
Automating Network Security Analysis at Packet-level by using
Rule-based Engine

Martin Holkovič
Brno University of Technology

Brno, Czech Republic
iholkovic@fit.vutbr.cz

Ondřej Ryšavý
Brno University of Technology

Brno, Czech Republic
rysavy@fit.vutbr.cz

Jindřich Dudek
Brno University of Technology

Brno, Czech Republic
xdudek04@fit.vutbr.cz

ABSTRACT
When a network incident is detected, a network administrator
has to manually verify the incident and provide a solution to stop
the incident from continuing and prevent similar incidents in the fu-
ture. The network analysis is a time-consuming and labor-intensive
activity which requires good network knowledge. Creating a solu-
tion which automates the administrator’s work can dramatically
speed up the analysis process and can make the whole process eas-
ier for less experienced administrators. In this paper, we describe
a method that uses a predefined set of rules to identify incident
patterns. Though this principle is used by many security tools,
the new aspect is that the presented approach uses the Wireshark
tool which is well known among the administrators, and it is ex-
pressive enough to specify complex relations among source data
thus being able to detect quite sophisticated attacks. The created
rule’s format uses the same language as the Wireshark filters.

CCS CONCEPTS
•Networks→ Error detection and error correction;Network
monitoring; Network security; • Security and privacy → Intru-
sion detection systems.

KEYWORDS
Network security, network monitoring, anomaly detection, threat
detection, network forensics

ACM Reference Format:
Martin Holkovič, Ondřej Ryšavý, and Jindřich Dudek. 2019. Automating
Network Security Analysis at Packet-level by using Rule-based Engine. In
6th Conference on the Engineering of Computer Based Systems (ECBS ’19),
September 2–3, 2019, Bucharest, Romania. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3352700.3352714

1 INTRODUCTION
Nowadays, one of the most important responsibilities of a net-
work administrator is to secure a computer network against cyber
threats. A threat can have a lot of different formats: brute-force
login attempt, DDoS attack, phishing attack, data breach, and many

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ECBS ’19, September 2–3, 2019, Bucharest, Romania
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7636-5/19/09. . . $15.00
https://doi.org/10.1145/3352700.3352714

others. Most of the protective actions are done proactively to pre-
vent threats realization, but despite all the effort and implemented
measures, some incident can occur in the network anyway. Then
a network administrator has to identify, locate and stop incidents
inside the network [23]. In this paper, we will use an example
of a user who cannot access the Internet. The administrator has
to investigate this problem and fix the user’s Internet connection.

A very common way of network traffic analysis is using some
network packet analyzer, e.g., Wireshark [18]. The analyzer pro-
cess captured network traffic (PCAP files) and decodes individual
packets. The administrator analyzes available information, checks
the transferred data and compares it with expected values (e.g.,
from RFC standards). This manual process is time-consuming and
requires a good knowledge of network protocol and various net-
work technology. This paper aims to propose a method to automate
this process.

1.1 Contribution
This paper describes a solution for automating the time-consuming
and labor-intensive network analysis usually done manually by net-
work administrators [24]. This automation will dramatically de-
crease the time required for analyzing PCAP files and allows less
experienced administrators to check the files in the same way
as a more experienced administrator would do.

To create a solution that can be easily used by network adminis-
trators, one needs to consider the following assumptions:

• Administrators often do not have enough programming
skills;

• Adding support for new protocols should not require to cre-
ate new protocol dissectors;

• Extending the tool with new detection capabilities must
be straightforward for administrators;

• Administrators can work with packets as they are used
to with manual analysis.

The presented solution can be compared to existing tools and
other alternative approaches:

• Use an existing IDS or forensic tools: These tools are not
made to work with network data which administrators usu-
ally work with. Adding new incident detection requires pro-
gramming skills or understanding the nontrivial definition
language. These tools usually have limited support of net-
work protocols and protocol fields (even if the protocol is
supported, not all fields are available). The usual workflow
is to process each network flow individually to speed up
the process which makes detection across multiple protocols

https://doi.org/10.1145/3352700.3352714
https://doi.org/10.1145/3352700.3352714

ECBS ’19, September 2–3, 2019, Bucharest, Romania Martin Holkovič, Ondřej Ryšavý, and Jindřich Dudek

and flows more complicated. More details about existing
solutions are in Section 3;

• Implement a new analysis tool from scratch: Creating a com-
plete tool would require a lot of effort (time, people, money)
and even after the tool would have been created, it would
require additional human resources to add support for new
protocols or new protocol versions;

• Use the machine learning approach [17]: This approach
would require programming skills from administrators while
extending the tool and the approach would be more like
a magic black box instead of a straightforward approach.

It is really important to clarify that our goal is not to create an-
other IDS tool or to create an alternative to existing IDS tools (these
tools are more described in Section 3). IDS tools already contain
a huge amount of predefined rules to detect well-known attacks
and are highly optimized to maximize performance. Our goal is
to create a complementary tool which would be used alongside
existing IDS tools. This tool would allow administrators to auto-
mate their manual incident analysis by specifying incidents using
an easy to understand and use threat specification language.

2 SECURITY ANALYSIS OF NETWORK
COMMUNICATION

The goal of the network security analysis is to detect security inci-
dents inside the network and provide as much information about
these incidents as possible [11]. Example of such information can
be the source, progress, and consequences of the incident. Finding
evidence for an incident is also called a forensic analysis.

In our example, the Internet is not working because the vic-
tim’s computer cannot be assigned an IPv6 address. Some other
device is blocking the address assignment, and after several at-
tempts, the victim’s computer gives up. As illustrated in Figure 1,
the reason for this is that an attacker applies a denial of service
attack by misusing the Duplicate address detection mechanism.

Figure 1: The output from the Wireshark tool. The client is
trying to assign a unique address, but each time the client
checks the availability of the address with the Neighbor
Solicitation message, the attacker blocks its assignment
by sending the Neighbor Advertisement message.

The primary purpose of the gathering information about the inci-
dents is to reduce damage to the affected company owning the net-
work infrastructure and services [10]. The harm can be caused
by interrupting normal business processes, data breach, wasting
resources exploited by a botnet. After the incident is solved, it is
very important to prevent similar incidents from happening again.

Each analysis should consist of several actions. It is necessary
to find out who or what is the source and destination of the at-
tack (or generally incident) [11]. The source can be a corrupted
device inside the network or person on the other side of the globe.
Another action is identifying exploited vulnerabilities and finding
the solution for fixing them. It is also necessary to identify which
parts of the network were exposed by the attack and can potentially
be abused.

Figure 2: In our example, we can see that for each Network
Solicitation (NS) message an adequate Network Advertise-
ment (NA) message is received. All NA messages have a dif-
ferent source IPv6 address. The administrator should find
the location of this device and continue with the investiga-
tion by further analysis of the device’s activities.

From a technological point of view, the security analysis is prob-
lematic because it requires information about transferred data in-
side the network. One possible approach is to capture all packets
and perform full stack analysis. The problem is that networks usu-
ally transfer a lot of data and it is impossible to analyze all data
in necessary detail. Another approach is to ignore layer 7 informa-
tion completely and use only data from lower layers, for example,
Netflow data [9]. With this approach, it is possible to process a huge
amount of data traffic, but the analysis is limited only to data from
lower layers.

The analysis is problematic from a personal point of view too.
Computer networks consist of many network devices, protocols, ap-
plications, and the analysis process requires good knowledge for all
of these elements. Even if an analyst has the necessary knowledge,
she must understand the analyzed network very well, because each
network environment is different and has some specific properties.
Another problem is that the analysis can be a very time-consuming
activity even for a skilled administrator. On the other hand, the ana-
lysis should be finished as soon as possible to prevent the incident
from doing more damage [10]. This puts an administrator under
time pressure which can lead to mistakes.

From our point of view, the network analysis process should
be split into two parts:

• Detect possible incident - By using less complex analysis,
it is possible to constantly analyze all the transferred traf-
fic and search for an anomaly. E.g., anomaly detection over
Netflow data, IDS system over transferred data payloads or
keywords detection inside the server log files [26]. Usually,
most of the anomalies will not be a security incident, but

Automating Network Security Analysis at Packet-level by using Rule-based Engine ECBS ’19, September 2–3, 2019, Bucharest, Romania

just a false-positive detection. Based on the anomaly param-
eters, like IP addresses, a small portion of network traffic is
captured and saved into a PCAP file for further analysis.

• Execute complex analysis - Captured PCAP file is ana-
lyzed in detail to determine if the anomaly is a network
security incident or not. This process is usually done man-
ually by an administrator, and it is very time- and labor-
consuming. The result of this step is a report of a security
incident with as much information as possible. Emphasis is
on accurate results, not quick results.

3 RELATEDWORK
Intrusion detection systems (IDS) employ different mechanisms to
detect potentially harmful communication. Rule-based IDS systems
use predefined patterns (signatures) that match suspicious pack-
ets in network communication. The signature is a structured set
of rules that is used to identify an attack [14]. Attacks are detected
by searching for these signatures in packets. Anomaly-based sys-
tems are based on a creation of long-term network traffic statistics,
or the use of artificial intelligence to obtain a common network
traffic model [6]. When the deviation of the actual communication
from the created profile is detected a system reports an attack alert.
IDS are optimized to perform a real-time detection; thus the com-
plexity and expressive power of the detection rules are limited.
While IDS produces an alert for a detected attack or abuse, the bur-
den of further work falls on the analysts who must collect evidence
within the network traffic data. This is usually a series of manual
activities during which the analyst filters captured traffic, decodes
the packets and collects relevant information from the packet’s
header and payload. Research has been done towards providing au-
tomated analysis procedures or aiding the process by visual analysis
methods.

3.1 Intrusion Detection Systems
One of the most widespread IDS tools is Snort 1. The system allows
administrators to search by string, binary data or regular expression.
The search is performed either in data within the same transport
streams or on a per-packet basis. Snort does not deal with the struc-
ture and semantics of application protocols. With Snort, we are not
able to find if there is an LDAP packet with the resulting code 90
that represents memory problems. If the system tries to find just
a value of 90 (or hexadecimal 0x5A), the result would contain many
false positives.

TheSuricata tool 2 has support for application protocol decoding,
although the list of supported protocols is quite small (around 13
protocols). Also, for the supported protocols, the tool defines only
very few fields. For example, only four fields are defined for protocol
ICMP, and for DNS protocol only one field is defined. On the other
hand, Wireshark defines up to 79 ICMP fields and 298 DNS fields.

The Bro tool [21] (currently known as Zeek 3) performs a deep
packet inspection of the traffic to detect known security threats.
Zeek performs an in-depth analysis of network communication
keeping an application-layer state which enables it to perform

1http://www.snort.org
2https://suricata-ids.org/
3https://www.zeek.org/

a more advanced analysis in comparison to traditional signature-
based IDSs. An event-driven scripting language makes it possible
to customize the system to one’s specific needs. The idea behind
Bro/Zeek is similar to the proposed system, but it differs in several
aspects. Firstly, extending the system with a new application pro-
tocol requires writing a new dissector, thus, similarly to Suricata,
Bro/Zeek supports just around 50 protocols, and not all protocol
fields are supported. Secondly, writing Bro scripts requires advanced
programming skills often not had by average network administra-
tors. Thirdly, while the scripting language is very powerful, to write
rules for non-trivial cases is not straightforward.

3.2 Network Traffic Analysis
Network traffic analysis corresponds to the examination of network
communication for the purpose of computer security, troubleshoot-
ing and system debugging. The most commonly used tool for man-
ual network traffic analysis is Wireshark 4 [2, 18, 19]. Wireshark
supports decoding of all standardized and widely used network pro-
tocols. The shortcoming of theWireshark tool is that it lacks any
advanced automation [5]. Also, the tool cannot provide a big pic-
ture view of the data without cognitive overloading of the user [8].
To overcome tedious work of network traffic analysis the analysts
and operators rely on automation scripts that reduce cost and cut
down the time required to complete the investigation. Information
visualization aids security analysts in detecting anomalous events
by increasing their situational awareness through the visual rep-
resentation of network flow [13]. Another tool, VisAlert, provides
an extensible visualization that can accept multiple data sources,
including IDS alerts and system log files [15]. Krasser et al [12] pro-
posed a tool that uses 3D animation to provide rich visualization
information on network communication.

When the traffic is encrypted the analyst cannot apply the tradi-
tional approach based on decoding and examination of individual
packets. In such a situation, traffic characterization is often the
only viable option. Encrypted traffic is characterized into different
categories, according to the type of traffic e.g., browsing, stream-
ing, etc. To do this, statistical or machine learning methods are
often used [4]. This approach is also effective for identification
of malware from the network behavior [22].

3.3 Rule-based Methods
There are also other network domains where administrators use
rule-based systems, for example in SCADA networks manage-
ment [25] or troubleshooting [16]. Also, these systems share the
same limitations: per-flow or per-packet analysis, they are not eas-
ily extendible, or they are using a language unknown to a typical
administrator. The rule-based approach is, of course, practicable
also outside the domain of computer network security. The pri-
mary purpose of the tool Yara 5 is the detection and classification
of malware samples in various sources (e.g., files, folders, processes).
Analysts can create rule sets based on the textual or binary pat-
terns that are transformed into a compiled form and then used
for the search in the specified entities. Yara can detect predefined
patterns in the files, but it does not provide a way how to more

4https://www.wireshark.org/
5https://virustotal.github.io/yara/

ECBS ’19, September 2–3, 2019, Bucharest, Romania Martin Holkovič, Ondřej Ryšavý, and Jindřich Dudek

comprehensively describe the relations between the data, and it
does not involve its structure and semantics. The Yara tool was
used for file system analysis as well as for memory analysis [3].

The proposed system is similar to the signature-based IDS but
has some significant differences. Signatures for IDS systems are
typically generated by the system creator or the community around
that system. To create a new signature, a significant effort is re-
quired [7]. Another limitation of IDS systems is that they work
on the flow-level [20]. Systems process each flow independently,
and therefore they usually search for events within an individ-
ual stream. However, it is very also necessary to be able to look
for the data across streams, because there are threats which distrib-
ute the traffic across multiple streams, e.g., malware which uses
a multi-band technique to hide from the detection [1]. Our proposed
system, however, can easily detect events spread across multiple
streams.

4 RULE-BASED NETWORK EVENTS FINDER
The proposed tool performs automatic analysis of packet traces
of network communication. The tool is driven by the collection
of rules that when evaluated are able to identify if a certain event
happened. As described in Section 2, we focus primarily on network
incidents, thus any identified event stands for the identified security
incident. However, the tool can also be used in other areas, such
as Network Diagnostics or PerformanceMonitoring. For this reason,
instead of referring to incidents, we use the more general term event
to describe the information we are looking for inside the captured
network packets.

The overall architecture of the system is illustrated in Figure 3.
With this architecture, an administrator will write event descrip-
tions in human-readable configuration files which the tool will
convert into an executable format (step 1). An administrator can
easily add, modify and delete event descriptions. After the tool
converts all configuration files, an external tool is used to convert
captured packets into the format suitable for further processing and
searching in them (step 2). Lastly, the tool takes converted event
descriptions one by one and tries to search for them inside the con-
verted packets (step 3). Based on the findings, the tool generates
an appropriate report.

Figure 3: An architecture andworkflowof the proposed tool.

The rest of this section (i) describes the format and language
of the event description files, (ii) discusses parsing of the input
PCAP files, and (iii) explains how the tool searches for events inside
the input data.

4.1 Rules language
The rule language is used by users to specify the matching condi-
tions and actions related to identified events. The rule language
represents a compromise between easy to use representation and
expressivity. Also, for expressions, the Wireshark’s display filter
language is utilized 6. It has two fold reasons. Firstly, the display
filter language is expressive enough to represent simple queries
to a collection of packets. Secondly, language is well-known and
easy to understand among network administrators.

Each event rule consists of a name, description, and the body
consisting of five attributes: group, packets, asserts, threshold and
report. Figure 4 shows an example of a rule, which describes how
to detect the SLAAC Duplicate Address Detection (DAD) attack.
The details and explanation of the meaning for each attribute is
given in the next subsection.

1 name: SLAAC DAD
2 descr ipt ion : P o s s i b l e Dup l i c a t e Address

De t e c t i on a t t a ck , f i n d a t t a c k e r from
NA sour ce MAC add r e s s .

3 group:
4 - icmpv6 . nd . ns . target_address icmpv6 . nd .

na . target_address
5 packets :
6 −NS: icmpv6 . type ==135 and ipv6 . s r c =="::"
7 −NA: icmpv6 . type ==136 and ipv6 . d s t =="::"
8 a s s e r t s :
9 - count (NS) > 0 and count (NA) > 0
10 threshold : 5
11 report : p a c k e t s

Figure 4: Event description for detection of the SLAAC
DAD attack.

4.1.1 Name and description. Name is an identification of the rule
which needs to be unique. A description is used to describe the event
in a human-understandable format. Both the name and the descrip-
tion are part of the created report.

4.1.2 Groups. The section group specify how the packets are split
into several disjunctive groups. The tool assigns packets into groups
based on the value of specified protocol fields. For example, when
the administrator specifies the source IP address (ip.src) as a pro-
tocol field, each IP address will have a separated group containing
packets which that IP address sent.

Figure 5 shows the format of the rule part group. If more than one
protocol field is specified on a single line, the tool takes protocol
fields one by one in the same order as specified and tries to find
the values for these fields. This process stops when the value is
found or when the packet does not contain any protocol value
from the line. If more than one line is specified, a packet must have

6https://www.wireshark.org/docs/dfref/

Automating Network Security Analysis at Packet-level by using Rule-based Engine ECBS ’19, September 2–3, 2019, Bucharest, Romania

at least one value for each line, and in that case, the tool marks
the group as a list of values (one line = one list element). Otherwise,
the packet will be ignored in future processing, because it does
not belong to any group. One exception is when the rule does not
contain any line and any protocol field. In that case, the tool assigns
all packets into a single “default“ group.

group:
- f i e ld_1 f i e ld_2 . . . f ie ld_N
- . . .

__

field_X - any Wireshark 's protocol field
name

Figure 5: Format of the event’s group section

4.1.3 Packets. Inside each group of packets, the tool tries to find
predefined packets. These predefined packets have a special mean-
ing for the event detection (e.g., special protocol field value or
amount of these packets). Each packet has its name and filter defi-
nition. The result is a list of packets fulfilling the filter.

Figure 6 shows the format of the rule part packets. Each packet is
defined by its unique name and by theWireshark’s display filter lan-
guage. This is the same filter which a network administrator would
use during a manual analysis using the toolWireshark. Therefore,
these filters can be copied from Wireshark or vice versa.

packets :
- name_1: f i l t e r _ 1
- . . .

__

name_X - the name will be used as a label
for packets in section 'asserts '.

Possible values: [a-zA-Z0 -9_-]+
filter_X - Wireshark 's display filter

Figure 6: Format of the event’s packets section.

4.1.4 Asserts. After the tool finished the search for the specified
packets, the tool evaluates the assert conditions. These conditions
define if the expected state (e.g., too many packets) was detected in-
side the group of packets. The assert language is based on theWire-
shark’s display filter language, but contains three improvements:

(1) possibility to get the number of detected packets. This is
implemented with function count() which takes the name
of the specified packet (from the Section 4.1.3) as the param-
eter. E.g., count(DNS) > 100;

(2) it is possible to use basic mathematical operations (+, -, *, /).
E.g., count(DNS)/count(all) > 0.5;

(3) searching for a specific field name can be limited only on spec-
ified packets from the section packets. E.g., DNS[udp.port]
== 53 will try to find value udp.port only inside detected
packets with name DNS. If no packet name is specified,
the search is focused on all packets in the group.

Figure 7 shows the format of the event’s asserts part together
with the three improvements. Name ’count’ is the name of the func-
tion, packets_name is the name of the defined packets from the
event packets section, and f ield_name is the name of the protocol
field from the Wireshark’s display filter language.

a s s e r t s :
- condition_1
- . . .

__

condition_X - Wireshark 's display filter
with possible extensions:

1) count(packets_name) - used as a
constant

2) math_sign - used as a operator
3) packets_name[field] - used as a

variable
count() - name of the function.
packet_name - name from part 'packets '.
math_sign - one of the following

mathematical signs: +, -, *, /
field - Wireshark 's protocol field name

Figure 7: Format of the event’s asserts section.

4.1.5 Threshold. Each group which fulfills all assert conditions
increases a counter designated to count all fulfilling groups. This
counter is compared with a threshold and based on whether it is
equal or greater than the threshold, the tool generates a report.

Figure 8 shows a very simple format of the threshold. Only one
integer value is specified.

threshold : v a l u e
__

value - Numeric contant. Possible values:
[0-9]+

Figure 8: Format of the event’s threshold section.

4.1.6 Report. Section report specifies how detailed the generated
report will be. For example, it is not useful to export all packets
which are part of a large DDoS attack. Three levels are defined: event
- only data from the section threshold are used, groups - all group
values which contribute to the final report are added and packets -
each group reported will also contain a list of all the packets inside
that group.

Figure 9 shows the format of the report section. Only one string
with one of the three predefined values is defined.

report : l e v e l
__

level - Specifies the detail of generated
report. Possible values: event , groups ,
packets

Figure 9: Format of the event’s report section.

ECBS ’19, September 2–3, 2019, Bucharest, Romania Martin Holkovič, Ondřej Ryšavý, and Jindřich Dudek

4.2 Packets parser
The external tool called TShark 7 (command line version of theWire-
shark tool) is used to parse captured network communications. We
use an existing tool to avoid the necessity of creating parsers (or dis-
sectors) for individual protocols. As TShark provides the same set
of dissectors as Wireshark, we can immediately support almost
all current network protocols in the rules. Using TShark approach
comes with several pros and cons:

+ using an external well-maintained tool decreases the require-
ments for the created tool;

+ tunnel data can also be processed as if the tunnels were not
used at all;

+ supports a large number of protocols (over 3000) as well
as the number of fields that can be obtained from the proto-
cols (over 227000) - valid for version 2.6.3.

+ processed data can be exported into the JSON format so that
later processing can directly access the values of the protocol
fields;

+ the fields of the individual protocols are labeled in the same
way as inWireshark, so the administrator does not need any
special documentation to find the names of the fields;

+ TShark does not just parse the data, it also analyses it. For ex-
ample, it detects packet retransmission or calculates appli-
cation statistics;

- if some protocol is not supported by TShark (usually a pro-
prietary protocol), adding support for it requires very good
programming skills;

- TShark is not fast at analyzing large PCAP files (gigabytes
and more).

The description and options of TShark can be found in its docu-
mentation. Just for clarification of how the JSON from the TShark
looks like, Figure 10 shows an example of the output. The JSON
contains protocol field values from all network protocols in a key-
value data format. Hierarchy of the JSON data attributes directly
represents the structure of the packet protocols.

Figure 10: Excerpt from the TShark example output.

7https://www.wireshark.org/docs/man-pages/tshark.html

4.3 Rule checker
When the tool converts PCAP file and all rules into a format suitable
for further processing, the tool starts searching for the events with
the last part of the architecture - interpreter engine. The interpreter
engine takes the rules one by one and tries to find whether some
rule is matched inside the data or not. Based on the rule definition,
the engine creates an adequate report. The engine consists of five
parts as shown in Figure 11. Each part corresponds to one section
from the event rule definition (Section 4.1). This is illustrated us-
ing boxes in the Figure together with rule lines which are copied
from the rule definition example in Figure 4. Following subsections
describe these five engine parts.

4.3.1 Grouping packets. The goal of the packet grouping part is
to separate packets into groups according to the specified attributes
(see Section 4.1.2). If the packet has multiple values for the de-
fined attribute, the same packet will be placed into multiple groups.
This separation into groups allows processing of packets from one
group independently from packets in other groups. The attribute
can be any field name whichWireshark defines. Example of such
an attribute is a source IP address (ip.src) or TCP stream index
(tcp.stream). In the case the packet does not contain a specified
attribute, the tool ignores it during further processing. There is one
exception to this rule, the situation when an administrator does
not specify any attribute at all. In that situation, all packets are part
of the same “empty“ group.

It is possible to specify more than one attribute for dividing
packets into groups. There are twomodes in which an administrator
can specify multiple attributes - AND and OR and these modes can
be combined. In the OR mode, the tool is trying to find the first
attribute inside the data and continues looking for other attributes
only if there is no match. To continue the processing of the packet,
the tool must find at least one attribute. With the AND mode,
the tool must find all specified attributes. Another difference is that
the tool will identify these groups using a list of values instead
of one value.

Figure 11 shows an example with two attributes in OR mode
(both are specified in the single row as can be seen in Figure 4):
icmpv6.nd .ns .tarдet_address and icmpv6.nd .na.tarдet_address .
These attributes group SLAAC Neighbor Solicitation (NS) messages
with Neighbor Advertisement (NA) messages according to the re-
quested address. Example of group identification is value 2001 :
abcd :: 6064 : dec3 : 35e8 : 3bb0.

4.3.2 Searching specific packets inside groups. After the tool assigns
each packet into the appropriate group, the tool tries to search
for specific packets inside them. All packets fulfilling the search
condition are returned. As described in Section 4.1.3, packets are
specified using the Wireshark’s display filter language, and their
evaluation is the same as in Wireshark.

In the example from Figure 11, the tool tries to find two sets
of packets (NS and NA) specified by conditions NS = ... and NA =
..., For the group 2001 : abcd :: 6064 : dec3 : 35e8 : 3bb0, the NS
will contain all NS messages which check the availability of address
2001 : abcd :: 6064 : dec3 : 35e8 : 3bb0 and NS will contain replies
for NS messages.

Automating Network Security Analysis at Packet-level by using Rule-based Engine ECBS ’19, September 2–3, 2019, Bucharest, Romania

}group
icmpv6.nd.ns.target_address

icmpv6.nd.na.target_address

2001:abcd:: ... :921f

2001:abcd:: ... :3bb0

None

(, ,)

(, ,)

packets

...
ns:
icmpv6.type == 135 and
ipv6.src == "::"

na:
icmpv6.type == 136 and
ipv6.dst == "::"

()

(,) }asserts
count(ns) > 0 and
count(na) > 0

}threshold
>= 5

report
packets

Figure 11: The rules evaluation engine which consists of five parts. On the left side are parsed packets which are the input of
the engine and the output is report placed on the right side. Bellow each part are lines from the example code in Figure 4.

4.3.3 Checking asserts for each group. The event can contain sev-
eral assert rules. All of the assert rules must be valid to consider
a group as the group which fulfills the assert rules. Checking
whether assert rules are valid or not is very similar to searching
packets in groups. As was described in Section 4.1.4, asserts use
an extended the Wireshark’s display filter language. This language
extension modifies how the tool evaluates the assert filter. There
are three language extensions:

(1) It is possible to work with information about how many
packets the tool detected inside a group. This information
is calculated using the function count(packet_name). Before
the evaluation of the assert conditions, all these functions are
executed and replaced by their results (numeric constant).

(2) When looking for a specific field inside the packets, Wire-
shark uses just the name of the protocol field (e.g., ip.src =
8.8.8.8). When this code is placed in the assert condition,
the tool will check only packets from the group. However, it
is also possible to limit these searches for values only to pack-
ets which the tool found in the packets section. For example,
during the asserts evaluation with the code query[ip.src] =
8.8.8.8, the tool will supplement only packets fulfilling the
query filter.

(3) An administrator can use basicmathematical operationswith
theWireshark fields, functions and constants. For example,
an administrator can use them for calculating the ratio be-
tween two sets of packets. With the code count(X)/count(Y)
> 2, the tool evaluates the condition as true only if the
amount of packets fulfilling the packet filter X is at least
twice as many as packets fulfilling the packet filter Y.

In the example in Figure 11, the assert rule is count(NS) > 0 and
count(NA) > 0, which specifies, that there must be at least one NS
message and one NA message for the same queried IPv6 address.

4.3.4 Counting the group matches. After the tool evaluates each as-
serts condition for each group, the tool checks the amount of the ful-
filling groups. The result is a single numeric value which the tool
compares with a defined threshold. If the threshold condition is met,
the tool located the event in the input data and starts the generating
report process.

In the example from Figure 11, we are counting how many ver-
ified addresses ended as duplicated. If this number is equal to 5
or higher, the tool detects the DAD attack.

4.3.5 Generating report. If the tool detects an event, it generates
an appropriate report. The report can have three levels of detail
(as described in Section 4.1.6): event (minimum details), group,
and packets (maximum details).

Figure 12 shows a report from our DAD attack example with
three vertical lines which illustrate, which lines the report would
contain with a different level of detail. This is also a result of the ex-
ample introduced in Figure 1; the tool detected SLAAC DAD attack.

Figure 12: The output of the tool which contains a detected
DAD attack. The vertical lines represent how the report
would look with different requested detail.

5 CONCLUSION
Packet-level network analysis is a very time-consuming activity
requiring good knowledge of network protocols. An administrator
usually uses the packet analyzer which performs capturing net-
work data, dissecting network packets and providing other related
information. This paper describes an approach to automating this
process.

Signature-based IDS tools provide similar functionality to our
tool. The problems with IDS systems are that they usually require

ECBS ’19, September 2–3, 2019, Bucharest, Romania Martin Holkovič, Ondřej Ryšavý, and Jindřich Dudek

programming knowledge for extending their capabilities, they sup-
port only a limited number of protocols and their detection capa-
bilities are limited to flow-scope or packet-scope analysis.

We have proposed an interpreter architecture, which uses a rule-
based approach for defining security events. We are using TShark
to parse the input data, which removes the necessity of writing
custom protocol parsers. The tool uses a format which was inspired
by theWireshark’s display filter language. This format allows ad-
ministrators to create or modify a rule without any programming
skills with the knowledge they already have. The tool is supposed
to fill in a missing spot for automation framework for security ana-
lysts that must analyze packet traces related to the incident based
on alerts generated by IDS tools. The presented tool automatically
performs the analysis using defined rules and identifies the location
using evidentiary material.

Most of the currently used tools search for data on a per-packet
or per-flow basis. Our tool is capable of searching for events across
multiple flows without any limitations which makes the searching
process more flexible. Because searching without these limitations
is very expensive, the tool is not designed to fully replace already
existing IDS solutions which are less flexible, but capable of pro-
cessing much more data.

We have created a proof-of-concept implementation, which cov-
ers the entire analysis process. The event rule files are transformed
into a format suitable for further processing. After that, the tool uses
the external tool TShark (command line version of theWireshark
tool) to parse the input PCAP file and to save them into the JSON
format. The final stage of the tool takes this JSON file and applies
available rules to identify the security threats in the input data.
At the end of the analysis, the tool generates a report.

To demonstrate the functionality of the implemented prototype,
we have created a specification of 35 different security events, e.g.,
MitM ARP attack, HSRP protocol configuration with nonoptimal
configuration, network scanning, using old-unsecured TLS version
and so on.

The future work will focus on enriching generated output. For ex-
ample, the output should contain a Wireshark’s display filter ex-
pression which can be used by an administrator for manually con-
firming the detected event in Wireshark. Also, the language should
be enriched with new features, for example, usual statistical and
aggregation functions. To be practically usable, optimizing the per-
formance of the tool is necessary.

ACKNOWLEDGMENTS
This work was partially supported by the BUT FIT grant FIT-S-17-
3964, "ICT tools, methods and technologies for smart cities".

REFERENCES
[1] MITRE ATT&CK. 2019. Technique: Multiband Communication. https://attack.

mitre.org/techniques/T1026/
[2] Laura Chappell. 2017. Wireshark 101: Essential Skills for Network Analysis-

Wireshark Solution Series. Laura Chappell University, USA.
[3] Michael Cohen. 2017. Scanning memory with Yara. Digital Investigation (2017).

https://doi.org/10.1016/j.diin.2017.02.005
[4] Gerard Draper-Gil, Arash Habibi Lashkari, Mohammad Saiful Islam Mamun,

and Ali A. Ghorbani. 2016. Characterization of Encrypted and VPN Traffic
using Time-related Features. In Proceedings of the 2nd International Conference
on Information Systems Security and Privacy - Volume 1: ICISSP. 407–414. https:
//doi.org/10.5220/0005740704070414

[5] Alia Yahia El Sheikh. 2018. Evaluation of the capabilities of Wireshark as network
intrusion system. Journal of Global Research in Computer Science 9, 8 (2018), 01–
08.

[6] Pedro Garcia-Teodoro, Jesus Diaz-Verdejo, Gabriel Maciá-Fernández, and Enrique
Vázquez. 2009. Anomaly-based network intrusion detection: Techniques, systems
and challenges. computers & security 28, 1-2 (2009), 18–28.

[7] Ibrahim Ghafir, Vaclav Prenosil, Jakub Svoboda, and Mohammad Hammoudeh.
2016. A survey on network security monitoring systems. In 2016 IEEE 4th Inter-
national Conference on Future Internet of Things and Cloud Workshops (FiCloudW).
IEEE, 77–82.

[8] John R Goodall, Wayne G Lutters, Penny Rheingans, and Anita Komlodi. 2006.
Focusing on Context in Network. Security April (2006), 72–80.

[9] Rick Hofstede, Pavel Čeleda, Brian Trammell, Idilio Drago, Ramin Sadre, Anna
Sperotto, and Aiko Pras. 2014. Flow monitoring explained: From packet capture
to data analysis with netflow and ipfix. IEEE Communications Surveys & Tutorials
16, 4 (2014), 2037–2064.

[10] Computer Economics Inc. 2007. 2007 malware report: The economic impact
of viruses, spyware, adware, botnets, and other malicious code. http://www.
computereconomics.com

[11] Karen Kent, Suzanne Chevalier, Tim Grance, and Hung Dang. 2006. Guide to
integrating forensic techniques into incident response. NIST Special Publication
10, 14 (2006), 800–86.

[12] Sven Krasser, Gregory Conti, Julian Grizzard, Jeff Gribschaw, and Henry Owen.
2005. Real-time and forensic network data analysis using animated and coordi-
nated visualization. In Proceedings from the 6th Annual IEEE System, Man and
Cybernetics Information Assurance Workshop, SMC 2005. https://doi.org/10.1109/
IAW.2005.1495932

[13] Kiran Lakkaraju, William Yurcik, and Adam J Lee. 2004. NVisionIP: NetFlow
Visualizations of System State for Security Situational Awareness. Proceedings of
the 2004 ACM workshop on Visualization and data mining for computer security -
VizSEC/DMSEC ’04 (2004). https://doi.org/10.1145/1029208.1029219

[14] Hao Li, Guangjie Liu, Weiwei Jiang, and Yuewei Dai. 2015. Designing snort
rules to detect abnormal dnp3 network data. In 2015 International Conference on
Control, Automation and Information Sciences (ICCAIS). IEEE, 343–348.

[15] Yarden Livnat, Jim Agutter, Shaun Moon, Robert F. Erbacher, and Stefano Foresti.
2005. A visualization paradigm for network intrusion detection. In Proceedings
from the 6th Annual IEEE System, Man and Cybernetics Information Assurance
Workshop, SMC 2005. https://doi.org/10.1109/IAW.2005.1495939

[16] GeokHong Phua Lihui Chen Ming Luo, Danhong Zhang. 2011. An interactive
rule based event management system for effective equipment troubleshooting.
Proceedings of the IEEE Conference on Decision and Control 8, 3 (2011), 2329–2334.
https://doi.org/10.1007/s10489-005-4605-0

[17] Srinivas Mukkamala and Andrew H Sung. 2003. Identifying significant features
for network forensic analysis using artificial intelligent techniques. International
Journal of digital evidence 1, 4 (2003), 1–17.

[18] Vivens Ndatinya, Zhifeng Xiao, Vasudeva Rao Manepalli, Ke Meng, and Yang
Xiao. 2015. Network forensics analysis using Wireshark. International Journal of
Security and Networks 10, 2 (2015), 91–106.

[19] Yoram Orzach. 2013. Network Analysis Using Wireshark Cookbook. Packt Publish-
ing Ltd.

[20] Samuel Patton, William Yurcik, and David Doss. 2001. An AchillesâĂŹ heel in
signature-based IDS: Squealing false positives in SNORT. In Proceedings of RAID,
Vol. 2001. Citeseer.

[21] Vern Paxson. 1999. Bro: a system for detecting network intruders in real-time.
Computer networks 31, 23-24 (1999), 2435–2463.

[22] Christian Rossow, Cj Dietrich, Herbert Bos, Lorenzo Cavallaro, Maarten Van
Steen, Felix C. Freiling, and Norbert Pohlmann. 2011. Sandnet: Network Traffic
Analysis of Malicious Software. Proceedings of the First Workshop on Building
Analysis Datasets and Gathering Experience Returns for Security (BADGERS ’11)
(2011), 78–88. https://doi.org/10.1145/1978672.1978682

[23] Sankardas Roy, Charles Ellis, Sajjan Shiva, Dipankar Dasgupta, Vivek Shandilya,
and Qishi Wu. 2010. A survey of game theory as applied to network security. In
2010 43rd Hawaii International Conference on System Sciences. IEEE, 1–10.

[24] Anna Cinzia Squicciarini, Giuseppe Petracca, William G Horne, and Aurnob
Nath. 2014. Situational awareness through reasoning on network incidents. In
Proceedings of the 4th ACM conference on Data and application security and privacy.
ACM, 111–122.

[25] Yi Yang, Keiran McLaughlin, Tim Littler, Sakir Sezer, and HF Wang. 2013. Rule-
based intrusion detection system for SCADA networks. (2013).

[26] Wang Zhenqi and Wang Xinyu. 2008. Netflow based intrusion detection system.
In 2008 International conference on multimedia and information technology. IEEE,
825–828.

https://attack.mitre.org/techniques/T1026/
https://attack.mitre.org/techniques/T1026/
https://doi.org/10.1016/j.diin.2017.02.005
https://doi.org/10.5220/0005740704070414
https://doi.org/10.5220/0005740704070414
http://www.computereconomics.com
http://www.computereconomics.com
https://doi.org/10.1109/IAW.2005.1495932
https://doi.org/10.1109/IAW.2005.1495932
https://doi.org/10.1145/1029208.1029219
https://doi.org/10.1109/IAW.2005.1495939
https://doi.org/10.1007/s10489-005-4605-0
https://doi.org/10.1145/1978672.1978682

	Abstract
	1 Introduction
	1.1 Contribution

	2 Security Analysis of Network Communication
	3 Related Work
	3.1 Intrusion Detection Systems
	3.2 Network Traffic Analysis
	3.3 Rule-based Methods

	4 Rule-based Network Events Finder
	4.1 Rules language
	4.2 Packets parser
	4.3 Rule checker

	5 Conclusion
	Acknowledgments
	References

