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Preface

Formal Concept Analysis (FCA) is a method of analysis of relational data
which has proved to be useful in many areas of computer science. In its basic
setting FCA is one-valued: it works only with affirmations that objects have
attributes. If a user needs to express a denial of incidence, i.e. that an object
does not have an attribute, he can easily achieve it using a logical negation.
This is no longer the case for graded settings, where the affirmations and
denials of incidences between objects and attributes are a matter of degrees.
Management of graded affirmations is well elaborated in the literature be-
cause it represents a direct generalization of a one-valued character of FCA.
In contrast, graded denials have received little attention. This habilitation
thesis provides a thoroughly elaborated framework for handling data with
graded denials and data with both graded denials and graded affirmations
in FCA. A special attention is given to structures behind FCA in a graded
setting.

Acknowledgement

I thank Radim Belohlavek for his continual support, guidance, and feedback.
I thank all my coleagues and co-authors, for their invaluable input to my
work.



Contents
1 Introduction

2 Formal Concept Analysis for Graded Data

2.1 Complete Residuated Lattices . . . . . .. .. .. ... ... ..
2.2 Truth-Stressing and Truth-Depressing Hedges . . . . . . . ..
2.3 L-sets and L-relations . . . . .. ... ... ... ... ... .
2.4 L-Galois Connections, L-closures and L-interiors . . . . . . . .
2.5 L-ordered Sets. . . . . . . . .. ...
2.6 Formal L-Concept Analysis . . . . ... ... ... .. ....
2.7 L-Concept Lattices . . . . .. .. .. ... ... ... .....
2.8 Parameterization with Truth-Stressing Hedges . . . . . . . . .
2.9 L-Attribute Implications . . . . . . .. . ... ...

Contributions of the Thesis

A Isotone Fuzzy Galois Connections with Hedges . . . . . . . ..
B A Calculus for Containment of Fuzzy Attributes . . . . . . . .
C  Concept Lattices of Isotone vs. Antitone Galois Connections
in Graded Setting: Mutual Reducibility Revisited . . . . . . .
L-concept Analysis with Positive and Negative Attributes . . .
Rough Fuzzy Concept Analysis . . . .. ... ... ... ...
Complete Relations on Fuzzy Complete Lattices . . . . . . . .
Block Relations in Formal Fuzzy Concept Analysis . . . . . .
On Homogeneous L-bonds and Heterogeneous L-bonds . . . .

asliepNcsNeslw)

1i



1 Introduction

The need to extract potentially useful information from an ever-growing
amount of available data is generally recognized by both academia and busi-
ness. The extracted information usually comes in the form of a reasonably
small number of understandable patterns such as clusters, if-then rules (as-
sociation rules, functional dependencies), etc. The process of such extraction
is called Knowledge Discovery in Databases (KDD). Many KDD methods
and techniques have been developed in the past few decades; one being For-
mal Concept Analysis (FCA) [29, 23]. Its core notion, formal concept, is a
mathematical formalization of a traditional view of conceptual knowledge.
As people naturally reason about reality in terms of concepts the patterns
delivered by FCA are easy to understand and interpret.

Formal Concept Analysis is a method of knowledge representation, in-
formation management and data analysis invented by Rudolf Wille. Solid
mathematical and computational foundations of FCA were developed in the
1980s. In the past two decades or so, FCA has enjoyed considerable interest
in various communities. Many papers on applications of FCA in various do-
mains have appeared, including those in premier journals and conferences.
The method is based on a formalization of a certain philosophical view of
conceptual knowledge which goes back to Port-Royal logic [1, 41].

Some of the most interesting applications of FCA are arguably in com-
puter science. It has been applied in software engineering [61, 36, 62], web
mining [26, 27|, organization of web search results [25, 24], text mining and
linguistics [37], analysis of medical and biological data [17, 40, 39], and crime
data [51, 52].

The basic input data for FCA is a flat table, called a formal context, in
which rows represent objects, columns represent attributes. Each entry of
the table contains a cross if the corresponding object has the corresponding
attribute, and is otherwise left blank (Fig.1).

The basic notion in FCA is that of a formal concept. A formal concept
consists of two collections: extent—a collection of all objects sharing the same
attributes, and intent—a collection of all the shared attributes.

FCA represents knowledge discovered in the input data in two ways. The
first one is a concept lattice—a hierarchy of formal concepts present in the
formal context (Fig.2). The second one is attribute implications—if-then
rules describing dependencies among attributes in the formal context.
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Figure 1: Formal context with objects 1,2, 3,4 and attributes a,b,...,g.

FCA in its basic setting deals with one-valued data; i.e. presence of an
element in a formal context, in a concept, or in an attribute implication
represents an affirmation, while absence represents a lack of affirmation. In
particular, each cross in the formal context is seen as an affirmation of the
form

“the object x has the attribute y”.

An absence of such affirmation does not generally mean that the object x does
not have the attribute y. The Port-Royal logic additionally works another
object-attribute incidence—denial of the form

“the object x does not have the attribute y”.

When a denial needs to be processed by FCA, one can easily introduce a
negative attribute, for example ‘not g’, and add the affirmation

“the object x has the attribute ‘not y’”.

This way of managing denials in FCA can be found in [48, 49, 56, 57, 58, 60,
59]. We see that denials are easily handled in the basic setting of FCA with
one-valued data, however this is no longer the case for graded data.

In everyday life we use concepts which are not sharply bounded (e.g.
‘great dancer’ or ‘middle aged man’). In terms of FCA, objects and attributes
need not be divided sharply by a formal concept into those to which the
formal concept applies and those to which it does not. That is to say, a
formal concept applies to different objects to different, possibly intermediate,
degrees. For example, the concept ‘middle aged man’ may apply to a 45-year
old person to degree 1, to a 55-year old person to degree 0.5, and to a 65-year
old person to degree 0.2. There are several ways to generalize FCA by which
we are able to process such indeterminacy or uncertainty [8, 9, 54, 47, 38, 22]
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Figure 2: The formal concepts of the formal context in Fig. 1 and its concept
lattice.

(see also [53] and references therein). Many of them are based on Zadeh’s
theory of fuzzy sets [68].

In this work, we stick with the graded setting introduced independently
by Belohlavek and Pollandt [8, 9, 54] where the formal context contains truth
degrees taken from a particular structure of truth degrees. Truth degree a in
entry (z,y) represents an affirmation that

the object = has the attribute y at least to degree a.
Denials are then statements of the form:
the object = has the attribute y at most to degree b.

Unlike in the basic setting, here we cannot simply substitute denials by affir-
mations of negative attributes. The reason is that the law of double negation
does not generally hold true in the graded setting. Consequently, applying
negation leads to degradation of the input data.

Two main kinds of concept-forming operators, antitone (or standard) and
isotone (of attribute/object-oriented), were studied [9, 30, 54, 55], compared
[13, 15] and even covered under a unifying framework [10, 50]. The antitone
concept-forming operators handle object-attribute incidences as affirmations,
and concepts are based on sharing attributes (at least in some degree). The
isotone concept-forming operators handle incidences of objects and attributes
as denials, and concepts are based on the absence of the same attributes
(having them at most in some degree).

The graded affirmations in FCA have been thoroughly studied in the
literature while the study of graded denials is the main content of this thesis.



Contributions This thesis consists of eight selected papers whose unifying
scheme is managing graded denials in FCA. They start with extensive studies
of isotone concept-forming operators in FCA for graded data and lead to a
general framework for FCA that handles both graded affirmations and graded
denials.

The list of the papers follows. The bracketed numbers correspond to the
reference numbers in the bibliography.

[43] Jan Konecny. Isotone fuzzy Galois connections with hedges. Informa-
tion Sciences, 181(10):1804-1817, 2011.

[44] Jan Konecny and Michal Krupka. Block relations in formal fuzzy
concept analysis.  International Journal of Approximate Reasoning,

73:27-55, 2016.

[15] Radim Belohlavek and Jan Konecny. Concept lattices of isotone vs.
antitone Galois connections in graded setting: Mutual reducibility re-
visited. Information Sciences, 199:133-137, 2012.

[3] Eduard Bartl and Jan Konecny. L-concept analysis with positive and
negative attributes. Information Sciences, 360:96-111, 2016.

[4] Eduard Bartl and Jan Konecny. Rough fuzzy concept analysis. Fun-
damenta Informaticae, 156(2):141-168, 2017.

[44] Jan Konecny and Michal Krupka. Block relations in formal fuzzy
concept analysis.  International Journal of Approximate Reasoning,

73:27-55, 2016.

[45] Jan Konecny and Michal Krupka. Complete relations on fuzzy com-
plete lattices. Fuzzy Sets and Systems, 320:64-80, 2017.

[46] Jan Konecny and Manuel Ojeda-Aciego. On homogeneous L-bonds
and heterogeneous L-bonds. International Journal of General Systems,
45(2):160-186, 2016.

The thesis is structured as follows. Section 2 provides unified prelimi-
naries to all the enclosed papers. It represents a brief introduction to FCA
in the graded setting, [8, 9, 54]. Section 3 then contains the papers, each
preceded by a short summary of its content.



2 Formal Concept Analysis for Graded Data

We introduce basic notions on complete residuated lattices, fuzzy sets and
fuzzy relations and then we turn to FCA for graded data. The content of
this section is not to be considered a contribution of this thesis. The only
exception is the semantics of graded denials assigned to attribute-oriented
concept-forming operators.

2.1 Complete Residuated Lattices

We use complete residuated lattices as basic structures of truth degrees. The
truth degrees taken from these structures are used to express the strength
of affirmations and denials in formal contexts and in both outputs of formal
concept analysis.

A complete residuated lattice [8, 34, 64] is a structure L = (L, A, v, ®, —
,0,1) such that

e (L,An,v,0,1)is a complete lattice, i.e. a partially ordered set in which
arbitrary infima and suprema exist (the partial order of L is denoted
by <);

e (L,®,1)is a commutative monoid, i.e. ® is a binary operation which
is commutative, associative, and a ® 1 = a for each a € L;

e ® and — satisfy adjointness, i.e. a®b < ciff a < b — c.

Elements of L are called truth degrees. Operations ® (multiplication) and —
(residuum) play the role of truth functions of “fuzzy conjunction” and “fuzzy
implication.” 0 and 1 denote the least and greatest elements. Throughout
this work, L denotes an arbitrary complete residuated lattice.

Common examples of complete residuated lattices include those defined
on the unit interval (i.e. L = [0,1]), A and v being minimum and maximum,
® being a left-continuous t-norm with the corresponding residuum — given
by a — b = max{c | a ® ¢ < b}. The three most important pairs of adjoint
operations on the unit interval are

e Lukasiewicz
a®b=max(a+b—1,0),

a—b=min(l —a+b,1),



o Godel
a® b = min(a,b),

1 ifa<b,
a — b =
b otherwise,

e Goguen (product
( ) a®b=a-b,

1 ifa<b,
a—>b=+, _
- otherwise.

Instead of a unit interval we can also consider a finite chain, e.g.

1 1
L=10,~,. ... — 1.

n n

All operations on this chain are then defined analogously, see [8].

2.2 Truth-Stressing and Truth-Depressing Hedges

We endow the complete residuated lattices with additional unary operations—
truth-stressing and truth-depressing hedges. These operations will serve as
parameters for semantics of concept-forming operators as well as for seman-
tics of attribute implications.

Truth-stressing hedges were studied from the point of fuzzy logic as logical
connectives ‘very true’, see [35]. Our approach is close to that in [35]. A
truth-stressing hedge is a mapping * : L — L satisfying

1*=1, a* <a, a<bimpliesa® <b*, a** =ad* (1)

for each a,b e L.
On every complete residuated lattice L, there are two important truth-
stressing hedges:

(i) identity, i.e. a* =a (a € L);

(ii) globalization, i.e.

0, otherwise.

a*:{ 1, ifa=1,



A truth-depressing hedge is a mapping ® : L — L such that following
conditions are satisfied

0°=0, a<a®, a<bimpliesa® <, " =a" (2)
for each a,b € L.

A truth-depressing hedge is a truth function of logical connective ‘slightly
true’, see [63]. In [63] a stricter definition of the truth-depressing hedge with
a connection to truth-stressing hedges is given. For our purposes, it is enough
to assume conditions (2).

On every complete residuated lattice L, there are two important truth-
depressing hedges:

(i) identity, i.e. a® = a (a € L);

(ii) antiglobalization, i.e.

20— 0, ifa=0,
| 1, otherwise.
Let o : . — L be a truth-stressing hedge or truth-depressing hedge. By
fix (o) we denote a set of truth degrees a € L with a = a®; that is

fix(o) ={ae L|a=a"}.

2.3 L-sets and L-relations

In the basic setting, a formal concept is given by two sets—an extent which
contains objects covered by the concept, and an intent which contains at-
tributes covered by the concept. In the graded setting, the presence of ob-
jects and attributes in extents and intents is a matter of degree. We model
the extents and intents using L-sets. Similarly, incidences between objects
and attributes in the input context are a matter of degree and we model
them using L-relations.

An L-set [32, 31] A in a universe set X is a mapping assigning to each
x € X some truth degree A(z) € L. The set of all L-sets in a universe X is
denoted LX.

An L-set A e L is also denoted {#®)/x | z € X}. If for all y € X distinct
from xq,x9, ..., 2z, we have A(y) = 0, we also write

{A(xl)/xl, A(“)/xl, o ,A(x")/xn}.

7
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Figure 3: Truth-stressing hedges (top) and truth-depressing hedges (middle)
on a five element chain and their ordering w.r.t. fix (-) < fix (-) (bottom).



If there is exactly one z € X s.t. A(x) > 0 (ie. A = {4@/z}) we call A a
singleton.

The operations with L-sets are defined componentwise. For instance,
for a € L and A € LX we define L-sets a — A and a® A in X by (a —
A)(z) = a — A(x) and (e ® A)(x) = a® A(x) for all z € X respectively.
The intersection of L-sets A, B € LX is an L-set A n B in X such that
(An B)(z) = A(x) A B(z) for each x € X. Similarly, this is utilized for the
union of L-sets.

Additionally, for a € L and an L-set B € L we define left a-multiplication
a ® B left a-shift a — B and a-complement B — a respectively by

(a® B)(x) = a® B(x)
(a > B)(x) = a — B(x)
(B = a)(x) = B(z) —a

for all x € X.
Intersection and union of two L-sets can be generalized to any number of
L-sets and even to L-sets of L-sets. For an L-set U: LX — L, the intersection

(U and union | JU of U are L-sets in X, defined by
(U@ = A UA) - Al), (3)

AeLX

JU@) =\ U(4)®A), (4)

AeLX

for any x € X.

An L-set A € L is called crisp if A(z) € {0,1} for each x € X. Crisp
L-sets can be identified with ordinary sets. For a crisp set A, we also write
xeAfor A(z) =1and z ¢ A for A(x) = 0.

For A, B € L we define the degree of inclusion of A in B by

S(4,B) = \(A(z) — B(x)). (5)
zeX
The degree of inclusion generalizes the classical inclusion relation. Described
verbally, S(A, B) represents a degree to which A is a subset of B. In partic-
ular, we write A € B iff S(A, B) = 1. As a consequence, we have A € B iff
A(z) < B(xz) for each z € X. Further, we set

A~X B =S(A,B) A S(B,A). (6)



The value A ~* B is interpreted as the degree to which the sets A and B
are similar.

A binary L-relation (binary fuzzy relation) between X and Y can be
thought of as an L-set in the universe X x Y. That is, a binary L-relation
I € LX*Y between a set X and a set Y is a mapping assigning to each v € X
and each y € Y a truth degree I(z,y) € L (a degree to which x and y are
related by I). In the case X =Y we call such L-relation also an L-relation
on X.

A binary L-relation R on a set X is called reflexive if R(x,z) = 1 for
any z € X, symmetric if R(x,y) = R(y,x) for any z,y € X, and transitive
if R(z,y) ® R(y,2) < R(z,z) for any z,y,z € X. R is called an L-tolerance,
if it is reflexive and symmetric, L-equivalence if it is reflexive, symmetric
and transitive. If R is an L-equivalence such that for any z,y € X from
R(z,y) = 1 it follows x = y, then R is called an L-equality on X. L-
equalities are often denoted by ~. The similarity ~* of L-sets (6) is an
L-equality on L~.

Let ~ be an L-equivalence on X. We say that an L-set A in X is com-
patible with ~ (or extensional w.r.t. ~, if for any x, 2’ € X it holds

Alz) ® (x ~ ') < A(2"). (7)
A binary L-relation R on X is compatible with ~, if for each z,2",y,y' € X,
Rz, y)®(x ~2") @y ~y) < R, y). (8)

Composition Operators We use three composition operators, o, <, and
>, and consider the corresponding compositions I = Ao B, [ = A< B, and
I=AvB (for [ e LY Ae LXF Be LF*Y). In the compositions, I(z,y)
is interpreted as the degree to which the object x has the attribute y; A(z, f)
as the degree to which the factor f applies to the object xz; B(f,y) as the
degree to which the attribute y is a manifestation (one of possibly several
manifestations) of the factor f. The composition operators are defined by

(Ao B)(z,y) = \/ A, f)®B(fy), (9)
feF

(A< B)(z,y) = /\A f)— B(f.y). (10)
feF

(A»B)(z,y) = /\B(f,ywA(a:,z). (11)
feF

10



Note that these operators were extensively studied by Bandler and Ko-
hout, see e.g. [42]. They have natural verbal descriptions. For instance,
(Ao B)(z,y) is the truth degree of the proposition “there is factor f such that
f applies to object = and attribute y is a manifestation of f”; (A< B)(z,y) is
the truth degree of “for every factor f, if f applies to object x then attribute
y is a manifestation of f”. Note also that for L = {0,1}, Ao B coincides with
the well-known composition of binary relations.

Theorem 1 ([42, 8|, associativity and distributivity of composition opera-
tors). We have

Ro(SoT)=(RoS)oT, (12)
Ra(SeT)=(R<S)»T, (13)
R« (S<«T)=(RoS)«T, (14)
Re(SoT)=(R»>S)>T. (15)

Furthermore, we have that

(URz‘)OSI U(RiOS), and RO(USZ») =U(RoSZ»), (16)
(ﬂ R)»S = ﬂ(Ri »S), and Rv (U S;) = Q(R >S5, (17)
(Jr)<s5=[Ri=5), and Ra(()5)=()R=5). (18)

Remark 1. In [10] it is shown that o, >, and <« can be considered to be the
same composition as it can be covered by a general framework. We do not
use the general framework in this thesis because most results contained here
use specific properties of compositions defined by (9),(10), and (11).

2.4 L-Galois Connections, L-closures and L-interiors

Now we introduce the fundamental mappings behind FCA in the graded
setting, specifically antitone and isotone L-Galois connections and L-closure
and L-interior operators.

An antitone L-Galois connection [5] between the sets X and Y is a pair
{f,g) of mappings f: LX — LY, g: LY — L satisfying

S(Ay, Az) < S(f(Az), f(Ar)) S(By, Ba) < S(9(Az2), 9(Bh)) (19)
Acg(f(A)) B c f(g(B)) (20)

11



for every A, Ay, Ay e LX, A, Ay, Ay e LY.

An isotone L-Galois connection [30] between the sets X and Y is a pair
(", V% of mappings " : LX — LY YV LY — LX satisfying

S(A1, Az) < S(f(Ar), f(A2)) S(By, Ba) < S(9(A1), 9(Ba)) (21)
Acg(f(A)) B2 f(g9(B)) (22)

for every A, Ay, Ay e LX, A, Ay, Ay e LY.
The following theorem summarizes properties of both antitone and isotone
Galois connections.

Theorem 2 ([5, 30]). An antitone L-Galois connection {f,a) satisfies the
following properties:

(i) Ay S As implies f(As) < f(A1) and By € By implies g(Bs) < g(By)
(i) S(A,g(B)) = S(B, f(A))

(iii) f (Uier A) = Ny F(A) and g (Uie; BD)* = Nier 9(B1)

(iv) f(g(f(A))) = f(A) and g(f(9(B))) = g(B)

for each A, A;e LX,B,B; e LY.

An isotone L-Galois connection ([, g) satisfies the following properties:
(i) Ay € Ay implies f(A1) € f(Az) and By < By implies g(By) < g(B2)
(ii) S(A g(B)) = 5(f(A), B)
(iii) | (Uyer 4) = User £(A3) and g (e B2) = Ny 9(B:)
(i) f(9(f(A))) = f(A) and g(f(9(B))) = 9(B)
for each A, A;e LX,B,B; e LY.

Definition 1. [11, 6] A system of L-sets V < L* is called an L-interior
system if

e V is closed under ®-multiplication, i.e. for every a € L and A € V we
have that a® A€ V;

12



e V is closed under union, i.e. for A; € V (j € J) we have that  J,.; A; €
V.

V < L¥ is called an L-closure system if

e V is closed under —-shifts, i.e. for every a € L and A € V we have that
a— AeV;

e V is closed under intersection, i.e. for A; € V (j € J) we have that
ﬂjeJ Aj eV.

Theorem 3. If {f,g) an antitone L-Galois connection between sets X and
Y, then the composition fog is an L-closure system on X and the composition
go f in an L-closure system on Y .

If {f,g) an isotone L-Galois connection between sets X and Y, then the
composition f o g is an L-closure system on X and the composition g o f in
an L-interior system on Y .

2.5 L-ordered Sets

The set of all formal concepts in the graded setting with particular L-order
forms a structure called L-ordered set. This structure is described in this
section.

An L-orderon a set U with an L-equality ~ is a binary L-relation < on U
which is compatible with ~, reflexive, transitive and satisfies (u < v) A (v <
u) < u ~ v for any u,v € U (antisymmetry). The tuple U = (U, ~), <) is
called an L-ordered set [8, 9]. An immediate consequence of the definition is
that for any w,v € U it holds

urv=(u=<v)A(v=<u). (23)

If U = (U, ~), <) is an L-ordered set then the tuple (U, ' <), where '< is
the 1-cut of <, is a (partially) ordered set. We sometimes write < instead of
'< and use the symbols A, A resp. v, \/ for denoting infima resp. suprema
in (U,'<).

For two L-ordered sets U = ((U,~y),<y) and V = {(V,~y),<y), a
mapping f: U — V is isotone, if (u; <y u2) < (f(u1) <v f(uz2)), and an
embedding, if (uy <y ug) = (f(u1) <v f(u2)), for any uy,us € V.

13



A mapping f: U — V is called an isomorphism of U and V, if it is both,
a bijection and an embedding. U and V are then called isomorphic.

An antitone mapping and dual embedding are defined by (u; <y ug) <
(f(u2) <v f(uy)) and (u; <y u2) = (f(u2) <v f(u1)), respectively. A dual
isomorphism is a bijection which is a dual embedding.

Let U be an L-ordered set. For any W e LY and w € U we set

LW(w) = N\ W(u) = (w=<u), UV(w)=A\W()—(u<w). (24)

uelU uelU

The right-hand side of the first equation is the degree of “For each u € U, if
u is in W, then w is less than or equal to u”, and similarly for the second
equation. Thus, LW (w) (UW (w)) can be seen as the degree to which w
is less (greater) than or equal to each element of W. The L-set LW (resp.
UW) is called the lower cone (resp. the upper cone) of W.

For u,v € U, u < v, the L-set [[u, v]] = U{u} n L{v} is called an L-interval
with bounds u and v. We have

[u, v](w) = (u < w) A (w < V). (25)

Let U be an L-ordered set. For any L-set W € LV there exists at most
one element u € U such that LW (u) A U(LW)(u) = 1 (resp. UW (u) A
LUW)(u) = 1) [9, 8]. If there is such an element, we call it the infimum
of W (resp. the supremum of W) and denote inf W (resp. sup W); otherwise
we say that the infimum (resp. supremum) does not exist.

U is called completely lattice L-ordered, if for each W e LY, both inf W
and sup W exist.

An important example of a completely lattice L-ordered set is the tuple
LY = ((LX,~%), S), where X is an arbitrary set and ~* and S are given
by (6) and (5), respectively. Infima and suprema in L* are intersections and
unions: for any M € L we have

inf M =[] M, sup M = J M. (26)

2.6 Formal L-Concept Analysis

As we have now introduced all essential mathematical notions, we can finally
turn our attention to the formal L-concept analysis. Many ways to generalize
FCA can be found in the literature [8, 9, 54, 47, 38, 22| (see also [53] and
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references therein). From here to the end of Section 2 we present the approach
of Belohlavek and Pollandt [8, 9, 54].

An L-context is a triplet (X, Y, I') where X and Y are (ordinary nonempty)
sets and I € LX*Y is an L-relation between X and Y. Elements of X are
called objects, elements of Y are called attributes, I is called an incidence
relation. I(x,y) = a is read:

“the object x has the attribute y at least to degree a”
or
“the object x has the attribute y at most to degree a”

depending on whether the incidence between x and y is seen as an affirmation
or denial.

We consider the following pairs of operators, called concept-forming op-
erators, induced by an L-context (X,Y, I). First, the pair (!,*) of standard
concept-forming operators ' : LX — LY and ¥ : LY — L¥ is defined, for all
Ae LX and Be LY, by

Aly) = \(Alx) = I(z,y)),

zeX

B'(z) = /\(Bly) = I(x,y)).

yey

(27)

In words, the operator ' assign to an L-set A of objects the L-set A" of
attributes which are shared by all the objects in A. Analogously, the operator
! assign to an L-set B of attributes the L-set B* of objects which have all
the attributes in B.

Second, the pair {(n,u) of attribute-oriented concept-forming operators
" LX - LY and YV : LY — LX is defined by

A'y) = \/ (A2) ® I(z,y)).

reX

BY(z) = \U(z,y) = By)).

yeY

(28)

In words, the operator " assign to an L-set A of objects the L-set A" of
attributes which at least one object in A has. The operator Y assign to an
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a B v
A 05 0 1
B |1 05 1
C |0 05 05
D |05 05 1

Figure 4: Example of L-context with objects A,B,C,D and attributes «, 3, v;
L is a chain 0 < 0.5 < 1 with Lukasiewicz operations.

L-set B of attributes the L-set BY of objects which have no other attributes
than those in B.

Additionally, dual operators to attribute-oriented concept-forming will
be sometimes considered. Specifically, a pair of operators * : L* — LY and

Vv . LY N LX
Ay) = \U(2,y) — A=),

reX

B'(x) = \/(Bly) ® I(x,y)).

yeY

(29)

The operators (", ") are called object-oriented concept-forming operators.

When we need to emphasize which L-relation induces the concept-forming
operators, we use an additional subscript; for example, we write 7 instead
of just T.

Example 1. Consider the data (L-context) in Fig. 4, the objects represent
employees, and the attributes represent skills.

(a) One can handle the incidences in the L-context as affirmations and
form concepts based on having the same skills at least in some degree;
such concepts are standard concepts formed by (1, |). Extents of the
concepts can be interpreted as collections of employees able to fulfill a
task which requires particular skill set. For example, the collection of
employees able to fulfill a task which requires the skill « in full degree
and the skill 8 in half degree can be found as {a, ®%3}'.

(b) Or he can handle the incidences as denials and form concept based on
having the same skills at most in some degree; such concepts are are
standard concepts formed by isotone concept-forming operators {n,v).
Extents of the concepts can be interpreted as collections of employees
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who lack the same skills and need some training in them. For example,
the collection of employees who lack the skill & and have the skill g at
most in degree is can be found as {®%3,~v}".

Remark 2. Notice that the three pairs of concept-forming operators can be
interpreted as compositions relations. Applying the isomorphisms L'*X = LX
and LY*' = LY whenever necessary, one could write them, alternatively, as
follows:

Al = A« T AN = Ao AN = AT
B'=1:B BY=I1<B B ' =JoB

The concept-forming operators induced by L-contexts are in correspon-
dence with an antitone and isotone L-Galois connection:

Theorem 4 ([5]). Let (X,Y,I) be an L-context, {f,g) be an antitone L-
Galois connection between X and Y. Then

(i) (11,40 is a Galois connection.

(ii) Iis.gy defined by
Lpgy(,y) = f({1/2})(y) (30)

1s an L-relation between X and Y and we have

(iii) (f, gy = ("0, 0y and T = Ly iy

Theorem 5. Let (X,Y,I) be an L-context, {f, gy be an isotone L-Galois
connection between X and Y. Then

(i) ("1,Y1% is an isotone L-Galois connection.

(i) 1sq, defined by
Liggy(@,y) = f({1/=})(y) (31)

1s an L-relation between X and Y and we have

(iii) {f, gy = ("0, "0y and T = Lo, vy

Remark 3.
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(a)

(b)

(c)

2.7

The standard concept-forming operators represent a direct generaliza-
tion of the concept-forming operators in the ordinary setting and they
become the concept-forming operators in the ordinary setting when L =
2.

The two additional pairs of concept-forming operators are not separately
studied in the crisp setting, since there they are easily convertible to the
standard pair of concept-forming operators due to the double negation
law.

For an L-set A € L, the truth degrees in which objects (fully) in A
have attribute y are all in the upper cone of Al(y) in L (Fig. 5 (left)).
In the case A'(y) = 0, objects (fully) in A may have the attribute y
in any degree (Fig. 5 (middle)). In the case Al(y) = 1, objects (fully)
in A have the attribute y in full degree (Fig. 5 (right)). As positive
information (having an attribute) is absolute in this setting, we say
that the pair of concept-forming operators (1) considers attributes in
a positive way — as affirmations. On the contrary, the truth degrees in
which objects (fully) in A have attribute y are all in the lower cone of
A"(y) in L (Fig. 6 (left)). In the case A"(y) = 0, objects (fully) in A do
not have the attribute y; i.e. they have it in degree 0. (Fig. 6 (middle)).
In the case A"(y) = 1, objects (fully) in A may have the attribute y
in any degree (Fig. 6 (right)). As negative information (not having an
attribute) is absolute in this setting, we say that the pair of concept-
forming operators <U,“> considers attributes in a negative way — as
denials.

L-Concept Lattices

The pairs (A, B) € LX x LY, such that A" = B and B = A, are called
standard L-concepts. Analogously, the pairs (4, B) € L* x LY, such that

AN =

B and BY = A, are called attribute-oriented L-concepts. The compo-

nents A and B in standard or attribute-oriented L-concept (A, B) are called
extent and intent respectively.

The set of all formal concepts (along with set inclusion) forms a complete
lattice, called L-concept lattice. We denote the sets of all concepts (as well

18



0 Al(y) = 0

Figure 5: The truth degrees in which objects (fully) in A may have attribute
y (gray area); general case (left), extreme cases Al(y) = 0 and Al(y) = 1
(middle and right, respecively).

0 0 A(y) =0

Figure 6: The truth degrees in which objects (fully) in A may have attribute
y (gray area); general case (left), extreme cases A"(y) = 0 and A" (y) = 1
(middle and right, respecively).
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as the corresponding L-concept lattice) by BNV (X, Y, I) and B"V(X,Y, I), i.e.

BUXY.I) = {(A, By LY x LV | AT = B, B! = A},
BY(X,Y.I) = ((A,Bye L* x L' | A" = B, B' = A}

For an L-concept lattice B#(X,Y,I), where B is either B™ or B,
denote the corresponding sets of extents and intents by Ext#(X .Y, I) and
Int”(X,Y,I). That is,

Ext®(X,Y,I) = {Ae L* | (A, B) e B¥(X,Y, ) for some B},
Int*(X,Y,I) = {Be LY | (A, B) € B¥(X,Y, ) for some A}.

See examples of standard and attribute oriented L-concept lattices de-
picted in Fig. 7 and Fig. 8).

2.8 Parameterization with Truth-Stressing Hedges

The standard concept-forming operators parameterized with the truth-stressing
hedges were studied in [7, 12, 18]'. The parametrization goes as follows: let
(X,Y,I) be an L-context and let =, ¢ be truth-stressing hedges on L. The
standard concept-forming operators parameterized by = and e induced by [

are defined as
ANy) = N\(A@)* = I(z,y))

zeX

BY(z) = \(B(y)* — I(z,y))

yey

(32)

forall Ae LY, Be LY.

The two boundary instances of hedges, namely = being identity and glob-
alization, are particularly important: With both truth-stressing hedges being
identity, one obtains the standard fuzzy concept lattices of [9, 54], while for
one of the truth-stressing hedge being globalization and the other being iden-
tity, one obtains the one-sided, or crisply generated, fuzzy concept lattices
(19, 67, 47].

The meaning of A" and BY is essentially the same as that of their un-
hedged version. The difference is in that parts of the verbal description of

! Parameterization of attribute-oriented concept-forming operators is one of the contri-
bution of this thesis, see Section A.
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extent intent
{09/B,°9D) o, 8,7}
{99/B,°9C, 9D} {a,%¥5,}
("YA,B,9D}  {"Ya, 5,7}
("YA,B,%9C, D} {*Ya, 5,7}
("YA,B,C,D}  {"¥,%)
{A,B,°%C,D}  {"Ya,}
{A,B,C,D} {*77}

05
® 0 0 050505 1
© 0 0 0 0505 05

Figure 7: L-concept lattice BY(X, Y, I) (top left) of the L-context in Fig. 4,
description of its L-concepts and the L-order < (bottom) .

21



extent intent
©) © (e %)
@ {094,090, 9D} {97}
5] @ @ {9a,C, YD} {%8,°%/}
@ {094, 09B,9YC,°YD}  {*Ya, "Y1}
©) D @ {"YA,°YB,C,%YD}  {*Ya,%YB,°%)
® {A,%9B,9YC,°9D}  {*Ya,7}
@ © {a,%9B,C,D} {*%a,°%8, 7}
@ {A,B,C.D} {0,998, )
©
S ORONONORONONONG)
© 1 101 01 1 1 1 1
@o5 1 05 1 1 1 1 1
@ 0505 1 05 1 05 1 1
@ 050505 1 1 1 1 1
@ 05050505 1 05 1 1
® 0 05050505 1 1 1
©® 0 0505050505 1 1
@ 0 0 0 05050505 1

Figure 8: L-concept lattice B"V(X,Y, I) (top left) of the L-context in Fig. 4,
description of its L-concepts and the L-order < (bottom) .
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hedged version contains “very true” and “slightly true” respectively, com-
pared to that of AT and B*. For example, A'(y) is the truth degree of “all x
for which it is very true that it belongs to A have attribute y”.

Standard L-concepts with hedges *, e are pairs (A, B) € LX x LY which
satisfy A" = B and BY = A. The set of all such concepts is denoted
B, .(X,Y,I). The following theorem is an analogy to the main theorem
on concept lattices.

Theorem 6. 1. B, (X,Y, 1) equipped with <, defined by
<A17 B1> < <A2, B2> fo Al - Ag,

is a complete lattice where the infima and suprema are given by

N, By = ()4 B,

jed jed jedJ
\/ A, By = () AN™ () B
jedJ jedJ jeJ

2. Moreover, an arbitrary complete lattice K = (K, <) is isomorphic to
B, (X, Y, I) iff there are mappings p : fix(*) x X — K, v : fix(?) x
Y — K such that
(a) p(fix(*) x X) is \/-dense in K, v(fix(*) x Y) is \-dense in K.
(b) pla,z) <v(by) iffa®b < I(z,y).

The reason for this parameterization is to have a tool to influence size of
the number of concept lattice.

2.9 L-Attribute Implications

Attribute implications in the fuzzy setting with semantics corresponding to
standard concept-forming operators were thoroughly studied in [20, 21].

Each expression of the form A = B, in which A and B are L-sets of
attributes (i.e. A, B € LY) is called a fuzzy attribute implication (FAI) over
Y. Their intended meaning the same as in the ordinary case, that is:

if an object has all attributes in A it has also all attributes in B.
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Since in a fuzzy setting, object-attribute incidence is a matter of degree,
validity of our formulas is a matter of degree as well.

Let 2 denote an object and M € LY an L-set representing the attributes
of x, i.e. for each y € Y the degree to which object x has attribute y is M.
For the notion of validity, Belohlavek and Vychodil [20, 21] provide a general
definition which subsumes two particular cases, one for bivalent and one for
graded inclusion. For the bivalent inclusion, the fact that A= B is fully true
in M (in symbols |A=> B|y = 1) means:

if A< M then B < M. (33)
For the graded inclusion, the fact that A= B is fully true in M means:
S(A, M) < S(B,M), (34)

i.e. a degree of inclusion of A in M is less than or equal to the degree
of inclusion of B in A, cf. (5). Both the approaches can be obtained as
particular cases of the following definition.

|A= By = S(A, M)* — S(B, M). (35)

where the truth-stressing hedge * is used as a parameter.
For a collection M of fuzzy sets M of attributes in Y, we define the degree
to which A= B is valid in M as follows:

A= Blam = Ayrem [ A= Blar- (36)

For an L-context (X,Y, I), we define the degree to which A= B is valid in
(X,Y,I) by
|A= Blxy.r, = |A= Bz, zex), (37)

where I, denotes an L-set representing the row corresponding to object z,
ie. I(y) =I(x,y) foreachye Y.

For a fuzzy attribute implication A= B and a fuzzy set M of attributes
(of some object x) we define the degree |A= B|y € L to which A= B is
valid in M as follows:

|A= B|a = S(A, M)* — S(B, M). (38)

One easily verifies that if * is globalization and identity, respectively, (42)
meets the above cases corresponding to bivalent and graded inclusion, (40)
and (41), respectively.
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Given an L-context (X,Y,I) and a FAI A= B over Y, we have
HA:>BH<X,Y,I> = HA:>B||IntN*(X,Y,1) = S(B,A”). (39>

A theory (over Y) is any set T of FAIs (over Y'). The set Mod(T') of all
models of a given theory T is then defined as

Mod(T) = {M e L | for each A, Be L" :
T(A=B) < |A= B|m}.
Mod(T') is an L-closure system.

We say that an FAI A= B semantically follows from theory T', written
T A= B, it A= B is valid in every model of T

Bases We say that a theory is called

e complete in (X, Y, I if for any FAT A= B we have
HAZ}BH<X,Y,I> =1iff T A:B,

e non-redundant if for any A= B €T we have T — {A= B} r A= B;
o basis of (X, Y, I)if it is complete in (X, Y, I) and non-redundant.

We call a system P of fuzzy sets in Y a system of pseudo-intents (w.r.t.
(1Y) of L-context (X, Y, I) if for every L-set P € LY the following holds:
P e Piff P# P and for each Q € P with Q # P we have [|[Q=Q'T|p = 1.

Theorem 7. Let (X,Y,I) be a formal context and P be a system of pseudo-
intents. Then the theory

(P=P'" | PeP}
is a basis of (X,Y,I).

The basis defined in Theorem 7 is called the Guigues-Duquenne basis
133, 29]. The main features of the Guigues-Duquenne basis in the ordinary
setting are that it is unique (as exactly one system of pseudo-intents exist
in the context), computationally tractable, and it is optimal in terms of its
size; i.e. no other basis is smaller in terms of the number of FAIs it contains.
It keeps these properties in the graded setting when globalization is used as
the truth-stressing hedge.
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3 Contributions of the Thesis

A Isotone Fuzzy Galois Connections with Hedges

[43] Jan Konecny. Isotone fuzzy Galois connections with hedges. Informa-
tion Sciences, 181(10):1804-1817, 2011.

While the standard concept-forming operators parameterized with the
truth-stressing hedges have been extensively studied [7, 12, 18], the attribute-
oriented concept-forming operators received attention only in our works |2,
43].

We study attribute-oriented concept-forming operators and concept lat-
tices parameterized by truth-stressing and truth-depressing hedges.

For a formal L-context (X,Y,I) we define a pair (",Y) of mappings " :
LX - LY and V: LY — LX by

Am(y) \/a:eX(A<x>* ®](l’,y)),
BY(x) = Nyey (2. y) = B(y)°).

The meaning of A" and BY is essentially the same as that of their un-
hedged version. The difference is that parts of the verbal description of the
hedged version contains “very true” and “slightly true” respectively, com-
pared to that of A" and BY. For example, A"(y) is the truth degree of “there
exists = for which it is very true that it belongs to A and which has y”.

We study formal concepts and concept lattices B"V, (X, Y, I) formed by
the operators with hedges and provide an analogy of the main theorem for
them.

We show that hedges enable us to control the number of formal L-concepts
in the associated L-concept lattice. The whole point of generalizing the
attribute-oriented concept-forming operators (", ) by using a truth-stressing
and truth-depressing hedge is to gain control over the size of the resulting
L-concept lattice. In the case of the unhedged attribute-oriented concept-
forming operators, the number of formal L-concepts can be inconveniently
big.

In our previous work [2], we have studied a version of attribute-oriented
concept-forming operators parameterized with truth-stressing hedges, specif-
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ically the pair (A, V) given by

ANy) = V,ex(A@)* @ I(x,1)),
B (@) = NyeyU(2,9) — B(y)*)

where = and e are both truth-stressing hedges. However, we demonstrated
that the pair {n,u) provided better reduction of size than (A, V) as the reduc-
tion with the latter was too drastic and often led to a trivial two-element
concept lattice.

Additionally, we provide a reduction theorem which enables us to elevate
particular results valid in the ordinary setting into the graded setting with
hedges.
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B A Calculus for Containment of Fuzzy Attributes

[16] Radim Belohlavek and Jan Konecny. A calculus for containment of
fuzzy attributes. Soft Computing, pages 1-12, 2017.

Dependencies in data describing objects and their attributes represent a
key topic in understanding relational data. In this paper, we examine certain
dependencies of data described by fuzzy attributes.

Each expression of the form

A= DB,

in which A and B are fuzzy sets of attributes (i.e. A, B € LY) is called
a fuzzy attribute implication (FAI) over Y. While FAIs are identical with
the formulas in Section 2.9 as far as syntax is concerned, their semantics is
different. While those in Section 2.9 are linked to graded affirmations the
present ones are linked to graded denials. Their intended meaning is:

“if all attributes of an object are contained in A then they are
contained in B”

or, in terms of the graded denials,

“if an object has attributes at most to degrees given by A then it
has attributes at most to degrees given by B.”

Similarly, as in Section 2.9 two natural options for the formalization of the
semantics are possible—assuming the containment as bivalent or as graded.
We provide general semantics which covers both these options as particular
cases.

Let z denote an object and M € LY an L-set representing the attributes
of x, i.e. for each y € Y the degree to which object z has attribute y is M.
We define the truth degree, denoted | A= B||ys, of A= B in M, i.e. the truth
degree to which A= B is true for object . For the bivalent containment,
the fact that A= B is fully true in M (in symbols |[A= B|; = 1) means

if M < A then M < B. (40)
For the graded containment, the fact that A= B is fully true in M means

S(M, A) < S(M, B), (41)
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i.e. a degree of inclusion of M in A is less than or equal to the degree
of inclusion of M in B, cf. (5). Analogously, as in Section 2.9, both the
options can be obtained as particular cases of the following definition, in
which the truth-stressing hedge * acts as a parameter. We define the degree
|A= B|y € L to which A= B is valid in M as

|A= B|y = S(M, A)* — S(M, B). (42)

Among the main results established in the paper are: results regarding
validity of dependencies, their models, and entailment; connections to ex-
isting dependencies for fuzzy as well as Boolean attributes, connections to
interior- and closure-like structures, definition and properties of semantic en-
tailment including an efficient check of entailment, various model-theoretical
properties, a logical calculus of the dependencies inspired by the well-known
Armstrong rules with its ordinary-style as well as graded-style syntactico-
semantical completeness, basic results on bases, i.e. minimal fully informa-
tive sets of dependencies that are true in a given data.
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C Concept Lattices of Isotone vs. Antitone Galois
Connections in Graded Setting: Mutual Reducibil-
ity Revisited

[15] Radim Belohlavek and Jan Konecny. Concept lattices of isotone vs.
antitone Galois connections in graded setting: Mutual reducibility re-
visited. Information Sciences, 199:133-137, 2012.

It is well known that in the basic setting the standard and attribute-
oriented concept lattices of a formal context and its complement are isomor-
phic, via a natural isomorphism which maps the extents to themselves and
intents to their complements. It is also known that in the graded setting, this
and similar kinds of reductions fail to hold. We show that when the usual
notion of a complement, based on a residuum w.r.t. 0, is replaced by a new
one, based on residua w.r.t. arbitrary truth degrees, the above-mentioned
reduction remains valid.

On the one hand, it is well known that with L satisfying the double nega-
tion law (——a = a) the attribute-oriented case is easily reducible to the stan-
dard case, and wvice versa, via a set complement. Specifically, the attribute-
oriented concept lattice B"Y(X,Y,I) is isomorphic to the standard concept
lattice BN (X, Y, —=I). The isomorphism i: B (X,Y,I) — B (X,Y,—I), as
well as its inverse i=': BNV (XY, =I) — B"V(X,Y,I), is given by

i,i ' (A, B)— (A, —B). (43)
(Clearly, we also have
Ext"V(X,Y,I) = Ext"(X,Y, —1). (44)

On the other hand, this is no longer the case in the graded setting as the
double negation law does not hold generally. We propose a new notion of
complement of an L-relation: L-complement w.r.t. K < L of an L-relation
I e LY is L-relation — g1 € LX*(XK) given by

—xl (2, {y, @) = I(z,y) = a (45)

forallze X,yeY,ae K.
Utilizing this notion of complement, we can state one-way reducibility of
the standard case to the attribute-oriented case:
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Theorem 8. Let (X,Y,I) be an L-context. Then B (X,Y,I) is isomor-
phic to BY(X,Y x (L\{0}), —p\oy]) with i : (A, A") — (A, A" being the
isomorphism from B"Y(X,Y,I) to BY(X,Y x L, —=p\o1). Particularly,

Bxt"(X,Y,1) = Ext" (X,Y x L ~p0)])

The result reveals a new, deeper root of the reduction: it is not the avail-
ability of the law of double negation, but rather the fact that negations are
implicitly present in the construction of attribute-oriented concept lattices.

A converse statement to Theorem 8 does not hold. That is, there is
no notion of a complement ~ such that for any fuzzy relation I, the set
Ext™(X,Y,I) is equal to Ext"V(X, Z, ~I) for any suitable Z. This is because
for some fuzzy relations I, ExtN(X .Y, I) is not a system of extents of any
fuzzy relation J w.r.t. the operators (",Y). This was demonstrated in [14].
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D L-concept Analysis with Positive and Negative At-
tributes

[3] Eduard Bartl and Jan Konecny. L-concept analysis with positive and
negative attributes. Information Sciences, 360:96-111, 2016.

We describe an extension of FCA in the graded setting, allowing a user to
choose which incidences are viewed as affirmations and which are viewed as
denials. The two sets are then handled using a combination of the standard
and attribute-oriented concept-forming operators. Specifically, we extend the
notion of formal L-context to contain two L-relations, "I and ~I, between
objects and attributes. The membership degrees in *I present graded affir-
mations while the membership degrees in I present graded denials. It is
natural to assume that *I < ~I. The intervals [*I(z,y), I(z,y)] are then
seen as sets of truth degrees in which object x can have attribute y. As in-
tents, we use pairs (B, "B) € LY x LY, where the L-sets B, ~B respectively
represent affirmations and and denials about attributes.

The concept-forming operators A: LX — LY x LY and v: LY x LY — LX
are defined as

A% = (A A"y and (*B, B)" = "B' ~ "B’ (46)

for each A € LX ,*B,"B e LY; where the pair (',') is induced by
(X,Y,*T) and the pair (", ") is induced by (X,Y, I).

Both the two main outputs of FCA are presented. In the first part, an
analogy of the main theorem of concept lattices and a relationship between
the new concept lattice and the previously studied concept lattices is shown.

In the second part, we describe the second main output of FCA. We
present a general logic of if-then rules A = B (A, B € LY x LY), called
L-containment implications, for graded attributes which can be read: if all
attributes of an object are contained in A then they are contained in B.
Specifically, for M < LY x LY, the degree |A = B[ in which A = B is
valid in M is defined as [A=B|u = Apen [A=B|m-
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E Rough Fuzzy Concept Analysis

[4] Eduard Bartl and Jan Konecny. Rough fuzzy concept analysis. Fun-
damenta Informaticae, 156(2):141-168, 2017.

We provide a new approach to the fusion of FCA in the graded setting and
Rough Set Theory (RST). As a starting point we consider affirmations to rep-
resent the lower approximation, while the denails the upper approximation of
a given input. Using the combination of concept-forming operators (46), we
transfer the roughness of the input to the roughness of corresponding formal
fuzzy concepts in the sense that a formal fuzzy concept is considered as a
collection of objects accompanied with two fuzzy sets of attributes—those
which are shared by all the objects and those which at least one object has.
In the paper we study the properties of such formal concepts and show their
relationship with concepts formed by well-known isotone and antitone oper-
ators.

We also demonstrate use RST inspired reduction of size of concept lattices
based on equivalences induced by attributes and show that this reduction is
natural, i.e. it preserves extents.
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F Complete Relations on Fuzzy Complete Lattices

[45] Jan Konecny and Michal Krupka. Complete relations on fuzzy com-
plete lattices. Fuzzy Sets and Systems, 320:64-80, 2017.

We focus on complete fuzzy tolerances. A (crisp) tolerance on a set is
a reflexive and symmetric binary relation. A block of a tolerance is a set
whose elements are pairwise related. A maximal block is a block which is
maximal w.r.t. set inclusion. The set of all maximal blocks of a tolerance is
called the factor set. One of basic results on tolerances on complete lattices
in the basic setting is that complete lattices can be factorized by complete
tolerances [28, 65]. That is, an ordering on the set of all maximal blocks of a
complete tolerance can be introduced in a natural way, such that the factor
set, together with this ordering, is again a complete lattice.

We show that this result hold true for complete L-tolerances on com-
pletely lattice L-ordered sets. More precisely, we use the usual definition of
fuzzy tolerance and corresponding factor set and introduce an L-order on the
factor set of a completely lattice L-ordered set by a complete L-tolerance,
such that the new L-order is again a complete lattice L-order. To prove this
main result, we more deeply investigate properties of complete L-tolerances.
We use similar techniques to those used in classical ordered sets. However, we
also introduce a result that is new even in the classical case: we show that
complete fuzzy tolerances are in one-to-one correspondence with so-called
extensive isotone fuzzy Galois connections.
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G Block Relations in Formal Fuzzy Concept Analysis

[44] Jan Konecny and Michal Krupka. Block relations in formal fuzzy
concept analysis.  International Journal of Approximate Reasoning,
73:27-55, 2016.

One of the main problems in FCA, especially in the graded setting, is to
reduce a concept lattice of a formal context to an appropriate size to make
it graspable and understandable by a human user. A natural way to do it is
to substitute the formal context by its block relation which is equivalent to
factorization of the concept lattice by a complete tolerance. We generalize
the known results on the correspondence of block relations of formal contexts
and complete tolerances on concept lattices to the graded setting.

We provide a definition of block L-relation—a convenient generalization of
the notion of block-relation from [66]. We show, that the block L-relations
are in one-to-one correspondence to particular automorphisms on concept
lattices. We describe the structure of systems of all block L-relations. All
the results are considered for all three kinds of concept-forming operators.
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H On Homogeneous L-bonds and Heterogeneous L-
bonds

[46] Jan Konecny and Manuel Ojeda-Aciego. On homogeneous L-bonds
and heterogeneous L-bonds. International Journal of General Systems,
45(2):160-186, 2016.

In this paper, we deal with suitable generalizations of the notion of bond
between contexts. We study different generalizations of the notion of bond
within the L-fuzzy setting. Specifically, given a formal context, there are
three prototypical pairs of concept-forming operators, and this immediately
leads to three possible versions of the notion of bond (so-called homoge-
neous bond w.r.t. a certain pair of concept-forming operators). The first
results show a close correspondence between a homogeneous bond between
two contexts and certain special types of mappings between the sets of ex-
tents (or intents) of the corresponding concept lattices. Later, we introduce
the so-called heterogeneous bonds (considering simultaneously two types of
concept-forming operators) and generalize the previous relationship to map-
pings between the sets of extents (or intents) of the corresponding concept
lattices.

For all the defined bonds we provide their characterization, description of
a structure they form and their relationship to direct products of relations.
Finally, we explain the relationship of the bonds to the morphisms of L-
closure systems and L-interior systems.
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