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Abstract

Considering today’s challenges in digital forensics, for password cracking, distributed computing is a necessity. If we limit the
selection of password-cracking tools strictly to open-source software, hashcat tool unambiguously wins in speed, repertory of
supported hash formats, updates, and community support. Though hashcat itself is by design a single-machine solution, its interface
makes it possible to use the tool as a base construction block of a larger distributed system. Creating a “distributed hashcat” which
supports the maximum of hashcat’s original features requires a smart controller that employs different distribution strategies in
different cases. In the paper, we show how to use BOINC framework to control a network of hashcat-equipped nodes and provide
a working solution for performing different cracking attacks. We also provide experimental results of multiple cracking tasks to
demonstrate the applicability of our approach. Last but not least, we compare our solution to an existing hashcat-based distributed
tool - Hashtopolis.
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1. Introduction

With the escalating use of computers and mobile devices,
forensic investigators frequently face encrypted data which
could hide substantial evidence. Though General-purpose
computing on graphics processing units (GPGPU) introduced
a massive speedup to password cracking, the developers of
software supporting data encryption tend to improve the pass-
word verification procedures, making the protection harder to
be cracked [6]. For example, using hashcat and exhaustive
search (brute-force) with a single NVIDIA GTX 1080 Ti GPU,
cracking MS Office 2013 documents is 37840x harder1 than
cracking older MS Office ≤ 2003 using SHA1 + RC4 algo-
rithms. Using 8 alphanumeric characters, one can create a to-
tal of 2.18 ∗ 1014 different passwords. Using a GPU denoted
above, a MS Office 2003 document can be cracked within 5
days, while cracking MS Office 2013 document may take up to
559 years. With the limited number of GPUs in a computer,
cracking today’s password protection in a meaningful time may
require employing a massive network of multi-GPU nodes.

Our research aims at finding an open-source software solu-
tion for fast and efficient distributed password cracking, which
could be easily deployed to any TCP/IP-based computer net-
work made of commodity hardware. At first, we searched for an
application which could serve as a “cracking engine” of com-
putational nodes in a network. The key critieria were: a) speed,

∗I am corresponding author
Email addresses: ihranicky@fit.vutbr.cz (Radek Hranický),
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b) the range of supported formats, c) supported attack modes,
and d) portability to different platforms. From existing open-
source software, we chose hashcat2, a self-proclaimed “World’s
fastest password cracker” which is distributed under MIT li-
cense. Considering speed, team hashcat won 5 of 7 years of
Crack me if you can (CMIYC3) contest. Assessing features,
hashcat supports over 200 different hash formats, and several
different attack modes: brute-force attack (also reffered to as
mask attack), dictionary attack, combinator attack and hybrid
attacks; moreover, it supports the use of password-mangling
rules including the ones used by popular John the Ripper4 tool.
Another reason for choosing hashcat was its support for dif-
ferent operating systems, and hardware platforms. Hashcat de-
velopers provide both sources, and pre-compiled binaries for
32-bit, and 64-bit Windows, and Linux. Cracking with hash-
cat can be performed on various OpenCL-compatible CPUs,
GPUs, and even FPGAs, DSPs, and co-processors.

As a framework for distributed computing, we used Berkeley
Open Infrastructure for Network Computing (BOINC5) which
was initially designed [1] as a public-resource computing so-
lution. However, in our previous research, we have shown its
applicability in password cracking even in private networks [5].
In our use-case, BOINC handles the authentication of comput-
ing nodes, provides the distribution and automatic updates of
executable binaries, OpenCL kernels, and the input/output data
of each cracking task.

2https://hashcat.net/
3https://contest.korelogic.com/
4http://www.openwall.com/john/
5https://boinc.berkeley.edu/
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1.1. Contribution

By redesigning Fitcrack6 system [5], we created a solution
for high-efficiency GPGPU password cracking using hashcat
tool as a client-side computing engine. The offered solution em-
ploys the BOINC framework to handle host management, net-
work communication, and work assignment. For each hashcat’s
attack mode, we propose a convenient strategy for task distri-
bution to utilize the maximum of hardware resources. We show
how dictionary segmentation, fine-grained adaptive scheduling,
and batch assignment of workunits help to reduce the overhead
of the entire cracking process. We experimentally proved that
the new solution is capable of performing distributed attacks in
a reliable and efficient way. Moreover, we compared our soft-
ware with the Hashtopolis tool, underlying pros, and cons of
each solution.

1.2. Structure of the paper

Section 2 introduces the reader to the current findings in dis-
tributed password cracking. Section 3 describes the architecture
of the proposed distributed cracking system. In section 4 we de-
scribe how to use a distributed environment to perform the same
attacks hashcat supports on a single machine. Section 5 shows
experimental results supplemented by the comparison with our
previous solution, and Hashtopolis tool. Our research is con-
cluded by section 6 which brings together obtained experience
and denotes possible future work.

2. Related work

Much of related work is based on the popular John the Rip-
per (JtR) tool. Up to this day, the John’s wiki7 enlists 15 differ-
ent approaches on parallel and distributed processing with the
tool, some of them were later abandoned. The first published
academic work on the case was performed by Lim who modi-
fied the sources by adding MPI support for incremental (brute-
force) cracking mode [11]. The solution used a master proces-
sor and a fixed number of slave processors. The master pro-
cessor divided the keyspace (a set of all password candidates)
to a pre-defined number of chunks, while each slave processor
received an equal chunk to solve. The principle of keyspace
division was adopted in many subsequent solutions, however,
with various alterations since Lim’s original technique is only
feasible for use in a stable, homogenous environment.

Pippin et al. then proposed the parallel dictionary attack for
cracking multiple hashes [16]. Instead of dividing keyspace,
they assigned different hashes to each node while all nodes used
the same password dictionary. We consider the approach to be
efficient for large hashlists and simple hash algorithms only. In
our previous work [6], we found the highest influence on the
cracking time has the calculation of the hash from candidate
passwords. The rest is a simple byte array comparison. Thus,
if we crack multiple hashes of the same type, we can calculate

6https://fitcrack.fit.vutbr.cz/
7https://openwall.info/wiki/john/parallelization

the hash only once, and compare the result with all the hashes
we are trying to crack.

Bengtsson showed the practical use of MPI-based brute-force
and dictionary attack using Beowulf high-performance comput-
ing (HPC) cluster for cracking MD5-based Unix shadow files
and DES-based passwd files [3]. Both attacks were based on
simple password-by-password keyspace division.

Apostal et al. brought another enhancement to HPC-based
password cracking. The divided dictionary algorithm evenly
divided the dictionary words between MPI node equipped with
GPUs. Using CUDA, GPUs on each MPI node locally calcu-
lated the hashes and compared them with the ones which should
be cracked [2].

Marks et al. designed a hybrid CPU/GPU cluster formed
by devices from different vendors (Intel, AMD, NVIDIA) [12].
The design includes both hardware, and software solution. The
distributed network consisted of Management/storage nodes
which control the calculation and handle user inputs, and Com-
putation nodes responsible for the work itself. For intercon-
nection, three different lines were used: 10 Gb/s Ethernet for
data transfer, 1 Gb/s Ethernet and Infiband for controlling the
computation process. Marks proposed a software framework
called Hybrid GPU/CPU Cluster (HGPC) utilizing a master-
slave communication model using an XML-based protocol over
TCP/IP network. A proof-of-concept implementation was able
to crack MD5, SHA-1, and four versions of SHA-2 hashes.
Experimental results of cracking on up to 24 nodes showed
great power, and scalability. We, however, suppose that us-
ing a time-proven tool of computation nodes would increase
the performance even more. While cracking MD5 hashes on
NVIDIA Tesla M2050, Marks achieved the speed around 800
Mh/s, while hashcat users report8 cracking over 1200 Mh/s us-
ing the same GPU.

Previous solutions work well for a “classic HPC” system us-
ing a homogenous cluster with a static set of nodes which is,
however, not our use-case. Using a simple text-based proto-
col, loosely modeled on HTTP, Zonenberg created a distributed
solution for cracking MD5 hashes using a brute-force attack
[19]. The architecture consisted of a master server and a set
of compute nodes, which were either CPU-based, or used GPU
acceleration based on CUDA.

Crumpacker came with the idea of using BOINC [1] to dis-
tribute work, and implemented a proof-of-concept tool for dis-
tributed cracking with JtR [4]. Similarly as in our previous
prototype [5], he decided to standardize the size of the worku-
nit (chunk in terms of BOINC) by counting out the number
of passwords that one computer could check in a reasonable
amount of time. Crumpacker, however, reports he was unable
to properly distribute the incremental crack mode9 since JtR
did not track the starting and ending position of the generated
password segments. This was fixed by the modification of JtR
database, however at the cost of efficiency. Crumpacker later
introduced a batch concept which divides passwords to groups

8https://hashcat.net/forum/thread-2084.html
9https://www.openwall.com/john/doc/MODES.shtml

2

https://fitcrack.fit.vutbr.cz/
https://openwall.info/wiki/john/parallelization
https://hashcat.net/forum/thread-2084.html
https://www.openwall.com/john/doc/MODES.shtml


called batches, and tracks them during the entire cracking pro-
cess, possibly using different hash types, and attack modes [4].

Despite hashcat’s speed, JtR still offers some advantages
over hashcat, for instance, supports some formats which hash-
cat does not – e.g. encrypted RAR3 archives with unprotected
header. Such formats requires a large piece of work performed
on the host machine while hashcat is a pure-OpenCL solution.
Thus, we studied the possibilites of JtR integration to Fitcrack,
and encountered the similar problems with distibuting incre-
mental mode as Crumpacker reported [4]. We postponed the
efforts to future work, and decided to focus on hashcat at the
time.

Kasabov et al. performed a research on password crack-
ing methods in distributed environment resulting in a technical
report describing different architectures and technologies for
work distribution [9]. Kasabov considers MPI combined with
OpenCL as the best practical approach for setting up a pass-
word cracking GPU cluster, underlying the posibility to use
a combination of MPI and OpenMP10 to achieve fine-grained
paralellism [18]. The research is, however, merely theoreti-
cal and provides no proof-of-concept tool or experimental re-
sults to support the conclusions. Kasabov mentions Zonen-
berg’s Distributed Hash Cracker [19], however Crumpacker’s
BOINC-based solution [4] is not discussed. Still, the report in-
cludes a brief study of BOINC, emphasizing its advantages in
automation, which include integrity checks, workunit replica-
tion, checkpointing, and others – which we take advantage from
in Fitcrack system [5, 8], and Crumpacker in his distributed
JtR-based solution [4]. We agree with Kasabov, BOINC is not
an “out-of-the-box” solution for password cracking, however
we do not consider the actual creation11 of a password crack-
ing project to be as difficult task as Kasabov describes. More-
over, the statement “BOINC API lacks functions for manag-
ing projects” [9] is, at the time of writing this paper, not en-
tirely true. Every BOINC project contains a project manage-
ment website, allowing the administrator to observe and con-
trol project’s tasks, users, and other, in a general way. The rest
can be added by writing a custom API, like we did for Fitcrack
WebAdmin – see section 3.1.1.

Veerman et al. aimed to create a scalable, modular and ex-
tensible solution for password cracking using existing cracking
tools [15]. The initial research compares the existing password
cracking tools, and discusses the possible use of BOINC, and
MPI for task distribution. Veerman does not consider BOINC
to be an optimal choice due to “large deployment overhead
and complexity”, refering to Kasabov’s research [9]. The use
of MPI, as Veerman states [15], requires the cracking tool
to either support MPI, or be modifiable for adding the MPI
support. Since Veerman wants the solution to support both
closed-sourcce tools, such modification is not always possible.
The work proposes an architecture consisting of three parts: the
Node Controller which handles user requests, stores cracking-
related data, and schedules work; the Worker Node responsible

10https://www.openmp.org/
11https://boinc.berkeley.edu/trac/wiki/

CreateProjectCookbook

for cracking; and the Website serving as a user interface. Gen-
erally, the design is similar to the architecture of our Fitcrack
system, described in section 3. The assignements entered by
user are divited into subjobs analogous to workunits in Fitcrack.
The software output of Veerman’s research represents a proof-
of-concept system based on PHP, MySQL, Apache and SQLite.
From all discussed cracking tools, the proposed PHP-based sys-
tem could only use JtR with the default cracking configura-
tion (first dictionary, then brute-force attack), and the crack-
ing is limited to MD5 hashes only [15]. From our perspective,
the proposed architecture is clear and well-designed, however
the software solution is not ready for real deployment due to its
limited functionality.

Kim et al. proposed a protocol for distributed password
cracking, based on the distribution of password indexes – i.e.
starting point and keyspaces of each workunit [10]. The paper
clarifies the principle used in various existing tools, including
our Fitcrack system [5, 8]. Kim’s description is, however, very
general, and limited to a brute-force attack on a single hash.

Since we focus our efforts on distributing hashcat, it is
necessary to mention existing work, despite being out of the
academic sphere. Hashstack12 is an enterprise solution from
Sagitta HPC, a subsidiary of Terahash LLC founded by J. Gos-
ney, a core member of Hashcat development team. Hashstack is
described to provide extreme scalability, however, the solution
is closed-source and tailored for Sagitta’s specialized hardware.

McAtee et al. [13] presented Cracklord13, a system for hard-
ware resource management which supports creatig job queus
and contains a simple hashcat plugin. The plugin allows to re-
motely run a dictionary or a brute-force attack with a limited set
of options. The project, however, seems be updated very rarely,
and the last supported version is hashcat 3.

In 2014, a Github user cURLy bOi created Hashtopus14,
an open-source distributed wrapper around oclHashcat, a pre-
decessor of the current hashcat tool. In 2015, it was used by
Samek to create a virtual GPU cluster for the purpose of bach-
elor’s thesis [17]. The Hashtopus project was abandoned in
2017, however S. Coray created15 a fork called Hashtopussy
which was rebranded to Hashtopolis in 2018.

Hashtopolis uses a network with a server, and one or more
agents – machines used as cracking nodes. The server provides
a user-friendly PHP-based administration GUI, and agent con-
nection point. Agents contain a Hashtopolis client which ex-
ist in C#, and Python versions. The communication is based
on HTTP(S) and human-readable JSON messages. Hashtopo-
lis allows the user to create and manage cracking tasks. While
Fitcrack distinguishes between various attack modes (see sec-
tion 4) for which it employs different distribution strategies,
Hashtopolis is more low-level and does not provide such ab-
straction. For each task, the user selects a hashlist, one or more
files (e.g. password dictionaries) to be transferred to the client,
and an attack command in form of hashcat starting options.

12https://sagitta.pw/
13http://jmmcatee.github.io/cracklord/
14https://github.com/curlyboi/hashtopus
15https://github.com/s3inlc/hashtopolis
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While the attack-based options have to be crafted manually,
Hashtopolis handles benchmarking, keyspace distribution into
chunks, and automated download of hashcat binaries and other
files necessary for cracking. Being the only well-known main-
tained open-source solution for distributed computing with the
current version of hashcat, we consider Hashtopolis as a state-
of-the-art tool in our area of research. Thus in this paper, we
compare our solution with Hashtopolis using different attack
options.

3. Architecture

In this section, we show how we modified [8] the architecture
of the original Fitrack system [5] to replace our custom pass-
word cracking software with hashcat. Similarly as in other re-
lated projects [19, 4, 10, 15], our system is divided into a server
and a client part. In Fitcrack, the server and clients are intercon-
nected by a TCP/IP network, not necessarily only LAN which
makes it possible to run a cracking task over-the-Internet on
nodes in geographically distant locations. Clients communicate
with the server using an RPC-based BOINC scheduling server
protocol16 over HTTP(S). The current architecture of Fitcrack
is shown in Figure 1, and is fairly different from the original one
described in [5]. In the following sections, we will describe the
subsystems on both server and client sides.

3.1. Server
The server is responsible for the management of cracking

jobs, and assigning work to clients. In our terminology, a job
represents a single cracking task added by the administrator.
Each job is defined by an attack mode (see section 4), attack set-
tings (e.g. which dictionary should be used), and one or more
password hashes of the same type (e.g. SHA-1). Once the job is
running, the keyspace is continuously split into smaller chunks
called workunits. In terms of the client-server architecture, the
service offered by the server is a workunit assignment.

3.1.1. WebAdmin
We created a completely new solution for remote manage-

ment of Fitcrack. The application is called WebAdmin and con-
sist of two separate parts: frontend and backend connected with
each other using a REST API.

The frontend is written in Vue.js and allows the administra-
tor to manage different parts of the system as depicted in Fig-
ure 2. Under Jobs tab, the administrator can add, modify and
manage all cracking jobs. Hosts section provides an overview
of connected clients, their software and hardware specifica-
tion, jobs the clients were participating on, and workunits as-
signed to them. Every hash, cracked or not, can be viewed in
a summary within Hashes tab. Dictionaries tab can be used to
manage and add password dictionaries. Fitcrack supports three
ways of adding new dictionaries: a) importing directly from the
server; b) uploading new via web using HTTP; c) upload using
SFTP/SCP, if configured. Using Rules tab, the administrator

16https://boinc.berkeley.edu/trac/wiki/RpcProtocol

can manage *.rule files contaning the password-mangling rules
for hashcat. Charsets and Masks tabs allows to manage char-
acter sets and password masks used for mask attack. Since for
mask attack hashcat generates passwords using Markov chains
[14], it is necessary to provide a *.hcstat / *.hcstat2 (for hashcat
4+) file with per-position character statistics. In Markov chains
tab, Fitcrack supports adding hcstat files either by uploading
an existing file, or by generating a new one. The second option
stands for an automated training on a password dictionary us-
ing hcstatgen tool. Least but not last, in Users tab, WebAdmin
allows to manage user accounts and permissions.

The backend, written in Python 3, is based on Flask17 mi-
croframework, communicating with Apache or NGINX HTTP
server using Web Server Gateway Interface (WSGI). It imple-
ments all necessary endpoints of the REST API used by the
frontend, e.g. handles requests for creating new jobs, and oth-
ers. Using SQLAlchemy18, the backend operates a MySQL
database which serves as a storage facility for all cracking-
related data. For selected operations, the WebAdmin uses a set
of external utilities.

3.1.2. Utilities used by WebAdmin
We wanted to save the administrator’s time and extend the

usability by an automation of frequent tasks like adding new
cracking jobs. For that purpose, Fitcrack WebAdmin uses the
following external utilities:

• hashcat is used for calculating keyspace. This is impor-
tant since hashcat’s keyspace may not correspond with the
actual number of possible passwords.

• Hashvalidator is our custom tool adopting a vast portion
of hashcat’s source code. It is used for validating the for-
mat of password hashes.

• maskprocessor implemented by Jens Steube, the author
of hashcat, is used for generating dictionaries from masks,
and is used for hybrid attacks (see section 4).

• XtoHashcat is our tool used for automated detection of
format, and hash extraction from the input data. For some
formats, where it is possible (e.g. ZIP or Office docu-
ments), it detects the signature and contents of the file and
calls one of the existing scripts which extracts the hash.

• hcstatgen from hashcat-utils19 repository is used for gen-
erating *.hcstat files from dictionaries.

3.1.3. Generator
Generator is a server deamon responsible for creating new

workunits and assigning created workunits to clients. To
achieve an efficient use of network’s resources, it employs our
Adaptive scheduling algorithm described in [5]. The algorithm

17http://flask.pocoo.org/
18https://www.sqlalchemy.org/
19https://hashcat.net/wiki/doku.php?id=hashcat_utils
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Figure 2: The interface of Fitcrack WebAdmin
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tailors each workunit to fit the client’s computational capabil-
ities based on the current cracking speed which could change
over time. To get the initial speed, at the beginning of each
cracking job, the clients receive a benchmark job which mea-
sures their cracking speed for a given hash type.

To support all hashcat’s attacks, we had to redesign the orig-
inal Fitcrack Generator [5] completely. The new version of
Generator is able to work with password masks, which are pro-
cessed in a sequential order if multiple masks are set for a job.
For mask attack, we also added support for assigning Markov
*.hcstat files to clients. Moreover, we had to take the password-
mangling rules into account since they have a strong influence
on the attack’s complexity. If the rules are used within a dic-
tionary attack, the actual keyspace is multiplied by a number
of rules applied to each password. Last but not least, we added
support for combinator attack which, in our case, includes hy-
brid attacks as well. The exact strategies for keyspace distribu-
tion within each attack mode are described in section 4.

3.1.4. Validator
Validator is a tool implemented within BOINC. It validates

the syntax of all incoming workunit results from clients, be-
fore they are passed to Assimilator. If the job replication [5]
is active, the Validator verifies if the replicated results match.
The replication may be helpful in an untrusted network where
we expect hosts may be compromised an produce intentionally
incorrect results. In our system, the replication is by default dis-
abled since we consider the network to be trusted. Moreover,
the replication reduced the total computational power by 50%
or more, as discussed in [5].

3.1.5. Assimilator
The assimilator processes each result received from clients.

Basically, there are three options, how a workunit could end:

• successful benchmark of a node - the assimilator saves
the node’s cracking speed to a database;

• finished regular job - if one or more hashes are cracked,
the assimilator updates the database. If all hashes are
cracked, the entire job is considered done and all ongoing
workunits are terminated. The assimilator also updates the
progress of the entire cracking job. If the whole keyspace
is processed, the job is considered finished;

• computation error - the assimilator performs the failure-
recovery process as described in [5].

3.1.6. Trickler
In the original version of Fitcrack, the only information about

computation progress the server had was from the result of each
workunit. Since we wanted the administrator to have better
overview of the system, we implemented a Trickler daemon,
which handles BOINC trickle messages sent by a client. Using
this technique, the clients periodically report their progress on
each workunit which is then visualized in the WebAdmin.

3.1.7. BOINC daemons
Besides the previously denoted subsystems, we use the fol-

lowing deamons which are part of the BOINC:

• Transitioner - controls the state updates of workunits, ei-
ther newly created, or finished.

• Scheduler - handles the requests of each client.

• Feeder - allocates blocks of shared memory for saving all
workunit-related data.

• File deleter - deletes all unnecessary files remaning from
previous workunits.

3.2. Client

While the architecture of the server is rather complex and
it may take some effort to properly configure all subsystems,
adding a new client to the cracking network is relatively easy.

Basically, the administrator only needs to install an applica-
tion called BOINC client and connect to the server. The rest
of client-side software is downloaded automatically from the
server.

3.2.1. BOINC Client
BOINC Client also referred to as a core client is an applica-

tion which handles the communication between the client and
the server. The client actively asks the server for work and
once a workunit assignment is received, it downloads all neces-
sary input and output data. Besides that, the client also handles
downloading and updating of all executable binaries required:
Runner (see below), hashcat, and all hashcat’s OpenCL kernels
and files needed. Depending on how the BOINC client is in-
stalled, it can either run in the background like a daemon, or
start when an individual user logs in; and is stopped when the
user logs out.

3.2.2. BOINC Manager
BOINC Manager is an optional part of the client. It pro-

vides a graphical user interface for the administration of the
core client. It allows the user to choose a project server, re-
view progress on tasks, and configure various client settings. In
BOINC Manager, the user can set “when to compute” by defin-
ing certain conditions including days and times of week, limit
on CPU, memory, or disk usage, and others.

3.2.3. Runner
Runner is a wrapper of hashcat, which we implemented to

make hashcat usable with a BOINC-based system. The Runner
is used for processing workunit assignments, controlling hash-
cat, and creating reports for the server. It provides abstraction of
hashcat’s paramaters for both regular, and benchmarking tasks.
The runner optionally uses a local configuration file, where the
user can specify, which OpenCL devices should be used for
computation, and specify a workload profile for the devices.
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Figure 3: Example of dictionary attack distribution

3.2.4. hashcat
As a cracking engine of the system, we use hashcat tool. It

employs various OpenCL kernels that implement a GPGPU-
based cracking of various hash algorithms. The reasons for
choosing hashcat were described in section 1.

4. Attacks modes

Hashcat supports the following basic attack modes: dictio-
nary attack, combinator attack, mask attack, and hybrid attacks.
In the following subsections, we show how we perform these
attacks in the distributed environment of BOINC.

4.1. Dictionary attack

The most straightforward way of cracking a password is
a dictionary attack where a list of possible candidates is ver-
ified. While there are many ways of obtaining such lists, we
always have to distribute these candidates from the server to
our computing nodes. This makes distributed dictionary attacks
inefficient when dealing with large dictionary files [7].

While it would be possible to send the whole dictionary to all
hosts together with indexes, we chose another approach. The
reason is the candidate lists might be very large and sending
the whole file would increase the cracking time largely, as each
host needs only a portion of the original list.

Therefore, a fragment of the original dictionary is created for
each host with each workunit, whose size depends on the host’s
current computing power. What’s more, this number can vary
in time, reflecting each hosts’ performance changes.

You can see a simplified scheme of this attack in Figure 3.

4.2. Combinator attack

In combinator attack, the goal is to verify combinations of
all passwords in two input dictionaries, using concatenation.
Therefore, the number of possible candidates equals to m × n,
where m and n is the number of passwords in the first and sec-
ond dictionary.

When dealing with hashcat, we realized its keyspace compu-
tation doesn’t consider the second dictionary. When the hashcat
is supposed to verify one password in combinator attack, it, in
fact, verifies 1 × n passwords. With possibly huge dictionaries,
the workunit size would be uncontrollable.

Figure 4: Example of combinator attack distribution

A simple solution to this problem would require generat-
ing all possible combinations to a single dictionary, proceeding
with a dictionary attack, described above. This would, however,
increase the space complexity in the sense of the transmitted
passwords from linear, ideally m + n passwords, to polynomial,
m × n, rapidly increasing the time needed to transfer data to all
computing nodes.

To deal with this issue, we came up with the following solu-
tion. The first dictionary is distributed as a whole to all com-
puting nodes in the first workunit, also referred to as a chunk.
Then, with each workunit, only a small portion of the second
dictionary is being sent. This way, we can control the number
of passwords we send in the second dictionary – n, while we
can still limit the number of verified passwords in the first dic-
tionary – m, using the hashcat mechanism. Also, we keep the
linear complexity of the whole attack.

You can see a scheme of such an attack in Figure 4.

4.3. Mask attack
One of the biggest challenges of distributing the mask attack

in hashcat was the way hashcat computes the keyspace of each
mask. This number depends on many factors, which in result
doesn’t inform you about the real keyspace at all. However,
the real keyspace is needed to compute the size of each worku-
nit, depending on each host’s current performance measured in
hashes per seconds.

To overcome this obstacle, the real keyspace is computed
from the mask before the attack starts, using our own algo-
rithm. Comparing this number with hascat keyspace, we can
determine how many real passwords are represented by a sin-
gle hashcat index. With this knowledge, sending the mask with
corresponding hashcat index range to verify is no longer a prob-
lem.

For each workunit, the only information we need to distribute
is the mask with a new index range. This makes a mask attack,
in contrast with previously described attacks, very efficient in
a distributed environment.

4.4. Hybrid attack
There are two variations of hybrid attack supported by hash-

cat. The first combines a dictionary on the left side with a mask
on the right side. The second hybrid attack works the opposite
way, with a mask on the left and a dictionary on the right side.
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Figure 5: Example of hybrid attack distribution

When we look at the hybrid attack keyspace, it equals to
m × n, where m represents the size of the dictionary while n
is the number of passwords generated by the mask. Similar
to the combinator attack, hashcat does not provide us with the
keyspace of the whole attack but with the size of the dictionary
only. This means, when instructed to verify one password, in
fact, hashcat checks one dictionary password combined with
the whole mask.

The same solution as in combinator attack cannot be used, as
there is no way to send just a portion of the mask to each host.
To avoid generating all possible variants beforehand, which
would cause the same problems described in the combinator at-
tack above, we use the following technique. Dictionary is gen-
erated from the mask using high performance maskprocessor20.
This means, we have two dictionaries on input and we can pro-
ceed with performing a combinator attack, as described above.
The mask transformation process can be seen in Figure 5.

5. Results

To analyze the impact of the distribution strategies we use for
different attack modes, we performed a series of experiments
with hash cracking under various settings. In all cases, we mea-
sured the total time of cracking using Fitcrack, the total time
of cracking using Hashtopolis tool, and the number of chunks
assigned within each job. The first set of experiments analyzes
the behavior of both systems during the dictionary attack us-
ing big wordlists. Other experiments aim at the brute-force at-
tack where we studied the impact of chunk size and keyspace to
overall cracking time. The goal is to determine how the systems
behave under different conditions and identify the factors that
influence the efficiency of an attack. During the measurements,
we discovered several shortcomings of our design that slowed
down the cracking process. Thus, we propose few additional
improvements that help reduce the overhead.

5.1. Adaptive scheduling

At first, it is necessary to explain how our adaptive schedul-
ing algorithm [5] affects the generation of workunits. Both
Fitcrack, and Hashtopolis allow the user to specify the chunk

20https://github.com/hashcat/maskprocessor

size as the desired number of seconds required to solve each
workunit. Based on the benchmark of hosts, performed at the
start of each cracking job, both systems are trying to create
fine-tailored workunits to fit the defined chunk size. While
Hashtopolis strictly respects the user-entered chunk size, and
uses the same tailoring mechanism from the very start till the
end, Fitcrack utilizes another adjustments. The workunit Gen-
erator (see section 3.1.3) modifies the size of the next chunk
by another two variables: the elapsed time from start (tJ), and
the remaining keyspace (sR). Based on the idea that the initial
benchmark may not be accurate enough, we start with smaller
workunits, and the full-sized workunits are not created before
the elapsed time reaches the user-defined chunk size. Since we
cannot predict the exact moments of workunit calculation, it is
possible that in the end, some hosts would still compute while
the rest would be idle. To avoid this negative phenomenon, we
progressively shrink the size of workunits at the end of the job.
This ensures that all hosts actively participate till the very end.

The practical impact of the algorithm is illustrated in Figure
6 which shows how keyspace of workunits changes over time.
The chart was generated using a real brute-force attack on SHA-
1 hash using 8 nodes with NVIDIA GTX 1050Ti, and password
mask made of 10 lowercase letters (10x ?l). The chunk size
was set to 10 minutes.

Figure 6: Illustration of adaptive workunit scheduling

The chart displays 8 different progresses with a different
color for each node, however, we can see they precisely overlap.
This is an anticipated result since all nodes had the same GPUs
and no link outage, or computation error occured. The crack-
ing took the interval of 5 hours and 35 minutes, and we can
see the job progress chart is divided into three distinguishable
parts. In the initial phase which took approximately first 10
minutes (which corresponds to the chunk size), the Generator
did not create full-sized workunits. Next, the main phase dis-
plays workunits of the same size being assigned in 10-minute
intervals, which correlates with the user-entered chunk size.
Then, in the final phase, workunit sizes shrink progressively till
the end of the job. The adaptive scheduling does not have a no-
ticeable negative impact on the cracking process, as illustrated
in Figure 7 which displays the job progress in time.
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Figure 7: Job progress with adaptive scheduling

5.2. Used metrics

Since we compare our implementation with Hashtopolis, it
was necessary to get equal conditions and fair metrics. To ob-
tain comparable results, we measured the total time including
the a) the benchmarking, b) data transfer, and c) the actual
cracking. Fitcrack’s total cracking time displayed in WebAd-
min includes all these phases, while Hashtopolis only the last
one. Another obstacle we had to solve was job starting.

Whereas Fitcrack allows to map all hosts to a job and start the
process in a desired moment, Hashtopolis does not have a “start
button”. The cracking in Hashtopolis starts immediately once
a task (equivalent to job) has any agents (equivalent to hosts)
assigned to it, and the agents are active. In addition, Fitcrack
supports sharing of hosts between jobs. If multiple jobs with
the same host run simultaneously, the Generator uses a round-
robin technique. In Hashtopolis, an agent may be assigned to
only one task at a time. For experimental purposes, we created
custom PHP-based scripts, which assign agents to the desired
task, activate all agents at once, and remember the activation
time. Once the task ends, it extracts the time of reporting the
last chunk to the server, in Hashtopolis, displayed as a last ac-
tivity. The total time is calculated as the interval between the
activation time, and the last activity.

Another metric used is the number of chunks generated and
assigned to hosts. While Hashtopolis performs the bench-
marking separately from the actutal chunks, in Fitcrack, zero-
keyspace workunits are used for that purpose. Thus, for com-
parison, we define that a chunk in Fitcrack equals to a non-
benchmarking workunit.

5.3. Distributed dictionary attack

We wanted to verify that the segmentation of the dictio-
nary described in section 4 brings the anticipated speedup over
the naive solution where the entire dictionary is sent to all
nodes. Thus, we performed a distributed dictionary attack us-
ing Fitcrack and Hashtopolis, where Hashtopolis distributes the
entire dictionary to all nodes before the actual cracking starts.
For the experiments, we used a network consisting of a server,
and 8 nodes with NVIDIA GTX 1050 Ti, interconnected using
a switch and 1 Gb/s Ethernet links. The distributed dictionary
attack was done using four dictionaries with sizes from 1.1 GB

SHA-1
dictionary Fitcrack-1 Fitcrack-2 Fitcrack-3 Hashtopolis

size keyspace time ch. time ch. time ch. time ch.
1.1 GB 114,076,081 3m 15s 1 3m 18s 2 2m 40s 2 2m 22s 10
2.1 GB 228,152,161 4m 27s 1 3m 20s 4 3m 28s 4 4m 52s 20
4.2 GB 456,304,321 6m 5s 1 4m 34s 8 4m 2s 8 11m 14s 40
8.3 GB 912,608,641 12m 49s 1 10m 1s 13 4m 58s 16 32m 6s 80

Whirlpool
dictionary Fitcrack-1 Fitcrack-2 Fitcrack-3 Hashtopolis

size keyspace time ch. time ch. time ch. time ch.
1.1 GB 114,076,081 3m 15s 1 3m 36s 2 3m 11s 2 2m 39s 26
2.1 GB 228,152,161 4m 36s 1 3m 25s 4 3m 14s 4 5m 56s 52
4.2 GB 456,304,321 8m 0s 1 4m 0s 8 4m 17s 8 12m 13s 105
8.3 GB 912,608,641 17m 31s 1 8m 42s 15 5m 2s 16 46m 47s 208

Table 1: Dictionary attack using 8 nodes, chunk size = 60s

to 8.3 GB, and the chunk size set to 60 seconds. The correct
password was, in all cases, located at the end of each dictionary.
The experimental results are shown in table 1, where for each
attack, we show the total time, and the number of chunks gen-
erated. The hash algoritms used were SHA-1 which is easier-
to-calculate, and Whirlpool which is more complex.

With the first approach, marked as Fitcrack-1, the Generator
created a single big chunk, therefore only one node from the en-
tire network was used for the actual cracking. We searched for
the cause of this phenomenon, and detected the classic bench-
mark of hashcat using -b option calculates much higher speeds
than are possibly achieveable with a real attack.

To make a clear image, we did another series of tests using
different GPUs (NVIDIA, AMD) and hash algorithms (MD5,
SHA-1, SHA-512, and Whirlpool). We compared the bench-
marked speed with the real speed of cracking with a brute-force
attack using 7x?a mask, and a dictionary attack using a 1.1 GB
wordlist. The measured speeds are shown in table 2. Empty
columns stand for OpenCL “CL OUT OF RESOURCES” er-
ror which occured due to insufficient memory on the given
GPU. We can see, even for a brute-force attack, the actual
cracking is significantly slower than the benchmark reports. For
dictionary attack, the measured speed is only a small fraction of
the benchmark result. This makes sense since hashcat needs to
load and cache dictionary passwords, making the cracking op-
erations much slower.

We also decided to check why Hashtopolis’ benchmarking is
far more accurate, and searched through the sources. Instead
of the classic benchmark mode of hashcat, Hashtopolis uses
the --speed-only option which returns more accurate speed
value, however, it requires to further specify the attack options,
e.g. select a concrete dictionary for dictionary attack. This
is possible since Hashtopolis transfers the entire dictionary to
all nodes where it can be passed over to hashcat. Fitcrack, on
the other hand, distributes dynamically crafted fragments of the
original dictionary, and thus this technique is not usable.

Since the actual cracking speed with a dictionary attack is
much lower, we added a simple heuristic: In a dictionary attack,
if benchmarked speed is higher than 1 Mh/s, it is set to 1 Mh/s.
This allows to craft initial chunks more precisely and still re-
spects complex ciphers like BCrypt. Moreover, if the actual
cracking speed is higher, it will be modified accordingly using
the adaptive scheduling algorithm in the following workunits.

The results after adding the heuristic are displayed in table 1,
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marked as Fitcrack-2. We can see, more chunks were created,
and for bigger dictionaries, we achieved a significant speedup.

During the experiments, we detected Fitcrack’s Generator
(see section 3) is slowed down by the fragmentation of the orig-
inal dictionary. The implementation forced Generator to open
the dictionary file again in each iteration of the main loop [8],
and sequentially skip initial passwords which were already pro-
cessed. With the increasing job progress, the operation took still
more and more processor time. Thus, we modified the Genera-
tor to remember the current position in the file, which reduced
the processing overhead dramatically. Moreover, we came with
an idea to decrease the communication overhead as well: Dur-
ing the cracking on GPUs, the CPU and the TCP/IP stack are
more or less idle. Thus, we reconfigured BOINC server to as-
sign up to two workunits to a host, and BOINC client to accept
two workunits while only one is solved. The batch assignment
allows each host to compute one workunit and download an-
other at the same time. The results of the final implementation
are displayed in table 1 as Fitcrack-3.

We depicted the results to graphs displaying the total time
based on the dictionary size. Figure 8 shows the graph for
SHA-1 algorithm, and we can see the course is similar to the
Whirlpool case, displayed in Figure 9.

Above described upgrades of Fitcrack’s Generator reduced
the overhead dramatically. Since HTTP(S) has no broadcast by
design, all server-host data transfers are performed using one
unicast connection per host. With the increasing dictionary size
(ds), the link to the server becomes a bottleneck. In Fitcrack,
this is solved by fragmentation, which ensures each candidate
password is transferred only once, so that the required amount
of data to transfer equals to ds. Hashtopolis, however, sends
the entire dictionary to all hosts. For N cracking nodes, we
need to transfer N ∗ ds of useful data plus the overhead of net-
work protocols. In our case, N equals 8. So that, for 4.2 GB
dictionary, it is necessary to transmit 8 ∗ 4.2 GB = 33.6 GB
of data. For 8.3 GB dictionary, the amount of transferred data
equals 8 ∗ 8.3 GB = 66.4 GB, etc. Thus, cracking with 4.2 GB
dictionary took around 4 minutes for Fitcrack, while Hashtopo-

GPU algorithm bench [Mh/s] brute [Mh/s] dict [Mh/s]

NVIDIA GTX 1050 Ti

MD5 6310 2425 21
SHA-1 2022 1540 9.1

SHA-512 302 47 14
Whirlpool 66 58 16

NVIDIA GTX 1080 Ti

MD5 35401.5 11267.3 29.4
SHA-1 11872.3 7263.8 29.1

SHA-512 1416.9 192.3 25.5
Whirlpool 338.9 306.3 26.7

AMD Radeon RX 460

MD5 4186 1277 7
SHA-1 1400 800 7.7

SHA-512 155 41 4.56
Whirlpool - - -

AMD Radeon RX Vega 64

MD5 26479 8134 41.46
SHA-1 9260 5664 45.92

SHA-512 1212 751 40.49
Whirlpool 699 332 39.57

AMD Radeon R9 Fury X

MD5 17752 5548 9.4
SHA-1 17754 3785 9.3

SHA-512 534 75 7.9
Whirlpool 527 257 -

Table 2: Difference between benchmark and real attacks
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Figure 8: Total time of dictionary attack on SHA-1
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Figure 9: Total time of dictionary attack on Whirlpool

lis required between 11-12 minutes. For 8.3 GB dictionary, the
difference is even more significant – 5 minutes for Fitcrack, and
32-47 minutes for Hashtopolis where most of the time is spent
by data transfer. The distribution strategy used has a vast impact
on scalability since limN→∞(ds) = ds, but limN→∞(N ∗ ds) = ∞

which makes the naive approach practicaly unusable for larger
networks and bigger dictionaries.

5.4. Distributed brute-force attack
While dictionary attacks may have high requirements for

data transfers between nodes, the brute-force attack is not
traffic-extensive at all. With each workunit, we only need to
send hosts an attack configuration [8], and the range of pass-
word candidate indexes. To analyze, how our scheduling strat-
egy behaves in comparison with Hashtopolis, we performed
a series of brute-force attacks on SHA-1 using masks from
8 lowercase Latin letters (?l?l?l?l?l?l?l?l) to 10 letters
(?l?l?l?l?l?l?l?l?l?l). The chunk size was set to the fol-
lowing values: 60s, 600s, 1200s, and 1800s. To get comparable
results, we let both tools get through the entire keyspace. This
was ensured by using two input hashes – one which was crack-
able using the mask, and other which was uncrackable. Table
3 shows the total time and the number of generated chunks, for
all attacks.

10



configuration Fitcrack Hashtopolis
chunk size mask keyspace time ch. time ch.

60s
8x?l 208,827,064,576 4m 38s 5 2m 37s 3
9x?l 5,429,503,678,976 21m 26s 147 16m 52s 59

10x?l 141,167,095,653,376 9h 4m 49s 5122 6h 36s 41s 1654

600s
8x?l 208,827,064,576 4m 19s 5 4m 46s 1
9x?l 5,429,503,678,976 20m 12s 103 20m 7s 6

10x?l 141,167,095,653,376 5h 24m 25s 480 6h 53m 43s 152

1200s
8x?l 208,827,064,576 4m 23s 5 4m 40s 1
9x?l 5,429,503,678,976 20m 0s 101 40m 8s 3

10x?l 141,167,095,653,376 5h 20m 37s 402 6h 25m 45s 76

1800s
8x?l 208,827,064,576 3m 12s 1 4m 41s 1
9x?l 5,429,503,678,976 19m 26s 100 58m 26s 2

10x?l 141,167,095,653,376 5h 24m 46s 388 6h 43m 34s 51

Table 3: Brute-force attack on SHA-1 using 8 nodes, different chunk sizes

We can see again the behavior of our scheduling algorithm de-
scribed in section 5.1. Due to the workunit shrinking in the
initial and final phases, Fitcrack generated significantly more
chunks than Hashtopolis. Obviously, this behavior is not con-
tributive if we use very small chunks – for 60s, Hashtopolis
was always faster. However, with higher chunk sizes, Fitcrack
achieved better distribution. The workunit distribution progress
for the attack with 600s chunks and 10-letter mask is displayed
in Figure 6. In the main phase, the workunit assignment is stan-
dard, however, in the final phase, the count is increased, and
the sizes are smaller – which ensures all nodes are utilized in
every moment. Especially for chunk sizes of 1200s, and 1800s,
the cracking times using Fitcrack were much lower. What also
helped to make Fitcrack faster was the upgrade described in sec-
tion 5.3 which almost eliminated the communication overhead,
and the hosts were able to start next workunit immediately after
the previous was finished.

5.5. Summary
When transferring big amounts of data, the distribution net-

work and bandwidth of its links play an essential role in the
overall efficiency of the cracking process. In dictionary at-
tacks, we have to distribute the passwords to hosts somehow.
Sending an entire dictionary to all hosts at the start is the most
straightforward solution. In Hashtopolis, it allows estimating
the cracking speed more precisely using the --speed-only

option of hashcat. Since there is no broadcast in HTTP, the
entire transfer has to be performed using unicast connections.
As shown in the results, this works well for small wordlists
but is not usable in general. The bigger the dictionary is, the
higher is the initial overhead which is also multiplied by the
number of hosts in the network. Dictionary segmentation used
in Fitcrack requires additional logic on the server, prevents ac-
curate estimation of cracking speed, but reduces the overhead
rapidly since each password is transferred only once. Reducing
the initial overhead shortens the dictionary transfer and allows
to start cracking sooner. Using batch workunit assignment, we
can eliminate the communication overhead of all attack modes
almost entirely.

While in dictionary attacks, the password inputs of hashcat
are processed, cached, and loaded to GPU, in a brute-force at-
tack such operations are not required. The passwords are gener-
ated directly on the GPU, and thus it is possible to achieve much
higher cracking speed. The network bandwidth is not limiting

since we only transfer a range of password indexes together
with additional options. The communication overhead can be,
again, reduced by the batch workunit assignment. To utilize
hardware resources well, it is, however, required to choose the
keyspace of workunits wisely. Both Fitcrack and Hashtopo-
lis calculate the keyspace from a cracking speed obtained by
the benchmark and a user-defined chunk size. Hashtopolis pre-
serves the similar keyspace to all workunits which, as we de-
tected, leads to shorter cracking times of less-complex jobs,
if the chunk size is set to a smaller value. Fitcrack, on the
other hand, employs the adaptive scheduling algorithm which
modifies the keyspace of workunits depending on the current
progress. If the user-defined chunk size is big enough, the strat-
egy used in Fitcrack helps reduce the total cracking time even
if the total number of chunks is higher than in Hashtopolis.

6. Conclusion

We used BOINC framework to design an open-source
hashcat-based distributed password cracking solution [8]. For
each attack mode, we proposed a strategy which can be used
for task distribution in different cracking networks including
the ones which are non-homogenous, or dynamically chang-
ing. While Hashtopolis is by design more low-level and closer
to hashcat, allowing the user to craft attack commands directly,
Fitcrack provides higher level of abstraction and automation for
the attacks.

The actual efficiency of an attack relies on many factors,
where some can be controlled by the user. Such factors in-
clude the number of nodes, chunk size, and other attack options.
We performed a modification which allowed nodes to work and
download new workunits at the same time. This upgrade dra-
matically reduced BOINC’s communication overhead, allow-
ing the nodes to switch to new tasks almost instantly. For dic-
tionary attack, we showed how the fragmentation strategy saves
network bandwidth, and can lead to far better cracking times
than in Hashtopolis. For brute-force attack, Fitcrack can bring
great results if the user-defined chunk size is set wisely. We also
proved that our adaptive scheduling algorithm [5] can, in many
cases, provide better work distribution than the fixed chunk cre-
ation.

In the future, we want to add support for recently released
hashcat 5.x and study the possibility of integrating John the
Ripper. We would like to focus our research on enhancement
of the distribution strategies we use, and add more automation
to generating password-mangling rules21 which can be used for
modifying dictionary passwords.
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