
Silhouette Extraction for Shadow Volumes Using Potentially
Visible Sets

Jozef Kobrtek
Brno University of

Technology
Czech Republic

ikobrtek@fit.vut.cz

Tomáš Milet
Brno University of

Technology
Czech Republic
imilet@fit.vut.cz

Adam Herout
Brno University of

Technology
Czech Republic
herout@fit.vut.cz

Figure 1: left: Wireframe representation of a given model. middle: We voxelize the space around the model.
One voxel on the lowest octree level is selected, based on the light position, and all potentially-silhouette (need to
be tested) and silhouette edges (guaranteed to be silhouette) can be collected by ascending the octree hierarchy.
right: Red coloured edges are those that are a part of the silhouette after testing the set of potentially silhouette
edges (all red and black ones). Only a small subset of model edges need to be tested, which considerably reduces
the computational complexity.

ABSTRACT
In this paper, we present a novel approach for accelerated silhouette computation based on potentially visible sets
stored in the octree acceleration structure. The scene space, where the light source can appear, is subdivided into
voxels. The octree voxels contain two precomputed sets of edges that potentially or always belong to the silhouette.
We also propose a novel method of octree compression for reduction of the memory footprint of the resulting accel-
eration structure. Using our novel technique we were able to considerably decrease the computational complexity
of finding the silhouette and reduce its sensitivity to the number of edges.

Keywords
Silhouette Extraction, Octree, Compression, Shadow Volumes

1 INTRODUCTION
Solving surface visibility from a light source (or an-
other point in space in general) is a very fundamental
problem of computer graphics. Determining, whether a
point on a surface is lit from a point light source has
been subject of research for decades, as documented
by Woo and Poulin [Woo12]. Over the course of his-
tory, two major techniques were developed to address

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

this problem in the field of rasterization – Shadow
Maps and Shadow Volumes. Although the majority
of the derived methods of the above mentioned tech-
niques are based on Shadow Maps, Shadow Volumes
still provide an important option for scenarios requir-
ing sample-precise shadows, which can be problematic
when Shadow Maps are involved due to their discrete
nature and limited resolution.

Crucial part of the algorithm of Shadow Volumes is sil-
houette extraction, i.e. finding the subset of edges that
have both visible and non visible triangles connected
to them from the light’s perspective. Such edges are
subsequently extruded as the shadow volume side and
rendered into the stencil buffer on the GPU. Usually,
all the edges are tested during the rendering of a single
frame to determine whether they get extruded or not.



In this paper we focused on improving the silhouette ex-
traction performance of the Shadow Volumes by reduc-
ing the number of edges that need to be tested during
the Shadow Volumes rendering of an arbitrary triangle
soup. Edge indices are stored in an octree-like structure
created by voxelizing selected scene space. This oc-
tree is later traversed by the GPU to acquire two sets of
edges – one set that requires further testing (potentially
silhouette edges, PE), the second set is known to be sil-
houette (silhouette edges, SE) and edges inside the set
are extruded immediately.

The remainder of the paper is organized as follows.
Section 2 outlines the previous work, focusing on
Shadow Volumes and silhouette extraction. The
following section 3 introduces the reader to the details
of our algorithm, being divided into octree construc-
tion, compression and traversal. Section 4 discusses
implementation details and problems. Performance and
practical analysis as well as limitations are described
in Section 5. Finally, we conclude our findings and
results in Section 6.

2 RELATED WORK
Shadow Volumes were first introduced by
Crow [Crow77]. The core of the algorithm is
casting rays from camera to the scene and increment-
ing/decrementing their value on intersection with
extruded shadow volume sides. When geometry is hit
by the ray, the fragment is considered lit or shadowed
based on the ray value being zero or non-zero. The first
GPU implementation came with the introduction of
stencil buffer by Heidmann [Hei91]. The drawback of
this method is that when the camera is in the shadow,
the stencil test must be inverted. The camera problem
of Heidmann’s method was solved simultaneously
by Everitt and Kilgard [Eve02] and by Bilodeau and
Songy [Bil99] in the so-called “z-fail” method, which
reverses the stencil test, but requires the shadow
volumes to be capped. In order to draw an arbitrary
triangle soup, Kim et al. [Kim08] introduced the
concept of edge multiplicity, so a single quad cast from
an edge is rendered multiple times.

Silhouette extraction methods can be divided into 3 cat-
egories – image space, object space, and hybrid (com-
puting in object space, displaying in image space), as
categorized by Isenberg et al. [Ise03]. The majority of
these methods were used to provide object contours for
non-photorealistic rendering, but some of the object-
based method are interesting from the perspective of
Shadow Volumes. Johnson and Cohen [Jon01] use a
hierarchy of normal cones to determine edge visibility.
Olson and Zhang [Ols06] propose octree as an acceler-
ation structure to store Hough transform of a 3D mesh.
Gooch [Goo99] and Benichou and Elber [Ben99] de-
signed a preprocessing method based on projecting face

A

B

C

D
light plane

triangle plane

Figure 2: Silhouette edges. Edge AB is not a silhouette
edge because triangles ABC and ABD do no lie on the
same side of the light plane. Two triangles partition the
world space into four subspaces.

normals onto a Gaussian sphere. However, all of these
methods are limited to 2-manifold objects.

With the introduction of programmable graphics
pipeline, research focused more on the ad-hoc algo-
rithms, mostly due to the fact that the new pipeline
provided mechanisms to determine the silhouette
during the rendering process with zero or minimal
preprocessing. Silhouettes can be computed in almost
any programmable shader stage, specifically vertex
[Bren02, Mil14], geometry [Sti07], requiring practi-
cally no preprocessing, tessellation [Mil15] or compute
(OpenCL) [Peč13] shaders.

Gerhards et al. [Ger15] use BSP trees constructed from
per-triangle frusta. Fragments are then tested against
this structure, whether they are lit or shadowed. This
method, however, needs to rebuild the data structure
each time the light source or geometry is changed by
– even a rigid – transformation.

The proposed method does not require rebuilding (un-
less the light source moves outside the targeted space)
and it is also invariant to affine transformation – the
correct voxel in the octree is selected by applying an
inverse transformation of the object to the light source
and then traversing from the corresponding voxel.

3 ALGORITHM
Our algorithm is based on the concept of the potentially
visible set (PVS) introduced by Airey et al. [Air90]. It
precomputes the results of brute force silhouette extrac-
tion for a discrete set of world-space voxels. The brute
force extraction process therefore does not need to be
executed on all scene edges but only on a small subset
that cannot be precomputed, see Figure 1. This section
will describe the construction of a compression struc-
ture for storing the PVS in an effective manner. It will
also describe the modified extraction process.

The algorithm can be broken down into two major
stages: construction and traversal, but first let us sum-
marize the brute force silhouette extraction process.



Figure 3: The algorithm supports custom scales of the
scene bounding box. If a larger scale is selected, the
light can be moved farther from the model. The image
shows three different scales with the same voxelization
level (in this case 2 levels of octree, 4×4×4 voxels).

3.1 Silhouette Extraction
A model is composed of vertices that are connected by
edges/triangles. An edge is considered as belonging to
the silhouette if all triangles adjacent to this edge lie
on the same side of the light plane, see Figure 2. In
general, from 1 to N triangles can be connected to a
single edge. Kim et al. [Kim08] proposed a technique
that computes the difference in the number of triangles
on the left and the right side of the light plane called
edge multiplicity m ∈ [−N,N].

Without loss of generality, edges with more then 2 con-
nected triangles can be transformed into several simpler
edges by splitting and duplicating. If an edge is con-
nected to only one triangle, it is considered a silhouette
edge in every case. Our method works with edges hav-
ing maximum 2 adjacent triangles connected to them.

3.2 Octree Construction
We base the voxelization space on scaling the scene’s
axis-aligned bounding box (AABB) by a user-specified
scaling factor, as seen in Figure 3. The scaling factor
depends on the user’s needs and on the type of the scene
(closed-space scenes will do even with factor 1, open
scenes or simple models require larger factors, around
5–10).

This scaled bounding volume circumscribes all the pos-
sible light positions. The user can then choose the max-
imal level of the octree hierarchy, see Figure 4. AABB
scaling and maximum octree depth define the octree
granularity and voxel size on the deepest level.

We found that depth level of 3–5 is suitable in most sce-
narios. Larger scales tend to consume too much mem-
ory (as described in Chapter 5.1, each octree level in-
creases the amount of memory by a factor of 4). The
next step is to find two sets (SE and PE) for every
voxel in the lowest level of the octree. The algorithm
tests each edge against all voxels on the lowest level

Figure 4: The algorithm supports a custom level of vox-
elization. The image shows three levels (1,2,3) of depth
of the octree for the same scale of the scene bounding
box.

no silhouette silhouettepotential silhouette edge triangle

Figure 5: Overview of the proposed approach in 2D.
The image shows voxels for one edge. The left side of
the images shows the first step of the voxel building al-
gorithm. Voxels are classified into 3 categories – no sil-
houette, silhouette and potentially silhouette. The next
step is to propagate this classification into higher levels
(middle image). The right image shows the improve-
ment of compression stage of building algorithm. The
octree is transformed into a tree with nodes containing
many different subsets of edges defined by bitmasks.

Node

Silhouettes

Potential silhouettes

Children

Figure 6: Node data in 2D space for the 8-bit compres-
sion. One node contains sets of silhouette and poten-
tially silhouette edges, each addressed by its bitmask
value. If a set shape does not intersect the triangle
planes of an edge, the edge is stored into the set. The
largest set shape is chosen if multiple set shapes do
not intersect the triangle planes. A node also contains
pointers to child nodes.

of the octree, as seen in Figure 5. If any plane con-
structed from the triangles adjacent to edge E intersects
the voxel, E is considered a PE. If none of the triangle
planes intersects the voxel and multiplicity of E is non-
zero, it is stored among SE (set of silhouette edges).
The multiplicity can be computed against any point in-
side the voxel because the whole voxel lies within one
of the four subspaces, as demonstrated in Figure 2.

The next step is to propagate PE and SE into higher
levels of the octree. An edge can be propagated to



A and B only A only B

A
B

Figure 7: The first two images show two edges – A and
B. Each edge partitions all voxels into voxel shapes for
silhouette case and of potential silhouette case. If some
voxel shapes are the same for both edges, the edge sub-
sets of those voxel shapes contain both edges (middle
image). Otherwise, voxel shapes contain only one edge.

the parent node if it is contained in all of its children.
Both types of edges are propagated. The propagation
process already significantly reduces the memory foot-
print. We refer to this propagation scheme as “basic
compression”.

The last optional step in octree construction is advanced
compression. It extends the propagation step by allow-
ing edges to be moved to their parent node even if not
all of them are contained in all of its children. These
sets of edges are marked with bitmasks corresponding
to voxel shapes, see Figure 6. Every subvoxel in these
voxel shapes contains the same set of edges, see Fig-
ure 7. We call this extended propagation “8-bit com-
pression” as we propagate the edges from children to
parent and the bitmask is 8-bit integer. Edges can also
be propagated into grandparents (from 64 sibling vox-
els) which can further improve the compression ratio.
This compression scheme is referred to as “64-bit com-
pression”. Octree node data are shown in Figure 6.

3.3 Traversal
The traversal part of the algorithm has to copy SE and
PE subsets from the octree into two continuous buffers.
The light position determines which subsets of edges
have to be copied to the linear buffers, see Figure 8.

Figure 8: 2D illustration of all edge subsets that contain
silhouette edges for a given light position. The hierar-
chy level is 3. The union of all subsets forms the set of
all precomputed silhouette edges. Similar subsets are
selected for all potentially silhouette edges. Note that
some subsets could be empty. A single edge is con-
tained only in one of the subsets (the largest possible).

The PE linear buffer is in the final part of the brute force
silhouette extraction process. However, the PE set is

very small compared to the set of all edges which leads
to performance improvement.

4 IMPLEMENTATION
We implemented the whole process both on CPU and
an GPU (OpenGL). The construction process relies on
two compute shaders: the first one is used to load the
data to the octree, the second one for propagation to
upper levels.

Hypothetically, every voxel of the octree could contain
more than 50% of all the edge indices in both PE and
SE. Provided we use Crytek’s Sponza model as the ref-
erence which breaks down to 431246 edges with max-
imum multiplicity of 2, octree maximum depth of 5
(85 = 32768 leaf voxels) and indices stored as 32-bit in-
tegers, we may end up, in theory, with more than 50GB
of memory. For larger models, adding edges to the low-
est level of the octree runs in batches. The batch size is
limited by the GPU memory size.

Usually, not all edges get stored neither in PE or SE
buffer of a voxel, thus their size can be limited to a per-
centage of total edge count (we found that a factor of
0.8 works for most cases and can be seen for example
in Table 1). This increases the batch size and speeds up
the building process.

Data are then copied back to the system memory. Be-
fore the edge propagation, which is also implemented in
a compute shader, the algorithm needs to sort the edges,
which is carried out on the CPU in parallel.

We first tried the compression as a multi-core post-
processing of the octree, but such implementation,
although parallelized, was 20 − 170× slower than
8-bit compression, based on particular scene. For the
8-bit scenario, we moved the advanced compression
to the compute shader which tests the edges against
octree voxels, because it is in this very step that the
bitmask is already known. However, porting the 64-bit
compression scheme to GPU seemed problematic as
the potential number of sub-voxels is 264, which would
lead to excessive memory footprint, thus we perform
the 64-bit compression as CPU post-processing.
Due to implementation reasons, compressed nodes
using bitmasks other than all-bits-set are located
only in max_depth-1 for 8-bit compression or
max_depth-2 for 64-bit.

During traversal, the algorithm first determines the
(X ,Y,Z) voxel coordinates within the octree from the
light position (flooring the floating point coordinates),
which are then converted to linear voxel index. If a
light source lies on the boundary between two or more
voxels, only one voxel is selected according to eq. (1)
where l is the light position and A and B are minimal
and maximal corners of the voxel:

lx ∈ [Ax,Bx)∧ ly ∈ [Ay,By)∧ lz ∈ [Az,Bz). (1)



The traversal process depends on the compression level.
For non-compressed and 8-bit compression scenarios,
we first traverse the octree and compute an exclusive
scan of sizes of all necessary sub-buffers, which serves
as the input to the second stage that performs the actual
data copy from selected subsets to two linear buffers,
one for PE, the other for SE. Traversal for 64-bit com-
pression splits the pre-processing and prefix scan into
two steps as the amount of sub-voxels increases to sev-
eral thousands. Splitting the stage also helps reducing
the count of the global memory reads.

5 RESULTS
Evaluation took place on the following test setup: Intel
Core i5 6500, 16GB of DDR4, nVidia GeForce RTX
2080Ti (11GB of GDDR6, driver version 419.17), Win-
dows 10 Pro x64. The test application was built using
Visual Studio 2015 x64.

5.1 Build and Compression Tests
We conducted comprehensive build tests on the
Šibenik, Conference, and Sponza scenes. The aim was
to evaluate the building time and the size of the octree
structure, based on the octree deepest level, size of the
voxelization area, and compression type.

Tables 1, 2, and 3 show the performance evaluation of
the building process under various octree settings, with
respect to the selected light source position inside the
scene’s bounding box. We compared 3 types of the
build – with basic compression only (first two coloured
columns), 8-bit GPU compression (c8) and 64-bit CPU
compression (c64).

One of the first things the reader may notice is that 8-bit
compression on GPU performs actually faster than the
non-compressed version of the algorithm. This is due
to fact that GPU compression occurs in the very first
stage of the algorithm thus the following stages have
to process a smaller amount of data. However, the 64-
bit compression is performed as a postprocessing step
and it happens on the CPU, thus being very slow, even
though the algorithm was written using OpenMP. We
tested the 64-bit compression also on the AMD Thread-
Ripper system with 24 cores, which improved the 64-bit
compression build time by around 60%, but other two
methods performed significantly slower, probably due
to different architectures of the two processors.

It can be seen that the amount of memory required to
store the octree increases with a factor of 4 with each
octree level, but also the average amount of extracted
SE increases by around 10% and the average number
of PE that needs to be tested is almost halved with in-
creasing octree depth, for each of the tested scenes.

This test, however, shows the biggest weakness of the
algorithm, the memory consumption which, for a par-
ticular model, is strongly dependant on the algorithm’s

settings. For practical use, the 8-bit compression
scheme seems to be the the best choice, in terms of
both the building speed and the size of the resulting
octree structure.

The memory consuption can be approximated using
eq. (2), where S is an approximation of the resulting
size of the octree structure in MB, e is the number of
edges in millions, d is octree depth and c is compres-
sion ratio:

S(e,d,c) = e ·8d ·Vd · c (2)

Based on the results in Tables 1, 2, and 3, we estimated
the average compression ratios to 0.32 for 8-bit com-
pression scheme and 0.11 for 64-bit scheme by divid-
ing the compressed octree size with non-compressed
octree. Values Vd define the approximate size of a sin-
gle voxel per 1 million edges. These values were calcu-
lated as Vd(d,e) = Sm/8d/e, where Sm is the measured
size of non-compressed octree. Values obtained by this
equation are V3 = 0.93, V4 = 0.53 and V5 = 0.30.

The average relative deviation of eq. (2) is 6%.

5.2 Silhouette Extraction Tests
We compared our new method (with 8-bit compression)
to a brute-force compute shader implementation of sil-
houette extraction, based on an OpenCL implemen-
tation and multiplicity theorem described in [Peč13].
Both methods output edge indices as their result. For
this test, we compiled 26 models in total, mixing pop-
ular models (Sponza, Šibenik, Buddha, Conference,
Gallery, Bunny1) with two types of synthetic scenes
that we created – the first type were scenes consisting
of uniform grid of increasing amount of spheres, having
33750 to 1574640 edges. The second type consisted of
randomly positioned spheres differing in numbers, hav-
ing 124200 to 933120 edges. We evaluated our algo-
rithm with two levels of octree depth (3 and 5) posing
as best and worst case, and scene scales 1, 2, 4, 8, and
16.

In a single test run, we moved the light source through
the octree volume in a 10× 10× 10 grid, both for our
method and the brute-force approach. From each light
position we evaluated the traversal time as average of
5 repetitions. In total, we made 75000 measurements
in each scene: 50 000 for our approach and 25 000 for
bruteforce method. As mentioned above, we tested 2
octree levels; that is why our method has twice as many
measurements per scene.

The result can be seen in Figure 9. Our accelerated ap-
proach has reduced the sensitivity of the algorithm to
the number of edges, compared to the bruteforce ap-
proach. Our method performs always better on models

1 freely available at https://casual-effects.com/
data/

https://casual-effects.com/data/
https://casual-effects.com/data/


Octree
Depth Scale Size

(MB)
Build

(s)

Size
c8

(MB)

Build
c8
(s)

Size
c64

(MB)

Build
c64
(s)

Pot
Avg

Sil
Avg

Pot
%

Avg

Sil
%

Avg
1 52 0.62 16 0.58 5 11.39 19668 16105 16.76 72.20
2 57 0.60 18 0.57 5 14.69 21586 15649 18.40 69.91
4 58 0.61 18 0.57 5 17.12 22088 15514 18.82 69.25
8 58 0.61 18 0.57 5 17.98 22179 15494 18.90 69.26

3

16 58 0.61 18 0.57 6 18.35 22147 15498 18.87 69.19
1 235 1.77 77 1.54 27 21.37 10291 18801 8.77 84.28
2 256 1.75 84 1.55 29 29.13 11359 18531 9.68 82.85
4 262 1.75 86 1.54 30 32.38 11610 18469 9.89 82.51
8 263 1.75 86 1.53 30 35.10 11688 18444 9.96 82.37

4

16 263 1.74 86 1.53 30 35.32 11690 18448 9.96 82.42
1 1022 7.67 341 6.82 127 62.17 5304 20405 4.52 91.52
2 1122 7.71 376 6.78 139 76.00 5876 20266 5.01 90.62
4 1147 7.78 385 6.78 141 81.60 6008 20246 5.12 90.45
8 1155 7.69 388 6.79 143 83.72 6038 20236 5.15 90.41

5

16 1155 7.75 388 6.77 142 86.69 6051 20237 5.16 90.39
Table 1: Build test of Sibenik scene, consisting of 117 342 edges. We evaluated the build times and resulting
octree size under various voxel sizes and scales. The 3rd and 4th columns contain results for octree build with
basic compression scheme. Columns tagged “c8” and “c64” show build times and sizes when using 8-bit or 64-bit
advanced compression schemes. The numbers in “Pot Avg” and “Sil Avg” columns show the average number of
PE and SE acquired during octree traversal, tested from each lowest level voxel. The second column from the last
tells the average amount of edges from the full edge count that needs to be tested, the last column describes the
average amount of SE acquired from octree as the percentage of all silhouette edges observed from light position
in the middle of each lowest level voxel.

Octree
Depth Scale Size

(MB)
Build

(s)

Size
c8

(MB)

Build
c8
(s)

Size
c64

(MB)

Build
c64
(s)

Pot
Avg

Sil
Avg

Pot
%

Avg

Sil
%

Avg
1 80 0.84 25 0.79 8 34.95 34338 19426 17.61 65.87
2 93 0.84 29 0.78 9 50.55 39952 18481 20.49 62.37
4 96 0.84 30 0.79 10 59.29 41323 18288 21.19 61.56
8 97 0.84 31 0.78 10 62.89 41656 18265 21.36 61.46

3

16 97 0.84 31 0.78 11 64.99 41794 18243 21.43 61.32
1 379 2.55 121 2.54 42 69.81 18675 23055 9.58 78.19
2 431 2.64 139 2.53 48 106.65 21857 22317 11.21 75.35
4 443 2.62 144 2.52 50 124.19 22595 22187 11.59 74.71
8 446 2.64 145 2.53 51 134.23 22783 22154 11.68 74.54

4

16 447 2.65 146 2.54 52 136.04 22832 22149 11.71 74.51
1 1786 10.66 581 8.80 209 150.24 9894 25738 5.07 87.29
2 2044 11.49 668 8.92 238 222.80 11698 25234 6.00 85.18
4 2102 11.12 687 8.61 245 265.10 12123 25151 6.22 84.69
8 2120 11.23 694 8.81 248 284.60 12219 25141 6.27 84.58

5

16 2121 11.28 694 8.96 249 291.80 12241 25135 6.28 84.56
Table 2: Build test of Conference scene, consisting of 195 019 edges. Check table 1 for column description.



Octree
Depth Scale Size

(MB)
Build

(s)

Size
c8

(MB)

Build
c8
(s)

Size
c64

(MB)

Build
c64
(s)

Pot
Avg

Sil
Avg

Pot
%

Avg

Sil
%

Avg
1 192 1.56 60 1.40 19 270.59 83074 31640 19.26 58.98
2 202 1.57 63 1.38 20 332.78 86744 30845 20.11 57.30
4 205 1.59 65 1.37 20 361.90 87829 30661 20.37 57.08
8 206 1.62 65 1.37 21 373.43 88157 30644 20.44 57.08

3

16 206 1.60 66 1.38 21 379.24 88382 30618 20.49 57.02
1 893 5.31 289 5.10 96 586.34 44817 39567 10.39 73.72
2 930 5.36 302 4.62 101 705.98 47044 39029 10.91 72.58
4 943 5.40 306 4.62 102 783.30 47414 38933 10.99 72.34
8 946 5.42 306 4.64 103 819.03 47559 38906 11.03 72.34

4

16 948 5.41 307 4.61 103 837.29 47636 38899 11.05 72.34
1 4111 21.17 1359 15.45 498 1210.22 23895 45123 5.54 84.18
2 4305 21.37 1425 15.90 504 1517.91 25094 44867 5.82 83.47
4 4345 21.20 1438 16.18 522 1635.41 25321 44782 5.87 83.34
8 4351 21.25 1441 16.36 511 1735.49 25374 44819 5.88 83.30

5

16 4357 21.13 1443 16.26 519 1789.33 25376 44782 5.88 83.31
Table 3: Build test of Sponza scene, consisting of 431 246 edges. Check Table 1 for column description.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
·106

8 ·10−2

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

Number of edges

m
s

brute force compute shader
our

Figure 9: Average extraction times for compilation of
26 scenes (sorted by the number of edges). Red line
represents bruteforce compute shader method, blue line
represents our new proposed method. The area around
the lines represents (+-) mean absolute deviation.

Compression Average
(ms)

Max Abs Deviation
(ms)

basic 0.098 0.011
8-bit 0.102 0.012

64-bit 0.134 0.013
Table 4: Comparison between compression levels on
Sponza scene. Average octree traversal time calculated
from 1000 different light positions in the scene and
maximum absolute deviation from the average.

having more than 200 000 edges and it is also more sta-
ble. Its average absolute variance is almost half, com-
pared to the bruteforce method.

We also evaluated the performance difference when us-
ing different compression ratios. We used the Sponza
model and moved the light source around in the same
way as described in the previous test. The results can
be seen in Table 4. The complexity of the 64-bit com-

Figure 10: One of the possible extensions to the algo-
rithm. Instead of using one hierarchical structure, the
algorithm would use two – one for the close vicinity
of the model and one for all the other space around.
The green part shows the hierarchical structure as pre-
sented, the orange parts is the second hierarchical struc-
ture. The second structure uses angles instead of voxels.

pression traversal outweighs its benefits in the form of
lower size, thus the 8-bit compression scheme seems to
be the best choice.
We can estimate the extraction time for brute force ap-
proach as tb = E ·K where E is the number of edges
and K is extraction complexity. Our method yields
tt = P ·E ·K +T where T is traversal cost and P is the
ratio of potential edges, which can be seen in 2nd last
column of Tables 1 - 3. Based on the build test results,
we estimated the P to be 0.2, 0.1 and 0.05 for octree
levels 3, 4 and 5. According to our measurements, T
was 0.075 ms in average and was not dependant on the
number of edges.

6 CONCLUSION
We presented a novel approach to accelerated silhouette
extraction by storing pre-computed PVS in an octree, as
well as novel octree compression schemes.



The majority of the building process was implemented
on GPU using OpenGL and compute shaders. The
building process is reasonably fast when using 8-bit
compression scheme, as it processes less data then the
basic compression scheme. The resulting octree can be
stored in a file to avoid repetitive builds in subsequent
runs. Experimentally, we were able to reduce the oc-
tree size using 64-bit compression to around 12% of
basic compression scheme, but the compression itself
was used as a post-processing step on CPU, thus not
performing as fast as the GPU implementation. In terms
of performance, 64-bit compression also lagged behind
due to having a more complicated traversal. The 8-bit
compression scheme provides the best results in terms
of octree size and traversal speed.
Compared to the brute-force approach, our method is
less sensitive to the number of edges. It was also more
stable, in terms of maximal absolute deviation. The
biggest drawback of the method is its memory con-
sumption and also spatial limitation due to the nature
of voxelization. The method also would not work well
on scenes with dynamic geometry (f.e. morphing).
This method could be further improved by storing tri-
angle indices instead of edges, which, in theory, could
reduce memory footprint of the method even more. The
whole structure does not need to reside on the GPU
but can be streamed as needed. Future research could
also evaluate usage of homogeneous coordinates, which
may create hierarchy with unlimited spatial span, see
Figure 10.

7 ACKNOWLEDGMENTS
The work was supported by the Ministry of Education,
Youth and Sports, Czech Republic, V3C (Visual Com-
puting Competence Centre) TE01020415 research pro-
gram and Technology Agency of the Czech Republic.

8 REFERENCES
[Mil14] Milet, T., Kobrtek, J., Zemčík, P, Pečiva, J.

Fast and Robust Tessellation-Based Silhouette
Shadows. In WSCG 2014 - Poster papers pro-
ceedings, 2014.

[Peč13] Pečiva, J., Starka, T., Milet, T., Kobrtek and
Zemčík P., Robust Silhouette Shadow Volumes on
Contemporary Hardware. In Conference Proceed-
ings of GraphiCon’2013, pp 56–59, 2013.

[Wil78] Williams, L., Casting curved shadows on
curved surfaces. In SIGGRAPH Comput. Graph.,
pp 270–274, 1978.

[Jon01] Johnson, D. E. and Cohen, E., Spatialized Nor-
mal Cone Hierarchies. In SI3D ’01, pp 129–134,
2001.

[Crow77] Crow, F. C., Shadow algorithms for com-
puter graphics. In SIGGRAPH ’77, pp. 242–248,
1977.

[Woo12] Woo, A. and Poulin, P., Shadow Algorithms
Data Miner. CRC Press, ISBN 978-1-4398-8023-
4, 2012.

[Mil15] Milet, T., Tóth, M., Pečiva, J., Starka, T., Ko-
brtek, J. and Zemčík, P., Fast robust and precise
shadow algorithm for WebGL 1.0 platform, In
ICAT-EGVE 2015, pp 85–92, 2015.

[Ols06] Olson, M., Zhang, H., Silhouette Extraction
in Hough Space, In Computer Graphics Forum
25(3), pp 273–282, 2006.

[Sti07] Stich, M, Wächter, C, Keller, A., Efficient
and Robust Shadow Volumes Using Hierarchi-
cal Occlusion Culling and Geometry Shaders,
In Nguyen, R. (Ed.) GPU Gems 3, ISBN 978-
0321515261, pp 359–378, 2007.

[Bren02] Brennan, C., Shadow Volume Extrusion
using a Vertex Shader, In Engel, W. E. (Ed.)
ShaderX, pp 188-194, 2002.

[Hei91] Heidmann, T., Real shadow real time, In Iris
Universe 18, pp 23–31, 1991.

[Eve02] Everitt, C. W., Kilgard, M. J., Practical and
Robust Stenciled Shadow Volumes for Hardware-
Accelerated Rendering, In CoRR, 2002.

[Bil99] Bilodeau, B. and Songy, M., Real time sha-
dows, Creativity, 1999.

[Ise03] Isenberg, T., Freudenberg, B., Halper, N.,
Schlechtweg, S., Strothotte, T., A developer’s
guide to silhouette algorithms for polygonal mod-
els, In IEEE Computer Graphics and Applica-
tions, vol. 23, no. 4, pp. 28-37, July-Aug. 2003.

[Kim08] Kim, B., Kim, K., Turk, G., A Shadow Vol-
ume Algorithm for Opaque and Transparent Non-
Manifold Casters, In Journal of Graphics Tools
13, pp 1–14, 2008.

[Goo99] Gooch, B., et al., Interactive Technical Illus-
tration, In Interactive 3D Graphics, pp. 31–38,
1999.

[Ben99] Benichou, F. and Elber, G., Output Sensitive
Extraction of Silhouettes from Polygonal Geome-
try, In Proc. 7th Pacific Graphics Conf., pp. 60–69,
1999.

[Ger15] J. Gerhards, J., Mora, F., Aveneau, L., Ghaz-
anfarpour, D., Partitioned Shadow Volumes, In
Computer Graphics Forum, volume 34 issue 2, pp
549–559, 2015

[Air90] Airey, John M. and Rohlf, John H. and
Brooks,Jr., Frederick P., Towards Image Realism
with Interactive Update Rates in Complex Virtual
Building Environments, SIGGRAPH Comput.
Graph., volume 24, 1990


