Technology.

4

Hardware Acceleration in Computer Networks

Declaration
Hereby I declare that this habilitation’s thesis was prepared as an original author’s work.
All the relevant information sources, which were used during preparation of this thesis, are
properly cited and included in the list of references.

. .
Jan Kořenek

March 18, 2018

Acknowledgements
I would like to thank Prof. Ing. Lukáš Sekanina, Ph.D. for his professional help and advices
in making this work. I would also like to thank all people from Cesnet for their valuable
comments, especialy to Viktor Puš, Lukáš Kekely and Jiří Matoušek.

Contents

1 Introduction 2
1.1 Research Area . 3
1.2 Research Objectives . 4
1.3 Thesis Outline . 5

2 State of the Art 6
2.1 Packet Parsing . 7
2.2 Longest Prefix Matching . 9
2.3 Packet Classification . 11
2.4 Pattern Matching . 13
2.5 Deep Packet Inspection . 14

3 Research Summary 16
3.1 Papers . 18

3.1.1 Paper I . 18
3.1.2 Paper II . 19
3.1.3 Paper III . 19
3.1.4 Paper IV . 20
3.1.5 Paper V . 21
3.1.6 Paper VI . 21

3.2 List of Publications . 23

4 Discussion and Conclusions 26
4.1 Results . 26
4.2 Deployment and Usage . 29
4.3 Conclusions . 31
4.4 Future Work . 32

Bibliography 33

A Included Papers 39
A.1 Paper I . 39
A.2 Paper II . 46
A.3 Paper III . 53
A.4 Paper IV . 62
A.5 Paper V . 70
A.6 Paper VI . 79

1

Chapter 1

Introduction

First computer networks are dated to 1960, when the US Department of Defence started
ARPANET project to build robust, fault-tolerant communication networks. The ARPANET
project has been evolved to current Internet in 1990s, when ARPANET connected com-
mercial networks and enterprises. People started to use Internet for communication by
electronic mail, instant messaging and other applications and services. Now, the Internet
has significant impact on culture, commerce and technology.

In the last 5 years the volume of network traffic has grown 12 times [34] and a similar
rate of growth is even expected to persist in next years. The significant increase of network
traffic in recent years is mostly caused by new video on demand services and Internet of
Things (IoT). It is predicted that more than 50 billions IoT devices will be connected to
the Internet in 2020, which will produce large volumes of data and significantly increase
the amount of traffic on network links to data centres.

As the amount of network traffic is growing very fast, large Internet service providers
(ISPs) started to upgrade backbone links to 40 Gb and 100 Gb Ethernet. Data centres need
to connect top of rack switches by 100 Gb links and call for 1 Tb Ethernet, because most of
network links are fully saturated. The increasing speed of network links has a direct impact
to the architecture of network devices. Network devices must be faster and more powerful.

High-speed packet processing is important especially in network security and monitor-
ing systems, where any packet drop can decrease precision of monitoring or avoid detection
or mitigation of malicious traffic. Security systems have many time-critical operations.
Fast pattern matching is used in Intrusion Detection Systems (IDS) [51, 19] to detect se-
curity threats, deep packet inspection is needed to analyse application protocols [28] and
fast packet filters are needed to mitigate Distributed Denial-of-service attacks (DDoS) in
scrubbing centres. All these operations are computationally intensive and current gen-
eral purpose processors (CPUs) cannot guarantee for these operations wire-speed 100 Gbps
throughput [12].

Fast packet processing is also required in modern data centres, where high power con-
sumption has a direct impact to the operational cost. Therefore, the goal of every data
centre is to decrease power consumption. FPGA based network interface cards can acceler-
ate network applications and increase performance of single server. Then target application
would require for the same performance less servers and power consumption is reduced.
Therefore, data centres started to use FPGA based acceleration cards in order to scale
up the performance and reduce power consumption [20, 50, 53]. These cards need high
performance hardware architectures for wire-speed packet processing.

2

In recent years, the hardware acceleration in data centres is highly focused on Open
vSwitch (OVS) [52], which is necessary to run network functions in the virtual environment,
but has very low performance [31]. Packet capture and distribution to virtual machines
consume a lot of processor cycles and slow down functions in virtual machines. The perfor-
mance of OVS can be increased by hardware accelerated network interface cards [48] with
autonomous distribution of packets to virtual machines. Unfortunately, such cards have to
provide wire-speed packet parsing and header fields extraction (IP addresses, TCP/UDP
ports, Protocols, etc.) together with the classification and distribution of packets to target
virtual machines. As all these operations have to be implemented in the card, corresponding
hardware architectures and cards have to be designed.

As application services in data centres have to respond to user requests in a very short
time, network infrastructure has to be optimised not only to high throughput, but also to
low latency. Current CPUs cannot achieve low latency and 100 Gbps throughput [12, 31].
To achieve wire-speed 100 Gbps throughput every packet has to be processed within only
5 ns. It means that a single CPU core has only a few instructions to process a packet, which
is a strong limitation to build any system for 100 Gbps networks. Therefore CPUs cannot be
used at these speeds for precise network monitoring, security systems, low latency devices
or high performance OVS switches.

In order to achieve wire-speed 100 Gbps throughput, network systems have to utilize
FPGA or ASIC technology. FPGA technology provides high performance and is highly
configurable as well. ASIC chips are powerful, but they have limited flexibility. Once the
ASIC chip is produced, the function cannot be modified. Nevertheless, the flexibility is
essential for any network system, because network traffic processing is changing with every
new protocol, application or service. Therefore, 40 Gbps network interface cards with FP-
GAs started to by deployed to data centers as a hardware platform for the acceleration [20]
and will be probably more and more frequntly used in the future.

We can see that the demand for hardware acceleration is rising with the 100 Gbps
Ethernet technology. New hardware architectures have to be designed to accelerate network
functions for precise monitoring, security systems, OVS switches, services in data centres
and other network applications. Moreover, these applications need new 100 Gbps FPGA
based network interface cards to provide new hardware platform for the acceleration.

1.1 Research Area
The research is focused on high-speed network traffic processing, where hardware acceler-
ation is needed to achieve wire-speed 100 Gbps throughput. In computer networks, there
are many time-critical operations, which have to be performed on every input packet.
The most frequently used time-critical operations are packet parsing, packet classification,
pattern matching and also deep packet inspection (L7 analysis). Many hardware architec-
tures [25, 59, 32, 60, 18, 62, 17, 29] have been introduced for packet processing in 10 Gbps
networks. Unfortunately, these architectures are not able to scale up the processing speed
to 100 Gbps and naive parallel processing causes packet reordering and large buffers. Thus
new hardware architectures have to be designed. It is important to note that every packet
has to be processed within only 5 ns to achieve wire-speed 100 Gbps throughput. Therefore,
hardware architectures have to be highly optimised to processing speed.

Packet parsing is needed in every network device to analyse packet headers and extract
important header fields (IP addresses, TCP/UDP ports, etc.). This time-critical operation
has been accelerated on an FPGA by Brebner [5], but introduced architecture has a very

3

long latency and utilizes a lot of hardware resources. As packet parsing is only the first
stage of any network traffic processing, it has to utilize only small portion of the FPGA
chip. Therefore, it is necessary to reduce FPGA logic utilization and the amount of pipeline
stages for latency sensitive applications.

Packet classification [33, 32, 60, 43, 6, 56] is widely used to control packet filtering,
cropping and modification, but it can be used as well to measure statistics, redirect network
traffic or for any other application working on the third network layer (L3). The operation
is controlled by classification rules. To support many rules it is necessary to use an off-
chip memory. Therefore, it is important to design a hardware architecture with wire-speed
100 Gbps throughput and utilize off-chip memory to support large ruleset.

Many network security and monitoring devices need to provide analysis of network traffic
at the application level (L7). Pattern matching is often used to detect security threats, user
identifiers or application protocols. Many hardware architectures [59, 25, 62, 70, 42, 11, 69]
have been developed to accelerate pattern matching in IDS systems. As IDS systems have
a large set of regular expressions, many papers [7, 11, 42, 62, 70] introduced reductions of
memory or hardware resources in order to use a smaller FPGA or support more regular
expressions. Multi-striding [18, 9] and spatial-stacking [67] techniques have been introduced
to scale up the processing speed. Unfortunately, wire-speed 100 Gbps throughput hasn’t
been achieved.

As regular expressions have a limited descriptive power, more precise L7 analysis use
libraries or modules implemented in C language [28]. These libraries are usually based
on a more computational powerful model and cannot be easily mapped into the FPGA.
Nevertheless, L7 analysis is time consuming and wire-speed 100 Gbps throughput can be
achieved only with a hardware acceleration.

We can see that many network applications need hardware acceleration for 100 Gbps
wire-speed processing. To increase the processing speed, new hardware architectures have
to be designed for packet parsing, packet classification, pattern matching and deep packet
inspection. These time-critical operations can accelerate for example Flow monitoring,
IDS/IPS systems, systems with deep packet inspection, firewalls, load balancers, DDoS
mitigation systems or OVS switches.

1.2 Research Objectives
The main research objective for this thesis is to

“design hardware architectures for wire-speed 100 Gbps packet processing in order to
accelerate network applications and systems for large ISPs and data centres.”

The hardware architectures must cover the most frequently used time-critical operations
in computer networks and must be optimised for FPGA technology to process all network
traffic on 100 Gbps link without any packet drop. Moreover, all designed architectures must
provide high flexibility. High flexibility is needed especially for the processing of application
protocols and also in security systems, where a fast response to new security treats is needed.
Therefore, all hardware architectures must be easily customizable and configurable.

The second very important requirement is the low utilization of hardware resources. In
order to accelerate network applications many network functions, have to be placed inside
the FPGA at the same time. Therefore, the hardware architectures must be optimised to
use as low FPGA resources as possible.

4

A very important requirement is to provide an FPGA based hardware platform, which
ensures the feasibility of hardware acceleration using designed architectures. The goal is to
provide technology for 100 Gbps networks to accelerate individual network functions and
also complete systems for large ISPs or data centres.

1.3 Thesis Outline
The thesis is composed as a collection of papers. The research contribution of this thesis is
thus constituted by six peer-reviewed research papers, in their original publication format.
The thesis is organised as follows: Chapter 1 (this chapter) gives an introduction to the
thesis. Chapter 2 surveys the state of the art, and presents relevant background information
for the research. Chapter 3 summarises the research process and gives an overview over the
papers constituting the research contribution. Finally, Chapter 4 presents conclusions and
proposes future research directions.

5

Chapter 2

State of the Art

As the speed of network links is growing very fast, the infrastructure, security and moni-
toring tools need more and more computational resources. New algorithms and hardware
architectures have to be designed to achieve wire-speed 100 Gbps packet processing. We can
see in Figure 2.1 that the time to process packets is decreasing with the speed of network
links. To achieve 100 Gbps speed, network applications have to process every packet in less
than 5 ns, which corresponds to 18 CPU cycles for CPU running at 3.6 GHz.

Current processors are not able to process all network traffic at wire-speed on 10, 40 or
100 Gbps links. In order to scale up the processing speed, network devices and applications
often use a hardware acceleration. The hardware acceleration is usually focused on time-
critical operations, which consume most of the processor time and decrease a throughput
of network applications and systems. Therefore our research is focused on a hardware
acceleration of five most widely used time-critical operations in computer networks:

Packet Parsing and Header Field Extraction – has to be performed by all network
devices in order to gather a specific information from network packets like IP ad-
dresses, Ports, beginning of L7 layer etc. As the speed of network links is increasing
rapidly, a high speed packet parsing is required. Many network devices perform the
packet parsing by multi-core network processors. Unfortunately, 100 Gbps throughput
can be achieved only if the packet parsing is done in a hardware [17, 37, 27, 39, 5, 54].

Longest Prefix Matching (LPM) – refers to algorithms used by many network devices
to select the most specific table entry (prefix), which matches an IP address of the
input packet. The LPM operation is typically being performed by routers to match

������ ������������

����

���������� ������� ���������������������������

��������� ������� ���������������������������

��������� ������� ����������������������������

�������� �������� ����������������������������

��������������
���������
����������
�������

Figure 2.1: Time to process the shortest packet for different speeds of network links.

6

the most specific entry in a forwarding table, but it can be utilized by firewalls and
other devices. Many hardware architectures have been designed to accelerate the
longest prefix matching [30, 61, 44, 58, 47], but the IPv6 protocol and a growing
speed of network links require new high-speed LPM algorithms with low memory
utilization.

Packet Classification – is used in many network devices such a firewalls, IDS or IPS
systems. During the classification packets are matched with a set of rules, which are
usually defined by values, ranges or prefixes of packet header fields. Generally, the
classification is a mathematical problem of a multidimensional range search. Due to
the rule set size and complexity of rules, it is very difficult to match all rules in less
than 5 ns and achieve 100 Gbps throughput. Many hardware architectures have been
designed to accelerate the packet classification [64, 32, 60, 45, 29, 55, 40].

Pattern Matching – matches a set of patterns in a packet payload. The patterns are
often described by strings or by regular expressions. It is a time-critical operation
widely used for an identification of application protocols or a detection of malicious
traffic in IDS/IPS systems [19, 51]. Current processors are not able to achieve gigabit
speed [12] for a large set of strings or regular expressions, even if they use the fastest
algorithms. Therefore, many hardware architectures [59, 25, 62, 70, 42, 11, 69] have
been proposed to accelerate the string or regular expression matching.

Deep Packet Inspection – is required for a precise analysis of network traffic at the ap-
plication level. Although the pattern matching has been widely adopted by security
systems, the descriptive power of strings or regular expressions is limited. Therefore,
Deep Packet Inspection (DPI) libraries [28] started to use software modules imple-
mented in a C language. These modules need for the high-speed packet processing a
hardware acceleration, but cannot be easily implemented in a hardware. As the soft-
ware implementation of modules can be easily adjusted to the target application and
a hardware can increase processing speed, a new hardware/software codesign concept
would be appropriate for a precise DPI acceleration.

Time-critical operations have been addressed by many research papers. The common
goal is to increase the processing speed with reasonable hardware resources. The following
sections describe the state-of-the-art for all five operations and provide an information
about the scalability of hardware architectures to 100 Gbps throughput.

2.1 Packet Parsing
The packet parsing performs an analysis of packet headers in order to extract header fields
for a further packet processing (IP lookup, packet filtering, etc.). The processing is shown
in Figure 2.2. The input is a packet and the output is an extracted set of header fields.
The analysis is driven by the description of protocols, which is usually transformed to the
configuration of packet parser. The configuration is stored in the memory or hardwired in
the architecture.

The first packet parser has been introduced by Braun et al. [17], who employs the
onion-like structure of hand-written protocol wrappers to parse packets. However, due to
the 32-bits-wide data path and an old FPGA, the parser achieves only 2.6 Gbps throughput.

7

������
��������
��������

������
������

����������

������� ����

������������

��������

������

�������

����

���������
������
������

Figure 2.2: Packet parsing and header field extraction.

There is no extensive concept of a common interface for module reuse. It is unclear how
the parser scales for a wider data path in order to achieve a higher throughput.

Dedek et al. [27] utilizes a high-level Handel-C language to describe the process of packet
parsing, but implementation details are not disclosed. The reported speed of 1 454 Mbps
implies that a rather narrow data bus (probably 16 bit) was used. Therefore, the concern is
about the scalability in terms of both an effective description in a Handel-C language and an
effective compilation to a hardware for much wider data words. This work also demonstrates
that using processors for the packet parsing gives poor results. Compared to the Handel-
C implementation, a custom RISC processor designed specifically for the packet parsing
occupies roughly the same chip area, but achieves only a half of the throughput. A solution
based on the MicroBlaze [3] processor (which is not optimized for the packet parsing)
requires double resources and brings only 5.7 % throughput compared to the Handel-C
solution.

Attig and Brebner [5] have utilized domain-specific Packet Parsing (PP) language to
describe the structure of packet headers and the methods specifying the parsing rules. The
description is then compiled from the PP language to a highly pipelined implementation.
However, the results indicate that the price for a convenient design entry is the chip area and
the latency. Most parsers with 1024-bit datapath use over 10 % of the resource-abundant
Xilinx Virtex-7 870HT FPGA [4] and the latency varies from 292 to 540 ns.

The Kangaroo system [39] uses RAM to store the packets and employs the on-chip
CAM to perform a look ahead, which is a process of loading several fields from the packet
memory at once, allowing to parse several packet headers in a single cycle. The dynamic
programming algorithm is used to precompute data structures, so that the parsing of the
longest paths in a parse tree is the most accelerated operation by the look ahead, as it
is impractical to perform the look ahead for all the possible protocol combinations. This
approach has the architectural limitation of storing the packets in the memory and accessing
them afterwards. The memory soon becomes a bottleneck.

Although many hardware architectures have been presented to accelerate the packet
parsing, only Brebner introduced a hardware architecture for 100 Gbps links. Unfortunately,
the architecture has a very high latency and utilizes a lot of hardware resources. Therefore,
it is necessary to focus further research on the design of new architectures that will be highly
optimized for the utilization of hardware resources, while providing a sufficient flexibility
and a low latency.

8

2.2 Longest Prefix Matching
Longest prefix matching (LPM) is a time-critical operation, which is used in routers to
determine an output port based on the packet destination IP address. This operation looks
up an entry in a forwarding table and provides as a result the entry containing the longest
prefix equal to the packet destination IP address. LPM is used not only in routers, but also
in packet filters, load balancers, OpenFlow switches and next generation firewalls.

Routers and other networking devices have to process 156 millions packets per second
to achieve wire-speed 100 Gbps throughput. It means that the LPM results have to be
produced every 5 ns, which is impossible to achieve without a dedicated hardware [58].
However, such architectures usually suffer from slow and energy intensive accesses to an
external memory. In order to achieve wire-speed 100 Gbps throughput and a low power
consumption, it is necessary to store the forwarding table in an on-chip memory.

The majority of LPM algorithms is based on a trie data structure. It encodes a set of
prefixes from a forwarding table into a binary tree. Each node of the tree has up to two
pointers to child nodes where left and right child nodes represent prefixes created from the
parent’s prefix by appending 0 and 1, respectively. LPM is then performed by traversing
the trie from the root to leaves according to bit values of a packet’s destination address
taken from the most significant bit to the least significant bit. The last prefix node visited
during such traversal represents the longest matching prefix.

The trie data structure is well designed to implement adding, removing and matching
operations. However, because of the high number of pointers, the trie is not a memory
efficient representation of a prefix set. Moreover, it does not scale well with the length of
the destination IP address, because it allows processing of only one input bit in each step.
An example of the trie data structure is shown in Figure 2.3. It can be seen that the depth
of the tree corresponds to the longest prefix in the data set. The maximum depth is 32
nodes for the IPv4 and 128 nodes for the IP6. If the algorithm checks at once only one
node, many processing steps are needed to match one IP address and 100 Gbps throughput
cannot be achieved. To increase processing speed multiple trie nodes (bits) have to be
checked at once in a single step.

Figure 2.3: Tree Bitmap mapping and encoding.

In order to allow processing of multiple input bits per a step, multibit tries have been
proposed. Tree Bitmap (TBM) [30] is one of the best known implementations of the multibit
trie approach. Prefixes from a forwarding table are within TBM stored in a 2𝑆𝐿 tree, where
each TBM node can contain up to 2𝑆𝐿−1 trie nodes. The parameter 𝑆𝐿 is called the stride

9

length and specifies the number of input bits processed in each step. Mapping TBM nodes
with 𝑆𝐿 = 3 to the trie is shown in Figure 2.3 together with the TBM node structure.

The node contains two pairs consisting of a bitmap and a pointer, which allow to
access ordinary child (external) or prefix (internal) related information. Such a compact
representation allows the node to be read from a memory in a just one clock cycle. Moreover,
bitmaps make TBM easy to implement in a hardware. The fixed structure of the node also
simplifies performing incremental updates of a forwarding table. However, it may introduce
high memory overhead, especially in a sparse prefix tree.

Shape Shifting Trie (SST) [61] is another multibit trie algorithm. It is based on TBM,
but reduces memory overhead introduced by TBM, when representing a sparse prefix tree.
Instead of having nodes with a fixed structure, SST allows nodes to adapt to a structure of an
underlying trie. This adaptability is allowed by another bitmap (shape bitmap) introduced
in a node’s representation (see Figure 2.4) and is constrained only by the parameter 𝐾,
which specifies the maximum number of trie nodes represented by the SST node. Even
though SST shows very low memory demands, its computational complexity is usually
unacceptable. Moreover, to the best of our knowledge, there is no hardware architecture
for SST.

Figure 2.4: Shape Shifting Trie node encoding.

The LPM architecture for 100 Gbps networks with currently the lowest memory demands
has been described in [44]. This algorithm, which will be further referred to as Prefix
Partitioning Lookup Algorithm (or PPLA), also uses the trie data structure. However, the
trie is utilized only for partitioning a set of prefixes into several disjoint subsets, which are
stored in separate binary search trees or 2–3 trees, each of them processed in a separate
processing pipeline. The PPLA has good memory efficiency (1 B of memory for storing
1 B of IPv4 or IPv6 prefix) [44], but building this internal representation is connected with
a very high pre-processing overhead. Moreover, memory demands of PPLA grow linearly
with the number of stored prefixes, which is more than memory demands of trie-based LPM
algorithms. When prefixes are stored in a data structure based on the trie or in the trie
itself, nodes close to the root are shared by several prefixes. Then less memory resources
are utilized to store a forwarding table.

To summarize, recent LPM architectures are able to achieve 100 Gbps throughput, but
only at the cost of a very high pre-processing overhead and without any compression or
memory optimisation provided by the trie data structure. An effective compression of a
prefix set is important to store more prefixes and support large forwarding tables. Therefore,
it is necessary to analyse properties of trie, TBM, and SST data structures and design a
memory-optimised LPM hardware architecture with 100 Gbps throughput.

10

2.3 Packet Classification
The aim of the packet classification is to split packets into different classes based on the set
of rules. The input of the algorithm is a set of classification rules ordered by priority and
the values extracted from packet header fields. The operation has to find the rule, which
matches extracted header fields. If the packet matches multiple rules, the result is selected
by priority. The process of packet classification is shown in Figure 2.5. The extracted
packet header fields are green and the classification rules are red.

�������� �������� � ����

��

��

������ ������
����
����

����
���� ��������

���������������������������

���������������

�������������������

Figure 2.5: Packet classification in multiple dimensions.

Ternary associative memory (TCAM) is a high performance and easy to use hardware
device, which is often used to speed up the packet classification. Due to the massive
parallel comparisons at the hardware level, the TCAM memory can provide results with
a constant time complexity and is able to achieve high throughput. On the other hand,
TCAMs have very limited capacity, high power consumption and high cost per bit compared
to conventional SRAM memories. Therefore, many hardware architectures utilize SRAM
memories together with a hardware implementation of appropriate classification algorithm.

The packet classification can be viewed as a geometric problem, where each packet
header field is one dimension of a discrete multidimensional space. The classification rules
are represented in the space as rectangular objects and individual packets are represented
as points. Then the goal of the packet classification is to find in the search space geometric
objects, which cover the input packet.

The geometric representation of packet classification is utilized by HiCuts [32] and
HyperCuts [60] algorithms. These algorithms use decision trees to find the classification
rule. Every inner node of the decision tree divides the search space using planar surfaces and
the leaf node contains the matched rule. The time complexity and memory requirements
depend on the internal structure of decision tree, especially on the number of divisions
in every inner node. HyperSplit algorithm [57, 56] employs the decision tree to split the
search space in inner nodes only into two parts. This optimisation reduces the number
of inner nodes at the cost of higher decision tree depth. The goal of these algorithms
is to reduce memory requirements in order to store the whole decision tree into the on-
chip memory and use pipelined processing with multiple memories to achieve 100 Gbps
throughput. Unfortunately, network applications need many classification rules, which can
be stored only in large external memories. HiCuts, HyperCuts and HyperSplit algorithms
are designed to reduce memory requirements, but they need to process a lot of inner nodes
to classify a packet. So, if the decision tree is stored in an external memory, multiple

11

�����

���������������

���

�����

���

��������

���

�������������

�����������

�����������

Figure 2.6: Basic scheme of decomposition algorithms.

memory accesses are needed and the processing is slow down significantly. It means that
100 Gbps throughput cannot be reached, if these algorithms use an off-chip memory.

Large off-chip memories can be well utilized by decomposition algorithms. These al-
gorithms require only a few memory accesses and can achieve constant time complexity.
Therefore, the number of classification rules can be easily increased by an off-chip memory
without any significant impact to the processing speed. In decomposition methods, the
packet classification is divided into several steps (or pipeline stages). Figure 2.6 shows the
basic scheme of decomposition algorithms.

We suppose that the input of packet classification is a vector of packet header fields.
LPM operation is a first step, which is performed for every packet header field independently.
Each LPM search engine returns one item from the prefix set, which is a set of all possible
LPM results for the given dimension. The result of LPM Stage is an LPM vector, containing
one prefix for each dimension. After the LPM, all fields of the resulting LPM vector must be
processed in some way (this is specific for each algorithm) to find the correct rule number.
Key issue is that the number of possible LPM vectors can be extremely large. This is
because all possible values of LPM vector are obtained by creating the Cartesian product
of prefix sets.

The basic Cartesian product algorithm [63] precomputes a Cartesian product table,
which contains resulting rule numbers for all possible LPM vectors. Because of the multi-
plicative nature of the Cartesian product, this table may become extremely large.

Other method of combining LPM results together is the Distributed Crossproducting
of Field Labels [64]. LPM is modified to return all valid prefixes (not only the longest one)
for a given field value. What follows is the hierarchical structure of small crossproduct
engines. Inputs of each engine are two sets of prefixes (or Labels, in general). The engine
then performs a set membership query for each possible pair of Labels. The result of engine
is another set of Labels. The result of the last engine is in fact a set of rules, from which
the one with the highest priority is selected.

Multi Subset Crossproduct Algorithm [29] brings further improvements to decompo-
sition methods. Authors of this work replace Cartesian products by crossproduct-rules.
These rules have significant impact to the memory requirements. Therefore, authors pro-
vide heuristics on how to break a ruleset into several subsets, eliminating the majority
of crossproduct-rules. The paper also identifies rules that generate excessive amount of
crossproduct-rules. These rules are called spoilers and are treated in a separate algorithm
branch (in a hardware implementation, spoilers are moved to the small on-chip TCAM) to

12

further reduce the number of crossproduct-rules. The LPM operation is slightly modified
to return a result for each subset, because subsets may contain different prefixes. A Bloom
filter [15] is associated with each subset to perform the set membership query. If the Bloom
filter output is true, one rule table memory access is performed to retrieve the resulting
rule or crossproduct-rule.

We can see that all algorithms with decision trees require a lot of processing steps and
cannot achieve 100 Gbps throughput without pipelined processing. As every pipeline stage
has to read inner nodes from a memory, many memory accesses are needed to classify a
packet and a large off-chip memory cannot be used without significant slow down of the
processing. Decomposition methods can utilize an off-chip memory without performance
limitations. So, the number of classification rules can be significantly increased. Unfortu-
nately, MSCA algorithm has to store in an off-chip memory many crossproduct-rules, which
consume the capacity of memory. Moreover, wire-speed throughput cannot be guaranteed.
Therefore, new fast and memory optimised algorithms are needed to support large rulesets
and 100 Gbps throughput.

2.4 Pattern Matching
Regular Expression (RE) matching is a widely used operation in computer networks for iden-
tification of application protocols, detection of network attacks, application aware load bal-
ancing and many other network applications. Current processors are not powerful enough
to achieve 100 Gbps throughput [12]. The throughput of one processor core is limited to less
than one Gbps. The matching speed can be increased to hundreds of Gbps only at the cost
of a large number of processor cores. Although network processors have dedicated hardware
units for RE matching, these units have usually significantly lower throughput [12, 49] than
the capacity of network links. In order to achieve 100 Gbps throughput, it is more efficient
to use a hardware acceleration using FPGA technology.

Many hardware architectures have been designed to accelerate the pattern matching
for IDS systems[59, 25, 62, 70, 42, 11, 69], where thousands of RE have to be matched
against network traffic. Several architectures take advantage of massive parallel processing
in FPGA technology and use mapping of Non-deterministic Finite Automaton (NFA) to
FPGA [59, 25, 26, 62, 70]. To achieve linear time complexity, all non-deterministic paths
are processed in FPGA simultaneously. As the number of REs in IDS systems increases in
time, many optimizations have been introduced to reduce FPGA logic utilization and map
more REs to FPGA [62, 46]. Most of these optimizations are focused only on REs in IDS
systems Snort [19] and Bro [51].

Prasanna has introduced a modular RE-NFA architecture[67, 68], which can be con-
verted automatically into a modular circuit on FPGA. The circuit can be created from a
set of REs without synthesis and can be uploaded to the FPGA by dynamic reconfigura-
tion. The dynamic reconfiguration is also used for a fast update of the RE set in Dynamic
BP-NFA [35].

The architectures based on a Deterministic Finite Automaton (DFA) [42, 11, 69] use a
memory to store the transition table, which enables even faster update of the pattern set.
Then the update doesn’t require FPGA reconfiguration, because the hardware architecture
remains the same. Only memory content is updated, if the RE set is changed. On the
other hand, the construction of DFA from NFA has an exponential time complexity and
can cause an exponential growth of states and transition table size, which has direct impact
to memory requirements. Therefore, memory requirements have been reduced by a delayed

13

input DFA [42], a compression [7, 11] and other optimizations [69, 41]. Several architectures
employ a combination of NFA and DFA[38, 8, 10] automata to cope with large data sets
and an exponential growth of DFA states caused by .* constructions in REs.

Most hardware architectures provide reductions of memory requirements or FPGA logic
utilization to match more REs. With the growing speed of network links, it is necessary
also to increase the matching speed. For the pattern matching, the speed depends on the
frequency and the number of bytes processed per clock cycle. As the FPGA frequency
increases only slightly over time, it is necessary to process more bytes at once.

Brodie presented the first architecture with accepting multiple bytes per clock cycle [18].
Prasanna introduced spatial stacking for multi-character matching [67] with the RE-NFA
architecture, but high fan-out of final circuit significantly decreases the frequency, even
for matching only 8 bytes per clock cycle. Unfortunately, more than 64 bytes have to
be processed at once to achieve 100 Gbps throughput. Becchi introduced a multi-striding
technique [9], which can be applied for NFA or DFA automata and is widely used to increase
throughput of RE matching architectures.

Multi-striding can increase the processing speed of DFA based architectures only at the
cost of higher memory requirements, which cannot be implemented in current chips. NFA
based architectures can be speed up by multi-striding only at the cost of large amount of
hardware resources. With the size of input symbols, the size of automaton grows nearly
exponentially and the frequency drops down dramatically. Due to the frequency drop, we
were not able to create a hardware architecture with more than 40 Gbps throughput. The
same problem was with the spatial stacking technique.

We can see that neither multi-striding nor spatial stacking technique are able to scale
the throughput of a single automaton to 100 Gbps. Therefore, it is necessary to design
a new high-speed pattern matching architecture, which can scale up the throughput over
100 Gbps and can be implemented in current FPGAs.

2.5 Deep Packet Inspection
Network security and advanced monitoring applications with the application layer analysis
usually perform a deep packet inspection (DPI) of interesting packets in the packet payload.
Many papers deal with hardware acceleration of IDS system Snort [19], which has restricted
focus to the regular expression matching only. However, the area of network security is much
richer. If the DPI acceleration should be focused only on the regular expression matching,
security systems would be strongly limited and insufficient for robust practical deployment.

L7-filter [1] relies similarly to Snort entirely on regular expressions. It is a Linux based
packet classification software for identification of protocols at the application layer (L7).
An open-source library for application layer traffic processing called an nDPI [28] provides
an excellent example showing that the regular expression matching alone is not sufficient.
While the nDPI library is probably too complex to be fully hardware accelerated, soft-
ware modules can certainly offload a part of the work to the hardware in the sense of
hardware/software codesign.

Shunting [65] is a hardware/software architecture that provides a lightweight mechanism
for IPS systems to take advantage of the “heavy-tailed” nature of network traffic to offload
work from the software to the hardware. The hardware can forward, drop or diverse network
traffic according to the rules in hardware caches. The rules use IP addresses and connection
5-tuples (src/dst IP, src/dst Port, Protocol). Shunting has been designed for Bro [51]
intrusion detection system. However, it accelerates only packet forwarding and filtering

14

without further possibilities for a hardware acceleration. Therefore, it is not very useful for
the majority of network security and monitoring applications, because they need statistics
and other information about every received packet.

SDNet environment [2] has been recently announced by Xilinx as a system for hardware
accelerated networking defined by software. The system relies upon high-level language to
describe a network application, which is then compiled to a form of a hardware accelerator
for a Xilinx FPGA. From a limited information available at the time of writing, it seems
that SDNet has limited throughput and it is not focused on a DPI acceleration. SDNet
is a flexible tool that can be used to describe custom hardware modules a little bit easier.
Network traffic processing can also be described in the P4 high-level language [16] and then
mapped to the hardware accelerator. The P4 language has been designed as a high-level
description of network traffic processing and forwarding. It enables protocol, vendor and
target independent definitions. Thus, it can be used for more comfortable programming of
hardware accelerators, but similarly to SDNet, P4 does not provide any concept or hardware
architecture for a DPI acceleration.

It can be seen that none of the known state of the art approaches provides a software
controlled hardware acceleration of DPI. Therefore, there is a valid need for the design of
a novel acceleration concept for application layer analysis with 100 Gbps throughput, high
flexibility and precise monitoring.

15

Chapter 3

Research Summary

The goal of this thesis is to propose new hardware architectures, which are able to process
network traffic at 100 Gbps speed. Proposed hardware architectures address five most
widely used time-critical operations in network applications and systems. The architectures
provide state-of-the art technology for 100 Gbps networks and can be used as key building
blocks for hardware accelerated network devices and systems.

Packet parsing and header field extraction are needed in every network device to get
information from packet headers (src. and dst. IP addresses, src. and dst. port, etc.).
Therefore the first research paper is focused on flexible packet header parsing. The parser
is generated from XML description of network protocols. The XML is used also to specify
header fields, which have to be extracted from packet headers. The architecture is very flex-
ible, because it allows the users to change the set of extracted fields at runtime. Moreover,
the result is provided as a compact data structure called the unified header, which can be
easily sent over the network or PCIe interface for further processing. Unfortunately, one
packet parser was able to process network traffic only at 20 Gbps. The 100 Gbps throughput
was achieved only by multiple parallel paths (parsers), which need a lot of logic resources.

Therefore the second paper proposes a highly pipelined modular architecture. The
architecture has very low latency and throughput over 100 Gbps. Due to the designed
processing pipeline, the architecture utilizes much less hardware resources in comparison
to previous approaches. Moreover, user can easily optimize the architecture to decrease
latency or increase the throughput. Both parameters can be balanced to meet requirements
of target application. The modular architecture allows to add new protocols very easily.

The paper III is focused on Longest Prefix Matching (LPM), which is used in every
IP router and firewall. LPM is usually performed on destination IP address to find the
longest prefix in forwarding table or in the set of filtering rules. The size of forwarding
tables is steadily increasing. Current routers have tables with more than 500 thousands of
IP prefixes and have to perform LPM for every packet. To achieve 100 Gbps speed, routers
have to store forwarding tables in very fast and large memories. In paper III, we propose
to use efficient compression to store forwarding table in the on-chip memory. The trie data
structure is compressed to newly designed instructions. Fast processing is achieved by deep
pipeline, where every pipeline stage executes one instruction to move from trie root node
to the longest prefix. Due to the deep pipeline, the architecture has 100 Gbps throughput
for IPv4 as well as for IPv6 addresses. The LPM is performed on destination IP address,
which can be provided by any packet header parser described in paper I or II.

Packet classification is used in firewalls to match packets against filtering rules. In
paper IV, we propose a high performance packet classification architecture, which employes

16

perfect hash functions to match filtering rule with constant time complexity. LPM is used
as a first step to support rules with IP prefixes and ranges. External SRAM memories are
utilized to store large perfect hash table and support large ruleset. The algorithm performs
a decomposition to LPM and rule matching to cope with IP prefixes, but the decomposition
can cause crossproduct rules [29, 55], because LPM provides only the longest prefix and
we can have rule with shorter one. Therefore, crossprodact rules have to be considered
and added to the ruleset. Previous architectures use bloom filters to reduce the amount
of crossproduct rules, but still memory requirements remain high. Therefore we utilize the
perfect hash table to map crossproduct rules to the correct rule number. It means that the
crossproduct rule is stored only in the perfect hash table and the rule table contains only
original rules. This way a significant amount of memory is reduced. The architecture is
pipelined and it requires only two QDR SRAM to achieve 100 Gbps speed. Moreover, the
throughput can be further increased by more off-chip memories.

The longest prefix matching and packet classification operate over packet header fields
extracted by packet header parsers, which works up to network layer (L3). But network
security and monitoring applications also need a deep packet analysis at the application
layer (L7). IDS systems use for L7 analysis pattern matching. Therefore, many research
papers are focused on hardware acceleration of pattern matching for IDS systems. These
architectures are optimized for large set of regular expressions, but they are not able to
scale the processing speed to 100 Gbps. The throughput of hardware architectures has been
increased by multi-striding [9, 18] and spatial-stacking [67], but both techniques are able to
scale the throughput only to tens of Gbps. Therefore, we propose in the paper V pipelined
automata architecture, which can scale pattern matching throughput over 100 Gbps.

The architecture consists of multiple pipelined automata directly connected to one
shared input buffer. Automata states circulate in the pipeline to input data words, which is
much more effective than multiplexing of the input data to parallel automata. Processing
speed can be easily increased by the number of automata in the pipeline at the cost of only
linear growth of FPGA and memory resources. As automata only use local connection to
the input buffer and neighbouring pipeline stages, the frequency of the architecture is not
decreased with the number of automata. Therefore, the throughput can scale to hundreds
of Gbps. Moreover, the architecture uses for all packets only one shared input buffer, which
significantly reduces memory requirements of the architecture.

Unfortunately, regular expressions have only limited descriptive power. Precise L7 anal-
ysis based on a more powerful computational model needs libraries or modules implemented
in C languge [28], which cannot be easily mapped into the FPGA. Every application pro-
tocol has different syntax and for every application, we need different type of hardware
acceleration. It is well known that hardware development takes much more time than soft-
ware implementation and it is not possible to create a special hardware architecture for
every protocol or application. Therefore, we have designed in paper VI Software Defined
Monitoring (SDM) concept, which takes advantage of hardware performance and software
flexibility for L7 analysis. The software is able to control precisely the level of processing
in the hardware. For every flow, we can select a different type of processing. As most of
the information are in first packets of the flow, software can perform deep analysis in first
𝑁 packets of the flow and remaining packets can be offloaded to hardware only to count
statistics, provide packet header fields or simply drop the packet. Moreover, software can
select the level of information according to the processor load. We have shown that the
SDM concept is able to decrease the CPU load to less than 20 %.

17

The SDM concept uses L7 parsers on CPU cores and is able to provide precise Net-
flow/IPFIX data together with the information from application protocols. To reduce
communication among CPU cores, it is important to recognize application protocols in
hardware and send packets to the right L7 parser (CPU core). Therefore, the SDM concept
has been extended by pattern matching architecture in the paper V for identification of
application protocols (HTTP, SIP, etc.) and distribution of packets to corresponding CPU
cores.

All papers provide hardware architectures for 100Gbps networks, which can be used
as a key build block of any network security and monitoring device or application. The
acceleration considers analysis and filtration of network traffic up to layer 7 of ISO/OSI
model. The hardware architectures has been used in network monitoring probes in CES-
NET academic network and create technology, which has been transferred to commercially
successful products.

3.1 Papers
This chapter describes the most relevant details for all papers included in this thesis. For
each paper, we present the motivation, contribution and original abstract.

3.1.1 Paper I

Packet Header Analysis and Field Extraction for Multigigabit Networks

The aim of the paper is to provide highly flexible architecture for packet parsing and
header field extraction with processing speed over 10 Gbps. The aim was also to reduce
FPGA logic utilization and balance hardware resources and processing speed. Therefore
the HDL code generator has been designed to achieve high flexibility together with high
performance. The generator creates from the XML description of protocols a corresponding
automaton, which is then transformed to optimized hardware architecture. To increase the
processing speed the automaton has been improved to accept multiple symbols within one
clock cycle. It means that the designer can balance the hardware resources and processing
speed. Moreover, the XML description of protocols allows to add or change supported
protocols very easily.

The result of the work is a highly flexible packet header parser. As the HDL code of the
parser is generated from the XML description, the architecture is optimized to provide high
processing speed and support protocols specified in the XML. The paper provides 20Gbps
throughput for Virtex5 FPGA. For current Virtex-7 FPGAs, the processing speed can be
increased to 100 Gbps by multiple parallel paths described in the paper.

Abstract

Packet header analysis and extraction of header fields needs to be performed in all network
devices. As network speed is increasing quickly, high speed packet header processing is
required. We propose a new architecture of packet header analysis and fields extraction
intended for high-speed FPGA-based network applications. The architecture is able to
process 20 Gbps network links with less than 12 percent of available resources of Virtex 5
110 FPGA. Moreover, the presented solution can balance between network throughput and
consumed hardware resources to fit application needs. The architecture for packet header
processing is generated from standard XML protocol scheme and is strongly optimised for

18

resource consumption and speed by an automatic HDL code generator. Our solution also
enables to change the set of extracted header fields on-line without FPGA reconfiguration.

3.1.2 Paper II

Design methodology of configurable high performance packet parser for FPGA

The architecture presented in paper I is highly flexible and extensible, but for 100 Gbps
throughput, it is necessary to use multiple parallel paths. The problem is that the frequency
is decreasing with input data width. Therefore the aim of the paper II is to provide a highly
pipelined hardware architecture instead of a flexible automaton. Deep pipeline allows to
achieve throughput over 100 Gbps with a small amount of hardware resources because of
high frequency. The flexibility is addressed by newly designed interfaces of protocol parsers
(Ethernet, IPv4, IPv6, etc.), which are connected together and create a deep pipeline. Due
to the well designed interfaces new protocols can be implemented easily.

The result is a highly pipelined hardware architecture for packet parsing and header
extraction with 100 Gbps throughput in a single pipeline. The architecture allows to finely
tune the latency and throughput and provides interfaces to add a new protocol parser.

Abstract

Packet parsing is among basic operations that are performed at all points of a network
infrastructure. Modern networks impose challenging requirements on the performance and
configurability of packet parsing modules. However, high-speed parsers often use a signifi-
cant amount of hardware resources. We propose a novel architecture of a pipelined packet
parser for FPGA, which offers low latency in addition to high throughput (over 100 Gb/s).
Moreover, the latency, throughput and chip area can be finely tuned to fit the needs of a
particular application. The parser is hand-optimized thanks to a direct implementation in
VHDL, yet the structure is uniform and easily extensible for new protocols.

3.1.3 Paper III

Memory Efficient IP Lookup in 100 Gbps Networks

The aim of the paper is to provide a hardware architecture for 100 Gbps LPM, which is
an operation widely used in routers, firewalls and other networking devices. To achieve
100 Gbps throughput, LPM has to perform for every IP lookup a lot of memory accesses.
Therefore it is necessary to store all IP prefixes in the fast on-chip memory. The paper
analyses available IPv4 and IPv6 routing tables and introduces new highly efficient com-
pression of trie data structure, which represents all IP prefixes. The paper introduces new
instruction set to encode the most frequent shapes of the trie data structure and presents
hardware architecture, where instructions are executed in the deep processing pipeline. The
compression allows to store all available IPv4 and IPv6 prefixes in the on-chip memory. Due
to the deep processing pipeline, the presented architecture can achieve high frequency and
provides 100 Gbps throughput.

The result is the hardware architecture for LPM in 100 Gbps networks. It has wire-speed
throughput and can be used in any router, firewall or network security device. The proposed
compression significantly reduces memory requirements to store trie data structure (routing
table, etc.)

19

Abstract

The increasing number of devices connected to the Internet together with video on demand
have a direct impact to the speed of network links and performance of core routers. To
achieve 100 Gbps throughput, core routers have to implement IP lookup in dedicated hard-
ware and represent a forwarding table using a data structure, which fits into the on-chip
memory. Current IP lookup algorithms have high memory demands when representing IPv6
prefix sets or introduce very high pre-processing overhead. Therefore, we performed analysis
of IPv4 and IPv6 prefixes in forwarding tables and propose a novel memory representation
of IP prefix sets, which has very low memory demands. The proposed representation has
better memory utilization in comparison to the highly optimized Shape Shifting Trie (SST)
algorithm and it is also suitable for IP lookup in 100 Gbps networks, which is shown on a
new pipelined hardware architecture with 170 Gbps throughput.

3.1.4 Paper IV

Fast and scalable packet classification using perfect hash functions

Packet classification is a time-consuming operation, which is used in every firewall, IDS/IPS
system, OVS switch or DDoS scrubbing centre. The aim of the paper is to provide a packet
classification algorithm with constant time complexity to achieve 100 Gbps throughput.
The paper introduced how to use perfect hashing for packet classification and support large
ruleset using off-chip QDR SRAM memory. All packet classification algorithms have to
cope with crossproduct rules, if prefixes or range checking is supported and LPM is used
as the first step of the algorithm. To reduce memory requirements, the crossproduct rules
are stored only in the perfect hash table, which provides a correct rule number in the
original ruleset. Moreover, it is possible to increase processing speed and the number of
rules by utilising more off-chip memories. Only one memory is needed to achieve 100 Gbps
throughput.

The result of the paper is the packet classification algorithm with constant time com-
plexity and 100 Gbps throughput with only one QDR SRAM memory. The throughput can
be further increased by more memories. The architecture supports large rulesets, because
crossproduct rules are stored only in the perfect hash table.

Abstract

Packet classification is an important operation for applications such as routers, firewalls
or intrusion detection systems. Many algorithms and hardware architectures for packet
classification have been created, but none of them can compete with the speed of TCAMs
in the worst case. We propose new hardware-based algorithm for packet classification. The
solution is based on problem decomposition and is aimed at the highest network speeds.
A unique property of the algorithm is the constant time complexity in terms of external
memory accesses. The algorithm performs exactly two external memory accesses to classify
a packet. Using FPGA and one commodity SRAM chip, a throughput of 150 million packets
per second can be achieved. This makes throughput of 100 Gbps for the shortest packets.
Further performance scaling is possible with more or faster SRAM chips.

20

3.1.5 Paper V

High-speed Regular Expression Matching with Pipelined Automata

The pattern matching is widely used in network security systems to detect attacks or ma-
licious traffic. Many hardware architectures have been designed to accelerate IDS systems
to match thousands of regular expressions in packet payload. To scale up the throughput
many architectures use multi-striding or spatial stacking techniques. Unfortunately, both
techniques are not able to scale up the processing speed to 100 Gbps. The aim of the
paper is to provide a hardware architecture, which is able to scale the pattern matching
throughput to hundreds of Gbps. In order to increase the processing speed, the architec-
ture employs multiple pipelined finite state machines (FSM). Instead of multiplexing the
data from one input packet buffer to corresponding FSM, all FSMs are connected to one
pipeline and current states of FSMs circulate in the pipeline. It means that every FSM
processes only one input symbol of the packet and passes the current state to the next FSM
to process the next input symbol. The architecture has only local interconnections. Every
FSM is directly connected only to the input buffer and two neighbouring FSMs. Therefore,
the maximal frequency is not affected by the number of FSMs and the architecture is well
scalable. Throughput can easily be increased by a larger input buffer and more FSMs.

The result is the Pipelined Automata architecture, which can be used to scale the pattern
matching throughput to hundreds of gigabits. The Pipelined Automata is a complementary
technique to the multi-striding or spatial stacking. It is designed to achieve high frequency
and utilize low hardware resources.

Abstract

Pattern matching is a complex task which is widely used in network security monitoring
applications. With the growing speed of network links, pattern matching architectures
have to be improved in order to retain wire-speed processing. Multi-striding is a well-
known technique on how to increase throughput of pattern matching architectures. In
the paper we provide an analysis of scalability of multi-striding and show that it does
not scale well and cannot be used for 100 Gbps throughput because utilization of FPGA
resources grows exponentially. Therefore, we have designed a new hardware architecture
for high-speed pattern matching that combines the multi-striding technique and parallel
processing using pipelined finite state machines (FSMs). The architecture shares a single
packet buffer for all parallel FSMs. Efficient implementation of the packet buffer reduces the
number of BlockRAMs to 18% when compared to simple parallel implementation. Instead
of multiplexing input data, the architecture pipelines the states of FSMs. Such pipelined
processing with only local communication has a direct positive impact on frequency and
throughput and allows us to scale the architecture to hundreds of Gbps.

3.1.6 Paper VI

Software Defined Monitoring of Application Protocols

Current security threats and network performance issues are moving to the application
layer (L7). The application protocol parsing is a time critical operation, which cannot be
easily accelerated in hardware. The design of complete L7 hardware processing would be
too time consuming for any network security monitoring application. Moreover, network
protocols are evolving very fast and hardware development is too slow to respond to new

21

features of network protocols. Therefore the paper introduces Software Defined Monitoring
(SDM) concept, which provides a flexible hardware acceleration of L7 processing. The
concept uses a hardware flow cache in the acceleration card, which is under the software
control. Software can assign for every flow in the cache a level of processing in the hardware.
The hardware card can export all packets of a given flow for software analysis, it can count
Netflow/IPFIX statistics or just drop all packets of the flow. The concept allows software to
selectively drop the level of information in the hardware and balance between the software
analysis and hardware processing according to the processor load and requirements of target
application.

The result is a new Software Defined Monitoring concept, which can be used in network
security and monitoring devices. It is a powerful concept to accelerate deep packet inspection
with high flexibility. Packet analysis is completely defined in software, which can utilize
hardware to offload most of the traffic and balance the level of analysis according to the
processor load and available hardware resources.

Abstract

Current high-speed network monitoring systems focus more and more on the data from the
application layers. Flow data is usually enriched by the information from HTTP, DNS and
other protocols. The increasing speed of the network links, together with the time consum-
ing application protocol parsing, require a new way of hardware acceleration. Therefore
we propose a new concept of hardware acceleration for flexible flow-based application level
monitoring which we call Software Defined Monitoring (SDM). The concept relies on smart
monitoring tasks implemented in the software in conjunction with a configurable hardware
accelerator. The hardware accelerator is an application specific processor tailored to state-
ful flow processing. The monitoring tasks reside in the software and can easily control
the level of detail retained by the hardware for each flow. This way the measurement of
bulk/uninteresting traffic is offloaded to the hardware while the advanced monitoring over
the interesting traffic is performed in the software. The proposed concept allows one to
create flexible monitoring systems capable of deep packet inspection at high throughput.
Our pilot implementation in FPGA is able to perform a 100 Gbps flow traffic measurement
augmented by a selected application-level protocol parsing.

With the ongoing shift of network services to the application layer also the monitoring
systems focus more on the data from the application layer. The increasing speed of the
network links, together with the increased complexity of application protocol processing,
require a new way of hardware acceleration. We propose a new concept of hardware ac-
celeration for flexible flow-based application level traffic monitoring which we call Software
Defined Monitoring. Application layer processing is performed by monitoring tasks im-
plemented in the software in conjunction with a configurable hardware accelerator. The
accelerator is a high-speed application-specific processor tailored to stateful flow processing.
The software monitoring tasks control the level of detail retained by the hardware for each
flow in such a way that the usable information is always retained, while the remaining data
is processed by simpler methods. Flexibility of the concept is provided by a plugin-based
design of both hardware and software, which ensures adaptability in the evolving world of
network monitoring. Our high-speed implementation using FPGA acceleration board in a
commodity server is able to perform a 100 Gb/s flow traffic measurement augmented by a
selected application-level protocol analysis.

22

3.2 List of Publications

Papers Included in Thesis

I Petr Kobierský, Jan Kořenek, and Libor Polčák. Packet header analysis and field
extraction for multigigabit networks. In Proceedings of the 2009 12th International
Symposium on Design and Diagnostics of Electronic Circuits&Systems, DDECS, pages
96–101, Washington, USA, 2009. IEEE Computer Society. [30%]

II V. Puš, L. Kekely, and J. Kořenek. Design methodology of configurable high per-
formance packet parser for fpga. In Design and Diagnostics of Electronic Circuits
Systems, 17th International Symposium on, pages 189–194, April 2014. [10%]

III J. Matoušek, M. Skačan, and J. Kořenek. Memory efficient ip lookup in 100 gbps
networks. In 2013 23rd International Conference on Field programmable Logic and
Applications, pages 1–8, Sept 2013. [33%]

IV Viktor Puš and Jan Kořenek. Fast and scalable packet classification using perfect
hash functions. In FPGA ’09: Proceedings of the 17th international ACM/SIGDA
symposium on Field programmable gate arrays, New York, NY, USA, 2009. ACM.
[30%]

V D. Matoušek, J. Kořenek, and V. Puš. High-speed regular expression matching with
pipelined automata. In 2016 International Conference on Field-Programmable Tech-
nology (FPT), pages 93–100, Dec 2016. [30%]

VI L. Kekely, V. Puš, and J. Kořenek. Software defined monitoring of application pro-
tocols. In IEEE INFOCOM 2014 - IEEE Conference on Computer Communications,
pages 1725–1733, April 2014. [20%]

Other Relevant Papers

∙ Roland Dobai, Jan Kořenek, and Lukáš Sekanina. Evolutionary design of hash
function pairs for network filters. Applied Soft Computing, 56:173 – 181, 2017.

∙ Jiří Matoušek, Gianni Antichi, Adam Lučanský, Andrew W. Moore, and Jan Kořenek.
Classbench-ng: Recasting classbench after a decade of network evolution. In Proceed-
ings of the Symposium on Architectures for Networking and Communications Systems,
ANCS ’17, pages 204–216, Piscataway, NJ, USA, 2017. IEEE Press.

∙ Lukáš Kekely, Jan Kučera, Viktor Puš, Jan Kořenek, and Athanasios V. Vasilakos.
Software defined monitoring of application protocols. IEEE Trans. Comput., 65(2):615–
626, February 2016.

∙ D. Grochol, L. Sekanina, M. Žádník, J. Kořenek, and V. Košař. Evolutionary circuit
design for fast fpga-based classification of network application protocols. Appl. Soft
Comput., 38(C):933–941, January 2016.

∙ R. Dobai and J. Kořenek. Evolution of non-cryptographic hash function pairs for fpga-
based network applications. In Computational Intelligence, 2015 IEEE Symposium
Series on, pages 1214–1219, Dec 2015.

23

∙ David Grochol, Lukáš Sekanina, Martin Žádník, and Jan Kořenek. A Fast FPGA-
Based Classification of Application Protocols Optimized Using Cartesian GP, pages
67–78. Springer International Publishing, Cham, 2015.

∙ V. Košař and J. Kořenek. Towards efficient field programmable pattern matching
array. In Digital System Design (DSD), 2015 Euromicro Conference on, pages 1–8,
Aug 2015.

∙ L. Kekely, V. Puš, P. Benáček, and J. Kořenek. Trade-offs and progressive adoption of
fpga acceleration in network traffic monitoring. In 2014 24th International Conference
on Field Programmable Logic and Applications (FPL), pages 1–4, Sept 2014.

∙ L. Kekely, M. Žádník, J. Matoušek, and J. Kořenek. Fast lookup for dynamic packet
filtering in fpga. In Design and Diagnostics of Electronic Circuits Systems, 17th
International Symposium on, pages 219–222, April 2014.

∙ V. Košař and J. Kořenek. On nfa-split architecture optimizations. In Design and
Diagnostics of Electronic Circuits Systems, 17th International Symposium on, pages
274–277, April 2014.

∙ J. Kaštil, V. Košař, and J. Kořenek. Hardware architecture for the fast pattern
matching. In Design and Diagnostics of Electronic Circuits Systems (DDECS), 2013
IEEE 16th International Symposium on, pages 120–123, April 2013.

∙ V. Košař, M. Žádník, and J. Kořenek. Nfa reduction for regular expressions matching
using fpga. In Field-Programmable Technology (FPT), 2013 International Conference
on, pages 338–341, Dec 2013.

∙ J. Matoušek, M. Skačan, and J. Kořenek. Towards hardware architecture for mem-
ory efficient ipv4/ipv6 lookup in 100 gbps networks. In Design and Diagnostics of
Electronic Circuits Systems (DDECS), 2013 IEEE 16th International Symposium on,
pages 108–111, April 2013.

∙ Viktor Puš, Lukáš Kekely, and Jan Kořenek. Low-latency modular packet header
parser for fpga. In Proceedings of the Eighth ACM/IEEE Symposium on Architectures
for Networking and Communications Systems, ANCS ’12, pages 77–78, New York,
NY, USA, 2012. ACM.

∙ V. Puš and J. Kořenek. Reducing memory in high-speed packet classification. In
2012 8th International Wireless Communications and Mobile Computing Conference
(IWCMC), pages 437–442, Aug 2012.

∙ V. Košař and J. Kořenek. Reduction of fpga resources for regular expression matching
by relation similarity. In Design and Diagnostics of Electronic Circuits Systems
(DDECS), 2011 IEEE 14th International Symposium on, pages 401–402, April 2011.

∙ V. Puš, M. Kajan, and J. Kořenek. Hardware architecture for packet classifica-
tion with prefix coloring. In Design and Diagnostics of Electronic Circuits Systems
(DDECS), 2011 IEEE 14th International Symposium on, pages 231–236, April 2011.

∙ Viktor Puš, Jiří Tobola, Vlastimil Košař, Jan Kaštil, and Jan Kořenek. Netbench:
Framework for evaluation of packet processing algorithms. In Proceedings of the 2011

24

ACM/IEEE Seventh Symposium on Architectures for Networking and Communica-
tions Systems, ANCS ’11, pages 95–96, Washington, DC, USA, 2011. IEEE Computer
Society.

∙ J. Tobola and J. Kořenek. Effective hash-based ipv6 longest prefix match. In
Design and Diagnostics of Electronic Circuits Systems (DDECS), 2011 IEEE 14th
International Symposium on, pages 325–328, April 2011.

∙ J. Kaštil and J. Kořenek. Hardware accelerated pattern matching based on determin-
istic finite automata with perfect hashing. In Design and Diagnostics of Electronic
Circuits and Systems (DDECS), 2010 IEEE 13th International Symposium on, pages
149–152, April 2010.

25

Chapter 4

Discussion and Conclusions

This chapter summarises all research results and presents the deployment and commer-
cialization of new hardware architectures. It provides a discussion of obtained results and
conclusions together with new directions for future work.

Thesis presented new hardware architectures capable of processing the network traffic
at 100 Gbps speed using FPGA technology. For the hardware acceleration, we have selected
the most widely used time critical operations: (i) packet parsing and header field extraction,
(ii) longest prefix matching, (iii) packet classification, (iv) pattern matching and (v) deep
packet inspection and analysis. In order to achieve wire-speed 100 Gb throughput, the
hardware architectures employ deep pipelines, prefect hashing and other techniques.

All introduced hardware architectures were implemented in the scope of Liberouter
project [24] and are available as a set of acceleration cores for FPGA technology. These
cores can be used in any PCIe FPGA acceleration card to accelerate network applications
and devices to achieve wire-speed 100 Gbps throughput.

4.1 Results
Two hardware architectures were designed for packet parsing and header field extraction.
The first architecture is optimized for high flexibility, because the parser can be generated
from XML description of network protocols. Unfortunately, 100 Gbps throughput can be
achieved on current FPGAs only at the cost of many hardware resources. Therefore, we
have designed a modular low-latency architecture, which is highly optimised to FPGA logic
utilization, processing speed and low latency. The results obtained by means of the modular
low-latency packet parser are shown in Table 4.1.

We can see that the new low-latency modular packet parser uses only 1.19 % of the
Virtex-7 870HT FPGA to achieve throughput over 100 Gbps and only 4.88 % for through-
put over 400 Gb/s. The latency is below 40 ns. These results are better than previous
hardware architectures [5] with FPGA logic utilization over 10 % and latency over 300 ns
for 300+ Gb/s throughput. Our parser uses 68 % less FPGA resources and has 90 % smaller
latency than [5] for throughput over 300 Gb/s. Moreover, the parser can be finely tuned
trough the design space exploration to meet the demands of a particular application.

The hardware architecture for longest prefix matching employes a deep pipeline to
achieve 100Gb throughput. It provides a highly efficient compression of IP prefixes to
support large routing tables. IP prefixes are usually stored in the trie data structure, which
is too large to be stored in the on-chip memory. Therefore, we proposed and developed an

26

Data Pipes Throughput Latency LUT-FF
Width [Gb/s] [ns] pairs

256 0 14.5 17.1 3 238
512 0 28.4 18.0 4 053

2 048 0 96.9 21.1 17 685
2 048 1 158.5 25.9 18 547
2 048 2 212.8 28.9 18 317
2 048 4 333.0 30.8 21 775
2 048 5 352.0 34.9 22 373
2 048 7 453.0 36.2 26 728
2 048 8 478.1 38.6 29 301
1 024 ? 325 309 67 902

Table 4.1: Throughput and latency of low-latency modular packet parser

efficient compression technique for the trie data structure. The most common shapes in the
trie data structure are compressed by pre-designed instructions, which are executed in every
pipeline stage. The memory efficiency is plot in Table 4.2. We can see that the proposed
hardware architecture has very high memory efficiency for IPv6 protocol. Moreover, the
processing is highly pipelined to achieve wire-speed 100 Gbps throughput.

Table 4.2: Memory demands of the proposed highly pipelined LPM architecture for available
IP prefix sets, comparison to TBM and SST architectures.

Prefix Set Prefixes Memory [Kb] Savings
IPv4 New Nodes TBM (SL=5) SST (K=32)

rrc00 332 118 6 330.800 34.663 % 8.652 %
IPv4-space 220 779 3 571.360 37.367 % 12.488 %
route-views 442 748 7 779.840 34.853 % 11.340 %

IPv6 New Nodes TBM (SL=3) SST (K=32)
AS1221 10 518 475.760 55.822 % 19.159 %
AS6447 10 814 493.840 56.107 % 19.977 %

Generated IPv6 New Nodes TBM (SL=4) SST
rrc00_ipv6 319 998 21 264.320 75.630 % N/A
IPv4-space_ipv6 150 157 10 412.160 76.314 % N/A
route-views_ipv6 439 880 29 039.520 75.574 % N/A

To achieve 100 Gbps throughput for the packet classification we developed a new hard-
ware architecture, which uses a perfect hash function to match the classification rule in
a single processing step. If the packet classification is defined on multiple dimensions (IP
addresses, Port number, etc.) and rule matching is done in a single step, the architecture
has to deal with crossproduct-rules. Therefore, we have modified the perfect hash function
to map all crossproduct-rules to the appropriate rule number. It means that crossproduct-
rules are stored only in the hash table. This optimisation significantly reduces memory
requirements and increases processing speed, because our target commercial application
requires only two accesses to the off-chip memory.

The performance results are shown in Table 4.3. We can see that introduced Perfect
Hash Crossproduct Algorithm (PHCA) is able to process 150 millions packets per sec-
onds with only one QDR SRAM. It means that wire-speed 100 Gb throughput has been

27

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 0 50 100 150 200 250 300 350 400

L
U

T
s
 [
−

]

throughput [Gbps]

pipelined
parallel

multi−striding

Figure 4.1: LUT occupation vs throughput
for L7 great

 0

 100000

 200000

 300000

 400000

 500000

 600000

 0 50 100 150 200 250 300 350 400

L
U

T
s
 [
−

]

throughput [Gbps]

pipelined
parallel

multi−striding

Figure 4.2: LUT occupation vs throughput
for Snort backdoor rules

achieved. The DCFL algorithm has low memory requirements, but need many memory
accesses. Thus wire-speed 100 Gbps throughput can be achieved only with many on-chip
memory blocks [36]. Unfortunately, the on-chip memory is expensive and too small for
large classification rulesets.

The architectures with Bloom filters need multiple accesses to the off-chip memory and
have much lower throughput than PHCA. Memory requirements are compared in Table 4.4.
Bloom filters are represented by MSCA algorithm introduced by John Lockwood. We
can see that both hardware architectures (MSCA and PHCA) have comparable memory
requirements and for all available rulesets, both architectures need only one QDR SRAM
to store all data, but PHCA has achieved wire-speed 100 Gbps throughput.

Table 4.3: Throughput (in millions packets
per second) for several data bus widths of
300MHz QDR memory.

Data Bloom Filters PHCA
Width 4 6 8

9 9.38 6.25 4.688 150
18 18.75 12.50 9.375 150
36 37.50 25.50 18.750 150
72 75.00 50.50 37.500 150

Table 4.4: Memory size of the Rule Search
Stage (kbits).

Ruleset DCFL MSCA PHCA
synth1 15.7 1020.6 251.5
synth2 25.1 1921.6 415.7
rules1 11.1 958.5 11028.5
rules2 14.8 34.4 3266.6
rules3 30.3 92.7 346.9
rules4 93.7 368.5 599.2

The pattern matching is a time-critical operation, which is used in many network se-
curity systems. As multi-striding and spatial stacking techniques are not able to scale
the pattern matching throughput over 40 Gbps, we proposed a new hardware architecture,
which uses multiple pipelined finite state machines (FSMs). As the architecture has only
local interconnections, the frequency is not affected by the number of FSMs and the pro-
cessing speed can scale up to hundreds Gbps. The scalability of the architecture is shown
in Figure 4.1 for L7 Great ruleset and in Figure 4.2 for Snort backdoor ruleset.

For both sets of regular expressions, the multi-striding (blue line) can be utilized to
increase the throughput up to 40 Gbps. Synthesis tools were not able to meet our constrains
and create a valid FPGA bitstream for higher throughput. We can see in both Figures (4.1
and 4.2) that Parallel and Pipelined Automata can scale the throughput to hundreds of
Gbps, but proposed Pipelined automata have significantly lower FPGA logic utilization.

28

NetFlow HTTP DNS
0

20

40

60

80

100

P
a
ck
et
s
[%

]

drop

NetFlow

header

packet

HTTP+
NetFlow

Figure 4.3: Portions of hardware pre-
processing types in tested use cases

NetFlow HTTP DNS
0

20

40

60

80

100

B
y
te
s
[%

]

drop

NetFlow

header

packet

HTTP+
NetFlow

Figure 4.4: Portions of hardware pre-
processing types in tested use cases

Network security and monitoring applications need flexible deep packet inspection and
precise analysis of application protocols (L7 analysis). Even if regular expression matching
is used in many network security systems, new security threats require more powerful and
more flexible analysis. Therefore, we introduced a new Software Defined Monitoring (SDM)
concept, which provides a flexible hardware acceleration of L7 analysis. The concept uses
smart monitoring tasks implemented in the software and configurable hardware accelerator.
The monitoring tasks reside in the software and can easily control the level of processing in
the hardware and the level of information provided by the hardware accelerator for further
software processing.

The SDM concept has been tested in four realistic use cases: (i) measurement of NetFlow
statistics, (ii) analysis of HTTP protocol, (iii) measurement of Netflow statistics and anal-
ysis of HTTP protocol , (iv) DNS security analysis. Figures 4.3 and 4.3 show the portions
of all packets and bytes pre-processed in the hardware. These hardware pre-processing uti-
lizations lead to a reduction of software application load. The portion of packets processed
in software is marked by green color. The yellow color corresponds to the pre-processing
of packets in hardware and remaining colors (red and orange) represent the packets, which
are completely processed in hardware.

4.2 Deployment and Usage
We have designed COMBO-CG [23] acceleration card as a hardware platform for 100 Gbps
network security and monitoring applications. The card is shown in Figure 4.5. It has one
100GbE interface, powerful Virtex-7 FPGA, three QDR SRAM memories and fast PCIe
interface. The COMBO-CG card was the first 100 Gbps FPGA card, which was able to
utilize bifurcation technology (the connection of two PCI Express gen.3 x8 blocks through
one x16 physical interface) to capture all packets from the network to the host PC at
wire-speed without any packet drop.

The core of the COMBO-CG card is unique firmware based on hardware architectures
presented in this thesis (packet header parsing, header field extraction and packet clas-
sification). The architectures enable wire-speed packet processing in the FPGA even for
100 Gbps lines. Next unique feature of the card is an efficient distribution of packets among
the CPU cores of the host computer based on packet header fields. The packets are dis-
tributed equally among the cores. Moreover, all packets of the same flows are sent to the
same CPU core, which significantly reduces communication among CPU cores and conse-

29

Figure 4.5: COMBO-CG hardware acceleration card.

quently increases performance of target network applications. The card together with the
firmware is presented by Xilinx [66] as a recommended solution for packet capture in 100Gb
networks. Xilinx is the market leading FPGA chip designer and producer.

The COMBO-CG cards were deployed into the National Research and Education Net-
work CESNET2. All external links of CESNET2 network are monitored by probes accel-
erated by COMBO-CG cards. These probes provide analysis of network traffic and export
NetFlow and IPFIX statistics to collectors for further analysis. The deployment of cards
in CESNET2 network is shown in Figure 4.6.

Figure 4.6: Pilot deployment of COMBO-CG acceleration cards in CESNET2 network.

The card has been created in early days of 100 Gbps Ethernet standard, which was
very important for commercial utilization in all areas related to the high speed networks.
Therefore, the card has been commercialized by technology transfer to Flowmon Networks
and Netcope Technologies companies. These companies have sold many cards to big In-
ternet Service Providers in Great Britain, Switzerland, Canada and other countries. Many
COMBO-CG cards have been delivered also as an accelerator of lawful interception solution
or as a core component of test equipment. A market leader for the network test equipment
have used these cards in their network protocol testers.

The COMBO-CG card has been designed in the scope of CESNET Liberouter project [24]
and DMON100 project (Distributed System for Complex Monitoring of High-Speed Net-
works) funded by Technology Agency of Czech Republic. I was a principal investigator
of the DMON100 project. The cooperation between CESNET and Netcope Technologies

30

on the card has been awarded by 2nd place in the competition the Best Cooperation of
the Year 2016. The objective of the competition is to increase awareness of the signifi-
cance of cooperation between universities, research organisations and the private sector,
and the practical impact of the transfer of research findings into practice. The competition
was organised by the Association for Foreign Investment and the American Chamber of
Commerce in the Czech Republic.

The card succeeded also in the 15th edition of the prestigious annual Czech Head com-
petition. CESNET and Netcope Technologies acquired the Industrie Prize, awarded by the
Ministry of Industry for the most innovative technologies. The Czech Head competition is
annually organised by the eponymous company, along with the Office of the Czech Gov-
ernment. It is one of the most prestigious national award for science and research in the
Czech republic. Laureates of the Czech Head awards for science, research and innovation
have been handed out in several categories since 2002.

4.3 Conclusions
This thesis introduced hardware architectures for 100 Gbps network packet processing us-
ing FPGA technology. The architectures provide hardware acceleration of the most fre-
quently used time-critical operations in computer networks and are used in COMBO-CG
acceleration card, which has been developed as a hardware platform for 100 Gbps network
applications and devices.

The papers included into this thesis are focused on five time-critical operations:

Packet parsing – two architectures have been presented in this thesis. The first flexible
hardware architecture is generated from XML description. Extracted header fields
can be changed on runtime without FPGA reconfiguration. This architecture was
presented at IEEE DDECS’09 conference and a corresponding paper I attracted 13 ci-
tations. The second modular low-latency architecture is optimized to achieve high
throughput and low FPGA logic utilization. It was presented at IEEE DDECS’14
conference and a corresponding paper II attracted 2 citations.

Longest prefix matching – presented architecture employs a deep pipeline to achieve
wire-speed 100 Gb throughput. Moreover, memory requirements are reduced by com-
pression of the trie data structure. The architecture was presented at IEEE FPL’13
conference and a corresponding paper III attracted 2 citations.

Packet classification – in order to achieve wire-speed 100 Gbps throughput, we have
designed a hardware architecture, which utilizes perfect hash function to look-up
classification rule in a single step. The architecture was presented at IEEE/ACM
FPGA’09 conference and a corresponding paper IV attracted 16 citations.

Pattern matching – as the current pattern matching speed is limited to 40 Gbps, we
designed a hardware architecture with Pipelined Automata to scale the throughput
to hundreds of Gbps. The architecture was presented at IEEE FPT’16 conference and
was patented under the Czech patent no. 306871. An application for a US patent has
been submitted.

Deep packet inspection – the Software Defined Monitoring (SDM) concept was intro-
duced at IEEE INFOCOM’14 conference. The original paper was extended by new

31

results and presented also in IEEE Transactions on Computers (TC) journal with im-
pact factor 1.723. The IEEE INFOCOM paper VI has already attracted 11 citations.

These architectures are utilized as acceleration cores for the COMBO-CG card, which
was created in early days of 100 Gbps Ethernet standard. Therefore, the card together
with proposed architectures is deployed to protect perimeter of CESNET2 academic net-
work, was successfully commercialised and received the Industrie Prize in Czech Head 2016
competition.

4.4 Future Work
The speed of network links is growing very fast. According to the Nielson law, a high-
end user’s connection speed grows by 50 % per year. New 400 Gbps Ethernet was ratified
in December 2017 and large data centres already call for 1 Tb links. Therefore future
research will be focused on packet processing for next generation of network links. It brings
many challenges for packet processing. The most critical challenge is parallel processing of
multiple packets within one clock cycle, because up to four packets can arrive to FPGA at
once from 400 Gb link. Therefore hardware architectures for 400 Gbps packet processing
have to be changed accordingly. This research is addressed by currently running Focus
project [22], which is funded by Ministry of Interior of the Czech Republic. The goal of the
Fokus project is to create 400 Gbps card together with hardware architectures for wire-speed
packet processing.

Although FPGAs are programmable devices, it is difficult to adjust FPGA functionality
to user needs. The programming in VHDL or Verilog is time consuming and too difficult
for network administrators or software developers. Therefore our future research will be
focused on mapping high-level languages to the FPGA technology. For custom packet pro-
cessing, P4 [16] language has been introduced by Nick McKeown from Stanford university.
The mapping of P4 description to the FPGA is a hot research topic, which has been par-
tially solved by Pavel Benaček [13, 14] in the scope of Liberouter project. Unfortunately,
the match/action tables and other P4 language constructions are not fully supported or
optimised for high-speed processing and low resource utilization. Therefore, our future re-
search will be focus on the optimisations of mapping P4 match/action tables to FPGA. This
research will be addressed by currently running NFV200 project [21] funded by Technology
Agency of the Czech Republic.

32

Bibliography

[1] ClearFoundation. l7-filter. Online, 2017. http://l7-filter.clearos.com/.

[2] Xilinx Inc. SDNet Development Environment: Expanding Programmability from the
Control to the Data Plane. Online, 2014. Xilinx, Inc.,
https://www.xilinx.com/products/design-tools/software-zone/sdnet.html.

[3] Xilinx MicroBlaze Soft Processor. Xilinx, Inc.,
http://www.xilinx.com/tools/microblaze.htm.

[4] Xilinx Virtex–7 FPGA Family. Xilinx, Inc.,
http://www.xilinx.com/products/silicon-devices/fpga/virtex-7.

[5] Attig, M.; Brebner, G.: 400 Gb/s Programmable Packet Parsing on a Single FPGA.
In Architectures for Networking and Communications Systems (ANCS), 2011 Seventh
ACM/IEEE Symposium on. oct. 2011. pp. 12–23.

[6] Baboescu, F.; Varghese, G.: Scalable packet classification. In SIGCOMM ’01:
Proceedings of the 2001 conference on Applications, technologies, architectures, and
protocols for computer communications. New York, NY, USA: ACM. 2001. ISBN
1-58113-411-8. pp. 199–210.

[7] Becchi, M.; Cadambi, S.: Memory-Efficient Regular Expression Search Using State
Merging. In IEEE INFOCOM 2007 - 26th IEEE International Conference on
Computer Communications. May 2007. ISSN 0743-166X. pp. 1064–1072.

[8] Becchi, M.; Crowley, P.: A Hybrid Finite Automaton for Practical Deep Packet
Inspection. In Proceedings of the 2007 ACM CoNEXT Conference. CoNEXT ’07.
New York, NY, USA: ACM. 2007. ISBN 978-1-59593-770-4. pp. 1:1–1:12.

[9] Becchi, M.; Crowley, P.: Efficient Regular Expression Evaluation: Theory to
Practice. In Proceedings of the 4th ACM/IEEE Symposium on Architectures for
Networking and Communications Systems. ANCS ’08. New York, NY, USA: ACM.
2008. ISBN 978-1-60558-346-4. pp. 50–59.

[10] Becchi, M.; Crowley, P.: Extending Finite Automata to Efficiently Match
Perl-compatible Regular Expressions. In Proceedings of the 2008 ACM CoNEXT
Conference. CoNEXT ’08. New York, NY, USA: ACM. 2008. ISBN
978-1-60558-210-8. pp. 25:1–25:12.

[11] Becchi, M.; Crowley, P.: A-DFA: A Time- and Space-Efficient DFA Compression
Algorithm for Fast Regular Expression Evaluation. ACM Trans. Archit. Code Optim..
vol. 10, no. 1. April 2013: pp. 4:1–4:26. ISSN 1544-3566.

33

[12] Becchi, M.; Wiseman, C.; Crowley, P.: Evaluating Regular Expression Matching
Engines on Network and General Purpose Processors. In Proceedings of the 5th
ACM/IEEE Symposium on Architectures for Networking and Communications
Systems. ANCS ’09. New York, NY, USA: ACM. 2009. ISBN 978-1-60558-630-4. pp.
30–39.

[13] Benáček, P.; Puš, V.; Kubátová, H.: P4-to-VHDL: Automatic Generation of 100
Gbps Packet Parsers. In 2016 IEEE 24th Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM). May 2016. pp. 148–155.

[14] Benáček, P.; Puš, V.; Kubátová, H.; et al.: P4-To-VHDL: Automatic generation of
high-speed input and output network blocks. Microprocessors and Microsystems.
vol. 56. 2018: pp. 22 – 33. ISSN 0141-9331.

[15] Bloom, B.: Space/time trade-offs in hash coding with allowable errors.
Communications of the ACM. 1970.

[16] Bosshart, P.; Daly, D.; Gibb, G.; et al.: P4: Programming Protocol-independent
Packet Processors. SIGCOMM Comput. Commun. Rev.. vol. 44, no. 3. July 2014: pp.
87–95. ISSN 0146-4833.

[17] Braun, F.; Lockwood, J.; Waldvogel, M.: Protocol wrappers for layered network
packet processing in reconfigurable hardware. Micro, IEEE. vol. 22, no. 1. 2002: pp.
66–74. ISSN 0272-1732.

[18] Brodie, B. C.; Taylor, D. E.; Cytron, R. K.: A Scalable Architecture For
High-Throughput Regular-Expression Pattern Matching. In 33rd International
Symposium on Computer Architecture (ISCA’06). 2006. ISSN 1063-6897. pp. 191–202.

[19] Caswell, B.; Foster, J. C.; Russell, R.; et al.: Snort 2.0 Intrusion Detection. Syngress
Publishing. 2003. ISBN 1931836744.

[20] Caulfield, A.; Chung, E.; Putnam, A.; et al.: A Cloud-Scale Acceleration
Architecture. In Proceedings of the 49th Annual IEEE/ACM International
Symposium on Microarchitecture. IEEE Computer Society. October 2016.

[21] CESNET, z.s.p.o.: Platform for Acceleration of Network Functions Virtualization,
research project funded by TAČR. 2017-2019.

[22] CESNET, z.s.p.o.: Adaptive Management of Data Collection and Analysis in
High-Speed Networks (FOKUS), research project funded by MV ČR. 2017-2020.

[23] CESNET, z.s.p.o.: COMBO-CG card. 2018.
Retrieved from: https://www.liberouter.org/combo-100g/

[24] CESNET, z.s.p.o.: Liberouter project. 2018.
Retrieved from: https://www.liberouter.org/

[25] Clark, C. R.; Schimmel, D. E.: Efficient Reconfigurable Logic Circuits for Matching
Complex Network Intrusion Detection Patterns. In In Proceedings of 13th
International Conference on Field Program. 2003. pp. 956–959.

34

https://www.liberouter.org/combo-100g/
https://www.liberouter.org/

[26] Clark, C. R.; Schimmel, D. E.: Scalable pattern matching for high speed networks. In
Field-Programmable Custom Computing Machines, 2004. FCCM 2004. 12th Annual
IEEE Symposium on. April 2004. pp. 249–257.

[27] Dedek, T.; Martínek, T.; Marek, T.: High Level Abstraction Language as an
Alternative to Embedded Processors for Internet Packet Processing in FPGA. In
Field Programmable Logic and Applications, 2007. FPL 2007. International
Conference on. aug. 2007. pp. 648–651.

[28] Deri, L.; Martinelli, M.; Bujlow, T.; et al.: nDPI: Open-source high-speed deep
packet inspection. In 2014 International Wireless Communications and Mobile
Computing Conference (IWCMC). Aug 2014. ISSN 2376-6492. pp. 617–622.

[29] Dharmapurikar, S.; Song, H.; Turner, J.; et al.: Fast packet classification using
Bloom filters. In ANCS ’06: Proceedings of the 2006 ACM/IEEE symposium on
Architecture for networking and communications systems. New York, NY, USA:
ACM. 2006. ISBN 1-59593-580-0. pp. 61–70.

[30] Eatherton, W.; Varghese, G.; Dittia, Z.: Tree Bitmap: Hardware/Software IP
Lookups with Incremental Updates. SIGCOMM Comput. Commun. Rev.. vol. 34,
no. 2. April 2004: pp. 97–122. ISSN 0146-4833.

[31] Emmerich, P.; Raumer, D.; Wohlfart, F.; et al.: Performance characteristics of
virtual switching. In 2014 IEEE 3rd International Conference on Cloud Networking
(CloudNet). Oct 2014. pp. 120–125.

[32] Gupta, P.; McKeown, N.: Packet classification using hierarchical intelligent cuttings.
In Proc. Hot Interconnects. 1999.

[33] Gupta, P.; Prabhakar, B.; Boyd, S. P.: Near Optimal Routing Lookups with
Bounded Worst Case Performance. In INFOCOM. 2000. pp. 1184–1192.

[34] IEEE 802.3 Ethernet Working Group: IEEE 802.3 industry connections ethernet
bandwidth assessment. Technical report,. 2012.

[35] Kaneta, Y.; Yoshizawa, S.; i. Minato, S.; et al.: Dynamic reconfigurable bit-parallel
architecture for large-scale regular expression matching. In Field-Programmable
Technology (FPT), 2010 International Conference on. Dec 2010. pp. 21–28.

[36] Kekely, M.; Korenek, J.: Mapping of P4 match action tables to FPGA. In 2017 27th
International Conference on Field Programmable Logic and Applications (FPL). Sept
2017. pp. 1–2.

[37] Kobierský, P.; Kořenek, J.; Polčák, L.: Packet header analysis and field extraction for
multigigabit networks. In Proceedings of the 2009 12th International Symposium on
Design and Diagnostics of Electronic Circuits&Systems. DDECS. Washington, USA:
IEEE Computer Society. 2009. ISBN 978-1-4244-3341-4. pp. 96–101.

[38] Kořenek, J.: Fast Regular Expression Matching Using FPGA. Information Sciences
and Technologies Bulletin of the ACM Slovakia. vol. 2, no. 2. 2010: pp. 103–111.
ISSN 1338-1237.

35

[39] Kozanitis, C.; Huber, J.; Singh, S.; et al.: Leaping Multiple Headers in a Single
Bound: Wire-Speed Parsing Using the Kangaroo System. In IEEE INFOCOM. mar.
2010. ISSN 0743-166X.

[40] Kořenek, J.; Puš, V.; Blaho, J.: Memory Optimization for Packet Classification
Algorithms. In Proceedings of the 5th ACM/IEEE Symposium on Architectures for
Networking and Communications Systems. Association for Computing Machinery.
Association for Computing Machinery. 2009. ISBN 978-1-60558-630-4. pp. 165–166.

[41] Kumar, S.; Chandrasekaran, B.; Turner, J.; et al.: Curing Regular Expressions
Matching Algorithms from Insomnia, Amnesia, and Acalculia. In Proceedings of the
3rd ACM/IEEE Symposium on Architecture for Networking and Communications
Systems. ANCS ’07. New York, NY, USA: ACM. 2007. ISBN 978-1-59593-945-6. pp.
155–164.

[42] Kumar, S.; Dharmapurikar, S.; Yu, F.; et al.: Algorithms to Accelerate Multiple
Regular Expressions Matching for Deep Packet Inspection. In Proceedings of the 2006
Conference on Applications, Technologies, Architectures, and Protocols for Computer
Communications. SIGCOMM ’06. New York, NY, USA: ACM. 2006. ISBN
1-59593-308-5. pp. 339–350.

[43] Lakshman, T. V.; Stiliadis, D.: High-speed policy-based packet forwarding using
efficient multi-dimensional range matching. SIGCOMM Comput. Commun. Rev..
vol. 28, no. 4. 1998: pp. 203–214. ISSN 0146-4833.

[44] Le, H.; Prasanna, V. K.: Scalable Tree-based Architectures for IPv4/v6 Lookup
Using Prefix Partitioning. vol. 61, no. 7. July 2012: pp. 1026–1039. ISSN 0018-9340.

[45] Lee, H.; Jiang, W.; Prasanna, V. K.: Scalable High-Throughput SRAM-Based
Architecture for IP Lookup Using FPGA. In FPL ’08. IEEE. 2008.

[46] Lin, C.; Huang, C.; Jiang, C.; et al.: Optimization of Pattern Matching Circuits for
Regular Expression on FPGA. IEEE Trans. VLSI Syst.. vol. 15, no. 12. 2007: pp.
1303–1310.

[47] Matoušek, J.; Skačan, M.; Kořenek, J.: Memory efficient IP lookup in 100 GBPS
networks. In 2013 23rd International Conference on Field programmable Logic and
Applications. Sept 2013. ISSN 1946-147X. pp. 1–8.

[48] Netronome Inc.: Hardware Acceleration for Network Services. 2018.
Retrieved from:
https://www.netronome.com/media/documents/WP_Hardware_Acceleration.pdf

[49] NXP Inc.: QorIQ LS2088A processor. 2018.
Retrieved from:
https://www.nxp.com/products/processors-and-microcontrollers/arm-based-
processors-and-mcus/qoriq-layerscape-arm-processors/qoriq-layerscape-
2088a-and-2048a-multicore-communications-processors:LS2088A

[50] Ovtcharov, K.; Ruwase, O.; Kim, J.-Y.; et al.: Toward Accelerating Deep Learning at
Scale Using Specialized Hardware in the Datacenter. In Proceedings of the 27th IEEE
HotChips Symposium on High-Performance Chips (HotChips 2015). IEEE. August
2015.

36

https://www.netronome.com/media/documents/WP_Hardware_Acceleration.pdf
https://www.nxp.com/products/processors-and-microcontrollers/arm-based-processors-and-mcus/qoriq-layerscape-arm-processors/qoriq-layerscape-2088a-and-2048a-multicore-communications-processors:LS2088A
https://www.nxp.com/products/processors-and-microcontrollers/arm-based-processors-and-mcus/qoriq-layerscape-arm-processors/qoriq-layerscape-2088a-and-2048a-multicore-communications-processors:LS2088A
https://www.nxp.com/products/processors-and-microcontrollers/arm-based-processors-and-mcus/qoriq-layerscape-arm-processors/qoriq-layerscape-2088a-and-2048a-multicore-communications-processors:LS2088A

[51] Paxson, V.: Bro: A System for Detecting Network Intruders in Real-time. In
Proceedings of the 7th Conference on USENIX Security Symposium - Volume 7.
SSYM’98. Berkeley, CA, USA: USENIX Association. 1998. pp. 3–3.

[52] Pfaff, B.; Pettit, J.; Koponen, T.; et al.: The Design and Implementation of Open
vSwitch. In Proceedings of the 12th USENIX Conference on Networked Systems
Design and Implementation. NSDI’15. Berkeley, CA, USA: USENIX Association.
2015. ISBN 978-1-931971-218. pp. 117–130.

[53] Putnam, A.; Caulfield, A.; Chung, E.; et al.: A Reconfigurable Fabric for
Accelerating Large-Scale Datacenter Services. In Proceeding of the 41st Annual
International Symposium on Computer Architecuture (ISCA). IEEE Press. June
2014. ISBN 978-1-4799-4394-4. pp. 13–24.

[54] Puš, V.; Kekely, L.; Kořenek, J.: Design methodology of configurable high
performance packet parser for FPGA. In Design and Diagnostics of Electronic
Circuits Systems, 17th International Symposium on. April 2014. pp. 189–194.

[55] Puš, V.; Kořenek, J.: Fast and Scalable Packet Classification Using Perfect Hash
Functions. In FPGA ’09: Proceedings of the 17th international ACM/SIGDA
symposium on Field programmable gate arrays. New York, NY, USA: ACM. 2009.

[56] Qi, Y.; Fong, J.; Jiang, W.; et al.: Multi-dimensional packet classification on FPGA:
100 Gbps and beyond. In 2010 International Conference on Field-Programmable
Technology. Dec 2010. pp. 241–248.

[57] Qi, Y.; Xu, L.; Yang, B.; et al.: Packet Classification Algorithms: From Theory to
Practice. In IEEE INFOCOM 2009. April 2009. ISSN 0743-166X. pp. 648–656.

[58] Ruiz-Sánchez, M. A.; Biersack, E. W.; Dabbous, W.: Survey and Taxonomy of IP
Address Lookup Algorithms. vol. 15, no. 2. March 2001: pp. 8–23. ISSN 0890-8044.

[59] Sidhu, R.; Prasanna, V. K.: Fast Regular Expression Matching Using FPGAs. In
Proceedings of the the 9th Annual IEEE Symposium on Field-Programmable Custom
Computing Machines. FCCM ’01. Washington, DC, USA: IEEE Computer Society.
2001. ISBN 0-7695-2667-5. pp. 227–238.

[60] Singh, S.; Baboescu, F.; Varghese, G.; et al.: Packet classification using
multidimensional cutting. In SIGCOMM ’03: Proceedings of the 2003 conference on
Applications, technologies, architectures, and protocols for computer communications.
New York, NY, USA: ACM. 2003. ISBN 1-58113-735-4. pp. 213–224.

[61] Song, H.; Turner, J.; Lockwood, J.: Shape Shifting Tries for Faster IP Route Lookup.
In Proc. of the 13th IEEE International Conference on Network Protocols (ICNP’05).
IEEE Computer Society. 2005. pp. 358–367. ISBN 0-7695-2437-0.

[62] Sourdis, I.; Bispo, J.; Cardoso, J. M. P.; et al.: Regular Expression Matching in
Reconfigurable Hardware. Journal of Signal Processing Systems. vol. 51, no. 1. 2008:
pp. 99–121. ISSN 1939-8115.

[63] Srinivasan, V.; Varghese, G.; Suri, S.; et al.: Fast and scalable layer four switching.
SIGCOMM Comput. Commun. Rev.. vol. 28, no. 4. 1998: pp. 191–202. ISSN
0146-4833.

37

[64] Taylor, D.; Turner, J.: Scalable Packet Classification using Distributed
Crossproducing of Field Labels. In IEEE INFOCOM 2005, 24th Annual Joint
Conference of the IEEE Computer and Communications Societies.. July 2005. pp.
269–280.

[65] Weaver, N.; Paxson, V.; Gonzalez, J. M.: The Shunt: An FPGA-based Accelerator
for Network Intrusion Prevention. In Proceedings of the 2007 ACM/SIGDA 15th
International Symposium on Field Programmable Gate Arrays. FPGA ’07. New York,
NY, USA: ACM. 2007. ISBN 978-1-59593-600-4. pp. 199–206.

[66] Xilinx Inc.: FPGA producer. 2018.
Retrieved from: http://www.xilinx.com/

[67] Yang, Y. H.; Prasanna, V.: High-Performance and Compact Architecture for Regular
Expression Matching on FPGA. IEEE Transactions on Computers. vol. 61, no. 7.
July 2012: pp. 1013–1025. ISSN 0018-9340.

[68] Yang, Y.-H. E.; Jiang, W.; Prasanna, V. K.: Compact Architecture for
High-throughput Regular Expression Matching on FPGA. In Proceedings of the 4th
ACM/IEEE Symposium on Architectures for Networking and Communications
Systems. ANCS ’08. New York, NY, USA: ACM. 2008. ISBN 978-1-60558-346-4. pp.
30–39.

[69] Yu, F.; Chen, Z.; Diao, Y.; et al.: Fast and Memory-efficient Regular Expression
Matching for Deep Packet Inspection. In Proceedings of the 2006 ACM/IEEE
Symposium on Architecture for Networking and Communications Systems. ANCS ’06.
New York, NY, USA: ACM. 2006. ISBN 1-59593-580-0. pp. 93–102.

[70] Yun, S.; Lee, K.: Optimization of Regular Expression Pattern Matching Circuit
Using At-Most Two-Hot Encoding on FPGA. In 2010 International Conference on
Field Programmable Logic and Applications. Aug 2010. ISSN 1946-147X. pp. 40–43.

38

http://www.xilinx.com/

Appendix A

Included Papers

A.1 Paper I
Packet Header Analysis and Field Extraction for Multigigabit Networks

39

P�✁✂ ❑♦✄☎�✂✆✝➫②

❋❛✞✟✠✡☛ ☞✌ ■✍✌☞✎✏❛✡✑☞✍ ❚❡✞✒✍☞✠☞✓☛

❇✎✍☞ ❯✍✑✈❡✎✔✑✡☛ ☞✌ ❚❡✞✒✍☞✠☞✓☛

❇☞✙③❡✡✙❡✞✒☞✈❛ ✷✕ ✻✖✷ ✻✻✕

❇✎✍☞✕ ❈③❡✞✒ ❘❡✗✟✘✠✑✞

❊✏❛✑✠✚ ✑✐☞✘✑❡✎✛✜✡✢✈✟✡✘✎✢✞③

❏✣✤ ❑♦✥✂�✤�✝

❋❛✞✟✠✡☛ ☞✌ ■✍✌☞✎✏❛✡✑☞✍ ❚❡✞✒✍☞✠☞✓☛

❇✎✍☞ ❯✍✑✈❡✎✔✑✡☛ ☞✌ ❚❡✞✒✍☞✠☞✓☛

❇☞✙③❡✡✙❡✞✒☞✈❛ ✷✕ ✻✖✷ ✻✻✕

❇✎✍☞✕ ❈③❡✞✒ ❘❡✗✟✘✠✑✞

❊✏❛✑✠✚ ✐☞✎❡✍❡✐✛✜✡✢✈✟✡✘✎✢✞③

▲☎✄♦✂ P♦✦✥❝➫✣✝

❈❊✧★❊❚ ③✢ ✔✢ ✗✢ ☞✢

❩✑✐☞✈❛ ✹✕ ✖✻✶ ✶✶✕

✩✎❛✓✟❡✕ ❈③❡✞✒ ❘❡✗✟✘✠✑✞

❊✏❛✑✠✚ ✗☞✠✞❛✐ ✠✛✠✑✘❡✎☞✟✡❡✎✢☞✎✓

❆✪✫✬✭✮✯✬❸✰✱✲✳✴✵ ❤✴✱✸✴✺ ✱✼✱✽✾✿❀✿ ✱✼✸ ✴❁✵✺✱✲✵❀❂✼ ❂❃ ❤✴✱✸✴✺

➇✴✽✸✿ ✼✴✴✸✿ ✵❂ ❜✴ ♣✴✺❃❂✺❄✴✸ ❀✼ ✱✽✽ ✼✴✵♥❂✺✳ ✸✴❅❀✲✴✿❉ ●✿ ✼✴✵♥❂✺✳

✿♣✴✴✸ ❀✿ ❀✼✲✺✴✱✿❀✼❍ q▼❀✲✳✽✾◆ ❤❀❍❤ ✿♣✴✴✸ ♣✱✲✳✴✵ ❤✴✱✸✴✺ ♣✺❂✲✴✿✿❀✼❍

❀✿ ✺✴q▼❀✺✴✸❉ ❲✴ ♣✺❂♣❂✿✴ ✱ ✼✴♥ ✱✺✲❤❀✵✴✲✵▼✺✴ ❂❃ ♣✱✲✳✴✵ ❤✴✱✸✴✺ ✱✼✱✽❖

✾✿❀✿ ✱✼✸ ➇✴✽✸✿ ✴❁✵✺✱✲✵❀❂✼ ❀✼✵✴✼✸✴✸ ❃❂✺ ❤❀❍❤❖✿♣✴✴✸ ◗✰❙●❖❜✱✿✴✸

✼✴✵♥❂✺✳ ✱♣♣✽❀✲✱✵❀❂✼✿❉ ❱❤✴ ✱✺✲❤❀✵✴✲✵▼✺✴ ❀✿ ✱❜✽✴ ✵❂ ♣✺❂✲✴✿✿ ❳❨ ❙❜♣✿

✼✴✵♥❂✺✳ ✽❀✼✳✿ ♥❀✵❤ ✽✴✿✿ ✵❤✱✼ ❬❳ ♣✴✺✲✴✼✵ ❂❃ ✱❅✱❀✽✱❜✽✴ ✺✴✿❂▼✺✲✴✿ ❂❃

❭❀✺✵✴❁ ❪ ❬❬❨ ◗✰❙●❉ ❫❂✺✴❂❅✴✺◆ ✵❤✴ ♣✺✴✿✴✼✵✴✸ ✿❂✽▼✵❀❂✼ ✲✱✼ ❜✱✽✱✼✲✴

❜✴✵♥✴✴✼ ✼✴✵♥❂✺✳ ✵❤✺❂▼❍❤♣▼✵ ✱✼✸ ✲❂✼✿▼❄✴✸ ❤✱✺✸♥✱✺✴ ✺✴✿❂▼✺✲✴✿

✵❂ ➇✵ ✱♣♣✽❀✲✱✵❀❂✼ ✼✴✴✸✿❉ ❱❤✴ ✱✺✲❤❀✵✴✲✵▼✺✴ ❃❂✺ ♣✱✲✳✴✵ ❤✴✱✸✴✺

♣✺❂✲✴✿✿❀✼❍ ❀✿ ❍✴✼✴✺✱✵✴✸ ❃✺❂❄ ✿✵✱✼✸✱✺✸ ❴❫❵ ♣✺❂✵❂✲❂✽ ✿✲❤✴❄✴

✱✼✸ ❀✿ ✿✵✺❂✼❍✽✾ ❂♣✵❀❄❀✿✴✸ ❃❂✺ ✺✴✿❂▼✺✲✴ ✲❂✼✿▼❄♣✵❀❂✼ ✱✼✸ ✿♣✴✴✸

❜✾ ✱✼ ✱▼✵❂❄✱✵❀✲ ❞❢❵ ✲❂✸✴ ❍✴✼✴✺✱✵❂✺❉ ❣▼✺ ✿❂✽▼✵❀❂✼ ✱✽✿❂ ✴✼✱❜✽✴✿

✵❂ ✲❤✱✼❍✴ ✵❤✴ ✿✴✵ ❂❃ ✴❁✵✺✱✲✵✴✸ ❤✴✱✸✴✺ ➇✴✽✸✿ ❂✼❖✽❀✼✴ ♥❀✵❤❂▼✵ ◗✰❙●

✺✴✲❂✼➇❍▼✺✱✵❀❂✼❉

■✢ ■❥❦❧♠rst❦✉♠❥

■✍ ✡✒❡ ✎❡✞❡✍✡ ✇❡✞❛✇❡ ❛ ✎❛✗✑✇ ✇❡✈❡✠☞✗✏❡✍✡ ✑✍ ❛✎❡❛ ☞✌ ✍❡✡①

④☞✎✐ ✡❡✞✒✍☞✠☞✓✑❡✔ ✞❛✍ ✘❡ ☞✘✔❡✎✈❡✇✢ ❚✒❡ ✑✍✞✎❡❛✔❡ ✑✍ ✡✒❡ ✠✑✍✐

✞❛✗❛✞✑✡☛ ✌✎☞✏ ✖✶✶ ⑤✘✗✔ ✡☞ ✖✶ ⑥✘✗✔ ❛✍✇ ✏☞✎❡ ✗✟✡✔ ✒✑✓✒❡✎

✇❡✏❛✍✇✔ ☞✍ ✇❡✈✑✞❡✔ ✡✒❛✡ ✒❛✈❡ ✡☞ ✗✎☞✞❡✔✔ ✔✟✞✒ ✍❡✡④☞✎✐ ✡✎❛✌✜✞✢

❇✟✑✠✇✑✍✓ ❡✌✜✞✑❡✍✡✕ ✎☞✘✟✔✡ ❛✍✇ ✔❡✞✟✎❡ ✍❡✡④☞✎✐✔ ✎❡⑦✟✑✎❡✔ ✔❡✈❡✎❛✠

✡☛✗❡✔ ☞✌ ✍❡✡④☞✎✐ ✇❡✈✑✞❡✔ ✠✑✐❡ ✎☞✟✡❡✎✔✕ ✜✎❡④❛✠✠✔✕ ✏☞✍✑✡☞✎✑✍✓

✗✎☞✘❡✔✕ ■✍✡✎✟✔✑☞✍ ⑧❡✡❡✞✡✑☞✍ ✧☛✔✡❡✏✔✕ ❡✡✞✢ ⑨✑✔✡☞✎✑✞❛✠✠☛✕ ✡✒❡✔❡

✇❡✈✑✞❡✔ ④❡✎❡ ✑✏✗✠❡✏❡✍✡❡✇ ✟✔✑✍✓ ✞☞✍✈❡✍✡✑☞✍❛✠ ✞☞✏✗✟✡❡✎✔✕ ✘✟✡

✡✒✑✔ ❛✗✗✎☞❛✞✒ ✑✔ ✑✍✔✟✌✜✞✑❡✍✡ ✌☞✎ ✞✟✎✎❡✍✡ ✒✑✓✒①✔✗❡❡✇ ✍❡✡④☞✎✐✔✕

✡✒❡✎❡✌☞✎❡ ❡⑩✗❡✍✔✑✈❡ ✒❛✎✇④❛✎❡ ✇❡✈✑✞❡✔ ❛✎❡ ✟✔❡✇ ✌☞✎ ✡✒✑✔ ✗✟✎✗☞✔❡

❶❈✑✔✞☞✕ ❷✟✍✑✗❡✎✕ ❡✡✞✢❹✢

❊❛✞✒ ☞✌ ✍❡✡④☞✎✐ ✇❡✈✑✞❡ ④☞✎✐✔ ❛✡ ✠❡❛✔✡ ④✑✡✒ ✗❛✞✐❡✡ ✒❡❛✇❡✎✔❺

✑✡ ✗✎☞✞❡✔✔❡✔ ✡✒❡✏ ❛✍✇ ❡⑩✡✎❛✞✡✔ ✑✍✌☞✎✏❛✡✑☞✍ ✎❡⑦✟✑✎❡✇ ✘☛ ✒✑✓✒❡✎

✠❡✈❡✠ ✘✠☞✞✐✔✕ ❡✢✓✢ ❛ ✎☞✟✡✑✍✓ ❛✠✓☞✎✑✡✒✏✢ ❚✒✑✔ ✡❛✔✐ ✑✔ ✟✔✟❛✠✠☛

✗❡✎✌☞✎✏❡✇ ✑✍ ✒❛✎✇④❛✎❡ ✍❡✡④☞✎✐ ✇❡✈✑✞❡✔ ✘☛ ✍❡✡④☞✎✐ ✗✎☞✞❡✔✔☞✎✔

❶★✩❹ ❻✖❼ ④✒✑✞✒ ❛✎❡ ❛✘✠❡ ✡☞ ❛✞✒✑❡✈❡ ✡✒✎☞✟✓✒✗✟✡ ✌✎☞✏ ✖✶ ✡☞ ✖✶✶

⑥✘✗✔✢

❯✍✌☞✎✡✟✍❛✡❡✠☛✕ ★✩✔ ✠❛✞✐ ❛ ✓☞☞✇ ✡✒✎☞✟✓✒✗✟✡ ✞✒❛✎❛✞✡❡✎✑✔✡✑✞ ✌☞✎

✔✟✞✒ ✡❛✔✐✔ ❛✔ ✎❡✓✟✠❛✎ ❡⑩✗✎❡✔✔✑☞✍ ✏❛✡✞✒✑✍✓ ❻✷❼✕ ❻❽❼ ❶✎❡⑦✟✑✎❡✇

✘☛ ■⑧✧ ✔☛✔✡❡✏✔❹ ❛✍✇ ✗❛✞✐❡✡ ✞✠❛✔✔✑✜✞❛✡✑☞✍ ❻✹❼✕ ❻❾❼✢ ★✩ ☞✌✡❡✍

✑✍✡❡✎✌❛✞❡✔ ④✑✡✒ ✞✟✔✡☞✏ ❿✧■❈➀❋✩⑥❿ ✒❛✎✇④❛✎❡ ✇❡✔✑✓✍❡✇ ✌☞✎

✡✒❡✔❡ ✔✗❡✞✑✜✞ ✗✟✎✗☞✔❡ ✑✍ ☞✎✇❡✎ ✡☞ ✔☞✠✈❡ ✡✒✑✔ ✑✔✔✟❡✢

⑤✟✠✡✑✗✠❡ ✞✒✑✗ ✔☞✠✟✡✑☞✍ ✞❛✍ ✍☞✡ ✘❡ ✟✔❡✇ ✑✍ ✏❛✍☛ ❡✏✘❡✇✇❡✇

✇❡✈✑✞❡✔ ✘❡✞❛✟✔❡ ☞✌ ✞☞✔✡✕ ✔✑③❡ ☞✎ ✗☞④❡✎ ✞☞✍✔✟✏✗✡✑☞✍✢ ❚☞ ✎❡✇✟✞❡

✡✒❡✔❡ ✌❛✞✡☞✎✔ ❛ ✔✑✍✓✠❡ ✞✒✑✗ ❛✗✗✠✑✞❛✡✑☞✍ ❶✧☞❈❹ ❻✻❼ ✑✔ ✎❡⑦✟✑✎❡✇✢

■✍ ✎❡✞❡✍✡ ☛❡❛✎✔✕ ✡✒❡ ❋✩⑥❿ ✡❡✞✒✍☞✠☞✓☛ ✑✔ ✏☞✔✡ ☞✌✡❡✍ ✟✔❡✇

✌☞✎ ✇❡✔✑✓✍✑✍✓ ❛✍✇ ✗✎☞✡☞✡☛✗✑✍✓ ☞✌ ❛ ✍❡✡④☞✎✐ ✇☞✏❛✑✍ ✧☞❈✢ ■✍

✞☞✏✗❛✎✑✔☞✍ ④✑✡✒ ✡✒❡ ❿✧■❈ ✡❡✞✒✍☞✠☞✓☛✕ ✡✒❡ ❋✩⑥❿ ✡❡✞✒✍☞✠☞✓☛

✎❡✇✟✞❡✔ ✇❡✈❡✠☞✗✏❡✍✡ ✞☞✔✡✔ ❛✍✇ ☞✌✌❡✎✔ ✡✒❡ ✗☞✔✔✑✘✑✠✑✡☛ ☞✌ ✎❡①

✞☞✍✜✓✟✎❛✡✑☞✍✢ ❊✔✗❡✞✑❛✠✠☛ ✞✒❛✍✓✑✍✓ ✒❛✎✇④❛✎❡ ✘❡✒❛✈✑☞✟✎ ✇✟✎✑✍✓

✗✎☞✇✟✞✡ ✠✑✌❡ ✞☛✞✠❡ ❡✍❛✘✠❡✔ ❛ ✠☞✍✓ ✠✑✌❡✡✑✏❡ ☞✌ ✍❡✡④☞✎✐ ✇❡✈✑✞❡✔✕

④✒✑✞✒ ☛✑❡✠✇✔ ✑✍✌✎❛✔✡✎✟✞✡✟✎❡ ✞☞✔✡ ✔❛✈✑✍✓✔✢

⑧❡✔✗✑✡❡ ✡✒❡ ✑✏✗☞✎✡❛✍✞❡ ☞✌ ✗✎☞✡☞✞☞✠ ❛✍❛✠☛✔✑✔ ❛✍✇ ✒❡❛✇❡✎ ❡⑩①

✡✎❛✞✡✑☞✍ ✌☞✎ ❋✩⑥❿ ✡❡✞✒✍☞✠☞✓☛✕ ✡✒✑✔ ✑✔✔✟❡ ✑✔ ✞✟✎✎❡✍✡✠☛ ☞✏✑✡✡❡✇✢

➁✍✠☛ ❛ ✔✏❛✠✠ ✍✟✏✘❡✎ ☞✌ ✗❛✗❡✎✔ ❛✎❡ ✌☞✞✟✔❡✇ ☞✍ ❛✎✞✒✑✡❡✞✡✟✎❡✔

✔✟✑✡❛✘✠❡ ✌☞✎ ❋✩⑥❿ ✞✒✑✗✔ ❛✍✇ ✒✑✓✒①✔✗❡❡✇ ✍❡✡④☞✎✐✔✢

❿ ✠✑✘✎❛✎☛ ☞✌ ✠❛☛❡✎❡✇ ✗✎☞✡☞✞☞✠ ✗✎☞✞❡✔✔✑✍✓ ❡✍✓✑✍❡✔ ❻➂❼ ✒❛✔

✘❡❡✍ ✑✍✡✎☞✇✟✞❡✇ ✘☛ ❷☞✒✍ ➃☞✞✐④☞☞✇ ✑✍ ❋✩➄ ✗✠❛✡✌☞✎✏✢ ❊❛✞✒

❡✍✓✑✍❡ ✑✔ ❛ ✒❛✎✇④❛✎❡ ✘✠☞✞✐ ✎❡✔✗☞✍✔✑✘✠❡ ✌☞✎ ✗✎☞✞❡✔✔✑✍✓ ☞✌ ☞✍❡

✗✎☞✡☞✞☞✠ ✌✎☞✏ ❛ ✔✑✍✓✠❡ ■✧➁➀➁✧■ ✠❛☛❡✎✢ ❚✒❡ ❡✍✓✑✍❡✔ ✒❛✈❡ ❛ ④❡✠✠①

✇❡✜✍❡✇ ✑✍✡❡✎✌❛✞❡ ✌☞✎ ☞✟✡❡✎ ❛✍✇ ✑✍✍❡✎ ✗✎☞✡☞✞☞✠ ④✒✑✞✒ ❡✍❛✘✠❡✔

✍❡✔✡✑✍✓ ✔❡✈❡✎❛✠ ❡✍✓✑✍❡✔ ✡☞✓❡✡✒❡✎✢ ❿✔ ❛ ✎❡✔✟✠✡✕ ✑✡ ✑✔ ✗☞✔✔✑✘✠❡ ✡☞

❛✞✒✑❡✈❡ ❛ ✏☞✇✟✠❛✎ ✇❡✔✑✓✍ ④✒✑✞✒ ✞❛✍ ✔✟✗✗☞✎✡ ❛✗✗✠✑✞❛✡✑☞✍✔ ✌☞✎

✇✑✌✌❡✎❡✍✡ ✗✎☞✡☞✞☞✠✔ ❛✍✇ ✠❡✈❡✠ ☞✌ ❛✘✔✡✎❛✞✡✑☞✍✢

❿✍☞✡✒❡✎ ❛✗✗✎☞❛✞✒✕ ✒☞④ ✡☞ ✗❡✎✌☞✎✏ ✗✎☞✡☞✞☞✠ ❛✍❛✠☛✔✑✔ ❛✍✇

❡⑩✡✎❛✞✡✑☞✍ ✑✔ ❛ ✟✔❛✓❡ ☞✌ ❛ ✗✎☞✞❡✔✔☞✎ ■✩ ✞☞✎❡✢ ❚✒❡ ➃✑✘❡✎☞✟✡❡✎ ❻➅❼

✗✎☞➆❡✞✡ ✟✔❡✔ ❛ ✞✟✔✡☞✏①✏❛✇❡ ✖✻①✘✑✡ ❘■✧❈ ✗✎☞✞❡✔✔☞✎ ✇❡✔✑✓✍❡✇

✡☞ ❛✍❛✠☛✔❡ ✗✎☞✡☞✞☞✠✔ ❛✍✇ ❡⑩✡✎❛✞✡ ✔❡✠❡✞✡❡✇ ✜❡✠✇✔ ☞✍ ➃✷➈➃✹

■✧➁➀➁✧■ ✠❛☛❡✎✔✢ ❚✒✑✔ ✞✟✔✡☞✏ ✗✎☞✞❡✔✔☞✎ ✑✔ ❛✘✠❡ ✡☞ ❛✞✒✑❡✈❡

✡✒✎☞✟✓✒✗✟✡ ✟✗ ✡☞ ➉✶✶ ⑤✘✗✔ ☞✍ ➊✑✎✡❡⑩ ■■ ❋✩⑥❿✢

❿ ✗✎☞✞❡✔✔✑✍✓ ❡✍✓✑✍❡ ❻➉❼ ✑✍ ✌☞✎✏ ☞✌ ❛ ✔✡❛✡❡ ✏❛✞✒✑✍❡ ✇❡✔✞✎✑✘❡✇

✑✍ ✒✑✓✒①✠❡✈❡✠ ❛✘✔✡✎❛✞✡✑☞✍ ✠❛✍✓✟❛✓❡ ❶⑨❛✍✇❡✠①❈❹ ④❛✔ ✠❛✡❡✎ ✗✎☞①

✗☞✔❡✇✢ ❚✒❡ ✔✡❛✡❡ ✏❛✞✒✑✍❡ ❛✞✒✑❡✈❡✔ ✒✑✓✒❡✎ ✡✒✎☞✟✓✒✗✟✡✔ ✡✒❛✍

✡✒❡ ✞✟✔✡☞✏ ✗✎☞✞❡✔✔☞✎ ❛✍✇ ✞☞✍✔✟✏❡✔ ❛✠✏☞✔✡ ✡✒❡ ✔❛✏❡ ✍✟✏✘❡✎

☞✌ ✒❛✎✇④❛✎❡ ✎❡✔☞✟✎✞❡✔✕ ✘✟✡ ✔✡✑✠✠ ✞❛✍✍☞✡ ✘❡ ✔✑✏✗✠☛ ✟✔❡✇ ✌☞✎ ✖✶

⑥✘✗✔ ✍❡✡④☞✎✐✔✢

⑤☞✎❡☞✈❡✎✕ ❛✠✠ ✑✍✡✎☞✇✟✞❡✇ ❛✎✞✒✑✡❡✞✡✟✎❡✔ ✔✟✌✌❡✎ ✌✎☞✏ ✗✎☞✘✠❡✏✔

④✑✡✒ ❛✇❛✗✡❛✡✑☞✍ ✡☞ ✍❡④ ✍❡✡④☞✎✐ ✗✎☞✡☞✞☞✠✔✢ ■✌ ❛ ✍❡④ ✗✎☞✡☞✞☞✠

✔✗❡✞✑✜✞❛✡✑☞✍ ✑✔ ✞✎❡❛✡❡✇ ❛✍✇ ✍❡❡✇✔ ✡☞ ✘❡ ✔✟✗✗☞✎✡❡✇✕ ❛✍ ❡⑩✗❡①

✎✑❡✍✞❡✇ ✇❡✔✑✓✍❡✎ ✌❛✏✑✠✑❛✎ ④✑✡✒ ⑨⑧➃ ✠❛✍✓✟❛✓❡ ☞✎ ✗✎☞✞❡✔✔☞✎

❛✎✞✒✑✡❡✞✡✟✎❡ ✑✔ ✎❡⑦✟✑✎❡✇✢ ❚✒❡✎❡✌☞✎❡✕ ✡✒❡ ✑✍✡❡✎✈❛✠ ✘❡✡④❡❡✍ ✍❡④

✎❡✠❡❛✔❡ ☞✌ ✡✒❡ ✗✎☞✡☞✞☞✠ ✔✗❡✞✑✜✞❛✡✑☞✍ ❛✍✇ ✑✡✔ ✔✟✗✗☞✎✡ ✑✍ ✒❛✎✇④❛✎❡

✇❡✈✑✞❡ ✑✔ ✈❡✎☛ ✠☞✍✓✢ ⑨❛✎✇①④✑✎❡✇ ❛✗✗✎☞❛✞✒❡✔ ❛✎❡ ❛✠✔☞ ✍☞✡

✔✟✑✡❛✘✠❡ ✌☞✎ ✏☞✍✑✡☞✎✑✍✓ ❛✍✇ ✔❡✞✟✎✑✡☛ ✍❡✡④☞✎✐ ❛✗✗✠✑✞❛✡✑☞✍✔ ❶❡✢✓✢

➋❡⑩✑✘✠❡ ➋☞④ ✏☞✍✑✡☞✎✑✍✓ ❻✖✶❼❹✕ ④✒❡✎❡ ✡✒❡ ✔❡✡ ☞✌ ❡⑩✡✎❛✞✡❡✇

✒❡❛✇❡✎ ✜❡✠✇✔ ✍❡❡✇✔ ✡☞ ✘❡ ✞✒❛✍✓❡✇ ☞✍①✠✑✍❡✢

❿✍☞✡✒❡✎ ✗✎☞✘✠❡✏ ☞✌ ❛✈❛✑✠❛✘✠❡ ❛✎✞✒✑✡❡✞✡✟✎❡✔ ✑✔ ❛ ✠☞④ ✡✒✎☞✟✓✒①

978-1-4244-3339-1/09/$25.00 ©2009 IEEE

♣�✁ ✇✂✄☎✂ ❧✄✆✄✁✝ ✁✂t✄✞ �✝✉✟t ✁✠ ✶ ●✡♣✝ ♥t✁✇✠✞♦✝ ✠♥❧☛✳ ❍✄✟✂t✞

✁✂✞✠�✟✂♣�✁ ☎✉♥ ✡t ✉☎✂✄t✈t❞ ✠♥❧☛ ✡☛ ♣✉✞✉❧❧t❧ �✝✉✟t ✠☞ ✝t✈t✞✉❧

♣✞✠☎t✝✝✄♥✟ �♥✄✁✝ ✇✂✄☎✂ ☎✉�✝t✝ ✝✄✟♥✄s☎✉♥✁ ✠✈t✞✂t✉❞ ✄♥ ❋✌●✍

❧✠✟✄☎ ✞t✝✠�✞☎t✝ ✟✄✈t♥ ✡☛ ✆�❧✁✄♣❧t t♥✟✄♥t✝ ✉♥❞ ♣✉☎♦t✁ ❞✄✝✁✞✄✡�✎

✁✄✠♥ ❧✠✟✄☎✳

■♥ ✠✞❞t✞ ✁✠ ☎✂✉❧❧t♥✟t ✁✂t ♣✞t✝t♥✁t❞ ✄✝✝�t✝✐ ✇t ♣✞✠♣✠✝t ✉♥

✉✞☎✂✄✁t☎✁�✞t ✠☞ ♣✉☎♦t✁ ✂t✉❞t✞ st❧❞ t①✁✞✉☎✁✠✞ ✭❍❋✏✑ ✇✂✄☎✂

✄✝ ✞tr�✄✞t❞ ✄♥ ✉❧❧ ♥t✁✇✠✞♦ ❞t✈✄☎t✝✳ ❖�✞ ✝✠❧�✁✄✠♥ ☎✉♥ ✡✉❧✎

✉♥☎t ✡t✁✇tt♥ ♥t✁✇✠✞♦ ✁✂✞✠�✟✂♣�✁ ✉♥❞ ☎✠♥✝�✆t❞ ✂✉✞❞✇✉✞t

✞t✝✠�✞☎t✝✳ ❲t ☎✉♥ ❞☛♥✉✆✄☎✉❧❧☛ ✞t✉☎✁ ✁✠ ♥t✇ ♥t✁✇✠✞♦ ♣✞✠✁✠☎✠❧✝

✁✂✉♥♦✝ ✁✠ ✉�✁✠✆✉✁✄☎ ☎✠♥✈t✞✝✄✠♥ ☞✞✠✆ ♣✞✠✁✠☎✠❧ ❞t✝☎✞✄♣✁✄✠♥ ✄♥

❳✒✓ ☞✠✞✆✉✁✳ ❯✝✄♥✟ ✁✂✄✝ ✉✡✝✁✞✉☎✁ ❞t✝☎✞✄♣✁✄✠♥ ✉♥❞ ✉�✁✠✆✉✁✄☎

❍✔✓ ☎✠❞t ✟t♥t✞✉✁✠✞✐ ✇t ✉✞t ✉✡❧t ✁✠ ☎✞t✉✁t ✉♥ t☞s☎✄t♥✁ ✉♥❞

☎✠♥s✟�✞✉✡❧t ♣✞✠☎t✝✝✄♥✟ t♥✟✄♥t ✇✄✁✂ ✈t✞☛ ✝✆✉❧❧ ☎✠♥✝�✆♣✁✄✠♥

✠☞ ✂✉✞❞✇✉✞t ✞t✝✠�✞☎t✝✳

❚✂✄✝ ♣✉♣t✞ ✄✝ ✠✞✟✉♥✄❣t❞ ✉✝ ☞✠❧❧✠✇✝✕ ❙t☎✁✄✠♥ ■■ ✄♥✁✞✠❞�☎t✝

✉♥ ✂✉✞❞✇✉✞t ✉✞☎✂✄✁t☎✁�✞t ☞✠✞ ♣✉☎♦t✁ ✂t✉❞t✞ ✉♥✉❧☛✝✄✝ ✉♥❞ st❧❞

t①✁✞✉☎✁✄✠♥✳ ❙t☎✁✄✠♥ ■■■ ✝✂✠✇✝ ✉♥ ❳✒✓ ✝☎✂t✆✉ �✝t❞ ☞✠✞ ❞t✎

✝☎✞✄✡✄♥✟ ♥t✁✇✠✞♦ ♣✞✠✁✠☎✠❧✝ ❞t✝☎✞✄♣✁✄✠♥ ✉♥❞ t①♣❧✉✄♥✝ ✄✁✝ ✁✞✉♥✝✎

☞✠✞✆✉✁✄✠♥ ✁✠ ❍✔✓ ☎✠❞t ✉♥❞ ❍❋✏ ✆✄☎✞✠☎✠❞t✳ ❚✂t t✈✉❧�✉✁✄✠♥

✠☞ ♣✞✠♣✠✝t❞ ✉✞☎✂✄✁t☎✁�✞t ✄✝ ❞t✝☎✞✄✡t❞ ✄♥ ❙t☎✁✄✠♥ ■✖✳ ❚✂t ✞t✝�❧✁✝

✉✞t ✝�✆✆✉✞✄❣t❞ ✄♥ ❙t☎✁✄✠♥ ✖✳

■■✳ ✍❘✗✘✙✚✛✗✚✜❘✛

✍ ♥t✇ ✉✞☎✂✄✁t☎✁�✞t ✠☞ ❍❋✏ t♥✟✄♥t ✄♥✁t♥❞t❞ ☞✠✞ ✁✂t ❋✌●✍

✁t☎✂♥✠❧✠✟☛ ✄✝ ✄♥✁✞✠❞�☎t❞ ✄♥ ✁✂✄✝ ✝t☎✁✄✠♥✳ ❚✂t ♣✞✠♣✠✝t❞ ✉✞✎

☎✂✄✁t☎✁�✞t ❞t✝☎✞✄✡t❞ ✄♥ ❋✄✟✳ ✶ ✄✝ ☎✠✆♣✠✝t❞ ✠☞ ✁✇✠ ✆✠❞�❧t✝

✞t✝♣✠♥✝✄✡❧t ☞✠✞ ♣✞✠✁✠☎✠❧ ✉♥✉❧☛✝✄✝ ✉♥❞ ✂t✉❞t✞ st❧❞ t①✁✞✉☎✁✄✠♥✳

❚✂✄✝ ✝t♣✉✞✉✁✄✠♥ ✄✝ ✄✆♣✠✞✁✉♥✁ ✡t☎✉�✝t ✁✂t ♣✉✞✁✝ ✠☞ ✁✂t ♣✞✠✡❧t✆

✞tr�✄✞t ❞✄☞☞t✞t♥✁ ✂✉✞❞✇✉✞t ✉✞☎✂✄✁t☎✁�✞t✳

✢✣✤✥✦ ✧★✩✪✫✦
✬✦✮✫★✯

P✰✱✲✱✴✱✵
❆✷✸✵✹✺✻✺

✼✽✸✾✽✰
❊✿✲✰✸✴✲✻✱✷

❀❁❨

✢❁
❂✫★❃✫✮ ❄❅✫❇❃❈

✬✦✮✫★✯

❁❉❏❉

❑✥✦✤✥✦ ✧★✩✪✫✦
✬✦✮✫★✯

❂✫★❃✫✮ ❄❅✫❇❃❈
❑✥✦✤✥✦ ✧✮▲✦▲✩▲❇ ❄▲✮✯★✦

▼◆◗❱ ❩❱ ❬❭❪❫❴ ❭❵❛❵❭ ❜◆❝◗❡❝❢ ❪❤ ✘▼✛

❚✂t ♣✞✠♣✠✝t❞ ✉✞☎✂✄✁t☎✁�✞t ☎✠✆✆�♥✄☎✉✁t✝ ✇✄✁✂ ✠✁✂t✞ ♣✞✠✎

☎t✝✝✄♥✟ ✡❧✠☎♦✝ ✄♥ ✁✉✞✟t✁ ✉♣♣❧✄☎✉✁✄✠♥ �✝✄♥✟ ❳✄❧✄♥① ✓✠☎✉❧✎

✓✄♥♦ ❥✶✶❦ ♣✞✠✁✠☎✠❧✳ ❚✂✄✝ ♣✞✠✁✠☎✠❧ ✂✉✝ ✡tt♥ ☎✂✠✝t♥ ✡t☎✉�✝t

✠☞ ☎✠♥s✟�✞✉✡❧t ❞✉✁✉ ✇✄❞✁✂ ✉♥❞ ✄✁✝ t✉✝☛ ✄✆♣❧t✆t♥✁✉✁✄✠♥ ✄♥

♣✠✁t♥✁✄✉❧❧☛ ✄♥✁t✞☞✉☎✄♥✟ ■✌ ☎✠✞t✝✳ ♠☛ ✄♥☎✞t✉✝✄♥✟ ✁✂t ❞✉✁✉ ✇✄❞✁✂

✠☞ ✁✂t ✓✠☎✉❧✎✓✄♥♦ ♣✞✠✁✠☎✠❧ ✉♥❞ ☎✠♥s✟�✞✄♥✟ ❍❋✏ t♥✟✄♥t ✁✠ ✡t

✉✡❧t ✁✠ ♣✞✠☎t✝✝ ✉♥ ✄♥♣�✁ ✇✠✞❞ ✠☞ ✝�☎✂ ✇✄❞✁✂ ✄♥ ✉ ✝✄♥✟❧t ☎❧✠☎♦

☎☛☎❧t✐ ✇t ✉✞t ✉✡❧t ✁✠ ✉☎✂✄t✈t ✝�☞s☎✄t♥✁ ✁✂✞✠�✟✂♣�✁ t✈t♥ ☞✠✞ ✶q

●✡♣✝ ♥t✁✇✠✞♦✝✳

❖♥t ✠☞ ✁✂t ☎✠✞t ♣✉✞✁✝ ✠☞ ❍❋✏ ✄✝ ✉ ②③④⑤④⑥④⑦ ⑧⑨⑧⑦⑩❶❷❶ ❸④❹❺⑦❻✐

✇✂✄☎✂ ✄✝ ✞tr�✄✞t❞ ☞✠✞ ✄❞t♥✁✄s☎✉✁✄✠♥ ✠☞ ♣✞✠✁✠☎✠❧✝ ✄♥☎❧�❞t❞ ✄♥

✁✂t ♣✞✠☎t✝✝t❞ ♣✉☎♦t✁✳ ❚✂t ✆✠❞�❧t ✞t✉❞✝ ✇✠✞❞✝ ☞✞✠✆ ✄♥♣�✁

✉♥❞ ✠�✁♣�✁✝ ✉♥ ✄❞t♥✁✄st✞ ✡✉✝t❞ ✠♥ ✁✂t✄✞ ☎✠♥✁t♥✁✳ ❚✂t ✄❞t♥✁✄st✞

✄✝ ✉ �♥✄r�t ♥�✆✡t✞ ✇✂✄☎✂ ✄✝ ✟t♥t✞✉✁t❞ ☞✠✞ t✈t✞☛ ♣✠✝✝✄✡❧t

☎✠✆✡✄♥✉✁✄✠♥ ✠☞ ✝�♣♣✠✞✁t❞ ♣✞✠✁✠☎✠❧✝ ✂t✉❞t✞ st❧❞✝ ✄♥ ✁✂t ✄♥♣�✁

✇✠✞❞ ✭✄✁ ✄✝ ✉☎✁�✉❧❧☛ ✉♥ t♥☎✠❞t❞ ✄♥☞✠✞✆✉✁✄✠♥ ✉✡✠�✁ ✇✂✄☎✂

♣✞✠✁✠☎✠❧ ✂t✉❞t✞ st❧❞✝ ✠♥ ✇✂✄☎✂ ✡☛✁t ♣✠✝✄✁✄✠♥✝ ✉✞t ☎✠♥✁✉✄♥t❞

✄♥ ✁✂t ✄♥♣�✁ ✇✠✞❞✑✳

❚✂t ♣✞✠✁✠☎✠❧ ✉♥✉❧☛✝✄✝ ✆✠❞�❧t ✄✝ ✞t✉❧✄❣t❞ ✡☛ ✉ ✒t✉❧☛ ✆✉✎

☎✂✄♥t ✉♥❞ ✝t✈t✞✉❧ ✄♥✁t✞♥✉❧ ✞t✟✄✝✁t✞✝ ✇✄✁✂ ✉✝✝✠☎✄✉✁t❞ ☎✠✆✡✄♥✉✎

✁✄✠♥✉❧ ❧✠✟✄☎✳ ❚✂t ✆✉☎✂✄♥t ✄✝ ☎✠♥✝✁✞�☎✁t❞ ✉�✁✠✆✉✁✄☎✉❧❧☛ ☞✞✠✆

♣✞✠✈✄❞t❞ ❳✒✓ ❞t✝☎✞✄♣✁✄✠♥ ✠☞ ♥t✁✇✠✞♦ ♣✞✠✁✠☎✠❧✝✳ ❚✂t ♣✞✠☎t✝✝

✠☞ ✉♥✉❧☛✝✄✝ ✆✠❞�❧t ✟t♥t✞✉✁✄✠♥ ✄✝ ❞t✝☎✞✄✡t❞ ✄♥ ❙t☎✁✄✠♥ ■■■✳

❚✂t ✝t☎✠♥❞ ✡❧✠☎♦ ✠☞ ✁✂t ❍❋✏ ✉✞☎✂✄✁t☎✁�✞t ✄✝ ✞t✝♣✠♥✝✄✡❧t ☞✠✞

t①✁✞✉☎✁✄✠♥ ✠☞ ✝t❧t☎✁t❞ ✂t✉❞t✞ st❧❞✝ ☞✞✠✆ ✁✂t ✄♥♣�✁ ✇✠✞❞ ✉♥❞

♣✠✝✄✁✄✠♥✄♥✟ ✁✂t✆ ✁✠ ☎✠✞✞t☎✁ ✠☞☞✝t✁ ✄♥ ✁✂t ✠�✁♣�✁ ❞✉✁✉ ☞✞✉✆t✳

❚✂t ❼❻⑧❹❻③ ❻❽⑤③⑧⑥⑤❷④⑨ ❸④❹❺⑦❻ ✄✝ ☎✠♥✁✞✠❧❧t❞ ✡☛ ✉ ✆✄☎✞✠☎✠❞t

✝✁✠✞t❞ ✄♥ ✉♥ ✠♥✎☎✂✄♣ ✆t✆✠✞☛✳ ❚✂t ✆✄☎✞✠☎✠❞t ✄✝ ✟t♥t✞✉✁t❞

☞✞✠✆ ✁✂t ❳✒✓ ❞t✝☎✞✄♣✁✄✠♥ ✠☞ ✁✂t ✠�✁♣�✁ ☞✞✉✆t✐ ✇✂✄☎✂ ✇✄❧❧

✡t ☞�✞✁✂t✞ ❞t✝☎✞✄✡t❞ ✄♥ ❙t☎✁✄✠♥ ■■■✳ ❚✂t ♣✞✠♣✠✝t❞ ✉✞☎✂✄✁t☎✁�✞t

✠☞ ✁✂t t①✁✞✉☎✁✄✠♥ t♥✟✄♥t ✄✝ ✝✂✠✇♥ ✄♥ ❋✄✟✳ ❾✳

❿➀➁

➂➀

➃➂➃➄➅

➀➆➇➆➈➂➉

➊➋➌➅➅➍➎➋ ➏➐➎➑➐➋ ➒➐➓➌➋➔
→➣➌↔↕

→➎➙↕➛ →➎➙↕➜

→➎➙↕➛ →➎➙↕➜

→➎➙↕➛ →➎➙↕➜

→➎➙↕➛ →➎➙↕➜
➀➆➇➆➈➄➝➇

➄➞➟➠➞➟
➃➡➒ →➢➟➓➎➠

➏➐➎➑➐➋ ➃➢➐➣➑➅
➄➞➟➠➞➟ ➤➋➌➟➌↔➌➣ ➃➌➋➓➎➟

➊➌➙➥➢➦➞➋➎➟➢➌➙ ➒➐➓➌➋➔

➧➨➩➫➭➯➲➳

➧➨➩➫➭➲➵➩➸

➡➄➃➺ ➻➄➃➺ ➡❿➊➈❿➀➁➺ ➀➡➇➈❿➀➁

➼➸➽ ➨➲➲➯➽
➵➾➸➯➼➯➚➪➸

▼◆◗❱ ➶❱ ✛➹➘❡❝❫➘◆❪➴ ✛➴◗◆➴❵

❚✂t t①✁✞✉☎✁✄✠♥ ✆✠❞�❧t ❞t✁t✞✆✄♥t✝ ☞✠✞ t✉☎✂ ✡☛✁t ✠☞ ✁✂t

✄♥♣�✁ ✇✠✞❞ ✇✂t✁✂t✞ ✄✁ ✂✉✝ ✁✠ ✡t t①✁✞✉☎✁t❞ ✠✞ ❞✄✝☎✉✞❞t❞✳ ❚✂✄✝

✄♥☞✠✞✆✉✁✄✠♥ ✄✝ ✞t✉❞ ☞✞✠✆ ✉ ⑥④⑨➷➬❺③⑧⑤❷④⑨ ❸❻❸④③⑩ ✡✉✝t❞ ✠♥

✁✂t ❋❙✒ ✁✞✉♥✝✄✁✄✠♥ ✄❞t♥✁✄st✞ ♣✉✝✝t❞ ✁✠✟t✁✂t✞ ✇✄✁✂ ✁✂t ✄♥♣�✁

❞✉✁✉ ✇✠✞❞ ☞✞✠✆ ✁✂t ♣✞✠✁✠☎✠❧ ✉♥✉❧☛✝✄✝ ✆✠❞�❧t✳ ♠☛✁t✝ ✇✂✄☎✂

✇t✞t ✆✉✞♦t❞ ☞✠✞ t①✁✞✉☎✁✄✠♥ ✉✞t ✉❞❞t❞ ✁✠ ☎✠✞✞t✝♣✠♥❞✄♥✟ ❋■❋❖

✁✠✟t✁✂t✞ ✇✄✁✂ ✁✂t✄✞ ♣✠✝✄✁✄✠♥ ✄♥ ✁✂t ✠�✁♣�✁ ✝✁✞t✉✆✳

❚✂t ♣✠✝✄✁✄✠♥ ♣✉✞✉✆t✁t✞ ✄✝ �✝t❞ ✉✝ ✉ ✝✇✄✁☎✂✄♥✟ ✉❞❞✞t✝✝ ☞✠✞ ✉

⑥③④❶❶➮⑧③✳ ❚✂t t①✁✞✉☎✁t❞ ✡☛✁t✝ ✝✇✄✁☎✂t❞ ✉♥❞ ✝✁✠✞t❞ ✄♥ ☎✠✞✞t☎✁

♣✠✝✄✁✄✠♥ ✄♥ ❼❻⑧❹❻③ ❸❻❸④③⑩ ➮⑦④⑥➱ ✉✞t ✡✉✝t❞ ✠♥ ✁✂✄✝ ✉❞❞✞t✝✝✳

❚✂✄✝ ✡❧✠☎♦ ✄✝ ☎✠✆♣✠✝t❞ ✠☞ ✃✎✡✄✁ ❞�✉❧✎♣✠✞✁ ✆t✆✠✞✄t✝ ✇✂✄☎✂

✉✞t ❧✠✟✄☎✉❧❧☛ ❞✄✈✄❞t❞ ✄♥✁✠ ✝t✈t✞✉❧ ✡✉♥♦✝ ✇✠✞♦✄♥✟ ❧✄♦t ✉ ☎✄✞☎❧t

✡�☞☞t✞✳

✏①✁✞✉☎✁t❞ ✂t✉❞t✞ st❧❞✝ ☞✞✠✆ ☎�✞✞t♥✁❧☛ ♣✞✠☎t✝✝t❞ ♣✉☎♦t✁

✉✞t ✝✁✠✞t❞ ✄♥✁✠ t✆♣✁☛ ✡✉♥♦ ✇✂✄❧t ✁✂t ④❺⑤②❺⑤ ❐❒❮ ☎✉♥ ✝t♥❞

t①✁✞✉☎✁t❞ ❞✉✁✉ ☞✞✠✆ ♣✞t✈✄✠�✝ ♣✉☎♦t✁ ✁✠ ❍❋✏ ✠�✁♣�✁✳ ✍☞✁t✞ ✉❧❧

♣✉☎♦t✁ ✂t✉❞t✞ st❧❞✝ ✉✞t ♣✞✠☎t✝✝t❞✐ ✁✂t ✡✉♥♦ ✄✝ ✆✉✞♦t❞ ✉✝

t✆♣✁☛ ✉♥❞ ☎✉♥ ✡t �✝t❞ ✁✠ ✝✁✠✞t t①✁✞✉☎✁t❞ ✡☛✁t✝ ☞✞✠✆ ✁✂t ♥t①✁

♣✉☎♦t✁✳ ❚✂✄✝ ✝✁✠✞t ✉♥❞ ☞✠✞✇✉✞❞ ✉✞☎✂✄✁t☎✁�✞t t♥✉✡❧t✝ ✁✠ ✂✉✈t ✉

☎✠♥s✟�✞✉✡❧t ✠�✁♣�✁ ☞✠✞✆✉✁ ✄♥❞t♣t♥❞t♥✁ ✠☞ ✁✂t ✠✞✄✟✄♥✉❧ ♣✠✝✄✁✄✠♥

✠☞ ✁✂t ✂t✉❞t✞ st❧❞✝ ✄♥ ✁✂t ✄♥♣�✁ ♣✉☎♦t✁✳

❚✂t t①✁✞✉☎✁✄✠♥ ✆✠❞�❧t ✉❧✝✠ ☎✞t✉✁t✝ ✉ ➮❷⑤❸⑧② ✠☞ ✈✉❧✄❞ ✂t✉❞t✞

st❧❞✝ ✭✡☛✁t✝✑✳ ❚✂✄✝ ✄✝ ✡t☎✉�✝t ✉❧❧ ✂t✉❞t✞ st❧❞✝ ✉✞t ♥✠✁ ✄♥ t✈t✞☛

♣�✁✂❡✄ ❡☎✆☎ ❚✝✞ ♦✟ ❯✠✞ ♣♦✟✄✡ �✟❡ ♥♦✄ ✐♥ ❆☛✞ ♣�✁✂❡✄✡☎ ❚☞❡

❜✐✄✌�♣ ✁�♥ ❜❡ ✡❡♥✄ ✄♦ ❍✍✎ ♦✏✄♣✏✄ ✇✐✄☞ ❡①✄✟�✁✄❡✑ ☞❡�✑❡✟ ➇❡✒✑✡

❜�✡❡✑ ♦♥ ✄☞❡ ❡①✄✟�✁✄✐♦♥ ✌♦✑✏✒❡ ✁♦♥➇✆✏✟�✄✐♦♥☎

❚☞❡ ♣✟♦♣♦✡❡✑ �✟✁☞✐✄❡✁✄✏✟❡ ✁�♥ �✒✡♦ ✑❡�✒ ✇✐✄☞ ♥❡✡✄❡✑ ♣✟♦✄♦✓

✁♦✒✡ ✭✔✕❆✖✡✗ ▼✞✕✘✗ ■✞ ♦✈❡✟ ■✞ ✄✏♥♥❡✒✡t☎ ✍♦✟ ✄☞❡✡❡ ♣✟♦✄♦✁♦✒✡✗

✐✄ ✐✡ ✏✡✏�✒✒✉ ✟❡r✏✐✟❡✑ ✄♦ ❡①✄✟�✁✄ ✄☞❡ ✌♦✡✄ ♥❡✡✄❡✑ ➇❡✒✑ ♦✟

✄☞❡ ➇✟✡✄ ✐♥✡✄�♥✁❡ ♦✙ ✡♣❡✁✐➇✁ ➇❡✒✑ ✑❡♣❡♥✑✐♥✆ ♦♥ ✄☞❡ ✄�✟✆❡✄

�♣♣✒✐✁�✄✐♦♥☎ ❚☞✐✡ ✐✡ ✟❡�✒✐✚❡✑ ❜✉ ✟❡�✑✐♥✆ ✡✐♥✆✒❡ ❜✐✄ ✙✟♦✌ ✄☞❡

✁♦♥➇✆✏✟�✄✐♦♥ ✌❡✌♦✟✉✗ ✇☞✐✁☞ ❡♥�❜✒❡✡✛✑✐✡�❜✒❡✡ ♦✈❡✟✇✟✐✄✐♥✆ ♦✙

�✒✟❡�✑✉ ❡①✄✟�✁✄❡✑ ❜✉✄❡✡☎

■■■☎ ❍✍✎ ●❊✜❊✢✣✤✥✦✜ ✣✜✧ ✝✦✜❖✥★✩✢✣✤✥✦✜

■♥ ✄☞✐✡ ✡❡✁✄✐♦♥ ✄☞❡ ♣✟♦✁❡✡✡ ♦✙ ❍✍✎ ✆❡♥❡✟�✄✐♦♥ �♥✑ ✁♦♥➇✆✏✟�✓

✄✐♦♥ ❜�✡❡✑ ♦♥ ✄☞❡ ✄�✟✆❡✄ �♣♣✒✐✁�✄✐♦♥ ✟❡r✏✐✟❡✌❡♥✄✡ ✐✡ ✑❡✡✁✟✐❜❡✑☎

❚☞❡ ✆❡♥❡✟�✄✐♦♥ ♣✟♦✁❡✡✡ ☞�✡ ❜❡❡♥ ✑❡✡✐✆♥❡✑ ✙♦✟ ✡✐✌♣✒❡ ✏✡�✆❡

❜✉ � ✏✡❡✟ ✇✐✄☞♦✏✄ �♥✉ ✂♥♦✇✒❡✑✆❡ ♦✙ ☞�✟✑✇�✟❡ ✑❡✡✐✆♥☎ ❲❡

♣✟♦♣♦✡❡✑ ❳▼✕✓❜�✡❡✑ �❜✡✄✟�✁✄ ✑❡✡✁✟✐♣✄✐♦♥✗ ✇☞✐✁☞ ✐✡ ✏✡❡✑ ✄♦

✡♣❡✁✐✙✉ ✙♦✒✒♦✇✐♥✆ ✐♥✙♦✟✌�✄✐♦♥ ✄♦ ✁✏✡✄♦✌ ✁♦✟❡ ✆❡♥❡✟�✄♦✟❣

⑨ ♥❡✄✇♦✟✂ ♣✟♦✄♦✁♦✒✡ ✑❡✡✁✟✐♣✄✐♦♥✗

⑨ ♣✟♦✄♦✁♦✒ ☞❡�✑❡✟ ➇❡✒✑✡ ✇☞✐✁☞ ✇✐✒✒ ❜❡ ❡①✄✟�✁✄❡✑✗

⑨ ❡①✄✟�✁✄❡✑ ☞❡�✑❡✟ ➇❡✒✑✡ ♣♦✡✐✄✐♦♥ ✐♥ ♦✏✄♣✏✄ ✡✄✟❡�✌✗

⑨ ✇✐✑✄☞ ♦✙ ✄☞❡ ✐♥♣✏✄ ♣�✁✂❡✄ ✡✄✟❡�✌☎

❚☞❡ ❳▼✕ ✙♦✟✌�✄ ☞�✡ ❜❡❡♥ ✡❡✒❡✁✄❡✑ ❜❡✁�✏✡❡ ♦✙ ✐✄✡ ✡✏✐✄�❜✐✒✐✄✉

✙♦✟ ✑❡✡✁✟✐♣✄✐♦♥ ♦✙ ✡✏✁☞ ✡✄✟✏✁✄✏✟❡✑ ✐♥✙♦✟✌�✄✐♦♥☎ ❳▼✕ ➇✒❡✡

✁�♥ ❜❡ ✌♦✑✐➇❡✑ ❜✉ �♥✉ ✄❡①✄ ❡✑✐✄♦✟ �♥✑ ✌♦✡✄ ♦✙ ✄☞❡ ✁✏✟✟❡♥✄

♣✟♦✆✟�✌✌✐♥✆ ✒�♥✆✏�✆❡✡ ☞�✈❡ ✡✏♣♣♦✟✄ ✙♦✟ ♣�✟✡✐♥✆ ✑♦✁✏✌❡♥✄✡

✐♥ ✄☞❡ ❳▼✕ ✙♦✟✌�✄☎

❚☞❡ ❍✍✎ ❡♥✆✐♥❡ ✆❡♥❡✟�✄✐♦♥ ♣✟♦✁❡✡✡ ✐✡ ✑✐✈✐✑❡✑ ✐♥✄♦ ✄✇♦ ✡✄❡♣✡

�✡ ✁�♥ ❜❡ ✡❡❡♥ ✐♥ ✍✐✆☎ ✸☎ ■♥ ✄☞❡ ➇✟✡✄ ✡✄❡♣ ✄☞❡ ✔❍✠✕ ➇✒❡✡ ✇☞✐✁☞

✑❡✡✁✟✐❜❡ ✄☞❡ ♣✟♦✄♦✁♦✒ �♥�✒✉✡✐✡ ❜✒♦✁✂ �✟❡ ✁✟❡�✄❡✑☎ ❚☞❡ ✆❡♥❡✟�✄❡✑

✡♦✏✟✁❡✡ �✟❡ ✡✉♥✄☞❡✡✐✚�❜✒❡ �♥✑ ✁�♥ ❜❡ ✑✐✟❡✁✄✒✉ ✏✡❡✑ ✐♥ ✡❡✈❡✟�✒

♥❡✄✇♦✟✂ �♣♣✒✐✁�✄✐♦♥✡☎

P✪✫✬✫✮✫✯
❙✰✱✮✲✳✲✮✴✬✲✫✵

✶✷✹✺✻

✼✽✾ ✿✴✬✴ ❀✲❁✬❂
✶❃❄❅❇❄❈❉❄❋ ❏❑▲◆❇◗❑❘❇❉✻

❱✫✪✱ ❨✱✵✱✪✴✬✫✪

❩❬✿❭
s✫❪✪✮✱s

❫❙❴ ❁✱s✮✪✲✰✬✲✫✵
✶✷✹✺✻

✾❪✬✰❪✬ ✳✫✪❵✴✬

❛❝❴❭❞

❱✫✵✳✲❢❪✪✴✬✲✫✵
❨✱✵✱✪✴✬✫✪

❙❤✵✬❂✱s✲s ✴✵❁
P❥❦

✿✱s✲❢✵ ❱✫✵✳✲❢❪✪✴✬✲✫✵

❖❧♠q ②q ③④⑤⑥⑦⑧⑧❧⑩♠ ⑦⑩♠❧⑩⑦ ♠⑦⑩⑦④❶❷❧⑤⑩ ❶⑩❸ ⑥⑤⑩❹♠❺④❶❷❧⑤⑩ ❻④⑤⑥⑦⑧⑧

❆ ✁♦♥➇✆✏✟�✄✐♦♥ ✭✌✐✁✟♦✁♦✑❡t ✙♦✟ ✄☞❡ ❡①✄✟�✁✄✐♦♥ ❡♥✆✐♥❡ ✐✡

✆❡♥❡✟�✄❡✑ ✐♥ ✄☞❡ ✡❡✁♦♥✑ ✡✄❡♣☎ ❚☞❡ ✆❡♥❡✟�✄❡✑ ✌✐✁✟♦✁♦✑❡ ♥❡❡✑✡

✄♦ ❜❡ ✇✟✐✄✄❡♥ ✐♥✄♦ ✄☞❡ ❡①✄✟�✁✄✐♦♥ ❡♥✆✐♥❡ ✁♦♥➇✆✏✟�✄✐♦♥ ✌❡✌♦✟✉☎

❚☞✐✡ ✁�♥ ❜❡ ✑♦♥❡ ❜✉ ✐♥✐✄✐�✒✐✚✐♥✆ ✄☞❡ ✌❡✌♦✟✉ ✑✏✟✐♥✆ ✡✉♥✄☞❡✡✐✡

♣✟♦✁❡✡✡ ♦✟ �✄ ✟✏♥✄✐✌❡ ✄☞✟♦✏✆☞ � ✁♦♥➇✆✏✟�✄✐♦♥ ❜✏✡☎ ❚☞✐✡ ✌❡�♥✡

✄☞�✄ ✄☞❡ ❍✍✎ ♦✏✄♣✏✄ ✙♦✟✌�✄ ✁�♥ ❜❡ ✁☞�♥✆❡✑ ♥♦✄ ♦♥✒✉ ✑✏✟✐♥✆

✄☞❡ ✡✉♥✄☞❡✡✐✡ ♣✟♦✁❡✡✡ ❜✏✄ �✒✡♦ �✄ ✟✏♥✄✐✌❡☎

❼❽ ❾❿➀➁➂➃➄❿➅➆➁➈ ➉➊➋ ➌❿➄➍➄➎➄➏ ➐➑➂➎❿➆➒➍➆➄➁ ➆➁➍➄ ➓➔➐➋

■♥ ✄☞✐✡ ✡❡✁✄✐♦♥ ✄☞❡ ♣✟♦✄♦✁♦✒ �♥�✒✉✡✐✡ ❡♥✆✐♥❡ ✆❡♥❡✟�✄✐♦♥ ✙✟♦✌

❳▼✕ ♣✟♦✄♦✁♦✒ ✡✁☞❡✌� ✐✡ ✑❡✡✁✟✐❜❡✑ ✐♥ ✑❡✄�✐✒☎ →❡✙♦✟❡ ✇❡

✑❡✡✁✟✐❜❡ ✄☞❡ ✄✟�♥✡✙♦✟✌�✄✐♦♥ ♣✟♦✁❡✡✡✗ ✄☞❡ ❳▼✕ ✡✁☞❡✌� ✏✡❡✑

✙♦✟ ♣✟♦✄♦✁♦✒ ✑❡✡✁✟✐♣✄✐♦♥ ♥❡❡✑✡ ✄♦ ❜❡ ✑❡➇♥❡✑☎ ❚☞✐✡ ✡✁☞❡✌� ✇�✡

✑❡✡✐✆♥❡✑ ✄♦ ❜❡ ✈❡✟✉ ✡✐✌♣✒❡ �♥✑ ✐♥✄✏✐✄✐✈❡ ✇✐✄☞ ✄☞❡ �❜✐✒✐✄✉ ✄♦

❡①♣✟❡✡✡ �✒✒ ✕➣↔✕↕ ■✘➙✛➙✘■ ♣✟♦✄♦✁♦✒✡☎

❯✡✐♥✆ ♦✏✟ ❳▼✕ ✡✁☞❡✌�✗ ✐✄ ✐✡ ♣♦✡✡✐❜✒❡ ✄♦ ✑❡➇♥❡ � ♣✟♦✄♦✁♦✒

❜✉ ❡♥✏✌❡✟�✄✐♥✆ ✐✄✡ ☞❡�✑❡✟ ➇❡✒✑✡ ✇✐✄☞ ✄☞❡✐✟ ✡✐✚❡✡☎ ☛❡✒�✄✐♦♥✡

❜❡✄✇❡❡♥ ♣✟♦✄♦✁♦✒✡ ♦♥ ✑✐✙✙❡✟❡♥✄ ✒❡✈❡✒✡ ♦✙ ■✘➙✛➙✘■ ✌♦✑❡✒ ✐✡

✑❡✡✁✟✐❜❡✑ ✏✡✐♥✆ � ➛✏✌♣ ✁♦♥✡✄✟✏✁✄✗ ✇☞✐✁☞ ✁☞♦♦✡❡✡ � ☞✐✆☞❡✟ ✒❡✈❡✒

♣✟♦✄♦✁♦✒ ❜�✡❡✑ ♦♥ ✄☞❡ ✈�✒✏❡ ♦✙ ✏✡❡✟ ✑❡➇♥❡✑ ✈�✟✐�❜✒❡✡☎ ❚☞❡

✁♦♥✄❡♥✄ ♦✙ ✄☞❡✡❡ ✈�✟✐�❜✒❡✡ ✐✡ ✌♦✑✐➇❡✑ ❜✉ ♦♣❡✟�✄✐♦♥✡ ✄☞�✄ ✁�♥

❜❡ �✡✡✐✆♥❡✑ ✄♦ ♣✟♦✄♦✁♦✒ ☞❡�✑❡✟ ➇❡✒✑✡☎ ❚☞❡ ✄✉♣✐✁�✒ ♦♣❡✟�✄✐♦♥✡

✙♦✟ ✑❡✡✁✟✐❜✐♥✆ ❚✝✞✛■✞ ♣✟♦✄♦✁♦✒✡ �✟❡ ✡�✈✐♥✆ ✄☞❡ ✁♦♥✄❡♥✄ ♦✙ �

☞❡�✑❡✟ ➇❡✒✑ ✐♥✄♦ � ✈�✟✐�❜✒❡ �♥✑ ✑❡✁✟❡✌❡♥✄✐♥✆ � ✈�✟✐�❜✒❡ ❜✉ �

✁♦♥✡✄�♥✄ ♦✟ ✄☞❡ ✁♦♥✄❡♥✄ ♦✙ � ☞❡�✑❡✟ ➇❡✒✑☎

■♥ ✍✐✆☎ ↕ �♥ ❡①�✌♣✒❡ ♦✙ ✄☞❡ ✎✄☞❡✟♥❡✄ ♣✟♦✄♦✁♦✒ ✑❡✡✁✟✐♣✄✐♦♥ ✐♥

❳▼✕ ✐✡ ✡☞♦✇♥☎ ■✄ ✁�♥ ❜❡ ✡❡❡♥ ✄☞�✄ ✄☞❡ ✁♦♥✄❡♥✄ ♦✙ ✕❡♥✆✄☞✛❚✉♣❡

➇❡✒✑ ✐✡ ✡✄♦✟❡✑ ✐♥✄♦ �♥ ✐♥✄❡✟♥�✒ ✈�✟✐�❜✒❡ ✇☞✐✁☞ ✐✡ ✏✡❡✑ ✙♦✟

✡❡✒❡✁✄✐♥✆ ♥❡①✄ ♣✟♦✄♦✁♦✒ ✐♥ ✄☞❡ ➜➝➅➒ ❳▼✕ ✄�✆☎ ■♥ ✄☞✐✡ ♣�✟✄✐✁✏✒�✟

✑❡✡✁✟✐♣✄✐♦♥ ♦♥✒✉ ✄☞❡ ■✞✈↕ ♣✟♦✄♦✁♦✒ ✐✡ ✡✏♣♣♦✟✄❡✑☎

➞➟➠➡➢➡➤➡➥ ➦➧➨➩➫➭➯➢➲➩➠➦➩➢➭ ➳➵➫➭➯➢➲➭➸
➞➺➧➠➳➧➻➥➩➼➸

➞➺➧➠➳➧➻➥➩ ➦➧➨➩➫➭➽➩➾➢ ➟➠➡➢➡➤➡➥➭ ➳➵➫➭➩➢➲➚➦➩➾➢➚➟➠➡➢➡➭
➼➳➪➩➫➭➶➹➭ ➺➧➠➢➘➟➩➫➭➳➦➢➭ ➴➸

➞➴➺➧➠➳➧➻➥➩➼➸

➞➷➳➩➥➵ ➦➧➨➩➫➭➬➩➼➢➳➦➧➢➳➡➦ ➮➱✃ ➧➵➵➠➩➼➼➭ ➳➵➫➭➩➢➲➚➵➼➢➚➨➧➤➭
➼➳➪➩➫➭❐❒➭ ➴➸

➞➷➳➩➥➵ ➦➧➨➩➫➭❮➡❰➠➤➩ ➮➱✃ ➧➵➵➠➩➼➼➭ ➳➵➫➭➩➢➲➚➼➠➤➚➨➧➤➭
➼➳➪➩➫➭❐❒➭ ➴➸

➞➷➳➩➥➵ ➦➧➨➩➫➭Ï➩➦Ð➢➲➴Ñ➘➟➩➭ ➳➵➫➭➩➢➲➚➥➩➦➚➢➘➟➩➭
➼➳➪➩➫➭➶➹➭➸

➞➷➳➩➥➵➡➟ ➠➩➷➫➭➡➟➚➧➼➼➳Ð➦➭➸
➞➷➳➩➥➵➡➟➟➧➠➧➨ ➦➧➨➩➫➭➢➧➠Ð➩➢➭ ➠➩➷➫➭➩➢➲➚➦➩➾➢➚➟➠➡➢➡➭ ➴➸
➞➷➳➩➥➵➡➟➟➧➠➧➨ ➦➧➨➩➫➭➺➧➥❰➩➭ ➠➩➷➫➭➩➢➲➚➥➩➦➚➢➘➟➩➭ ➴➸

➞➴➷➳➩➥➵➡➟➸
➞➴➷➳➩➥➵➸

➞Ò❰➨➟ ➼➩➥➩➤➢➻➘➫➭➩➢➲➚➦➩➾➢➚➟➠➡➢➡➭➸
➞➤➧➼➩ ➩Ó❰➧➥➫➭Ô➾Ô❒ÔÔ➭ ➠➩➷➫➭ÕÖ➺❐➭ ➴➸
➞➡➢➲➩➠➼ ➠➩➷➫➭×➽❮×ÖØÙÑ➯➬➭ ➴➸

➞➴Ò❰➨➟➸
➞➴➟➠➡➢➡➤➡➥➸

❖❧♠q Úq ÛÜÝ ❸⑦⑧⑥④❧❻❷❧⑤⑩ ⑤Þ ⑧❧ß❻à❧❹⑦❸ ❊❷á⑦④⑩⑦❷ ❻④⑤❷⑤⑥⑤à

✍✟♦✌ ✄☞❡ ❳▼✕ ♣✟♦✄♦✁♦✒ ✑❡✡✁✟✐♣✄✐♦♥ ✄☞❡ ➒❿➄➍➄➎➄➏ ➀➁➀➏â➂➆➂

ãä➊ ✐✡ ✆❡♥❡✟�✄❡✑☎ ❚☞✐✡ ✙♦✟✌�✒ ✌♦✑❡✒ ✭✡❡❡ ✠❡➇♥✐✄✐♦♥ åt ✐✡

❜�✡❡✑ ♦♥ ✄☞❡ ▼❡�✒✉ ✍✘▼✗ ✇☞✐✁☞ ✐✡ ❡①✄❡♥✑❡✑ ❜✉ � ✡❡✄ ♦✙

✈�✟✐�❜✒❡✡✗ ✇☞❡✟❡ ✄☞❡ ✡❡✌�♥✄✐✁ ✐♥✙♦✟✌�✄✐♦♥ ✁�♥ ❜❡ ✡✄♦✟❡✑☎ ❚☞✏✡

✄☞❡ ✍✘▼ ✐✡ �❜✒❡ ✄♦ ✁☞�♥✆❡ ✐✄✡ ❜❡☞�✈✐♦✟ �✁✁♦✟✑✐♥✆ ✄♦ ✄☞❡

✡❡✌�♥✄✐✁ ✐♥✙♦✟✌�✄✐♦♥ �✈�✐✒�❜✒❡ ✐♥ ✄☞❡ ♣�✁✂❡✄✡☎ ■✄ ✐✡ ♣♦✡✡✐❜✒❡

✄♦ ♣❡✟✙♦✟✌ ✡✐✌♣✒❡ ♦♣❡✟�✄✐♦♥✡ ✇✐✄☞ ✄☞❡ ✈�✟✐�❜✒❡✡ ✒✐✂❡ �✑✑✐✄✐♦♥✗

✁♦✌♣�✟✐✡♦♥✗ ❡✄✁☎ ✑✏✟✐♥✆ ✍✘▼ ✄✟�♥✡✐✄✐♦♥✡☎

æçèéêëêìé íî ❼ ➌❿➄➍➄➎➄➏ ❼➁➀➏â➂➆➂ ãä➊ ➆➂ ➀➁ ïð➍➝➒➏➑

ñòó ôó õó öó ÷ó øó òùó ôùúû üý➑❿➑þ

⑨ ò ➆➂ ➀ ÿ➁➆➍➑ ➂➑➍ ➄➃ ➂➍➀➍➑➂û

⑨ ❱ ✐� t✁✂ ➇✄✐t✂ �✂t ♦☎ ✐✄t✂✆✄✝✞ ✈✝✆✐✝✟✞✂ ✄✝♥✂�✠

⑨ ✡ ✐� t✁✂ ✐✄☛☞t ✝✞☛✁✝✟✂t✠

⑨ ✌ ✐� t✁✂ ♦☞t☛☞t ✝✞☛✁✝✟✂t✠

⑨ ✍ ✐� t✁✂ ✐✄t✂✆✄✝✞ ✝✞☛✁✝✟✂t✠

⑨ ❙✵ ✐� t✁✂ ✐✄✐t✐✝✞ �t✝t✂ ✇✁✐✎✁ ✐� ✝✄ ✂✞✂♥✂✄t ♦☎ ❙ ✭❙✵ ✏ ❙✮✠

⑨ ❱✵ ✐� ✝ ➇✄✐t✂ �✂t ♦☎ ✐✄✐t✐✝✞ ✈✝✞☞✂� ☎♦✆ ✂✝✎✁ ✈✝✆✐✝✟✞✂ ☎✆♦♥

❱ ✭❱✵ ✏ ✍
⑤✑ ⑤✮✠

⑨ ✒ ✿ ❙×✍⑤✑ ⑤ ×✡ ✓ ❙×✍⑤✑ ⑤ ×✌ ✐� ✝ t✆✝✄�✐t✐♦✄ ☎☞✄✎t✐♦✄

✇✁✐✎✁ �✂✞✂✎t� t✁✂ ✄✂①t �t✝t✂✠ ☞☛✉✝t✂� ✐✄t✂✆✄✝✞ ✈✝✆✐✝✟✞✂�

✝✄✉ �✂✞✂✎t� t✁✂ ♦☞t☛☞t �s♥✟♦✞ ✟✝�✂✉ ♦✄ t✁✂ ✐✄☛☞t✠ ✎☞✆✆✂✄t

�t✝t✂ ✝✄✉ t✁✂ ✎♦✄t✂✄t ♦☎ ✐✄t✂✆✄✝✞ ✈✝✆✐✝✟✞✂�✔

■✕ ✖✗✘ ✙✕✙✖✙✚✛ ♣✗✚✜✘ ✢✣ ✖✗✘ ✤✥✦✧ ❣✘✕✘★✚✖✙✢✕ ♣★✢✩✘✜✜ ❳✪✧

♣★✢✖✢✩✢✛ ❞✘✜✩★✙♣✖✙✢✕✜ ✚★✘ ✖★✚✕✜✣✢★✫✘❞ ✙✕✖✢ ✜✙✕❣✛✘ ✶✬✯✙✖ ♣★✢✖✢✩✢✛

✚✕✚✛❛✜✙✜ ❋✰✪✱ ❚✗✙✜ ✫✚✩✗✙✕✘ ✚✩✩✘♣✖✜ ✢✕✛❛ ✚ ✜✙✕❣✛✘ ✯✙✖ ✢✣ ✙✕♣✲✖

♣✚✩✳✘✖ ✜✖★✘✚✫ ♣✘★ ✙✖✜ ✖★✚✕✜✙✖✙✢✕ ✴✡ ✷ ④✸✹ ✺⑥✻✱ ■✖ ✙✜ ✣✲★✖✗✘★

✩✢✕✼✘★✖✘❞ ✙✕✖✢ ✫✲✛✖✙✬✩✗✚★ ♣★✢✖✢✩✢✛ ✚✕✚✛❛✜✙✜ ❋✰✪ ✯✚✜✘❞ ✢✕ ✖✗✘

★✘r✲✘✜✖✘❞ ✖✗★✢✲❣✗♣✲✖ ✴✖✗✘ ✙✕♣✲✖ ❞✚✖✚ ✽✙❞✖✗ ♣✚★✚✫✘✖✘★✻✱

❚✗✘ ✩✢✕✼✘★✜✙✢✕ ✖✢ ✫✲✛✖✙✬✩✗✚★ ❋✰✪ ✙✜ ✯✚✜✘❞ ✢✕ ✚✕ ✙✕✩★✘✫✘✕✬

✖✚✛ ✜✘✚★✩✗ ✢✣ ✚ ✖★✚✕✜✙✖✙✢✕ ♣✚✖✗ ✢✣ ✛✘✕❣✖✗ ✾ ✣★✢✫ ✖✗✘ ✙✕✙✖✙✚✛ ✜✖✚✖✘

❙✵ ✖✢ ✜✖✚✖✘✜ ✣★✢✫ ✜✘✖ ❙✱ ❊✼✘★❛ ✣✢✲✕❞ ♣✚✖✗ ✙✜ ★✘♣✛✚✩✘❞ ✯❛ ✚

✜✙✕❣✛✘ ✫✲✛✖✙✬✩✗✚★ ❋✰✪ ✖★✚✕✜✙✖✙✢✕ ✽✗✙✩✗ ✙✜ ✩★✘✚✖✘❞ ✯❛ ✫✘★❣✙✕❣

✖✗✘ ✶✬✯✙✖ ✖★✚✕✜✙✖✙✢✕✜ ✚✛✢✕❣ ✖✗✘ ♣✚✖✗✱ ❚✗✘ ✜✘✖ ✢✣ ✚✛✛ ✖✚★❣✘✖ ✜✖✚✖✘✜

✢✣ ✕✘✽✛❛ ✩★✘✚✖✘❞ ✖★✚✕✜✙✖✙✢✕✜ ✖✗✚✖ ✗✚✼✘ ✕✢✖ ✯✘✘✕ ♣★✢✩✘✜✜✘❞ ❛✘✖

✙✜ ✲✜✘❞ ✚✜ ✚ ✜✘✖ ✢✣ ✙✕✙✖✙✚✛ ✜✖✚✖✘✜ ✙✕ ✖✗✘ ✕✘❀✖ ✜✖✘♣ ✢✣ ✖✗✘ ♣✚✖✗

✜✘✚★✩✗✱

❚✗✘ ✫✲✛✖✙✬✩✗✚★ ❋✰✪ ✙✜ ✖✗✘✕ ✖★✚✕✜✣✢★✫✘❞ ✙✕✖✢ ✚ ✤✥✦✧

❋✰✪ ❞✘✜✩★✙♣✖✙✢✕✱ ❚✗✘ ✕✘❀✖ ✜✖✚✖✘ ✢✣ ✖✗✘ ❋✰✪ ✙✜ ✜✘✛✘✩✖✘❞

✯✚✜✘❞ ✢✕ ✙✕✖✘★✕✚✛ ★✘❣✙✜✖✘★✜ ✚✕❞ ✖✗✘ ✙✕♣✲✖ ✽✢★❞✱ ❚✗✘ ❋✰✪

✩✢✕✖★✢✛✜ ✚✜✜✙❣✕✫✘✕✖ ✢✣ ✩✢✫♣✲✖✘❞ ✼✚✛✲✘✜ ✖✢ ✙✕✖✘★✕✚✛ ★✘❣✙✜✖✘★✜

✚✕❞ ✢✲✖♣✲✖✜ ✖✗✘ ✙❞✘✕✖✙❁✘★ ✽✗✙✩✗ ✙✜ ✲✜✘❞ ✣✢★ ✘❀✖★✚✩✖✙✢✕ ♣✲★♣✢✜✘✜

✚✜ ✽✙✛✛ ✯✘ ❞✘✜✩★✙✯✘❞ ✙✕ ✖✗✘ ✕✘❀✖ ✜✘✩✖✙✢✕✱

❇✔ ●✂✄✂✆✝t✐♦✄ ♦☎ ❈♦✄➇❂☞✆✝t✐♦✄ ☎♦✆ ❍✂✝✉✂✆ ❃①t✆✝✎t✐♦✄ ❃✄❂✐✄✂

❆✕✢✖✗✘★ ✖✚✜✳ ✢✣ ✖✗✘ ✥❋❊ ❣✘✕✘★✚✖✙✢✕ ♣★✢✩✘✜✜ ✙✜ ✖✗✘ ✩✢✫♣✙✛✚✬

✖✙✢✕ ✢✣ ✫✙✩★✢✩✢❞✘ ✣✢★ ✖✗✘ ✘❀✖★✚✩✖✙✢✕ ✫✢❞✲✛✘✱ ❚✗✘ ✫✚✙✕ ✙✕♣✲✖

✖✢ ✖✗✙✜ ♣★✢✩✘✜✜ ✙✜ ❞✘✜✩★✙♣✖✙✢✕ ✢✣ ★✘r✲✘✜✖✘❞ ✥❋❊ ✢✲✖♣✲✖ ✣★✚✫✘

✙✕ ✚✕ ❳✪✧ ❞✢✩✲✫✘✕✖✱ ❆✕ ✘❀✚✫♣✛✘ ✢✣ ✖✗✘ ❳✪✧ ✢✲✖♣✲✖ ✣★✚✫✘

❞✘✜✩★✙♣✖✙✢✕ ✙✜ ✜✗✢✽✕ ✙✕ ❋✙❣✱ ❄✱

❚✗✙✜ ✘❀✚✫♣✛✘ ✩✢✕✖✚✙✕✜ ✜✘✼✘★✚✛ ❁✘✛❞✜ ✽✗✙✩✗ ✽✙✛✛ ✯✘ ❁✛✛✘❞

✽✙✖✗ ✖✗✘ ✩✢✕✖✘✕✖ ✢✣ ♣★✢✖✢✩✢✛ ✗✘✚❞✘★ ❁✘✛❞✜ ✯✚✜✘❞ ✢✕ ✖✗✘

❞✘✜✩★✙♣✖✙✢✕ ✙✕✜✙❞✘ ✎♦✄t✂✄t ✖✚❣✱ ■✖ ✩✚✕ ✯✘ ✜✘✘✕ ✖✗✚✖ ✙✖ ✙✜ ♣✢✜✜✙✯✛✘

✖✢ ✚✜✜✙❣✕ ❞✙✣✣✘★✘✕✖ ♣★✢✖✢✩✢✛ ✗✘✚❞✘★ ❁✘✛❞✜ ✖✢ ✚ ✜✙✕❣✛✘ ✢✲✖♣✲✖

❁✘✛❞ ✴✙✕ ✖✗✙✜ ✘❀✚✫♣✛✘ ❯✦❅ ✚✕❞ ❚❉❅ ♣✢★✖✜✻❏ ✽✗✙✩✗ ✙✜ ✲✜✘✣✲✛ ✣✢★

♣✚✩✳✘✖ ✩✛✚✜✜✙❁✩✚✖✙✢✕ ✚♣♣✛✙✩✚✖✙✢✕✜✱ ❚✗✘ ✂①t✆✝✎t ✚✖✖★✙✯✲✖✘ ✘✕✚✯✛✘✜

✖✢ ✜✘✛✘✩✖ ✽✗✘✖✗✘★ ✖✗✘ ❁★✜✖ ✢★ ✖✗✘ ✛✚✜✖ ✢✩✩✲★★✘✕✩✘ ✢✣ ✖✗✘ ✗✘✚❞✘★

❁✘✛❞ ✙✜ ✘❀✖★✚✩✖✘❞✱ ❚✗✙✜ ✣✘✚✖✲★✘ ✙✜ ✙✫♣✢★✖✚✕✖ ✽✗✘✕ ♣★✢✩✘✜✜✙✕❣

✕✘✜✖✘❞ ♣★✢✖✢✩✢✛✜ ■❅✬✢✼✘★✬■❅❏ ✕✘✜✖✘❞ ✤✧❆❑✜❏ ✘✖✩✱

❚✗✘ ✢✲✖♣✲✖ ✣★✚✫✘ ✣✢★✫✚✖ ✚✕❞ ✙✕✣✢★✫✚✖✙✢✕ ✚✯✢✲✖ ♣✢✜✜✙✯✛✘

✗✘✚❞✘★ ❁✘✛❞✜ ✩✢✫✯✙✕✚✖✙✢✕✜ ✙✕ ✖✗✘ ✙✕♣✲✖ ✽✢★❞ ✙✕✩✛✲❞✙✕❣ ✖✗✘✙★

✚✜✜✙❣✕✘❞ ✙❞✘✕✖✙❁✘★ ✚★✘ ❞✙★✘✩✖✛❛ ✲✜✘❞ ✣✢★ ❣✘✕✘★✚✖✙✢✕ ✢✣ ✩✢✕✖✘✕✖

✢✣ ✖✗✘ ✘❀✖★✚✩✖✙✢✕ ✘✕❣✙✕✘ ✩✢✕❁❣✲★✚✖✙✢✕ ✫✘✫✢★❛✱ ❆ ✜✙✕❣✛✘ ✩✢✕✬

✖★✢✛ ✽✢★❞ ✙✜ ❣✘✕✘★✚✖✘❞ ✣✢★ ✘✚✩✗ ✖★✚✕✜✙✖✙✢✕✱ ❚✗✙✜ ✽✢★❞ ✩✢✕✖✚✙✕✜

✩✢✫✫✚✕❞ ✣✢★ ✘✚✩✗ ✙✕♣✲✖ ✯❛✖✘ ✽✗✙✩✗ ✩✢✕✖★✢✛✜❝

⑨ ✯❛✖✘ ✘❀✖★✚✩✖✙✢✕❏

⑨ ♣✢✜✙✖✙✢✕ ✙✕ ✖✗✘ ✢✲✖♣✲✖ ✜✖★✘✚✫❏

▲▼◆❖P◗❘❖❲

▲❨❩❖❬❩❖❲
▲❭❪▼❫❴ ❪❴❵❜❡P❘❢❤◗❘❜ ❫▼❧❥❖❦❵❜♠❜ q❲
▲❭❪▼❫❴ ❪❴❵❜❴❡❖❢❤◗❘❜ ❫▼❧❥❖❦❵❜♠❜ q❲
▲❭❪▼❫❴ ❪❴❵❜❡P❘❢❪❬❜ ❫▼❧❥❖❦❵❜②❜ q❲
▲❭❪▼❫❴ ❪❴❵❜❴❡❖❢❪❬❜ ❫▼❧❥❖❦❵❜②❜ q❲
▲❭❪▼❫❴ ❪❴❵❜❬P❨❖❨❘❨❫❜ ❫▼❧❥❖❦❵❜③❜ q❲
▲❭❪▼❫❴ ❪❴❵❜❡P❘❢❬❨P❖❜ ❫▼❧❥❖❦❵❜⑦❜ q❲
▲❭❪▼❫❴ ❪❴❵❜❴❡❖❢❬❨P❖❜ ❫▼❧❥❖❦❵❜⑦❜ q❲
▲q❨❩❖❬❩❖❲

▲❘❨❧❖▼❧❖❲
▲▼◆❖P◗❘❖ ❭❪▼❫❴P▼❭❵❜▼❖❦❢❡P❘❢❤◗❘❜ ❨❩❖P▼❭❵❜❡P❘❢❤◗❘❜

▼◆❖P◗❘❖❵❜❭❪P❡❖❜ q❲
▲▼◆❖P◗❘❖ ❭❪▼❫❴P▼❭❵❜▼❖❦❢❴❡❖❢❤◗❘❜ ❨❩❖P▼❭❵❜❴❡❖❢❤◗❘❜

▼◆❖P◗❘❖❵❜❭❪P❡❖❜ q❲
▲▼◆❖P◗❘❖ ❭❪▼❫❴P▼❭❵❜❪❬⑧②❢❡P❘❢◗❴❴P❜ ❨❩❖P▼❭❵❜❡P❘❢❪❬❜q❲
▲▼◆❖P◗❘❖ ❭❪▼❫❴P▼❭❵❜❪❬⑧②❢❴❡❖❢◗❴❴P❜ ❨❩❖P▼❭❵❜❴❡❖❢❪❬❜q❲
▲▼◆❖P◗❘❖ ❭❪▼❫❴P▼❭❵❜❪❬⑧②❢❬P❨❖❨❘❨❫❜ ❨❩❖P▼❭❵❜❬P❨❖❨❘❨❫❜q❲
▲▼◆❖P◗❘❖ ❭❪▼❫❴P▼❭❵❜❖❘❬❢❡P❘❢❬❨P❖❜ ❨❩❖P▼❭❵❜❡P❘❢❬❨P❖❜q❲
▲▼◆❖P◗❘❖ ❭❪▼❫❴P▼❭❵❜❖❘❬❢❴❡❖❢❬❨P❖❜ ❨❩❖P▼❭❵❜❴❡❖❢❬❨P❖❜q❲
▲▼◆❖P◗❘❖ ❭❪▼❫❴P▼❭❵❜❩❴❬❢❡P❘❢❬❨P❖❜ ❨❩❖P▼❭❵❜❡P❘❢❬❨P❖❜q❲
▲▼◆❖P◗❘❖ ❭❪▼❫❴P▼❭❵❜❩❴❬❢❴❡❖❢❬❨P❖❜ ❨❩❖P▼❭❵❜❴❡❖❢❬❨P❖❜q❲
▲q❘❨❧❖▼❧❖❲

▲q▼◆❖P◗❘❖❲

⑩❶❷❸ ❹❸ ❺❻❼ ❽❾❿➀➁❶➂➃❶➄➅ ➄➆ ➃➈❾ ➉⑩➊ ➄➋➃➂➋➃ ➆➁➌➍❾

⑨ ✢✼✘★✽★✙✖✙✕❣ ✢✣ ✚✛★✘✚❞❛ ✘❀✖★✚✩✖✘❞ ✼✚✛✲✘ ✴✕✘✜✖✘❞ ♣★✢✖✢✩✢✛✜✻✱

■✤✱ ➎➊➏➐❼➑➏

❚✗✘ ♣★✢♣✢✜✘❞ ✚★✩✗✙✖✘✩✖✲★✘ ✽✚✜ ✘✼✚✛✲✚✖✘❞ ✢✕ ❳✙✛✙✕❀ ✤✙★✖✘❀ ❄

❋❅➒❆✱ ➓✘ ✗✚✼✘ ❞✘❁✕✘❞ ✣✢✲★ ♣★✢✖✢✩✢✛ ✜✘✖✜ ✙✕ ❳✪✧ ✛✚✕❣✲✚❣✘

✚✕❞ ✲✜✘❞ ✖✗✘✫ ✣✢★ ♣★✢♣✢✜✘❞ ✥❋❊ ✘✕❣✙✕✘ ✘✼✚✛✲✚✖✙✢✕✱ ❆✛✛

♣★✘♣✚★✘❞ ♣★✢✖✢✩✢✛ ❞✘✜✩★✙♣✖✙✢✕✜ ✚★✘ ✫✘✕✖✙✢✕✘❞ ✙✕ ❚✚✯✛✘ ■✱ ❯✜✙✕❣

✖✗✘ ✩✢★✘ ❣✘✕✘★✚✖✢★❏ ✜✘✼✘★✚✛ ✥❋❊ ✘✕❣✙✕✘✜ ✽✙✖✗ ❞✙✣✣✘★✘✕✖ ✕✲✫✯✘★

✢✣ ✜✲♣♣✢★✖✘❞ ♣★✢✖✢✩✢✛✜ ✚✕❞ ✖✗✘ ✙✕♣✲✖ ✽✢★❞ ❞✚✖✚ ✽✙❞✖✗ ✽✘★✘

❣✘✕✘★✚✖✘❞✱ ❆✜ ✩✚✕ ✯✘ ✜✘✘✕ ✙✕ ❚✚✯✛✘ ■■ ✚✕❞ ❚✚✯✛✘ ■■■❏ ✕✲✫✯✘★

✢✣ ✜✲♣♣✢★✖✘❞ ♣★✢✖✢✩✢✛✜ ✚✕❞ ♣★✢✖✢✩✢✛ ✖❛♣✘✜ ✗✚✼✘ ✢✕✛❛ ✛✙✫✙✖✘❞

✙✕➔✲✘✕✩✘ ✖✢ ✖✗✘ ✩✢✕✜✲✫✘❞ ❋❅➒❆ ★✘✜✢✲★✩✘✜ ✚✕❞ ♣★✢✩✘✜✜✙✕❣

✜♣✘✘❞✱

➑→➣❼➊ ↔
➊↕➙➛➜➙➝➞➟➠ ➡➢➝ ➤➢➡➥➦➞➧➝➞➟➠

➨➁➄➃➄➀➄➩ ➫➌➍❾ ➣➌❿❶➀ ➭❼→➫ ❻➨❼➏ ↔➨➭➯

➊➃➈❾➁➅❾➃ ❺ ❺ ❺ ❺
➭❼→➫ ❺ ❺ ❺

❻➨❼➏ ❺ ❺
↔➨➲➳ ❺ ❺ ❺ ❺

↔➨➲➯ ❺

➑➵➨ ❺ ❺ ❺ ❺
➐➸➨ ❺ ❺ ❺ ❺

➓✘ ✗✚✼✘ ♣✘★✣✢★✫✘❞ ✖✗✘ ✰❛✕✖✗✘✜✙✜ ✚✕❞ ❅✛✚✩✘ ➺ ➎✢✲✖✘ ✣✢★

✚✛✛ ❣✘✕✘★✚✖✘❞ ❞✘✜✙❣✕✜ ✲✜✙✕❣ ❳✙✛✙✕❀ ■✰❊ ✖✢✢✛✱ ❚✗✘ ✫✚❀✙✫✲✫

✣★✘r✲✘✕✩❛ ✚✕❞ ✩✢✕✜✲✫✘❞ ✗✚★❞✽✚★✘ ★✘✜✢✲★✩✘✜ ✽✘★✘ ✢✯✖✚✙✕✘❞

✣★✢✫ ❅➺➎ ★✘✜✲✛✖✜✱ ❚✚✯✛✘ ■■ ✜✗✢✽✜ ✖✗✘ ✥❋❊ ✖✗★✢✲❣✗♣✲✖ ✣✢★ ✙✖✜

❞✙✣✣✘★✘✕✖ ✩✢✕❁❣✲★✚✖✙✢✕✜✱ ❚✗✘ ✖✗★✢✲❣✗♣✲✖ ✽✚✜ ✩✢✫♣✲✖✘❞ ✣★✢✫

✖✗✘ ✙✕♣✲✖ ✽✙❞✖✗ ✚✕❞ ✫✚❀✙✫✲✫ ❞✘✜✙❣✕ ✣★✘r✲✘✕✩❛✱ ❋✢★ ✖✗✘ ✶➻➼✬

✯✙✖ ✩✢✕❁❣✲★✚✖✙✢✕ ✖✗✘ ✖✚★❣✘✖ ✖✗★✢✲❣✗♣✲✖ ✽✚✜ ✢✼✘★ ✶❄ ➒✯♣✜❏

✽✗✙✩✗ ✙✜ ✫✢★✘ ✖✗✚✕ ✜✲✣❁✩✙✘✕✖ ✣✢★ ♣★✢✩✘✜✜✙✕❣ ✢✣ ✶➽ ➒✯♣✜

✕✘✖✽✢★✳ ✛✙✕✘✜ ✘✼✘✕ ✣✢★ ✖✗✘ ✜✗✢★✖✘✜✖ ♣✚✩✳✘✖✜✱ ❚✗✘ ✣★✘r✲✘✕✩❛

♣✚★✚✫✘✖✘★ ❞✘✩★✘✚✜✘✜ ✣★✢✫ ✶➾❄ ✪✥➚ ✖✢ ✶✶❄ ✪✥➚ ✽✙✖✗ ✖✗✘

✐�✁✂✄☎✆✄ ♦✝ t✞✄ ✐�✟✠t ❞☎t☎ ✇✐❞t✞ ❜✄✁☎✠✆✄ ♦✝ ❧♦�✡ ✁♦❝❜✐�☎t♦✂✐☎❧

✟☎t✞✆ ✐� t✞✄ ✄①t✂☎✁t✐♦� ✟☎✂t ✭✁✂♦✆✆❜☎✂☛ ♦✝ t✞✄ ❍☞✌✍ ✇✞✐✁✞ ✁☎�

❜✄ ✝✠✂t✞✄✂ ♦✟t✐❝✐✎✄❞ t♦ ✐�✁✂✄☎✆✄ ✝✂✄❢✠✄�✁②✳

❚❆✏✑✒ ■■

▼✓✔✕✖✗✖ ✓❈✘✕✙✚✙✛ ✜✘✢❖✗✣✘✤✗✜ ❋❖✢ ✛✕❋❋✙✢✙✥✜ ✕✥✤✗✜ ✛✓✜✓ ❲✕✛✜✘✦

■✧★✩✪ ✫✬✮✪✯ ✏❇✰✬✱ ❱✑❆✲ ▼✴✑✵ ■✴❱✶

✷✶ ✸✹✶✺ ●✻★✰ ✸✹✶✺ ●✻★✰ ✸✹✶✺ ●✻★✰ ✸✹✶✺ ●✻★✰

✼✸ ✽✹✼✾ ●✻★✰ ✽✹✼✾ ●✻★✰ ✽✹✼✾ ●✻★✰ ✽✹✼✾ ●✻★✰

✶✾ ✿✹✾✽ ●✻★✰ ✿✹✾✽ ●✻★✰ ✿✹✾✽ ●✻★✰ ✿✹✾✽ ●✻★✰

✷✸✿ ✷✽✹✸✼ ●✻★✰ ✷✽✹✸✼ ●✻★✰ ✷✾✹❀✿ ●✻★✰ ✷✽✹✸✼ ●✻★✰

❁✄ ✞☎✈✄ ☎❧✆♦ ✄✈☎❧✠☎t✄❞ t✞✄ ✆t☎�❞s☎❧♦�✄ ✟✂♦t♦✁♦❧ ☎�☎❧②✆✐✆

❝♦❞✠❧✄ ✭☞❂❃☛ t♦ ❞✄t✄✂❝✐�✄ t✞✄ ✐�❄✠✄�✁✄ ♦✝ t✞✄ �✠❝❜✄✂ ♦✝

✆✠✟✟♦✂t✄❞ ✟✂♦t♦✁♦❧ t♦ ✐t✆ t✞✂♦✠✡✞✟✠t✳ ❅✞✄ ✂✄✆✠❧t✆ ✆✞♦✇ t✞☎t

t✞✄ ❝☎①✐❝✠❝ ✝✂✄❢✠✄�✁② ✝♦✂ ❞✐✝✝✄✂✄�t ✟✂♦t♦✁♦❧ ✆✄t✆ ✐✆ ☎❧❝♦✆t

t✞✄ ✆☎❝✄✳

❅✞✄ ☎❝♦✠�t ♦✝ ✁♦�✆✠❝✄❞ ✞☎✂❞✇☎✂✄ ✂✄✆♦✠✂✁✄✆ ✝♦✂ ❞✐✝✝✄✂✄�t

❍☞✌ ✁♦�❉✡✠✂☎t✐♦�✆ ✐✆ ✆✞♦✇� ✐� ❅☎❜❧✄ ❊❊❊✳ ☞♦✂ t✞✄ ❝♦✆t ✟♦✇s

✄✂✝✠❧ ✁♦�❉✡✠✂☎t✐♦�✍ ♦�❧② ❏❑▲◆ ✆❧✐✁✄✆ ✇✄✂✄ ✁♦�✆✠❝✄❞✍ ✇✞✐✁✞

t♦t☎❧✆ t♦ ♦�❧② ❏❏P ♦✝ ☎❧❧ ✂✄✆♦✠✂✁✄✆ ☎✈☎✐❧☎❜❧✄ ♦� ①✁◗✈❧①❏❏❘t

✁✞✐✟✳ ❙✠✂ ✆♦❧✠t✐♦� ✐✆ ☎❧✆♦ ✈✄✂② ✝✂✐✄�❞❧② t♦ ❯❧♦✁❳❨☎❝ ✂✄✆♦✠✂✁✄✆

✇✞✐✁✞ ☎✂✄ ♦✝t✄� �✄✄❞✄❞ ✝♦✂ ✐❝✟❧✄❝✄�t✐�✡ ♦✝ ❧☎✂✡✄ ✟☎✁❳✄t

❜✠✝✝✄✂✆ ✐� �✄t✇♦✂❳ ❞✄✈✐✁✄✆✳ ❨✄❧☎t✐✈✄❧② ✆❝☎❧❧ ✁♦�✆✠❝✟t✐♦� ♦✝

☞❩❬❭ ✂✄✆♦✠✂✁✄✆ ✄�☎❜❧✄✆ t♦ ✠✆✄ t✞✄ ✂✄✆t ♦✝ t✞✄ ✁✞✐✟ ✝♦✂ ❜✠✐❧❞✐�✡

✁♦❝✟❧✐✁☎t✄❞ �✄t✇♦✂❳ ☎✟✟❧✐✁☎t✐♦�✆ ❧✐❳✄ ❉✂✄✇☎❧❧✆✍ ✂♦✠t✄✂✆✍ ❊❪❂

✆②✆t✄❝✆✍ ✄t✁✳

❚❆✏✑✒ ■■■

✵❫✕❈✙ ❴ ✏❫❖❈❵❛✓✖➄✦ ❖❈❈✗✤✓✜✕❖✥ ❖✥ ❱✕✢✜✙✔ ✽ ❡✔❈✽✚❫✔✷✷❣✜❤ ❋❖✢

✛✕❋❋✙✢✙✥✜ ✕✥✤✗✜ ✛✓✜✓ ❲✕✛✜✘✦

■✧★✩✪ ✫✬✮✪✯ ✏❇✰✬✱ ❱✑❆✲ ▼✴✑✵ ■✴❱✶

✷✶ ✷✺✸ ❴ ✷ ✷✺✺ ❴ ✷ ✷✿✸ ❴ ✷ ✷✿❀ ❴ ✷

✼✸ ✼❣✽ ❴ ✷ ✼✷✶ ❴ ✷ ✼✸✸ ❴ ✷ ✼✾✺ ❴ ✷

✶✾ ✶✶❣ ❴ ✼ ✶✺✾ ❴ ✼ ✺✷❣ ❴ ✼ ✺✾✺ ❴ ✼

✷✸✿ ✷✺✷✼ ❴ ✽ ✷✿✷✶ ❴ ✽ ✷✿✼✺ ❴ ✽ ✷❀✶✾ ❴ ✽

❅☎❜❧✄ ❊❊❊ ☎❧✆♦ ✆✞♦✇✆ t✞☎t t✞✄ ✐�✁✂✄☎✆✄ ♦✝ ♦✁✁✠✟✐✄❞ ☎✂✄☎ ✇✐t✞

☎❞❞✄❞ ✆✠✟✟♦✂t ✝♦✂ ❝♦✂✄ ✟✂♦t♦✁♦❧✆ ✐✆ ✈✄✂② ❧♦✇✳ ❊❩✈▲ ✆✠✟✟♦✂t

✁♦�✆✠❝✄✆ ♦�❧② ❧✄✆✆ t✞☎� ❏◗❘ ☎❞❞✐t✐♦�☎❧ ✆❧✐✁✄✆ ✝♦✂ ❏❥❦s❜✐t

✐�✟✠t ✇♦✂❞ ✁♦�❉✡✠✂☎t✐♦�✳ ☞♦✂ ❧♦✇✄✂ ✐�✟✠t ❞☎t☎ ✇✐❞t✞ t✞✄✆✄

❞✐✝✝✄✂✄�✁✄✆ ☎✂✄ ✟✂☎✁t✐✁☎❧❧② ✠��♦t✐✁✄☎❜❧✄✳

❅✞✄ ✞✐✡✞✄✂ t✞✂♦✠✡✞✟✠t ✁☎� ❜✄ ☎✁✞✐✄✈✄❞ �♦t ♦�❧② ❜② ✐�✁✂✄☎✆s

✐�✡ ♦✝ t✞✄ ✐�✟✠t ❞☎t☎ ✇✐❞t✞ ❜✠t ☎❧✆♦ ❜② ❄✄①✐❜❧✄ ✟☎✁❳✄t ❞✐✆t✂✐❜✠s

t✐♦� ❜✄t✇✄✄� ✆✄✈✄✂☎❧ ✟✂♦✁✄✆✆✐�✡ ✠�✐t✆ ✇✐t✞ ❧♦✇✄✂ t✞✂♦✠✡✞✟✠t ☎✆

✁☎� ❜✄ ✆✄✄� ✐� ☞✐✡✳ ▲✳ ❁✄ ✞☎✈✄ ✠✆✄❞ t✞✐✆ ✟✂✐�✁✐✟❧✄ t♦ ❞✄t✄✂❝✐�✄

✇✞✄t✞✄✂ ☎ ✆✐�✡❧✄ ✟✂♦✁✄✆✆✐�✡ ✄�✡✐�✄ ✇✐t✞ ❏❥❦s❜✐t ✐�✟✠t ❞☎t☎

✇✐❞t✞ ✐✆ ❜✄tt✄✂ t✞☎� ✆✄✈✄✂☎❧ ❧✄✆✆ ✟♦✇✄✂✝✠❧ ✄�✡✐�✄✆✳

❊� ❅☎❜❧✄ ❊♠✍ t✞✄✂✄ ✐✆ ☎� ✄✈☎❧✠☎t✐♦� ♦✝ ✝♦✠✂ ❞✐✝✝✄✂✄�t ❍☞✌

✁♦�❉✡✠✂☎t✐♦�✆ ✇✞✐✁✞ ❞✐✝✝✄✂ ✐� t✞✄ ✐�✟✠t ❞☎t☎ ✇✐❞t✞ ☎�❞ t✞✄

�✠❝❜✄✂ ♦✝ ✟✂♦✁✄✆✆✐�✡ ✄�✡✐�✄✆✳ ❅✞✄ ✟☎✁❳✄t ❞✐✆t✂✐❜✠t✐♦� ❧♦✡✐✁

✐✆ ✐�✁❧✠❞✄❞ ✐�t♦ ✁♦�✆✠❝✄❞ ☞❩❬❭ ✂✄✆♦✠✂✁✄✆ ✝♦✂ ✁♦�❉✡✠✂☎t✐♦�✆

t✞☎t ✠✆✄ ❝♦✂✄ t✞☎� ♦�✄ ✟✂♦✁✄✆✆✐�✡ ❜❧♦✁❳✳ ❅✞✄ t☎❜❧✄ ✆✞♦✇✆ t✞☎t

t✞✄ ❜✄✆t ✂✄❧☎t✐♦� ❜✄t✇✄✄� t✞✄ t✞✂♦✠✡✞✟✠t ☎�❞ t✞✄ ♦✁✁✠✟✐✄❞

☞❩❬❭ ✂✄✆♦✠✂✁✄✆ ✐✆ ✝♦✂ ◆① ♥❥s❜✐t ✟✂♦✁✄✆✆✐�✡ ✄�✡✐�✄✆✳ ❅✞✐✆

✁♦�❉✡✠✂☎t✐♦� ✐✆ t✞✄ ❜✄✆t ❝☎✐�❧② ❜✄✁☎✠✆✄ ♦✝ ▲s✐�✟✠t ♣q❅✆

r✉③④ ⑤⑥③⑦⑧⑨⑨⑩❶❷
❸❶⑩❹

r✉③④ ⑤⑥③⑦⑧⑨⑨⑩❶❷
❸❶⑩❹

r✉③④ ⑤⑥③⑦⑧⑨⑨⑩❶❷
❸❶⑩❹

r✉③④ ⑤⑥③⑦⑧⑨⑨⑩❶❷
❸❶⑩❹

❺
❻
❼❽❾
❾❿
➀

➁
❽➂
➃
❿
➀

➅➆ ➇⑩❹⑨

➈③⑦➉✉ ➈⑩❶➊ ➈③⑦➉✉ ➈⑩❶➊

➅➆ ➇⑩❹⑨

➋➅ ➇

➋➅ ➇

➋➅ ➇

➋➅ ➇

➋➅ ➇

➋➅ ➇

➋➅ ➇

➋➅ ➇

➌✬➍✹ ✶✹ ✴➎➏✱➐✰✰✬✧➍ ✩✧✬✪ ➑➏❇✮ ✮✬✰✪➎✬✻✩✪✬➏✧

✠✆✄❞ ✐� ♠✐✂t✄① ◗ ☎✂✁✞✐t✄✁t✠✂✄ ✇✞✐✁✞ ✁☎� ❜✄ ✝✠❧❧② ✠t✐❧✐✎✄❞ ✝♦✂

✁✂✄☎t✐�✡ ♥❥s❜✐t ✁✂♦✆✆❜☎✂✳ ❭�♦t✞✄✂ ✂✄☎✆♦� ✐✆ t✞☎t ♣♥➒♣◆ �✄t✇♦✂❳

✟✂♦t♦✁♦❧✆ ✠✆✄❞ ❞✠✂✐�✡ ✄✈☎❧✠☎t✐♦� ☎✂✄ ☎❧✐✡�✄❞ t♦ ♥❥ ❜✐t✆✳

❚❆✏✑✒ ■❱

➓✙✜✙✢✖✕✥✕✥✣ ✜✘✙ ❖✤✜✕✖✓❫ ➔➌✒ ✙✥✣✕✥✙ ❈❖✥❋✕✣✗✢✓✜✕❖✥ ❋❖✢ ❱✕✢✜✙✔

✽ ❈✘✕✤✦

→➏✧➣➍✩➎❇✪✬➏✧ ❚✯➎➏✩➍✯★✩✪ ❆➎➐❇ ❚✯➎➏✩➍✯★✩✪❴❆➎➐❇

✷↔ ✷✸✿↕✻✬✪ ➔➌✒ ✷✽✹✸✼ ●✻★✰ ✷❀✶✾ ✰➑✬✱➐✰ ✺✹✺ ▼✻★✰❴✵➑✬✱➐

✸↔ ✶✾↕✻✬✪ ➔➌✒ ✷✶✹❀ ●✻★✰ ✷❀✼❣ ✰➑✬✱➐✰ ✿✹✿ ▼✻★✰❴✵➑✬✱➐

✾↔ ✼✸↕✻✬✪ ➔➌✒ ✸✷✹✼✶ ●✻★✰ ✸✷❣❣ ✰➑✬✱➐✰ ✷❣✹✸ ▼✻★✰❴✵➑✬✱➐

✿↔ ✷✶↕✻✬✪ ➔➌✒ ✸✷✹✼✶ ●✻★✰ ✸✿✸✽ ✰➑✬✱➐✰ ✺✹✽ ▼✻★✰❴✵➑✬✱➐

♠✳ ➙➛✲→✑➜✵■➛✲

❊� t✞✐✆ ✟☎✟✄✂✍ ✇✄ ✟✂♦✟♦✆✄ ☎ �✄✇ ☎✂✁✞✐t✄✁t✠✂✄ ✐�t✄�❞✄❞ ✝♦✂

✟☎✁❳✄t ✞✄☎❞✄✂ ☎�☎❧②✆✐✆ ☎�❞ ✄①t✂☎✁t✐♦� ♦� ❝✠❧t✐✡✐✡☎❜✐t �✄ts

✇♦✂❳✆✳ ❅✞✄ ✟✂✄✆✄�t✄❞ ✆♦❧✠t✐♦� ✞☎✆ ❜✄✄� ❞✄✆✐✡�✄❞ ✄✆✟✄✁✐☎❧❧② ✝♦✂

☞❩❬❭ ✁✞✐✟✆ ☎�❞ ✁☎� ❜✄ ✠✆✄❞ ✐� ✟♦✇✄✂✝✠❧ ✞✐✡✞s✆✟✄✄❞ ❞✄✈✐✁✄✆✳

❅✞✄ ☎✂✁✞✐t✄✁t✠✂✄ ✐✆ ♦✟t✐❝✐✎✄❞ ✝♦✂ ✞✐✡✞ ✆✟✄✄❞ ✟✂♦✁✄✆✆✐�✡ ☎�❞

✁♦�✆✠❝✄✆ ♦�❧② ✆❝☎❧❧ ☎❝♦✠�t ♦✝ ☞❩❬❭ ✂✄✆♦✠✂✁✄✆✳ ❃♦✂✄ t✞✄�

❥❘ ❬❜✟✆ t✞✂♦✠✡✞✟✠t ✁☎� ❜✄ ☎✁✞✐✄✈✄❞ ✠✆✐�✡ ❧✄✆✆ t✞☎� ❥❘❘❘

✆❧✐✁✄✆ ♦✝ ♠✐✂t✄① ◗ ☞❩❬❭✳ ❃♦✂✄♦✈✄✂✍ t✞✄ ☎✂✁✞✐t✄✁t✠✂✄ ✐✆ ✇✄❧❧

❞✄✆✐✡�✄❞ ✝♦✂ ✄❝❜✄❞❞✄❞ ☎✟✟❧✐✁☎t✐♦�✆✍ ❜✄✁☎✠✆✄ ☎ ✡✐✡☎❜✐t ❧✐�❳

✁☎� ❜✄ ✟✂♦✁✄✆✆✄❞ ❜② ♦�❧② ♦�✄ ✄�✡✐�✄ ✇✞✐✁✞ ✁♦�✆✠❝✄✆ ❏➝❘

✆❧✐✁✄✆ ♦✝ ☞❩❬❭✳

❅✞✄ ✞☎✂❞✇☎✂✄ ✐❝✟❧✄❝✄�t☎t✐♦� ♦✝ ❍☞✌ ✄�✡✐�✄ ✐✆ ✡✄�✄✂☎t✄❞

❜② ☎ ✁♦✂✄ ✡✄�✄✂☎t♦✂✍ ✇✞✐✁✞ ✄�☎❜❧✄✆ t♦ ♦✟t✐❝✐✎✄ ☎✂✁✞✐t✄✁t✠✂✄ ✝♦✂

❞✄❉�✄❞ ✟☎✂☎❝✄t✄✂✆ ☎�❞ ❜☎❧☎�✁✄ ❜✄t✇✄✄� ✁♦�✆✠❝✄❞ ✞☎✂❞✇☎✂✄

✂✄✆♦✠✂✁✄✆ ☎�❞ �✄t✇♦✂❳ t✞✂♦✠✡✞✟✠t✳ ❭✆ ☎� ➞❃♣ ✆✟✄✁✐❉✁☎t✐♦�

✐✆ ✠✆✄❞ t♦ ❞✄✆✁✂✐❜✄ �✄t✇♦✂❳ ✟✂♦t♦✁♦❧✆✍ t✞✄ ❍☞✌ ✄�✡✐�✄ ✁☎�

❜✄ ✡✄�✄✂☎t✄❞ ✇✐t✞♦✠t t✞✄ ❳�♦✇❧✄❞✡✄ ♦✝ ✞☎✂❞✇☎✂✄ ❞✄✆✐✡�✳

❅✞✐✆ ✆✐✡�✐❉✁☎�t❧② ✂✄❞✠✁✄✆ t✞✄ t✐❝✄ ✂✄❢✠✐✂✄❞ ✝♦✂ ✟✂♦✈✐❞✐�✡

✆✠✟✟♦✂t t♦ �✄✇❧② ✐✆✆✠✄❞ ✆✟✄✁✐❉✁☎t✐♦�✆ ♦✝ �✄t✇♦✂❳ ✟✂♦t♦✁♦❧✆✳

❃♦✂✄♦✈✄✂✍ ❞✠✄ t♦ t✞✄ ✇✄❧❧ ❞✄✆✐✡�✄❞ ☎✂✁✞✐t✄✁t✠✂✄✍ ✐t ✐✆ ✟♦✆✆✐❜❧✄

t♦ ✁✞☎�✡✄ t✞✄ ✆✄t ♦✝ ✄①t✂☎✁t✄❞ ✞✄☎❞✄✂ ❉✄❧❞✆ ✇✐t✞♦✠t ☞❩❬❭

✂✄✁♦�❉✡✠✂☎t✐♦�✳ ❙�❧② t✞✄ ✐�t✄✂�☎❧ ❝✄❝♦✂② ✞☎✆ t♦ ❜✄ ✁✞☎�✡✄❞

❜② ☎ ✆✐❝✟❧✄ ✁♦�❉✡✠✂☎t✐♦� ❞☎t☎ ✠✟❧♦☎❞✳

❃☎①✐❝✠❝ ✝✂✄❢✠✄�✁② ♦✝ t✞✄ ✟✂♦✟♦✆✄❞ ☎✂✁✞✐t✄✁t✠✂✄ ❞✄✁✂✄☎✆✄✆

✇✐t✞ ✡✂♦✇✐�✡ ❞☎t☎ ✇✐❞t✞✳ ❅✞✄✂✄✝♦✂✄✍ ♦✠✂ ✝✠t✠✂✄ ✇♦✂❳ ✇✐❧❧

✝♦✁✠✆ ♦� ✟✄✂✝♦✂❝☎�✁✄ ♦✟t✐❝✐✎☎t✐♦�✆ t✞☎t ✄�☎❜❧✄ t♦ ✂✄☎✁✞ ✞✐✡✞✄✂

✆②✆t✄❝ ✝✂✄❢✠✄�✁②✳ ❁✄ ✇✐❧❧ ☎�☎❧②✆✄ ❞☎t☎ ❄♦✇ ❞✄✟✄�❞✄�✁✐✄✆

t♦ ❉�❞ ♦✟✄✂☎t✐♦�✆ ✇✞✐✁✞ ✁☎✠✆✄ ✁✂✐t✐✁☎❧ ✟☎t✞✆ ✐� t✞✄ ❞✄✆✐✡�✍

❜✄✁☎✠✆✄ t✞✄✆✄ ♦✟✄✂☎t✐♦�✆ ✁☎� ❜✄ ✟✂♦✁✄✆✆✄❞ ✐� ☎❞✈☎�✁✄ ☎�❞

✟✐✟✄❧✐�✄❞ ✇✐t✞ ✟☎✁❳✄t ✞✄☎❞✄✂ ☎�☎❧②✆✐✆✳

❆❈�✁✂❲✄☎✆✝✞☎✁✟

❚✠✡☛ r☞☛☞✌r✍✠ ✠✌☛ ❜☞☞✎ ♣✌r✏✡✌✑✑✒ ☛s♣♣✓r✏☞✔ ❜✒ ✏✠☞ ❘☞☛☞✌r✍✠

P✑✌✎ ◆✓✕ ▼✖▼✗ ✻✘✙✘✚✛✜✢✣✛ ❹ ❖♣✏✡✍✌✑ ◆✌✏✡✓✎✌✑ ❘☞☛☞✌r✍✠

◆☞✏✤✓r♦ ✌✎✔ ✡✏☛ ◆☞✤ ❆♣♣✑✡✍✌✏✡✓✎☛ ✌✎✔ ❘☞☛☞✌r✍✠ P✑✌✎ ◆✓✕

▼✖▼✗ ✣✣✢✛✻✘✣✵✢✙ ❹ ✖☞✍sr✡✏✒❙❖r✡☞✎✏☞✔ ❘☞☛☞✌r✍✠ ✡✎ ■✎✥✓r✦✌❙

✏✡✓✎ ❚☞✍✠✎✓✑✓❡✒✕

❘☎❊☎✧☎✁❈☎★

❬✩✪ ✫✳ ❈✬✭✇✮✯②✱ ✞✳ ✰✳ ❊✬❋✲✴✮✶✲✱ ❍✳ ❍❋✷✶✸✶✭✹✮✺✱ ❋✲✷ ✫✳ ❩✳ ✂✲✺✼✬②✴✱ ✽✾✿❀❁❂❃

❄❂❁❅✾❇❇❁❂ ❉✾❇●❏❑▲ ◗❇❇❯✾❇ ❛❑❱ ❄❂❛❅✿●❅✾❇❳ ❨❁❭❯❪✾ ❫✳ ✞✭✬✹❋✲ �❋✺✼✸❋✲✲✱

★❋✲ ❊✬❋✲❴✶❵❴✭✱ ❈✰✱ ❝❞❞❢✳

❬❝✪ ❩✳ �✳ ❣❋✴✯✬ ❋✲✷ ❤✳ �✳ ✫✬❋❵❋✲✲❋✱ ➁✰✺✐✭✸❋✐✶❴ ★②✲✐❥✯❵✶❵ ✭✼ ☎✼➇❴✶✯✲✐

❦✲✐✬✺❵✶✭✲ ✆✯✐✯❴✐✶✭✲ ★②❵✐✯✸❵ ✭✲ ❊✫✝✰❵✱➂ ✶✲ ❄❂❁❅✾✾❱●❑❏❇ ❁❧ ✿t✾ ❫♠✿t

♥❑❑❯❛❭ ◗❑✿✾❂❑❛✿●❁❑❛❭ q❁❑❧✾❂✾❑❅✾ ❁❑ ✉●✾❭❱✈❄❂❁❏❂❛❪❪❛①❭✾ ③❁❏●❅ ❛❑❱

♥④④❭●❅❛✿●❁❑❇ ⑤✉❄③ ➄⑥♠⑦✱ ❝❞❞⑧✳

❬❢✪ ❈✳ ✧✳ ❈✮❋✬✴ ❋✲✷ ✆✳ ☎✳ ★❴❥✶✸✸✯✮✱ ➁★❴❋✮❋⑨✮✯ ✫❋✐✐✯✬✲ ✞❋✐❴❥✶✲✹ ✼✭✬ ❍✶✹❥⑩

★❶✯✯✷ ✁✯✐✇✭✬✴❵✱➂ ✶✲ ◗❷❷❷ ❸❺❪④❁❇●❯❪ ❁❑ ✉●✾❭❱✈❄❂❁❏❂❛❪❪❛①❭✾ q❯❇✿❁❪

q❁❪④❯✿●❑❏ ❻❛❅t●❑✾❇ ⑤✉qq❻⑦✱ ✁❋❶❋✱ ❈❋✮✶✼✭✬✲✶❋✱ ❝❞❞⑧✱ ❶❶✳ ❝⑧❼❽❝❾❿✳

❬⑧✪ ❍✳ ★✭✲✹ ❋✲✷ ➀✳ ❲✳ ✄✭❴✴✇✭✭✷✱ ➁☎✼➇❴✶✯✲✐ ❶❋❴✴✯✐ ❴✮❋❵❵✶➇❴❋✐✶✭✲ ✼✭✬ ✲✯✐✇✭✬✴

✶✲✐✬✺❵✶✭✲ ✷✯✐✯❴✐✶✭✲ ✺❵✶✲✹ ✼❶✹❋✱➂ ✶✲ ✉❄➃♥ ➄⑥➅▲ ❄❂❁❅✾✾❱●❑❏❇ ❁❧ ✿t✾ ➆⑥⑥➅

♥q❻➈❸◗➃❉♥ ❫➉✿t ●❑✿✾❂❑❛✿●❁❑❛❭ ❇❺❪④❁❇●❯❪ ❁❑ ✉●✾❭❱✈④❂❁❏❂❛❪❪❛①❭✾ ❏❛✿✾

❛❂❂❛❺❇✳ ✁✯✇ ➊✭✬✴✱ ✁➊✱ ➋★✰➌ ✰❈✞ ✫✬✯❵❵✱ ❝❞❞❾✱ ❶❶✳ ❝❢➍❽❝⑧❾✳

❬❾✪ ❤✳ ✫✺➎❵ ❋✲✷ ➀✳ �✭➎✬✯✲✯✴✱ ➁❊❋❵✐ ❋✲✷ ❵❴❋✮❋⑨✮✯ ❶❋❴✴✯✐ ❴✮❋❵❵✶➇❴❋✐✶✭✲ ✺❵✶✲✹

❶✯✬✼✯❴✐ ❥❋❵❥ ✼✺✲❴✐✶✭✲❵✱➂ ✶✲ ✉❄➃♥ ➄⑥➏▲ ❄❂❁❅✾✾❱●❑❏❇ ❁❧ ✿t✾ ❫➐✿t ●❑✿✾❂✈

❑❛✿●❁❑❛❭ ♥q❻➈❸◗➃❉♥ ❇❺❪④❁❇●❯❪ ❁❑ ✉●✾❭❱ ④❂❁❏❂❛❪❪❛①❭✾ ❏❛✿✾ ❛❂❂❛❺❇✳

✁✯✇ ➊✭✬✴✱ ✁➊✱ ➋★✰➌ ✰❈✞✱ ❝❞❞❼✳

❬➑✪ ✧✳ ✧❋➒❵✺✸❋✲✱ ❸❺❇✿✾❪✈❁❑✈❛✈qt●④▲ ❉✾❇●❏❑ ❛❑❱ ➓✾❇✿✳ ✰✬✐✯❴❥ ❍✭✺❵✯✱ ❦✲❴✳

✁✭✬✇✭✭✷✱ ✞✰✱ ➋★✰✱ ❝❞❞❞✳

❬❿✪ ❊✳ ❣✬❋✺✲✱ ➀✳ ✄✭❴✴✇✭✭✷✱ ❋✲✷ ✞✳ ❲❋✮✷➔✭✹✯✮✱ ➁✫✬✭✐✭❴✭✮ ✇✬❋❶❶✯✬❵ ✼✭✬

✮❋②✯✬✯✷ ✲✯✐✇✭✬✴ ❶❋❴✴✯✐ ❶✬✭❴✯❵❵✶✲✹ ✶✲ ✬✯❴✭✲➇✹✺✬❋⑨✮✯ ✲✯✐✇✭✬✴❵✱➂ ◗❷❷❷

❻●❅❂❁✱ ➔✭✮✳ ❝❝✱ ✲✭✳ ✩✱ ❶❶✳ ➑➑❽❿⑧✱ ➀❋✲✳→❊✯⑨✳ ❝❞❞❝✳

❬➍✪ ✄✶⑨✯✬✭✺✐✯✬✱ ➁✄✶⑨✯✬✭✺✐✯✬ ✫✬✭➒✯❴✐ ❲❲❲ ✫❋✹✯✱➂ ❥✐✐❶➌→→✇✇✇✳✮✶⑨✯✬✭✺✐✯✬✳✭✬✹✱

❝❞❞➑✳

❬❼✪ ✟✳ ✆✯✷✯✴✱ ✟✳ ✞❋✬✯✴✱ ❋✲✷ ✟✳ ✞❋✬✐➫➣✲✯✴✱ ➁❍✶✹❥ ✮✯➔✯✮ ❋⑨❵✐✬❋❴✐✶✭✲ ✮❋✲✹✺❋✹✯

❋❵ ❋✲ ❋✮✐✯✬✲❋✐✶➔✯ ✐✭ ✯✸⑨✯✷✯✷ ❶✬✭❴✯❵❵✭✬❵ ✼✭✬ ✶✲✐✯✬✲✯✐ ❶❋❴✴✯✐ ❶✬✭❴✯❵❵✶✲✹ ✶✲

✼❶✹❋✱➂ ✶✲ ➆⑥⑥➐ ◗❑✿✾❂❑❛✿●❁❑❛❭ q❁❑❧✾❂✾❑❅✾ ❁❑ ✉●✾❭❱ ❄❂❁❏❂❛❪❪❛①❭✾ ③❁❏●❅

❛❑❱ ♥④④❭●❅❛✿●❁❑❇✳ ❦☎☎☎ ❈✭✸❶✺✐✯✬ ★✭❴✶✯✐②✱ ❝❞❞❿✱ ❶❶✳ ➑⑧➍❽➑❾✩✳

❬✩❞✪ ✞✳ ➎❩➫❋✷✲➫➣✴✱ ➀✳ �✭➎✬✯✲✯✴✱ ✂✳ ✄✯✲✹➫❋✮✱ ❋✲✷ ✫✳ �✭⑨✶✯✬❵✴➫②✱ ➁✁✯✐✇✭✬✴ ❶✬✭⑨✯ ✼✭✬

↔✯↕✶⑨✮✯ ↔✭✇ ✸✭✲✶✐✭✬✶✲✹✱➂ ✶✲ ❄❂❁❅➙ ❁❧ ➆⑥⑥➛ ◗❷❷❷ ❉✾❇●❏❑ ❛❑❱ ❉●❛❏❑❁❇✿●❅❇

❁❧ ❷❭✾❅✿❂❁❑●❅ q●❂❅❯●✿❇ ❛❑❱ ❸❺❇✿✾❪❇ ➜❁❂❃❇t❁④✳ ❦☎☎☎ ❈✭✸❶✺✐✯✬ ★✭❴✶✯✐②✱

❝❞❞➍✱ ❶❶✳ ❝✩❢❽❝✩➍✳

❬✩✩✪ ➝✶✮✶✲↕✱ ➁✄✭❴❋✮✄✶✲✴ ❦✲✐✯✬✼❋❴✯ ★❶✯❴✶➇❴❋✐✶✭✲✱➂ ➀✺✮② ❝❞❞❾✳

A.2 Paper II
Design Methodology of Configurable High Performance Packet Parser for FPGA

46

Session 6A FPGA & Recon�gurable Systems

189978-1-4799-4558-0/14/$31.00 ©2014 IEEE

Design Methodology of Configurable High
Performance Packet Parser for FPGA

Viktor Puš, Lukáš Kekely
CESNET a. l. e.

Zikova 4, 160 00 Prague, Czech Republic

Email: pus,kekely@cesnet.cz

Jan Kořenek
IT4Innovations Centre of Excellence

Faculty of Information Technology

Brno University of Technology

Božetěchova 2, 612 66 Brno, Czech Republic

Email: korenek@fit.vutbr.cz

Abstract—Packet parsing is among basic operations that are
performed at all points of a network infrastructure. Modern net-
works impose challenging requirements on the performance and
configurability of packet parsing modules. However, high-speed
parsers often use a significant amount of hardware resources.
We propose a novel architecture of a pipelined packet parser for
FPGA, which offers low latency in addition to high throughput
(over 100 Gb/s). Moreover, the latency, throughput and chip area
can be finely tuned to fit the needs of a particular application.
The parser is hand-optimized thanks to a direct implementation
in VHDL, yet the structure is uniform and easily extensible for
new protocols.

Keywords—Packet Parsing; Latency; FPGA

I. INTRODUCTION

Since computer networks evolve both in terms of speed and
diversity of protocols, there is still a need for packet parsing
modules at all points of the infrastructure. This is true not
only in the public Internet, but also in closed, application-
specific networks. There are very different expectations on
packet parsers. For example, consider a multi-million dollar
business of low-latency algorithmic trading. In this area, the
latency, which has long been rather neglected parameter,
suddenly becomes more important than the raw throughput.
Small embedded devices, on the other hand, often require a
parser to be very small (in terms of the memory and chip
area), yet still to support a rather extensive set of protocols.

With a rising interest in the Software Defined Networking,
it is expected that the ”ossification” of networks will be on
decline, and new protocols will appear at even faster rate than
before. This expectation handicaps fixed ASIC parsers and
favours programmable solutions: CPUs, NPUs and FPGAs.
Our work focuses on FPGAs, because of their great potential
in high-speed networks.

Current high-speed FPGA-based parsers can achieve a
raw throughput of over 400 Gb/s at the cost of the extreme
pipelining, which increases both the latency and the chip area
(FPGA resources) significantly [1]. Also, the configurability
issue is solved only partially. Configuring a set of supported
protocols is often addressed by a higher-level protocol de-
scription followed by an automatic code generation, but the
configuration of the implementation details is left unnoticed.

This paper not only presents a novel packet parser design,
but also motivates engineers to create a parametrized solutions,
demonstrates the need for a thorough exploration of the space
of the solutions and suggests several capabilities that a High-
Level Synthesis system should possess to succeed in this area.

The paper is organized as follows: Section II introduces
several prior published works in this area, Section III describes
our implementation of a modular parser design, Section IV lists
all the necessary steps to create own parser in our methodology,
Section V presents obtained results and Section VI concludes
the work.

II. RELATED WORK

Rather outdated work by Braun et al. [2] uses the onion-like
structure of hand-written protocol wrappers to parse packets.
However, due to the 32-bits-wide data path and an old FPGA,
the parser achieves a throughput of only 2.6 Gb/s. There is
no extensive concept of a common interface for module reuse,
and it is unclear how the parser scales for a wider data path.

Kobierský et al. [3] describe the packet headers in XML
and generate finite state machines, which parse the described
protocol stack. However, the number of states in FSMs rises
rapidly with the width of the data bus. Also, the crossbar used
in the field extraction unit does not scale well.

While not directly related to our work, there has been an
extensive research of general High-Level Synthesis systems,
usually translating pure or modified imperative languages (such
as C, C++, Java) into the hardware. Most of this research aims
to find a potential parallelism hidden in the program loops and
to make use of it by unrolling the loops and pipelining the
computation. However, the for or while cycle is far from a
convenient description of a packet parser, whose most natural
model of computation is perhaps a directed graph of mutually
dependent memory accesses. That may be the reason why we
do not see many results of a general HLS in this area.

There is a general HLS result that was given by Dedek et
al. in [4]. Handel-C language is used to describe the design, but
the details are not disclosed. The reported speed of 1 454 Mb/s
implies that a rather narrow data bus (probably 16 bit) was
used. Therefore, the concern is about the scalability in terms
of both an effective description in Handel-C and an effective
compilation to hardware for much wider data words. This work
also demonstrates that using processors for the packet parsing978-1-4799-4558-0/14/$31.00 c©2014 IEEE

Session 6A FPGA & Recon�gurable Systems

190

gives poor results. Compared to the Handel-C implementation,
a custom RISC processor designed specifically for the packet
parsing yields roughly the same chip area, but achieves only
a half of the throughput. Using the MicroBlaze [5] processor
(which is not optimized for the packet parsing) requires double
resources and brings only 5.7 % throughput compared to the
Handel-C solution.

A good example of a domain-specific HLS was given by
Attig and Brebner in [1]. They utilize their own Packet Parsing
(PP) language to describe (with the syntactic sugar of an object
orientation) the structure of packet headers and the methods
which define parsing rules. The description is then compiled
from PP to the pipeline stages implementation. However, the
results indicate that the price for a convenient design entry
is the chip area and the latency – most parsers with 1024-
bit datapath use over 10 % of the resource-abundant Xilinx
Virtex-7 870HT FPGA [6] and the latency varies from 292 to
540 ns.

The Kangaroo system [7] uses RAM to store the packets
and employs the on-chip CAM to perform a lookahead. Looka-
head is the process of loading several fields from the packet
memory at once, allowing to parse several packet headers in a
single cycle. The dynamic programming algorithm is used to
precompute data structures, so that the parsing of the longest
paths in a parse tree is the most accelerated by the lookahead,
as it is impractical to perform the lookahead for all the possible
protocol combinations. This approach has the architectural
limitation of storing the packets in the memory and accessing
them afterwards. The memory soon becomes a bottleneck. Our
approach, however, parses packets ”on the fly”, which means
that the only packet data storage are the pipeline registers.

III. MODULAR PARSER DESIGN

A. Input Packet Interface

We start with the design of an input packet interface,
which conveys packets into (and through) the parser. While the
interface design may seem trivial, it becomes very important
for high bandwidth applications. This is due to the fact that
FPGAs achieve rather low frequency, roughly between 100-
400 MHz. To support the bandwidth over 100 Gb/s, we must
use a very wide data bus (up to 2048 bits). Since the shortest
Ethernet frame is 64 Bytes (512 bits), packet aliasing and
aligning become an issue. Therefore, the achievable effective
bandwidth is considerably smaller than the theoretical raw
bandwidth.

We propose and our packet convey protocol uses two
techniques to utilize the raw bandwidth more effectively than
the standard approach:

• Partially aligned start. The first packet byte may
appear at any position aligned to eight bytes. This
corresponds to the 40 and 100 Gb/s Ethernet standard.
For a data bus wider than 64 bits (8 bytes), this
technique allows the packet to start at other positions
than the first byte of a data bus word.

• Shared words. One data word may contain the last
bytes of the packet x and the first bytes of the packet
x + 1. The packets may not overlap within the word

and the partially aligned start condition may not be
violated.

Examples of both aforementioned techniques are shown
in the Fig. 1. Using these techniques we bring the effective
throughput for the usual packet length distribution much closer
to the theoretical limit.

Fig. 1. The example of possible packet positions when using the proposed
techniques for the better raw bandwidth utilization.

B. Parser Submodules

Since we realize that the development of VHDL modules is
rather low-level and often very time-consuming, we continue
with the design of Generic Protocol Parser Interface (GPPI).
This interface provides the input information necessary to
parse a single protocol header: (1) current packet data being
transferred at the data bus, (2) current offset of the packet data
and (3) offset of the protocol header. GPPI output information
includes (4) extracted packet header field values and the
information needed to parse the next protocol header: (5) offset
and (6) type of the next protocol header. Fig. 2 shows how the
modules are connected. By manually adhering to GPPI, we
achieve a hint of object orientation in VHDL – all protocol
header parsers use the same interface (except for the extracted
header fields) and therefore can easily be interchanged if
needed. This improves the code maintainability and enables
the easy extensibility of the parser: any new protocol header
parser is connected just in the same way as the others. This
feature also allows an automatic connection of protocol header
parsers from the high-level structure description.

Fig. 2. Example of one pipeline stage.

The inner implementation of each protocol header parser is
protocol-specific, but the basic parser block getbyte remains
the same. This block performs waiting for a specific header
field to appear at the data bus, i.e. po + fo ∈ 〈do; do + dw〉,

Session 6A FPGA & Recon�gurable Systems

191

where po is the protocol header offset (module input), fo is the
field offset (from the protocol specification), do is the data bus
offset (module input), and dw is the data bus width. Once the
header field is observed at the data bus, it is stored and can be
used to compute the length of the current header, decode the
type of the next header, or any other operation. Fig. 3 shows
the structure of an IPv4 parser as an example.

getbyte getbyte getbyte getbyte

DATA

DATA_OFFSET

HEADER

_OFFSET

0 6,7 9 12-19

*4 =4

+

0..34..7

decode decode

MALFORMED FRAGMENTED SRC_DST_IP

NEXT_HDR

_TYPE

NEXT_HDR

_OFFSET

Fig. 3. Example of IPv4 protocol parser.

C. Parser Top Level

Our parser can output the information about types and
offsets of protocol headers. This information is more general
than just having the parsed header field values. Obtaining the
header field values can be done later, externally to the parser.
Our parser offers an option to skip the actual multiplexing
of header field values from the data stream. This may save
considerable amount of logic resources and is particularly
useful for applications that read only a small number of header
fields, or when packets are modified in a write-only manner.

Similarly to [1], our parser also uses pipelining to achieve
high throughput. However, every pipeline step in our design
is optional. If many pipelines are enabled, then the frequency
(and the throughput) rises, but also the latency and used logic
resources increase. By tuning the use of pipelines, designer
can find the optimal parameters for the particular use case.

Each protocol parser contains an inner bypass for situations
when its protocol is not present in a packet (not shown in
Fig. 3). Thanks to this bypass, the protocol parser submodules
can be arranged in a simple pipeline with a constant latency.
This property also makes adding a support for new protocols
into the parser stack very easy, without the requirement for
any changes in the existing protocol parsers. Fig. 4 shows the
example top level structure of the parser. Note that the inner
bypasses allow to skip certain protocol headers (e.g. VLAN,
MPLS), if these are not present in the packet.

The data width required for high throughput (over 100
Gb/s) may be 1024 or even more bits. This implies that there
may be more packets in one data word. Our parser is able
to handle such situation, provided that no two packet headers
of the same type from different packets are present in one
data word. For example, if the data word contains the IPv4
header (and the following bytes) of the packet A, and a part
of the packet B that includes the IPv4 header, then the packet
B is delayed by one cycle in our parser. This situation may
only occur only for wide data buses (512 bits and more), and
short packets (close to minimal length of 64 bytes) with very

Eth VLAN MPLS
IPv6

Ext

TCP

UDP

IPv4

IPv6

Output Logic

Fig. 4. Example of the parser top level structure.

short inter-packet gap. Our measurements of the real high-
speed networks show that it is very rare situation.

IV. CREATING THE PARSER ACCORDING TO THE

APPLICATION REQUIREMENTS

With the description of the parser design, it is rather
straightforward to create own, customized parser. We identify
three basic steps:

• Parser submodules implementation

• Parser top level connection

• Parser state space search

Parser submodules implementation comprises manual
writing of the VHDL code for each supported protocol.
However, GPPI enables easy reuse of the submodules – once
written, the protocol parser submodule can always be reused.
Also, many generic building blocks of the submodules are
already available, for example the getbyte module, which
extracts a single byte at a certain offset from the packet.
In general, the parser submodules for the common protocols
are very similar and follow the same informal code template.
For many today’s protocols the parser submodule is only the
getbyte modules with correctly configured offsets and some
protocol-specific logic to compute the information about the
next protocol from the extracted fields. Therefore, one can
easily create a parser submodule implementation from the
protocol structure specification.

There is also a space here for manual optimizations. For
example, extracting a byte from the data bus using the getbyte
normally requires a full multiplexer, which is able to extract
a byte from any byte position in the data word (Fig. 5a).
The multiplexer is controlled by the current data bus offset,
the offset of a header within the packet, and the offset of
the desired field within the header (which is often constant).
However, given the fact that a packet may start only at certain
positions in the data word, the current data offset may contain
only the values with the corresponding resolution. Also, we
can often derive all the possible offsets of the packet header
from the analysis of all the possible orderings and sizes
of the protocol headers appearing in the packet before the
current protocol header. Combining the three values (data
offset resolution, possible header offsets, constant field offset)
together, we can use simpler multiplexers, which do not allow
to extract fields from impossible positions. The use of simpler
multiplexers in getbyte, together with the fact that getbyte

Session 6A FPGA & Recon�gurable Systems

192

modules form the main core of the protocol analyzing and
data extracting, result in significant chip area savings. For
example in a classical TCP/IP protocol stack, header lengths
are multiples of 4. Therefore, the size of multiplexers can be
reduced 4 times and the size of the whole parsing logic by
nearly the same amount. This is illustrated in the Fig. 5.

Fig. 5. Example of 64b getbyte multiplexer: full (a) and optimized (b).

Parser top level connection once again requires the
designer to write VHDL. In this case, the protocol submodules
are connected via GPPI pipelines to the structure correspond-
ing to the expected order of the protocol headers in packets.
Extracted header field values can be stored in output FIFOs.

Parser state space search is the final step. It takes into
account other parser requirements than a set of supported
protocols. The state space is created by the selective bypassing
of pipelines and by setting the data width of the packet convey
protocol (all easily set by generic parameters).

For example, there is often a requirement on the through-
put. In that case, we are looking for a parser with throughput
equal or higher than the requirement. By synthetizing a parser
with all the possible settings and ruling out those which do
not satisfy the throughput requirement, we obtain a set of
satisfying solutions. However, the solutions will differ in the
size of chip area and in latency. From this set we select a Pareto
set, which contains only the dominating solutions (those for
which there is no better solution in both chip area and latency).
If the Pareto set has more than one member solution, we have
to decide which parameter (area or latency) is more important
for our application.

Generally, each candidate solution creates one point in the
3-D space with dimensions throughput, area and latency. Each
pipeline step and each data width option double this space,
possibly ending in a situation when the exhaustive search is
no longer possible, taking into account that a single synthesis
run takes time in the order of minutes. In that case we suppose
that some global optimization algorithm, such as simulated
annealing or a genetic algorithm can be used. Good heuristic
helping these algorithms could be to rule out some of the
pipeline positions, more precisely to place the pipelines evenly
in the parser to create evenly long critical paths.

A. Implications for High Level Synthesis

After identifying the steps needed to be performed manu-
ally, we can now provide a list of features desirable for a good
HLS, general or platform specific:

• Way to describe parser interface and protocols.

• Way to specify header formats and their dependency.

• Automatic inference of logical constraints (for multi-
plexer simplification etc.).

• Generator of parametrized code.

• Way to describe the design goals (area, latency etc.).

• The best fitting solution finder (exhaustive/heuristic).

Note that these requirements do not imply any particular
type of a parser. Such HLS may generate pipelined parsers
similar to ours, or the parsers based on a completely different
paradigm (e.g. FSM or processor+code).

V. RESULTS

We have implemented a parser supporting the following
protocol stack: Ethernet, up to two VLAN headers, up to
two MPLS headers, IPv4 or IPv6 (with up to two extension
headers), TCP or UDP. (see Fig. 6). The parser is able to extract
the classical quintuple: IP addresses, protocol, port numbers.
Apart from that, it can also provide the information about
present protocol headers and their offsets including the payload
offset.

We have tested properties of the designed parser with 3
different protocol stacks:

• full – Ethernet, 2×VLAN, 2×MPLS, IPv4/IPv6 (with
2× extension headers), TCP/UDP

• IPv4 only – Ethernet, 2×VLAN, 2×MPLS, IPv4,
TCP/UDP

• simple L2 – Ethernet, IPv4/IPv6 (with 2×extension
headers), TCP/UDP

For each mentioned protocol stack, one test case is done for
the parser with the logic to extract the classical quintuple and
one for the same parser without the extraction logic (providing
only the offsets).

Eth. VLAN

IPv4

IPv6

UDP

TCP
MPLS

IPv6_Ext

VLAN MPLS

IPv6_Ext

Fig. 6. Structure of supported protocols (full protocol stack).

We provide the results after a synthesis for the Xilinx
Virtex-7 870HT FPGA, with different settings of the data width
and the number of pipeline stages. These settings, together with
the resulting frequency, latency and resource usage, generate a
large space of solutions, in which the Pareto set can be found
and used to pick the best-fitting solution for an application. In
each test case, we use 5 different data widths: numbers from
128 to 2 048 bits that are powers of 2. For each data width,
every possible placement of pipelines for the tested protocol
stack is shown as a point in the graph and the Pareto set is
highlighted. Points representing results for each data width are
shown in different shapes and colors.

For each test case we provide 2 graphs: the first one
shows the relation between throughput and FPGA resources
with the Pareto set highlighted, without any regard to latency.
The second graph shows the relation between throughput and
latency with the Pareto set highlighted, without any regard

Session 6A FPGA & Recon�gurable Systems

193

to FPGA resources. In the graph with the relation between
throughput and FPGA resources, the second Pareto set (the
lower, dashed curve) is also shown. This Pareto set shows the
best achievable solutions for our parser without the quintuple
extraction logic. Similar Pareto set is not shown in the graph
with the relation between throughput and latency, because the
usage of the quintuple extraction logic affects the latency of
the parser only slightly (the critical paths are mostly in the
next header computation logic).

Fig. 7 shows the throughput and the FPGA resources and
Fig. 8 shows the throughput and the latency for the full
protocol stack. There are 9 configurable pipeline positions in
the parser implementing the full protocol stack. This leads to
512 different possible placements of pipelines in this parser
for each data width. Mentioned graphs therefore show results
for 2 560 different solutions with the Pareto sets highlighted.

For a comparison of the achieved Pareto set results for dif-
ferent protocol stacks, we provide graphs in Fig. 9 (throughput
and FPGA resources) and the Fig. 10 (throughput and latency).
From these figures one can clearly see that the supported
protocol stack can rapidly change the parameters of the parser
in terms of chip area and latency. Therefore, a careful protocol
support selection is very important for the optimal result. For
example, just by turning off the IPv6 support we can bring
down the resource utilization by almost 50 %. Latency, on the
other hand, is sensitive to the depth of the protocol stack, (see
Fig. 6) therefore turning off the support for the VLAN and
MPLS headers lowers the latency significantly.

A closer look at the Pareto set optimized for latency and
throughput (without regard to FPGA resources) from Fig. 8 is
presented in Tab. I. The last line of the table is the estimation of
the parser from [1] with similar configuration of the supported
protocols (TcpIP4andIP6). It is obvious that our parser can
achieve much better parameters than the parser from [1].

Data Pipes Throughput Latency LUT-FF

Width [Gb/s] [ns] pairs

256 0 14.5 17.1 3 238

512 0 28.4 18.0 4 053

2 048 0 96.9 21.1 17 685

2 048 1 158.5 25.9 18 547

2 048 2 212.8 28.9 18 317

2 048 4 333.0 30.8 21 775

2 048 5 352.0 34.9 22 373

2 048 7 453.0 36.2 26 728

2 048 8 478.1 38.6 29 301

1 024 ? 325 309 67 902

TABLE I. PARETO SET FOR THE BEST THROUGHPUT AND LATENCY OF

THE FULL PROTOCOL STACK PARSER

Next, we provide the data for the example from the
Section IV: Given a set of supported protocols and the target
throughput, find all solutions in the Pareto set. We use three
sets of supported protocols mentioned earlier and the target
throughputs of 40, 100 and 400 Gb/s. All nine Pareto sets are
shown in the Fig. 11. Note that while there are several solutions
with the throughput over 400 Gb/s, there is only one 400 Gb/s
Pareto solution for each protocol set, which means that the
other solutions are not better in terms of FPGA resources
nor latency. For the other target throughputs, the designer
can choose the appropriate solution according to application
priorities.

0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

Throughput [Gbps]

L
U

T
−

F
F

 p
a
ir
s

Pareto set
128b
256b
512b
1024b
2048b
Pareto set
(no ext.)

Fig. 7. The FPGA resource utilization for different settings of the full parser.

0 50 100 150 200 250 300 350 400 450 500
0

20

40

60

80

100

Throughput [Gbps]

L
a

te
n

c
y
 [

n
s
]

Pareto set
128b
256b
512b
1024b
2048b

Fig. 8. The latency for different settings of the full parser.

0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

2

2.5

3
x 10

4

Throughput [Gbps]

L
U

T
−

F
F

 p
a
ir
s

Full
Full
(no ext.)
Only IPv4
Only IPv4
(no ext.)
Simple L2
Simple L2
(no ext.)

Fig. 9. Comparison of the FPGA resource utilization versus throughput Pareto
sets for the tested protocol stacks.

0 50 100 150 200 250 300 350 400 450 500
0

5

10

15

20

25

30

35

40

Throughput [Gbps]

L
a

te
n

c
y
 [

n
s
]

Full
Only IPv4
Simple L2

Fig. 10. Comparison of the latency versus throughput Pareto sets for the
tested protocol stacks.

Session 6A FPGA & Recon�gurable Systems

194

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

3
x 10

4

Latency [ns]

L
U

T
−

F
F

 p
a

ir
s

Full, 40 Gbps
Full, 100 Gbps
Full, 400 Gbps
Only IPv4, 40 Gbps
Only IPv4, 100 Gbps
Only IPv4, 400 Gbps
Simple L2, 40 Gbps
Simple L2, 100 Gbps
Simple L2, 400 Gbps

Fig. 11. Pareto sets for three given protocol sets and three target throughputs.

A careful design space exploration is very important for
our parser. For example, the parser of the full protocol stack
optimized for the latency uses 17 685 LUT-FlipFlop pairs to
achieve near 100 Gb/s throughput with the latency of only
21.1 ns (see Tab. I), while the parser optimized for resources
uses only 6 536 LUT-FlipFlop pairs to achieve the throughput
just over 100 Gb/s, but with the latency of 35.8 ns (see Fig. 11).

Finally, Fig. 12 illustrates the complete Pareto set of
solutions in the (latency, throughput, area) space for the full
protocol stack. To create the 3D surface in the figure, the
bottom (latency, throughput) plane was divided into rectangles
of sizes (1 ns × 10 Gb/s) and the smallest solution that
satisfies the required latency and throughput was found for
each rectangle. Therefore, each horizontal level of the surface
represents one solution from the Pareto set. Finer-grained
division of the (latency, throughput) plane would result in more
solutions, but also in less readable image.

0
100

200
300

400

0

10

20

30

40

0

1

2

3
x 10

4

Throughput [Gbps]Latency [ns]

L
U

T
−

F
F

 p
a

ir
s

Fig. 12. 3D surface plot of the Pareto set

VI. CONCLUSION

This paper introduces a highly configurable packet parser
for FPGA, which achieves throughput in the range of tens to
hundreds of Gb/s and is usable in a variety of applications.
The key concept is a selective pipelining, which allows to
find the best fitting solution with regards to the requirements.
The parser uses only 1.19 % of the Virtex-7 870HT FPGA
resources to achieve a throughput over 100 Gb/s and 4.88 %
for a throughput over 400 Gb/s, which leaves most of the
FPGA resources free for implementing other functions of
target applications.

This work also presents the methodology of a modular
parser design and demonstrates the need for a thorough ex-
ploration of the solution space. Moreover, it suggests several
capabilities that a High-Level Synthesis system should possess
to succeed in area of packet parsers creation.

ACKNOWLEDGEMENT

This research has been supported by the “CESNET Large
Infrastructure” project no. LM2010005 funded by the Mi-
nistry of Education, Youth and Sports of the Czech Republic,
the “DMON100” project no. TA03010561 funded by the
Technology Agency of the Czech Republic, BUT project
FIT-S-14-2297 and the IT4Innovations Centre of Excellence
CZ.1.05/1.1.00/02.0070.

REFERENCES

[1] M. Attig and G. Brebner, “400 gb/s programmable packet parsing on
a single fpga,” in Architectures for Networking and Communications

Systems (ANCS), 2011 Seventh ACM/IEEE Symposium on, oct. 2011,
pp. 12–23.

[2] F. Braun, J. Lockwood, and M. Waldvogel, “Protocol wrappers for
layered network packet processing in reconfigurable hardware,” Micro,

IEEE, vol. 22, no. 1, pp. 66–74, 2002.

[3] P. Kobierský, J. Kořenek, and L. Polčák, “Packet header analysis and
field extraction for multigigabit networks,” in Proceedings of the 2009

12th International Symposium on Design and Diagnostics of Electronic

Circuits&Systems, ser. DDECS. Washington, USA: IEEE Computer
Society, 2009, pp. 96–101.

[4] T. Dedek, T. Martı́nek, and T. Marek, “High level abstraction language as
an alternative to embedded processors for internet packet processing in
fpga,” in Field Programmable Logic and Applications, 2007. FPL 2007.

International Conference on, aug. 2007, pp. 648–651.

[5] “Xilinx microblaze soft processor,” Xilinx, Inc.,
http://www.xilinx.com/tools/microblaze.htm.

[6] “Xilinx virtex–7 fpga family,” Xilinx, Inc.,
http://www.xilinx.com/products/silicon-devices/fpga/virtex-7.

[7] C. Kozanitis, J. Huber, S. Singh, and G. Varghese, “Leaping multiple
headers in a single bound: Wire-speed parsing using the kangaroo
system,” in IEEE INFOCOM, mar. 2010.

A.3 Paper III
Memory Efficient IP Lookup in 100 Gbps Networks

53

MEMORY EFFICIENT IP LOOKUP IN 100 GBPS NETWORKS

Jiřı́ Matoušek

CESNET, z. s. p. o.
Zikova 4,

Praha 6, 160 00,
Czech Republic

imatousek@fit.vutbr.cz

Martin Skačan, Jan Kořenek

IT4Innovations Centre of Excellence
Faculty of Information Technology

Brno University of Technology
Božetěchova 2, Brno, 612 66, Czech Republic

xskaca00@stud.fit.vutbr.cz, korenek@fit.vutbr.cz

ABSTRACT

The increasing number of devices connected to the Internet
together with video on demand have a direct impact to the
speed of network links and performance of core routers. To
achieve 100 Gbps throughput, core routers have to imple-
ment IP lookup in dedicated hardware and represent a for-
warding table using a data structure, which fits into the on-
chip memory. Current IP lookup algorithms have high mem-
ory demands when representing IPv6 prefix sets or intro-
duce very high pre-processing overhead. Therefore, we per-
formed analysis of IPv4 and IPv6 prefixes in forwarding ta-
bles and propose a novel memory representation of IP prefix
sets, which has very low memory demands. The proposed
representation has better memory utilization in comparison
to the highly optimized Shape Shifting Trie (SST) algorithm
and it is also suitable for IP lookup in 100 Gbps networks,
which is shown on a new pipelined hardware architecture
with 170 Gbps throughput.

1. INTRODUCTION

The increasing speed of network links has a direct impact
to the design and performance of core routers. To achieve
100 Gbps throughput, core routers need dedicated hardware
for IP lookup in a forwarding table. Moreover, the size of
forwarding tables is increasing with the amount of devices
and networks connected to the Internet [1]. It means that
core routers have to perform faster IP look up in larger for-
warding tables.

The most demanding part of IP packet forwarding is the
Longest Prefix Match (LPM) operation. It implements look-
up of the longest prefix from a forwarding table, which cor-
responds to the destination IP address of a packet. For ex-
ample, let us consider the prefix set from Fig. 1 and a packet
with the 8-bit destination address IP = 11100010. In this

This work was supported by the grant TAČR TA03010561, the
IT4Innovations Centre of Excellence CZ.1.05/1.1.00/02.0070, the research
program MSM 0021630528, and the grant BUT FIT-S-11-1.

case, prefixes P1, P4, and P7 correspond to the destina-
tion address. However, since the prefix P7 is the longest
one among these prefixes, it is the only result of the LPM
operation.

Core routers supporting 100 Gbps throughput have to be
able to perform more than 150 million lookups per second
(MLPS). Therefore, a new LPM result has to be provided
every 6.72 ns. It is possible to achieve such lookup perfor-
mance only with hardware implementation of the LPM op-
eration [2]. However, in such a case there is usually a bottle-
neck in relatively slow access to the external memory, where
a prefix set extracted from a forwarding table is stored. This
can be solved by storing the prefix set in the easily accessi-
ble on-chip memory. Nevertheless, the on-chip memory has
a limited capacity, therefore the prefix set has to be repre-
sented using a memory efficient data structure.

In this paper we propose a novel memory efficient rep-
resentation of prefix sets, which can be stored in the on-chip
memory with a limited capacity. The proposed representa-
tion was designed according to analysis of different prefix
sets (real IPv4 and IPv6, generated IPv6). We also pro-
pose a pipelined hardware architecture, which utilize the de-
signed prefix set representation and is able to perform more
than 150 MLPS.

The rest of the paper is organized as follows. Section 2
contains a brief summary of related LPM algorithms. Sec-
tion 3 describes performed analysis and its results. The pro-
posed novel prefix set representation is introduced in sec-
tion 4 and the hardware architecture for its processing is de-
scribed in section 5. Next section 6 shows results of the per-
formed experiments. Conclusion of the paper and remarks
about our future work are in section 7.

2. RELATED WORK

The LPM operation is in many commercial devices imple-
mented using (TCAM) Ternary Content-Addressable Mem-
ory. Such implementation is able to provide an LPM result
in just one clock cycle, but TCAMs are expensive, power-

978-1-4799-0004-6/13/$31.00 ©2013 IEEE

Fig. 1. Sample Prefix Set Represented by Trie

hungry and slow in updating their content. Therefore, many
algorithmic solutions to LPM have been proposed [3], [4],
[5], [6].

A basic data structure utilized in the majority of LPM
algorithms is called trie [3]. It is a binary tree with prefixes
encoded into its structure. The root node of a trie represents
the empty prefix. Left and right child nodes of any trie node
represent prefixes created from their parent’s prefix by ap-
pending 0 and 1, respectively. Trie nodes representing pre-
fixes from a prefix set are called prefix nodes, while other
trie nodes are referred to as place holder nodes. The repre-
sentation of the sample prefix set using the trie is shown in
Fig. 1. The LPM operation using a trie data structure is per-
formed by traversing a trie from the root to leaves according
to bit values of packet’s destination address taken from the
most significant bit to the least significant bit. The last pre-
fix node visited during such a traversal represents the longest
matching prefix.

Adding and removing prefixes from a trie can be done
using standard operations on a binary tree. Performing the
LPM operation on a trie is also straightforward. However,
only one bit of the input can be processed in each step, which
means the worst case performance of 32 and 64 steps for
IPv4 and IPv6 prefixes, respectively. A trie data structure
also has high memory demands, which are caused mainly
by the high number of pointers in a trie.

In order to increase lookup performance of trie-based
LPM algorithms, multibit tries have been designed. One
of the best known multibit trie algorithm is called the Tree
Bitmap (TBM) [4]. This algorithm represents a set of pre-
fixes using a 2SL-tree, where the parameter SL (i. e. stride
length) determines the number of input bits processed in
each step of TBM. Mapping of TBM nodes with SL = 3 on
the trie from Fig. 1 is shown on the left hand side of Fig. 2.
On the right hand side of the same figure, there is a sam-
ple TBM node and its encoding using two bitmaps and two
pointers. The external bitmap contains 2SL bits and it deter-
mines the presence of child nodes, while the internal bitmap
with 2SL − 1 bits contains information about prefixes rep-
resented by the TBM node. Child and prefix pointers refer

Fig. 2. Tree Bitmap Mapping and Encoding (SL = 3)

Fig. 3. Shape Shifting Trie Node Encoding (K = 4)

to information about child nodes and prefix-related data, re-
spectively.

Use of bitmaps for encoding of a TBM node makes this
algorithm easy to implement in hardware. Moreover, the
compact representation of a TBM node allows it to be read
from a memory in just one clock cycle. The fixed structure
of a node is advantageous when updates of a prefix set are
performed, however, it may cause high memory overhead in
a sparse prefix tree.

Another multibit trie algorithm is called the Shape Shift-
ing Trie (SST) [5]. This algorithm is based on TBM, but it
tries to overcome its main drawback by introducing adaptive
shape of a node, which reduces memory overhead in sparse
prefix trees. Adaptive shape is allowed by the shape bitmap
consisting of 2K bits (see Fig. 3). The parameter K deter-
mines the maximum number of underlying trie nodes, that
can be represented by a single SST node. SST has excep-
tionally low memory demands, but its computational com-
plexity is usually unacceptable. Moreover, to the best of our
knowledge, there is no hardware architecture implementing
SST.

A representation of prefix set with low memory demands
and a hardware architecture for its processing, which pro-
vides lookup performance higher than 150 MLSP, has been
introduced in [6]. We will further refer to this algorithm
as the Prefix Partitioning Lookup Algorithm (PPLA). PPLA
uses a trie data structure, but a trie is utilized only for par-
titioning a set of prefixes into several disjoint subsets. Each
subset is then represented using a separate binary search
tree or a 2-3 tree data structure and processed in a sepa-
rate processing pipeline. This algorithm has good mem-
ory efficiency – it needs approximately only one byte of
memory to store one byte of IPv4 or IPv6 prefix. However,
the proposed representation causes linear growth of mem-

Table 1. Details of Used Prefix Sets
Prefix Set Prefixes Source Date

IPv4
rrc00 332 118 http://data.ris.ripe.net/ 2010-06-03
IPv4-space 220 779 http://bgp.potaroo.net/ 2011-12-21
route-views 442 748 http://archive.routeviews.org/ 2012-09-20

IPv6
AS1221 10 518 http://bgp.potaroo.net/ 2012-09-21
AS6447 10 814 http://bgp.potaroo.net/ 2012-09-21

Generated IPv6
rrc00 ipv6 319 998 generated using [7] from rrc00
IPv4-space ipv6 150 157 generated using [7] from IPv4-space
route-views ipv6 439 880 generated using [7] from route-views

ory demands with the number of represented prefixes and
initial partitioning of a prefix set introduces very high pre-
processing overhead.

Linear dependence of memory demands on the number
of represented prefixes is one of the most significant issues
connected with PPLA. In trie-based LPM algorithms, nodes
close to the root of a tree are shared by several prefixes. This
property should allow to represent one byte of prefix using
less than one byte of memory. Therefore, we focus our anal-
ysis on previously introduced trie-based algorithms.

3. ANALYSIS

Basic information about prefix sets extracted from forward-
ing tables of core routers, which we use in our analysis, are
summarized in Table 1. In order to obtain results relevant
for many different situations, we use sets of real IPv4 and
IPv6 prefixes as well as sets of IPv6 prefixes generated using
[7]. Moreover, diversity of data for analysis is increased by
using real IPv4 and IPv6 sets from different sources and ac-
quired on different days. Experiments with prefix sets were
performed using Netbench tool [8].

The first part of analysis was focused on memory de-
mands of Trie, TBM, and SST algorithms and its results
are shown in Table 2. Parameters SL and K of TBM and
SST algorithms, respectively, were chosen with respect to
the minimum memory demands. As can be seen, K was
set to the same value for all prefix sets, while SL was set
to a different value for each group of prefix sets. This re-
flects different density of the prefix tree (smaller value of SL
means lower density) between groups of prefix set. Missing
results of SST memory demands for generated IPv6 prefix
sets cannot be provided because of very high computational
complexity of SST.

Table 2 shows, that the lowest memory demands can be
achieved when SST is used, while the highest memory de-
mands are connected with the Trie algorithm. Such results
would propose SST to be a candidate for further optimiza-
tion of memory demands. However, as stated in section 2,
SST suffers from high computational complexity and there

Table 2. Memory Demands of Different LPM Algorithms
Prefix Set Prefixes Memory Demands [Kb]

IPv4 Trie TBM (SL=5) SST (K=32)
rrc00 332 118 47 639.7 9 689.4 6 930.4
IPv4-space 220 779 24 252.4 5 702.1 4 081.0
route-views 442 748 62 650.5 11 942.1 8 775.0

IPv6 Trie TBM (SL=3) SST (K=32)
AS1221 10 518 3 518.3 1 076.9 588.5
AS6447 10 814 3 673.8 1 125.1 617.1

Generated IPv6 Trie TBM (SL=4) SST
rrc00 ipv6 319 998 307 641.5 87 257.1 N/A
IPv4-space ipv6 150 157 153 877.3 43 958.7 N/A
route-views ipv6 439 880 418 663.7 118 889.4 N/A

Table 3. Classification of Nodes From a TBM Representa-
tion of route-views (434 552 Nodes, SL = 3)

Child Nodes
Prefixes 0 1 2 3 4 5 6 7 8

0 0 26 829 11 859 6 876 5 422 3 679 3 547 4 297 14 138
1 278 804 6 220 4 244 2 840 4 463 1 683 2 416 876 2 051
2 21 005 3 270 4 198 1 599 2 688 724 792 393 842
3 5 716 1 093 2 000 596 806 293 286 160 306
4 3 786 447 543 220 322 106 129 102 267
5 679 63 55 22 48 20 25 25 78
6 298 30 22 9 23 3 9 6 64
7 70 6 3 3 8 4 3 7 46

Table 4. Classification of Nodes From a TBM Representa-
tion of AS1221 (25 063 Nodes, SL = 3)

Child Nodes
Prefixes 0 1 2 3 4 5 6 7 8

0 0 11 303 1 666 812 538 184 145 131 249
1 8 965 547 142 19 17 3 2 1 1
2 193 21 14 4 3 0 1 0 0
3 50 3 3 3 1 0 1 0 0
4 29 3 1 1 3 1 1 0 0
5 0 1 0 1 0 0 0 0 0

is no hardware architecture for this algorithm. Therefore,
the next part of our analysis was focused on identification of
possibilities for optimization of TBM’s memory demands.

TBM analysis was performed by classification of TBM
nodes according to the number of child nodes and the num-
ber of prefixes represented by a TBM node. Results of this
classification for selected IPv4, IPv6 and generated IPv6
prefix sets are shown in Tables 3, 4, and 5, respectively.
Even though all tables show classification of TBM nodes
with SL = 3, presented results can be used for identifica-
tion of general trends in TBM.

Analysis of the TBM representation of all selected prefix
sets shows two significant groups of node. The first group
contains leaf nodes (the leftmost column in Tables 3, 4, and
5), while the second group contains internal nodes without
prefixes (the first row in Tables 3, 4, and 5). Therefore, effi-
cient encoding of nodes from these two groups will signifi-
cantly reduce memory demands of TBM.

Table 5. Classification of Nodes From a TBM Representa-
tion of route-views ipv6 (2 239 971 Nodes, SL = 3)

Child Nodes
Prefixes 0 1 2 3 4 5 6 7 8

0 0 1 597 683 143 258 39 958 21 056 9 332 5 637 3 958 4 462
1 406 100 3 503 746 263 108 45 15 10 6
2 2 623 171 118 40 39 21 8 6 1
3 475 37 24 5 7 3 1 3 1
4 155 11 7 3 1 1 0 0 0
5 44 1 4 3 2 1 0 0 0
6 12 0 1 0 0 0 0 0 0
7 2 0 0 0 0 0 0 0 0

Fig. 4. Newly Proposed Types of Node

4. PREFIX SET REPRESENTATION

Performed analysis has shown two groups of TBM nodes,
whose more efficient encoding could reduce memory de-
mands of TBM. To this end, we propose a representation
of prefix set using thirteen different types of node. These
thirteen types can be divided into two groups – nine newly
proposed nodes (see Fig. 4) and four variants of a TBM
node. Properties of nodes in Fig. 4 are reflected in their
name. A node can encode 1 branch (1B), 2 branches (2B)
or 3 branches (3B) of an underlying trie. It can also con-
tain a prefix node (P), but such a prefix node is allowed only
in the lowest level of the node and it may not occur in all
branches. Presence of a prefix node in the lowest level of
all branches is compulsory only in the case of leaf nodes
(L). Used TBM nodes include a standard node for SL = 3
(TBM3) and leaf TBM nodes for SL = 3, 4, 5 (TBM3-L,
TBM4-L, TBM5-L).

Table 6. Basic Parameters of Different Types of Node When
Aligned to 8-bit and 16-bit Boundary

Size Aligned to 8 bits Size Aligned to 16 bits
Branch Unaligned Aligned Branch Unaligned Aligned

Node Type Length Size Size Length Size Size
[bits] [bits] [bits] [bits] [bits] [bits]

1B 24 56 56 17 48 48
1BP 19 72 72 13 64 64
1BP-L 20 48 48 20 48 48
2B 16 72 72 14 64 64
2BP 10 80 80 11 80 80
2BP-L 12 55 56 15 61 64
3B 11 78 80 12 78 80
3BP 5 80 80 6 80 80
3BP-L 7 53 56 9 62 64
TBM3 3 75 80 3 67 80
TBM3-L 3 30 32 3 30 48
TBM4-L 4 38 40 4 38 48
TBM5-L 5 54 56 5 54 64

In order to make hardware implementation of the pro-
posed representation feasible, it is necessary to align the size
of node representations to some boundary. A smaller bound-
ary implies smaller memory overhead but higher number of
different sizes of node, hence higher utilization of resources
for processing such data structures. Therefore, we consider
two different alignments (to the 8-bit and 16-bit boundary),
which should allow us to achieve a reasonable compromise
between memory overhead and resources utilization. We
will examine real memory demands and resources utiliza-
tion for both alignments.

Basic parameters of different types of node, when align-
ed to the 8-bit and 16-bit boundary, are summarized in Ta-
ble 6. The size of a node is determined mainly by the max-
imum branch length and the presence of child and prefix
pointers. The maximum branch length, which is the same
for all branches in a node, is shown in Table 6. The prefix
pointer encoded on 19 bits is present only in nodes, that can
represent prefixes, i. e. nodes with P in their name and TBM
nodes. The child pointer is encoded on 23 bits (in the case of
alignment to the 8-bit boundary) or 22 bits (in the case of the
16-bit boundary) and it is present in all non-leaf nodes, i. e.
nodes without L in their name. Since Table 6 shows aligned
as well as unaligned size of each type of node, memory over-
head introduced by alignment can be computed as difference
of these two values.

The mapping of proposed nodes on a trie is done accord-
ing to the algorithm in Fig. 5. This algorithm uses, except
standard queue operations ENQUEUE and DEQUEUE, three
auxiliary functions. MAP COST returns the cost of mapping
of given type of node from the specified position in the trie.
The cost is determined using equation (1), where p is the
number of covered prefix nodes, n is the number of all cov-
ered trie nodes, and size is the size of given type of node.
Mapping of the selected type of node to the specified posi-

Input: pointer root pointing to the root node of the trie
Output: pointer root pointing to the root node of the

mapped tree

1: Q← ∅
2: if root 6= NULL then
3: ENQUEUE(Q, root)
4: while Q 6= ∅ do
5: trie← DEQUEUE(Q)
6: max cost← 0
7: best type← NULL
8: for each type ∈ node types do
9: cost← MAP COST(type, trie)

10: if cost > max cost then
11: max cost← cost
12: best type← type

13: trie← MAP(best type, trie)
14: for each child ∈ CHILDREN(trie) do
15: ENQUEUE(Q, child)

Fig. 5. Pseudocode of the Mapping Algorithm

tion in the trie is done using MAP function and CHILDREN
returns a list of child nodes of the given node.

cost =





p
size if p

size > 0

n
size otherwise

(1)

5. HARDWARE ARCHITECTURE

Since the proposed representation of prefix set can be clas-
sified as multibit trie approach to LPM, a matching result
is in the worst case available after processing of n nodes,
where n is the height of the tree, which represents the prefix
set. In order to achieve lookup performance of 150 MLSP,
it is necessary to employ a processing pipeline, where each
processing element (PE) performs one step of the LPM al-
gorithm.

We propose the hardware architecture in Fig. 6 for pro-
cessing of our representation of prefix set. This architecture
consists of two processing pipelines with uniform PEs and
dual port memory blocks shared between PEs from corre-
sponding stages. By utilization of the dual port memory,
we can achieve double performance of a single pipeline ar-
chitecture without compromising on memory access. The
memory block for each pipeline stage contains two paral-
lel memories, each of which has data width of 80 bits (the
maximum size of a node, see Table 6). Use of two parallel
memories allows to read the whole node in one clock cycle,
even if it is stored in two consecutive data words.

A high-level architecture of one PE is also shown in

Fig. 6. Double Processing Pipelines With Detail of One Pro-
cessing Element (PE)

Fig. 6. Processing of a node in PE is like a processing of
an instruction in a standard CPU. First of all, PE fetches the
node from the memory. The representation of the node is
then decoded and sent in parallel to the execute submod-
ule. The internal structure of the execute part is shown in
Fig. 7. The main part of execution is done in branch A proc,
branch B proc, branch C proc, and TBM node proc submod-
ules. The first three of them are dedicated for processing
of corresponding branches of newly proposed types of node
(branches are marked by letters A, B, and C in Fig. 4), while
the TBM node proc submodule is dedicated for processing
of TBM nodes. Since processing of different branches and
different types of node is done in parallel, the select branch
and the select result modules are used to select correct val-
ues for outputs of PE.

Combinatorial logic of fetch and execute submodules of
PE is relatively complex. Therefore, in order to achieve de-
sired lookup performance, it is necessary to use intra-stage
registers within these two submodules. Each of them con-
tains two sets of internal registers. In total, each PE con-
tains four sets of intra-stage registers, thus processing a node
within one PE is done in five clock cycles.

Section 4 describes two variants of node alignment in
a memory – to the 8-bit or 16-bit boundary. Both variants
can be processed using conceptually the same hardware ar-
chitecture with only some minor changes in fetch, decode,
and execute submodules. Different node alignment has the

Fig. 7. Internal Structure of PE’s Execute Part

biggest influence on data reorder logic in the fetch module.
It also has to be reflected in the decode submodule by differ-
ent interconnection of decoding logic. Relatively the small-
est changes have to be done in the execute module, where it
is sufficient to change data width of some internal buses.

6. EXPERIMENTAL RESULTS

First of all, we have measured memory demands of the pro-
posed representation of prefix set on our sample IPv4 and
IPv6 (both real and generated) prefix sets. The measure-
ment has been done for both variants of node alignment in
a memory and its results are presented in Table 7. Results
show lower memory demands in the case of 8-bit node align-
ment. The difference between memory demands of the rep-
resentation with nodes aligned to 8 bits and 16 bits is the
most evident for IPv4 prefix sets. This is because of differ-
ent density of prefix trees in their leaf part. The prefix tree
of IPv4 sets is denser than the tree in the case of IPv6 sets.
Therefore, leafs of the IPv4 tree are represented mainly by
TBM nodes (which introduce the highest memory overhead
when aligned to the 16-bit boundary), while leafs of the IPv6
tree are represented mainly by newly proposed nodes (which
introduce almost the same memory overhead for both 8-bit
and 16-bit alignment). Table 7 also shows the height of the
tree, which represents particular prefix sets.

Both variants of the proposed architecture have been im-
plemented for a Xilinx Virtex-6 XC6VSX475T FPGA. Uti-
lization of resources and maximum frequency after place &
route using Xilinx ISE 14.3 are shown in Table 8. As can be
seen, the main difference between two proposed architec-
tures is in the number of utilized LUTs, where the 16-bit ar-
chitecture shows better results. This is mainly due to smaller
data width of some buses in this architecture. The number of
utilized registers is practically the same and maximum fre-
quency is little higher in the case of the 8-bit architecture.
Table 8 contains information about utilization of resources
by one PE, the complete processing pipeline and also by
the whole proposed architecture, which consists of two pro-
cessing pipelines. Even though the length of each pipeline

Table 7. Memory Demands and Tree Height of the Proposed
Representation on Different Prefix Sets

Memory Demands [Kb]
8-bit 16-bit Tree

Prefix Set Prefixes Alignment Alignment Height
IPv4

rrc00 332 118 6 330.8 7 287.6 12
IPv4-space 220 779 3 571.4 4 297.4 12
route-views 442 748 7 779.8 9 039.6 12

IPv6
AS1221 10 518 475.8 489.0 18
AS6447 10 814 493.8 506.6 23

Generated IPv6
rrc00 ipv6 319 998 21 264.3 21 373.2 21
IPv4-space ipv6 150 157 10 412.2 10 421.4 18
route-views ipv6 439 880 29 039.5 29 207.4 20

Table 8. Resources Utilization and Maximum Frequency of
Proposed Hardware Architecture (Xilinx ISE 14.3, Virtex-6
XC6VSX475T)

8-bit Alignment LUTs Registers Frequency
(% of All) (% of All) [MHz]

1 PE 3 647 1 825 127.162
(1.23 %) (0.31 %)

1 pipeline (23 PEs) 83 881 41 957 127.162
(28.19 %) (7.05 %)

2 pipelines (46 PEs) 167 762 83 950 127.162
(56.37 %) (14.11 %)

16-bit Alignment LUTs Registers Frequency
(% of All) (% of All) [MHz]

1 PE 3 194 1 817 123.183
(1.07 %) (0.31 %)

1 pipeline (23 PEs) 73 462 41 791 123.183
(24.69 %) (7.02 %)

2 pipelines (46 PEs) 146 924 83 582 123.183
(49.37 %) (14.04 %)

(23 PEs) allows processing the prefix set represented by the
highest tree (real IPv6 set AS6447, see Table 7), the whole
architecture fits into the target FPGA.

Since resources utilized by both variants of the hardware
architecture are significantly lower than resources available
in the target FPGA, selection of ”better” variant is governed
mainly by their memory demands, whose optimization is the
main objective of this work. Therefore, we select the repre-
sentation of prefix set with nodes aligned to the 8-bit bound-
ary.

The selected variant can also operate on a little higher
frequency, which implies higher lookup performance. Both
processing pipelines are able to provide one matching result
in each clock cycle, which translates into total lookup per-
formance of almost 255 MLPS. Thus, the proposed solution
is able to support throughput of 170 Gbps. Frequency of the
proposed solution also determines, together with the number
of pipeline stages, the overall latency. As stated in section
5, each PE consists of five pipeline stages. Therefore, the
whole pipeline contains 5 × 23 = 115 stages. Since pro-

Table 9. Memory Demands of the Proposed Representation
of Prefix Set and its Comparison to TBM and SST

Prefix Set Prefixes Memory [Kb] Savings
IPv4 New Nodes TBM (SL=5) SST (K=32)

rrc00 332 118 6 330.8 34.67 % 8.65 %
IPv4-space 220 779 3 571.4 37.37 % 12.49 %
route-views 442 748 7 779.8 34.85 % 11.34 %

IPv6 New Nodes TBM (SL=3) SST (K=32)
AS1221 10 518 475.8 55.82 % 19.16 %
AS6447 10 814 493.8 56.11 % 19.98 %

Generated IPv6 New Nodes TBM (SL=4) SST
rrc00 ipv6 319 998 21 264.3 75.63 % N/A
IPv4-space ipv6 150 157 10 412.2 76.31 % N/A
route-views ipv6 439 880 29 039.5 75.57 % N/A

cessing in one stage takes 7.86 ns, the overall latency of the
proposed solution is 903.90 ns. The overall latency also de-
termines the size of the buffer for packets waiting for the
LPM result, which has to be at least 8.6 KB for 100 Gbps
Ethernet link.

Comparison of our prefix set representation, TBM, and
SST in terms of memory demands is provided in table 9. Ex-
cept memory demands of our solution, we show its savings
compared to other LPM algorithms. The proposed prefix set
representation overcomes both TBM and SST, but reduction
of memory demands is higher for TBM (between 34.67 %
and 76.31 %) than for SST (between 8.65 % and 19.98 %).
Moreover, it is shown that the sparse prefix tree of IPv6 pre-
fix set allows higher savings, which is due to higher utiliza-
tion of memory efficient newly proposed types of node (see
Fig. 4).

In order to compare memory efficiency of the proposed
prefix set representation with PPLA, we provide a memory
efficiency ratio (bytes of memory required to store one byte
of prefix) of our solution on different prefix sets in Table 10.
The value of this parameter is shown also for TBM and SST.
According to [6], the average memory efficiency ratio of
PPLA on generated IPv6 prefix sets is 1.01 when a 2-3 tree
data structure is used. Therefore, our solution is comparable
to PPLA on generated IPv6 prefix sets. However, our prefix
set representation is significantly better than PPLA on IPv4
prefix sets, where [6] reports the average memory efficiency
ratio of 1.00. Moreover, both TBM and SST, which were not
taken into account in [6], shows better memory efficiency
than PPLA on IPv4 sets. Memory efficiency of our solu-
tion and PPLA on real IPv6 prefix sets cannot be compared,
because this value is not reported in [6].

Since both our solution and TBM are based on the trie,
they should achieve better (i.e. lower) memory efficiency
ratio on prefix sets with high number of prefixes (generated
IPv6), than on prefix sets with a small number of prefixes
(real IPv6). However, according to the results presented in
Table 10, this is not true in our case. The most probable
explanation of this situation is that IPv6 prefix sets generator

Table 10. Memory Efficiency Ratio (Bytes of Mem-
ory/Bytes of Prefixes) of the Proposed Representation of
Prefix Set, TBM and SST

Prefix Set Prefixes
IPv4 New Nodes TBM (SL=5) SST

rrc00 332 118 0.610 0.934 0.668
IPv4-space 220 779 0.518 0.826 0.592
route-views 442 748 0.562 0.863 0.634

IPv6 New Nodes TBM (SL=3) SST (K=32)
AS1221 10 518 0.724 1.638 0.895
AS6447 10 814 0.731 1.665 0.913

Generated IPv6 New Nodes TBM (SL=4) SST (K=32)
rrc00 ipv6 319 998 1.063 4.363 N/A
IPv4-space ipv6 150 157 1.109 4.684 N/A
route-views ipv6 439 880 1.056 4.324 N/A

[7] does not model the process of assigning IPv6 addresses
correctly. We have used this generator in order to be able to
compare our results with results presented in [6].

7. CONCLUSION AND FUTURE WORK

The paper proposed a novel representation of IP prefix sets
using thirteen different types of node designed for a mem-
ory efficient representation of the most common situations in
a prefix tree. This prefix set representation has significantly
lower memory demands than TBM and it also overcomes
the SST algorithm. Moreover, the proposed representation
shows better memory efficiency than PPLA on real IPv4
prefix sets and comparable results on generated IPv6 pre-
fix sets. Memory efficiency of the proposed representation
and PPLA on real IPv6 prefix sets cannot be compared.

We also introduced a pipelined hardware architecture,
which utilizes the proposed prefix set representation. The ar-
chitecture was implemented on Xilinx Virtex-6 FPGA with
170 Gbps throughput.

As future work, we want to optimize resources utiliza-
tion and lookup performance of the proposed architecture.
We would also like to utilize dynamic partial reconfigura-
tion for allocation of memory blocks to particular pipeline
stages according to the actual prefix set.

8. REFERENCES

[1] (2013, Jan.) IPv6 / IPv4 Comparative Statistics. [Online].
Available: http://bgp.potaroo.net/v6/v6rpt.html

[2] M. Á. Ruiz-Sánchez, E. W. Biersack, and W. Dabbous, “Sur-
vey and Taxonomy of IP Address Lookup Algorithms,” IEEE
Network, vol. 15, no. 2, pp. 8–23, Mar. 2001, ISSN 0890-8044.

[3] E. Fredkin, “Trie Memory,” Communications of the ACM,
vol. 3, no. 9, pp. 490–499, Sept. 1960, ISSN 0001-0782.

[4] W. Eatherton, G. Varghese, and Z. Dittia, “Tree Bitmap: Hard-
ware/Software IP Lookups with Incremental Updates,” SIG-
COMM Comput. Commun. Rev., vol. 34, no. 2, pp. 97–122,
Apr. 2004, ISSN 0146-4833.

[5] H. Song, J. Turner, and J. Lockwood, “Shape Shifting Tries
for Faster IP Route Lookup,” in Proc. of the 13th IEEE Inter-
national Conference on Network Protocols (ICNP’05). IEEE
Computer Society, 2005, pp. 358–367, ISBN 0-7695-2437-0.

[6] H. Le and V. K. Prasanna, “Scalable Tree-based Architectures
for IPv4/v6 Lookup Using Prefix Partitioning,” IEEE Trans.
Comput., vol. 61, no. 7, pp. 1026–1039, July 2012, ISSN 0018-
9340.

[7] M. Wang, S. Deering, T. Hain, and L. Dunn, “Non-random
Generator for IPv6 Tables,” in Proc. of the 12th Annual IEEE

Symposium on High Performance Interconnects, 2004. IEEE
Computer Society, Aug. 2004, pp. 35–40, ISBN 0-7803-8686-
8.

[8] V. Pus, J. Tobola, V. Kosar, J. Kastil, and J. Korenek, “Net-
bench: Framework for Evaluation of Packet Processing Algo-
rithms,” in Seventh ACM/IEEE Symposium on Architecture for
Networking and Communications Systems (ANCS’11). IEEE
Computer Society, Oct. 2011, pp. 95–96, ISBN 978-0-7695-
4521-9.

A.4 Paper IV
Fast and Scalable Packet Classification Using Perfect Hash Functions

62

Fast and Scalable Packet Classification Using Perfect Hash
Functions

Viktor Puš ∗

CESNET z. s. p. o.
Zikova 4, 160 00 Prague, Czech Republic

pus@liberouter.org

Jan Kořenek †

Faculty of Information Technology
Brno University of Technology

Božetěchova 2, 612 66 Brno, Czech Republic
korenek@fit.vutbr.cz

ABSTRACT
Packet classification is an important operation for applica-
tions such as routers, firewalls or intrusion detection sys-
tems. Many algorithms and hardware architectures for pac-
ket classification have been created, but none of them can
compete with the speed of TCAMs in the worst case. We
propose new hardware-based algorithm for packet classifica-
tion. The solution is based on problem decomposition and
is aimed at the highest network speeds. A unique property
of the algorithm is the constant time complexity in terms of
external memory accesses. The algorithm performs exactly
two external memory accesses to classify a packet. Using
FPGA and one commodity SRAM chip, a throughput of
150 million packets per second can be achieved. This makes
throughput of 48 Gbps for 40 B packet size. Further perfor-
mance scaling is possible with more or faster SRAM chips.

Categories and Subject Descriptors
B.7.1 [Integrated Circuits]: Types and Design Styles—
Gate arrays, Algorithms implemented in hardware;
C.2.0 [Computer-Communication Networks]: General—
Security and protection (e.g., firewalls)

General Terms
Design, Performance, Security

Keywords
Packet Classification, FPGA, SRAM

∗This research has been partially supported by the Research
Plan No. MSM, 6383917201 – Optical National Research
Network and its New Applications
†This research has been partially supported by the Research
Plan No. MSM, 0021630528 – Security-Oriented Research
in Information Technology.

1. INTRODUCTION
With the rapid development of computer networks, traffic
filtering has become one of the first steps in securing any
network or computer. Basic traffic filtering device is the
firewall, which makes per-packet decision based on the given
set of rules. As network speeds are increasing, the demand
for the speed of packet classification algorithms is also grow-
ing. Software solutions for the packet classification problem
are available [3, 4], but their performance is not sufficient
for wirespeed processing in the highest speed networks. Ex-
isting hardware approaches also do not fulfill performance
requirements, or they require excessive amount of memory.

A classification algorithm contains a set of rules ordered
by priority. Each rule defines a condition for all significant
packet header fields. These fields are typically: Source IP
Address, Destination IP Address, Source Port, Destination
Port, Protocol. A condition may be exact match, prefix
match (usually for IP addresses), range match (for ports),
or a wildcard (matching any value). The goal of a packet
classification algorithm is to find the matching rule with the
highest priority. The output of the algorithm is then the
number of the matched rule.

The traditional method of classifying packets makes use of
Ternary Content Addressable Memories (TCAMs). How-
ever, the TCAM is an expensive device with high power-
consumption [2]. It also matches only words with fixed data
width and can limit throughput for complex rules. There-
fore, algorithmic solutions without the use of TCAMs has
become a research subject. While many algorithms have
been published [7, 15, 17], none of them can match TCAM
speed, because all existing algorithms require non-constant
number of memory accesses in the worst case. This must be
compared to the performance of TCAM solution, which clas-
sifies packet in a single memory access and the throughput is
guaranteed. We propose a new packet classification method
which uses SRAM to store necessary data, and FPGA to
implement the algorithm. We will show that our solution is
fully competitive to TCAM.

The rest of the paper is organized as follows: in the next
section we discuss the related work and point out disadvan-
tages of current solutions. Section 3 introduces a new packet
classification algorithm. The most innovative part of the al-
gorithm is described in detail in Section 4. Experimental
results of our work are summed up in Section 5, and Section

6 concludes the paper. Finally, in Section 7 we discuss the
possibilities of the future work in this area.

2. RELATED WORK
As the packet classification problem is inherently hard from
a theoretical standpoint [7], a large number of hardware and
software solutions [7, 15, 17] have been proposed. Solutions
are based on exhaustive search, decision tree and grid-of-
tries.

An interesting approach was introduced by Gupta in Hi-
Cuts algorithm [14]. Hi-Cuts algorithm creates decision tree
which cuts the packet space across one dimension at each
level. The scheme was further improved by Hyper-Cuts [21]
to cut the space across more dimensions at each level. In
the Lucent bit vector scheme [17], range search is performed
in each dimension, returning a vector with one bit for each
rule. If one rule dimension is matched, its bit is set and
a simple logical conjunction over all dimension vectors re-
turns matching rules. Several improvements [8, 19, 22] were
introduced later.

From the wide choice of available algorithms, we discuss only
those which are related to our work. All of them belong to
the family of decomposition-based methods. In decompo-
sition methods, packet classification is divided into several
steps. First step is the Longest Prefix Match (LPM) opera-
tion, which is performed independently in each dimension.
From the given set of prefixes with various lengths, the LPM
algorithm finds the one that best fits to the given full-length
value. Range conditions (such as port ranges) in the ruleset
are converted to prefixes, so that LPM may be performed in
all dimensions.

LPM operation is performed in IP packet routing, so it is
well studied topic. In fact, packet routing is a classification
in one dimension only – the destination IP address. Basic
algorithm for LPM is a trie, often modified to process more
input bits in each step and to reduce memory consumption.
Popular example of such algorithm is Tree Bitmap [12], but
there are also many other solutions [10, 16, 18].

After LPM, all results must be combined together to get the
resulting rule number. Basic Crossproduct algorithm [24]
precomputes a crossproduct table, which contains result-
ing rule numbers for all possible combinations of prefixes.
Because of the multiplicative nature of the crossproduct,
this table may become extremely large. This table is imple-
mented as a hash table, which yields issues with collisions.
The whole crossproduct word must be stored in the table to
detect a hash collision. In case a collision occurs, there must
be a pointer to the next item. In this way, a linked list is
created and performance may be reduced significantly.

Other method of combining LPM results together is the Dis-
tributed Crossproducting of Field Labels [25]. LPM is mo-
dified to return all valid prefixes (not only the longest one)
for the given field value. What follows is the hierarchical
structure of small crossproduct engines. Inputs of each en-
gine are two sets of prefixes (or Labels, in general). Engine
then performs set membership query for each possible pair
of Labels. Result of the engine is another set of Labels. The
result of the last engine is in fact a set of rules, from which

the one with the highest priority is selected. Even when
crossproducting is performed in a distributed way, it is still
a weak point of the algorithm, because it is multiplicative in
nature. If, for example, both input sets of the crossproduct-
ing engine have 10 items, then the engine has to perform
10 × 10 = 100 set membership queries.

Fast Packet Classification Using Bloom filters [11] brings fur-
ther improvements to decomposition methods. The authors
of this work replace crossproducts by pseudorules. To cover
all valid combinations, certain rules are added to the ruleset.
In fact, a pseudorule is always a special case of some rule.
Example of pseudorules generation can be seen in Figure 1.

Figure 1: Three rules R1, R2, R3 and three added
pseudorules.

Rule Dimension 1 Dimension 2 Target rule

R1 1* *

R2 1* 00*

R3 101 100

P1 1* 100 R1

P2 101 00* R2

P3 101 * R1

Table 1: Rules and pseudorules.

We can see classification in two dimensions with three rules.
For example, there is no rule for packet with header fields
(111, 100), but the correct result is rule R1(1∗, ∗)1. There-
fore pseudorule P1(1∗, 100) has to be added to cover this sit-
uation. Table 1 contains all rules and pseudorules together.
Target rule in this table points to the correct classification
result of pseudorule.

The generation of pseudorules has the character of crosspro-
ducting, and it may potentially expand the ruleset signifi-
cantly, but not all possible combinations of prefixes need to
be added. If the universal rule (a rule covering all possible
packets) were in the ruleset, then all possible combinations
would have to be added, but this rule can be removed from
the ruleset and returned only if no other rule matches the
packet.

Because pseudorules expansion is similar to crossproduct,
the article provides heuristics on how to break ruleset into
several subsets, eliminating the majority of pseudorules. The

1Symbol * denotes prefix or wildcard

paper also identifies rules that generate excessive amount of
pseudorules. These rules are called spoilers and are removed
to small on-chip TCAM. LPM operation is slightly modified
to return result for each subset, because subsets may con-
tain different prefixes. One Bloom filter is associated with
each subset to perform set membership query. If the result is
true, one Rule Table memory access is performed to retrieve
resulting rule or pseudorule.

However, this scheme has several important disadvantages.
Firstly, Rule Table is implemented using external SRAM,
which imposes high requirements on SRAM throughput. If
a rule format is very wide (for classification in more than
five dimensions), the time required to read out one rule is
also longer. We claim that Rule Table must be stored in an
on-chip memory in order to achieve higher throughputs.

Secondly, an inherent property of the Bloom filter is non-
zero probability of false positive errors. This may lead to
a situation, when there exists a packet that causes false po-
sitives in several Bloom filters, resulting in several external
memory accesses. If huge amount of such packets occurs
in the network (e.g. during an attack), the classification
algorithm slows down significantly.

Thirdly, Bloom filters are used only to reduce external me-
mory accesses. Nevertheless, their implementation consumes
on-chip resources which could be used in a more useful way.

Finally, the worst-case memory requirements are still expo-
nential, even with the ruleset division into subsets and the
use of TCAM for spoilers. But the algorithm does not try
to reduce the size of one item – the whole rule or pseudorule
has to be stored in an off-chip memory.

3. ALGORITHM
We propose a novel high-speed hardware-suited packet clas-
sification algorithm, which has a modular design and re-
moves the drawbacks of Bloom filters, which were mentioned
in Section 2. The algorithm consists of LPM for rule fields
followed by a mechanism to search a rule. LPM and the
rest of the classification algorithm have a very simple uni-
directional interface and both parts may be changed sepa-
rately, when a better solution is available. Recent research
results for LPM operation have outstanding results even over
100 Gbps [18], therefore we do not propose any new archi-
tecture for LPM and focus on the rule searching mechanism.

With the bandwidth of the off-chip memory being the per-
formance and scaling limitation for many existing solutions,
we try to reduce amount of off-chip memory accesses for
every incoming packet. Therefore, we propose to store the
whole Rule Table in the on-chip memory using simple rule
compression scheme and utilize the off-chip memory only to
search the rule.

The primary goal is to find a solution with the constant
packet rate and a good scalability with the size of the rule.
Therefore, we propose to use a perfect hashing mechanism
to provide the Rule Table search in a constant time and
utilize the off-chip memory to store Perfect Hash Table.

The process of packet classification is divided into three basic
steps (see Figure 2). The first step is the Longest Prefix
Match operation, which is similar to approaches mentioned
in Related work. The second step is mapping LPM results
to the rule number, where we propose to use perfect hash
function to perform fast searching. Even if the packet does
not match any rule, the hash function will map the packet
to some rule number. Because such invalid mapping can
occur, it is necessary to include the third step, in which the
packet is checked against the resulting rule. Therefore, the
complete Rule Table has to be stored in the third step.

Figure 2: Three basic steps of the algorithm.

The perfect hash function must find a correct rule number
for every packet. Thanks to LPM used in the first step,
the packet state space is reduced significantly. The hash
table is stored in the off-chip memory and its construction
is described in the Section 4 of the paper.

The last part of the algorithm is the comparison of the rule
to corresponding packet header fields. As high throughput
memory is needed to read a rule, the Rule Table is stored
in on-chip memories. The on-chip memory has a limited ca-
pacity, therefore all rules are compressed to save as many
memory resources as possible. We propose simple prefix in-
dexing scheme (see Figure 3) to reduce the Rule Table size
significantly. The rule itself contains only several indexes to
adjacent Prefix Tables, where all prefixes are stored. Port
number is stored directly in the Rule Table, because it is a
small field. This exploits the property of Rule Tables we and
others [25] have observed: the number of unique prefixes in
each dimension is usually quite small, therefore Prefix Ta-
bles will be also small. The experimental results for rulesets
mentioned later in the text show that memory was reduced
at least by one half, compared to simple direct storage of
rules.

This compression makes use of hardware parallelism, be-
cause all Prefix Tables are accessed in the same time. Off-

chip Rule Table implementation cannot be fast enough when
using this scheme.

Figure 3: Prefix indexing scheme to reduce the Rule
Table size.

4. PERFECT HASH FUNCTION
The problem of designing the perfect hash function could
be described as follows: each independent LPM returns one
word for every packet. Each word represents one prefix and
all prefixes together have a meaning of one (possible) pseu-
dorule. Each pseudorule is associated with one rule. We
seek a function mapping all valid pseudorules to their asso-
ciated rules. Invalid pseudorules (for a packet that matches
no rule) may be mapped to any rule, because this false pos-
itive is resolved later by simple comparison.

We chose static perfect hashing, because dynamic schemes
have significantly greater overhead. Instead of dynamic rules
insertion or removal, we can simply recompute the whole
static perfect hash. We propose to use a perfect hash con-
struction algorithm described in [9] to get a hash function,
which for each pseudorule returns a number of its associated
rule. From a wide choice of static perfect hashing schemes,
we chose this one because of its simplicity and good results.
Perfect hashing has been proposed to be used in networks
applications before [20, 13, 23, 6], but according to our
knowledge, the idea of using perfect hash functions is novel
in the field of multidimensional packet classification.

The perfect hash construction algorithm creates acyclic graph,
where edges are the keys, and vertices are results of two dif-
ferent hash functions. Vertices are then assigned values so
that they sum up to the desired hash value. Detailed de-
scription can be found in [9]. The algorithm consists of
seven basic steps:

1. Input: K keys, each associated with a number which
it is to be hashed to.

2. Create graph with N = cK vertices, where c > 1.

3. Pick any two different ordinary hash functions f1, f2
that output values 0 . . . N − 1.

4. For each key, compute h1 = f1(key), h2 = f2(key),
draw an edge between vertices h1 and h2 of the graph
and associate the desired hash value with that edge.

5. Check if the graph is acyclic. If not, increase c and go
to step 2.

6. Associate values to each vertex such that for each edge
you can add the values of both its vertices and get the
desired value for the edge. This may be done by depth-
first search algorithm, because the graph is acyclic.

7. f1, f2 and vertex values now make up the desired func-
tion.

In our algorithm, keys are rules and pseudorules in the form
of concatenated LPM results, and associated numbers are
numbers of the correct rule. This way, we get a function
that hashes rule and all its associated pseudorules directly
to the correct rule number. In fact, we introduce intended
collisions of the hash function. The idea of intended hash
collisions is a non-traditional usage of perfect hash functions.
The important point is that none of pseudorules is stored in
our scheme. Therefore, way we save significant amount of
memory.

Table 2 and Figures 4 and 5 show how a graph for the exam-
ple in Table 1 could look like. When the graph is created,
the hash function is simple. At first, two different hash func-
tions are evaluated over the input word. Then two vertex
values are read from the Vertex Table and added. For each
vertex, only one integer is stored.

Input word f1 f2

<1*, *> 0 7

<1*, 00*> 6 0

<101, 100> 5 4

<1*, 100> 0 4

<101, 00*> 1 3

<101, *> 3 2

Table 2: Two hypothetical hash functions’ results
for inputs in the form of encoded and concatenated
LPM results

By theory, acyclic graph with n edges must have at least
n + 1 vertices. This means that a table with more items
than the number of rules and pseudorules is needed. The
perfect hash algorithm usually needs greater overhead. Our
experiments in Section 5 show that the table size must be
approximately twice the theoretical minimum, which is good
result among other perfect hash algorithms.

Similarly to [11], we use small on-chip TCAM to store spoil-
ers and save significant amount of memory. Identifying the
greatest spoilers is a complex task, which needs to be further
investigated. For our experiments, we use semi-automatic
method, and we intend to do more research in finding an
automatic heuristic method with good results.

Figure 4: Example graph with 6 (pseudo)rules and
8 vertices.

Figure 5: Example of computing perfect hash func-
tion.

5. RESULTS
The proposed algorithm was implemented in FPGA and uti-
lizes one external static memory. We have studied several
rulesets to get information about typical properties of rules.
Similarly to [25], we have found that the number of unique
prefixes in each dimension is usually quite small (see Table
3). Therefore, the data structures for LPMs may be easily
stored in small on-chip memories, either BlockRAMs or dis-
tributed memories. Also the Rule Table itself is not greater
than a few kilobytes; therefore, we do not need an external
memory for its storage.

The table of graph vertices may become large, therefore,
we propose to use an external memory to store the Perfect
Hash Table. On-chip memories could be used only in case of
small rulesets. For example, Xilinx FPGA Virtex5 LX110
[5] contains 4 608 kb of BlockRAM memory, which gives us
262 144 vertices (suppose 18 bits for one vertex).

The proposed solution significantly reduces bottleneck caused
by the speed of external memory. Only two 18-bit words
need to be read for every packet, which is many times less
than one whole rule (or even worse, several rules) [11]. More-
over, performance of our algorithm is not affected by the
complexity of rules. Other fields (i.e. MAC addresses, TCP
flags, etc.) can be added to rules and the throughput re-
mains the same, only on-chip Rule Table size increases li-
nearly. It means that our solution scales well with the rule
size.

SRC DST SRC DST Proto-
Ruleset Rules Addr Addr Port Port col

fw1 32 13 2 10 22 4

fw2 58 26 24 4 1 2

fw3 103 28 48 36 1 4

fw4 171 84 84 1 6 3

synth1 40 12 19 10 22 5

synth2 49 35 41 8 22 3

synth3 49 26 14 14 1 4

synth4 70 27 62 1 48 3

synth5 82 20 37 3 3 4

synth6 100 73 85 1 54 4

Table 3: Numbers of unique prefixes in each dimen-
sion.

5.1 Performance
Similarly to [11], we suppose 300 MHz DDR memory with
the burst length of two words. The throughput of our solu-
tion is compared to the Crossproduct algorithm and Bloom
filters in Table 4. We do not take into account the speed of
LPM operation, because we consider it fast enough [18]. It
can be seen that our solution has a constant throughput and
does not require very wide external memory data bus. The
time to recompute all necessary data structures was always
below 4 seconds. We use two Jenkins hash functions [1] with
various seeds to implement the perfrect hash function.

Data Crossproduct Bloom Filter-Based Perfect

Width Based 4 6 8 Hash

9 37.5 9.375 6.25 4.6875 150

18 75 18.75 12.5 9.375 150

36 150 37.5 25 18.75 150

72 300 75 50 37.5 150

Table 4: Throughput (in millions packets per sec-
ond) for several data bus widths of 300 MHz DDR
memory. Rule word width of 144 bits is considered.
For the algorithm exploiting Bloom filters we con-
sider three cases: match of four, six and eight rules
for each packet.

5.2 Memory requirements
We performed pseudorules expansion and perfect hash func-
tion search for several rulesets from university campus net-
work (fw) together with several synthetic ruleset generated
by ClassBench [26] (synth) to determine off-chip memory re-
quirements. Memory requirements are compared to Bloom
filters-based and Crossproduct algorithm in Table 5.

As can be seen, numbers of graph vertices may become pro-
hibitive for on-chip memories, but is acceptable for com-
modity SRAM chips. Each vertex is stored as one signed
integer, actual range of vertex values determines number of
bits required to represent it. If SRAM works with larger
data width, words can be split into several parts to multiply
the available table size.

Ruleset Rules Crossprod. Bloom F. Perf. Hash

fw1 32 3 618 823 740

fw1 58 13 086 1 492 3 424

fw3 103 1 008 954 2 651 252 220

fw4 171 443 484 4 401 116 356

synth1 40 11 070 1 029 2 740

synth2 49 29 520 1 261 6 601

synth3 49 19 278 1 261 5 035

synth4 70 10 512 1 801 2 451

synth5 82 90 324 2 110 22 495

synth6 100 17 010 2 574 3 827

Table 5: Off-chip memory requirements (in Bytes)
for several rulesets. For Bloom Filter-Based algo-
rithm we assume that pseudorules expand the rule-
set by the factor of 1.43 (average from the origi-
nal paper [10]). For Crossproduct and Perfect Hash
scheme we use on-chip TCAM for 16 spoilers.

Overall chip area is hard to compare to other solutions, be-
cause every implementation has many variable parameters
(speed, number of stored prefixes, selection of classification
dimensions). However, we provide informal comparison to
[11]:

• Both schemes use LPM as the first step.

• In our solution, we need only two various on-chip hash
functions to compute the perfect hash function, while
[11] uses many hash functions to implement Bloom fil-
ters.

• Our solution stores the ruleset in on-chip memories.

• In [11], small bit array is stored for each Bloom filter.

• Both schemes use external memory and other common
blocks (packet recieve and transmit modules etc.).

To verify our results, we have implemented the described
algorithm for the Virtex 5 LX110T FPGA. We used 125 MHz
working frequency and we set the throughput to two cycles
per packet. This limitation of the particular implementation
is induced by our current needs – we have connected two
10 Gbps network interfaces and one PCI-Express x8 bus to
the FPGA.

We added four other classification dimensions: Source and
Destination MAC address, TCP flags and Input interface
number. We were able to load up to 1 000 rules into the de-
vice. Data structures (LPMs, Vertex Table, etc.) generation
time was below 0.5 second on a PC with 2 GHz Intel Pen-
tium processor. This is also the update delay if the ruleset
changes.

Using the proposed algorithm, we have created two-port fire-
wall with the constant aggregated throughput of 62.5 million
packets per second.

6. CONCLUSION
We have proposed a novel algorithm for fast packet classifica-
tion using perfect hash functions. Our algorithm introduces
intended hash collisions to reduce memory requirements. By
creating custom hash function, we make sure that all pseu-
dorules are hashed to associated rule, which means that no
pseudorule has to be stored in the memory and significantly
less memory is needed. The results in Section 5 show that
the only larger amount of memory is utilized to store Perfect
Hash Table, even for large rulesets.

Because only two external memory accesses are needed to
classify a packet, 150 million packets per second can be pro-
cessed with commodity FPGA and SRAM. This packet rate
corresponds to 100 Gbps Ethernet for the shortest packets.
Moreover, the throughput doesn’t depend on ruleset com-
plexity and is well scalable with number of external memo-
ries.

According to our knowledge, the proposed algorithm is the
first algorithm which requires reasonable amount of me-
mory and has constant processing time even for complex
ruleset. High throughput together with constant process-
ing time makes the proposed algorithm fully competitive to
widely used TCAM solutions. As the proposed solution uses
commodity SRAM, the price and power consumption is sig-
nificantly lower than classification with TCAM memory.

7. FUTURE WORK
We continue to explore this method to further improve me-
mory efficiency by reducing size of the Vertex Table for large
rulesets. If the memory requirements drop under certain
limit, only on-chip memory can be used to store the Ver-
tex Table and the classification process can be significantly
faster. Moreover, if external memory is removed, the price
and power consumption is decreased. We also believe that
the idea of intended hash collisions has potential value for
other tasks which allow relatively slow precomputation, but
require extremely fast search times.

8. REFERENCES
[1] A hash function for hash table lookup.

http://burtleburtle.net/bob/hash/doobs.html, December
2008.

[2] IDT Generic Part: 75K72100.
http://www.idt.com/?catID=58523&genID=75K72100 ,
June 2008.

[3] Netfilter: firewalling, NAT and packet managing for Linux.
http://www.netfilter.org/ , June 2008.

[4] PF: The OpenBSD Packet Filter.
http://www.openbsd.org/faq/pf/ , June 2008.

[5] Xilinx Virtex–5 Family FPGAs. Xilinx, Inc.
[6] N. S. Artan and H. J. Chao. Tribica: Trie bitmap content

analyzer for high-speed network intrusion detection.
INFOCOM 2007. 26th IEEE International Conference on
Computer Communications. IEEE, pages 125–133, May
2007.

[7] F. Baboescu, S. Singh, and G. Varghese. Packet
classification for core routers: Is there an alternative to
CAMs? In INFOCOM, 2003.

[8] F. Baboescu and G. Varghese. Scalable packet
classification. In SIGCOMM ’01: Proceedings of the 2001
conference on Applications, technologies, architectures, and
protocols for computer communications, pages 199–210,
New York, NY, USA, 2001. ACM.

[9] Z. J. Czech, G. Havas, and B. S. Majewski. An optimal
algorithm for generating minimal perfect hash functions.
Information Processing Letters, 43(5):257–264, 1992.

[10] S. Dharmapurikar, P. Krishnamurthy, and D. E. Taylor.
Longest prefix matching using Bloom filters. In SIGCOMM
’03: Proceedings of the 2003 conference on Applications,
technologies, architectures, and protocols for computer
communications, pages 201–212, New York, NY, USA,
2003. ACM.

[11] S. Dharmapurikar, H. Song, J. Turner, and J. Lockwood.
Fast packet classification using Bloom filters. In ANCS ’06:
Proceedings of the 2006 ACM/IEEE symposium on
Architecture for networking and communications systems,
pages 61–70, New York, NY, USA, 2006. ACM.

[12] W. Eatherton, G. Varghese, and Z. Dittia. Tree bitmap:
hardware/software IP lookups with incremental updates.
SIGCOMM Computer Communication Review,
34(2):97–122, 2004.

[13] S. Giordano, F. Oppedisano, G. Procissi, and F. Russo. A
novel high-speed micro-flows classification algorithm based
on perfect hashing and direct addressing. Global
Telecommunications Conference, 2007. GLOBECOM ’07.
IEEE, pages 448–452, November 2007.

[14] P. Gupta and N. McKeown. Packet classification using
hierarchical intelligent cuttings. In Proc. Hot Interconnects,
1999.

[15] P. Gupta and N. McKeown. Algorithms for packet
classification, 2001.

[16] P. Gupta, B. Prabhakar, and S. P. Boyd. Near optimal
routing lookups with bounded worst case performance. In
INFOCOM, pages 1184–1192, 2000.

[17] T. V. Lakshman and D. Stiliadis. High-speed policy-based
packet forwarding using efficient multi-dimensional range
matching. SIGCOMM Comput. Commun. Rev.,
28(4):203–214, 1998.

[18] H. Lee, W. Jiang, and V. K. Prasanna. Scalable
High-Throughput SRAM-Based Architecture for IP Lookup
Using FPGA. In FPL ’08. IEEE, 2008.

[19] J. Li, H. Liu, and K. Sollins. AFBV: a scalable packet
classification algorithm. SIGCOMM Comput. Commun.
Rev., 32(3):24–24, 2002.

[20] Y. Lu, B. Prabhakar, and F. Bonomi. Perfect hashing for
network applications. Information Theory, 2006 IEEE
International Symposium on, pages 2774–2778, July 2006.

[21] S. Singh, F. Baboescu, G. Varghese, and J. Wang. Packet
classification using multidimensional cutting. In
SIGCOMM ’03: Proceedings of the 2003 conference on
Applications, technologies, architectures, and protocols for
computer communications, pages 213–224, New York, NY,
USA, 2003. ACM.

[22] H. Song and J. W. Lockwood. Efficient packet classification
for network intrusion detection using FPGA. In FPGA ’05:
Proceedings of the 2005 ACM/SIGDA 13th international
symposium on Field-programmable gate arrays, pages
238–245, New York, NY, USA, 2005. ACM.

[23] I. Sourdis, D. Pnevmatikatos, S. Wong, and S. Vassiliadis.
A reconfigurable perfect-hashing scheme for packet
inspection. Field Programmable Logic and Applications,
2005. International Conference on, pages 644–647, Aug.
2005.

[24] V. Srinivasan, G. Varghese, S. Suri, and M. Waldvogel.
Fast and scalable layer four switching. SIGCOMM Comput.
Commun. Rev., 28(4):191–202, 1998.

[25] D. Taylor and J. Turner. Scalable packet classification
using distributed crossproducting of field labels. In IEEE
INFOCOM 2005, 24th Annual Joint Conference of the
IEEE Computer and Communications Societies., pages
269–280, July 2005.

[26] D. E. Taylor and J. S. Turner. Classbench: a packet
classification benchmark. IEEE/ACM Trans. Netw.,
15(3):499–511, 2007.

A.5 Paper V
High-speed Regular Expression Matching with Pipelined Automata

70

❍✐❣❤✲s♣❡❡❞ ❘❡❣✉❧❛r ❊①♣r❡ss✐♦♥ ▼❛t❝❤✐♥❣

✇✐t❤ P✐♣❡❧✐♥❡❞ ❆✉t♦♠❛t❛

❉�✁✂✄ ☎✆✝✞✟✏✄�❦
❋✠✡☛☞✌② ✍❢ ■✎❢✍✑✒✠✌✓✍✎ ❚✔✡✕✎✍☞✍✖②
❇✑✎✍ ❯✎✓✈✔✑✗✓✌② ✍❢ ❚✔✡✕✎✍☞✍✖②
❇✍✘③✔✌✘✔✡✕✍✈✠ ✶✴✷✱ ✻✶✷✻✻ ❇✑✎✍

❈③✔✡✕ ✙✔✚☛❜☞✓✡
✛✒✠✓☞✿ ✓✒✠✌✍☛✗✔✜✢❅✣✌✳✈☛✌❜✑✳✡③

❏✆✁ ❑✞✏✤�✁�❦
✆✁✥ ❱✂❦✝✞✤ ✦✟✏✄
❈✛❙◆✛❚ ✠✳☞✳✔✳

❩✓✜✍✈✠ ✹✱ ✶✻✵✵✵ ✧✑✠✖☛✔
❈③✔✡✕ ✙✔✚☛❜☞✓✡

✛✒✠✓☞✿ ✜✍✑✔✎✔✜✱✚☛✗❅✡✔✗✎✔✌✳✡③

★✩✪✫✬✭✮✫➋✯✰✸✸✺✼✽ ✾✰✸❀❁❂✽❃ ❂❄ ✰ ❀●✾▲❖✺◗ ✸✰❄❲ ❳❁❂❀❁ ❂❄ ❳❂❨✺❖❬
❭❄✺❨ ❂✽ ✽✺✸❳●✼❲ ❄✺❀❭✼❂✸❬ ✾●✽❂✸●✼❂✽❃ ✰▲▲❖❂❀✰✸❂●✽❄❪ ❫❂✸❁ ✸❁✺ ❃✼●❳❴
❂✽❃ ❄▲✺✺❨ ●❵ ✽✺✸❳●✼❲ ❖❂✽❲❄❥ ▲✰✸✸✺✼✽ ✾✰✸❀❁❂✽❃ ✰✼❀❁❂✸✺❀✸❭✼✺❄ ❁✰q✺
✸● ④✺ ❂✾▲✼●q✺❨ ❂✽ ●✼❨✺✼ ✸● ✼✺✸✰❂✽ ❳❂✼✺❴❄▲✺✺❨ ▲✼●❀✺❄❄❂✽❃❪ ⑤❭❖✸❂❴
❄✸✼❂❨❂✽❃ ❂❄ ✰ ❳✺❖❖❴❲✽●❳✽ ✸✺❀❁✽❂⑥❭✺ ●✽ ❁●❳ ✸● ❂✽❀✼✺✰❄✺ ✸❁✼●❭❃❁▲❭✸
●❵ ▲✰✸✸✺✼✽ ✾✰✸❀❁❂✽❃ ✰✼❀❁❂✸✺❀✸❭✼✺❄❪ ⑦✽ ✸❁✺ ▲✰▲✺✼ ❳✺ ▲✼●q❂❨✺ ✰✽
✰✽✰❖❬❄❂❄ ●❵ ❄❀✰❖✰④❂❖❂✸❬ ●❵ ✾❭❖✸❂❴❄✸✼❂❨❂✽❃ ✰✽❨ ❄❁●❳ ✸❁✰✸ ❂✸ ❨●✺❄ ✽●✸
❄❀✰❖✺ ❳✺❖❖ ✰✽❨ ❀✰✽✽●✸ ④✺ ❭❄✺❨ ❵●✼ ⑧⑨⑨⑩④▲❄ ✸❁✼●❭❃❁▲❭✸ ④✺❀✰❭❄✺
❭✸❂❖❂❶✰✸❂●✽ ●❵ ❷✯⑩❸ ✼✺❄●❭✼❀✺❄ ❃✼●❳❄ ✺◗▲●✽✺✽✸❂✰❖❖❬❪ ❹❁✺✼✺❵●✼✺❥
❳✺ ❁✰q✺ ❨✺❄❂❃✽✺❨ ✰ ✽✺❳ ❁✰✼❨❳✰✼✺ ✰✼❀❁❂✸✺❀✸❭✼✺ ❵●✼ ❁❂❃❁❴❄▲✺✺❨
▲✰✸✸✺✼✽ ✾✰✸❀❁❂✽❃ ✸❁✰✸ ❀●✾④❂✽✺❄ ✸❁✺ ✾❭❖✸❂❴❄✸✼❂❨❂✽❃ ✸✺❀❁✽❂⑥❭✺
✰✽❨ ▲✰✼✰❖❖✺❖ ▲✼●❀✺❄❄❂✽❃ ❭❄❂✽❃ ▲❂▲✺❖❂✽✺❨ ❺✽❂✸✺ ❄✸✰✸✺ ✾✰❀❁❂✽✺❄
❻❷❼⑤❄❽❪ ❹❁✺ ✰✼❀❁❂✸✺❀✸❭✼✺ ❄❁✰✼✺❄ ✰ ❄❂✽❃❖✺ ▲✰❀❲✺✸ ④❭❵❵✺✼ ❵●✼ ✰❖❖
▲✰✼✰❖❖✺❖ ❷❼⑤❄❪ ❾❵❺❀❂✺✽✸ ❂✾▲❖✺✾✺✽✸✰✸❂●✽ ●❵ ✸❁✺ ▲✰❀❲✺✸ ④❭❵❵✺✼
✼✺❨❭❀✺❄ ✸❁✺ ✽❭✾④✺✼ ●❵ ❿❖●❀❲➀❸⑤❄ ✸● ⑧➁➂ ❳❁✺✽ ❀●✾▲✰✼✺❨
✸● ❄❂✾▲❖✺ ▲✰✼✰❖❖✺❖ ❂✾▲❖✺✾✺✽✸✰✸❂●✽❪ ⑦✽❄✸✺✰❨ ●❵ ✾❭❖✸❂▲❖✺◗❂✽❃ ❂✽▲❭✸
❨✰✸✰❥ ✸❁✺ ✰✼❀❁❂✸✺❀✸❭✼✺ ▲❂▲✺❖❂✽✺❄ ✸❁✺ ❄✸✰✸✺❄ ●❵ ❷❼⑤❄❪ ❼❭❀❁ ▲❂▲✺❖❂✽✺❨
▲✼●❀✺❄❄❂✽❃ ❳❂✸❁ ●✽❖❬ ❖●❀✰❖ ❀●✾✾❭✽❂❀✰✸❂●✽ ❁✰❄ ✰ ❨❂✼✺❀✸ ▲●❄❂✸❂q✺
❂✾▲✰❀✸ ●✽ ❵✼✺⑥❭✺✽❀❬ ✰✽❨ ✸❁✼●❭❃❁▲❭✸ ✰✽❨ ✰❖❖●❳❄ ❭❄ ✸● ❄❀✰❖✺ ✸❁✺
✰✼❀❁❂✸✺❀✸❭✼✺ ✸● ❁❭✽❨✼✺❨❄ ●❵ ⑩④▲❄❪

■✳ ■➃➄➅➆➇➈➉➄➊➆➃
✙✔✖☛☞✠✑ ✛➌✚✑✔✗✗✓✍✎ ➍✙✛➎ ✒✠✌✡✕✓✎✖ ✓✗ ✠ ➏✓✢✔☞② ☛✗✔✢ ✍✚✔✑✠➐

✌✓✍✎ ✓✎ ✡✍✒✚☛✌✔✑ ✎✔✌➏✍✑✜✗ ❢✍✑ ✌✕✔ ✓✢✔✎✌✓✣✡✠✌✓✍✎ ✍❢ ✠✚✚☞✓✡✠✌✓✍✎
✚✑✍✌✍✡✍☞✗✱ ✢✔✌✔✡✌✓✍✎ ✍❢ ✎✔✌➏✍✑✜ ✠✌✌✠✡✜✗✱ ✠✚✚☞✓✡✠✌✓✍✎➐✠➏✠✑✔ ☞✍✠✢
❜✠☞✠✎✡✓✎✖ ✠✎✢ ❢✍✑ ✒✠✎② ✍✌✕✔✑ ✎✔✌➏✍✑✜ ✠✚✚☞✓✡✠✌✓✍✎✗✳ ❈☛✑✑✔✎✌
✚✑✍✡✔✗✗✍✑✗ ✠✑✔ ✎✍✌ ✚✍➏✔✑❢☛☞ ✔✎✍☛✖✕ ✌✍ ✒✠✌✡✕ ✙✛✗ ✠✌ ✶✵✱ ✹✵✱
✍✑ ✶✵✵➑❜✚✗ ✗✚✔✔✢ ➒✶➓✳ ■✎ ✍✑✢✔✑ ✌✍ ✠✡✕✓✔✈✔ ✕✓✖✕ ✌✕✑✍☛✖✕✚☛✌✱
✗✍✒✔ ❢✍✑✒ ✍❢ ✕✠✑✢➏✠✑✔ ✠✡✡✔☞✔✑✠✌✓✍✎ ✓✗ ✎✔✔✢✔✢✳
➔✠✎② ✕✠✑✢➏✠✑✔ ✠✑✡✕✓✌✔✡✌☛✑✔✗ ✕✠✈✔ ❜✔✔✎ ✢✔✗✓✖✎✔✢ ✌✍ ✠✡➐

✡✔☞✔✑✠✌✔ ✚✠✌✌✔✑✎ ✒✠✌✡✕✓✎✖ ❢✍✑ ■✎✌✑☛✗✓✍✎ →✔✌✔✡✌✓✍✎ ❙②✗✌✔✒✗
➍■→❙➎ ➒✷➓➣➒↔➓ ➏✕✔✑✔ ✎✔✌➏✍✑✜ ✌✑✠❢✣✡ ✕✠✗ ✌✍ ❜✔ ✒✠✌✡✕✔✢ ✠✖✠✓✎✗✌
✌✕✍☛✗✠✎✢✗ ✍❢ ✙✛✗✳ ❙✔✈✔✑✠☞ ✠✑✡✕✓✌✔✡✌☛✑✔✗ ✌✠✜✔ ✠✢✈✠✎✌✠✖✔ ✍❢
✒✠✗✗✓✈✔ ✚✠✑✠☞☞✔☞ ✚✑✍✡✔✗✗✓✎✖ ✓✎ ❋✓✔☞✢ ✧✑✍✖✑✠✒✒✠❜☞✔ ➑✠✌✔ ↕✑➐
✑✠②✗ ➍❋✧➑↕✗➎ ✠✎✢ ☛✗✔ ✒✠✚✚✓✎✖ ✍❢ ◆✍✎➐✢✔✌✔✑✒✓✎✓✗✌✓✡ ❋✓✎✓✌✔
↕☛✌✍✒✠✌✠ ➍◆❋↕➎ ✌✍ ❋✧➑↕ ➒✷➓➣➒➙➓✱ ➒➛➓✳ ■✎ ✍✑✢✔✑ ✌✍ ✠✡✕✓✔✈✔
☞✓✎✔✠✑ ✌✓✒✔ ✡✍✒✚☞✔➌✓✌②✱ ✠☞☞ ✎✍✎➐✢✔✌✔✑✒✓✎✓✗✌✓✡ ✚✠✌✕✗ ✠✑✔ ✚✑✍➐
✡✔✗✗✔✢ ✓✎ ❋✧➑↕ ✗✓✒☛☞✌✠✎✔✍☛✗☞②✳ ↕✗ ✌✕✔ ✎☛✒❜✔✑ ✍❢ ✙✛✗ ✓✎
■→❙ ✗②✗✌✔✒✗ ✓✎✡✑✔✠✗✔✗ ✓✎ ✌✓✒✔✱ ✒✠✎② ✍✚✌✓✒✓③✠✌✓✍✎✗ ✕✠✈✔ ❜✔✔✎
✓✎✌✑✍✢☛✡✔✢ ✌✍ ✑✔✢☛✡✔ ❋✧➑↕ ☞✍✖✓✡ ☛✌✓☞✓③✠✌✓✍✎ ✠✎✢ ✒✠✚ ✒✍✑✔
✙✛✗ ✌✍ ❋✧➑↕ ➒✹➓✱ ➒✶✵➓✳ ➔✍✗✌ ✍❢ ✌✕✔✗✔ ✍✚✌✓✒✓③✠✌✓✍✎✗ ✠✑✔ ✍✎☞②
❢✍✡☛✗✔✢ ✍✎ ✙✛✗ ✓✎ ■→❙ ✗②✗✌✔✒✗ ❙✎✍✑✌ ➒✶✶➓ ✠✎✢ ❇✑✍ ➒✶✷➓✳

➜➝➞➟➠➟➡➢➜➢➟➡➤➢➥➟➤➦➠➤➦➧➨➠➩➢➢ ➫➭➥➢➠➤ ➊➯➯➯

✧✑✠✗✠✎✎✠ ✕✠✗ ✓✎✌✑✍✢☛✡✔✢ ✒✍✢☛☞✠✑ ✙✛➐◆❋↕ ➒✶➲➓✱ ➒✶✹➓✱ ➏✕✓✡✕
✡✠✎ ❜✔ ✡✍✎✈✔✑✌✔✢ ✠☛✌✍✒✠✌✓✡✠☞☞② ✓✎✌✍ ✠ ✒✍✢☛☞✠✑ ✡✓✑✡☛✓✌ ✍✎ ✌✕✔
❋✧➑↕✳ ❚✕✔ ✡✓✑✡☛✓✌ ✡✠✎ ❜✔ ✡✑✔✠✌✔✢ ❢✑✍✒ ✠ ✗✔✌ ✍❢ ✙✛✗ ➏✓✌✕✍☛✌
✗②✎✌✕✔✗✓✗ ✠✎✢ ✡✠✎ ❜✔ ☛✚☞✍✠✢✔✢ ✌✍ ✌✕✔ ❋✧➑↕ ❜② ✢②✎✠✒✓✡
✑✔✡✍✎✣✖☛✑✠✌✓✍✎✳ →②✎✠✒✓✡ ✑✔✡✍✎✣✖☛✑✠✌✓✍✎ ✓✗ ✠☞✗✍ ☛✗✔✢ ❢✍✑ ✠ ❢✠✗✌
☛✚✢✠✌✔ ✍❢ ✌✕✔ ✙✛ ✗✔✌ ✓✎ →②✎✠✒✓✡ ❇✧➐◆❋↕ ➒✶➙➓✳
❚✕✔ ✠✑✡✕✓✌✔✡✌☛✑✔✗ ❜✠✗✔✢ ✍✎ →✔✌✔✑✒✓✎✓✗✌✓✡ ❋✓✎✓✌✔ ↕☛✌✍✒✠✌✍✎

➍→❋↕➎ ➒✻➓➣➒↔➓ ☛✗✔ ✒✔✒✍✑② ✌✍ ✗✌✍✑✔ ✌✕✔ ✌✑✠✎✗✓✌✓✍✎ ✌✠❜☞✔✱ ➏✕✓✡✕
✔✎✠❜☞✔✗ ✠✎ ✔✈✔✎ ❢✠✗✌✔✑ ☛✚✢✠✌✔ ✍❢ ✌✕✔ ✚✠✌✌✔✑✎ ✗✔✌✳ ❋✧➑↕ ✑✔➐
✡✍✎✣✖☛✑✠✌✓✍✎ ✓✗ ✎✍✌ ✎✔✔✢✔✢ ❜✔✡✠☛✗✔ ✌✕✔ ✠✑✡✕✓✌✔✡✌☛✑✔ ✑✔✒✠✓✎✗
✌✕✔ ✗✠✒✔✳ ➳✎☞② ✒✔✒✍✑② ✡✍✎✌✔✎✌ ✓✗ ☛✚✢✠✌✔✢ ✓❢ ✌✕✔ ✙✛ ✗✔✌
✓✗ ✡✕✠✎✖✔✢✳ ➳✎ ✌✕✔ ✍✌✕✔✑ ✕✠✎✢✱ ✌✕✔ ✡✍✎✗✌✑☛✡✌✓✍✎ ✍❢ →❋↕
❢✑✍✒ ◆❋↕ ✕✠✗ ✔➌✚✍✎✔✎✌✓✠☞ ✌✓✒✔ ✡✍✒✚☞✔➌✓✌② ✠✎✢ ✡✠✎ ✡✠☛✗✔ ✠✎
✔➌✚✍✎✔✎✌✓✠☞ ✖✑✍➏✌✕ ✍❢ ✗✌✠✌✔✗ ✠✎✢ ✌✑✠✎✗✓✌✓✍✎ ✌✠❜☞✔✱ ➏✕✓✡✕ ✕✠✗
✠ ✢✓✑✔✡✌ ✓✒✚✠✡✌ ✍✎ ✒✔✒✍✑② ✑✔➵☛✓✑✔✒✔✎✌✗✳ ❚✕✔✑✔❢✍✑✔✱ ✒✔✒✍✑②
✑✔➵☛✓✑✔✒✔✎✌✗ ✕✠✈✔ ❜✔✔✎ ✑✔✢☛✡✔✢ ❜② →✔☞✠②✔✢ ✓✎✚☛✌ →❋↕ ➒✻➓✱
✡✍✒✚✑✔✗✗✓✍✎ ➒➸➓✱ ➒✶✻➓ ✠✎✢ ✍✌✕✔✑ ✍✚✌✓✒✓③✠✌✓✍✎✗ ➒↔➓✱ ➒✶➸➓✳ ➳✌✕✔✑
✠✑✡✕✓✌✔✡✌☛✑✔✗ ☛✗✔ ✠ ✡✍✒❜✓✎✠✌✓✍✎ ✍❢ ◆❋↕ ✠✎✢ →❋↕ ➒✶↔➓➣➒✷✵➓
✌✍ ✡✍✚✔ ➏✓✌✕ ☞✠✑✖✔ ✢✠✌✠ ✗✔✌✗ ✠✎✢ ✔➌✚✍✎✔✎✌✓✠☞ ✖✑✍➏✌✕ ✍❢ →❋↕
✗✌✠✌✔✗ ✡✠☛✗✔✢ ❜② ➺➻ ✡✍✎✗✌✑☛✡✌✓✍✎✗ ✓✎ ✙✛✗✳
➔✍✗✌ ✕✠✑✢➏✠✑✔ ✠✑✡✕✓✌✔✡✌☛✑✔✗ ✚✑✍✈✓✢✔ ✠ ✑✔✢☛✡✌✓✍✎ ✍❢ ✒✔✒✍✑②

✑✔➵☛✓✑✔✒✔✎✌✗ ✍✑ ❋✧➑↕ ☞✍✖✓✡ ☛✌✓☞✓③✠✌✓✍✎ ✌✍ ✒✠✌✡✕ ✒✍✑✔ ✙✛✗✳
■✌ ✓✗ ✠☞✗✍ ✎✔✡✔✗✗✠✑② ✌✍ ✓✎✡✑✔✠✗✔ ✌✕✔ ✒✠✌✡✕✓✎✖ ✗✚✔✔✢ ➏✓✌✕ ✌✕✔
✖✑✍➏✓✎✖ ✗✚✔✔✢ ✍❢ ✎✔✌➏✍✑✜ ☞✓✎✜✗✳ ❋✍✑ ✚✠✌✌✔✑✎ ✒✠✌✡✕✓✎✖✱ ✌✕✔
✗✚✔✔✢ ✢✔✚✔✎✢✗ ✍✎ ❢✑✔➵☛✔✎✡② ✠✎✢ ✌✕✔ ✎☛✒❜✔✑ ✍❢ ✓✎✚☛✌ ✗②✒❜✍☞✗
➍❜②✌✔✗➎ ✚✑✍✡✔✗✗✔✢ ✚✔✑ ✡☞✍✡✜ ✡②✡☞✔✳ ↕✗ ✌✕✔ ❋✧➑↕ ❢✑✔➵☛✔✎✡②
✓✎✡✑✔✠✗✔✗ ✍✎☞② ✗☞✓✖✕✌☞② ✍✈✔✑ ✌✓✒✔✱ ✓✌ ✓✗ ✎✔✡✔✗✗✠✑② ✌✍ ✚✑✍✡✔✗✗
✒✍✑✔ ✓✎✚☛✌ ✗②✒❜✍☞✗ ✠✌ ✍✎✡✔✳
❇✑✍✢✓✔ ✕✠✗ ✚✑✔✗✔✎✌✔✢ ✌✕✔ ✣✑✗✌ ✠✑✡✕✓✌✔✡✌☛✑✔ ➏✓✌✕ ✠✡✡✔✚✌✓✎✖

✒☛☞✌✓✚☞✔ ✓✎✚☛✌ ✗②✒❜✍☞✗ ✚✔✑ ✡☞✍✡✜ ✡②✡☞✔ ➒✷✶➓✳ ✧✑✠✗✠✎✎✠ ✕✠✗
✓✎✌✑✍✢☛✡✔✢ ✗✚✠✌✓✠☞ ✗✌✠✡✜✓✎✖ ❢✍✑ ✒☛☞✌✓➐✡✕✠✑✠✡✌✔✑ ✒✠✌✡✕✓✎✖ ➒✶➲➓
➏✓✌✕ ✙✛➐◆❋↕✱ ❜☛✌ ✕✓✖✕ ❢✠✎✍☛✌ ✍❢ ✌✕✔ ✣✎✠☞ ✡✓✑✡☛✓✌ ✗✓✖✎✓✣✡✠✎✌☞②
✢✔✡✑✔✠✗✔✗ ✌✕✔ ❢✑✔➵☛✔✎✡②✱ ✔✈✔✎ ➏✕✔✎ ✒✠✌✡✕✓✎✖ ✍✎☞② ✔✓✖✕✌ ✓✎✚☛✌
✗②✒❜✍☞✗ ✚✔✑ ✡☞✍✡✜ ✡②✡☞✔✳ ■✌ ✓✗ ✓✒✚✍✑✌✠✎✌ ✌✍ ✎✍✌✔ ✌✕✠✌ ✒✍✑✔
✌✕✠✎ ✻✹ ✓✎✚☛✌ ✗②✒❜✍☞✗ ✕✠✈✔ ✌✍ ❜✔ ✚✑✍✡✔✗✗✔✢ ✠✌ ✍✎✡✔ ✓✎ ✍✑✢✔✑
✌✍ ✠✡✕✓✔✈✔ ✶✵✵➑❜✚✗ ✌✕✑✍☛✖✕✚☛✌✳ ❇✔✡✡✕✓ ✓✎✌✑✍✢☛✡✔✢ ✖✔✎✔✑✠☞
✒☛☞✌✓➐✗✌✑✓✢✓✎✖ ✌✔✡✕✎✓➵☛✔ ➒✷✷➓✱ ➏✕✓✡✕ ✡✠✎ ❜✔ ☛✗✔✢ ❢✍✑ ◆❋↕ ✍✑
→❋↕ ✠☛✌✍✒✠✌✠ ✠✎✢ ✓✗ ➏✓✢✔☞② ☛✗✔✢ ✌✍ ✓✎✡✑✔✠✗✔ ✌✕✑✍☛✖✕✚☛✌ ✍❢
✙✛ ✒✠✌✡✕✓✎✖ ✠✑✡✕✓✌✔✡✌☛✑✔✗✳
➔☛☞✌✓➐✗✌✑✓✢✓✎✖ ✡✠☛✗✔✗ ✕✓✖✕ ✒✔✒✍✑② ✑✔➵☛✓✑✔✒✔✎✌✗ ✓✎ →❋↕✗✳

❚✕✔✑✔❢✍✑✔✱ ➏✔ ❢✍✡☛✗ ✍✎ ◆❋↕ ✠✑✡✕✓✌✔✡✌☛✑✔✗✱ ➏✕✔✑✔ ✒☛☞✌✓➐

93

str✐❞✐♥❣ ✐s ✉s❡❞ t♦ ✐♥❝r❡❛s❡ ♣r♦❝❡ss✐♥❣ s♣❡❡❞ ❛t t❤❡ ❝♦st ♦❢

❋P●❆ ❧♦❣✐❝ ✉t✐❧✐③❛t✐♦♥✳ ❲❡ ❤❛✈❡ ♣❡r❢♦r♠❡❞ ❛♥ ❛♥❛❧②s✐s ♦♥

❤♦✇ t❤❡ ❛♠♦✉♥t ♦❢ ❋P●❆ ❧♦❣✐❝ ❣r♦✇s ✇✐t❤ t❤❡ ♣r♦❝❡ss✐♥❣

s♣❡❡❞✳ ❚❤❡ ❛♥❛❧②s✐s s❤♦✇s t❤❛t ♠✉❧t✐✲str✐❞✐♥❣ s✐❣♥✐✂❝❛♥t❧②

❞❡❝r❡❛s❡s ❢r❡q✉❡♥❝② ❛♥❞ ❝❛✉s❡s ❡①♣♦♥❡♥t✐❛❧ ❣r♦✇t❤ ♦❢ ✉t✐❧✐③❛✲

t✐♦♥ ♦❢ ❋P●❆ ❧♦❣✐❝ s✐♠✐❧❛r t♦ s♣❛t✐❛❧ st❛❝❦✐♥❣✳ ❚❤❡r❡❢♦r❡✱ ✇❡

♣r♦♣♦s❡ ❛ ♥❡✇ ❤❛r❞✇❛r❡ ❘❊ ♠❛t❝❤✐♥❣ ❛r❝❤✐t❡❝t✉r❡ ❢♦r ❤✐❣❤✲

s♣❡❡❞ ♥❡t✇♦r❦ ❧✐♥❦s ✇✐t❤ t❤❡ t❤r♦✉❣❤♣✉t ♦✈❡r ✶✵✵●❜♣s✳ ❚❤❡

❛r❝❤✐t❡❝t✉r❡ ✉s❡s ♣✐♣❡❧✐♥❡❞ ❛✉t♦♠❛t❛ ❞✐r❡❝t❧② ♠❛♣♣❡❞ t♦ t❤❡

❋P●❆ ❧♦❣✐❝ ❛♥❞ ✐s ✇❡❧❧ s❝❛❧❛❜❧❡✳ ❚❤❡ t❤r♦✉❣❤♣✉t ❝❛♥ ❜❡ ❡❛s✐❧②

✐♥❝r❡❛s❡❞ ❜② t❤❡ ♥✉♠❜❡r ♦❢ ❛✉t♦♠❛t❛ ✐♥ t❤❡ ♣✐♣❡❧✐♥❡ ❛t t❤❡ ❝♦st

♦❢ ♦♥❧② t❤❡ ❧✐♥❡❛r ❣r♦✇t❤ ♦❢ ✉t✐❧✐③❛t✐♦♥ ♦❢ ❋P●❆ r❡s♦✉r❝❡s✳

▼♦r❡♦✈❡r✱ t❤❡ ❛r❝❤✐t❡❝t✉r❡ ✉s❡s ❛ s✐♥❣❧❡ ✐♥♣✉t ♣❛❝❦❡t ❜✉❢❢❡r t♦

r❡❞✉❝❡ ♠❡♠♦r② r❡q✉✐r❡♠❡♥ts✳

❚❤❡ ✇♦r❦ ✐s ❞✐✈✐❞❡❞ ✐♥t♦ s✐① s❡❝t✐♦♥s✳ ❚❤❡ ✐♥tr♦❞✉❝t✐♦♥ ✐s

❢♦❧❧♦✇❡❞ ❜② ❛♥ ❛♥❛❧②s✐s ♦❢ ♠✉❧t✐✲str✐❞✐♥❣ ✐♥ ❙❡❝✳ ■■✳ ❙❡❝✳ ■■■

❞✐s❝✉ss❡s ♣❛r❛❧❧❡❧ ❛r❝❤✐t❡❝t✉r❡s✳ ■ts s✉❜s❡❝t✐♦♥ ■■■✲❆ ❞❡s❝r✐❜❡s

❢❡❛t✉r❡s ♦❢ ♣❛r❛❧❧❡❧ ❛r❝❤✐t❡❝t✉r❡s ❛♥❞ s✉❜s❡❝t✐♦♥ ■■■✲❇ ♣r❡s❡♥ts

t❤❡ ♥❡✇ ❤✐❣❤✲s♣❡❡❞ ❛r❝❤✐t❡❝t✉r❡✳ ❚❤❡ ❡✈❛❧✉❛t✐♦♥ ❛♥❞ r❡s✉❧ts ❛r❡

♣r❡s❡♥t❡❞ ✐♥ ❙❡❝✳ ■❱ ❛♥❞ ❙❡❝✳ ❱ ❢♦❧❧♦✇❡❞ ❜② t❤❡ ❝♦♥❝❧✉s✐♦♥

✐♥ ❙❡❝✳ ❱■✳

■■✳ ❆◆�▲❨✁✄✁ ❖☎ ▼❯▲✆✄✲✁✆✝✄❉✄◆✞

❚❤❡ ♣✉r♣♦s❡ ♦❢ t❤✐s s❡❝t✐♦♥ ✐s t♦ ❛♥❛❧②③❡ ✇❤❡t❤❡r ♠✉❧t✐✲

str✐❞✐♥❣ ✐s s❝❛❧❛❜❧❡ t♦ ❛❝❤✐❡✈❡ t❤❡ t❤r♦✉❣❤♣✉t ♦❢ ✶✵✵●❜♣s

❛♥❞ ♠♦r❡✳ ✟✠✡☛☞✌✍☛✎☞✏☞✑✒ ✐s ❛ t❡❝❤♥✐q✉❡ t♦ ✐♥❝r❡❛s❡ t❤r♦✉❣❤♣✉t

♦❢ ❛ s②st❡♠ ❢♦r ♠❛t❝❤✐♥❣ str✐♥❣s ❛❣❛✐♥st ❛ s❡t ♦❢ r❡❣✉❧❛r

❡①♣r❡ss✐♦♥s ❬✷✷❪✳ ■t ✐s ✉s❡❞ t♦ ❝♦♥✈❡rt ❛ ✂♥✐t❡ ❛✉t♦♠❛t♦♥

✐♥t♦ ❛ ♠♦❞✐✂❡❞ ♦♥❡ t❤❛t ✐s ❡q✉✐✈❛❧❡♥t ✐♥ t❡r♠s ♦❢ ❛❝❝❡♣t❡❞

❧❛♥❣✉❛❣❡✳ ❚❤❡ ❞✐❢❢❡r❡♥❝❡ ✐s t❤❛t ✐♥♣✉t s②♠❜♦❧s ♦❢ t❤❡ ♠♦❞✐✂❡❞

✂♥✐t❡ ❛✉t♦♠❛t♦♥ ❛r❡ ♠❛❞❡ ✉♣ ❜② ❝♦♥❝❛t❡♥❛t✐♦♥ ♦❢ s❡✈❡r❛❧ ✐♥♣✉t

s②♠❜♦❧s ♦❢ t❤❡ ♦r✐❣✐♥❛❧ ✂♥✐t❡ ❛✉t♦♠❛t♦♥ s♦ t❤❛t ♠♦r❡ ✐♥♣✉t

s②♠❜♦❧s ♦❢ t❤❡ ♦r✐❣✐♥❛❧ ✂♥✐t❡ ❛✉t♦♠❛t♦♥ ❝❛♥ ❜❡ ♣r♦❝❡ss❡❞ ✐♥

❛ s✐♥❣❧❡ st❡♣✳ ❚❤❡ ♥✉♠❜❡r ♦❢ ✐♥♣✉t s②♠❜♦❧s ♣r♦❝❡ss❡❞ ❛t ♦♥❝❡

✐s ❝❛❧❧❡❞ ✡✓✔✓✡ ✕✖ ✗✠✡☛☞✌✍☛✎☞✏☞✑✒✳

❲❡ s❡❧❡❝t❡❞ ✘❋❆✲❜❛s❡❞ ❛r❝❤✐t❡❝t✉r❡ ❬✸❪ ❢♦r t❤❡ ❛♥❛❧②s✐s ❛s

✐t ❝❛♥ ❜❡ ❡❛s✐❧② ♠❛♣♣❡❞ ♦♥t♦ ❋P●❆ ❧♦❣✐❝ ❛♥❞ ✐t ❣❡♥❡r❛❧❧②

❛❝❤✐❡✈❡s ❛ ❤✐❣❤ ❢r❡q✉❡♥❝②✳ ■♥ ✘❋❆✲❜❛s❡❞ ❛r❝❤✐t❡❝t✉r❡✱ tr❛♥✲

s✐t✐♦♥s ❛r❡ ♠❛♣♣❡❞ t♦ ✙✚❚ ✭❧♦♦❦✲✉♣ t❛❜❧❡✮ ❡❧❡♠❡♥ts ♦❢ ❛♥

❋P●❆ ❝❤✐♣✳ ▼✉❧t✐✲str✐❞✐♥❣ ✐♥❝r❡❛s❡s t❤❡ ♥✉♠❜❡r ♦❢ tr❛♥s✐t✐♦♥s

❛♥❞✱ ♠♦r❡♦✈❡r✱ ♠❛♥② tr❛♥s✐t✐♦♥s ❝❛♥ ❜❡ ❝♦♥♥❡❝t❡❞ t♦ ❛ s✐♥❣❧❡

st❛t❡✳ ❚❤❡♥✱ ♥❡①t✲st❛t❡ ❧♦❣✐❝ ✐s ♠♦r❡ ❝♦♠♣❧❡①✱ ♠♦r❡ ✙✚❚s

❛r❡ ♦♥ t❤❡ ❝r✐t✐❝❛❧ ♣❛t❤ ❛♥❞ ♠❛①✐♠❛❧ ❛❝❤✐❡✈❛❜❧❡ ❢r❡q✉❡♥❝② ✐s

❧♦✇❡r✳ ❚❤❡r❡❢♦r❡✱ ✇❡ ❤❛✈❡ ✐♥s♣❡❝t❡❞ ❤♦✇ ❋P●❆ ✉t✐❧✐③❛t✐♦♥

❛♥❞ ♠❛①✐♠❛❧ ❛❝❤✐❡✈❛❜❧❡ ❢r❡q✉❡♥❝② ❝❤❛♥❣❡s ✇✐t❤ t❤❡ ❧❡✈❡❧ ♦❢

♠✉❧t✐✲str✐❞✐♥❣✳

❲❡ ❝♦♠♣❛r❡❞ t✇♦ s❝❡♥❛r✐♦s✳ ❚❤❡ ✂rst ♦♥❡ ✐s ♣r♦❝❡ss✐♥❣

✇✐t❤ ❛ s✐♥❣❧❡ ♠✉❧t✐✲str✐❞✐♥❣ ❛✉t♦♠❛t♦♥ ✇✐t❤ t❤❡ ❧❡✈❡❧ ♦❢ ♠✉❧t✐✲

str✐❞✐♥❣ ❡q✉❛❧ t♦ t❤❡ ✇✐❞t❤ ♦♥ ✐♥♣✉t ❞❛t❛ ❜✉s ✭❡①♣r❡ss❡❞

❛s t❤❡ ♥✉♠❜❡r ♦❢ s②♠❜♦❧s✮✳ ❚❤❡ s❡❝♦♥❞ ♦♥❡ ✐s ♣r♦❝❡ss✐♥❣

✇✐t❤ ♠✉❧t✐♣❧❡ ♣❛r❛❧❧❡❧ ♠✉❧t✐✲str✐❞✐♥❣ ❛✉t♦♠❛t❛✳ ❊❛❝❤ ♦❢ t❤❡s❡

❛✉t♦♠❛t❛ ♣r♦❝❡ss❡s ❛ ♣♦rt✐♦♥ ♦❢ t❤❡ ✐♥♣✉t ❞❛t❛ ❜✉s ❛♥❞ ❤❛s

r❡❞✉❝❡❞ ❧❡✈❡❧ ♦❢ ♠✉❧t✐✲str✐❞✐♥❣ ❝♦♠♣❛r❡❞ t♦ t❤❡ ✂rst ❝❛s❡✳ ❲❡

✉s❡❞ ❛✉t♦♠❛t❛ ✇✐t❤ t❤❡ ❧❡✈❡❧ ♦❢ ♠✉❧t✐✲str✐❞✐♥❣ r❛♥❣✐♥❣ ❢r♦♠

✶ t♦ ✻✹✳ ■t ✐s ✐♠♣♦rt❛♥t t♦ ♥♦t❡ t❤❛t t❤❡ ❛♥❛❧②s✐s ✐s ❢♦❝✉s❡❞ ♦♥❧②

♦♥ t❤❡ s❝❛❧❛❜✐❧✐t② ♦❢ ♠✉❧t✐✲str✐❞✐♥❣✳ ❚❤❡ ♦✈❡r❤❡❛❞ ❝❛✉s❡❞ ❜②

t❤❡ ❞✐str✐❜✉t✐♦♥ ♦❢ ✐♥♣✉t ❞❛t❛ ❛♠♦♥❣ ♠✉❧t✐♣❧❡ ♣❛r❛❧❧❡❧ ❛✉t♦♠❛t❛

✐s ♥♦t ❝♦♥s✐❞❡r❡❞✳

❚❤❡ ❛♥❛❧②s✐s ✇❛s ♣❡r❢♦r♠❡❞ ❜② ❛ s❡t ♦❢ r✉❧❡s ❢r♦♠ t❤❡ ✙✼

❝❧❛ss✐✂❡r ❢♦r ✙✐♥✉① ✘❡t✂❧t❡r t❤❛t ❛r❡ ♠❛r❦❡❞ ➇●r❡❛t✿ ❲♦r❦s✳➈
✛

❙②♥t❤❡s✐s ✇❛s ♣❡r❢♦r♠❡❞ ❢♦r ❳✐❧✐♥① ❱✐rt❡①✲✼ ❱❍✺✽✵❚ ❝❤✐♣

✉s✐♥❣ ❱✐✈❛❞♦ t♦♦❧ ✈✳✷✵✶✻✳✶✳

❚❤❡ r❡s✉❧ts ♦❢ t❤❡ ❛♥❛❧②s✐s ❛r❡ s❤♦✇♥ ✐♥ t❤❡ ❣r❛♣❤ ✐♥

❋✐❣✳ ✶✳ ❚❤❡ ❣r❛♣❤ s❤♦✇s t❤❡ s❝❛❧❛❜✐❧✐t② ♦❢ ♠✉❧t✐✲str✐❞✐♥❣ ❛♥❞

♣❛r❛❧❧❡❧ ❝♦♥✂❣✉r❛t✐♦♥s ✐♥ t❡r♠s ♦❢ ❋P●❆ ❧♦❣✐❝ ✉t✐❧✐③❛t✐♦♥

❛♥❞ ❛❝❤✐❡✈❛❜❧❡ t❤r♦✉❣❤♣✉t✳ ❚❤r♦✉❣❤♣✉t ✐s ❜❛s❡❞ ♦♥ ♠❛①✐♠❛❧

❛❝❤✐❡✈❛❜❧❡ ❢r❡q✉❡♥❝② ♦❢ ❛ s♣❡❝✐✂❝ ❝♦♥✂❣✉r❛t✐♦♥ ❛♥❞ ✐♥♣✉t ❞❛t❛

❜✉s ✇✐❞t❤✳ ❊❛❝❤ ❞❛t❛ ♣♦✐♥t r❡♣r❡s❡♥ts t❤❡ r❡q✉✐r❡❞ ♥✉♠❜❡r ♦❢

✙✚❚ ❡❧❡♠❡♥ts ♦♥ t❤❡ ② ❛①✐s t❤❛t ❛r❡ ♥❡❝❡ss❛r② t♦ ♣r♦❝❡ss

❞❛t❛ str❡❛♠ ✇✐t❤ t❤r♦✉❣❤♣✉t ♦♥ t❤❡ ① ❛①✐s✳ ❊❛❝❤ ❞❛t❛ s❡r✐❡s

✐s ❧❛❜❡❧❧❡❞ ✜✢✎✢✡✡✓✡ ✣✤✱ ❡①❝❡♣t ❢♦r t❤❡ ❞❛t❛ s❡r✐❡s ♦❢ ❛ s✐♥❣❧❡

♠✉❧t✐✲str✐❞✐♥❣ ❛✉t♦♠❛t♦♥✱ ❛♥❞ r❡♣r❡s❡♥ts ❛ s②st❡♠ ❝♦♠♣r✐s❡❞

♦❢ ♠✉❧t✐♣❧❡ ♠✉❧t✐✲str✐❞✐♥❣ ❛✉t♦♠❛t❛ ♣r♦❝❡ss✐♥❣ ✥ ✐♥♣✉t s②♠✲

❜♦❧s ❛t ♦♥❝❡✳ ❋♦r ❡①❛♠♣❧❡ ❞❛t❛ s❡r✐❡s ❧❛❜❡❧❧❡❞ ✜✢✎✢✡✡✓✡ ✣✦✧

s❤♦✇s ❛♥ ❛❝❤✐❡✈❛❜❧❡ t❤r♦✉❣❤♣✉t ♦❢ ❛ s②st❡♠ ❝♦♠♣r✐s❡❞ ♦❢

♠✉❧t✐♣❧❡ ♠✉❧t✐✲str✐❞✐♥❣ ❛✉t♦♠❛t❛✱ ❡❛❝❤ ♣r♦❝❡ss✐♥❣ ✶✻ ✐♥♣✉t

s②♠❜♦❧s ❛t ♦♥❝❡✳ ❚❤❡ ♠♦r❡ ♠✉❧t✐✲str✐❞✐♥❣ ❛✉t♦♠❛t❛ ✇❤✐❝❤ ❛r❡

♥❡❝❡ss❛r② s♦ ❛s t♦ ❛❝❤✐❡✈❡ t❤❡ r❡q✉✐r❡❞ t❤r♦✉❣❤♣✉t✱ t❤❡ ♠♦r❡

✙✚❚ ❡❧❡♠❡♥ts ❛r❡ ✉s❡❞✳

■♥ t❤❡ ❣r❛♣❤ ✐♥ ❋✐❣✳ ✶ ✇❡ ❝❛♥ s❡❡ t❤❡ ❡①♣♦♥❡♥t✐❛❧ ❣r♦✇t❤ ✐♥

✉t✐❧✐③❛t✐♦♥ ♦❢ ✙✚❚ ❡❧❡♠❡♥ts ✇✐t❤ t❤❡ ❧❡✈❡❧ ♦❢ ♠✉❧t✐✲str✐❞✐♥❣✳

★♥ t❤❡ ♦t❤❡r ❤❛♥❞✱ ✉t✐❧✐③❛t✐♦♥ ♦❢ ✙✚❚ ❡❧❡♠❡♥ts ✐♥❝r❡❛s❡s ♦♥❧②

❧✐♥❡❛r❧② ✇✐t❤ t❤❡ ♥✉♠❜❡r ♦❢ ♣❛r❛❧❧❡❧ ♠✉❧t✐✲str✐❞✐♥❣ ❛✉t♦♠❛t❛✳

✩

✪✩✩✩

✫✩✩✩✩

✫✪✩✩✩

✬✩✩✩✩

✬✪✩✩✩

✯✩✩✩✩

✩ ✬✩ ✰✩ ✴✩ ✾✩ ✫✩✩ ✫✬✩ ✫✰✩

❀❁
❂
❃
❄❅
❈

❏❑◗❩❭❫❑❴❭❏ ❵❥④❴⑤⑥

❴⑦◗⑦⑧⑧⑨⑧ ⑩✫
❴⑦◗⑦⑧⑧⑨⑧ ⑩✬
❴⑦◗⑦⑧⑧⑨⑧ ⑩✰
❴⑦◗⑦⑧⑧⑨⑧ ⑩✾
❴⑦◗⑦⑧⑧⑨⑧ ⑩✫✴
❴⑦◗⑦⑧⑧⑨⑧ ⑩✯✬
❶❭⑧❏❷❸⑤❏◗❷❹❷❺❫

☎❻❼❽ ❾❽ ✆❿➀➁➂❼❿➃➂➄ ➁➅ ➆ ➉❻➊❼➋➌ ➍➂➋➄❻➎➉➄➀❻➏❻➊❼ ➆➂➄➁➍➆➄➁➊ ➐➑➒➓➔→➣↔➔↕→➙→➛➜➝ ➆➊➏

➃➆➀➆➋➋➌➋ ➞➁➊➟❼➂➀➆➄❻➁➊➉ ➐➠➡↕➡➓➓➢➓ ➤➥➝

❚❤❡ ❣r❛♣❤ ✐♥ ❋✐❣✳ ✶ ✐s ❜❛s❡❞ ♦♥ t❤❡ ✈❛❧✉❡s ❢r♦♠ ❚❛❜❧❡ ■

❛♥❞ ❚❛❜❧❡ ■■✳ ❚❛❜❧❡ ■ s❤♦✇s ♠❛①✐♠❛❧ ❛❝❤✐❡✈❛❜❧❡ t❤r♦✉❣❤♣✉t ❢♦r

✈❛r✐♦✉s ❧❡✈❡❧s ♦❢ ♠✉❧t✐✲str✐❞✐♥❣ ❛♥❞ ♣❛r❛❧❧❡❧ ❝♦♥✂❣✉r❛t✐♦♥s✳ ❚❤❡

r♦✇s ❝♦rr❡s♣♦♥❞ t♦ t❤❡ ❧❡✈❡❧s ♦❢ ♠✉❧t✐✲str✐❞✐♥❣ ❛♥❞ t❤❡ ❝♦❧✉♠♥s

❝♦rr❡s♣♦♥❞ t♦ t❤❡ ✇✐❞t❤s ♦❢ ✐♥♣✉t ❞❛t❛ ❜✉s❡s ✭❡①♣r❡ss❡❞ ❛s t❤❡

♥✉♠❜❡r ♦❢ s②♠❜♦❧s✮✳ ❚❤❡ ✂rst ❝♦❧✉♠♥ ✭♠❛r❦❡❞ ➦✮ r❡♣r❡s❡♥ts

t❤❡ ❧❡✈❡❧ ♦❢ ♠✉❧t✐✲str✐❞✐♥❣ ♦❢ ❡❛❝❤ s✐♥❣❧❡ ❛✉t♦♠❛t♦♥✳ ❚❤❡

s❡❝♦♥❞ ❝♦❧✉♠♥ ✭♠❛r❦❡❞ ➧✮ s❤♦✇s ♠❛①✐♠❛❧ ❢r❡q✉❡♥❝② ✐♥ ▼❍③✱

t❤❡ ♦t❤❡r t❛❜❧❡ ❝❡❧❧s s❤♦✇ t❤r♦✉❣❤♣✉t ✐♥ ●❜♣s✳ ✙❡t➨s ❝♦♥s✐❞❡r

✐♥♣✉t ❞❛t❛ ❜✉s t❤❛t ✐s ✶✻ s②♠❜♦❧s ✇✐❞❡✳ ❚❤❡ ❝♦rr❡s♣♦♥❞✐♥❣

➩❿➄➄➃➫➭➭➋➯➎➟➋➄➌➀❽➉➁➂➀➞➌➅➁➀❼➌❽➊➌➄➭➃➀➁➄➁➞➁➋➉

94

❝♦❧✉♠♥ ✐s ♠❛r❦❡❞ ✇✐t❤ t❤❡ ♥✉♠❜❡r ✶✻✳ ❚❤❡ ❝❛s❡ ♦❢ t❤❡

✂rst r♦✇ ❧❛❜❡❧❧❡❞ ❛s ✶ r❡s✉❧ts ✐♥ ❛ s②st❡♠ ❝♦♠♣r✐s❡❞ ♦❢

�✁ ♣❛r❛❧❧❡❧ ❛✉t♦♠❛t❛✱ ❡❛❝❤ ♣r♦❝❡ss✐♥❣ ♦♥❡ ✐♥♣✉t s②♠❜♦❧ ❛t

❛ t✐♠❡✳ ❚❤❡ ❝❛s❡ ♦❢ t❤❡ s❡❝♦♥❞ r♦✇ ❧❛❜❡❧❧❡❞ ❛s ✷ r❡s✉❧ts ✐♥

❛ s②st❡♠ ❝♦♠♣r✐s❡❞ ♦❢ ❡✐❣❤t ♣❛r❛❧❧❡❧ ❛✉t♦♠❛t❛ ✉s✐♥❣ ♠✉❧t✐✲

str✐❞✐♥❣ t❡❝❤♥✐q✉❡ t♦ ♣r♦❝❡ss t✇♦ ✐♥♣✉t s②♠❜♦❧s ❛t ♦♥❝❡✱ ❡t❝✳

■❢ t❤❡ ❧❡✈❡❧ ♦❢ ♠✉❧t✐✲str✐❞✐♥❣ ✐s ❣r❡❛t❡r t❤❛♥ t❤❡ ✇✐❞t❤ ♦❢ ✐♥♣✉t

❞❛t❛ ❜✉s✱ t❤❡ ❝♦rr❡s♣♦♥❞✐♥❣ ❝❡❧❧ ❝♦♥t❛✐♥s ❛ ✈❛❧✉❡ ◆✴❆ ✭♥♦t

❛♣♣❧✐❝❛❜❧❡✮✳

❚❛❜❧❡ ■■ s❤♦✇s t❤❡ ✉t✐❧✐③❛t✐♦♥ ✐♥ t❡r♠s ♦❢ ▲❯❚ ❡❧❡♠❡♥ts✳

❚❤❡ t❛❜❧❡ ✐s ♦r❣❛♥✐③❡❞ ✐♥ t❤❡ s❛♠❡ ✇❛② ❛s ❚❛❜❧❡ ■✳ ❚❤❡ r♦✇s

❝♦rr❡s♣♦♥❞ t♦ t❤❡ ❧❡✈❡❧s ♦❢ ♠✉❧t✐✲str✐❞✐♥❣ ❛♥❞ t❤❡ ❝♦❧✉♠♥s

❝♦rr❡s♣♦♥❞ t♦ t❤❡ ✇✐❞t❤s ♦❢ ✐♥♣✉t ❞❛t❛ ❜✉s❡s ✭❡①♣r❡ss❡❞ ❛s t❤❡

♥✉♠❜❡r ♦❢ s②♠❜♦❧s✮✳ ❲❡ ❝❛♥ s❡❡ t❤❛t t❤❡ ♠♦st s✉✐t❛❜❧❡ ❧❡✈❡❧

♦❢ ♠✉❧t✐✲str✐❞✐♥❣ ✐s ❢♦✉r s✐♥❝❡ ✐t r❡s✉❧ts ✐♥ t❤❡ ❧♦✇❡st ✉t✐❧✐③❛t✐♦♥

♦❢ ▲❯❚ ❡❧❡♠❡♥ts ✭♥♦t ❝♦♥s✐❞❡r✐♥❣ t❤❡ ✂rst t✇♦ ❝♦❧✉♠♥s✮✳

■t ✐s ✐♠♣♦rt❛♥t t♦ ♥♦t❡ t❤❛t ✇❡ ✇❡r❡ ♥♦t ❛❜❧❡ t♦ s②♥t❤❡✲

s✐③❡ ❛✉t♦♠❛t❛ ❢♦r t❤❡ ❧❡✈❡❧ ♦❢ ♠✉❧t✐✲str✐❞✐♥❣ ❣r❡❛t❡r t❤❛♥ ✸✄✳

❚❤❡ s②♥t❤❡s✐s ❢❛✐❧❡❞ ❞✉❡ t♦ ❡①❤❛✉st✐♦♥ ♦❢ s②st❡♠ r❡s♦✉r❝❡s✳

❚❤❡r❡❢♦r❡✱ ♠❛①✐♠❛❧ ❢r❡q✉❡♥❝②✱ t❤r♦✉❣❤♣✉t✱ ❛♥❞ ❋P●☎ ❧♦❣✐❝

✉t✐❧✐③❛t✐♦♥ ❛r❡ ♣r❡s❡♥t❡❞ ♦♥❧② ✉♣ t♦ t❤✐s ❧❡✈❡❧ ♦❢ ♠✉❧t✐✲str✐❞✐♥❣✳

✆✝❇✞❊ ✟

✆❍❘❖✠✡❍☛✠☞ ✌✍ ✎✏☛❙ ✑❖❘ ❱✒❘✌❖✠❙ ❈❖✍✑✌✡✠❘✒☞✌❖✍❙ ❖✑ ☛✒❘✒✓✓✔✓
✒✠☞❖▼✒☞✒

✕✖✗✘✙ ✚✛ ✖✜✢✣✘ ✗✤✘✤ ✥✣✦

✧ ★ ✩ ✪ ✹ ✽ ✩✫ ✬✪ ✫✹

✩ ✺✫✩ ✹✯✹ ✽✯✾ ✩✼✯✾ ✬✺✯✾ ✼✩✯✾ ✩✹✬✯✽ ✪✽✼✯✫

✪ ✹✺✺ ✰✵✝ ✼✯✪ ✩✹✯✺ ✪✾✯✩ ✺✽✯✪ ✩✩✫✯✺ ✪✬✬✯✿

✹ ✬✿✽ ✰✵✝ ✰✵✝ ✾✯✽ ✩✾✯✼ ✬✾✯✹ ✼✽✯✽ ✩✺✼✯✼

✽ ✪✫✩ ✰✵✝ ✰✵✝ ✰✵✝ ✩✫✯✼ ✬✬✯✺ ✫✼✯✿ ✩✬✹✯✿

✩✫ ✩✾✽ ✰✵✝ ✰✵✝ ✰✵✝ ✰✵✝ ✪✺✯✹ ✺✿✯✽ ✩✿✩✯✼

✬✪ ✩✹✬ ✰✵✝ ✰✵✝ ✰✵✝ ✰✵✝ ✰✵✝ ✬✫✯✫ ✼✬✯✬

✧ ✞❀❁❀❂ ✚✛ ❃✣❂✘✖❄✦✘❅✖✗✖✜❉ ✚✛ ✢✤❅✤❂❂❀❂ ✤✣✘✚❃✤✘✤

★ ❏✤❑✯ ✛❅❀◗✣❀✜❳❨ ❬❏❩❭❪

✆✝❇✞❊ ✟✟

✰✠▼✏✔❘ ❖✑ ✞❫✆ ✔✓✔▼✔✍☞❙ ✑❖❘ ❱✒❘✌❖✠❙ ❈❖✍✑✌✡✠❘✒☞✌❖✍❙ ❖✑

☛✒❘✒✓✓✔✓ ✒✠☞❖▼✒☞✒

✕✖✗✘✙ ✚✛ ✖✜✢✣✘ ✗✤✘✤ ✥✣✦

✧ ✩ ✪ ✹ ✽ ✩✫ ✬✪ ✫✹

✩ ✪✼✹ ✺✹✽ ✩✿✾✫ ✪✩✾✪ ✹✬✽✹ ✽✼✫✽ ✩✼✺✬✫

✪ ✰✵✝ ✹✬✬ ✽✫✫ ✩✼✬✪ ✬✹✫✹ ✫✾✪✽ ✩✬✽✺✫

✹ ✰✵✝ ✰✵✝ ✽✩✩ ✩✫✪✪ ✬✪✹✹ ✫✹✽✽ ✩✪✾✼✫

✽ ✰✵✝ ✰✵✝ ✰✵✝ ✪✿✩✽ ✹✿✬✫ ✽✿✼✪ ✩✫✩✹✹

✩✫ ✰✵✝ ✰✵✝ ✰✵✝ ✰✵✝ ✺✿✺✼ ✩✿✩✩✹ ✪✿✪✪✽

✬✪ ✰✵✝ ✰✵✝ ✰✵✝ ✰✵✝ ✰✵✝ ✩✹✪✬✾ ✪✽✹✼✽

✧ ✞❀❁❀❂ ✚✛ ❃✣❂✘✖❄✦✘❅✖✗✖✜❉ ✚✛ ✢✤❅✤❂❂❀❂ ✤✣✘✚❃✤✘✤

❚❤❡ s❡❝♦♥❞ ❝♦❧✉♠♥ ✭♠❛r❦❡❞ ❴✮ ♦❢ ❚❛❜❧❡ ■ r❡✈❡❛❧s t❤❛t t❤❡

❢r❡q✉❡♥❝② ♦❢ ♠✉❧t✐✲str✐❞✐♥❣ ❛✉t♦♠❛t❛ r❛♣✐❞❧② ❞❡❝r❡❛s❡s ❛s t❤❡

❧❡✈❡❧ ♦❢ ♠✉❧t✐✲str✐❞✐♥❣ ✐♥❝r❡❛s❡s✳ ❚❤❡ ❞❛t❛ s❡r✐❡s ♠❛r❦❡❞ ❵❥④⑤⑥⑦

⑧⑤⑨⑥⑩⑥❶❷ ♦❢ t❤❡ ❣r❛♣❤ ✐♥ ❋✐❣✳ � s❤♦✇s t❤❛t t❤❡ ❋P●☎ ❧♦❣✐❝

✉t✐❧✐③❛t✐♦♥ ♦❢ ♠✉❧t✐✲str✐❞✐♥❣ ❛✉t♦♠❛t❛ ✐♥❝r❡❛s❡s ❡①♣♦♥❡♥t✐❛❧❧②

✇✐t❤ t❤❡ t❤r♦✉❣❤♣✉t✳ ■t ❛❧s♦ s❤♦✇s t❤❛t ♠❛①✐♠❛❧ ❛❝❤✐❡✈❛❜❧❡

t❤r♦✉❣❤♣✉t ✐s ♦♥❧② ✸✁●❜♣s✱ ❡✈❡♥ ❢♦r ❸❋☎✲❜❛s❡❞ ❛r❝❤✐t❡❝t✉r❡

t❤❛t ✐s ✇❡❧❧ s✉✐t❛❜❧❡ ❢♦r s②♥t❤❡s✐s t♦♦❧s✳

❋r♦♠ t❤❡ ❛♥❛❧②s✐s ✇❡ ❝❛♥ s❡❡ t❤❛t ♠✉❧t✐✲str✐❞✐♥❣ ✐s ♥♦t

s❝❛❧❛❜❧❡ ❛♥❞ ❝❛♥♥♦t ❜❡ ✉s❡❞ t♦ ❛❝❤✐❡✈❡ t❤r♦✉❣❤♣✉t ✐♥ t❤❡ ♦r❞❡r

♦❢ ❤✉♥❞r❡❞s ♦❢ ❣✐❣❛❜✐ts✳ ❋♦r ❤✐❣❤✲s♣❡❡❞ ♥❡t✇♦r❦s✱ ✐t ✐s ❜❡tt❡r

t♦ ✉s❡ ♠✉❧t✐♣❧❡ ♠✉❧t✐✲str✐❞✐♥❣ ❛✉t♦♠❛t❛ ✐♥ ♣❛r❛❧❧❡❧✳ ❚❤❡r❡❢♦r❡✱

✇❡ ❛♥❛❧②③❡❞ s❡✈❡r❛❧ ❛♣♣r♦❛❝❤❡s ✉s✐♥❣ ♣❛r❛❧❧❡❧ ❛✉t♦♠❛t❛ ❛♥❞

❞❡s✐❣♥❡❞ ❛ ♥❡✇ s❝❛❧❛❜❧❡ ❛r❝❤✐t❡❝t✉r❡✳

■■■✳ ☎❹❺❩✟✆❊❺✆❫❹❊

❆❻ ❆⑨❼❽⑥⑤❾❼⑤❥⑨❾⑧ ❿⑥⑤❽ ➀➁⑨➁④④❾④ ❆❥⑤➂❵➁⑤➁

❲❡ ❤❛✈❡ ❝♦♥s✐❞❡r❡❞ s❡✈❡r❛❧ ❛r❝❤✐t❡❝t✉r❡s t♦ ❝♦✈❡r t❤❡ ❛♣✲

♣r♦❛❝❤ ❞❡s❝r✐❜❡❞ ✐♥ t❤❡ ♣r❡✈✐♦✉s s❡❝t✐♦♥✳ ❚❤❡ ♠♦st str❛✐❣❤t✲

❢♦r✇❛r❞ ✐s t❤❡ ❛r❝❤✐t❡❝t✉r❡ ❞❡♣✐❝t❡❞ ✐♥ ❋✐❣✳ ✄✳

➃

➄➅➆➇➈➉
➊➋➌➌➈➍

➄➅➆➇➈➉
➊➋➌➌➈➍ ➃

➃

➄➅➆➇➈➉
➊➋➌➌➈➍

➃

➎➏
➐➑
➒➓
➔→
➣➓
↔→↕
➙➓
→➛
➜

➃

➃
➃➝➞

➞

➞

➃
➃➝➞

➃➝➞

➞
➟➋➠➉➡➢➤➉➍➡➥➡➞➦

➧➨➩

➧➨➩

➧➨➩

➤➉➅➉➈

➤➉➅➉➈

➤➉➅➉➈

➫
➭➯➲➳
➵➸➯➫
➭➺

➻✖❉✯ ✪✯ ➼✤❅✤❂❂❀❂ ✤❅❳✙✖✘❀❳✘✣❅❀ ➽✖✘✙ ✗✖✦✘❅✖✥✣✘❀✗ ✥✣✛✛❀❅✦

■t ✐s ❜❛s❡❞ ♦♥ t❤❡ ❞✐str✐❜✉t✐♦♥ ♦❢ ✐♥❝♦♠✐♥❣ ♣❛❝❦❡ts t♦ s❡✈❡r❛❧

s❡♣❛r❛t❡ ❞❛t❛ ♣❛t❤s✱ ✇❤❡r❡ ♣❛❝❦❡ts ❛r❡ ♣r♦❝❡ss❡❞ ❛t ❛ ❧♦✇❡r

s♣❡❡❞✳ ■♥♣✉t ❞❛t❛ ✇✐❞t❤ ✐s ➾ ❛♥❞ ❡❛❝❤ ❞❛t❛ ♣❛t❤ ❝♦♥t❛✐♥s ❛♥

❸❋☎ t❤❛t ♣r♦❝❡ss❡s ➚ ❜✐ts ✭➚ ➪ ➾✮ ✉s✐♥❣ ♠✉❧t✐✲str✐❞✐♥❣✳ ❚❤❡

❞r❛✇❜❛❝❦ ♦❢ t❤✐s ❛r❝❤✐t❡❝t✉r❡ ✐s t❤❡ ♥❡❝❡ss✐t② ♦❢ ❞❛t❛ ✇✐❞t❤

tr❛♥s❢♦r♠❛t✐♦♥ ♦❢ ❡❛❝❤ ❞❛t❛ ♣❛t❤✳ ■♥ ♦r❞❡r t♦ ❣✉❛r❛♥t❡❡ t❤❡

♣r♦❝❡ss✐♥❣ ♦❢ ♣❛❝❦❡ts ✇✐t❤♦✉t ✇❛✐t st❛t❡s✱ ✐t ✐s ♥❡❝❡ss❛r② t♦

♣❧❛❝❡ ❛ q✉❡✉❡ ✐♥ ❢r♦♥t ♦❢ ❡❛❝❤ ❞❛t❛ ✇✐❞t❤ tr❛♥s❢♦r♠❡r✳ ❚❤❡

q✉❡✉❡ ✇✐❧❧ ❝♦♠♣❡♥s❛t❡ ❢♦r ❧♦✇❡r s♣❡❡❞ ♦❢ ❞❛t❛ ♣r♦❝❡ss✐♥❣

✐♥ ❸❋☎s✳ ❚❤❡ q✉❡✉❡s ❛r❡ ✐♠♣❧❡♠❡♥t❡❞ ✇✐t❤ ❜❧♦❝❦ ➶☎➹s

♦❢ t❤❡ ❋P●☎ ❝❤✐♣ ❜❡❝❛✉s❡ t❤❡ s✐③❡ ♦❢ q✉❡✉❡s ✐s t♦♦ ❧❛r❣❡✳

■❢ ✐♠♣❧❡♠❡♥t❡❞ ✐♥ ❞✐str✐❜✉t❡❞ ♠❡♠♦r②✱ t❤❡② ✇♦✉❧❞ ❝♦♥s✉♠❡

❛ ❧♦t ♦❢ ▲❯❚s✳ ➘❧♦❝❦ ➶☎➹s ♦❢ ➴✐rt❡①✲➷ ❝❤✐♣ ❤❛✈❡ ❛ ❝❛♣❛❝✐t②

♦❢ ✸✄ ➬❜✐ts ✭✇✐t❤♦✉t ♣❛r✐t② ♣❛rt✮ ❛♥❞ ❛ r❡❛❞➮✇r✐t❡ ♣♦rt ✇✐t❤

❛ ❝♦♥✂❣✉r❛❜❧❡ ✇✐❞t❤✳ ➹❛①✐♠❛❧ ✇✐❞t❤ ♦❢ ❛ r❡❛❞➮✇r✐t❡ ♣♦rt

✐s ✁➱ ❜✐ts ✭❡✐❣❤t ♣❛r✐t② ❜✐ts ❛r❡ ♥♦t ✉s❡❞✮✳ ❋♦r ❡①❛♠♣❧❡✱ ✐♥

♦r❞❡r t♦ st♦r❡ ✃�✄ ❜✐ts ✇✐❞❡ ✐t❡♠s✱ ✇❡ ♥❡❡❞ ❡✐❣❤t s✉❝❤ ❜❧♦❝❦

➶☎➹s✳ ➹✐♥✐♠❛❧ ❝❛♣❛❝✐t② ♦❢ ❛ q✉❡✉❡ ❝♦♠♣r✐s❡❞ ♦❢ ❡✐❣❤t ❜❧♦❝❦

➶☎➹s ✐s t❤❡♥ ❐ ❒ ❮❰ÏÐÑÒÓ Ô ❰ÕÖÏÐÑÒÓ Ô ❮❰Ï×✳ ●✐✈❡♥ ❛♥

Øt❤❡r♥❡t ❢r❛♠❡ ♦❢ ❛ ♠❛①✐♠✉♠ ❧❡♥❣t❤ ♦❢ �✃�Ù➘ ✭Ú✉♠❜♦ ❢r❛♠❡s

❛r❡ ♥♦t ❝♦♥s✐❞❡r❡❞✮✱ ✉t✐❧✐③❛t✐♦♥ ♦❢ ✉s❡❞ ❜❧♦❝❦ ➶☎➹s ✐s ♦♥❧②

➱✳✁✸Û✱ ✇❤✐❝❤ ✐♥❞✐❝❛t❡s ✈❡r② ❧♦✇ ♠❡♠♦r② ❡❢❢❡❝t✐✈❡♥❡ss ♦❢ t❤✐s

❛♣♣r♦❛❝❤✳

▲♦✇ ❡❢❢❡❝t✐✈❡♥❡ss ♦❢ ♠❡♠♦r② ✉t✐❧✐③❛t✐♦♥ ❝❛♥ ❜❡ r❡♠♦✈❡❞

✇✐t❤ ❛ s❤❛r❡❞ ♣❛❝❦❡t ❜✉❢❢❡r ❢♦r ❛❧❧ ❸❋☎s✱ ✇❤✐❝❤ ✐s s❤♦✇♥ ✐♥

❋✐❣✳ ✸✳

❚❤❡ ❛r❝❤✐t❡❝t✉r❡ ✉s❡s ♣❛r❛❧❧❡❧ ❸❋☎s ✇✐t❤ ♠✉❧t✐✲str✐❞✐♥❣✳

Ø❛❝❤ ❸❋☎ ♣r♦❝❡ss❡s ➚ ❜✐ts ❛t ♦♥❝❡ ✐♥ t❤❡ s❛♠❡ ✇❛② ❛s t❤❡

95

♠�✁✂✄☎✆✂✝✄✞✄✟✠

◆ ♣✡☛☞✌✂ ✍�✎✎✌✝

✟▼

❳

✟▼

❳

❋✏▼

❋✏▼

❋✏▼
✟

✆✂✡✂✌

✆✂✡✂✌

✆✂✡✂✌

✑
✒
✓✔
✕
✖
✗✓✑
✒
✘

☛✝❝✆✆✍✡✝

✙✐❣✳ ✸✳ P❛r❛❧❧❡❧ ❛r✚❤✐t❡✚t✉r❡ ✇✐t❤ ❛ s❤❛r❡❞ ✛❛✚❦❡t ❜✉❢❢❡r ❛♥❞ ❧❛r❣❡ ✜✉❧t✐✛❧❡①❡rs

✢✣✤✈✥♦✦✧ ★✣✩✪✥✫✤✩✫✦✣✤✬ ❚✪✤ ✭✣★✮✯★✩✰ ♦✱ ✫✪✥✧ ★✢✢✣♦★✩✪ ✥✧ ✫✪✤

✲✤✩✤✧✧✥✫② ♦✱ ✢✴★✩✥✲✵ ★ ✶✦✴✫✥✢✴✤✷✤✣ ✥✲ ✱✣♦✲✫ ♦✱ ✤★✩✪ ✹✺❆✻ ✯★✧✥✼

✩★✴✴② ✱♦✣✶✥✲✵ ★ ✩✣♦✧✧✯★✣✬ ❚✪✤ ✶✦✴✫✥✢✴✤✷✤✣✧ ★✴✴♦✮ ✱♦✣ ✣✤★✭✥✲✵

★✲② ✢★✣✫ ♦✱ ✫✪✤ ✥✲✢✦✫ ✭★✫★ ✱✣♦✶ ✫✪✤ ✢★✩✰✤✫ ✯✦✱✱✤✣✬ ❚✪✤ ✮✥✭✤✣ ✫✪✤

✥✲✢✦✫ ✭★✫★ ✥✧✻ ✫✪✤ ✶♦✣✤ ✶✦✴✫✥✢✴✤✷✤✣✧ ✫✪✤✣✤ ★✣✤✻ ★✲✭ ✥✫ ✥✧ ✶♦✣✤

✩♦✶✢✴✥✩★✫✤✭ ✱♦✣ ✫✪✤ ✧②✲✫✪✤✧✥✧ ✫♦♦✴ ✫♦ ✣♦✦✫✤ ✥✲✫✤✣✩♦✲✲✤✩✫✥♦✲✧

★✶♦✲✵ ✶✦✴✫✥✢✴✤✷✤✣✧✻ ✧✪★✣✤✭ ✭✤✩♦✭✤✣✧ ★✲✭ ✹✺❆✧✬ ■✲ ♦✣✭✤✣ ✫♦

★✲★✴②③✤ ✫✪✤ ✧✦✥✫★✯✥✴✥✫② ♦✱ ✫✪✥✧ ★✣✩✪✥✫✤✩✫✦✣✤✻ ✮✤ ✪★✈✤ ✱♦✩✦✧✤✭

♦✲ ✫✪✤ ✶✦✴✫✥✢✴✤✷✤✣ ✲✤✫✮♦✣✰ ✥✫✧✤✴✱ ★✲✭ ✧②✲✫✪✤✧✥③✤✭ ✥✫ ✥✲ ✧✤✈✤✣★✴

✩♦✲✽✵✦✣★✫✥♦✲✧ ♦✱ ✭★✫★ ✮✥✭✫✪✬ ❚★✯✴✤ ■■■ ✧✪♦✮✧ ▲❯❚ ✦✫✥✴✥③★✫✥♦✲✬

✾✿❀❁❂ ❃❄❅❂❇ ✩♦✴✦✶✲ ✣✤✢✣✤✧✤✲✫✧ ✫✪✤ ✮✥✭✫✪ ♦✱ ✥✲✢✦✫ ✭★✫★ ✯✦✧ ★✲✭

❀❈❂❇❉ ❃❄❅❂❇ ✩♦✴✦✶✲✧ ✣✤✢✣✤✧✤✲✫ ✫✪✤ ✮✥✭✫✪ ♦✱ ✹✺❆ ✭★✫★ ✢★✫✪✧✬

❊●❍ ✩♦✴✦✶✲✧ ✣✤✢✣✤✧✤✲✫ ✫✪✤ ✲✦✶✯✤✣ ♦✱ ✶✦✴✫✥✢✴✤✷✤✣✧ ✫✪★✫ ★✣✤

✲✤✩✤✧✧★✣② ✱♦✣ ✩♦✣✣✤✧✢♦✲✭✥✲✵ ✩♦✲✽✵✦✣★✫✥♦✲✧✬ ❚★✯✴✤ ■■■ ✧✪♦✮✧

✫✪★✫ ▲❯❚ ✦✫✥✴✥③★✫✥♦✲ ♦✱ ✫✪✤ ✶✦✴✫✥✢✴✤✷✤✣ ✲✤✫✮♦✣✰ ✥✫✧✤✴✱ ✯✤✩♦✶✤✧

✦✲★✩✩✤✢✫★✯✴✤ ✱♦✣ ✮✥✭✤✣ ✥✲✢✦✫ ✭★✫★✬

❏❑❖◗❘ ❙❙❙

◗❱❏ ❲❨❩❬❩❭❪❨❩❫❴ ❫❵ ❥❲❬❨❩q❬④⑤④⑥ ❪⑥⑦⑧❩❨④⑦❨❲⑥④

✛❛t❤s ✇✐❞t❤ ⑨❜ ⑩❶❜ ✸❷❜

✐♥✛✉t ✇✐❞t❤ ❸❱❹ ◗❱❏ ❸❱❹ ◗❱❏ ❸❱❹ ◗❱❏

❶❺ ⑨ ⑩❷⑨ ❺ ❶❺ ❷ ✸❷

⑩❷⑨ ⑩❶ ❻⑩❷ ⑨ ❷❻❶ ❺ ⑩❷⑨

❷❻❶ ✸❷ ❷✸❼❺ ⑩❶ ⑩❼❷❺ ⑨ ❻⑩❷

❻⑩❷ ❶❺ ⑩⑨❽⑨❶ ✸❷ ⑨✸❻❷ ⑩❶ ❶❼❶❺

⑩❼❷❺ ⑩❷⑨ ❽⑨❾❻⑩ ❶❺ ✸❽⑩❷❼ ✸❷ ⑩❶❾⑨❺

❷❼❺⑨ ❷❻❶ ✸⑩❼⑨❺✸ ⑩❷⑨ ⑩❶❶❾⑨⑨ ❶❺ ❶⑩❽❶❼

❚✪✤ ✩♦✶✶♦✲ ✭✣★✮✯★✩✰ ♦✱ ✫✪✤ ✫✮♦ ★✯♦✈✤ ✶✤✲✫✥♦✲✤✭ ★✢✼

✢✣♦★✩✪✤✧ ✥✧ ✫✪✤ ✲✤✩✤✧✧✥✫② ♦✱ ✫✣★✲✧✱✤✣ ★✲✭❿♦✣ ✧✫♦✣★✵✤ ♦✱ ★ ✴★✣✵✤

★✶♦✦✲✫ ♦✱ ✭★✫★ ★✶♦✲✵ ✫✪✤ ✩♦✶✢♦✲✤✲✫✧✬ ❚✪✤ ✯✥✵✵✤✣ ✫✪✤ ★✶♦✦✲✫

✥✧✻ ✫✪✤ ✶♦✣✤ ✭✥✱✽✩✦✴✫ ✥✫ ✥✧ ✫♦ ✢✴★✩✤ ★✲✭ ✣♦✦✫✤ ✫✪✤ ✩✥✣✩✦✥✫ ✱♦✣ ✫✪✤

✧②✲✫✪✤✧✥✧ ✫♦♦✴✬ ■✫ ✥✶✢✴✥✤✧ ✴♦✮✤✣ ✱✣✤➀✦✤✲✩② ♦✱ ✫✪✤ ✩✥✣✩✦✥✫✬

➁➂ ➃➄➅❇❄❂➆➅❂❁➄➆ ❃❄❂❇ ➇❄❀➆➈❄✿➆❅ ➃❁❂➉➊❈❂❈

➋✤ ✢✣♦✢♦✧✤ ★✲ ★✣✩✪✥✫✤✩✫✦✣✤ ✭✤✢✥✩✫✤✭ ✥✲ ✺✥✵✬ ➌✬ ■✫ ✥✧ ✯★✧✤✭ ♦✲

✫✪✤ ✥✭✤★ ♦✱ ✭✥✣✤✩✫ ✩♦✲✲✤✩✫✥♦✲ ♦✱ ★✦✫♦✶★✫★ ✫♦ ✫✪✤ ✢★✩✰✤✫ ✯✦✱✱✤✣

✮✥✫✪♦✦✫ ★ ✩♦✶✢✴✤✷ ✶✦✴✫✥✢✴✤✷✤✣ ✲✤✫✮♦✣✰✬ ❚✪✤ ✢★✩✰✤✫ ✯✦✱✱✤✣ ✥✧

✧✪★✣✤✭ ✱♦✣ ★✴✴ ★✦✫♦✶★✫★ ✫✪★✫ ✢✤✣✱♦✣✶ ✶★✫✩✪✥✲✵ ★✵★✥✲✧✫ ★ ✧✤✫ ♦✱

✣✤✵✦✴★✣ ✤✷✢✣✤✧✧✥♦✲✧✬ ❆✦✫♦✶★✫★ ★✣✤ ✥✲✫✤✣✩♦✲✲✤✩✫✤✭ ✧♦ ✫✪★✫ ✫✪✤②

✩★✲ ✢★✧✧ ✫✪✤✥✣ ✧✫★✫✤ ✱✣♦✶ ♦✲✤ ✫♦ ★✲♦✫✪✤✣ ✥✲ ★ ✧✦✩✩✤✧✧✥✈✤ ✮★②✬

➋✤ ✩★✴✴ ✫✪✥✧ ✩♦✲✩✤✢✫ ❀❄❀➆➈❄✿➆❅ ❈❁❂➉➊❈❂❈✬ ▲♦♦✰✥✲✵ ★✫ ✺✥✵✬ ➌✻ ✫✪✤

✽✣✧✫ ✢★✣✫ ♦✱ ✫✪✤ ✢★✩✰✤✫ ➍➎ ✥✧ ✢✣♦✩✤✧✧✤✭ ✥✲ ✺➏➐➎✬ ❚✪✤ ✧✤✩♦✲✭

✢★✣✫ ♦✱ ✫✪✤ ✢★✩✰✤✫ ➍➎ ✥✧ ✢✣♦✩✤✧✧✤✭ ✥✲ ✺➏➐➑ ✯★✧✤✭ ♦✲ ✫✪✤ ✧✫★✫✤

✱✣♦✶ ✺➏➐➎✬ ✺➏➐➎ ✥✧ ✫✪✤✲ ✣✤★✭② ✫♦ ✢✣♦✩✤✧✧ ★✲♦✫✪✤✣ ✢★✩✰✤✫✬

➒➓

➔→➣↔↕➙ ➛➜➝➝↕➞

➒

➒

➟

➠

➒

➒

➒

➒

➒ ➓

➓

➓

➓

➓

➒➒

➒

➒

➒

➟➟

➟

➟

➟

➒

➒

➠

➠

➒➠
➡
➢
➤➢
➥➥
➦
➥
➧
➢
➨➢
➥➩
➢
➧

➫➭➯➓

➫➭➯➟

➫➭➯➲

➳➙→➙↕

➵
➸
➺➻
➼
➽
➾➺➵
➸
➚

➪➶➹➶➘

➪➶➹➶➘

✙✐❣✳ ❺✳ Pr➴✚❡ss✐♥❣ ➴❢ ✛❛✚❦❡ts ✐♥ ✛✐✛❡❧✐♥❡❞ ❛✉t➴✜❛t❛

❆ ✶♦✣✤ ✭✤✫★✥✴✤✭ ✭✤✧✩✣✥✢✫✥♦✲ ♦✱ ✢✣♦✩✤✧✧✥✲✵ ✢★✣✫✧ ♦✱ ✢★✩✰✤✫✧

✥✲ ✫✥✶✤ ✥✧ ✭✤✢✥✩✫✤✭ ✥✲ ✺✥✵✬ ➷✬ ❚✪✤ ✽✣✧✫ ✣♦✮ ✩♦✣✣✤✧✢♦✲✭✧ ✫♦

✫✪✤ ✽✣✧✫ ✢✥✢✤✴✥✲✤✭ ★✦✫♦✶★✫♦✲✻ ✫✪✤ ✧✤✩♦✲✭ ✣♦✮ ✩♦✣✣✤✧✢♦✲✭✧ ✫♦

✫✪✤ ✧✤✩♦✲✭ ✢✥✢✤✴✥✲✤✭ ★✦✫♦✶★✫♦✲✻ ✤✫✩✬ ❆✴✴ ★✦✫♦✶★✫★ ➬✺➏➐➮ ★✣✤

✫✪✤ ✧★✶✤✬ ➍✣♦✩✤✧✧✥✲✵ ♦✱ ✢★✩✰✤✫ ➱➎ ✧✫★✣✫✧ ✥✲ ✺➏➐➎ ✮✪✤✣✤ ✫✪✤

✽✣✧✫ ✭★✫★ ✮♦✣✭ ✥✧ ✦✧✤✭ ✫♦ ✩♦✶✢✦✫✤ ✫✪✤ ✲✤✷✫ ✧✫★✫✤✬ ❚✪✤ ✣✤✧✦✴✫ ✥✧

✢★✧✧✤✭ ✫♦ ✺➏➐➑✻ ✮✪✥✩✪ ✦✧✤✧ ✥✫ ★✧ ✩✦✣✣✤✲✫ ✧✫★✫✤ ★✲✭ ✩♦✶✢✦✫✤✧

✫✪✤ ✲✤✷✫ ✧✫★✫✤ ✱✣♦✶ ✫✪✤ ✲✤✷✫ ✭★✫★ ✮♦✣✭✬ ❚✪✤✲✻ ✫✪✤ ✣✤✧✦✴✫ ✥✧

★✵★✥✲ ✧✤✲✫ ✫♦ ✫✪✤ ✲✤✷✫ ✢✥✢✤✴✥✲✤ ✧✫★✵✤ ➬✫✪✤ ✲✤✷✫ ✺➏➐➮✬ ❚✪✥✧

✮★②✻ ✫✪✤ ★✦✫♦✶★✫★ ✢✣♦✩✤✧✧ ✫✪✤ ✢★✩✰✤✫ ➱➎ ✮♦✣✭ ✯② ✮♦✣✭ ✦✲✫✥✴

✫✪✤ ✮✪♦✴✤ ✢★✩✰✤✫ ✥✧ ✢✣♦✩✤✧✧✤✭✬ ❚✪✤ ✢✥✢✤✴✥✲✤ ✥✧ ✱✦✴✴② ✦✫✥✴✥③✤✭

★✲✭ ✪★✧ ✶★✷✥✶★✴ ✫✪✣♦✦✵✪✢✦✫ ✥✱ ✃ ✢★✩✰✤✫✧ ★✣✤ ✢✣♦✩✤✧✧✤✭ ✯② ✃

✺➏➐✧✬

❐❒

❮ ❰ Ï Ð Ñ Ò

Ó ❐Ô

❐

❐

❐

❐

❐❒

❒

❒

❒

❒❐

❐

❐

❐

Ó

Ó

Ó

❐Ô

Ô

ÕÖÕ×Ø

❐

ÙÚÛÜ

ÙÚÛ

ÙÚÛ

Ý

Þ

✙✐❣✳ ❻✳ Pr➴✚❡ss✐♥❣ ➴❢ ✛❛✚❦❡ts ✐♥ t❤❡ ✛✐✛❡❧✐♥❡

➋✤ ✮✥✴✴ ✲♦✮ ✭✤✧✩✣✥✯✤ ✫✪✤ ✢✥✢✤✴✥✲✤✭ ★✦✫♦✶★✫★ ✥✲ ✶♦✣✤ ✭✤✫★✥✴✬

➍✥✢✤✴✥✲✤✭ ★✦✫♦✶★✫★ ✦✧✤ ✫✪✤ ✈✤✣✫✥✩★✴ ★✣✣★✲✵✤✶✤✲✫ ♦✱ ★✦✫♦✶★✫★

✮✥✫✪ ✫✪✤ ✧★✶✤ ✲✦✶✯✤✣ ♦✱ ✧✫★✫✤✧ ★✧ ✫✪✤ ♦✣✥✵✥✲★✴ ★✦✫♦✶★✫♦✲✬

▲✤✫ß✧ ✭✤✲♦✫✤ à ✫✪✤ ♦✣✥✵✥✲★✴ ★✦✫♦✶★✫♦✲✻ à➎ ✫✪✤ ✽✣✧✫ ✢✥✢✤✴✥✲✤✭

★✦✫♦✶★✫♦✲ ★✲✭ àá ✫✪✤ ✴★✧✫ ✢✥✢✤✴✥✲✤✭ ★✦✫♦✶★✫♦✲✬ ❚✪✤✲✻ ✫✪✤

✫✣★✲✧✥✫✥♦✲ â ♦✱ ✫✪✤ ★✦✫♦✶★✫♦✲ à ✱✣♦✶ ✫✪✤ ✧✫★✫✤ ãä ✫♦ ✫✪✤ ✧✫★✫✤

ãå ✥✧ ✫✣★✲✧✱♦✣✶✤✭ ✥✲✫♦ ✃ ✫✣★✲✧✥✫✥♦✲✧ ✥✲ ✫✪✤ ✢✥✢✤✴✥✲✤✭ ★✦✫♦✶★✫★

★✧ ✱♦✴✴♦✮✧æ ✱♦✣ ç è éê ë ë ë ê ✃ ì é✻ ✫✪✤ ✣✤✧✦✴✫✥✲✵ ✫✣★✲✧✥✫✥♦✲ ✴✤★✭✧

✱✣♦✶ ✫✪✤ ✧✫★✫✤ ãä ✥✲ ✫✪✤ ★✦✫♦✶★✫♦✲ àí ✫♦ ✫✪✤ ✧✫★✫✤ ãå ✥✲ ✫✪✤

★✦✫♦✶★✫♦✲ àíî➎✬ ✺♦✣ ç è ✃✻ ✫✪✤ ✣✤✧✦✴✫✥✲✵ ✫✣★✲✧✥✫✥♦✲ ✴✤★✭✧ ✱✣♦✶

✫✪✤ ✧✫★✫✤ ãä ✥✲ ✫✪✤ ★✦✫♦✶★✫♦✲ àí ✫♦ ✫✪✤ ✧✫★✫✤ ãå ✥✲ ✫✪✤ ★✦✫♦✶★✫♦✲

à➎✬ ï♦♦✭ ✭★✫★ ✴♦✩★✴✥✫② ✩★✲ ✯✤ ★✩✪✥✤✈✤✭ ✦✧✥✲✵ ★✢✢✣♦✢✣✥★✫✤ ✭★✫★

✭✥✧✫✣✥✯✦✫✥♦✲ ★✶♦✲✵ ✢✥✢✤✴✥✲✤✭ ★✦✫♦✶★✫★✬

■✫ ✧✪♦✦✴✭ ✯✤ ✲♦✫✤✭ ✫✪★✫ ★✴✴ ★✦✫♦✶★✫★ àäê ð è éê ëëëê ✃ ì é

✪★✈✤ ✫✪✤ ✧★✶✤ ✱♦✣✶ ★✧ ✫✪✤ ♦✣✥✵✥✲★✴ ★✦✫♦✶★✫♦✲ à ✬ ❚✪✤ ♦✲✴②

✶♦✭✥✽✩★✫✥♦✲ ✥✧ ✫✪✤ ✢★✧✧✥✲✵ ♦✱ ✫✪✤ ✧✫★✫✤ ★✶♦✲✵ ✫✪✤ ★✦✫♦✶★✫★✬

❚✪✦✧✻ ★ ✢✥✢✤✴✥✲✤✭ ★✦✫♦✶★✫★ ✭♦✤✧ ✲♦✫ ✴✥✶✥✫ ✤✷✢✣✤✧✧✥✈✤✲✤✧✧

96

✐♥ ❛♥② ✇❛② ❛♥❞ ❤❛s t❤❡ s❛♠❡ ❡①♣r❡ss✐✈❡ ♣♦✇❡r ❛s ❛ ✂♥✐t❡

❛✉t♦♠❛t❛✳

❆♥ ❡①❛♠♣❧❡ ♦❢ ♣✐♣❡❧✐♥❡❞ ❛✉t♦♠❛t❛ ✐s s❤♦✇♥ ✐♥ ❋✐❣✳ ✻✳ ❚❤❡

❧❡❢t ♣❛rt ❛✮ s❤♦✇s ♦r✐❣✐♥❛❧ ❛✉t♦♠❛t♦♥ � ❛♥❞ ✐ts tr❛♥s✐t✐♦♥s✳ ❚❤❡

r✐❣❤t ♣❛rt ❜✮ s❤♦✇s ❝♦rr❡s♣♦♥❞✐♥❣ ♣✐♣❡❧✐♥❡❞ ❛✉t♦♠❛t❛ ♠❛❞❡ ✉♣

♦❢ t❤❡ ❛✉t♦♠❛t❛ �✶✱ �✷✱ ❛♥❞ �✸✳ P✐♣❡❧✐♥❡ st❛❣❡s ❛r❡ ❞✐✈✐❞❡❞

❜② ✈❡rt✐❝❛❧ ❞♦t ❧✐♥❡s✳ ❚❤❡ tr❛♥s✐t✐♦♥ ♦❢ t❤❡ ♦r✐❣✐♥❛❧ ❛✉t♦♠❛t♦♥

s❤♦✇♥ ✐♥ r❡❞ ✐s tr❛♥s❢♦r♠❡❞ ✐♥t♦ t❤r❡❡ tr❛♥s✐t✐♦♥s ❧❡❛❞✐♥❣ ❢r♦♠

t❤❡ st❛t❡s ♦❢ t❤❡ ✂rst ♣✐♣❡❧✐♥❡ st❛❣❡ ✐♥ t❤❡ ♣✐♣❡❧✐♥❡❞ ❛✉t♦♠❛t❛✳

❚❤❡ tr❛♥s✐t✐♦♥s t❤❛t ♦✈❡r❧❛♣ ❢r♦♠ t❤❡ ❧❛st ♣✐♣❡❧✐♥❡❞ ❛✉t♦♠❛t♦♥

t♦ t❤❡ ✂rst ♦♥❡ ❛r❡ s❤♦✇♥ ❛s ❞❛s❤❡❞✳ ❚❤❡ st❛t❡s ✁✶✱ ✁✷✱ ✁✸✱

❛♥❞ ❝♦rr❡s♣♦♥❞✐♥❣ tr❛♥s✐t✐♦♥s ❛r❡ ❝♦❧♦r❡❞ ❛♥❞ t❤❡② r❡♣r❡s❡♥t

❛ ♣❛ss ✐♥ t❤❡ ♦r✐❣✐♥❛❧ ❛✉t♦♠❛t♦♥ ❛♥❞ ❝♦rr❡s♣♦♥❞✐♥❣ ♣✐♣❡❧✐♥❡❞

❛✉t♦♠❛t❛✳

✄☎ ✄

✄

✄✹

✆

✝

✞☎

✄☎ ✄

✄

✄✹

✆

✝

✄☎ ✄

✄

✄✹

✆

✝

✞

✞✝

✆✟✠✡✠

✄☎ ✄

✄

✄✹

✆

✝

✞

☛☞✌✍ ✎✍ ✏☞✑✒✓☞✔✒✕ ✖✗✘✙✚✖✘✖ ✭✛✜ ✖✔✕ ✘✢✒ ✙✣☞✌☞✔✖✓ ✖✗✘✙✚✖✘✙✔ ✭✖✜

❚❤❡ ❞❡t❛✐❧❡❞ ❛r❝❤✐t❡❝t✉r❡ ♦❢ t❤❡ s②st❡♠ ✐s ❞❡♣✐❝t❡❞ ✐♥

❋✐❣✳ ✼✳ ❇❧♦❝❦ ❘❆▼s ♦❢ t❤❡ ♣❛❝❦❡t ❜✉❢❢❡r ❛r❡ ❛rr❛♥❣❡❞ ♦♥❡

❛❜♦✈❡ ❛♥♦t❤❡r✳ ■♥♣✉t ❞❛t❛ ❛r❡ s♣❧✐t ✐♥t♦ ❜❧♦❝❦s ❛♥❞ ❞✐str✐❜✉t❡❞

✐♥ ❛ r♦✉♥❞✲r♦❜✐♥ ✇❛② ❛♠♦♥❣ ❜❧♦❝❦ ❘❆▼s✳ ❚❤❡ s✐③❡ ♦❢

❜❧♦❝❦s ❛♥❞ t❤❡ ✇✐❞t❤ ♦❢ r❡❛❞✴✇r✐t❡ ♣♦rts ♦❢ ❜❧♦❝❦ ❘❆▼s ❛r❡

❝♦♥✂❣✉r❡❞ ❜❛s❡❞ ♦♥ t❤❡ ❧❡✈❡❧ ♦❢ ♠✉❧t✐✲str✐❞✐♥❣ ✉s❡❞ ✐♥ t❤❡

❛✉t♦♠❛t❛✳ ❇❧♦❝❦s ♦❢ ✐♥♣✉t ❞❛t❛ ❛r❡ ✇r✐tt❡♥ t♦ ❜❧♦❝❦ ❘❆▼s

❜② ❛ s❤❛r❡❞ ❝♦♠♣♦♥❡♥t ♠❛r❦❡❞ ❛s ✤✥✦✧★✥✩✪✧✥✫✬✳ ❊❛❝❤ ❜❧♦❝❦

❘❆▼ ❤❛s ❛ ✯✰✯✫★✵ ✺✫✬✧★✫✽ ❝♦♠♣♦♥❡♥t ❛tt❛❝❤❡❞✳ ❚❤❡ ✯✰✯✫★✵

✺✫✬✧★✫✽ ❝♦♠♣♦♥❡♥ts ♣❛ss t❤❡ ❞❛t❛ ❢r♦♠ ❜❧♦❝❦ ❘❆▼s t♦ t❤❡

❝♦rr❡s♣♦♥❞✐♥❣ ❛✉t♦♠❛t❛✳ ❚❤❡ ✯✰✯✫★✵ ✺✫✬✧★✫✽ ❝♦♠♣♦♥❡♥ts

❛r❡ ✐♥t❡r❝♦♥♥❡❝t❡❞ ❢♦r t❤❡ ♣✉r♣♦s❡ ♦❢ t❤❡ s②♥❝❤r♦♥✐③❛t✐♦♥ ♦❢

s❡q✉❡♥t✐❛❧ r❡❛❞✐♥❣s ♦❢ t❤❡ ❜❧♦❝❦s ♦❢ ❛ s✐♥❣❧❡ ♣❛❝❦❡t✳ ❚❤❡ ❝♦♠✲

♣♦♥❡♥ts ★✰✾✪✰✦✧ ✩✪✿✿✰★ ❛♥❞ ★✰✦✰★❀❁✧✥✫✬ ✪✬✥✧ ❦❡❡♣ st❛rt ❛❞❞r❡ss❡s

❛♥❞ ❧❡♥❣t❤s ♦❢ t❤❡ ♣❛❝❦❡ts st♦r❡❞ ✐♥ ❜❧♦❝❦ ❘❆▼s✳ ❋✐❣✳ ✼

s❤♦✇s t❤❡ ♣r♦❝❡ss✐♥❣ ♦❢ t❤❡ ✂rst ❢♦✉r ❜❧♦❝❦s ♦❢ ❛ ♣❛❝❦❡t ✐♥

♣✐♣❡❧✐♥❡❞ ❛✉t♦♠❛t❛✳ ❆ss✐❣♥♠❡♥t ♦❢ ♣❛tt❡r♥ ♠❛t❝❤✐♥❣ r❡s✉❧ts t♦

❝♦rr❡s♣♦♥❞✐♥❣ ♣❛❝❦❡ts ✐s ♥♦t s❤♦✇♥ ❢♦r r❡❛s♦♥s ♦❢ s✐♠♣❧✐❝✐t②✳

■❱✳ ❊❂❃▲❯❃❄❅❖◆

❚❤❡ ❡✈❛❧✉❛t✐♦♥ ✇❛s ❢♦❝✉s❡❞ ♦♥ ❈❉❉● ❊t❤❡r♥❡t st❛♥❞❛r❞

t❤❛t ✐s ❝✉rr❡♥t❧② t❤❡ ❢❛st❡st ❛♣♣r♦✈❡❞ st❛♥❞❛r❞ ♦❢ ❊t❤❡r♥❡t✳

❍
❏❑
◗❙
❏❲
❳
◗❏
❨
❩

❬❭❪❫❴❵ ❥④⑤⑤❴⑥

⑥❴⑦④❴⑧❵ ❥④⑤⑤❴⑥

⑥❴⑧❴⑥⑨❭❵⑩❶❷ ④❷⑩❵

⑥❴❭❸
❪❶❷❵⑥❶❹

❺❴❺❶⑥❻ ❪❶❷❵⑥❶❹

❺④❹❵⑩❼⑧❵⑥⑩❸⑩❷❽

❸❭❵❭ ❬❭❵❾

❪❶❷❵⑥❶❹ ❬❭❵❾

❷

❷

❷

❷

❿

➀➁

➀

➀

➀

➁

➁

➁

➀

➀

➀

➀

➁

➁

➁

➁

❵⑩❺❴

☛☞✌✍ ➂✍ ➃✖✣✕➄✖✣✒ ✖✣➅✢☞✘✒➅✘✗✣✒ ➄☞✘✢ ✑☞✑✒✓☞✔✒✕ ✖✗✘✙✚✖✘✖

❈❉❉● ❊t❤❡r♥❡t✲❜❛s❡❞ st❛♥❞❛r❞s ➆❈❉❉●❇❆➇❊✲➈✮ ❞❡✂♥❡ ✈❛r✐❛♥ts

➇❘❈❉✱ ➉❘➊✱ ❛♥❞ ➇❘➊ ❢♦r ♦♣t✐❝❛❧ ❧✐♥❦s✳ ❚❤❡ ✂rst ♦♥❡ ✇♦r❦s

✇✐t❤ t❡♥ ❈❉ ●❜♣s ❝❤❛♥♥❡❧s ❛♥❞ ➉❘➊ ❛♥❞ ➇❘➊ ✇♦r❦ ✇✐t❤

❢♦✉r ➋➌ ●❜♣s ❝❤❛♥♥❡❧s✳ ❚❤❡ ❡✈❛❧✉❛t✐♦♥ ✇❛s ❝❛rr✐❡❞ ♦✉t ❜②

s②♥t❤❡s✐③✐♥❣ t❤❡ s②st❡♠ ❢♦r ➍✐❧✐♥① ❱✐rt❡①✲✼ ❱➎➌➏❉❚ ❝❤✐♣ t❤❛t

❝♦♥t❛✐♥s ●❚➐ tr❛♥s❝❡✐✈❡rs t❤❛t ❛r❡ ♥❡❝❡ss❛r② t♦ ♣r♦❝❡ss ❤✐❣❤✲

❢r❡q✉❡♥❝② ➋➌ ●❜♣s s✐❣♥❛❧s✳

➇②♥t❤❡s✐s ✇❛s ♣❡r❢♦r♠❡❞ ✉s✐♥❣ t❤❡ ➑❡t➒➓P❊ ❞❡✈❡❧♦♣♠❡♥t

❢r❛♠❡✇♦r❦
➔
✱ ✇❤✐❝❤ ♣r♦✈✐❞❡s ✉♥❞❡r❧②✐♥❣ ❝♦♠♣♦♥❡♥ts ❛♥❞ ❜✉✐❧❞

s②st❡♠ ❢♦r t❤❡ ❞❡✈❡❧♦♣♠❡♥t ♦❢ ✂r♠✇❛r❡s ❢♦r ❋P●❆ ❝❤✐♣s✳ ❚❤❡

❢r❡q✉❡♥❝② ✐s s❡t t♦ ➋❉❉ ▼➎③ ❜❡❝❛✉s❡ ♦❢ ❝♦♠♣❧❡① ❝♦♠♣♦♥❡♥ts

❢♦r ♥❡t✇♦r❦ ❝♦♠♠✉♥✐❝❛t✐♦♥ ❛♥❞ ❝♦♠♠✉♥✐❝❛t✐♦♥ ✇✐t❤ t❤❡ ❤♦st

♠❛❝❤✐♥❡ ➆→▼❆ ❡♥❣✐♥❡ ❢♦r P➒■❡ ❜r✐❞❣❡✮✳ ➣❡ ❝❛♥ ❞❡❞✉❝❡

t❤❡ ✇✐❞t❤ ♦❢ ❞❛t❛ ❜✉s❡s ❜❛s❡❞ ♦♥ r❡q✉✐r❡❞ t❤r♦✉❣❤♣✉t ❛♥❞

❝♦♥s✐❞❡r❡❞ ❢r❡q✉❡♥❝②✳ ❚❤❡ ✇✐❞t❤s ✐♥ ❚❛❜❧❡ ■❱ ❛r❡ r♦✉♥❞❡❞

✉♣ t♦ ❜❡ ❛ ♣♦✇❡r ♦❢ t✇♦✳

❄❃↔▲↕ ❅❂
➙➛➜➝➞➟ ➠➡ ➜➢➝➢ ➤➥➟➦➟

➧✒➨✗☞✣✒✕ ✘✢✣✙✗✌✢✑✗✘ ➩✖✘✖ ✛✗➫ ➄☞✕✘✢ ◆✗✚✛✒✣ ✙➭ ☞✔✑✗✘ ➫➯✚✛✙✓➫

➲➳ ➵✛✑➫ ✎➸✛ ➺

➸➳ ➵✛✑➫ ➻➼✎✛ ➽➻

➲➳➳ ➵✛✑➫ ➼➲➻✛ ✎➸

➸➳➳ ➵✛✑➫ ➻➳➸➺✛ ➻➼✎

➣❡ ❝❤♦s❡ t❤r❡❡ s❡ts ♦❢ r❡❣✉❧❛r ❡①♣r❡ss✐♦♥s ❢♦r ❡✈❛❧✉❛t✐♦♥➾

➚ ❆ s❡t ♦❢ r✉❧❡s ❢r♦♠ t❤❡ ➉✼ ❝❧❛ss✐✂❡r ❢♦r ➉✐♥✉① ➑❡t✂❧t❡r

t❤❛t ❛r❡ ♠❛r❦❡❞ ❛s ➪●r❡❛t➾ ➣♦r❦s✳➶
➹ ➆❈➋ r❡❣✉❧❛r ❡①♣r❡s✲

s✐♦♥s✮✳ ❚❤✐s ✐s ❞❡♥♦t❡❞ ➘➴ ➷★✰❁✧ ✐♥ t❤❡ ❢♦❧❧♦✇✐♥❣ t❡①t✳

➚ ❆ s❡t ♦❢ r✉❧❡s ♦❢ t❤❡ ❜❛❝❦❞♦♦r ♠♦❞✉❧❡ ♦❢ ➇♥♦rt ❛♣♣❧✐❝❛✲

t✐♦♥
➬ ➆❈➌➊ r❡❣✉❧❛r ❡①♣r❡ss✐♦♥s✮✳ ❚❤✐s ✐s ❞❡♥♦t❡❞ ➮✬✫★✧ ✐♥

t❤❡ ❢♦❧❧♦✇✐♥❣ t❡①t✳

➚ ➓✉r ♦✇♥ s❡t ♦❢ s✐① r✉❧❡s t♦ ❞❡t❡❝t ❢♦✉r ❜❛s✐❝ ➉✼ ♣r♦t♦✲

❝♦❧s ➆➎❚❚P r❡q✉❡st✴r❡s♣♦♥s❡✱ ➇■P r❡q✉❡st✴r❡s♣♦♥s❡✱ →➑➇✱

➇▼❚P✮✳ ❚❤✐s ✐s ❞❡♥♦t❡❞ ➘➴ ✦✰✽✰✺✧✰✤ ✐♥ t❤❡ ❢♦❧❧♦✇✐♥❣ t❡①t✳

➱✢✘✘✑➫✃❐❐➄➄➄✍✓☞✛✒✣✙✗✘✒✣✍✙✣✌❐✘✒➅✢✔✙✓✙✌☞✒➫❐✔✒✘➅✙✑✒❐
❒✢✘✘✑✃❐❐✓➂❮❰✓✘✒✣✍➫✙✗✣➅✒➭✙✣✌✒✍✔✒✘❐✑✣✙✘✙➅✙✓➫
Ï✢✘✘✑➫✃❐❐➄➄➄✍➫✔✙✣✘✍✙✣✌❐✕✙➄✔✓✙✖✕➫❐Ð✣✗✓✒❮✕✙➄✔✓✙✖✕➫

97

❲❡ ❝♦♠♣❛r❡❞ t❤r❡❡ ❛♣♣r♦❛❝❤❡s ❜❛s❡❞ ♦♥ ♦✉r ♦✇♥ r❡❢❡r✲

❡♥❝❡ ✐♠♣❧❡♠❡♥t❛t✐♦♥ ✐♥ ❱❍❉▲ ❧❛♥❣✉❛❣❡✳ ❚❤❡ ✂rst ♦♥❡ ✉s❡s

♠✉❧t✐✲str✐❞✐♥❣ t♦ ♣r♦❝❡ss ♠✉❧t✐♣❧❡ ✐♥♣✉t s②♠❜♦❧s ❛t ♦♥❝❡✳ ❚❤❡

❛❞✈❛♥t❛❣❡ ♦❢ t❤✐s ❛♣♣r♦❛❝❤ ✐s t❤❛t ♥♦ ❜❧♦❝❦ ❘❆▼s ❛r❡ ♥❡❡❞❡❞✳

❍♦✇❡✈❡r✱ tr❛♥s❢♦r♠❛t✐♦♥ ♦❢ t❤❡ ♦r✐❣✐♥❛❧ ❛✉t♦♠❛t♦♥ t♦ ❛ ✈❡rs✐♦♥

♣r♦❝❡ss✐♥❣ s❡✈❡r❛❧ ✐♥♣✉t s②♠❜♦❧s ❛t ♦♥❝❡ t✉r♥❡❞ ♦✉t t♦ ❜❡ ❛♥

✐ss✉❡ ❞✉❡ t♦ s♣❛❝❡ ❝♦♠♣❧❡①✐t② ♦❢ t❤❡ ❛❧❣♦r✐t❤♠ ❛s t❤❡ ❛♠♦✉♥t

♦❢ tr❛♥s✐t✐♦♥s ♦❢ t❤❡ ❛✉t♦♠❛t♦♥ ❣r♦✇s ❡①♣♦♥❡♥t✐❛❧❧②✳ ❚❤❡ ♠♦st

❝♦♠♣❧❡① ❛✉t♦♠❛t♦♥ ✇❡ ✇❡r❡ ❛❜❧❡ t♦ ❣❡♥❡r❛t❡ ✇❛s ❢♦r t❤❡

▲✼ ❣r❡❛t s❡t ❢♦r t❤r♦✉❣❤♣✉t ♦❢ ✹✵●❜♣s ✭✸✷ ✐♥♣✉t s②♠❜♦❧s

♣r♦❝❡ss❡❞ ❛t ♦♥❝❡✮✳

❚❤❡ s❡❝♦♥❞ ❛♣♣r♦❛❝❤ ✉s❡s ♣❛r❛❧❧❡❧ ❛r❝❤✐t❡❝t✉r❡ t❤❛t ❞✐s✲

tr✐❜✉t❡s ♣❛❝❦❡ts t♦ s❡✈❡r❛❧ s❡♣❛r❛t❡ ❞❛t❛ ♣❛t❤s✳ ❚❤❡ t❤✐r❞

❛♣♣r♦❛❝❤ ✉s❡s ♦✉r ♣r♦♣♦s❡❞ ❛r❝❤✐t❡❝t✉r❡ ✇✐t❤ ❛ s❤❛r❡❞ ❜✉❢❢❡r

❛♥❞ ♣✐♣❡❧✐♥❡❞ ❛✉t♦♠❛t❛✳ ❲❡ ❞❡❝✐❞❡❞ t♦ ✉s❡ ♣✐♣❡❧✐♥❡❞ ❛✉t♦♠❛t❛

✇✐t❤ t❤❡ ❧❡✈❡❧ ♦❢ ♠✉❧t✐✲str✐❞✐♥❣ ❡q✉❛❧ t♦ ❢♦✉r ✭❢♦✉r ✐♥♣✉t

s②♠❜♦❧s ♣r♦❝❡ss❡❞ ❛t ♦♥❝❡✮ ❜❛s❡❞ ♦♥ t❤❡ ❛♥❛❧②s✐s ✐♥ ❙❡❝✳ ■■✳

❚❛❜❧❡ ❱ s❤♦✇s t❤❛t ❛❧t❤♦✉❣❤ ▲❯❚ ✉t✐❧✐③❛t✐♦♥ t❡♥❞s ♥♦t t♦

❞❡♣❡♥❞ str♦♥❣❧② ♦♥ t❤❡ ♥✉♠❜❡r ♦❢ s✐♠✉❧t❛♥❡♦✉s❧② ♣r♦❝❡ss❡❞

✐♥♣✉t s②♠❜♦❧s✱ ❜❧♦❝❦ ❘❆▼ ✉t✐❧✐③❛t✐♦♥ ✐s ♠♦r❡ ❡❢❢❡❝t✐✈❡ ✐❢

❛ ❤✐❣❤❡r ❧❡✈❡❧ ♦❢ ♠✉❧t✐✲str✐❞✐♥❣ ✐s ✉s❡❞✳ ❚❛❜❧❡ ❱ ✐s ❜❛s❡❞ ♦♥ t❤❡

▲✼ ❣r❡❛t s❡t ❛♥❞ ♣r❡s❡♥ts r❡s✉❧ts ❢♦r t❤❡ ♣r♦♣♦s❡❞ ❛r❝❤✐t❡❝t✉r❡

✇✐t❤ ❛ s❤❛r❡❞ ❜✉❢❢❡r ❛♥❞ ♣✐♣❡❧✐♥❡❞ ❛✉t♦♠❛t❛ ❢♦r ✶✵✵●❜♣s

t❤r♦✉❣❤♣✉t✳

�✁❇✄❊ ☎
✄✆ ✝✞✟✠✡✿ ✞✟☛❖☞✞❈✟ ☞✡✌✍✌❩✠✡✌❖◆ ❖❋ ✎✏✏ ✑✒P☛ P✌P✟✍✌◆✟✓

✠✞❈✔✌✡✟❈✡☞✞✟

✕✖✗✘✙ ✚✛✜✢✣✤✚ ✄✥�✚ ❇✦✁✧✚

✎ ✎✆✾✻✻ ✻✾

★ ✎✏✩✽✆ ✩✆

✪ ✎✻✺✆✏ ★✎

■♥ t❤❡ ❝❛s❡ ♦❢ t❤❡ ✶✵✵●❜♣s s②st❡♠ ❜❛s❡❞ ♦♥ ♣❛r❛❧❧❡❧

❛r❝❤✐t❡❝t✉r❡ ✇✐t❤ s❡♣❛r❛t❡ ❞❛t❛ ♣❛t❤s ❛♥❞ ❢♦✉r ✐♥♣✉t s②♠❜♦❧s

♣r♦❝❡ss❡❞ ❛t ♦♥❝❡✱ ✐t ✐s ♥❡❝❡ss❛r② t♦ ❞✐str✐❜✉t❡ ♣❛❝❦❡ts ✐♥t♦

✫✬✯❂✰❂✴ ❀ ✬❁ ❞❛t❛ ♣❛t❤s✳

❱✳ ❘❊❃✥✄�❃

❚❤❡ r❡s✉❧ts ❛r❡ s❤♦✇♥ ✐♥ ❚❛❜❧❡ ❱■✳ ❆st❡r✐s❦ s②♠❜♦❧ ✭❄✮

♠❛r❦s t❤❛t s②♥t❤❡s✐s ❢♦r t❤❡ ❢r❡q✉❡♥❝② ✷✵✵▼❍③ ❞✐❞ ♥♦t

♠❡❡t t✐♠✐♥❣ ❝♦♥str❛✐♥ts✳ ■♥ t❤❡ ❝❛s❡ ♦❢ ♠✉❧t✐✲str✐❞✐♥❣✱ t✐♠✐♥❣

❝♦♥str❛✐♥ts ❛r❡ ♥♦t ♠❡t ❜❡❝❛✉s❡ ♦❢ t❤❡ ❝r✐t✐❝❛❧ ♣❛t❤ ✐♥ ❝♦♠♣❧❡①

♥❡①t✲st❛t❡ ❧♦❣✐❝ ✐♠♣❧❡♠❡♥t❡❞ ❜② ❛ s❡r✐❡s ♦❢ ▲❯❚ ❡❧❡♠❡♥ts✳

❅♦♠♣❧❡① ♥❡①t✲st❛t❡ ❧♦❣✐❝ ✐s ❝❛✉s❡❞ ❜② st❛t❡s ✇✐t❤ ♠❛♥② ✐♥♣✉t

tr❛♥s✐t✐♦♥s✳ ■♥ t❤❡ ❝❛s❡ ♦❢ ♣❛r❛❧❧❡❧ ❛r❝❤✐t❡❝t✉r❡ ✇✐t❤ s❡♣❛r❛t❡

❞❛t❛ ♣❛t❤s✱ t❤❡ ❝r✐t✐❝❛❧ ♣❛t❤ ♣❛ss❡s ❛ s❡r✐❡s ♦❢ ▲❯❚ ❡❧❡♠❡♥ts

t❤❛t ✐♠♣❧❡♠❡♥t tr❛♥s❢♦r♠❡rs ♦❢ ❞❛t❛ ♣❛t❤ ✇✐❞t❤ ❛s ❞❡s❝r✐❜❡❞

✐♥ ❙❡❝✳ ■■■✳

❚❤❡ ❣r❛♣❤ ✐♥ ❏✐❣✳ ❑ ❝♦♠♣❛r❡s ▲❯❚ ✉t✐❧✐③❛t✐♦♥ ♦❢ t❤❡ ▲✼

s❡❧❡❝t❡❞ s❡t✳ ❲❡ ✇❡r❡ ❛❜❧❡ t♦ ❣❡♥❡r❛t❡ ❛ ♠✉❧t✐✲str✐❞✐♥❣ ❝✐r❝✉✐t

♦♥❧② ❢♦r ✶✵●❜♣s ❛♥❞ ✹✵●❜♣s t❤r♦✉❣❤♣✉ts✳

❚❤❡ ❣r❛♣❤ ✐♥ ❏✐❣✳ ◗ ❝♦♠♣❛r❡s ▲❯❚ ✉t✐❧✐③❛t✐♦♥ ♦❢ t❤❡ ❙♥♦rt

❜❛❝❦❞♦♦r s❡t✳ ■♥ t❤✐s ❝❛s❡✱ ✇❡ ✇❡r❡ ❛❜❧❡ t♦ ❣❡♥❡r❛t❡ ❛ ♠✉❧t✐✲

str✐❞✐♥❣ ❝✐r❝✉✐t ♦♥❧② ❢♦r ✶✵●❜♣s t❤r♦✉❣❤♣✉t✳

❳

❨❳❳❳❳

❬❳❳❳❳

❭❳❳❳❳

❪❳❳❳❳

❫❳❳❳❳❳

❫❨❳❳❳❳

❫❬❳❳❳❳

❫❭❳❳❳❳

❫❪❳❳❳❳

❳ ❴❳ ❫❳❳ ❫❴❳ ❨❳❳ ❨❴❳ ❵❳❳ ❵❴❳ ❬❳❳

❥
④
⑤
⑥
⑦⑧
⑨

⑩❶❷❸❹❺❶❻❹⑩ ❼❽❾❻❿➀

❻➁❻➂➃➁➄➂➅
❻➆❷➆➃➃➂➃

➇❹➃⑩➁➈❿⑩❷➁➅➁➄❺

➉➊➋➌ ✽➌ ✄✥� ✣➍➍✘✗➎✙➊✣✖ ➏✚ ✙➐➑✣✘➋➐✗✘✙ ➒✣➑ ✄✆ ➋➑➓➎✙

❳

❫❳❳❳❳❳

❨❳❳❳❳❳

❵❳❳❳❳❳

❬❳❳❳❳❳

❴❳❳❳❳❳

❭❳❳❳❳❳

❳ ❴❳ ❫❳❳ ❫❴❳ ❨❳❳ ❨❴❳ ❵❳❳ ❵❴❳ ❬❳❳

❥
④
⑤
⑥
⑦⑧
⑨

⑩❶❷❸❹❺❶❻❹⑩ ❼❽❾❻❿➀

❻➁❻➂➃➁➄➂➅
❻➆❷➆➃➃➂➃

➇❹➃⑩➁➈❿⑩❷➁➅➁➄❺

➉➊➋➌ ✾➌ ✄✥� ✣➍➍✘✗➎✙➊✣✖ ➏✚ ✙➐➑✣✘➋➐✗✘✙ ➒✣➑ ❃✖✣➑✙ ✢➎➍➔→✣✣➑ ➑✘✤➓✚

❚❤❡ ❣r❛♣❤ ✐♥ ❏✐❣✳ ✶✵ s❤♦✇s ❜❧♦❝❦ ❘❆▼ ✉t✐❧✐③❛t✐♦♥ ❢♦r

♣❛r❛❧❧❡❧ ❛r❝❤✐t❡❝t✉r❡ ✇✐t❤ s❡♣❛r❛t❡ ❞❛t❛ ♣❛t❤s ❛♥❞ ❢♦r t❤❡ ♣r♦✲

♣♦s❡❞ ❛r❝❤✐t❡❝t✉r❡ ✇✐t❤ ❛ s❤❛r❡❞ ♣❛❝❦❡t ❜✉❢❢❡r ❛♥❞ ♣✐♣❡❧✐♥❡❞

❛✉t♦♠❛t❛✳ ❚❤❡r❡ ✐s ♦♥❧② ♦♥❡ ❣r❛♣❤ ❛s ❜❧♦❝❦ ❘❆▼ ✉t✐❧✐③❛t✐♦♥

✐s ✐♥❞❡♣❡♥❞❡♥t ♦❢ t❤❡ s❡t ♦❢ r❡❣✉❧❛r ❡①♣r❡ss✐♦♥s✳ ▼✉❧t✐✲str✐❞✐♥❣

✐s ♥♦t ♠❡♥t✐♦♥❡❞ ✐♥ t❤❡ ❣r❛♣❤ ✐♥ ❏✐❣✳ ✶✵ ❜❡❝❛✉s❡ ✐t ❞♦❡s ♥♦t

✉s❡ ❜❧♦❝❦ ❘❆▼s✳ ❲❡ ❝❛♥ s❡❡ t❤❛t ❜❧♦❝❦ ❘❆▼ ✉t✐❧✐③❛t✐♦♥

❣r♦✇s ❧✐♥❡❛r❧② ✇✐t❤ t❤❡ t❤r♦✉❣❤♣✉t ✐♥ ❝❛s❡s ♦❢ t❤❡ ♣r♦♣♦s❡❞

❛r❝❤✐t❡❝t✉r❡ ✇❤✐❧❡ ✐t ❣r♦✇s ❡①♣♦♥❡♥t✐❛❧❧② ✐♥ ❝❛s❡s ♦❢ ♣❛r❛❧❧❡❧

❛r❝❤✐t❡❝t✉r❡✳

❱■✳ ❅➣↔↕✄✥❃✕➣↔

❲❡ ❤❛✈❡ s❤♦✇♥ ❧✐♠✐t❡❞ s❝❛❧❛❜✐❧✐t② ♦❢ ♠✉❧t✐✲str✐❞✐♥❣✱ ✇❤✐❝❤

✐s ❛ ✇✐❞❡❧② ✉s❡❞ t❡❝❤♥✐q✉❡ t♦ ✐♥❝r❡❛s❡ t❤❡ ♣r♦❝❡ss✐♥❣ s♣❡❡❞ ♦❢

❘➙ ♠❛t❝❤✐♥❣ ❛r❝❤✐t❡❝t✉r❡s✳ ▼✉❧t✐✲str✐❞✐♥❣ ❝❛✉s❡s ❡①♣♦♥❡♥t✐❛❧

❣r♦✇t❤ ♦❢ tr❛♥s✐t✐♦♥ t❛❜❧❡✳ ❲❡ ✇❡r❡ ♥♦t ❛❜❧❡ t♦ ✉s❡ ♠✉❧t✐✲

str✐❞✐♥❣ t♦ ❛❝❤✐❡✈❡ ✶✵✵●❜♣s t❤r♦✉❣❤♣✉t✱ ❡✈❡♥ ❢♦r s✐♠♣❧❡ ➛❏❆✲

❜❛s❡❞ ❛r❝❤✐t❡❝t✉r❡✳ ❚❤❡ ♥✉♠❜❡r ♦❢ ❏➜●❆ ▲❯❚ ❡❧❡♠❡♥ts ❣r♦✇s

❡①♣♦♥❡♥t✐❛❧❧② ❛♥❞ ❢r❡q✉❡♥❝② ❞❡❝r❡❛s❡s s✐❣♥✐✂❝❛♥t❧②✳

❚❤❡r❡❢♦r❡✱ ✇❡ ❤❛✈❡ ✐♥tr♦❞✉❝❡❞ ❛ ♥❡✇ s❝❛❧❛❜❧❡ ❛r❝❤✐t❡❝t✉r❡

❢♦r ❘➙ ♠❛t❝❤✐♥❣ ✇✐t❤ ✶✵✵●❜♣s t❤r♦✉❣❤♣✉t✳ ❚❤❡ ❛r❝❤✐t❡❝t✉r❡

✉s❡s ♦♥❡ ✐♥♣✉t ♣❛❝❦❡t ❜✉❢❢❡r ❛♥❞ ♠✉❧t✐♣❧❡ ❛✉t♦♠❛t❛ ✐♥ t❤❡

♣✐♣❡❧✐♥❡❞ str✉❝t✉r❡✳ ❚❤❡ ❛r❝❤✐t❡❝t✉r❡ ✐s s❝❛❧❛❜❧❡✳ ❚❤❡ t❤r♦✉❣❤✲

98

❚❆❇▲❊ ❱■

❘�❙❖❯✁❈� ❯✂✄☎✄❩✆✂✄❖◆

♠✉❧t✐✲str✐❞✐♥❣ ♣❛r❛❧❧❡❧ ❞❛t❛ ♣❛t❤s ♣✐♣❡❧✐♥❡❞ ❛✉t♦♠❛t❛

t❤r♦✉❣❤♣✉t ❞❛t❛ s❡t ▲✝❚ ❋❋ ❇❘❆▼ ▲✝❚ ❋❋ ❇❘❆▼ ▲✝❚ ❋❋ ❇❘❆▼

▲✼ ❣r❡❛t ✷✵✶✸ ✷✽✾ ✵ ✷✵✵✷ ✺✵✽ ✷ ✷✶✶✽ ✼✹✼ ✼

✶✵●❜♣s ▲✼ s❡❧❡❝t❡❞ ✼✹✾ ✶✶✻ ✵ ✶✸✶✻ ✸✶✹ ✷ ✶✹✽✷ ✻✺✶ ✼

✞♥♦rt ✶✽✼✷✶ ✻✷✻✺ ✵ ✶✹✷✻✺ ✾✽✶✷ ✷ ✶✶✽✹✼ ✼✽✶✵ ✶✻

▲✼ ❣r❡❛t ✯✶✸✻✼✽ ✯✷✸✾✵ ✯✵ ✯✽✻✶✹ ✯✷✵✹✽ ✯✸✷ ✽✵✼✼ ✷✼✾✵ ✶✸

✹✵●❜♣s ▲✼ s❡❧❡❝t❡❞ ✟✴❆ ✟✴❆ ✟✴❆ ✯✺✺✸✼ ✯✶✷✼✷ ✯✸✷ ✺✺✽✷ ✷✸✾✸ ✶✸

✞♥♦rt ✟✴❆ ✟✴❆ ✟✴❆ ✯✺✽✷✹✽ ✯✸✾✷✻✹ ✯✸✷ ✹✽✽✶✽ ✸✶✾✶✹ ✷✷

▲✼ ❣r❡❛t ✟✴❆ ✟✴❆ ✟✴❆ ✯✶✾✸✽✽ ✯✹✶✶✷ ✯✶✷✵ ✶✻✺✼✵ ✺✺✺✼ ✷✶

✶✵✵●❜♣s ▲✼ s❡❧❡❝t❡❞ ✟✴❆ ✟✴❆ ✟✴❆ ✯✶✸✽✵✽ ✯✷✺✻✵ ✯✶✷✵ ✶✶✶✵✵ ✹✼✵✺ ✷✶

✞♥♦rt ✟✴❆ ✟✴❆ ✟✴❆ ✯✶✶✾✷✷✷ ✯✼✽✺✹✹ ✯✶✷✵ ✾✼✹✻✵ ✻✹✵✹✷ ✸✵

▲✼ ❣r❡❛t ✟✴❆ ✟✴❆ ✟✴❆ ✯✶✼✷✵✵✾ ✯✶✹✾✻✹✷ ✯✾✷✽ ✻✻✹✵✷ ✷✶✽✽✸ ✻✾

✹✵✵●❜♣s ▲✼ s❡❧❡❝t❡❞ ✟✴❆ ✟✴❆ ✟✴❆ ✯✶✺✶✺✻✶ ✯✶✹✸✹✸✹ ✯✾✷✽ ✹✸✹✽✾ ✶✽✹✸✾ ✻✾

✞♥♦rt ✟✴❆ ✟✴❆ ✟✴❆ ✯✺✻✽✺✺✸ ✯✹✹✼✸✼✵ ✯✾✷✽ ✸✽✾✼✺✽ ✷✺✻✻✼✻ ✼✽

✯ ❚✐♠✐♥❣ ❝♦♥str❛✐♥ts ❢♦r ✠✡✡☛❍③ ♥♦t ♠❡t✳

✥

☞✥✥

✌✥✥

✍✥✥

✎✥✥

✏✥✥

✑✥✥

✒✥✥

✓✥✥

✔✥✥

☞✥✥✥

✥ ✏✥ ☞✥✥ ☞✏✥ ✌✥✥ ✌✏✥ ✍✥✥ ✍✏✥ ✎✥✥

✕
✖
✗
✘
✙
✚✛
✜

✢✣✤✦✧★✣✩✧✢ ✪✫✬✩✭✮

✩✰✩✱✿✰❀✱❁
✩❂✤❂✿✿✱✿

❋✐❣✳ ✶✵✳ ❇❧♦❝❦ ❘❆▼ ♦❝❝✉♣❛t✐♦♥ ✈s t❤r♦✉❣❤♣✉t ❃✐♥❞❡♣❡♥❞❡♥t ♦❢ t❤❡ s❡t ♦❢

r❡❣✉❧❛r ❡①♣r❡ss✐♦♥s❄

❅❉❏ ❑P◗ ❲❳ ❨◗❳❬② ❏❉◗❳❭ ❲② ❏❪❳ ◗❉❫❲❳❴ ❵❥ P❉❏❵❫P❏P q◗ ❏❪❳

❅q❅❳❬q◗❳ P◗❭ ❉❏q❬q✇P❏q❵◗ ❵❥ ④⑤⑥⑦ ❴❳⑧❵❉❴❑❳⑧ ⑨❴❵⑩⑧ ❵◗❬② ❬q◗❳P❴❬②

⑩q❏❪ ❏❪❳ ❅❴❵❑❳⑧⑧q◗⑨ ⑧❅❳❳❭❶ ⑩❪q❑❪ q⑧ P ⑧q⑨◗q❨❑P◗❏ q❫❅❴❵❷❳❫❳◗❏

❏❵ ❫❉❬❏q❸⑧❏❴q❭q◗⑨❹

❺❵❴❳❵❷❳❴❶ ❏❪❳ ❥❴❳❻❉❳◗❑② ❴❳❫Pq◗⑧ ❏❪❳ ⑧P❫❳ ❭❳⑧❅q❏❳ ❏❪❳

q◗❑❴❳P⑧q◗⑨ ◗❉❫❲❳❴ ❵❥ P❉❏❵❫P❏P❹ ❼❪❳ P❴❑❪q❏❳❑❏❉❴❳ ❉⑧❳⑧ P ❭q❴❳❑❏

❑❵◗◗❳❑❏q❵◗ ❵❥ P❉❏❵❫P❏P ❏❵ ❏❪❳ q◗❅❉❏ ❅P❑❽❳❏ ❲❉❥❥❳❴ P◗❭❶ ❴P❏❪❳❴

❏❪P◗ ❫❉❬❏q❅❬❳❾q◗⑨ ❭P❏P ❏❵ P❉❏❵❫P❏P❶ q❏ ❑q❴❑❉❬P❏❳⑧ ❏❪❳ ❑❉❴❴❳◗❏

⑧❏P❏❳ q◗ ❏❪❳ ❅q❅❳❬q◗❳ ❏❵ ❫❳❳❏ ⑩q❏❪ ❑❵❴❴❳⑧❅❵◗❭q◗⑨ q◗❅❉❏ ❭P❏P

⑩❵❴❭⑧❹ ❿◗ ❏❪❳ ❑P⑧❳ ❵❥ ❏❪❳ ➀➁➁⑥❲❅⑧ ⑧②⑧❏❳❫❶ ❏❪q⑧ ❳❥❨❑q❳◗❏ ⑧❏❴❉❑❸

❏❉❴❳ ❵❥ q◗❅❉❏ ❅P❑❽❳❏ ❲❉❥❥❳❴ ❴❳❭❉❑❳⑧ ❏❪❳ ◗❉❫❲❳❴ ❵❥ ➂❬❵❑❽➃⑦❺⑧

❏❵ ➀➄➅ ⑩❪❳◗ ❑❵❫❅P❴❳❭ ❏❵ P ⑧q❫❅❬❳ ❅P❴P❬❬❳❬ q❫❅❬❳❫❳◗❏P❏q❵◗❹

❼❪❳ ❅❴❵❅❵⑧❳❭ ❅❴❵❑❳⑧⑧q◗⑨ ❑P◗ ❲❳ ❉⑧❳❭ ❥❵❴ P◗② ➆④⑦ ❵❴ ➇④⑦

P❴❑❪q❏❳❑❏❉❴❳ ⑩❪❳❴❳ P ❑❵◗⑧❏P◗❏ P❫❵❉◗❏ ❵❥ ❭P❏P q⑧ ❅❴❵❑❳⑧⑧❳❭

⑩q❏❪q◗ ❵◗❳ ❑❬❵❑❽ ❑②❑❬❳❹ ⑦⑧ ❥❵❴ ❥❉❏❉❴❳ ❴❳⑧❳P❴❑❪❶ ⑩❳ P❴❳ ⑨❵q◗⑨

❏❵ ❳❾❏❳◗❭ ❏❪❳ ❑❵◗❑❳❅❏ ❏❵ ⑧❉❅❅❵❴❏ ➇❳❬P②❳❭ q◗❅❉❏ ➇④⑦ P◗❭ ❵❏❪❳❴

P❴❑❪q❏❳❑❏❉❴❳⑧❶ ⑩❪❳❴❳ ❏❪❳ q◗❅❉❏ ❑P◗ ❲❳ ⑧❏❵❅❅❳❭ ❥❵❴ ⑧❳❷❳❴P❬ ❑❬❵❑❽

❑②❑❬❳⑧❹

⑦➈➉✟➊➋▲❊➌●▼❊✟❚

❼❪q⑧ ❅P❅❳❴ q⑧ ❲P⑧❳❭ ❉❅❵◗ ⑩❵❴❽ ⑧❉❅❅❵❴❏❳❭ ❲② ❏❪❳ ❼⑦➍➃

⑨❴P◗❏ ➇➍⑤❴❵ ◗❵❹ ❼➎➁➀➁➀➁➏➏➐❶ ❅❴❵➑❳❑❏ ➒❺➏➁➀➓➁➔➏ ❥❉◗❭❳❭

❲② ❏❪❳ ❺q◗q⑧❏❴② ❵❥ →❭❉❑P❏q❵◗❶ ➣❵❉❏❪ P◗❭ ↔❅❵❴❏⑧ ❵❥ ❏❪❳ ➍✇❳❑❪

➃❳❅❉❲❬q❑ P◗❭ ➂❴◗❵ ↕◗q❷❳❴⑧q❏② ❵❥ ❼❳❑❪◗❵❬❵⑨② ⑨❴P◗❏ ◗❵❹ ④❿❼❸↔❸

➀➔❸➏➏➐➙❹

➃❊❋❊❘❊✟➈❊✞

➛✶➜ ▼✳ ❇❡❝❝❤✐➝ ➈✳ ➋✐s❡♠❛♥➝ ❛♥❞ ➞✳ ➈r♦➟❧❡➠➝ ➡❊✈❛❧✉❛t✐♥❣ r❡❣✉❧❛r ❡①♣r❡ss✐♦♥

♠❛t❝❤✐♥❣ ❡♥❣✐♥❡s ♦♥ ♥❡t➟♦r❦ ❛♥❞ ❣❡♥❡r❛❧ ♣✉r♣♦s❡ ♣r♦❝❡ss♦rs➝➢ ✐♥

➤➥➦➧➨➨➩➫➭➯➲ ➦➳ ➵➸➨ ➺➵➸ ➻➼➽➾➚➪➪➪ ➶➹➘➴➦➲➫➷➘ ➦➭ ➻➥➧➸➫➵➨➧➵➷➥➨➲ ➳➦➥

➬➨➵➮➦➥➱➫➭➯ ✃➭➩ ➼➦➘➘➷➭➫➧✃➵➫➦➭➲ ➶➹➲➵➨➘➲➝ s❡r✳ ❆✟➈✞ ❐✵✾✳ ✟❡➟

❒♦r❦➝ ✟❒➝ ✝✞❆❮ ❆➈▼➝ ✷✵✵✾➝ ♣♣✳ ✸✵❰✸✾✳ ➛➊♥❧✐♥❡➜✳ ❆✈❛✐❧❛❜❧❡❮

❤tt♣❮✴✴❞♦✐✳❛❝♠✳♦r❣✴✶✵✳✶✶✹✺✴✶✽✽✷✹✽✻✳✶✽✽✷✹✾✺

➛✷➜ ❘✳ ✞✐❞❤✉ ❛♥❞ ❱✳ ➉✳ ➞r❛s❛♥♥❛➝ ➡❋❛st r❡❣✉❧❛r ❡①♣r❡ss✐♦♥ ♠❛t❝❤✐♥❣ ✉s✐♥❣

❢♣❣❛s➝➢ ✐♥ ➤➥➦➧➨➨➩➫➭➯➲ ➦➳ ➵➸➨ ➵➸➨ Ï➵➸ ➻➭➭➷✃Ð ➚➪➪➪ ➶➹➘➴➦➲➫➷➘ ➦➭

Ñ➫➨Ð➩Ò➤➥➦➯➥✃➘➘✃ÓÐ➨ ➼➷➲➵➦➘ ➼➦➘➴➷➵➫➭➯ ➽✃➧➸➫➭➨➲➝ s❡r✳ ❋➈➈▼ ❐✵✶✳

➋❛s❤✐♥❣t♦♥➝ ➌➈➝ ✝✞❆❮ ■❊❊❊ ➈♦♠♣✉t❡r ✞♦❝✐❡t➠➝ ✷✵✵✶➝ ♣♣✳ ✷✷✼❰✷✸✽✳

➛➊♥❧✐♥❡➜✳ ❆✈❛✐❧❛❜❧❡❮ ❤tt♣❮✴✴❞①✳❞♦✐✳♦r❣✴✶✵✳✶✶✵✾✴❋➈➈▼✳✷✵✵✶✳✷✷

➛✸➜ ➈✳ ❘✳ ➈❧❛r❦ ❛♥❞ ➌✳ ❊✳ ✞❝❤✐♠♠❡❧➝ ➡❊❢Ô❝✐❡♥t r❡❝♦♥Ô❣✉r❛❜❧❡ ❧♦❣✐❝ ❝✐r❝✉✐ts

❢♦r ♠❛t❝❤✐♥❣ ❝♦♠♣❧❡① ♥❡t➟♦r❦ ✐♥tr✉s✐♦♥ ❞❡t❡❝t✐♦♥ ♣❛tt❡r♥s➝➢ ✐♥ ➚➭

➤➥➦➧➨➨➩➫➭➯➲ ➦➳ ÕÖ➵➸ ➚➭➵➨➥➭✃➵➫➦➭✃Ð ➼➦➭➳➨➥➨➭➧➨ ➦➭ Ñ➫➨Ð➩ ➤➥➦➯➥✃➘➝ ✷✵✵✸➝

♣♣✳ ✾✺✻❰✾✺✾✳

➛✹➜ ■✳ ✞♦✉r❞✐s➝ ×✳ ❇✐s♣♦➝ ×✳ ▼✳ ➞✳ ➈❛r❞♦s♦➝ ❛♥❞ ✞✳ ❱❛ss✐❧✐❛❞✐s➝ ➡❘❡❣✉❧❛r

❡①♣r❡ss✐♦♥ ♠❛t❝❤✐♥❣ ✐♥ r❡❝♦♥Ô❣✉r❛❜❧❡ ❤❛r❞➟❛r❡➝➢ Ø➦➷➥➭✃Ð ➦➳ ➶➫➯➭✃Ð

➤➥➦➧➨➲➲➫➭➯ ➶➹➲➵➨➘➲➝ ✈♦❧✳ ✺✶➝ ♥♦✳ ✶➝ ♣♣✳ ✾✾❰✶✷✶➝ ✷✵✵✽✳ ➛➊♥❧✐♥❡➜✳

❆✈❛✐❧❛❜❧❡❮ ❤tt♣❮✴✴❞①✳❞♦✐✳♦r❣✴✶✵✳✶✵✵✼✴s✶✶✷✻✺✲✵✵✼✲✵✶✸✶✲✵

➛✺➜ ✞✳ ❒✉♥ ❛♥❞ ➉✳ ▲❡❡➝ ➡➊♣t✐♠✐Ù❛t✐♦♥ ♦❢ r❡❣✉❧❛r ❡①♣r❡ss✐♦♥ ♣❛tt❡r♥ ♠❛t❝❤✐♥❣

❝✐r❝✉✐t ✉s✐♥❣ ❛t✲♠♦st t➟♦✲❤♦t ❡♥❝♦❞✐♥❣ ♦♥ ❢♣❣❛➝➢ ✐♥ ÚÛÕÛ ➚➭➵➨➥➭✃➵➫➦➭✃Ð

➼➦➭➳➨➥➨➭➧➨ ➦➭ Ñ➫➨Ð➩ ➤➥➦➯➥✃➘➘✃ÓÐ➨ Ü➦➯➫➧ ✃➭➩ ➻➴➴Ð➫➧✃➵➫➦➭➲➝ ❆✉❣ ✷✵✶✵➝

♣♣✳ ✹✵❰✹✸✳

➛✻➜ ✞✳ ➉✉♠❛r➝ ✞✳ ➌❤❛r♠❛♣✉r✐❦❛r➝ ❋✳ ❒✉➝ ➞✳ ➈r♦➟❧❡➠➝ ❛♥❞ ×✳ ❚✉r♥❡r➝

➡❆❧❣♦r✐t❤♠s t♦ ❛❝❝❡❧❡r❛t❡ ♠✉❧t✐♣❧❡ r❡❣✉❧❛r ❡①♣r❡ss✐♦♥s ♠❛t❝❤✐♥❣ ❢♦r

❞❡❡♣ ♣❛❝❦❡t ✐♥s♣❡❝t✐♦♥➝➢ ✐♥ ➤➥➦➧➨➨➩➫➭➯➲ ➦➳ ➵➸➨ ÚÛÛÝ ➼➦➭➳➨➥➨➭➧➨

➦➭ ➻➴➴Ð➫➧✃➵➫➦➭➲Þ ß➨➧➸➭➦Ð➦➯➫➨➲Þ ➻➥➧➸➫➵➨➧➵➷➥➨➲Þ ✃➭➩ ➤➥➦➵➦➧➦Ð➲ ➳➦➥

➼➦➘➴➷➵➨➥ ➼➦➘➘➷➭➫➧✃➵➫➦➭➲➝ s❡r✳ ✞■●➈➊▼▼ ❐✵✻✳ ✟❡➟ ❒♦r❦➝

✟❒➝ ✝✞❆❮ ❆➈▼➝ ✷✵✵✻➝ ♣♣✳ ✸✸✾❰✸✺✵✳ ➛➊♥❧✐♥❡➜✳ ❆✈❛✐❧❛❜❧❡❮

❤tt♣❮✴✴❞♦✐✳❛❝♠✳♦r❣✴✶✵✳✶✶✹✺✴✶✶✺✾✾✶✸✳✶✶✺✾✾✺✷

➛✼➜ ▼✳ ❇❡❝❝❤✐ ❛♥❞ ➞✳ ➈r♦➟❧❡➠➝ ➡❆✲❞❢❛❮ ❆ t✐♠❡✲ ❛♥❞ s♣❛❝❡✲❡❢Ô❝✐❡♥t ❞❢❛

❝♦♠♣r❡ss✐♦♥ ❛❧❣♦r✐t❤♠ ❢♦r ❢❛st r❡❣✉❧❛r ❡①♣r❡ss✐♦♥ ❡✈❛❧✉❛t✐♦♥➝➢ ➻➼➽

ß➥✃➭➲à ➻➥➧➸➫➵à ➼➦➩➨ á➴➵➫➘à➝ ✈♦❧✳ ✶✵➝ ♥♦✳ ✶➝ ♣♣✳ ✹❮✶❰✹❮✷✻➝ ❆♣r✳ ✷✵✶✸✳

➛➊♥❧✐♥❡➜✳ ❆✈❛✐❧❛❜❧❡❮ ❤tt♣❮✴✴❞♦✐✳❛❝♠✳♦r❣✴✶✵✳✶✶✹✺✴✷✹✹✺✺✼✷✳✷✹✹✺✺✼✻

99

❬✽❪ ❋✳ ❨✉✱ ❩✳ ❈❤❡♥✱ ❨✳ ❉✐❛♦✱ ❚✳ ❱✳ ▲❛❦s❤♠❛♥✱ ❛♥❞ ❘✳ ❍✳ ❑❛t③✱ ➇❋❛st

❛♥❞ ♠❡♠♦r②✲❡❢✂❝✐❡♥t r❡❣✉❧❛r ❡①♣r❡ss✐♦♥ ♠❛t❝❤✐♥❣ ❢♦r ❞❡❡♣ ♣❛❝❦❡t

✐♥s♣❡❝t✐♦♥✱➈ ✐♥ P�✁✄☎☎✆✝✞✟✠ ✁✡ ☛☞☎ ✷✵✵✻ ❆✌▼✴■❊❊❊ ❙✍✎✏✁✠✝✑✎ ✁✞

❆�✄☞✝☛☎✄☛✑�☎ ✡✁� ◆☎☛✇✁�✒✝✞✟ ✓✞✆ ✌✁✎✎✑✞✝✄✓☛✝✁✞✠ ❙✍✠☛☎✎✠✱ s❡r✳ ✔✕❈✖

✬✗✘✳ ✕❡✙ ❨♦r❦✱ ✕❨✱ ❯✖✔✿ ✔❈✚✱ ✛✗✗✘✱ ♣♣✳ ✾✸➊✶✗✛✳ ❬❖♥❧✐♥❡❪✳

✔✈❛✐❧❛❜❧❡✿ ❤tt♣✿✜✜❞♦✐✳❛❝♠✳♦r❣✜✶✗✳✶✶✹✺✜✶✶✽✺✸✹✼✳✶✶✽✺✸✘✗

❬✾❪ ❈✳ ❘✳ ❈❧❛r❦ ❛♥❞ ❉✳ ✢✳ ✖❝❤✐♠♠❡❧✱ ➇✖❝❛❧❛❜❧❡ ♣❛tt❡r♥ ♠❛t❝❤✐♥❣ ❢♦r ❤✐❣❤

s♣❡❡❞ ♥❡t✙♦r❦s✱➈ ✐♥ ✣✝☎✤✆✥P�✁✟�✓✎✎✓✦✤☎ ✌✑✠☛✁✎ ✌✁✎✏✑☛✝✞✟ ▼✓✄☞✝✞☎✠✧

✷✵✵★✩ ✣✌✌▼ ✷✵✵★✩ ✪✷☛☞ ❆✞✞✑✓✤ ■❊❊❊ ❙✍✎✏✁✠✝✑✎ ✁✞✱ ✔♣r✐❧ ✛✗✗✹✱ ♣♣✳

✛✹✾➊✛✺✼✳

❬✶✗❪ ❈✳ ▲✐♥✱ ❈✳ ❍✉❛♥❣✱ ❈✳ ❏✐❛♥❣✱ ❛♥❞ ✖✳ ❈❤❛♥❣✱ ➇❖♣t✐♠✐③❛t✐♦♥ ♦❢ ♣❛tt❡r♥

♠❛t❝❤✐♥❣ ❝✐r❝✉✐ts ❢♦r r❡❣✉❧❛r ❡①♣r❡ss✐♦♥ ♦♥ ❋✫●✔✱➈ ■❊❊❊ ✭�✓✞✠✩ ✮✯❙■

❙✍✠☛✩✱ ✈♦❧✳ ✶✺✱ ♥♦✳ ✶✛✱ ♣♣✳ ✶✸✗✸➊✶✸✶✗✱ ✛✗✗✼✳ ❬❖♥❧✐♥❡❪✳ ✔✈❛✐❧❛❜❧❡✿

❤tt♣✿✜✜❞①✳❞♦✐✳♦r❣✜✶✗✳✶✶✗✾✜❚❱▲✖✰✳✛✗✗✼✳✾✗✾✽✗✶

❬✶✶❪ ❇✳ ❈❛s✙❡❧❧✱ ❏✳ ❈✳ ❋♦st❡r✱ ❘✳ ❘✉ss❡❧❧✱ ❏✳ ❇❡❛❧❡✱ ❛♥❞ ❏✳ ✫♦s❧✉♥s✱ ❙✞✁�☛ ✷✩✵

■✞☛�✑✠✝✁✞ ❀☎☛☎✄☛✝✁✞✳ ✖②♥❣r❡ss ✫✉❜❧✐s❤✐♥❣✱ ✛✗✗✸✳

❬✶✛❪ ❱✳ ✫❛①s♦♥✱ ➇❇r♦✿ ✔ s②st❡♠ ❢♦r ❞❡t❡❝t✐♥❣ ♥❡t✙♦r❦ ✐♥tr✉❞❡rs ✐♥ r❡❛❧✲t✐♠❡✱➈

✌✁✎✏✑☛✩ ◆☎☛✇✩✱ ✈♦❧✳ ✸✶✱ ♥♦✳ ✛✸✲✛✹✱ ♣♣✳ ✛✹✸✺➊✛✹✘✸✱ ❉❡❝✳ ✶✾✾✾✳ ❬❖♥❧✐♥❡❪✳

✔✈❛✐❧❛❜❧❡✿ ❤tt♣✿✜✜❞①✳❞♦✐✳♦r❣✜✶✗✳✶✗✶✘✜✖✶✸✽✾✲✶✛✽✘❁✾✾❂✗✗✶✶✛✲✼

❬✶✸❪ ❨✳ ❍✳ ❨❛♥❣ ❛♥❞ ❱✳ ✫r❛s❛♥♥❛✱ ➇❍✐❣❤✲♣❡r❢♦r♠❛♥❝❡ ❛♥❞ ❝♦♠♣❛❝t ❛r❝❤✐t❡❝✲

t✉r❡ ❢♦r r❡❣✉❧❛r ❡①♣r❡ss✐♦♥ ♠❛t❝❤✐♥❣ ♦♥ ❢♣❣❛✱➈ ■❊❊❊ ✭�✓✞✠✓✄☛✝✁✞✠ ✁✞

✌✁✎✏✑☛☎�✠✱ ✈♦❧✳ ✘✶✱ ♥♦✳ ✼✱ ♣♣✳ ✶✗✶✸➊✶✗✛✺✱ ❏✉❧② ✛✗✶✛✳

❬✶✹❪ ❨✳✲❍✳ ✢✳ ❨❛♥❣✱ ❲✳ ❏✐❛♥❣✱ ❛♥❞ ❱✳ ❑✳ ✫r❛s❛♥♥❛✱ ➇❈♦♠♣❛❝t ❛r❝❤✐t❡❝t✉r❡

❢♦r ❤✐❣❤✲t❤r♦✉❣❤♣✉t r❡❣✉❧❛r ❡①♣r❡ss✐♦♥ ♠❛t❝❤✐♥❣ ♦♥ ❢♣❣❛✱➈ ✐♥

P�✁✄☎☎✆✝✞✟✠ ✁✡ ☛☞☎ ★☛☞ ❆✌▼✴■❊❊❊ ❙✍✎✏✁✠✝✑✎ ✁✞ ❆�✄☞✝☛☎✄☛✑�☎✠ ✡✁�

◆☎☛✇✁�✒✝✞✟ ✓✞✆ ✌✁✎✎✑✞✝✄✓☛✝✁✞✠ ❙✍✠☛☎✎✠✱ s❡r✳ ✔✕❈✖ ✬✗✽✳ ✕❡✙

❨♦r❦✱ ✕❨✱ ❯✖✔✿ ✔❈✚✱ ✛✗✗✽✱ ♣♣✳ ✸✗➊✸✾✳ ❬❖♥❧✐♥❡❪✳ ✔✈❛✐❧❛❜❧❡✿

❤tt♣✿✜✜❞♦✐✳❛❝♠✳♦r❣✜✶✗✳✶✶✹✺✜✶✹✼✼✾✹✛✳✶✹✼✼✾✹✽

❬✶✺❪ ❨✳ ❑❛♥❡t❛✱ ✖✳ ❨♦s❤✐③❛✙❛✱ ✖✳ ✐✳ ✚✐♥❛t♦✱ ❍✳ ✔r✐♠✉r❛✱ ❛♥❞ ❨✳ ✚✐②❛♥❛❣❛✱

➇❉②♥❛♠✐❝ r❡❝♦♥✂❣✉r❛❜❧❡ ❜✐t✲♣❛r❛❧❧❡❧ ❛r❝❤✐t❡❝t✉r❡ ❢♦r ❧❛r❣❡✲s❝❛❧❡ r❡❣✉❧❛r

❡①♣r❡ss✐♦♥ ♠❛t❝❤✐♥❣✱➈ ✐♥ ✣✝☎✤✆✥P�✁✟�✓✎✎✓✦✤☎ ✭☎✄☞✞✁✤✁✟✍ ❃✣P✭❄✧ ✷✵✪✵

■✞☛☎�✞✓☛✝✁✞✓✤ ✌✁✞✡☎�☎✞✄☎ ✁✞✱ ❉❡❝ ✛✗✶✗✱ ♣♣✳ ✛✶➊✛✽✳

❬✶✘❪ ✚✳ ❇❡❝❝❤✐ ❛♥❞ ✖✳ ❈❛❞❛♠❜✐✱ ➇✚❡♠♦r②✲❡❢✂❝✐❡♥t r❡❣✉❧❛r ❡①♣r❡ss✐♦♥ s❡❛r❝❤

✉s✐♥❣ st❛t❡ ♠❡r❣✐♥❣✱➈ ✐♥ ■❊❊❊ ■◆✣❅✌❅▼ ✷✵✵◗ ✥ ✷✻☛☞ ■❊❊❊ ■✞☛☎�✞✓✥

☛✝✁✞✓✤ ✌✁✞✡☎�☎✞✄☎ ✁✞ ✌✁✎✏✑☛☎� ✌✁✎✎✑✞✝✄✓☛✝✁✞✠✱ ✚❛② ✛✗✗✼✱ ♣♣✳ ✶✗✘✹➊

✶✗✼✛✳

❬✶✼❪ ✖✳ ❑✉♠❛r✱ ❇✳ ❈❤❛♥❞r❛s❡❦❛r❛♥✱ ❏✳ ❚✉r♥❡r✱ ❛♥❞ ●✳ ❱❛r❣❤❡s❡✱ ➇❈✉r✐♥❣

r❡❣✉❧❛r ❡①♣r❡ss✐♦♥s ♠❛t❝❤✐♥❣ ❛❧❣♦r✐t❤♠s ❢r♦♠ ✐♥s♦♠♥✐❛✱ ❛♠♥❡s✐❛✱

❛♥❞ ❛❝❛❧❝✉❧✐❛✱➈ ✐♥ P�✁✄☎☎✆✝✞✟✠ ✁✡ ☛☞☎ ❳�✆ ❆✌▼✴■❊❊❊ ❙✍✎✏✁✠✝✑✎ ✁✞

❆�✄☞✝☛☎✄☛✑�☎ ✡✁� ◆☎☛✇✁�✒✝✞✟ ✓✞✆ ✌✁✎✎✑✞✝✄✓☛✝✁✞✠ ❙✍✠☛☎✎✠✱ s❡r✳ ✔✕❈✖

✬✗✼✳ ✕❡✙ ❨♦r❦✱ ✕❨✱ ❯✖✔✿ ✔❈✚✱ ✛✗✗✼✱ ♣♣✳ ✶✺✺➊✶✘✹✳ ❬❖♥❧✐♥❡❪✳

✔✈❛✐❧❛❜❧❡✿ ❤tt♣✿✜✜❞♦✐✳❛❝♠✳♦r❣✜✶✗✳✶✶✹✺✜✶✸✛✸✺✹✽✳✶✸✛✸✺✼✹

❬✶✽❪ ❏✳ ❑♦❭r❡♥❡❦✱ ➇❋❛st r❡❣✉❧❛r ❡①♣r❡ss✐♦♥ ♠❛t❝❤✐♥❣ ✉s✐♥❣ ❢♣❣❛✱➈ ■✞✡✁�✎✓☛✝✁✞

❙✄✝☎✞✄☎✠ ✓✞✆ ✭☎✄☞✞✁✤✁✟✝☎✠ ❫✑✤✤☎☛✝✞ ✁✡ ☛☞☎ ❆✌▼ ❙✤✁❴✓✒✝✓✱ ✈♦❧✳ ✛✱ ♥♦✳ ✛✱

♣♣✳ ✶✗✸➊✶✶✶✱ ✛✗✶✗✳

❬✶✾❪ ✚✳ ❇❡❝❝❤✐ ❛♥❞ ✫✳ ❈r♦✙❧❡②✱ ➇✔ ❤②❜r✐❞ ✂♥✐t❡ ❛✉t♦♠❛t♦♥ ❢♦r

♣r❛❝t✐❝❛❧ ❞❡❡♣ ♣❛❝❦❡t ✐♥s♣❡❝t✐♦♥✱➈ ✐♥ P�✁✄☎☎✆✝✞✟✠ ✁✡ ☛☞☎ ✷✵✵◗

❆✌▼ ✌✁◆❊❵✭ ✌✁✞✡☎�☎✞✄☎✱ s❡r✳ ❈♦✕✢❥❚ ✬✗✼✳ ✕❡✙ ❨♦r❦✱

✕❨✱ ❯✖✔✿ ✔❈✚✱ ✛✗✗✼✱ ♣♣✳ ✶✿✶➊✶✿✶✛✳ ❬❖♥❧✐♥❡❪✳ ✔✈❛✐❧❛❜❧❡✿

❤tt♣✿✜✜❞♦✐✳❛❝♠✳♦r❣✜✶✗✳✶✶✹✺✜✶✸✘✹✘✺✹✳✶✸✘✹✘✺✘

❬✛✗❪ ➋➋✱ ➇✢①t❡♥❞✐♥❣ ✂♥✐t❡ ❛✉t♦♠❛t❛ t♦ ❡❢✂❝✐❡♥t❧② ♠❛t❝❤ ♣❡r❧✲

❝♦♠♣❛t✐❜❧❡ r❡❣✉❧❛r ❡①♣r❡ss✐♦♥s✱➈ ✐♥ P�✁✄☎☎✆✝✞✟✠ ✁✡ ☛☞☎ ✷✵✵q

❆✌▼ ✌✁◆❊❵✭ ✌✁✞✡☎�☎✞✄☎✱ s❡r✳ ❈♦✕✢❥❚ ✬✗✽✳ ✕❡✙ ❨♦r❦✱

✕❨✱ ❯✖✔✿ ✔❈✚✱ ✛✗✗✽✱ ♣♣✳ ✛✺✿✶➊✛✺✿✶✛✳ ❬❖♥❧✐♥❡❪✳ ✔✈❛✐❧❛❜❧❡✿

❤tt♣✿✜✜❞♦✐✳❛❝♠✳♦r❣✜✶✗✳✶✶✹✺✜✶✺✹✹✗✶✛✳✶✺✹✹✗✸✼

❬✛✶❪ ❇✳ ❈✳ ❇r♦❞✐❡✱ ❉✳ ✢✳ ❚❛②❧♦r✱ ❛♥❞ ❘✳ ❑✳ ❈②tr♦♥✱ ➇✔ s❝❛❧❛❜❧❡ ❛r❝❤✐t❡❝t✉r❡

❢♦r ❤✐❣❤✲t❤r♦✉❣❤♣✉t r❡❣✉❧❛r✲❡①♣r❡ss✐♦♥ ♣❛tt❡r♥ ♠❛t❝❤✐♥❣✱➈ ✐♥ ❳❳�✆ ■✞✥

☛☎�✞✓☛✝✁✞✓✤ ❙✍✎✏✁✠✝✑✎ ✁✞ ✌✁✎✏✑☛☎� ❆�✄☞✝☛☎✄☛✑�☎ ❃■❙✌❆④✵✻❄✱ ✛✗✗✘✱ ♣♣✳

✶✾✶➊✛✗✛✳

❬✛✛❪ ✚✳ ❇❡❝❝❤✐ ❛♥❞ ✫✳ ❈r♦✙❧❡②✱ ➇✢❢✂❝✐❡♥t r❡❣✉❧❛r ❡①♣r❡ss✐♦♥ ❡✈❛❧✉❛t✐♦♥✿

❚❤❡♦r② t♦ ♣r❛❝t✐❝❡✱➈ ✐♥ P�✁✄☎☎✆✝✞✟✠ ✁✡ ☛☞☎ ★☛☞ ❆✌▼✴■❊❊❊ ❙✍✎✏✁✠✝✑✎

✁✞ ❆�✄☞✝☛☎✄☛✑�☎✠ ✡✁� ◆☎☛✇✁�✒✝✞✟ ✓✞✆ ✌✁✎✎✑✞✝✄✓☛✝✁✞✠ ❙✍✠☛☎✎✠✱ s❡r✳

✔✕❈✖ ✬✗✽✳ ✕❡✙ ❨♦r❦✱ ✕❨✱ ❯✖✔✿ ✔❈✚✱ ✛✗✗✽✱ ♣♣✳ ✺✗➊✺✾✳ ❬❖♥❧✐♥❡❪✳

✔✈❛✐❧❛❜❧❡✿ ❤tt♣✿✜✜❞♦✐✳❛❝♠✳♦r❣✜✶✗✳✶✶✹✺✜✶✹✼✼✾✹✛✳✶✹✼✼✾✺✗

100

A.6 Paper VI
Software Defined Monitoring of Application Protocols

79

Software Defined Monitoring of Application
Protocols

Lukáš Kekely, Viktor Puš
CESNET a. l. e.

Zikova 4, 160 00 Prague, Czech Republic
Email: kekely,pus@cesnet.cz

Jan Kořenek
IT4Innovations Centre of Excellence
Faculty of Information Technology

Brno University of Technology
Božetěchova 2, 612 66 Brno, Czech Republic

Email: korenek@fit.vutbr.cz

Abstract—Current high-speed network monitoring systems
focus more and more on the data from the application layers.
Flow data is usually enriched by the information from HTTP,
DNS and other protocols. The increasing speed of the network
links, together with the time consuming application protocol pars-
ing, require a new way of hardware acceleration. Therefore we
propose a new concept of hardware acceleration for flexible flow-
based application level monitoring which we call Software Defined
Monitoring (SDM). The concept relies on smart monitoring tasks
implemented in the software in conjunction with a configurable
hardware accelerator. The hardware accelerator is an application-
specific processor tailored to stateful flow processing. The mon-
itoring tasks reside in the software and can easily control the
level of detail retained by the hardware for each flow. This way
the measurement of bulk/uninteresting traffic is offloaded to the
hardware while the advanced monitoring over the interesting
traffic is performed in the software. The proposed concept allows
one to create flexible monitoring systems capable of deep packet
inspection at high throughput. Our pilot implementation in FPGA
is able to perform a 100 Gb/s flow traffic measurement augmented
by a selected application-level protocol parsing.

I. INTRODUCTION

The task of network traffic monitoring is one of the
key concepts in modern network engineering and security.
A golden standard in the network monitoring is the basic
NetFlow measurement. In NetFlow, the monitoring device
collects basic statistics about the IP flows and reports them to
a central storage collector in the Cisco NetFlow v5 protocol.
NetFlow measurement is a stateful process, because for each
packet the flow state record is updated in the device (e.g.
counters are incremented), and only the resulting numbers are
exported. This also implies that some information is lost in the
monitoring process and that the flow collector (where further
data processing is usually done) has a limited view on the
network. The ability to analyze the application layer in the
monitoring process is, therefore, very important in order to
improve the quality and flexibility of network monitoring.

The evolution of the NetFlow protocol led to the IPFIX
protocol [1]. IPFIX allows for the extension of the exported
flow record for any other additional information. While IPFIX
solves the task of transmitting the additional data, there re-
mains the issue of obtaining the additional data. This process
inevitably requires additional computational resources.

Pure software implementation of the application level flow

monitoring is certainly possible, yet its throughput is limited
mainly by the performance of commodity processors. It should
be noted that every new packet is inevitably a cache miss in
the CPU. Pure hardware implementation, on the other hand,
has poor flexibility because the complex protocol parsers are
very hard to implement in Hardware Description Languages.
Moreover, the evolving nature of network threats and security
issues implies the need for a fast change of the monitoring
process, which is much more difficult for the hardware. These
thoughts lead us to the idea of a hardware accelerator tightly
coupled to a software controller with monitoring applications
as software plugins.

We focus on the process of obtaining the high-quality,
unsampled flow measurement data augmented by application-
layer information. Our key idea is that even the advanced
application-layer processing usually needs to observe only
some flows containing only a small fraction of traffic (such
as DNS, with typically no more than 1 % of all packets), or
even only a small amount of packets within each of these flows
(such as HTTP, typically carrying the HTTP header in the first
few packets after the TCP handshake).

We employ a hardware accelerator to perform the offload
of the flow measurement for the bulk traffic that is not (or no
longer) interesting to the application-layer processing tasks.
Also, the hardware accelerator partially has the role of the
basic NIC - network interface card. Therefore, it passes a small
fraction of the packets intact to the monitoring software and
performs flow measurement of the rest.

The use of measurement offload can be easily controlled on
a per flow basis by the monitoring software and adjusted to
its current needs. Offload control is realized through unified
interface by dynamically specifying a set of rules. These
rules are then installed into the hardware accelerator to deter-
mine interestingness of individual network flows for advanced
software processing. Thanks to this unified control interface
the proposed system is very flexible and can be used for a
wide range of different network monitoring applications. The
whole system is designed to be easily extensible by monitoring
plugins at the software side. Each monitoring application (in
the form of SDM plugin) has three conceptual interfaces: input
packets, output measured values, and the control interface to
express interest and disinterest in particular fractions of the
network traffic. We demonstrate the SDM system on four dif-
ferent monitoring applications: NetFlow measurement, HTTP
parsing, a combination of both and DNS protocol parsing.978-1-4799-3360-0/14/$31.00 c©2014 IEEE

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

978-14799-3360-0/14/$31.00 ©2014 IEEE 1725

2

The contribution of our work is three-fold:

• Design of a new concept of extensible high speed net-
work monitoring system. This includes a design of a
new application-specific processor for the stateful flow
measurement and its controller software. (Chapter II)

• Analysis of network traffic to show the possibilities for
the hardware acceleration. Assessment of the system
feasibility is based on the analysis. (Chapter III)

• Implementation and evaluation of the system in several
use cases. (Chapter IV)

II. SYSTEM DESIGN

A standard model of the flow measurement widely used
in 10 Gbps networks relies on a hardware network card per-
forming a packet capture, sometimes enhanced by a packet
distribution among several CPU cores. The captured traffic is
then sent over the host bus to the memory, where packets are
processed by the CPU cores. This model cannot be applied to
100 Gbps networks due to two major performance bottlenecks.
First, the throughput of today’s PCI Express busses is insuf-
ficient. The second bottleneck lies in limited computational
power which is insufficient for advanced monitoring tasks. We
propose a new acceleration model which overcomes the above-
mentioned bottlenecks by a well-defined hardware/software co-
design. The main idea is to give the hardware the ability to
handle basic traffic processing. Only a granular control of the
HW and some more advanced tasks are left for the software.

The basic idea of acceleration by the SDM system is
based on a finely controlled data loss and data distribution
realized by hardware preprocessing of the network traffic. The
preprocessing is fully controlled by the software applications.
Therefore, the first few packets of a new flow are sent to the
software, which decides which type of hardware preprocessing
will be used for the following packets of the flow. There are
two basic options for the hardware acceleration:

• It is possible to extract the interesting data from
packets in the hardware and send them only to the
software in a predefined format, which we call a
Unified Header (UH). Then only a few bytes for each
packet are transferred through the PCI Express bus
and the CPU has a lower load too because the packet
parsing is done in the hardware.

• Furthermore, packets can be aggregated to NetFlow
records directly in the HW which brings even higher
performance savings.

Some advanced monitoring applications perform deep packet
inspection on interesting fragments of traffic and, therefore,
have to analyze the whole packets. For example, extraction
of information from HTTP headers needs several first packets
for each HTTP flow. Therefore, the proposed system provides
a control over the hardware packet preprocessing at the flow
level granularity.

The top-level conceptual scheme of the proposed SDM
system is shown in Fig. 1. Data paths are represented by black
arrows and control paths by red arrows. The system is com-
posed of two main parts (firmware and software) connected

together through the PCI Express bus. The processing of all
incoming packets starts with the header parsing and extraction
of interesting metadata (Header Field Extractor - HFE block).
Extracted metadata are then used to classify the packet based
on a software defined set of rules (Classifier block). Each
rule identifies one specific flow and defines a method of
hardware preprocessing of its packets. More precisely, each
rule specifies the type of packet preprocessing and the target
software channel. Packets can be processed in a hardware flow
cache, dropped, trimmed or sent to the software unchanged or
in the form of a Unified Header (UH Generator block). Flow
records in the hardware flow cache are periodically exported
to the software. Sending the data to the software is realized
by the direct memory accesses (DMA) over the PCI Express
bus. There are multiple independent logical DMA channels
with the corresponding DMA buffers in the host RAM to aid
parallel processing by a multicore CPU.

The data can be stored in DMA buffers in the form of
whole packets, Unified Headers or flow records. This data can
be monitored by the set of user specific software applications
such as the flow exporter which analyzes the received data
and exports the flow records to the collector. User applications
can read the data from the selected DMA channels and can
also specify which types of traffic they want to inspect and
which flows can be preprocessed in hardware. For example,
an HTTP header parser needs to inspect every packet in the
HTTP flow until it acquires the required information (e.g.
the URL). Definitions of interesting and uninteresting bulk
traffic from all applications are passed to the SDM controller.
The SDM controller aggregates the definitions into rules and
configures the firmware behavior in order to achieve the
maximal possible reduction of the traffic resulting in maximal
hardware acceleration.

Packets

PCI

Metadata

ActionUH

Flow Record IPFIX

R
u

le
s

Firmware part Software part

User
Specific

Fig. 1. Conceptual top-level scheme of SDM system

A different view of the proposed SDM system is shown as a
layered scheme in Fig. 2. The SDM system is designed to work
on a hardware accelerated network board with an FPGA chip.
Our implementation uses a custom made board with 100 Gb/s
Ethernet interface and Virtex-7 FPGA with the NetCOPE
platform [2] realizing the basic network traffic capture and
communication with the software (DMA). The core of the
FPGA firmware is realized by the firmware part of the SDM
system described earlier, which is able to process the incoming
traffic at full speed of the network link. The software layer of
the SDM includes means for the basic configuration of the
firmware, network data transfer (black Data Path) and control
of SDM firmware (red Control Path). Data can be received
from the firmware in the standard PCAP or the proprietary SZE

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

1726

3

format. On the top of the SDM system, there are individual
user specific software applications.

Fig. 2. Layered model of SDM acceleration system

Fig. 3 shows a top level implementation scheme of the
SDM firmware. The main firmware functionality is realized
by the processing pipeline of four modules: Header Field
Extractor (HFE), Search, Update and Export. This pipeline
processes the incoming network traffic and creates an out-
going data flow for the software. Incoming frames do not
flow directly through the processing pipeline, but are rather
stored in a parallel FIFO. The processing pipeline uses only
metainformation extracted from frames headers (UH). Whole
software control of the processing pipeline is managed by the
SW Access module which configures preprocessing rules used
in the Search unit. In order to achieve sufficient capacity for
rules and flow records, the firmware stores them in external
memory (Table1 and Table2). Access to the external memory
is managed by Memory Arbiter.

Frames

UH

Action

UH

Action

UH

External Memory

Rules

Fig. 3. Detailed firmware scheme

As already described, the SDM firmware functionality is
realized by 6 main modules:

• Header Field Extractor analyzes headers of incom-
ing frames and extracts interesting information from
them, especially fields that clearly identify network
flows. In order to identify flows we use the classical

5-tuple: source and destination IP addresses, source
and destination TCP/UDP port numbers and a protocol
number. We use our own flexible low latency modular
implementation of the header parser [3].

• Search assigns an action to every processed frame
based on its flow identifier. An action assignment is
realized using a set of software defined rules in the
form of a flow identifier paired with action (Table1
in external memory). Management of the rule set is
possible through a control interface capable of an
atomic add, remove or update of the rules. A frame
classification by the Search unit works in 2 steps.
Firstly, the frames are assigned with an action based
on a small set of relatively static rules on flow groups
(e.g. flows with source port 80). Secondly, the action
from the first step can be further particularized by a
set of dynamic rules for individual flows. Standardly,
user applications set up rules of the first type during
startup and then they manage the set of second type
rules during traffic processing.

• Update manages the records for flows in Table2. It
mainly actualizes their values based on input UH and
its action. The action for every UH has the address
of the record and a specification of the operation
(aggregation type). Update of the record is realized
by two memory operations: read actual values of
the record fields and write back the updated values.
Another operation is the export of the record values,
possibly followed by the reset of the record values
in the memory. Records can be exported not only at
the flow end but also in a periodical manner, so that
the software applications can have actual information
about hardware monitored flows. Control of memory
allocation for records and their periodical export is
realized by SDM control software.
In the first version of SDM we implement only the
simple NetFlow aggregation as the record update op-
eration – increase packets/bytes counters, update flow
start/end timestamp and logical or of TCP flags. It is
however possible to support more types of records and
operations in the future.

• Export pairs together corresponding UH transaction
with frame data from FIFO memory. Then it chooses
the DMA channel and format for the data based on
action assigned by the Search module.

• SW Access is the main access point into the SDM
firmware from the software. Its primary function is
to manage the rules and to initiate the export of the
flow records based on software commands. Besides, it
contains all state and control registers. It also enables
direct software access into external memory (still used
only for debug).

• Memory Arbiter provides and manages access to the
external memory. Its main responsibilities are proper
interleaving of memory accesses and routing of read
data between units. It also ensures atomicity and
deterministic succession of all memory operations.

The network traffic preprocessing by firmware is controlled
from the software. The core of the controlling software are the

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

1727

4

monitoring applications. Each monitoring application has the
form of an SDM plugin. The main input to the plugin is the
data path carrying the packets, UHs or flow records. The plugin
output is the data that the plugin has parsed/detected/measured.
This output data is then added to the exported IPFIX flow
record. The third interface of the monitoring application is the
interface to the SDM Controller.

From the application view, the SDM controller accepts the
preprocessing requests from multiple applications, aggregates
them and administers them into the firmware. In order to
achieve that, the controller performs the following operations:

• On the fly management of the set of applications
currently controlling the firmware preprocessing.

• Preprocessing requests reception from applications.

• Storing and aggregation of the received preprocessing
rules (requests).

• Timed expiration of application rules.

The aggregation of preprocessing rules is based on different
degrees of data reduction. Ordered from the lowest degree
of data reduction the preprocessing types are: none (whole
packets), partial (UH), complete (flow record) and elimination
(packet drops). Therefore, aggregation of rules in the SDM
controller is done simply by the selection of the lowest
preprocessing degree (highest data preservation) for particular
flows which satisfy the information level requirements of all
applications.

When configuring the firmware, the SDM controller com-
municates directly with the SW Access module. In order
to maintain a proper functionality of SDM firmware, the
controller must carry out the following operations:

• Management of rules activated in the firmware (rule
add/delete/update) based on the application demands.

• Cyclic export of active flow records computed in the
firmware flow cache.

• Allocation of records in the firmware flow cache.

III. PROOF OF CONCEPT

This chapter analyzes the proposed concept. It is divided
into three sections. The first section proposes several possibly
weak points of the SDM concept. The second section presents
an analysis of network traffic. The aim of the analysis is to
show whether the SDM concept is a sound idea. The third
section draws conclusions about the presented analysis and
addresses all of the proposed weak points.

A. Potential Weak Points

From the presented SDM concept one can infer several
potential weak spots in the system design. Their existence
can (in bad circumstances) lead to lower effectiveness of
hardware preprocessing usage and therefore to a low degree of
achieved application acceleration. Major recognized potential
weaknesses of the SDM design are the following:

• Long duration of the feedback loop. In order to
maintain a throughput of 100 Gbps and more, the hard-
ware processing of packets cannot wait for software

decisions – the packets must be processed on the fly.
Therefore, the action chosen for the flow does not
affect a certain amount of leading packets from this
flow. If a high portion of flows on the monitored link
have an extremely short duration, the acceleration ratio
achievable from the usage of SDM declines.

• Limited firmware capacity. Because of the fine gran-
ularity of preprocessing control, the firmware must
store some information about each known flow. The
capacity of table with search rules or flow records
in the firmware (Table1 or Table2 in Fig. 3) can be
restrictive. An extremely high number of concurrent
flows on the network can restrict the preprocessing
usage to only a small portion of the flows. Negative
effects of this restriction can be significantly reduced
by an adequate selection of preprocessed flows. Suit-
ability of the flow is given by the achievable reduction
of its data during preprocessing. It is generally desir-
able to prefer the preprocessing of large (heavy) flows.

• Insufficient data reduction. Hardware preprocessing
reduces the data quantity from the network by convert-
ing the packets into Unified Headers, aggregating them
into flow records or by dropping them completely. The
amount of data reduction is directly proportional to the
size of processed packets and flows. Therefore, in the
case of extremely short flows with very short packets
the effectiveness of data reduction of the SDM can be
relatively small.

• Overly granular control. The choice of the acceler-
ation control basic unit affects the number of required
rules in the Search module and the rate of their cre-
ation. The benefit from a preprocessing rule covering
a small portion of the incoming traffic is small. In the
extreme case, the overhead of rule creation can even
outweigh the SDM benefits. Also, rule generation in
case of extremely small units of control can exceed the
achievable throughput of the configuration interface.

B. Network Traffic Analysis

The magnitude of possible negative impacts of the de-
scribed weak spots is closely related to the character of
processed data. Therefore, we have analyzed the properties
of the network traffic in a real high-speed backbone network.
Based on the measured characteristics we have proven that the
proposed SDM system can perform very well when deployed
in real networks.

All of the measurements in this paper were conducted
in the high-speed CESNET2 backbone network. CESNET2
is Czech NREN which has optical links operating at speeds
up to 100 Gbps and routes mainly IP traffic. We conducted
all of our measurements during the standard working hours
of the workweek. We measured mean size of packets in
bytes, mean size of flows in packets and mean time duration
of flows. Because we aim for the application protocols, we
measured the mentioned characteristics, not only for the whole
network traffic on the link, but also for the selected application
protocols. We selected a set of interesting protocols: HTTP,
HTTPS, DNS, SMTP, SSH and SIP. Furthermore, we measured

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

1728

5

the percentage of these protocols in the captured traffic in the
matter of flows, packets and bytes.

The results of the basic network traffic analysis are shown
in Table I. The table shows that the statistics vary depending
on the application protocol. Dominant is the HTTP protocol
with more than a quarter of all flows and more than a half of
all packets and bytes. Moreover, HTTP flows and packets are
generally larger (heavier) and longer. A considerable amount
of traffic belongs to HTTPS, which has generally smaller and
longer flows than HTTP. A high amount of flows also belong
to the DNS protocol (one fifth), but this number is highly
disproportional to the DNS total packet and bytes percentage.
DNS flows are generally very small (light). A majority of them
consists of only one small packet.

Flows Packets Bytes Flow Flow Packet
[%] [%] [%] [packets] [s] [Bytes]

HTTP 25.45 54.36 58.68 63.1 7.167 963.2
HTTPS 14.28 6.92 4.75 14.3 8.493 611.7
DNS 18.89 0.72 0.17 1.1 0.179 207.2
SMTP 0.38 0.22 0.14 17.2 2.934 573.8
SSH 0.04 0.01 0.00 11.6 17.433 233.0
SIP 0.00 0.00 0.00 4.9 24.701 420.9
others 40.96 37.76 36.26 27.3 7.735 856.7

all 29.6 6.257 892.2

TABLE I. BASIC STATISTICAL CHARACTERISTICS OF NETWORK DATA

GROUPED BY THE APPLICATION PROTOCOL

Another interesting characteristic of the network is the
distribution of packet lengths. The majority of packets are
either very long (over 1300 B: 57 %) or very short (under
100 B: 35 %). Especially dominant are both extremes from
the range of lengths supported by the Ethernet standard – 42
and 1500 B. Medium sized packets are not very common.

There is already information about mean flow durations
for the selected application protocols in Table I. Further
information about the flow time durations can be seen in Fig.
4. Each line in the graph shows the percentage of flows that
last shorter than the given duration. Generally (red thicker line)
over 2

3 of all flows are shorter than 100 ms and only a tenth
of them exceed a duration of 10 s. Also majority of DNS and
SIP flows have a duration under 10 ms.

Fig. 4 shows further information about flow duration, but
does not say anything about time distribution of packets inside
the flows. Weights of individual flows are also not considered.
A better look at packet timing inside the flows can be shown by
measuring the relative arrival times of packets from the start of
the flow. Thus, the first packet of each flow has the zero relative
arrival time and its absolute arrival time marks the starting time
of that flow. Then, each consequent packet has a relative arrival
time equal to the difference of its absolute arrival time and
the marked start of the flow. Results of this measurement are
shown in Fig. 5. The graph shows that generally (red thicker
line) only a small portion of all packets arrive right after the
start of the flow – only a fifth of all packets arrive during the
first second of flow. This fact leads to the conclusion that
flows with short duration carry only a very few packets. The
conclusion is further strengthened by the fact that the majority
of flows have a very short duration. There are exceptions such
as DNS and SIP though.

There is already information about mean flow sizes for
selected application protocols in Table I. Further information

10ms 100ms 1s 10s 100s
0

10

20

30

40

50

60

70

80

90

100

Flow duration

F
lo
w
s
[%

]

HTTP
HTTPS
DNS
SMTP
SSH
SIP
others
all

Fig. 4. Cumulative distribution functions of flow durations

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

Time from flow start [s]

P
ac
k
et
s
[%

]

HTTP
HTTPS
DNS
SMTP
SSH
SIP
others
all

Fig. 5. Cumulative distribution functions of packet arrival times

1 10 100
0

10

20

30

40

50

60

70

80

90

100

Flow size [packets]

F
lo
w
s
[%

]

HTTP
HTTPS
DNS
SMTP
SSH
SIP
others
all

Fig. 6. Cumulative distribution functions of flow sizes

about flow sizes can be seen in Fig. 6. Each line of the graph
shows the percentage of flows that consists of less packets than
a given number. Generally (red thicker line) only a tenth of all
network flows have more than 10 packets. Also, virtually all
DNS and SIP flows consist of a single packet.

Fig. 6 shows further information about flow sizes, but
does not clearly say anything about the percentage of all
packets carried by flows of different sizes. It is known that

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

1729

6

high-speed network traffic has a heavy-tailed character of
flow size distribution. The heavy-tailed character of flow size
distribution derived from the measured values is shown in Fig.
7. The graph shows the portions of all packets carried by
the specified percentage of the heaviest flows on the network.
It can be seen that generally (red thicker line) 0.1 % of the
heaviest flows carries around 60 % of all packets and 1 %
carries even around 85 %. An exception to the heavy-tailed
distribution of flow sizes is the DNS protocol. On the other
hand, SIP and SSH protocols have a heavier tail than average.

0,01 0,1 1 10 100
0

10

20

30

40

50

60

70

80

90

100

The heaviest flows [%]

P
a
ck
et
s
[%

]

HTTP
HTTPS
DNS
SMTP
SSH
SIP
others
all

Fig. 7. Portions of packets carried by the percentage of the heaviest flows

A consequence of the heavy-tailed character of the network
traffic is that even by selecting a small percentage of the
heaviest flows, we can cover the majority of packets. The
problem then lies in the effective prediction of which flows are
among the heaviest. More accurately, it lies in the capability to
recognize the heaviest flows only from the properties of their
first few packets. The simplest method of this recognition is
based on the rule that every flow is considered heavy after the
arrival of its first k packets for some selected decision threshold
k. The main advantage of this method is its simplicity – no
packet analysis nor advanced stateful information for the flows
is needed.

The measured accuracy of the heaviest flow selection by the
described simple method is shown in Fig. 8 and Fig. 9. These
graphs show the relations between the value of threshold k to
the portion of heavy marked flows (first graph) and packets
covered by them (second graph). By a combination of values
from both graphs we can see that with the rising decision
threshold the portion of flows marked heavy dramatically
decreases, but the percentage of covered packets decreases
rather slowly. For example, decision threshold k = 20 leads
to only 5 % of heavy marked flows covering around 85 % of
all packets. Exceptions are the DNS and to some extent also
HTTPS and SMTP protocols, where the percentage of covered
packets decreases quickly.

A different view of the simple heavy flow prediction
method effectiveness can be seen in Fig. 10. It shows the
mean number of packets covered by one heavy marked flow
for different values of the decision threshold k. Values shown
in the graph rise with the decision threshold to a considerably
higher number than the mean sizes of the flows from Table
I – hundreds or even thousands of packets instead of only tens

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

100

Decision threshold [packets]

F
lo
w
s
[%

]

HTTP
HTTPS
DNS
SMTP
SSH
SIP
others
all

Fig. 8. Heavy flow detection using the simple method – portions of selected
flows

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

100

Decision threshold [packets]

P
a
ck
et
s
[%

]

HTTP
HTTPS
DNS
SMTP
SSH
SIP
others
all

Fig. 9. Heavy flow detection using the simple method – portions of captured
packets

0 5 10 15 20 25 30 35 40 45 50
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Decision threshold [packets]

M
ea
n
si
ze

[p
a
ck
et
s/
fl
ow

]

HTTP
HTTPS
DNS
SMTP
SSH
SIP
others
all

Fig. 10. Mean number of captured packets per flow in flows selected using
the simple method

of them. This clearly proves that even a simple heavy flow
prediction method effectively predicts the heaviest flows.

C. Proof of Concept Conclusion

Based on the analysis results presented in this section
we can now draw conclusions about the negative effects of

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

1730

7

possible weak spots of the SDM design. The conclusions are:

• Long duration of feedback loop. The expected SDM
feedback loop delay is in the area of tens to hundreds
of milliseconds. Fig. 4 shows that the majority of flows
has a duration too short for this requirement (over 2

3
shorter than 100 ms). But in spite of that, the majority
of packets is carried by longer flows and arrives later
from the flow start (only a tenth of packets during the
first 100 ms according to Fig. 5). These results lead to
a small negative effect of feedback loop duration on
the system performance.

• Limited firmware capacity. Fig. 7 shows a heavy-tail
character of network traffic. Moreover, figures 8 and
9 show that even a very simple heavy flow prediction
method can give very good results. In conclusion,
even with a relatively small number of flow rules it is
possible to cover the majority of packets.

• Insufficient data reduction. Unified Headers and
Flow Records have sizes of tens of bytes. Table I
shows that rather large packets are mostly used – the
mean size is nearly 900 B. Therefore, a reduction of
network traffic bytes is sufficient.

• Overly granular control. Fig. 10 shows that with an
appropriate selection of flows it is possible to achieve
a high effectiveness of rules. Each rule can specify a
preprocessing offload into HW of hundreds or even
thousands of packets on average.

From these conclusions it is clear that possible weak spots
of the SDM design will not have a large negative impact on
system performance in real networks. Exceptions are protocols
like DNS with a very high percentage of single packet flows.
Fortunately, these protocols cover only a small portion of
network traffic (e.g. DNS with less than 1 %).

IV. RESULTS

In order to verify the proposed system further, we have
implemented the whole SDM system prototype. The hardware
part of the system is realized by the accelerator board with the
powerful Virtex-7 H580T FPGA. The whole FPGA firmware
occupies less than half of the available FPGA resources. That
includes not only the SDM functionality, such as packet header
parsing and NetFlow statistics updating, but also 100 Gbps
Ethernet, PCI-Express and QDR external memory interface
controllers. The software is realized as a set of plugins for
the Invea-Tech’s Flowmon exporter software [4]. This exporter
allows us to modify its functionality to the extent required by
the SDM system.

The designed SDM system brings acceleration of monitor-
ing applications based mainly on software defined hardware
acceleration of network traffic preprocessing. Control of the
preprocessing is mainly realized by the monitoring applications
through on the fly defined dynamic rules for particular flows.
These rules are generated as a reaction to the first few packets
of the flow. Therefore, there is some delay between the flow
start and rule application. The duration of this delay influences
the portion of packets affected by the rules. The basic view
of achievable SDM system effectiveness can be gained from

an examination of an achievable portion of packets whose
preprocessing was influenced by the dynamic flow rules.

In order to test the described ability of the SDM system
we created a simple use case. In this use case, only a specified
number of the first packets from each flow is interesting to
the software. All packets from unknown (new) flows are,
therefore, by default forwarded into the software application.
SDM controller software counts the number of packets in
each flow. Right after the reception of the specified number
of packets for a flow, the application creates a rule for the
firmware to drop all the following packets from this flow. This
decision method is absolutely the same as the simple heavy
flow detection method defined in the previous section.

In the described test case we have measured the portion
of packets dropped by the SDM firmware. The results are
projected into the graph in Fig. 11. The graph shows the
percentage of dropped (influenced) packets (solid lines) and
the percentage of flows for which the rule was created (dashed
lines). For comparison, analytical results from graphs 8 and 9
in the previous section are also shown (red). The result is that
the SDM system can influence preprocessing of up to 85 % of
all packets from real network traffic by dynamic flow rules. A
visible difference of about 10 % of influenced packets between
analytical and real results is caused by neglecting the duration
of rule creation and activation process in the analytical result.

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

90

100

Decision threshold [packets]

P
ac
k
et
s/
F
lo
w
s
[%

]

analysis
real

Fig. 11. Portions of offloadable packets and flows using the simple heavy
flow detection method

0 5 10 15 20 25 30 35 40 45 50
0

500

1000

1500

Decision threshold [packets]

M
ea
n
si
ze

[p
a
ck
et
s/
fl
ow

]

analysis
real

Fig. 12. Mean number of offloadable packets per flow in flows selected using
the simple heavy flow detection method

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

1731

8

The graph in Fig. 11 also shows a similar character
of packets and flows portions as described in the previous
section – considerably faster decline in the percentage of flows
than in the percentage of packets. A better view is provided
in Fig. 12. There, the relation of the mean number of packets
influenced by one created rule over the decision threshold value
is shown (blue). The red line is analytical result of simple
heavy flow detection method effectiveness taken from Fig.
10. The graph shows that real measured effectiveness of this
method is slightly worse than the analysis suggests. But it is
still very effective and suitable for real usage.

Apart from this artificial use case, we also tested SDM
acceleration abilities in more realistic use cases. We tested the
performance of the system in the following four cases:

• Standard NetFlow measurement. In this use case,
all packets from the link are taken into account. By
default, they are sent to the software in the form of
UH. The software adds dynamic rules to offload the
NetFlow measurement of heavy flows (predicted by
the simple method) into the hardware accelerator.

• HTTP header analysis. We choose HTTP because
HTTP traffic is dominant in the networks. Therefore,
the acceleration of its analysis is of high importance.
In this use case we tested the application that parses
HTTP headers and extracts some interesting informa-
tion (e.g. URL, host, user-agent) from them. Extracted
information can then be used to augment the flow
records. Because the application works with the data
of HTTP packets, only the packets with a source
or destination port 80 are sent into the software by
default. Others are dropped in the hardware. Further-
more, the application adds dynamic rules to drop the
packets of HTTP flows in which it already detected
and parsed the HTTP header.

• Standard NetFlow enriched by HTTP analysis. This
case combines the two previous ones. Both applica-
tions are active at the same time without the need of
any changes in them. Their traffic requirements are
automatically combined by the SDM controller.

• DNS security analysis. We choose DNS because it
is a bit different from the other protocols. Its flows
are extremely short. Therefore, the dynamic flow rules
have virtually no effect on DNS preprocessing. But
the DNS traffic takes up less than a hundredth of
all network traffic. So, even with the use of default
rules only (no dynamic rules), SDM should be able to
massively accelerate the analysis.

The results of the SDM system testing in the described use
cases are shown in Figures 13 and 14. The figures show the
portions of all incoming packets and bytes preprocessed in the
hardware by a particular method. These hardware preprocess-
ing utilizations lead to a reduction of software application load
displayed in Table II. The table shows portions of incoming
packets and bytes that are processed by software applications
in particular use cases relative to the state without the SDM
accelerator. It also shows the percentage of flows for which
the rule is created in the hardware.

NetFlow HTTP DNS
0

20

40

60

80

100

P
a
ck
et
s
[%

]

drop

NetFlow

header

packet

HTTP+
NetFlow

Fig. 13. Portions of hardware preprocessing types in tested use cases

NetFlow HTTP DNS
0

20

40

60

80

100

B
y
te
s
[%

]

drop

NetFlow

header

packet

HTTP+
NetFlow

Fig. 14. Portions of hardware preprocessing types in tested use cases

SW load [%] Rules in HW
Packets Bytes [% of flows]

NetFlow 17.55 0.86 12.16
HTTP 22.32 26.85 3.60
HTTP+NetFlow 32.42 27.30 11.84
DNS 0.73 0.16 0.00

TABLE II. SOFTWARE APPLICATIONS LOAD USING SDM IN TESTED

USE CASES, RELATIVE TO THE STATE WITHOUT THE SDM ACCELERATOR

Standard NetFlow measurement is mostly accelerated by
the hardware flow cache. In this way, the software application
load is reduced to less than a fifth of all packets (in the form
of UH or flow record). Further acceleration rises from the fact
that only UHs and flow records are sent to the software, instead
of complete packets. The software, therefore, does not parse
packets anymore and the PCI Express load is reduced to less
than one percent.

SDM accelerates the analysis of application protocols by
packet dropping based on static and dynamic rules. This leads
to the HTTP parser load being reduced to only about a fifth
of all packets and bytes and to the DNS parser load reduced
to less than a hundredth.

When the standard NetFlow measurement and the appli-
cation protocol parsing are used simultaneously, the load of
the application protocol parser is the same as when used
alone thanks to the DMA channel traffic splitting supported
by the SDM. The HTTP parser software still receives only

IEEE INFOCOM 2014 - IEEE Conference on Computer Communications

1732

	Introduction
	Research Area
	Research Objectives
	Thesis Outline

	State of the Art
	Packet Parsing
	Longest Prefix Matching
	Packet Classification
	Pattern Matching
	Deep Packet Inspection

	Research Summary
	Papers
	Paper I
	Paper II
	Paper III
	Paper IV
	Paper V
	Paper VI

	List of Publications

	Discussion and Conclusions
	Results
	Deployment and Usage
	Conclusions
	Future Work

	Bibliography
	Included Papers
	Paper I
	Paper II
	Paper III
	Paper IV
	Paper V
	Paper VI

