
Distributed password cracking with BOINC and hashcat

Radek Hranickýa,∗, Lukáš Zobala, Ondřej Ryšavýb, Dušan Kolářb

aBrno University of Technology, Faculty of Information Technology, Department of Information Systems, Brno, Czech Republic
bBrno University of Technology, Faculty of Information Technology, Department of Information Systems, IT4Innovations Centre of Excellence, Brno,

Czech Republic

Abstract

Considering today’s challenges in digital forensics, for password cracking, distributed computing is a necessity. If we limit the
selection of password-cracking tools strictly to open-source software, hashcat tool unambiguously wins in speed, repertory of
supported hash formats, updates, and community support. Though hashcat itself is by design a single-machine solution, its interface
makes it possible to use the tool as a base construction block of a larger distributed system. Creating a “distributed hashcat” which
supports the maximum of hashcat’s original features requires a smart controller that employs different distribution strategies in
different cases. In the paper, we show how to use BOINC framework to control a network of hashcat-equipped nodes and provide
a working solution for performing different cracking attacks. We also provide experimental results of multiple cracking tasks to
demonstrate the applicability of our approach. Last but not least, we compare our solution to an existing hashcat-based distributed
tool - Hashtopolis.

Keywords: hashcat, BOINC, cracking, distributed computing, GPGPU

1. Introduction

With the escalating use of computers and mobile devices,
forensic investigators frequently face encrypted data which
could hide substantial evidence. Though General-purpose
computing on graphics processing units (GPGPU) introduced
a massive speedup to password cracking, the developers of
software supporting data encryption tend to improve the pass-
word verification procedures, making the protection harder to
be cracked [6]. For example, using hashcat and exhaustive
search (brute-force) with a single NVIDIA GTX 1080 Ti GPU,
cracking MS Office 2013 documents is 37840x harder1 than
cracking older MS Office ≤ 2003 using SHA1 + RC4 algo-
rithms. Using 8 alphanumeric characters, one can create a to-
tal of 2.18 ∗ 1014 different passwords. Using a GPU denoted
above, a MS Office 2003 document can be cracked within 5
days, while cracking MS Office 2013 document may take up to
559 years. With the limited number of GPUs in a computer,
cracking today’s password protection in a meaningful time may
require employing a massive network of multi-GPU nodes.

Our research aims at finding an open-source software solu-
tion for fast and efficient distributed password cracking, which
could be easily deployed to any TCP/IP-based computer net-
work made of commodity hardware. At first, we searched for an
application which could serve as a “cracking engine” of com-
putational nodes in a network. The key critieria were: a) speed,

∗I am corresponding author
Email addresses: ihranicky@fit.vutbr.cz (Radek Hranický),

izobal@fit.vutbr.cz (Lukáš Zobal), rysavy@fit.vutbr.cz (Ondřej
Ryšavý), kolar@fit.vutbr.cz (Dušan Kolář)

1https://gist.github.com/epixoip/

973da7352f4cc005746c627527e4d073

b) the range of supported formats, c) supported attack modes,
and d) portability to different platforms. From existing open-
source software, we chose hashcat2, a self-proclaimed “World’s
fastest password cracker” which is distributed under MIT li-
cense. Considering speed, team hashcat won 5 of 7 years of
Crack me if you can (CMIYC3) contest. Assessing features,
hashcat supports over 200 different hash formats, and several
different attack modes: brute-force attack (also reffered to as
mask attack), dictionary attack, combinator attack and hybrid
attacks; moreover, it supports the use of password-mangling
rules including the ones used by popular John the Ripper4 tool.
Another reason for choosing hashcat was its support for dif-
ferent operating systems, and hardware platforms. Hashcat de-
velopers provide both sources, and pre-compiled binaries for
32-bit, and 64-bit Windows, and Linux. Cracking with hash-
cat can be performed on various OpenCL-compatible CPUs,
GPUs, and even FPGAs, DSPs, and co-processors.

As a framework for distributed computing, we used Berkeley
Open Infrastructure for Network Computing (BOINC5) which
was initially designed [1] as a public-resource computing so-
lution. However, in our previous research, we have shown its
applicability in password cracking even in private networks [5].
In our use-case, BOINC handles the authentication of comput-
ing nodes, provides the distribution and automatic updates of
executable binaries, OpenCL kernels, and the input/output data
of each cracking task.

2https://hashcat.net/
3https://contest.korelogic.com/
4http://www.openwall.com/john/
5https://boinc.berkeley.edu/

Preprint submitted to Digital Investigation October 8, 2019

https://gist.github.com/epixoip/973da7352f4cc005746c627527e4d073
https://gist.github.com/epixoip/973da7352f4cc005746c627527e4d073
https://hashcat.net/
https://contest.korelogic.com/
http://www.openwall.com/john/
https://boinc.berkeley.edu/


1.1. Contribution

By redesigning Fitcrack6 system [5], we created a solution
for high-e� ciency GPGPU password cracking using hashcat
tool as a client-side computing engine. The o� ered solution em-
ploys the BOINC framework to handle host management, net-
work communication, and work assignment. For each hashcat's
attack mode, we propose a convenient strategy for task distri-
bution to utilize the maximum of hardware resources. We show
how dictionary segmentation, �ne-grained adaptive scheduling,
and batch assignment of workunits help to reduce the overhead
of the entire cracking process. We experimentally proved that
the new solution is capable of performing distributed attacks in
a reliable and e� cient way. Moreover, we compared our soft-
ware with the Hashtopolis tool, underlying pros, and cons of
each solution.

1.2. Structure of the paper

Section 2 introduces the reader to the current �ndings in dis-
tributed password cracking. Section 3 describes the architecture
of the proposed distributed cracking system. In section 4 we de-
scribe how to use a distributed environment to perform the same
attacks hashcat supports on a single machine. Section 5 shows
experimental results supplemented by the comparison with our
previous solution, and Hashtopolis tool. Our research is con-
cluded by section 6 which brings together obtained experience
and denotes possible future work.

2. Related work

Much of related work is based on the popularJohn the Rip-
per (JtR) tool. Up to this day, the John's wiki7 enlists 15 di� er-
ent approaches on parallel and distributed processing with the
tool, some of them were later abandoned. The �rst published
academic work on the case was performed by Lim who modi-
�ed the sources by adding MPI support forincremental(brute-
force) cracking mode [11]. The solution used a master proces-
sor and a �xed number of slave processors. The master pro-
cessor divided thekeyspace(a set of all password candidates)
to a pre-de�ned number of chunks, while each slave processor
received an equal chunk to solve. The principle of keyspace
division was adopted in many subsequent solutions, however,
with various alterations since Lim's original technique is only
feasible for use in a stable, homogenous environment.

Pippin et al. then proposed the paralleldictionaryattack for
cracking multiple hashes [16]. Instead of dividing keyspace,
they assigned di� erent hashes to each node while all nodes used
the same password dictionary. We consider the approach to be
e� cient for large hashlists and simple hash algorithms only. In
our previous work [6], we found the highest in�uence on the
cracking time has the calculation of the hash from candidate
passwords. The rest is a simple byte array comparison. Thus,
if we crack multiple hashes of the same type, we can calculate

6https://fitcrack.fit.vutbr.cz/
7https://openwall.info/wiki/john/parallelization

the hash only once, and compare the result with all the hashes
we are trying to crack.

Bengtsson showed the practical use of MPI-based brute-force
and dictionary attack using Beowulf high-performance comput-
ing (HPC) cluster for cracking MD5-based Unix shadow �les
and DES-based passwd �les [3]. Both attacks were based on
simple password-by-password keyspace division.

Apostal et al. brought another enhancement to HPC-based
password cracking. Thedivided dictionary algorithmevenly
divided the dictionary words between MPI node equipped with
GPUs. Using CUDA, GPUs on each MPI node locally calcu-
lated the hashes and compared them with the ones which should
be cracked [2].

Marks et al. designed a hybrid CPU/GPU cluster formed
by devices from di� erent vendors (Intel, AMD, NVIDIA) [12].
The design includes both hardware, and software solution. The
distributed network consisted ofManagement/storage nodes
which control the calculation and handle user inputs, andCom-
putation nodesresponsible for the work itself. For intercon-
nection, three di� erent lines were used: 10 Gb/s Ethernet for
data transfer, 1 Gb/s Ethernet and In�band for controlling the
computation process. Marks proposed a software framework
called Hybrid GPU/CPU Cluster(HGPC) utilizing a master-
slave communication model using an XML-based protocol over
TCP/IP network. A proof-of-concept implementation was able
to crack MD5, SHA-1, and four versions of SHA-2 hashes.
Experimental results of cracking on up to 24 nodes showed
great power, and scalability. We, however, suppose that us-
ing a time-proven tool of computation nodes would increase
the performance even more. While cracking MD5 hashes on
NVIDIA Tesla M2050, Marks achieved the speed around 800
Mh/s, while hashcat users report8 cracking over 1200 Mh/s us-
ing the same GPU.

Previous solutions work well for a “classic HPC” system us-
ing a homogenous cluster with a static set of nodes which is,
however, not our use-case. Using a simple text-based proto-
col, loosely modeled on HTTP, Zonenberg created a distributed
solution for cracking MD5 hashes using a brute-force attack
[19]. The architecture consisted of a master server and a set
of compute nodes, which were either CPU-based, or used GPU
acceleration based on CUDA.

Crumpacker came with the idea of using BOINC [1] to dis-
tribute work, and implemented a proof-of-concept tool for dis-
tributed cracking with JtR [4]. Similarly as in our previous
prototype [5], he decided to standardize the size of the worku-
nit (chunk in terms of BOINC) by counting out the number
of passwords that one computer could check in a reasonable
amount of time. Crumpacker, however, reports he was unable
to properly distribute theincremental crack mode9 since JtR
did not track the starting and ending position of the generated
password segments. This was �xed by the modi�cation of JtR
database, however at the cost of e� ciency. Crumpacker later
introduced abatch conceptwhich divides passwords to groups

8https://hashcat.net/forum/thread-2084.html
9https://www.openwall.com/john/doc/MODES.shtml

2



called batches, and tracks them during the entire cracking pro-
cess, possibly using di� erent hash types, and attack modes [4].

Despite hashcat's speed, JtR still o� ers some advantages
over hashcat, for instance, supports some formats which hash-
cat does not – e.g. encrypted RAR3 archives with unprotected
header. Such formats requires a large piece of work performed
on the host machine while hashcat is a pure-OpenCL solution.
Thus, we studied the possibilites of JtR integration to Fitcrack,
and encountered the similar problems with distibuting incre-
mental mode as Crumpacker reported [4]. We postponed the
e� orts to future work, and decided to focus on hashcat at the
time.

Kasabov et al. performed a research on password crack-
ing methods in distributed environment resulting in a technical
report describing di� erent architectures and technologies for
work distribution [9]. Kasabov considers MPI combined with
OpenCL as the best practical approach for setting up a pass-
word cracking GPU cluster, underlying the posibility to use
a combination of MPI and OpenMP10 to achieve �ne-grained
paralellism [18]. The research is, however, merely theoreti-
cal and provides no proof-of-concept tool or experimental re-
sults to support the conclusions. Kasabov mentions Zonen-
berg's Distributed Hash Cracker [19], however Crumpacker's
BOINC-based solution [4] is not discussed. Still, the report in-
cludes a brief study of BOINC, emphasizing its advantages in
automation, which include integrity checks, workunit replica-
tion, checkpointing, and others – which we take advantage from
in Fitcrack system [5, 8], and Crumpacker in his distributed
JtR-based solution [4]. We agree with Kasabov, BOINC is not
an “out-of-the-box” solution for password cracking, however
we do not consider the actual creation11 of a password crack-
ing project to be as di� cult task as Kasabov describes. More-
over, the statement “BOINC API lacks functions for manag-
ing projects” [9] is, at the time of writing this paper, not en-
tirely true. Every BOINC project contains a project manage-
ment website, allowing the administrator to observe and con-
trol project's tasks, users, and other, in a general way. The rest
can be added by writing a custom API, like we did for Fitcrack
WebAdmin – see section 3.1.1.

Veerman et al. aimed to create a scalable, modular and ex-
tensible solution for password cracking using existing cracking
tools [15]. The initial research compares the existing password
cracking tools, and discusses the possible use of BOINC, and
MPI for task distribution. Veerman does not consider BOINC
to be an optimal choice due to “large deployment overhead
and complexity”, refering to Kasabov's research [9]. The use
of MPI, as Veerman states [15], requires the cracking tool
to either support MPI, or be modi�able for adding the MPI
support. Since Veerman wants the solution to support both
closed-sourcce tools, such modi�cation is not always possible.
The work proposes an architecture consisting of three parts: the
Node Controllerwhich handles user requests, stores cracking-
related data, and schedules work; theWorker Noderesponsible

10https://www.openmp.org/
11https://boinc.berkeley.edu/trac/wiki/

CreateProjectCookbook

for cracking; and theWebsiteserving as a user interface. Gen-
erally, the design is similar to the architecture of our Fitcrack
system, described in section 3. The assignements entered by
user are divited intosubjobsanalogous toworkunitsin Fitcrack.
The software output of Veerman's research represents a proof-
of-concept system based on PHP, MySQL, Apache and SQLite.
From all discussed cracking tools, the proposed PHP-based sys-
tem could only use JtR with the default cracking con�gura-
tion (�rst dictionary, then brute-force attack), and the crack-
ing is limited to MD5 hashes only [15]. From our perspective,
the proposed architecture is clear and well-designed, however
the software solution is not ready for real deployment due to its
limited functionality.

Kim et al. proposed a protocol for distributed password
cracking, based on the distribution of password indexes – i.e.
starting point and keyspaces of each workunit [10]. The paper
clari�es the principle used in various existing tools, including
our Fitcrack system [5, 8]. Kim's description is, however, very
general, and limited to a brute-force attack on a single hash.

Since we focus our e� orts on distributing hashcat, it is
necessary to mention existing work, despite being out of the
academic sphere. Hashstack12 is an enterprise solution from
Sagitta HPC, a subsidiary of Terahash LLC founded by J. Gos-
ney, a core member of Hashcat development team. Hashstack is
described to provide extreme scalability, however, the solution
is closed-source and tailored for Sagitta's specialized hardware.

McAtee et al. [13] presented Cracklord13, a system for hard-
ware resource management which supports creatig job queus
and contains a simple hashcat plugin. The plugin allows to re-
motely run a dictionary or a brute-force attack with a limited set
of options. The project, however, seems be updated very rarely,
and the last supported version is hashcat 3.

In 2014, a Github user cURLy bOi created Hashtopus14,
an open-source distributed wrapper around oclHashcat, a pre-
decessor of the current hashcat tool. In 2015, it was used by
Samek to create a virtual GPU cluster for the purpose of bach-
elor's thesis [17]. The Hashtopus project was abandoned in
2017, however S. Coray created15 a fork called Hashtopussy
which was rebranded to Hashtopolis in 2018.

Hashtopolis uses a network with aserver, and one or more
agents– machines used as cracking nodes. The server provides
a user-friendly PHP-based administration GUI, and agent con-
nection point. Agents contain a Hashtopolis client which ex-
ist in C#, and Python versions. The communication is based
on HTTP(S) and human-readable JSON messages. Hashtopo-
lis allows the user to create and manage cracking tasks. While
Fitcrack distinguishes between various attack modes (see sec-
tion 4) for which it employs di� erent distribution strategies,
Hashtopolis is more low-level and does not provide such ab-
straction. For each task, the user selects a hashlist, one or more
�les (e.g. password dictionaries) to be transferred to the client,
and anattack commandin form of hashcat starting options.

12https://sagitta.pw/
13http://jmmcatee.github.io/cracklord/
14https://github.com/curlyboi/hashtopus
15https://github.com/s3inlc/hashtopolis

3



While the attack-based options have to be crafted manually,
Hashtopolis handles benchmarking, keyspace distribution into
chunks, and automated download of hashcat binaries and other
�les necessary for cracking. Being the only well-known main-
tained open-source solution for distributed computing with the
current version of hashcat, we consider Hashtopolis as a state-
of-the-art tool in our area of research. Thus in this paper, we
compare our solution with Hashtopolis using di� erent attack
options.

3. Architecture

In this section, we show how we modi�ed [8] the architecture
of the original Fitrack system [5] to replace our custom pass-
word cracking software with hashcat. Similarly as in other re-
lated projects [19, 4, 10, 15], our system is divided into aserver
and aclientpart. In Fitcrack, the server and clients are intercon-
nected by a TCP/IP network, not necessarily only LAN which
makes it possible to run a cracking task over-the-Internet on
nodes in geographically distant locations. Clients communicate
with the server using an RPC-basedBOINC scheduling server
protocol16 over HTTP(S). The current architecture of Fitcrack
is shown in Figure 1, and is fairly di� erent from the original one
described in [5]. In the following sections, we will describe the
subsystems on both server and client sides.

3.1. Server

The server is responsible for the management of cracking
jobs, and assigning work to clients. In our terminology, ajob
represents a single cracking task added by theadministrator.
Each job is de�ned by an attack mode (see section 4), attack set-
tings (e.g. which dictionary should be used), and one or more
password hashes of the same type (e.g. SHA-1). Once the job is
running, the keyspace is continuously split into smaller chunks
calledworkunits. In terms of theclient-serverarchitecture, the
service o� ered by the server is aworkunitassignment.

3.1.1. WebAdmin
We created a completely new solution for remote manage-

ment of Fitcrack. The application is calledWebAdminand con-
sist of two separate parts:frontendandbackendconnected with
each other using a REST API.

The frontend is written inVue.jsand allows the administra-
tor to manage di� erent parts of the system as depicted in Fig-
ure 2. UnderJobstab, the administrator can add, modify and
manage all cracking jobs.Hostssection provides an overview
of connected clients, their software and hardware speci�ca-
tion, jobs the clients were participating on, and workunits as-
signed to them. Every hash, cracked or not, can be viewed in
a summary withinHashestab. Dictionariestab can be used to
manage and add password dictionaries. Fitcrack supports three
ways of adding new dictionaries: a) importing directly from the
server; b) uploading new via web using HTTP; c) upload using
SFTP/SCP, if con�gured. UsingRulestab, the administrator

16https://boinc.berkeley.edu/trac/wiki/RpcProtocol

can manage*.rule �les contaning the password-mangling rules
for hashcat.CharsetsandMaskstabs allows to manage char-
acter sets and password masks used for mask attack. Since for
mask attack hashcat generates passwords usingMarkov chains
[14], it is necessary to provide a*.hcstat/ *.hcstat2(for hashcat
4+) �le with per-position character statistics. InMarkov chains
tab, Fitcrack supports addinghcstat �les either by uploading
an existing �le, or by generating a new one. The second option
stands for an automated training on a password dictionary us-
ing hcstatgentool. Least but not last, inUserstab, WebAdmin
allows to manage user accounts and permissions.

The backend, written in Python 3, is based on Flask17 mi-
croframework, communicating with Apache or NGINX HTTP
server using Web Server Gateway Interface (WSGI). It imple-
ments all necessary endpoints of the REST API used by the
frontend, e.g. handles requests for creating new jobs, and oth-
ers. Using SQLAlchemy18, the backend operates a MySQL
database which serves as a storage facility for all cracking-
related data. For selected operations, the WebAdmin uses a set
of external utilities.

3.1.2. Utilities used by WebAdmin
We wanted to save the administrator's time and extend the

usability by an automation of frequent tasks like adding new
cracking jobs. For that purpose, Fitcrack WebAdmin uses the
following external utilities:

� hashcat is used for calculating keyspace. This is impor-
tant since hashcat's keyspace maynot correspond with the
actual number of possible passwords.

� Hashvalidator is our custom tool adopting a vast portion
of hashcat's source code. It is used for validating the for-
mat of password hashes.

� maskprocessorimplemented by Jens Steube, the author
of hashcat, is used for generating dictionaries from masks,
and is used for hybrid attacks (see section 4).

� XtoHashcat is our tool used for automated detection of
format, and hash extraction from the input data. For some
formats, where it is possible (e.g. ZIP or O� ce docu-
ments), it detects the signature and contents of the �le and
calls one of the existing scripts which extracts the hash.

� hcstatgenfrom hashcat-utils19 repository is used for gen-
erating*.hcstat�les from dictionaries.

3.1.3. Generator
Generatoris a server deamon responsible for creating new

workunits and assigning created workunits to clients. To
achieve an e� cient use of network's resources, it employs our
Adaptive scheduling algorithmdescribed in [5]. The algorithm

17http://flask.pocoo.org/
18https://www.sqlalchemy.org/
19https://hashcat.net/wiki/doku.php?id=hashcat_utils

4



Figure 1: The architecture of Fitcrack server and client

Figure 2: The interface of Fitcrack WebAdmin

5



tailors each workunit to �t the client's computational capabil-
ities based on the current cracking speed which could change
over time. To get the initial speed, at the beginning of each
cracking job, the clients receive abenchmarkjob which mea-
sures their cracking speed for a given hash type.

To support all hashcat's attacks, we had to redesign the orig-
inal Fitcrack Generator [5] completely. The new version of
Generator is able to work with passwordmasks, which are pro-
cessed in a sequential order if multiple masks are set for a job.
For mask attack, we also added support for assigning Markov
*.hcstat�les to clients. Moreover, we had to take the password-
mangling rules into account since they have a strong in�uence
on the attack's complexity. If the rules are used within adic-
tionary attack, the actual keyspace is multiplied by a number
of rules applied to each password. Last but not least, we added
support forcombinator attackwhich, in our case, includeshy-
brid attacksas well. The exact strategies for keyspace distribu-
tion within each attack mode are described in section 4.

3.1.4. Validator
Validator is a tool implemented within BOINC. It validates

the syntax of all incoming workunit results from clients, be-
fore they are passed to Assimilator. If the jobreplication [5]
is active, the Validator veri�es if the replicated results match.
The replication may be helpful in an untrusted network where
we expect hosts may be compromised an produce intentionally
incorrect results. In our system, the replication is by default dis-
abled since we consider the network to be trusted. Moreover,
the replication reduced the total computational power by 50%
or more, as discussed in [5].

3.1.5. Assimilator
The assimilator processes each result received from clients.

Basically, there are three options, how a workunit could end:

� successful benchmarkof a node - the assimilator saves
the node's cracking speed to a database;

� �nished regular job - if one or more hashes are cracked,
the assimilator updates the database. If all hashes are
cracked, the entire job is considered done and all ongoing
workunits are terminated. The assimilator also updates the
progress of the entire cracking job. If the whole keyspace
is processed, the job is considered �nished;

� computation error - the assimilator performs the failure-
recovery process as described in [5].

3.1.6. Trickler
In the original version of Fitcrack, the only information about

computation progress the server had was from the result of each
workunit. Since we wanted the administrator to have better
overview of the system, we implemented aTrickler daemon,
which handles BOINCtrickle messagessent by a client. Using
this technique, the clients periodically report their progress on
each workunit which is then visualized in theWebAdmin.

3.1.7. BOINC daemons
Besides the previously denoted subsystems, we use the fol-

lowing deamons which are part of the BOINC:

� Transitioner - controls the state updates of workunits, ei-
ther newly created, or �nished.

� Scheduler- handles the requests of each client.

� Feeder- allocates blocks of shared memory for saving all
workunit-related data.

� File deleter - deletes all unnecessary �les remaning from
previous workunits.

3.2. Client

While the architecture of the server is rather complex and
it may take some e� ort to properly con�gure all subsystems,
adding a new client to the cracking network is relatively easy.

Basically, the administrator only needs to install an applica-
tion calledBOINC clientand connect to the server. The rest
of client-side software is downloaded automatically from the
server.

3.2.1. BOINC Client
BOINC Clientalso referred to as acore clientis an applica-

tion which handles the communication between the client and
the server. The client actively asks the server for work and
once a workunit assignment is received, it downloads all neces-
sary input and output data. Besides that, the client also handles
downloading and updating of all executable binaries required:
Runner(see below),hashcat, and all hashcat's OpenCL kernels
and �les needed. Depending on how the BOINC client is in-
stalled, it can either run in the background like a daemon, or
start when an individual user logs in; and is stopped when the
user logs out.

3.2.2. BOINC Manager
BOINC Manageris an optional part of the client. It pro-

vides a graphical user interface for the administration of the
core client. It allows the user to choose a project server, re-
view progress on tasks, and con�gure various client settings. In
BOINC Manager, the user can set “when to compute” by de�n-
ing certain conditions including days and times of week, limit
on CPU, memory, or disk usage, and others.

3.2.3. Runner
Runneris a wrapper of hashcat, which we implemented to

make hashcat usable with a BOINC-based system. The Runner
is used for processing workunit assignments, controlling hash-
cat, and creating reports for the server. It provides abstraction of
hashcat's paramaters for both regular, and benchmarking tasks.
The runner optionally uses a local con�guration �le, where the
user can specify, which OpenCL devices should be used for
computation, and specify a workload pro�le for the devices.

6



Figure 3: Example of dictionary attack distribution

3.2.4. hashcat
As a cracking engine of the system, we usehashcattool. It

employs various OpenCL kernels that implement a GPGPU-
based cracking of various hash algorithms. The reasons for
choosing hashcat were described in section 1.

4. Attacks modes

Hashcat supports the following basic attack modes: dictio-
nary attack, combinator attack, mask attack, and hybrid attacks.
In the following subsections, we show how we perform these
attacks in the distributed environment of BOINC.

4.1. Dictionary attack

The most straightforward way of cracking a password is
a dictionary attack where a list of possible candidates is ver-
i�ed. While there are many ways of obtaining such lists, we
always have to distribute these candidates from the server to
our computing nodes. This makes distributed dictionary attacks
ine� cient when dealing with large dictionary �les [7].

While it would be possible to send the whole dictionary to all
hosts together with indexes, we chose another approach. The
reason is the candidate lists might be very large and sending
the whole �le would increase the cracking time largely, as each
host needs only a portion of the original list.

Therefore, a fragment of the original dictionary is created for
each host with each workunit, whose size depends on the host's
current computing power. What's more, this number can vary
in time, re�ecting each hosts' performance changes.

You can see a simpli�ed scheme of this attack in Figure 3.

4.2. Combinator attack

In combinator attack, the goal is to verify combinations of
all passwords in two input dictionaries, using concatenation.
Therefore, the number of possible candidates equals tom � n,
wherem andn is the number of passwords in the �rst and sec-
ond dictionary.

When dealing with hashcat, we realized its keyspace compu-
tation doesn't consider the second dictionary. When the hashcat
is supposed to verify one password in combinator attack, it, in
fact, veri�es 1� n passwords. With possibly huge dictionaries,
the workunit size would be uncontrollable.

Figure 4: Example of combinator attack distribution

A simple solution to this problem would require generat-
ing all possible combinations to a single dictionary, proceeding
with a dictionary attack, described above. This would, however,
increase the space complexity in the sense of the transmitted
passwords from linear, ideallym+ n passwords, to polynomial,
m� n, rapidly increasing the time needed to transfer data to all
computing nodes.

To deal with this issue, we came up with the following solu-
tion. The �rst dictionary is distributed as a whole to all com-
puting nodes in the �rst workunit, also referred to as a chunk.
Then, with each workunit, only a small portion of the second
dictionary is being sent. This way, we can control the number
of passwords we send in the second dictionary –n, while we
can still limit the number of veri�ed passwords in the �rst dic-
tionary –m, using the hashcat mechanism. Also, we keep the
linear complexity of the whole attack.

You can see a scheme of such an attack in Figure 4.

4.3. Mask attack

One of the biggest challenges of distributing the mask attack
in hashcat was the way hashcat computes the keyspace of each
mask. This number depends on many factors, which in result
doesn't inform you about the real keyspace at all. However,
the real keyspace is needed to compute the size of each worku-
nit, depending on each host's current performance measured in
hashes per seconds.

To overcome this obstacle, the real keyspace is computed
from the mask before the attack starts, using our own algo-
rithm. Comparing this number with hascat keyspace, we can
determine how many real passwords are represented by a sin-
gle hashcat index. With this knowledge, sending the mask with
corresponding hashcat index range to verify is no longer a prob-
lem.

For each workunit, the only information we need to distribute
is the mask with a new index range. This makes a mask attack,
in contrast with previously described attacks, very e� cient in
a distributed environment.

4.4. Hybrid attack

There are two variations of hybrid attack supported by hash-
cat. The �rst combines a dictionary on the left side with a mask
on the right side. The second hybrid attack works the opposite
way, with a mask on the left and a dictionary on the right side.

7




	Introduction
	Contribution
	Structure of the paper

	Related work
	Architecture
	Server
	WebAdmin
	Utilities used by WebAdmin
	Generator
	Validator
	Assimilator
	Trickler
	BOINC daemons

	Client
	BOINC Client
	BOINC Manager
	Runner
	hashcat


	Attacks modes
	Dictionary attack
	Combinator attack
	Mask attack
	Hybrid attack

	Results
	Adaptive scheduling
	Used metrics
	Distributed dictionary attack
	Distributed brute-force attack
	Summary

	Conclusion

