
Spatially Situated End-User Robot Programming in Augmented Reality

Michal Kapinus, Vı́tězslav Beran, Zdeněk Materna and Daniel Bambušek

Abstract— Nowadays, industrial robots are being pro-
grammed using proprietary tools developed by robot manu-
facturer. A skilled robot programmer is needed to create even
as simple task as pick a well-known object and put it somewhere
else. Contrary, in every-day life people are using end-user
programming to make different electronic devices work in
expected manner, without even noticing they are actually
programming. We propose augmented reality-enabled end-user
programming system allowing regular shop-floor workers to
program industrial robotic tasks. The user interface prototype
for this system was evaluated in the user study with 7 par-
ticipants with respect to usability, mental workload and user
experience.

I. INTRODUCTION

For decades, robots have been deployed in automated
manufacturing. Their use is mainly in large-scale production,
because the design and construction of such automated
production operation is very time-consuming and expensive.
This solution pays off for a type of production that runs for at
least several years. Although it is known that robotic systems
are unsuitable for some operations, when it is sometimes
almost impossible to replace humans, neither the method of
production nor the technological advancements have made it
possible to exploit the potential of humans in the production
process together with robots.

Today, however, the rapid development of technology
brings the ability to produce robots who are already able to
work in the vicinity of humans, can to some extent perceive
the world around and to some extent cooperate with human.
There are new possibilities of making automated production
more efficient by integrating human into the automated
process. This is especially important for smaller productions.
Nowadays, many manufacturing activities can be replaced by
a cheaper robot or robotized production line, which is not
able to handle all the tasks of the production process itself,
but thanks to the possibility to cooperate with human, these
tasks can be effectively solved. Smaller production in smaller
manufacturing companies, however, brings a new problem:
how to program these robots effectively for a new production
process?

Many robot manufacturers now offer a variety of robot
programming solutions, from desktop programming tools,
where drag&drop and intuitive icons can be used to quickly
program a manufacturing process (such as ABB RobotStudio
or RoboDK), to approaches where a user directly defines
the process by manipulating a robot (such as Baxter or

All authors are affiliated with the Brno University of Tech-
nology, Faculty of Information Technology, Centre of Excellence
IT4Innovations, Bozetechova 1/2, Brno, 612 66, Czech Republic. Contacts:
ikapinus, beranv, imaterna, bambusekd@fit.vutbr.cz

Fig. 1. ARCORO - Augment Reality for Connections and Operations of
Real Objects.

YuMi). Today, many aspects affecting user workload or user
experience when using UI devices to interact with the robots
are known: the user often has to switch the context between
workstation and computer, poor robot feedback worsens
human-robot communication when visual or aural feedback
is limited (light or sound signal, on-screen information, etc.).
Although today’s advanced technologies allow more natural
human-machine interaction, most of the solutions are still
based on a 50-year-old GUI concept. It implements a GUI
using WIMP and 2D display on a desktop computer using
real world metaphors.

The goal of our research is to return from a 2D desktop
user interface back to a real 3D environment. In this work we
present the application of this principle in the design of a new
tool for robot programming. We define the requirements for
a new type of user interface: integrate the programming tool
into a real 3D environment, use scene and object knowledge
to reduce user mental load, visualization of a program
stage and robot’s knowledge of the environment to improve
user’s feedback. We decided to address these challenges
for the natural interaction of human with machine in real
3D environment. We design and introduce an innovative
way of programming a spatial robotic task with high levels
of abstraction using Augmented Reality (AR) technology
(ARCORO1).

Based on our prior experience with simplified robot pro-

1Augment Reality for Connections and Operations of Real Objects



gramming in AR [1], an experimental ARCORO system,
using a new concept of robot programming in 3D space using
AR on a mobile device, was developed. Part of the work is
also the definition of use-case, which is designed according
to real demand from industry. This use-case was used to test
the new ARCORO interface. The experiment was conducted
with 7 participants and evaluated with respect to usability,
mental workload and user experience.

II. RELATED WORK

An increasing number of collaborative robots in SMEs
(small and medium enterprises) requires searching for new
methods for end-user robot programming. Various techniques
incorporating the AR were proposed, mostly based on visual
programming [2], [3], programming by demonstration [4],
[5] or combination of both [6], [1]. These methods may differ
in both input and output modalities and utilizes the AR for
both programming and giving visual feedback to the user.

Gadre et al. [3] proposed Mixed Reality (MR) system for
robot programming using Head-Mounted Display (HMD).
They compared this system against a 2D keyboard and mouse
system for programming pick & place task. Gadre et al. [3]
found that users were significantly faster and better able to
successfully program the robot using the MR interface than
the 2D interface.

Quintero et al. [7] designed AR system using Microsoft
HoloLens HMD capable of 3D robot trajectory specification,
virtual previews of robot motion and visualization of robot
parameters. Blankemeyer et al. [8] presents another HMD-
based system using Microsoft HoloLens for simple pick &
place task programming.

Stadler et al. [9] discussed possibility of lowering mental
demand of the robot programmer, by using tablet-based AR
approach in simplified industrial tasks.

Magnenat et al. [10] have shown, that overall performance
of the operator could be increased by incorporating AR and
visual feedback into tablet-based system for robot program-
ming system.

Recently, several solutions based on tabletop projections
emerged. Materna et al. [1] have developed Spatial Aug-
mented Reality (SAR) system using table with touch-enabled
surface and projector above the table, projecting both User
Interface to program collaborative robot and showing con-
textual information of objects on the table and the state
of the system. Gao et al. [11] provided another tabletop
SAR solution for industrial end-user robot programming of
manipulation tasks, using common hand gestures detected by
computer vision techniques.

To investigate effects of presenting robots intentions to
the human, Bunz et al. [12] conducted experiment involving
mobile robot with projector mounted on top of it, projecting
various patterns indicating its intended movement.

Head-up displays and projected user interfaces benefit
from freeing operator’s hands, which enables direct manip-
ulation with real objects. On the other hand, contemporary
head-up displays such as Microsoft HoloLens and others,

suffer from narrow field of view and potential user’s discom-
fort in long-term usage. Moreover, end-user programming
systems based on hand-held AR overcomes head-up based
systems in terms of speed and user experience [13]. While
projected interfaces does not suffer from these issues, they
are not currently able to present information in free 3D space,
and therefore only suitable for tabletop scenarios [1].

The AR systems often benefit from knowledge of the
environment and therefore offer new possibilities in end-user
programming. The spatial situated programming incorporates
real objects into programming process. For instance, Ivy [14]
enables user to link different smart devices, create automated
behaviour based on readings from smart sensors and visual-
ize data flows between those devices. Reality editor [15] is
another example of spatial situated programming, enabling
programming of behaviour and interactions of smart objects,
using hand-held AR device.

In our proposed approach, the tablet-based AR is com-
bined with semantic information of the objects on the table,
to enable regular shop-floor workers to create robotic pro-
grams. Contrary to some aforementioned solutions [11], [7],
[9], [1], our system aims to both defining the flow of the
program and setting its parameters. By using relatively cheap
mobile device, the cost of the solution can be significantly
lowered comparing to approaches using high-end HMD de-
vices [3], [8] while still remain more flexible than projection
based solutions [1], [11].

III. PROPOSED APPROACH

When designing a novel user interface concept for robot
programming, we first defined the following issues of current
solutions:

• Mental mapping of robot instructions to the physical
place in the environment

• Context switching between programming device (e.g.
computer) and the workspace

• Low abstraction of the robot instructions, relations
between the instructions, conditions and parallel exe-
cution.

A. Process-based vs. Object-based approach

The goal of the programmer is to prepare a list of steps
that describe: in what order the robot should perform various
actions, with what objects the action should be performed,
how and under what conditions the action should be per-
formed. The result is a sequence of actions - a program. In
principle, this programming task can be implemented in two
ways.

Process-based method of robot programming takes advan-
tage of the so-called top-down approach. It describes the
whole process with inputs and outputs and then it continues
in dividing the process into several sub-processes until it gets
to the low-level problems. On the other hand, object-based
method describes functionality of different low-level objects
and allows to use them to build a working system piece by
piece. This is also known as a bottom-up approach.



We used the real world metaphor, when we describe the
manufacturing process, we usually:

• first we describe the environment: components, devices,
tools and objects that are in the scene and what they do
or how to use them for the task,

• then we begin to describe the process step by step,
including the links between the environment objects,
their specific settings, and the expected outputs,

• Finally, we summarize the expected outputs and risk
parts

Based on this observation, we decided to follow an object-
based approach proposing concept using spatially-aware aug-
mented reality on mobile device.

B. Program representation

Most of the basic operations of a robotic task are related to
a particular place in 3D space, either by relation to a real or
virtual object, or directly to an absolute position in the scene.
The program representation in our concept was inspired by
flowcharts in 3D. Discrete operations (e.g. pick the object,
execute operation, etc.) are represented by nodes. Each node
is spatially adjacent to the position, where the action takes
place. For example node representing operation Place object
to the box is located above the intended box. This adjacency
helps the user with mental mapping of the instructions
to the physical space. Nodes hold information needed for
their execution, e.g. type of the object which should be
manipulated, position on the table, where object should
be placed, etc. In addition to setting individual operation
parameters, linking these nodes to create a program flow is
a key challenge for usable user interface.

Each node has inputs and outputs. By connecting the
inputs and outputs of various nodes, user can define the
flow of the program. By connecting one output to multiple
inputs, the user can specify conditional transition or parallel
execution. Based on the parameters of connected nodes,
the actual executed path is derived. On the Fig. 2, parallel
execution of the program is defined. Workpieces of all the
nodes are the same, i.e. once the Execute testing operations is
done, both Execute printing and Pick from tester operations
will be executed in parallel. This approach is valid only when
these parallel operations don’t physically manipulate the
workpiece. In this example, the workpiece will be picked by
robot using the Pick from tester operation and corresponding
label will be printed at the same time. This label will be stuck
to the workpiece later in the program.

Conditional execution can be seen on the Fig. 3. The Pick
from table node has set two different workpieces, e.g. red ball
and green cube, meaning one of them will be picked. From
this step, two different Place operation can occur, each with
one of the aforementioned object set as a workpiece. Based
on the picked object from step Pick from table, corresponding
Place operation is selected.

C. Spatially situated programming in AR

Spatially situated programming is useful in scenarios,
where spatial context is important, like: robot manipulating

Fig. 2. Parallel execution of the program. The Execute testing node is
connected with Pick from tester node and Execute printing node. All of the
nodes have set the same workpiece, so during the runtime, both paths will
be executed at once.

Fig. 3. Conditional execution of the program. There can be seen Pick from
Table node, connected with two Place nodes. The left and right nodes have
set different workpiece. The actual flow of the program is decided during
the runtime, based on type of the workpiece picked in the Pick from Table
node.

workpieces, picking them from conveyor belt, putting them
inside the pressing machine, etc. We propose the system,
which is aware of semantic properties of the objects in the
environment: knowledge that some object can be picked up,
that a box offers inserting of some object, etc. The user
can benefit from that shared knowledge of the environment
and by using these information, the user can define desired
actions more effectively.

The visual elements of the system are presented to the
operator using the augmented reality, either in head-up
display or using hand-held mobile device.

IV. PROTOTYPE OF THE USER INTERFACE

To evaluate the proposed approach, we developed the
prototype of the user interface, using hand-held mobile
device. In cooperation with our industrial partner, we have
selected a specific industrial use-case.

A. Use-case

The selected use-case represents the process of testing the
printed circuit board (PCB). The PCB has to be inserted into



Fig. 4. Testbed used during the experiment. On the table, you can see,
from right to left, example PCB, a mockup of the tester device, a printer
of the labels, a box for disposing nonfunctional PCBs and another table for
functional PCBs.

testing device (a.k.a. tester) and based on the test result either
disposed or forward to the next stage of processing. Besides,
the corresponding label should be printed and stuck to both
functional and nonfunctional PCB. A mockup of the testing
facility was prepared, as can be seen on Fig. 4.

The mockup environment consists of the table with the
PCB, the testing device, the printer and the box for nonfunc-
tional PCBs. Next to the main table, the other table intended
for functional PCBs is placed. To improve the feeling of near
future robotic facility, the PR2 robot was placed behind the
table. The whole procedure of the use case looks like this:

1) Pick the PCB from the table
2) Place the PCB inside the tester device
3) Execute testing
4) Do in parallel ...

a) Pick the PCB from the tester device
b) Print corresponding label

5) Place the PCB on the table
6) Stick the label to the PCB
7) Pick the PCB
8) Place the PCB to ...

a) the box OR
b) the other table

Steps 4 represents parallel execution of two operations at
the same time, as the robot is picking the PCB from the
tester and simultaneously the printer is printing the label.
The step 8 represents conditional transition, as the PCB is
placed either to the box or to the other table based on the
result of the testing process.

B. System

The prototype of the user interface was created using
Unity3D game engine. To register motion of the mobile
device and track its position in the real world, the ARCore

Fig. 5. The puck consists of central disc, two circles representing the input
and the output and two pipes connecting input/output with the disc. In the
first prototype, the type of the puck is represented by its color and the text
placed in front of the disk. Above the pipes, small 3D models of input and
output workpieces are placed.

framework was utilized. The prototype was developed for
an Android-driven handheld mobile device. Display of the
device shows the video stream from the back-facing camera
with superimposed user interface.

Using the Unity3D, the virtual scene was created
(see Fig. 7), spatially identical to the real scene described
above. The virtual and real scenes are mutually calibrated
using the AR marker placed in the lower left corner of the
table. This calibration needs to be done once during the
application startup.

The system simulates knowledge of the environment and
context of all objects and devices on the table. We placed
invisible virtual bounding box around each physical object
on the table, so user can interact with them by touching them
on the screen.

C. User interface elements

Several UI elements were designed for the prototype to
allow user to interact with the system. These elements are
either 2D or 3D. In this prototype, all elements representing
different operations, their connections etc. are static and
prepared for selected use-case, as can be seen on Fig. 7.

1) Operations: In our prototype, each operation is rep-
resented by so-called puck (see Fig. 5). The puck consists
of central disc, two circles representing the input and the
output and two pipes connecting input/output with the disc.
The input is placed on the left of the puck (with inside the
puck aiming arrowhead), output is placed on the right of the
puck (with arrowhead aiming outside of the puck).

The puck serves as a visualization of operation and its
parameters, and at the same time, as a main input point for
the operator. To change any operation’s parameter, the user
has to select desired operation first. To enable this, the so-
called edit mode was designed. User can switch between
the normal and edit mode by clicking on the puck. While
in edit mode, only the edited and directly connected pucks
are visible to the user and the others are hidden to lower



Fig. 6. Teleoperating user interface for navigating the 3D model of the
PCB to the tester device. There are two joysticks on the bottom left and
bottom right side of the tablet. Next to right joystick, there are two buttons
for controlling whether the PCB should move in horizontal or vertical plane.
Above the right joystick, there is a DRAG button. When it is held, the 3D
model moves in the same direction and speed as the tablet.

visual clutter. In the edit mode, parameters of the operation
are visible.

Most of the operations only manipulates the workpiece
without changing it, i.e. the workpiece on the input is the
same as the workpiece on the output of the puck. There are
two exceptions in our use-case: Pick from table and Execute
testing. The former has no workpiece on the input, because
it is the first operation in our program. The picked object
is automatically set as a workpiece for the output and it is
added to the inventory (will be discussed later). The Execute
testing operation works as follows. When the PCB is set as a
input workpiece, it automatically creates two new workpiece
types: PCB OK and PCB NOK. The former means tested
and OK (functional) and the latter means tested and not OK
(nonfunctional). These two workpiece types are also added
to the virtual inventory.

2) Connections: The pucks themselves are not sufficient
to define flow of the program, as they only define operations,
but not the order in which they shall be executed. To define
the flow, the operator can create connections between the
pucks, by connecting the output of one puck and input of
other puck. This connection is represented by a green spline
between these two pucks. To make it easier for the user, once
he clicks on the output of one puck, a big blue plus appears
on the input of all other pucks and vice versa. By clicking
on this plus, the connection is created.

In case of incorrectly created connection, the operator
can use a big red cross to remove said connection. This
cross is visible only for connections adjacent to currently
edited puck. There can be several connection attached to one
output or input allowing user to define conditions and parallel
execution.

3) Interactive objects and context menus: To define an
operation for any physical object on the table (e.g. printer,
tester, etc.), the operator has to create appropriate puck by the
object. As the system benefits from the semantic information
about objects in the scene, context menu with each possible

operations for the objects could be generated. By clicking
on any object, this menu emerges, allowing user to define
desired operation. This was enabled by creating a clickable
invisible bounding box around each object in the virtual
scene (semi-transparent boxes on the Fig. 7).

4) Inventory and teleoperating UI: While user composes
the program, each workpiece he use in the program (e.g.
PCB which shall be picked) appears in the inventory list.
By clicking on the workpiece image in the inventory while
in edit mode of some puck, user can set this object as a
workpiece for this puck.

The operation ”Place to tester” needs to specify 3D
position of the workpiece while placing inside the testing
device. To do so, a teleoperating user interface is prepared,
allowing user to move with 3D model of the workpiece.
There are two different approaches to control the position
of the desk. The user can adjust the position in vertical or
horizontal plane using two joysticks, placed on both side of
the screen (see Fig. 6). The other way to set the position
is by using so called DRAG button. When pressed, the desk
moves in the same direction and speed as the tablet, so the
operator can literally drag the desk by moving with the tablet
(see Fig. 6).

D. User interaction

The screen of the mobile device is used for both vi-
sualization of the process and as a main input for the
operator. The application on the device knows position and
semantic information of all objects in scene (hard-coded for
the prototype). Using the ARCore framework, the mobile
device knows its position and orientation in the space, which
enables the operator to interact with real objects by clicking
on their 2D image on the screen.

V. EVALUATION

We provide qualitative results obtained from the user study
with 7 participants. To evaluate our proposed approach, we
created the prototype of the user interface using ARCore-
enabled mobile device.

A. Experimental Procedure

Experimental protocol consisted of 4 phases: orientation,
training, programming, discussion.

1) Orientation: During the orientation, the moderator
introduced the evaluated system to the participant. He or she
then signed an informed consent form.

2) Training: In the second phase, the participant learned
how to use the mobile device to create robot instructions
(a.k.a. pucks), how to set parameters of the instructions and
how to connect them to create intended program. During
the second phase, the moderator proactively helped the
participant to complete the tasks and answered all questions.

3) Main task: The main task was presented to the partic-
ipant. He or she was asked to program the robot to pick the
PCB from the table, place it to the testing device, execute
the testing process, print and stick correct label based on the
result of the testing process and then place the PCB either



Fig. 7. Unity scene of the prototype UI. Semitransparent boxes define interactive places, which user can use to define intended operation. Above each of
these boxes, there are pucks of various colors, representing different operations. They are connected with green splines, representing flow of the program
(for the sake of clarity, only subset of possible connections are displayed in this figure).

to the box or on the other table (again, based on the result
of the test).

After the task was presented to the participant, he or she
began to work on the task by him or her self. The moderator
was available to answer additional question or to help in case
of problems with the prototype, but did not actively step into
the programming process. Each participant worked until he
or she claimed that the task is done. Moderator than reviewed
the created program and either confirmed the correctness or
suggested to the participant what should be altered.

4) Discussion: After completing the main task, the partic-
ipant filled out the questionnaire. Besides, participants were
asked for their thoughts of the system, additional questions,
etc.

B. Sensors and collected data

The whole process of the experiment was recorded on
several cameras. One of them was placed on participant’s
forehead, aiming to mobile device in participant’s hands,
other one was aiming towards the participant and two more
cameras were recording the workspace. The screen of the
mobile device was also recorded, together with indication of
participant’s input. To record voice of both moderator and
participant, lavalier microphones were used.

C. Participants

There were 7 participants of various ages and genders,
all of them with none or very limited knowledge of pro-
gramming and augmented reality. These participants will be
labeled as Participant A, B, C, D, E, F and G. Table I shows
the demographic data of the participants.

VI. RESULTS AND FINDINGS

The section provides measured results and observed find-
ings of the experiment. The main goal of the presented
experiment was to prove, that non-expert users are able to
program the selected use-case, using the ARCORO system.
We focused mainly on usability issues, mental workload of
the participants and the user experience.

A. Qualitative and quantitative data

As a metric for the system usability, the SUS2 [17] method
was chosen. To evaluate SUS score for our system, each
participant had to score 10 items with one of five responses
that range from Strongly Agree to Strongly disagree. Table II
shows the SUS score for each participant individually, the
mean SUS score from all participants was 82.86 (SD=9.29).
According to Sauro-Lewis curved grading scale [17], SUS
score in range of 80.8–84.0 is rated by grade A, and is at the
90–95th percentile. This shows promising potential for future
research in this field, and shows, that the created prototype
user interface is highly usable.

To measure the mental workload of the participants, sim-
plified NASA-TLX3 method was utilized. The mental work-
load can negatively affect the performance of the operator,
therefore is important to measure this attribute from the
earliest phases of prototyping. Although the mental workload
in laboratory scenarios cannot be generalized directly to the
workload in real environment, it still can be useful to reveal
potential issues. The mean TLX in our experiment was 27.38

2System Usability Scale
3NASA Task Load Index



Participant Age Gender Education Experience with Experience with Attitude towards
augmented reality programming new technology

A 24 F bachelor degree little little late majority
B 24 F bachelor degree some little early majority
C 34 M master degree none none early adopter
D 22 M secondary little little late majority
E 21 M secondary little little early adopter
F 24 F bachelor degree little none early adopter
G 33 M secondary little little early majority

TABLE I
DEMOGRAPHIC DATA OF THE PARTICIPANTS. THE SCALE FOR BOTH EXPERIENCE-RELATED QUESTIONS WERE NONE, LITTLE, SOME, QUITE A LOT,

MANY. THE ATTITUDE TOWARDS NEW TECHNOLOGY SCALE IS BASED ON ROGERS [16] DIFFUSION OF INNOVATIONS.

Participant SUS
NASA UEQ UEQ UEQ time to
TLX ATT PRA HED set (s)

A 95.00 25.00 2.67 2.50 2.12 535
B 80.00 25.00 2.00 2.42 0.75 427
C 67.50 47.22 1.17 2.00 1.75 460
D 85.00 27.78 1.67 2.25 2.25 507
E 92.50 27.78 2.67 2.75 2.88 431
F 82.50 19.44 2.00 2.08 2.38 521
G 77.50 19.44 1.33 1.83 0.88 806

TABLE II
DETAILED RESULTS OF ALL MEASURED RESULTS FOR EACH

PARTICIPANT.

(SD=9.41), which means that the workload was lower then
in at least 80% of studies analyzed by Grier [18].

For any interactive system to be successful, a high-quality
user experience is the key. Among several methods to mea-
sure the user experience, we selected the UEQ4, because of
its simplicity for both participant and evaluator and reliable
results. The system was overall rated as Excellent in all UEQ
categories, i.e. Attractiveness (mean score 1.93, SD=0.58),
Pragmatic attributes (mean score 2.26, SD=0.28) and He-
donic attributes (mean score 1.86, SD=0.72). All categories
were evaluated using the standard UEQ benchmark [19].

The mean time for the main task completion was 527
seconds (SD=130s). The main task consisted of settings
following operations and their parameters and of creating
connections between them: 3x pick object, 4x place object,
3x execute (testing, printing and sticking). For each opera-
tion, workpiece had to be set. Moreover, for one of the place
object operations, an exact position of the PCB inserted to
the tester had to be set. The completion time excludes delays
caused by prototype errors.

B. General findings

During the experiment, we found no fundamental problem
forcing us to reconsider the proposed approach. Although
minor issues were observed or self-reported by participants,
all participants were able to complete the task.

4User Experience Questionnaire

All participants reported, that the pucks (representing
operations) were unnecessary large. In cases when there were
more pucks above the same object, for instance place object
to tester, execute testing and pick object from tester, the state
and parameters of those pucks were unclear and it was hard to
recognize mutual connections. To avoid this, design of pucks
needs to be refined and better strategy of pucks placement
should be adopted in further versions.

The participants were instructed to inform the moderator
once they though they have successfully finished the pro-
gramming. Most of the created programs contained one or
more errors, which would lead to failure during execution.
The participant C explicitly reported, that he is unable to
check if the program is correct. The participant A in the
end went through all created pucks to check whether all
parameters are correctly set and connections between pucks
are as intended.

After the errors were pointed out by the moderator, each
participant was able to correct the error and to successfully
finish the task. This has shown, that debugging system has
to be improved and better system state indicators should
be involved. To support users awareness of the program
correctness, the program flow visualization needs to be
improved.

Only two of the participants found out, that they can
benefit from active movement of the mobile device inside the
scene, to achieve higher accuracy when clicking on interface
components. Most of them were just standing in certain
distance from the table and using only vertical rotation in
cases when FOV of the tablet was too narrow. The participant
B stated, that it was more comfortable for her to just stand at
one place to observe the whole situation and that she would
appreciate the possibility of zooming the scene on the screen
to avoid miss-clicks.

The usual procedure for most of the participants consisted
of creating the puck, followed by creating the connection
between said puck and previously created puck, repeated until
the whole program was created. The participant A followed
a different approach. At first she created most of the pucks to
label all desired operations and once she was satisfied with
pucks, she started to create connections between them.

Participants A, B, C and E were using only one hand
to control both joysticks (placed on different side of the



screen) while the rest of the participants were using both
hands, as was intended when designing the user interface.
The participant A was the only one to use a DRAG button,
to set the initial position of the desk, followed by refining
the final position using the joysticks.

Although minor issues were observed during the experi-
ment, all of the participants rated the system positively. The
participants agreed that the system is easy to use and requires
no special knowledge from the operator.

VII. CONCLUSIONS

The aim of this work is to reflect current needs in the area
of programming robots in low and medium complex tasks
in a shared collaborative environment. We have designed a
new concept of robot programming using augmented reality
on a mobile device. The main goals pursued in the design of
the new concept were: eliminating the need to switch user
context between desktop and work environment by mapping
instructions directly into a real 3D environment, reducing
user mental stress by using semantic information about real
objects and increasing the abstraction of instructions and
their relations.

We have defined a simple use-case that is inspired by
the real demands from the industry. In the experiment, we
observed mainly usability of designed UI, workload of user
and user experience with designed spatial programming con-
cept. We have evaluated with 7 users which has shown that,
despite some shortcomings discussed, this is the direction
that can be taken. All participants were able to perform all
the tasks independently after a short training. All participants
evaluated the usability of the interface mostly positively.

Positive adoption of the new concept can also be attributed
to the use of equipment that most users are used to working
with. In the future, we want to verify this unambiguity and
compare the usability of the concept with other, yet less
common devices, such as HoloLens glasses. In the next
research, we will also focus on improving the orientation in
the programmed task, solving the UX deficiencies found in
this study, and integrating the UI into a real robotic system.

ACKNOWLEDGMENT

The work was supported by Czech Ministry of Educa-
tion, Youth and Sports from the National Programme of
Sustainability (NPU II) project “IT4Innovations excellence
in science – LQ1602”.

REFERENCES

[1] Z. Materna, M. Kapinus, V. Beran, P. Smrž, and P. Zemčı́k, “Interactive
spatial augmented reality in collaborative robot programming: User
experience evaluation,” in 2018 27th IEEE International Symposium
on Robot and Human Interactive Communication (RO-MAN), Aug
2018, pp. 80–87.

[2] C. Mateo, A. Brunete, E. Gambao, and M. Hernando, “Hammer: An
android based application for end-user industrial robot programming,”
in 2014 IEEE/ASME 10th International Conference on Mechatronic
and Embedded Systems and Applications (MESA), Sep. 2014, pp. 1–6.

[3] S. Yitzhak Gadre, E. Rosen, G. Chien, E. Phillips, S. Tellex, and
G. Konidaris, “End-user robot programming using mixed reality,” 10
2018.

[4] J. Aleotti, G. Micconi, and S. Caselli, “Object interaction and task
programming by demonstration in visuo-haptic augmented reality,”
Multimedia Systems, vol. 22, no. 6, pp. 675–691, Nov 2016. [Online].
Available: https://doi.org/10.1007/s00530-015-0488-z

[5] P.-C. Li and C.-H. Chu, “Augmented reality based robot path planning
for programming by demonstration,” 12 2016.

[6] J. Huang and M. Cakmak, “Code3: A system for end-to-end program-
ming of mobile manipulator robots for novices and experts,” in HRI.
ACM, 2017, pp. 453–462.

[7] C. P. Quintero, S. Li, M. K. Pan, W. P. Chan, H. F. Machiel Van
der Loos, and E. Croft, “Robot programming through augmented
trajectories in augmented reality,” in 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Oct 2018, pp.
1838–1844.

[8] S. Blankemeyer, R. Wiemann, L. Posniak, C. Pregizer, and A. Raatz,
“Intuitive robot programming using augmented reality,” Procedia
CIRP, vol. 76, pp. 155–160, 01 2018.

[9] S. Stadler, K. Kain, M. Giuliani, N. Mirnig, G. Stollnberger, and
M. Tscheligi, “Augmented reality for industrial robot programmers:
Workload analysis for task-based, augmented reality-supported robot
control,” in Robot and Human Interactive Communication (RO-MAN),
2016 25th IEEE International Symposium on. IEEE, 2016, pp. 179–
184.

[10] S. Magnenat, M. Ben-Ari, S. Klinger, and R. W. Sumner, “Enhancing
robot programming with visual feedback and augmented reality,”
in Proceedings of the 2015 ACM Conference on Innovation and
Technology in Computer Science Education. ACM, 2015, pp. 153–
158.

[11] Y. Gao and C.-M. Huang, “Pati: A projection-based augmented
table-top interface for robot programming,” in Proceedings of the
24th International Conference on Intelligent User Interfaces, ser. IUI
’19. New York, NY, USA: ACM, 2019, pp. 345–355. [Online].
Available: http://doi.acm.org/10.1145/3301275.3302326

[12] E. Bunz, R. T. Chadalavada, H. Andreasson, R. Krug, M. Schindler,
and A. Lilienthal, “Spatial augmented reality and eye tracking for
evaluating human robot interaction,” in RO-MAN 2016 Workshop:
Workshop on Communicating Intentions in Human-Robot Interaction,
New York, USA, Aug 31, 2016, 2016.

[13] N. Dass, J. Kim, S. Ford, S. Agarwal, and D. H. P. Chau,
“Augmenting coding: Augmented reality for learning programming,”
in Proceedings of the Sixth International Symposium of Chinese CHI,
ser. ChineseCHI ’18. New York, NY, USA: ACM, 2018, pp. 156–159.
[Online]. Available: http://doi.acm.org/10.1145/3202667.3202695

[14] B. Ens, F. Anderson, T. Grossman, M. Annett, P. Irani, and
G. Fitzmaurice, “Ivy: Exploring spatially situated visual programming
for authoring and understanding intelligent environments,” in
Proceedings of the 43rd Graphics Interface Conference,
ser. GI ’17. School of Computer Science, University of
Waterloo, Waterloo, Ontario, Canada: Canadian Human-Computer
Communications Society, 2017, pp. 156–162. [Online]. Available:
https://doi.org/10.20380/GI2017.20

[15] V. Heun, J. Hobin, and P. Maes, “Reality editor: Programming smarter
objects,” in Proceedings of the 2013 ACM Conference on Pervasive
and Ubiquitous Computing Adjunct Publication, ser. UbiComp ’13
Adjunct. New York, NY, USA: ACM, 2013, pp. 307–310. [Online].
Available: http://doi.acm.org/10.1145/2494091.2494185

[16] E. Rogers, Diffusion of innovations. Free Press of Glencoe,
1962. [Online]. Available: https://books.google.cz/books?id=zw0-
AAAAIAAJ

[17] J. Sauro and J. R. Lewis, Quantifying the User Experience: Practical
Statistics for User Research, 1st ed. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 2012.

[18] R. A. Grier, “How high is high? a meta-analysis of nasa-tlx
global workload scores,” Proceedings of the Human Factors and
Ergonomics Society Annual Meeting, vol. 59, no. 1, pp. 1727–1731,
2015. [Online]. Available: https://doi.org/10.1177/1541931215591373

[19] M. Schrepp, A. Hinderks, and J. Thomaschewski, “Construction of a
benchmark for the user experience questionnaire (ueq),” International
Journal of Interactive Multimedia and Artificial Intelligence, vol. 4,
pp. 40–44, 06 2017.


