
Extending Networking Curriculum with Applied
Artificial Intelligence

Petr Matoušek
Faculty of Information Technology

Brno University of Technology
Brno, Czech Republic
matousp@fit.vutbr.cz

Ondřej Ryšavý
Faculty of Information Technology

Brno University of Technology
Brno, Czech Republic

rysavy@fit.vutbr.cz

Ivana Burgetová
Faculty of Information Technology

Brno University of Technology
Brno, Czech Republic
burgetova@fit.vutbr.cz

Abstract—Artificial Intelligence (AI) and related technologies
like Data Mining, Machine Learning or Neural Networks became
very popular in recent years. Many IT companies today require
graduated students to understand and be able to apply these
technologies. Application potential of AI is not limited only
to robotics, image processing or intelligent agents, but also in
engineering areas like computer networking and communication.
However, on most universities, networking courses focus mainly
on transmission protocols, network services and hardware design
only while AI, machine learning or neural networks are taught
separately. This causes a gap that emerges between AI theory
and engineering approach. Thus, teachers of engineering courses
are challenged how to introduce their students to an application
of AI in the engineering areas, e.g., electronics, communication,
embedded systems, power grids, etc. This paper shows how
selected AI techniques presently used in computer networks can
be incorporated into networking curriculum and demonstrated
to students which extends student competencies and prepares
them better into future jobs. We also present two case studies
where AI techniques are applied on networking data in order to
solve typical engineering problems.

Index Terms—Computer Networking, Curriculum, Artificial
Intelligence, Engineering Education

I. INTRODUCTION

Recent advances in robotics, Machine Learning and Artifi-
cial Intelligence (AI) together with requirements on processing
massive amounts of data make a new challenge for educa-
tional institutes to integrate these technologies into curricula
and teach students how to apply AI methods in engineering
practice. This is a big imperative especially for Europe where
progress in AI and automation is behind the US and China [1].
The call for modernizing education curricula is also mentioned
in the Recommendations on AI Policy [2] presented on Tallinn
Digital Summit in 2018.

Progress in computer performance and data storages in
recent years have enabled machine learning, neural networks
and AI to receive extraordinary commercial and research
interest. AI methods and machine learning approaches are used
for real-time language processing, image analysis, autonomous
vehicle control, automated customer service, process control
and other domains. As stated by EU Joint Research Center
it is reasonable to expect that the recent advances in AI and
machine learning will have profound impacts on future labour

markets, competence requirements, as well as in earning and
teaching practices [3].

In order to stay competitive and prepare graduate students
for future technologies, educational institutions are challenged
to incorporate AI into engineering curricula.

A. Adding AI into Networking Courses

Building a curriculum for graduate engineering programs is
not easy today because there is a vast number of emerging
technologies and interdisciplinary subjects that are demanded
by employers to be covered by education. On the other hand,
students still need to be taught principles and fundamentals
of traditional technologies. Thus, teachers struggle with the
question what techniques and principles should be kept in the
curriculum and what should be replaced with new promising
technologies while the volume of learning objectives and
student workload should remain unchanged.

One solution is to implement new courses focused on recent
technologies like Artificial Intelligence, Deep Learning, or Big
Data Analysis while keeping traditional engineering courses
untouched. This approach, however, increases gap between
theoretical and engineering approach and students will still
struggle how to apply AI techniques on engineering problems.

Another approach is to incorporate selected AI techniques
and methods directly into engineering courses without deep
explanation of background theory. On selected case studies
students will learn how AI is applied on typical real-world
problems and understand relevance of AI for engineering.
The case study can be organized as a step-by-step tutorial
where input data and scripts implementing the AI techniques
will be provided. Thus, a student may follow the instructions
and process, analyze and observe given data by himself or
herself. The tutorial may include additional assignments which
challenge a student to undertake additional experiments.

As a source of cases studies, educators my employ freely-
available demonstration, text book resources, or results of own
ongoing research where AI is applied.

B. Structure of the text

The paper is structured as follows. Section II gives a short
overview of current engineering curricula and discusses their

978-1-7281-3222-8/19/$31.00 ©2019 European Union

priorities. Section III introduces AI methods that are applied
in networking. Section IV presents two case studies where
AI techniques are applied on networking data. The first case
study presents Anomaly Detection of Internet of Things (IoT)
communication, the second case study demonstrates Data
Mining methods on Domain Name System (DNS) data. Each
case study includes a problem description, input data, and
applied AI techniques. The last section concludes the paper.

C. Contribution
The main contribution of the paper is to present AI tech-

niques that can be incorporated into networking courses so
that students will see relevance of AI in networking and be
able to apply selected AI techniques into real-world scenarios.
The second contribution includes two case studies which
demonstrate interconnection of AI and networking. The studies
demonstrate how to extend networking curricula with AI.

II. ENGINEERING CURRICULUM AND AI
By studying recommendations for engineering curricula,

e.g., ACM/IEEE-CS Curriculum for Computer Engineering
(2016) [4], ACM/AIS Model for Graduate Degree Pro-
grams in Information Systems (2016) [5], ACM/IEEE-CS/AIS
SIGSEC/IFIP WG 11.8 Guidelines for Post-Secondary Degree
Programs in Cyber security (2017) [6], ACM SIGCOMM
Curriculum Designs (2002) [7], or Electrical Engineering
Curriculum (2017) [8] we may notice two interesting things.

First, it seems that there have not been any attempt to update
recommendations for engineering curricula within past three
years. The recent changes happened during 2016 and 2017.
Since broader attention to AI can be traced in 2017 and 2018,
it is not surprising that AI approaches are not a part of the
above mentioned recommendations. This creates a challenge
for future ACM and IEEE-CS curricula boards to adopt AI
techniques into new recommendations for both undergraduate
and graduate degree programs.

The second issue that can be observed by studying above
mentioned documents is that curricula in electrical engineering
still put main emphases on electronics, circuit design, signal
processing, i.e., mostly physics-related technologies. These
curricula, however, omit data processing and analytics which
becomes more and more important application domain for
engineers due to huge amount of data that is produced by
various physical systems. Traditionally, big data analysis was
a domain of data science experts or database specialists. Today,
demand on analyzing big data moves to engineering positions.

What is surprising that neither Cyber Security Curriculum
[6] published in December 2016 did not include Data Mining
nor Machine Learning to process data from security incidents.

All these facts build a new challenge for contemporary ed-
ucators in engineering courses who should actively search and
incorporate selected AI techniques into engineering courses in
order to prepare students for their future work and enhance
level of their competencies.

The following text discusses what AI techniques are relevant
for computer networks and can be incorporated into network-
ing courses.

III. AI METHODS IN NETWORKING

Application of Artificial Intelligence in networking is not
a new thing. Machine Learning (ML) techniques have been
adopted in many engineering areas, including computer net-
working domain hoping to provide an efficient solution to
more complicated problems in network design and manage-
ment [9]. Traditionally, Machine Learning have been used
for traffic classification [10]. Efficient traffic classification is
necessary for intrusion detection and performance prediction.
In addition to classical applications, Machine Learning can
be used to solve problems of parameters adaptation, network
cognitive management, and configuration extrapolation. Au-
tomated network resource scheduling and decision making is
also a big opportunity for application of ML methods [11].

Various ML techniques have been also exploited for solving
problems in network applications. For network traffic clas-
sification, supervised ML techniques, such as Naı̈ve Bayes,
Support Vector Machine (SVM), Decision Trees and Neural
Networks, were used to label network traffic based on pre-
viously known applications [12]. Application of supervised
techniques requires to prepare training data. This means to
label a network flow either manually or by means of another
method. Unsupervised methods, such as clustering, were also
considered to provide automatic network classification [13]
based on significant features, e.g, inter-packet arrival time,
packet size, traffic patterns, etc.

Network security is also an important aspect of networking
and many ML-based approaches have been proposed for
this domain. Commonly, these approaches aim at identifying
anomalous traffic which may represent a potential security
risk [14]. In addition to traditionally applied techniques, Deep
Learning seems to be a promising method for increasing
accuracy of network threat detection, in particular, zero-day
attacks or Advanced Persistent Threats (APT). Deep Neural
Networks (DNN)-based intrusion detection was proposed in
[15]. The approach was tested on NSL-KDD dataset that
contained ten different types of attacks [16]. The results
showed that the DNNs-based Intrusion Detection Systems are
reliable and efficient enough to detect specific attack classes.

Machine Learning work-flow comprises of several stages
[9]: (i) problem formulation, (ii) data collection, (iii) data
analysis, (iv) model construction, (v) model validation, and
(vi) deployment and inference. In networking domain, data
collection is more complicated due to volatility of information.
The network traffic traces need to be collected in real time and
at different network spots. While analysis and model training
can be done off-line, deployment of the model to the system
requires the trade-off between accuracy and performance be-
cause real-time input is processed with limited resources.

IV. CASE STUDY 1: ANOMALY DETECTION OF COAP
COMMUNICATION USING PROFILES

A. Problem Description

Smart home networks with Internet of Things (IoT) devices
can be a target of cyber attacks against IoT communication

since many IoT protocols are implemented without authentica-
tion or encryption. Attackers can intercept IoT communication
and also manipulate with IoT devices by sending spoofed
commands to IoT sensors or controllers. This case study aims
to demonstrate students the security issues of IoT environment
and to show how anomaly behavior can be detected by
application of AI methods. The simple testbed consisting
Constrained Application Protocol (CoAP) nodes (see Figure
1) is employed to obtain samples of data communication that
are provided to students for analysis.

Cloud
(control center)

Internet
gateway

WANLAN

Data Analytics
and Control

Web
access

Mobile
access

Fig. 1. Topology of IoT ecosystem.

B. Input Data

In this case study, students are provided CoAP traffic [17]
which represents monitoring and control data transmission
between a client and a server in the test-bed network. The
CoAP server is implemented on an IoT device (sensor, actua-
tor, etc.) where it measures physical quantity like temperature
and humidity or where it controls motion, light, smoke, etc.
For our purposes, we will monitor CoAP communication and
extract L7 (application layer) data like a code of the command,
token, message ID, and URI. This dataset serves as an input for
anomaly-based analysis of security incidents. Apart from reg-
ular communication datasets, students are also given samples
of selected networks attacks, e.g., an unauthorized resource
access, denial of service, etc. The dataset used in this case
study consists of a collection of capture files as listed in Table
I. Files idle.cap, regular.cap and observe.cap
contain normal communication that will be used for learn-
ing the communication profile. File attack.cap contains
samples of anomaly communication for testing the anomaly
detection method.

TABLE I
DATASETS USED IN A CASE STUDY

File Packets Flows Resources Normal
idle.cap 25 096 716 5 yes

regular.cap 54 634 1 307 12 yes
observe.cap 17 480 415 8 yes
attack.cap 38 474 870 8 no

C. Method

As an example of the possible solution to the problem of
detecting anomalies in a CoAP network, we provided a simple
anomaly detection method based on the statistical model of

the communication profile combining approaches by [18] and
[19]. The method has two stages. In the learning mode, the
method uses input data to learn the normal profile for the sys-
tem. In the discrimination mode, the learned method is applied
to unknown data in order to classify the communication. An
overview of the method is as follows:

• The learner observes a typical CoAP communication
and builds profiles of communicated devices. The profile
corresponds to a statistical resource usage modelM that
relates to an operation rop on the resource ruri. The
statistical information of model M is characterized by
random variables X1, X2 that represent the number of
packets and the number of octets associated with the
resource operation. These variables are used to define a
joint probability function f(x1, x2) = P (X1 = x1, X2 =
x2). The model characterizes usage of a monitored re-
source within the specific period of observation which is
given by a fixed-size time window.

• Traffic classifier computes the similarity of currently
observed behavior to the known behavior represented by
corresponding resource usage model M. In the opera-
tional phase, the network communication is analyzed as
follows:

1) The traffic is captured within a given time window.
2) For each flow e resource usage label r is determined.
3) The expected resource usage model M =

(fX1,X2
(x1, x2), t) is retrieved from the usage pro-

file P .
4) Flow features are extracted from flow e to form a

vector of observations ~y.
5) Finally, the joint probability function of model M

is used to compute the probability for the observed
behavior, p = fX1,X2

(~y). If the probability is
greater than threshold t, the flow is marked as
normal. Otherwise, it is labeled as abnormal.

D. Evaluation

An inevitable requirement of this case study is to provide
evaluation of the implemented method. This demonstrates stu-
dents how validation of results is important. Also, it gives them
the baseline that can be used for comparison of their solutions.
The evaluation is performed by computing hit ratio (recall) and
false positives. For each executed test, the following quantities
are measured:

• N : the number of all normal flows in the testing dataset
• N+: the number of flows correctly classified as normal

(true positives)
• N−: the number of flows incorrectly classified as normal

(false positives)
Hit ratio is computed as follows [23]:

Hr =
N+

N
. (1)

False positive is given by the following equation:

Fp =
N−

N− +N+
. (2)

Table II presents results of flow classification using different
profiles. The profile computed from idle dataset has poor
hit ratio. It is because that dataset does not contain enough
patterns to represent behavior of the system adequately. We
also tested profiles based on samples drawn from multiple
data files achieving hit ratio around 90%.

TABLE II
PERFORMANCE MEASURES OF BASIC PROFILES

Profile Hr Fp

idle 39.91% 2.31 %
regular 75.98% 7.23 %
observe 84.82% 8.17 %
idle+regular 88.72% 6.36 %
idle+regular+observe 90.85% 6.46 %

Providing all these different results together with a proper
explanation is invaluable for understanding the issues related
to the design of anomaly detection methods. Students will
understand that not only properly designed method, but also
the choice of a set of learning samples is important to achieve
good results.

E. Recommendation

The presented case study aims at demonstrating the appli-
cation of anomaly detection methods on an IoT network. Stu-
dents are given datasets consisting of captured communication
as the input. While the idea of profile-based anomaly detection
is quite simple, its realization can be tricky. Students need to
understand the input data, extract relevant features in order to
build the model, design a learner and a classifier. A provided
guide though relatively simple is supposed to help students in
each of the steps towards the solution.

The material provided (source data, a classifier script) can be
used by students depending on their knowledge in networking
or machine learning domains. A novice can start by studying
the method and trying to replicate the presented results.
Advanced students may start by modifying the method or
implementing their own method. Further, they can compare
results of their solution with the provided one.

V. CASE STUDY 2: IDENTIFYING A MOBILE DEVICE
USING DNS FINGERPRINTING

Network communication of mobile devices is a valuable
source of information about the device. From captured com-
munication, it is possible to infer what applications are in-
stalled on the system [20], or we can observe user activity
[21]. The goal of this study is to observe Domain Name
System (DNS) communication and extract specific features
from DNS packets that can be used to identify a device. For
data processing we employ frequency analysis of DNS queries.

A. Problem Description

DNS system typically translates a domain name, e.g.,
www.vutbr.cz, to an IP address, e.g., 147.229.2.90. Domain
name translation is required for any communication over IP.
Before an IP datagram is sent, a DNS client sends a DNS

query to the DNS server for domain name resolution. The
client forwards the query to its primary DNS server that
is either manually or dynamically configured. By observing
DNS queries, their types, e.g., A, AAAA, PTR, or requested
domains, we can learn much about the device. For instance, if
the system supports IPv6, it requests AAAA records in DNS.
Also, most of installed applications contact vendor servers for
updates or synchronization, which yields in resolution of DNS
names like spotify.com, github.com, facebook.net. Similarly
to applications, we can identify the operating system by
observing queries to DNS domains like android.google.com,
xioami.net, etc. Based on the frequency and uniqueness of
requested domain names we can create a DNS fingerprint that
identifies a unique device.

In our scenario, we will analyze captured DNS communica-
tion sent by a set of mobile devices. First, we process a training
dataset where we extract selected fields from DNS communi-
cation. Based on frequencies of requested domain name look-
ups we create a DNS fingerprint for each device detected in the
dataset. In the second phase this DNS fingerprint is compared
with fingerprints obtained from other datasets. If similarity of
fingerprints from two datasets is high enough, we can deduce
that DNS communication comes from the same source device.

The hypothesis behind the research is that almost every
software installed on the device leaves a unique trace in DNS
communication. By collecting all these traces we can describe
an individual device and distinguish one device from others.

B. Input Data

As source data, we use captured DNS communication.
From DNS communication we extract specific values using
tshark1 command:
tshark -r dns.pcap -T fields -E separator=";"
-e ip.src -e ip.dst -e dns.qry.type -e dns.qry.name
"dns.flags.response eq 0 and ip"

Using this command, we obtain the following values:
• Source IP address (DNS client’s address).
• Destination IP address (DNS server’s address).
• DNS query type, e.g., A, AAAA, PTR, etc.
• Requested domain name, e.g., www.googleapis.com.

The source IP address is used to classify DNS requests that
belong to the same device. The destination address identifies
a primary DNS server that is configured on the device.

Tshark provides a list of tuples {srcIP, serverIP, query type,
requested domain} which are later transformed into a table
where each device identified by an IP address will be assigned
a vector describing frequency of all DNS queries found in
the dataset, see Figure 2. Query type 1 means A record. The
frequency vector forms a DNS fingerprint of a device.

C. Method

The naı̈ve solution uses raw frequency vector to build a DNS
fingerprint. Then a DNS fingerprint of an unknown device can
be compared to a set of DNS fingerprints of known devices.

1See https://www.wireshark.org/docs/man-pages/tshark.html [June 2019]

10.42.0.134;10.42.0.1;1;www.google.com
10.42.0.134;10.42.0.1;1;www.google.com
10.42.0.134;10.42.0.1;1;www.google.com
10.42.0.134;10.42.0.1;1;www.mail.cz
10.42.0.156;10.42.0.1;1;www.seznam.cz
10.42.0.156;10.42.0.1;1;www.seznam.cz
10.42.0.156;10.42.0.1;1;www.seznam.cz
10.42.0.156;10.42.0.1;1;www.google.com
10.42.0.156;10.42.0.1;1;www.google.com

SrcIP;10.42.0.1;...;A+www.google.com;A+www.mail.cz;...;www.seznam.cz;...
10.42.0.134;4;...;3;1;...;0;....
10.42.0.156;5;...;2;0;...;3;...

Fig. 2. Creating a frequency table for DNS queries

Based on similarities of two DNS fingerprints we can say how
similar these two devices are.

However, raw frequency matching without normalization
does not work well with real DNS data. Thus, we applied
TF-IDF (Term Frequency–Inverse Term Frequency) method
[22]. TF-IDF method includes normalization and weighting.
The method is typically used to assign a document to the
most similar document taken from a set of documents based
on frequency of terms that are found in documents. In case of
DNS fingerprinting, we will use domain names to represent
TF-IDF terms. For each term in the individual document, Term
Frequency value tft,d is computed using frequency of term t
in document d. Normalized Term Frequency is given by the
following formula:

tft,d = 0.5 +
0.5 ∗ ft,d

MaxFreq(d)
(3)

where MaxFreq(d) is maximal frequency of any term in
document d.

Term frequency suffers from a serious problem: all terms
are considered equally important when it comes to assessing
relevancy on a query. This means, when a term is present in
almost every document, it distorts the ability to distinguish
documents based on term frequency. Using Inverse Document
Frequency (IDF) we can weight frequency by a number of
documents in the collection that contains term t. Thus, terms
that are present in the small number of documents will be
given the higher weight. IDF can be computed using the
following formula [22]:

idft = log
N

dft
(4)

where N is a number of all documents and dft is a number of
documents that contain term t. Combination of TF and IDF
creates the TF-IDF weighting scheme that assigns a weight to
term t in document d by the following equation:

tfidft,d = tft,d × idft (5)

D. Evaluation

In our case, the DNS fingerprint is expressed as a TF-
IDF vector that contains weighted and normalized frequencies
of domain names found in the dataset. Table III displays

frequencies for selected domain names of devices F0 to F3.
Column F0 denotes an unknown device that we will be
matched against fingerprints of devices F1 to F3. For example,

TABLE III
FREQUENCY OF DOMAIN NAME LOOK-UPS

F0 F1 F2 F3
clients4.google.com 1 1 2 16
graph.facebook.com 2 0 9 0
mtalk.google.com 4 0 2 1

pxl.jivox.com 1 1 0 0
www.google.com 6 3 5 8

www.googleapis.com 4 6 8 6

the first domain name clients4.google.com has been
found in communication of all devices with frequencies 1,
1, 2, or 16 respectively. Domain px1.jivox.com appeared
only one time in communication of device F0 and F1.

Based on raw frequencies, we can compute tft,d and idft
values for each domain name using equations (3) and (4), see
Table IV. Each column TFxx includes a list of TF frequencies

TABLE IV
TF AND IDF VALUES FOR FOUND DOMAINS

TFF0 TFF1 TFF2 TFF3 IDF
clients4.google.com 0,583 0,583 0,611 1,0 0
graph.facebook.com 0,667 0 1,0 0 0,477
mtalk.google.com 0,833 0 0,611 0,531 0,176

pxl.jivox.com 0,583 0,583 0 0 0,477
www.google.com 1,0 0,75 0,778 0,75 0

www.googleapis.com 0,833 1,0 0,944 0,688 0

for all domain names requested by a given device. By applying
IDF frequency using equation (5), we get an TF-IDF value
that represents a DNS fingerprint of the device.

Comparison of DNS fingerprints can be evaluated using
cosine similarity [23]. The resulting score describes a level
of similarity between documents q and d, in our case between
two DNS fingerprints:

score(q, d) =
~V (q) · ~V (d)

|~V (q)||~V (d)|
(6)

~V (q) · ~V (d) is a dot product of weighted DNS fingerprints
tfidft,d. For our input data, similarity score of DNS fingerprint
F0 towards DNS fingerprints F1, F2 and F3 is in Table V.
Based on the score, the most similar fingerprint to F0 seems
to be F2.

TABLE V
SCORE VALUES FOR DATASET F0 TOWARDS F1 TO F3.

F1 F2 F3
F0 0.621 0.767 0.333

E. Recommendation

The presented case study shows how TF-IDF classification
can be applied on DNS traffic and used for devices identifica-
tion using fingerprinting. Students are given two datasets with

DNS communication and scripts that extract DNS communi-
cation from PCAP file and converts it into a CSV (Comma
Separated Values) format. CSV data can be inserted into SQL
database for easier manipulation. Computation of TF, IDF and
score values is implemented by a Python script that queries
SQL database and computes TF, IDF and score values for
database values.

Advanced students may observe the result and add some
heuristics to the processing, e.g., apply additional data pre-
processing. They can also experiment with other similarity
measures, e.g., Euclidean or Jaccard similarity. The full ver-
sion of both case studies is available at https://github.com/
rysavy-ondrej/Ironstone/tree/master/Methods/Detection.

VI. CONCLUSION AND FUTURE WORK

AI techniques and especially various methods of Machine
Learning gain significant attention in many areas as a promis-
ing approach to solve complex problems. The necessity of
properly educated engineers that obtain domain knowledge of
the particular application field as well as working knowledge
of ML methods is evident. Traditionally, ML is taught as a
part of specialized courses that explain the theory and various
methods in detail, but they often lack the real-world examples
for the adequate demonstration of possible applications. We
have presented our approach that integrates ML methods
as a part of networking courses. The idea is to equip the
students with real-world case studies of ML applications in
the domain of computer networking in order to increase
their understanding of the whole process from the problem
identification and formulation to the design of a suitable
method and its evaluation. The cases studies are provided
with one of the possible solutions supposed to help students
increasing their knowledge of ML. In the paper, we have
presented two case studies focused on anomaly detection and
device fingerprinting.

Further effort aims at the pilot evaluation of this approach
in two engineering courses for graduate students. Based on the
evaluation, the scope, goal and teaching style for presenting
AI methods in engineering curriculum will be adjusted. Also,
other cases studies from the networking domain whose solu-
tion may involve ML methods will be considered, for instance,
the problem of network diagnostics, cyber attack detection, etc.

We believe that working knowledge of AI techniques is in-
evitable for computer engineers regardless of the field of their
specialization. Presented activities aim to support teaching of
AI with a strong connection to the application domain.

VII. ACKNOWLEDGEMENT

This work is supported by BUT project ”ICT tools, methods
and technologies for smart cities”, FIT-S-17-3964, 2017-2019,
and project IRONSTONE - IoT monitoring and forensics”,
TF03000029, 2016-2019, funded by the Technological Agency
of the Czech Republic.

REFERENCES

[1] J. Manyika, “Digitization, AI, and the Future of Work: Imperatives for
Europe,” Briefing Note for EU Tallin Digital Summit, September 2017.

[2] DIGITALEUROPE, “Recommendations on AI Policy. Towards a sus-
tainable and innovation-friendly approach,” Tech. Rep., November 2018.

[3] I. Tuomi, “The Impact of Artificial Intelligence on Learning, Teaching,
and Education: Policies for the Future,” Publications Office of the
European Union, Tech. Rep. EUR 29442 EN, 11 2018.

[4] ACM and IEEE-CS, “Computer Engineering Curricula 2016. Cur-
riculum Guidelines for Undergraduate Degree Programs in Computer
Engineering.” ACM/IEEE Computer Society, Tech. Rep., December
2016.

[5] H. Topi, S. A. Brown, B. Donnellan, B. C.Y.Tan, H. Karsten, J. A.
Carvolho, J. Shen, and M. F. Thouin, “MSIS 2016. Global Compe-
tency Model for Graduate Degree Programs in Information Systems.”
ACM/AIS, Tech. Rep., December 2017.

[6] ACM and IEEE, “Cybersecurity Curricala 2017. Curriculum Guidelines
for Post-Secondary Degree Programs in Cybersecurity,” ACM/IEEE-
CS/AIS-SIGSEC/IFIP WG 11.8, Tech. Rep., December 2017.

[7] J. Kurose, J. Liebeherr, S. Ostermann, and T. Ott-Boisseau, “ACM SIG-
COMM Workshop on Computer Networking:Curriculum Designs and
Educational Challenges,” ACM SIGCOMM Computer Communications
Review, vol. 32, no. 5, 2002.

[8] M. O. Popescu and C. L. Popescu, “Trends in evolution of electrical
engineering curriculum,” in 2017 5th International Symposium on Elec-
trical and Electronics Engineering (ISEEE), Oct 2017, pp. 1–5.

[9] M. Wang, Y. Cui, X. Wang, S. Xiao, and J. Jiang, “Machine Learning
for Networking: Workflow, Advances and Opportunities,” 2018.

[10] T. T. Nguyen and G. Armitage, “A survey of techniques for internet
traffic classification using machine learning,” 2008.

[11] Z. M. Fadlullah, F. Tang, B. Mao, N. Kato, O. Akashi, T. Inoue,
and K. Mizutani, “State-of-the-Art Deep Learning: Evolving Machine
Intelligence Toward Tomorrow’s Intelligent Network Traffic Control
Systems,” IEEE Communications Surveys and Tutorials, 2017.

[12] N. Williams, S. Zander, and G. Armitage, “A preliminary performance
comparison of five machine learning algorithms for practical IP traffic
flow classification,” ACM SIGCOMM Computer Communication Review,
2006.

[13] J. Zhang, Y. Xiang, W. Zhou, and Y. Wang, “Unsupervised traffic
classification using flow statistical properties and IP packet payload,”
Journal of Computer and System Sciences, 2013.

[14] J. P. Early, C. E. Brodley, and C. Rosenberg, “Behavioral authentication
of server flows,” in Proceedings - Annual Computer Security Applica-
tions Conference, ACSAC, 2003.

[15] S. Potluri and C. Diedrich, “Accelerated deep neural networks for en-
hanced Intrusion Detection System,” in IEEE International Conference
on Emerging Technologies and Factory Automation, ETFA, 2016.

[16] L. Dhanabal and D. S. P. Shantharajah, “A Study On NSL-KDD Dataset
For Intrusion Detection System Based On Classification Algorithms,”
International Journal of Advanced Research in Computer and Commu-
nication Engineering, 2015.

[17] Z. Shelby, K. Hartke, and C. Bromann, “The Constrained Application
Protocol (CoAP),” IETF RFC 7252, June 2014.

[18] C. Manikopoulos and S. Papavassiliou, “Network intrusion and fault
detection: A statistical anomaly approach,” IEEE Communications Mag-
azine, 2002.

[19] M. Crotti, M. Dusi, F. Gringoli, and L. Salgarelli, “Traffic classification
through simple statistical fingerprinting,” ACM SIGCOMM Computer
Communication Review, 2007.

[20] A. Kurtz, H. Gascon, T. Becker, K. Rieck, and F. Freiling, “Fingerprint-
ing mobile devices using personalized configurations,” Proceedings on
Privacy Enhancing Technologies, vol. 2016, no. 1, pp. 4–19, 2016.

[21] G. Chittaranjan, J. Blom, and D. Gatica-Perez, “Who’s who with big-
five: Analyzing and classifying personality traits with smartphones,” in
2011 15th Annual International Symposium on Wearable Computers,
June 2011, pp. 29–36.

[22] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to Infor-
mation Retrieval. New York, NY, USA: Cambridge University Press,
2008.

[23] J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and Techniques,
3rd ed. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,
2011.

