
Adaptive Execution Planning in Workflow
Management Systems

Marta Jaros
3rd year, full-time study

Supervisor: Jiri Jaros

Centre of Excellence IT4Innovations, Faculty of Information Technology, Brno University of Technology
Bozetechova 1/2, 612 66 Brno, Czech Republic

martajaros@fit.vutbr.cz

Abstract—Workflow management systems try to move grid,
cloud and high performance computing (HPC) services closer
to scientific and industrial community by providing a user-
friendly interface enabling definition of complex workflows.
Workflows provide a formal way to define and automate multi-
step procedures reflecting real-world phenomena. However, this
still places demands on users to decide how to execute particular
tasks in workflows. k-Dispatch, a platform providing automated
tasks execution, planning and monitoring, focuses on selected
workflows from medical environment. For security reasons, only
in-house code binaries tuned for specific HPC resources are
used. k-Dispatch screens out users from the complexity of HPC
systems. This paper describes how the presented framework deals
with the task execution planning. Static planning using default
execution parameters may not be sufficient for the effective
execution due to time and cost constraints. Adaptive planning
discussed in this paper may improve this process.

Keywords—workflow management system, automated execu-
tion planning, adaptive planning, job scheduling simulator

I. INTRODUCTION

Workflow management systems enable users to use grid,
cloud and high performance computing (HPC) services easily.
These systems (see [1] for related state-of-the-art) describe
complex problems using workflows. Workflows may be pre-
sented as directed weighted graphs providing a formal way
to define and automate multi-step computational procedures.
The graph nodes present individual tasks that may differ in
their nature as well as computational demands. The nodes
also encapsulate lower level details about the task specific
parameters. HPC environments, however, are highly dynamic
and heterogeneous. Thus, efficient manual task execution,
its tuning to the specific HPC, monitoring and dealing with
various types of failures is very challenging even for expert
users. Since execution planning is very time consuming, the
task execution throughput may be very limited.

The presented framework called k-Dispatch [1], [2] is trying
to respond to this problem. k-Dispatch mainly focuses on
computational problems related to medical environment and
uses only predefined workflows. Although workflow structures
are predefined, they have a level of adaptivity based on the
provided input data. k-Dispatch can be extended to support
other workflows, but due to security reasons, only a system

allocation The total amount of resources on a given HPC
assigned to a particular recipient. In k-Dispatch: It
is a database record holding a pointer to the group
of users (owing the allocation), a pointer to the HPC
where the allocation is active, core hours assigned to
the allocation and core hours left, cost per core hour,
allocation state, and dates of the start and expiry.

code type Generic name for the calculated task. There may
exist several binaries tuned for different HPCs and
queues. The binary may affect the execution time
and cost.

queue HPC queue. It is an ordered set of tasks. Queue per-
forms an access to a collection of computing nodes
(i.e. a set of specific hardware cores). Queues differ
in hardware resources, priority definitions, available
number of nodes, wall-clock time, etc.

TABLE I: Term definitions.

administrator can implement them. The end users only provide
input data and workflow specific parameters.

The users are offered to use a user-friendly interface. k-
Dispatch provides a ”run and forget” approach where the
users are completely cut off from the complexity of current
HPC systems.

The following text operates with specialized terms which
explanation can be found in Table I.

To be able to plan the workflow execution, required code
types (e.g., ultrasonic simulation, thermal simulation, etc.)
are hard-coded in the structure of each supported workflow.
There may be available several binaries for each code type,
accessible only on some HPCs, selected queues and hardware
architectures which they were tuned to. Moreover, the cost
factor influencing the final computational cost may vary. All
mentioned information is stored in the k-Dispatch database.

Currently, k-Dispatch allows a kind of static execution
planning, similar to many related tools [1], where tasks in
a given workflow are assigned default binaries and execution
parameters. This selection, however, does not reflect suitability
of different binaries for a given problem instance (i.e. the code
type), computational cost, input data size or actual utilization
of the cluster. Static planning may cause ineffective tasks
execution, i.e. long waiting times in queues and long execution
times.

However, the goal of my PhD thesis is to plan the workflow



execution more effectively to (1) satisfy the time-constrained
result delivery requirements, and (2) minimize the computa-
tional cost. Thus, adaptive execution planning may strongly
improve the current solution and better utilize the current HPC
system as well. The design of this new approach is described
in this paper along with the goals and open problems.

II. THESIS OBJECTIVES

The hypothesis, open problems and thesis goals have been
described in detail in [1]. Since the last year, the platform
prototype has been implemented and tested using a set of
unit tests locally, and on IT4Innovations’ clusters. Currently, a
decision making process for selecting an appropriate execution
configuration for each task is being implemented. This process
is a base for the adaptive execution planning.

Briefly, the hypothesis of my PhD thesis says ”Contem-
porary complex HPC systems do not enable common end
users an easy and efficient use without having deep and
proper knowledge. An appropriate interface and automated
simulation planning is supposed to (a) increase the processing
efficiency, and (b) save resources, reduce the price of calcu-
lation or decrease computational time.”.

A short summary of the thesis goals is given below.
1) Create a prototype of the software providing plan-

ning, executing and monitoring.
2) Investigate convenient heuristics and description for-

malisms.
3) Support heterogeneous architectures (CPUs, GPUs,

other accelerators) within the same cluster.
4) Implement a logic responsible for choosing the most

favorable computational machine and an optimal task
run configuration.

5) Provide an effective workflow planning with the latency
minimalization or the throughput maximalization.

6) Test this software on two selected medical applications.
7) Evaluation of the benefits and limits.
Thesis goals 1) and 3) have been fulfilled while goal 2) has

been extended for the decision making Algorithm 1. The future
work focuses on the run configuration selection techniques and
their evaluation (goal 4). This is discussed more in detail in
sections III and V.

Here, the features being in progress now are listed:
• Hard-coded simple workflows reflecting a single program

type only. This will provide us with enough scaling
(performance) data for the decision making process of
the run configuration selection.

• Implementation of the method returning the number of
actually free nodes in the cluster. Cluster utilization
monitoring may strongly improve the decision making
process.

Here, a list of new features or improvements follows:
• Remote tasks monitoring and detection of faulty tasks on

the HPC site finished. Faulty tasks and their dependencies
are resubmitted.

• Fundamental accounting policy implemented.

• Task graphs generation and evaluation reimplemented.
This is discussed more in detail in section III.

• A support of logic responsible for the allocation (remote
machine) and tasks’ run configuration selection. For more
details, see section III.

• Heterogeneous architectures support (CPUs, GPUs, other
accelerators) within the same cluster.

• Two dummy workflows containing tasks that can be exe-
cuted concurrently, and tasks with dependencies created.
One of the workflows runs a simple Python program
with a default run configuration (default allocation, com-
putational queue, number of cores, etc.). The second
one receives a real data set and runs C, Python and
Matlab codes. The default run configuration for each
task is selected as well. Failures to these workflows were
injected and the ability to deal with them was successfully
tested.

III. IMPLEMENTATION

This section discusses the decision making process in a task
run configuration, points out open problems and shows ideas
how to deal with them.

Currently, k-Dispatch allows the static task planning only.
For each task in the workflow, a default binary for the specific
code type and its default run configuration are selected. This
approach enables users to run their workflows without any
advanced knowledge of the current HPC service, however, the
tasks may not be executed efficiently and may spend a long
time by waiting in queues (i.e. waiting for free time slots and
computational resources). Inappropriate execution parameters
influence the code scaling and the execution time.

The solution is to implement an adaptive execution planning
and a decision making process that will choose an appropriate
run configuration for each task based on collected historical
performance data and current cluster utilization.

The first attempt is to implement a one-pass decision making
process. The run configuration will be optimized for each task
independently. However, the implementation of a multi-pass
process in the future may better optimize run configurations
for the whole workflow.

Following constraints shall be considered:
• Execution planning is time-constrained since the HPC

environment is highly dynamic and changes very quickly.
To reduce the dynamism, dedicated resources may be
used, however, the computational cost may be higher.

• In order to provide a quality of service, workflow calcula-
tions are time-constrained. Thus, it is very undesirable to
have tasks waiting in queues very long due to unsuitable
run configurations.

Let’s consider to have collected performance data for each
code type. Available code types and binaries correspond to
predefined use-cases (see Figure 1). To give an idea what
affects the execution time of our simulations from the input
data point of view, here’s a list of items: input data size,
number of time steps, length of a time step, medium properties,
used binary and cluster, and a number of nodes.



Algorithm 1: Adaptive execution planning algorithm

Presumptions:
1 Consider a set of allocations A+ ⊆ A the user can use.
2 All possible binary executables for a ∈ A+ are defined

as D ∈ (B1, B2, . . . , Bn), where n is the number of
code types within the workflow.
Bi = {b1, b2, . . . , bm} is a set of available binaries
for a given code type. Bi may be an empty set.

3 p is a price function returning the aggregated
computational cost of the workflow.
p : G× C ×D → R+.

4 t is a time function returning the aggregated execution
time of the workflow. t : G× C ×D → R+.

5 Workflow evaluation is defined as R+ × R+ → R+

and may be calculated using the formula
f = α · p+ (1− α) · t where α is a selectable ratio
prioritizing the minimal computational cost or the
execution time.

6 Best evaluated workflow is given by
argmin(c∈C,d∈D) f .

Algorithm :
1 Create a workflow G = (V,E) from the workflow

template and input data. V is a set of tasks and
E ⊆ V × V is a set of task dependencies.

2 Select candidate allocations C = {c ∈ A+ |
c.status == active ∧ c.hours left > 0.0}

3 Generate and evaluate workflows for all combinations
of candidate allocations C and binary executables D.

Since collected performance data may be sparse and in-
complete (e.g. missing measurements for particular input data
sizes), the nearest suitable record will be selected and used
for the execution planning. The records should also be filtered
by their age using moving windows. It is not very convenient
to use records older than three months, for example. Later,
interpolation techniques, such as a polynomial interpolation,
or machine learning methods may be used on collected per-
formance data.

The wall-clock time determines the maximum time the
task can be assigned to remote computational resources. This
time is determined by the execution time obtained from the
historical performance data, selected number of cores and a
load balancing constant (e.g. 1.2). This constant is expected to
balance small fluctuations in the code and cluster performance.

A couple of ideas may be implemented in the development:

• An ability to change a run configuration of already
submitted tasks (that are waiting in queues) according
to actual cluster utilization.

• Change slightly the run configuration of a few tasks of
the same kind to bring a bit of diversity into the collected
data and enable to explore better solutions.

In other words, the goal of the discussed decision making
process is to find a suitable allocation and execution configura-

tion in order to minimize computational cost of the calculated
workflow while meeting given time constraints. The idea is
described in Algorithm 1.

IV. TESTING

While working on the adaptive execution planning process,
a question about the evaluation of the selected run config-
uration appeared. Due to many reasons such as the cost of
resources, the reliability, the varying background load or the
dynamic cluster behavior, the experimental evaluation cannot
be mostly performed on the real systems. Moreover, to obtain
reliable results, multiple workflows with various run configu-
rations need to be performed using the same and controllable
conditions that simulate different real-life scenarios which is,
however, often unreachable. For this purpose, a short research
in the latest job scheduling simulators emulating real HPC
environments has been done (see section V).

The simulator will be used to evaluate the run configuration
at first. We can simulate both, static planning using default bi-
naries and settings, and various versions of adaptive planning.
This should give a hint whether the proposed strategy may be
useful in real systems. For this purpose, HPC workload traces
need to be acquired.

Subsequently, the testing will be provided on real HPC
systems. In this step, the calculations will be observed for
unexpected situations.

Firstly, testing will be performed on smaller workflows
consisting of one or two tasks. After this being tuned, the
algorithm will be tested against bigger and real-world work-
flows (see Figure 1).

V. RELATED WORK

An extensive research in the workflows management sys-
tems and HPC schedulers was introduced in [1]. Since the
need to test the selection of run configurations outside the
real cluster environment emerged, a brief research in cluster
scheduling simulators follows here.

Simple job scheduler simulators often provide a detail
model of the queuing behavior as the jobs arrive at the system
upon submission, wait for available resources, start their exe-
cution, and eventually leave the system upon their completion.
For example, PySS1 is a trace-driven scheduler simulator.
It implements a couple of scheduling algorithms, including
several backfilling ones. The problem with simple simulators
is that they do not really model the target HPC system or
the runtime behavior of the applications. PySS takes the job
runtime directly from the job trace, although in reality a job’s
runtime should be affected by the specific resources allocated
to the job and by the application’s runtime behavior, which can
be affected by other jobs running simultaneously [3]. Thus,
more sophisticated simulators need to be used instead.

Alea 4 [4] is an event-based, the GridSim toolkit [5] based,
grid and cluster scheduling simulator. The simulator is able
to deal with common problems related to the job scheduling

1https://code.google.com/archive/p/pyss/



DPL

Ultrasonic

DPL

Ultrasonic

DPL

DPL

Planning 

Simulation

Simulation

File

*DPL = Data Processing Layer

Thermal

DPL

DPL

Simulation

Result 
File

*

*

DPL

Ultrasonic

DPL

Ultrasonic

DPL

DPL

Planning 

Simulation

Simulation

File

Thermal

DPL

DPL

Simulation

Result 
File

*

*

DPL

Ultrasonic

DPL

Ultrasonic

DPL

DPL

Planning 

Simulation

Simulation

File

Thermal

DPL

DPL

Simulation

Result 
File

*

*

(a) The Neurostimulation workflow.

DPL

Ultrasonic

DPL

Ultrasonic

DPL

DPL

Planning 

Simulation

Simulation

File

*DPL = Data Processing Layer

Thermal

DPL

DPL

Simulation

Result 
File

*
DPL

Ultrasonic

DPL

Ultrasonic

DPL

DPL

Planning 

Simulation

Simulation

File

*
DPL

Ultrasonic

DPL

Ultrasonic

DPL

DPL

Planning 

Simulation

Simulation

File

*

(b) The HIFU (High Intensity Focused Ultrasound) workflow.

Fig. 1: Figures show generic templates of two different medical applications. According to the planning file, the specific
structure of the workflow is created. This structure is planned and executed. Gray blocks marked with a star may be replicated
to extend the fundamental workflow structure. DPL is a data processing layer.

like the heterogeneity of jobs, resources, and the dynamic
runtime changes such as the arrivals of new jobs or the
resource failures and restarts. The main part of the simulator
is a complex scheduler which incorporates several common
scheduling algorithms working either on the queue or the
schedule (plan) based principle. The latest version of Alea
uses a dynamic workload adjustment technique enabling to
model user-to-system interactions properly. The input is still a
static workload (historical workload traces extracted from the
HPC itself, or from a public workload trace repository) but
transformed into the dynamic one afterwards.

Performance Prediction Toolkit (PPT) [3] is a full-scale
HPC simulator.It can use synthetic workload models or adopt
job traces from existing HPC workload archives. The simulator
implements a couple of commonly used scheduling algorithms,
however, it does not include backfilling algorithms.

Other complex frameworks for studying grids, clouds, HPC
or peer-to-peer systems have been developed. However, ma-
jority of these projects seem to be inactive or abandoned. [4]

VI. CONCLUSIONS

k-Dispatch is a workflow manager, developed in Python,
providing workflows automated execution planning and moni-
toring. It completely screens out users from the complexity of
current HPC systems. Presented version of k-Dispatch enables
users to execute predefined workflows only, using fine tuned
codes for available HPCs. The users provide k-Dispatch with
input data only. k-Dispatch’s current state and a progress in
development within the last year has been presented in this
paper. Actually addressed problems have been described and
ideas how to deal with them presented.

Since the last year, thesis goals 1) and 3) have been satisfied.
The goal 2) has been extended for the algorithm describing the
decision making process in adaptive execution planning which

introduces a novel approach in related tools. At this time, the
goal 4) is of the highest priority. [1]

Next steps in the development are to (1) implement simple
workflows to collect scaling data for various code types, (2)
implement the presented logic to select the run configuration,
(3) study the selected job scheduling simulator (Alea 4), (4)
evaluate the implemented logic and its run configuration se-
lections on both, simple and real-world workflows, and finally
(5) execute tested workflows in a real HPC environment.

ACKNOWLEDGMENT

This work was supported by the FIT-S-17-3994 Advanced
parallel and embedded computer systems project. This work
was supported by The Ministry of Education, Youth and
Sports from the National Programme of Sustainability (NPU
II) project IT4Innovations excellence in science - LQ1602
and by the IT4Innovations infrastructure which is supported
from the Large Infrastructures for Research, Experimental
Development and Innovations project IT4Innovations National
Supercomputing Center - LM2015070.

REFERENCES

[1] M. Jaroš, “Scientific workflows management,” in Počı́tačové architektúry
& diagnostika PAD 2018. University of West Bohemia in Pilsen, 2018,
pp. 25–28.

[2] M. Čudová, “Framework for planning, running and monitoring cooperat-
ing computations,” in Počı́tačové architektúry & diagnostika PAD 2017.
Slovak University of Technology in Bratislava, 2017, pp. 20–23.

[3] M. A. Obaida and J. Liu, “Simulation of HPC job scheduling and large-
scale parallel workloads,” in 2017 Winter Simulation Conference (WSC).
IEEE, dec 2017, pp. 920–931.

[4] D. Klusacek, S. Toth, and G. Podolnikova, “Complex Job Scheduling
Simulations with Alea 4,” CEUR Workshop Proceedings, vol. 1828, pp.
53–59, 2017.

[5] R. Buyya and M. Murshed, “GridSim: a toolkit for the modeling and
simulation of distributed resource management and scheduling for Grid
computing,” CONCURRENCY AND COMPUTATION: PRACTICE AND
EXPERIENCE Concurrency Computat.: Pract. Exper, vol. 14, pp. 1175–
1220, 2002.


