

 An IPFIX Extension
for MQTT Protocol Monitoring

Ondřej Ryšavý
Petr Matoušek

Technical Report no. FIT-TR-2019-01
Faculty of Information Technology, Brno University of Technology

Abstract
Message Queuing Telemetry Transport is a client-server publish-subscribe protocol used for
M2M communication in IoT environments. The present report aims at the analysis of protocol
communication principles and protocol structure yielding to design a simplified MQTT parser
and IPFIX extension providing MQTT specific attributes in Netflow records. The appendices
contain i) Kaitai parser specification for MQTT and ii) the IPFIX extension for MQTT.

This report was created with the financial support of TA ČR in the frame of project
TN01000077, TRACTOR: TRaffic Analysis and seCuriTy OpeRations for ICS/SCADA.

FIT-TR-2019-01: An IPFIX Extension for MQTT Protocol Monitoring 2

1. Introduction
MQTT (Message Queuing Telemetry Transport) is a client-server publish-subscribe protocol
used for M2M communication in IoT environments. Originally, MQTT was developed for
low-bandwidth and high latency networks in the late 1990s. Currently, the standard assumes
to be used on TCP/IP stack. Applications either sending or receiving messages use
specified TCP ports for MQTT message transport.
Nowadays, the following protocol specifications are available:

● MQTT v5.0 is an OASIS Standard. It replaces and supersedes MQTT v3.1.1. MQTT
v5.0 adds a significant number of new features to MQTT while keeping much of the
core in place. The major functional objectives are i) enhancements for scalability and
large scale systems, ii) improved error reporting, iii) formalization of common patterns
including capability discovery and request/response, iv) extensibility mechanisms
including user properties, and v) performance improvements and support for small
clients.
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.pdf

● MQTT v3.1.1 is an older ISO/IEC 20922:2016 standard and the OASIS Standard. It
defines the core principles and features of the MQTT protocol.
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.pdf

● MQTT-SN v1.2, formerly known as MQTT-S, is MQTT for Sensor Networks aimed at
embedded devices on non-TCP/IP networks, such as Zigbee. MQTT-SN is a
publish/subscribe messaging protocol for wireless sensor networks (WSN), with the
aim of extending the MQTT protocol beyond the reach of TCP/IP infrastructure for
Sensor and Actuator solutions.
http://mqtt.org/new/wp-content/uploads/2009/06/MQTT-SN_spec_v1.2.pdf

This document was created based on MQTT v3.1.1 and MQTT v5.0 standards. Non TCP/IP
networks are not considered because of the target network monitoring technology is based
on IPFIX and thus considers the environment of IP networks.

FIT-TR-2019-01: An IPFIX Extension for MQTT Protocol Monitoring 3

https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.pdf
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.pdf
http://mqtt.org/new/wp-content/uploads/2009/06/MQTT-SN_spec_v1.2.pdf

2. MQTT Principles
The core principle of MQTT is the client/server deployment of the Publish/Subscribe
communication model. The MQTT system thus recognizes clients that can produce and
consume messages and a server that provides message broker services. Application
messages are organized into topics. The topic is a string label that enables the broker to
route application messages to the corresponding subscribers.

The MQTT protocol operates by exchanging a series of MQTT Control Packets in a defined
way. The MQTT packet uses a compact binary representation.

2.1. Publish/Subscribe Message Pattern
In Publish/Subscribe communication a collection of publishers produces messages
consumed by subscribers. MQTT provides a decoupled model that implements a
client/server architecture in which publishers and consumers are all clients and the server is
represented by a message broker.

Figure 1: MQTT Architecture

All communication is thus transported through the MQTT broker that manages subscriptions
of clients. The data carried by the MQTT protocol across the network for the application are
called Application Messages and have always associated Quality of Service and a Topic
Name. The topic name is a label attached to an Application Message which is matched
against the Subscriptions known to the Server. The Application message is sent to each
subscriber interested in the topic.

FIT-TR-2019-01: An IPFIX Extension for MQTT Protocol Monitoring 4

A client always establishes the TCP network session to the server - MQTT Broker. The client
can:

● Publish messages that other clients might be interested in.
● Subscribe to the topic in order to receive corresponding messages
● Unsubscribe to stop receiving messages

A server provides services to all connected MQTT clients:
● Accepts Application Messages published by Clients.
● Processes Subscribe and Unsubscribe requests from Clients.
● Forwards Application Messages that match Client Subscriptions.

A client and a server establish and maintain a session. The session can be realized by one
or more TCP connections.

2.2. MQTT Packet Structure
All MQTT packets share the same MQTT Control Packet structure, that consists of:

● Fixed Header
● Variable Header
● Payload

The fixed header is common to all control packets while the remaining parts depend on the
type of the packet.

Fixed Header
The fixed header has at least two bytes that contain control packet type and its flags, and the
length of the rest of the packet.

Bit 7 6 5 4 3 2 1 0

byte1 MQTT Control Packet Type Specific Flags

byte2 Length

MQTT Control Packet Type determines the purpose of the MQTT packet:

Name Value Direction Description

Reserved 0 Forbidden Reserved

CONNECT 1 Client to Server Connection request

CONNACK 2 Server to Client Connect acknowledgment

PUBLISH 3 Both Publish message

PUBACK 4 Both Publish acknowledgment

PUBREC 5 Both Publish received

PUBREL 6 Both Publish release

FIT-TR-2019-01: An IPFIX Extension for MQTT Protocol Monitoring 5

PUBCOMP 7 Both Publish complete

SUBSCRIBE 8 Client to Server Subscribe request

SUBACK 9 Server to Client Subscribe acknowledgment

UNSUBSCRIBE 10 Client to Server Unsubscribe request

UNSUBACK 11 Server to Client Unsubscribe acknowledgment

PINGREQ 12 Client to Server PING request

PINGRESP 13 Server to Client PING response

DISCONNECT 14 Both Disconnect notification

AUTH 15 Both Authentication exchange

Flags are specific to each type of packet. In most of the cases, the flags are reserved and
thus should have their predefined default value. The only PUBLISH packet has flags that
carry additional information.

The Remaining Length is a Variable Byte Integer that represents the number of bytes
remaining within the current Control Packet, including data in the Variable Header and the
Payload. The Variable Byte Integer is encoded using an encoding scheme that uses a single
byte for values up to 127. The principle of encoding is clear from the following table:

The MQTT specification provides also an algorithm for encoding/decoding values as
Variable Byte Integer.

Variable Header
The presence of a variable header depends on the packet type. The MQTT specification
provides a comprehensive definition of the possible content of variable headers for individual
types of control packets. For this reason, we only provide summary information for the
CONNECT packet for the sake of demonstration. The CONNECT Packet may have the
following items in the variable header:

FIT-TR-2019-01: An IPFIX Extension for MQTT Protocol Monitoring 6

Field Type/Length Description

PROTOCOL NAME UTF-8 Encoded String The Protocol Name is a UTF-8
Encoded String that represents the
protocol name “MQTT”. Some
implementations use different string.

PROTOCOL VERSION Unsigned Byte The value of the Protocol Version
field. For version 5.0 of the protocol
is 5 (0x05). For the previous version,
it is 3.

CONNECT FLAGS Byte Connect flags represents specified
settings of the session as requested
by the client.

KEEP ALIVE Two Byte Integer An integer value which is a time
interval measured in seconds.

PROPERTIES List of properties Represents an optional set of
properties provided for the connect
packet. It begins with the property
length field (Variable Byte Integer)
that gives the total length of
properties section in bytes.

The following example represents the CONNECT packet as dissected by Wireshark:

The dissected packet represents an older MQTT v3 message. It can be also seen that it
uses a non-standard protocol name MQIsdp. Note that Client Identifier (Client ID) is not part
of the variable message but it is CONNECT packet payload.

FIT-TR-2019-01: An IPFIX Extension for MQTT Protocol Monitoring 7

Payload
Some MQTT Control Packets contain a Payload as the final part of the packet. The payload
starts after the variable header and fills the packet until its end. The Payload of PUBLISH
packet contains the Application Message that is being published. The content and format of
the data are application-specific. The length of the Payload can be calculated by subtracting
the length of the Variable Header from the Remaining Length field that is in the Fixed
Header. It is valid for a PUBLISH packet to contain a zero-length Payload.

FIT-TR-2019-01: An IPFIX Extension for MQTT Protocol Monitoring 8

3. MQTT Protocol Parser
The MQTT protocol contains 16 different types of messages. Each message can have a
variable header and payload. However, for the purpose of the IPFIX extension plugin, the
parser does not necessarily consider all possible variable headers nor payload. The parser
must be able to fully decode the fixed header and the selected protocol types. The
definitions of MQTT structures are presented in Kaitai syntax.

The fixed header contains message type in the first half of the first byte. We are not
interested in the other half of this byte. The next byte(s) stand for the length of the remaining
data. The length uses the variable byte integer format (mqtt_varbyte).

mqtt_fixed_header:
 seq:
 - id: message_type
 type: b4
 enum: mqtt_message_type
 - id: flags
 type: b4
 - id: length
 type: mqtt_varbyte
enums:
 mqtt_message_type:
 0: reserved_0
 1: connect
 2: connack
 3: publish
 4: publish_ack
 5: publish_rec
 6: publish_rel
 7: publish_comp
 8: subscribe
 9: subscribe_ack
 10: unsubscribe
 11: unsubscribe_ack
 12: ping_request
 13: ping_response
 14: disconnect
 15: authentication

Fixed Header Format

The string encoding used by MQTT starts with the two byte length value followed by bytes
representing the ASCII string.

 mqtt_string:
 seq:
 - id: length
 type: u2

FIT-TR-2019-01: An IPFIX Extension for MQTT Protocol Monitoring 9

 - id: value
 type: str
 encoding: ascii
 size: length

MQTT String Format

The variable byte integer encoding format uses 1-4 bytes to represent an integer value. In
each byte, only 7 bits are used to represent a number. The most significant bit of the byte
defines whether the next byte is used or not. If the bit is 0 then it means that the byte is the
last one in the number representation. Thus values less than 128 are represented by a
single byte. Greater values need multiple bytes. For instance, number 200 is represented as
two bytes: 72 and 1, because of 72 + 128 * 1 = 200.

 mqtt_varbyte:
 seq:
 - id: bytes
 type: u1
 repeat: until
 repeat-until: '(_ & 128) == 0'
 instances:
 value:
 value: '(bytes[0] & 127)
 + (bytes.size > 1 ? (bytes[1] & 127) * 128 : 0)
 + (bytes.size > 2 ? (bytes[2] & 127) * 128 * 128 : 0)
 + (bytes.size > 3 ? (bytes[3] & 127) * 128 * 128 * 128 : 0)'

MQTT Variable Byte Integer Format

Depending on the message type field in the fixed header, the next part of the message is
one of the specific MQTT variable message headers. As we are not interested in a message
payload, the parsing can finish after processing the required information from the variable
header. One of the most informative messages is CONNECT:

mqtt_message_connect:
 seq:
 - id: protocol_name
 type: mqtt_string
 - id: protocol_version_number
 type: u1
 - id: connect_flags
 type: u1
 - id: keep_alive_timer
 type: u2
 - id: client_id
 type: mqtt_string
 - id: rest_of_message
 size-eos: true

MQTT Connect Message Variable Header

Another source of information for IPFIX extension is the answer to the CONNECT message.
Connect Acknowledgment message provides the return code:

FIT-TR-2019-01: An IPFIX Extension for MQTT Protocol Monitoring 10

 mqtt_message_connack:
 seq:
 - id: topic_name_compression_response
 type: u1
 - id: connect_return_code
 type: u1
 enum: mqtt_connect_return_code

 mqtt_connect_return_code:
 0: connection_accepted
 1: connection_refused_unacceptable_protocol_version
 2: connection_refused_identifier_rejected
 3: connection_refused_server_unavailable
 4: connection_refused_bad_username_or_password
 5: connection_refused_not_authorized

MQTT Connect Acknowledgment

FIT-TR-2019-01: An IPFIX Extension for MQTT Protocol Monitoring 11

4. Testing Environment
The purpose of an experimental environment is to verify that MQTT implementations do not
significantly deviate from the standard and to obtain communication samples necessary for
testing developed parsers and Flow Collector Plugin module. The environment uses the
MOSQUITTO test server and the Tavern test client. The environment is used to generate
MQTT data samples necessary to test the parser and IPFIX extension plugin. The various
scenarios were implemented and the communication was captured.

Capture file Description

mqtt_basic.pcap A publisher connects to a broker and sends a few publish
messages to several topics. The session is ended by the client
by sending DISCONNECT.

mqtt_authfail.pcap A CONNECT request to a broker fails (wrong authentication).

mqtt_publish.pcap A client sends a lot of PUBLISH messages with many topics.

mqtt_ping.pcap The scenario includes PING messages to preserve the activity.

FIT-TR-2019-01: An IPFIX Extension for MQTT Protocol Monitoring 12

Figure 2: A TCP session between MQTT Publisher and Broker

FIT-TR-2019-01: An IPFIX Extension for MQTT Protocol Monitoring 13

5. Key MQTT Fields
The proposed IPFIX extension considers the scenario in which MQTT communication is
monitored in order to provide visibility to network activities of MQTT enabled devices. The
standard Netflow monitoring can only provide summary information on each TCP
connection. As TCP connection is used in most cases for exchanging all MQTT messages
between Client and Server the summary information does not provide much insight in the
MQTT operations. Using MQTT IPFIX extension it should be possible:

● Identify the MQTT Client and Server
● Detect invalid attempts to connect
● Identify the MQTT protocol in use and its version
● See the number of MQTT messages and their types
● Optionally, see the topics of published messages and topics subscribed

MQTT Publisher/subscriber (Client) and MQTT Broker (Server) establish a durable TCP
session that is used for MQTT message exchange. A typical MQTT communication that can
be observed within a single TCP connection is demonstrated in Figure [TCP session]. Each
session should start with CONNECT message that provides the following key information:

Name Type Description

MQTT_CLIENT_ID STRING The client identifier used to register a client in the
Broker. This ID must be unique for the client. If
the client needs to register again then it can use
the same ID.

MQTT_VERSION BYTE The version of MQTT.

MQTT_PROTOCOL_NAME STRING The protocol name should be MQTT according to
the standard, but existing implementations use
different names, e.g., “MQIsdp”.

After receiving CONNECT message the server validates the client’s information and answer
with CONNECT ACK, which carries the results of the connection request:

Name Type Description

MQTT_CONNECT_ACK BYTE The return code for CONNECT request. It can be one
of the following: [0] connection_accepted, [1]
connection_refused_unacceptable_protocol_version.
[2] connection_refused_identifier_rejected,
[3] connection_refused_server_unavailable, [4]
connection_refused_bad_username_or_password,
[5] connection_refused_not_authorized.

FIT-TR-2019-01: An IPFIX Extension for MQTT Protocol Monitoring 14

Depending on the client type, the subscriber clients then usually send SUBSCRIBE
message that specifies a set of topics to be registered by the broker:

Name Type Description

MQTT_SUBSCRIBE_TOPIC STRING The topic to be registered. The topic can be
specified on either specific topic or can be
given using wildcards. For instance
“mqttdotnet/subtest/#”, subscribes the client to
all topics that start with “mqttdotnet/subtest”.

When the client is in the publisher’s role, it can send PUBLISH messages to the broker. If
the client is subscribed to some topic it receives PUBLISH message from the broker. Thus,
within the single TCP session the PUBLISH message can be sent in both directions:

Name Type Description

MQTT_PUBLISH_TOPIC STRING The topic of a message sent in PUBLISH.

The TCP session transfers MQTT messages between the MQTT Client and the MQTT
server. A single TCP flow usually contains a single MQTT CONNECT message but many
MQTT PUBLISH messages that may have different Topics see Figure 3. For IPFIX-based
monitoring, it means that the IPFIX flow record needs to handle possible different Topics
within a single TCP connection or abstract away the information about published topics.

Figure 3: Relation of MQTT messages and TCP flow

FIT-TR-2019-01: An IPFIX Extension for MQTT Protocol Monitoring 15

6. IPFIX Extensions
In this section, the two IPFIX extensions for MQTT are proposed. The first of these
extensions only collects statistical information about observed messages while the second
one also identifies the message topics providing finer information but requiring to deal with
sub-flows.

6.1. Basic MQTT IPFIX Extension
When the Topic information is not considered to be a source for IPFIX MQTT extension
data, it is possible to create a single IPFIX flow for the entire TCP connection. In this case,
only some information from CONNECT is captured and the counters for each MQTT type
observed that may serve as the possible source of additional information for profiling and
anomaly detection methods.

Name Type

MQTT_CLIENT_ID STRING

MQTT_VERSION BYTE

MQTT_PROTOCOL_NAME STRING

MQTT_CONNECT_ACK BYTE

MQTT_PUB_COUNT INTEGER

MQTT_SUB_COUNT INTEGER

An example of IPFIX records for TCP connection between Client and Server is given in
Figure 4 and Figure 5. The advantage of this extension is that the aggregated information fits
TCP flow, but it does not provide any information about the Topics. Still, it is possible to
create a simple profile describing the typical behavior of the system, but without topic
information, it is not possible to distinguish different data points in the system.

FLOW: Tcp 192.168.11.32:55221 -> 5.196.95.208:1883
MQTT_CLIENT_ID: 7038a2a1-b97a-4faf-b9df-7270b32c9792
MQTT_VERSION: 3
MQTT_PROTOCOL_NAME: MQIsdp
MQTT_PUB_COUNT: 89
MQTT_SUB_COUNT: 2

Figure 4: MQTT IPFIX Flow for Client to Server direction

FLOW: Tcp 5.196.95.208:1883 -> 192.168.11.32:55221

FIT-TR-2019-01: An IPFIX Extension for MQTT Protocol Monitoring 16

MQTT_CONNECT_ACK: 0 (Connection Accepted)
MQTT_PUB_COUNT: 684

Figure 5: MQTT IPFIX Flow for Server to Client direction

6.2. MQTT IPFIX Extension considering Topics
Adding the Topic field to IPFIX extension enables us to observe what individual topics data
are published. As a single TCP flow carries the PUBLISH messages for all subscribed topics
it is necessary to create sub-flows. Each sub-flow corresponds to a single Topic published
by the Client. Then the MQTT_PUBLISH_TOPIC is a key of the sub-flow.

Name Type Description

MQTT_PUBLISH_TOPIC STRING The topic of a message sent in PUBLISH
message.

An example of IPFIX records for MQTT sub-flows within a single TCP connection between
Client and Server is given in Figure 6 and Figure 7.

FLOW: Tcp 192.168.11.32:55221 -> 5.196.95.208:1883
MQTT_CLIENT_ID: 7038a2a1-b97a-4faf-b9df-7270b32c9792
MQTT_VERSION: 3
MQTT_PROTOCOL_NAME: MQIsdp
MQTT_SUB_COUNT: 2

SUBFLOW: a5d81be9b6/status
 MQTT_PUB_COUNT: 14

SUBFLOW: a5d81be9b6/senzors/temp
 MQTT_PUB_COUNT: 45

SUBFLOW: a5d81be9b6/senzors/humidity
 MQTT_PUB_COUNT: 30

Figure 6: MQTT IPFIX Flow for Client to Server direction

FLOW: Tcp 5.196.95.208:1883 -> 192.168.11.32:55221
MQTT_CONNECT_ACK: 0 (Connection Accepted)

SUBFLOW: master/control/service1

FIT-TR-2019-01: An IPFIX Extension for MQTT Protocol Monitoring 17

 MQTT_PUB_COUNT: 322

SUBFLOW: backup/control/service0
 MQTT_PUB_COUNT: 362

Figure 7: MQTT IPFIX Flow for Server to Client direction

FIT-TR-2019-01: An IPFIX Extension for MQTT Protocol Monitoring 18

7. Summary
This report provides an analysis of the MQTT connection. The principles of MQTT
communication are explained. Also, the structure MQTT message is presented to provide a
basis for the design of MQTT parser. Based on the analysis the two IPFIX templates were
proposed. The Basic MQTT IPFIX Extension aggregates information for the whole MQTT
session, providing summary information on different types of messages. While some
important application-level information is missing, it is possible to use the captured
information for creating a communication profile and detect possible deviations. The second
extension preserves information about topics, which however requires to create sub-flows.
While more complicated, it provides a deeper insight into MQTT communication. It enables,
for instance, to monitor and perform anomaly detection on the level of individual topics.

FIT-TR-2019-01: An IPFIX Extension for MQTT Protocol Monitoring 19

References
● MQTT Version 5.0. Edited by Andrew Banks, Ed Briggs, Ken Borgendale and Rahul

Gupta. 07 March 2019. OASIS Standard. Latest version:
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.pdf.

● MQTT Version 3.1.1. Edited by Andrew Banks and Rahul Gupta. 29 October 2014.
OASIS Standard. Latest version:
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html.

● Mosquitto MQTT Broker Test site
https://test.mosquitto.org

● MQTT Topics & Best Practices - MQTT Essentials: Part 5
https://www.hivemq.com/blog/mqtt-essentials-part-5-mqtt-topics-best-practices/

FIT-TR-2019-01: An IPFIX Extension for MQTT Protocol Monitoring 20

https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.pdf
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
https://test.mosquitto.org/
https://www.hivemq.com/blog/mqtt-essentials-part-5-mqtt-topics-best-practices/

Appendix

A. Kaitai MQTT Protocol Specification
This specification is a simplified parser of MQTT protocol.

meta:
 id: mqtt_packet
 title: MQTT is a Client Server publish/subscribe messaging transport protocol
 license: MIT
 endian: be
seq:
 - id: header
 type: mqtt_fixed_header
 - id: body
 size: header.length.value
 type:
 switch-on: header.message_type
 cases:
 'mqtt_message_type::reserved_0' : mqtt_message_reserved_0
 'mqtt_message_type::connect' : mqtt_message_connect
 'mqtt_message_type::connack' : mqtt_message_connack
 'mqtt_message_type::publish' : mqtt_message_publish
 'mqtt_message_type::publish_ack' : mqtt_message_publish_ack
 'mqtt_message_type::publish_rec' : mqtt_message_publish_rec
 'mqtt_message_type::publish_rel' : mqtt_message_publish_rel
 'mqtt_message_type::publish_comp' : mqtt_message_publish_comp
 'mqtt_message_type::subscribe' : mqtt_message_subscribe
 'mqtt_message_type::subscribe_ack' : mqtt_message_subscribe_ack
 'mqtt_message_type::unsubscribe' : mqtt_message_unsubscribe
 'mqtt_message_type::unsubscribe_ack' : mqtt_message_unsubscribe_ack
 'mqtt_message_type::ping_request' : mqtt_message_ping_request
 'mqtt_message_type::ping_response' : mqtt_message_response
 'mqtt_message_type::disconnect' : mqtt_message_disconnect
 'mqtt_message_type::authentication’ : mqtt_message_authentication
types:
 mqtt_fixed_header:
 seq:
 - id: message_type
 type: b4
 enum: mqtt_message_type
 - id: dup
 type: b1
 - id: qos
 type: b2
 enum: mqtt_qos
 - id: retain
 type: b1
 - id: length
 type: mqtt_varbyte

 mqtt_varbyte:
 seq:
 - id: bytes
 type: u1
 repeat: until
 repeat-until: '(_ & 128) == 0'
 instances:
 value:
 value: '(bytes[0] & 127)

FIT-TR-2019-01: An IPFIX Extension for MQTT Protocol Monitoring 21

 + (bytes.size > 1 ? (bytes[1] & 127) * 128 : 0)
 + (bytes.size > 2 ? (bytes[2] & 127) * 128 * 128 : 0)
 + (bytes.size > 3 ? (bytes[3] & 127) * 128 * 128 * 128 : 0)'

 mqtt_connect_flags:
 seq:
 - id: username
 type: b1
 - id: password
 type: b1
 - id: will_retain
 type: b1
 - id: will_qos
 type: b2
 enum: mqtt_qos
 - id: will
 type: b1
 - id: clean_session
 type: b1
 - id: reserved
 type: b1
 mqtt_subscribe_qos:
 seq:
 - id: reserved
 type: b6
 - id: qos
 type: b2
 enum: mqtt_qos
 mqtt_subscribe_topic:
 seq:
 - id: topic_name
 type: mqtt_string
 - id: reserved
 type: b6
 - id: requested_qos
 type: b2
 enum: mqtt_qos
 mqtt_string:
 seq:
 - id: length
 type: u2
 - id: value
 type: str
 encoding: ascii
 size: length

 mqtt_message_reserved_0:
 seq:
 - id: content_of_message
 size-eos: true

 mqtt_message_connect:
 seq:
 - id: protocol_name
 type: mqtt_string
 - id: protocol_version_number
 type: u1
 - id: connect_flags
 type: mqtt_connect_flags
 - id: keep_alive_timer
 type: u2
 - id: client_id
 type: mqtt_string
 - id: will_topic
 type: mqtt_string

FIT-TR-2019-01: An IPFIX Extension for MQTT Protocol Monitoring 22

 if: connect_flags.will
 - id: will_message
 type: mqtt_string
 if: connect_flags.will
 - id: username
 type: mqtt_string
 if: connect_flags.username
 - id: password
 type: mqtt_string
 if: connect_flags.password

 mqtt_message_connack:
 seq:
 - id: topic_name_compression_response
 type: u1
 - id: connect_return_code
 type: u1
 enum: mqtt_connect_return_code

 mqtt_message_publish:
 seq:
 - id: topic
 type: mqtt_string
 - id: message_id
 type: u2
 if: '_parent.header.qos == mqtt_qos::at_least_once
 or _parent.header.qos == mqtt_qos::exactly_once'
 - id: payload
 size-eos: true

 mqtt_message_publish_ack:
 seq:
 - id: message_id
 type: u2

 mqtt_message_publish_rec:
 seq:
 - id: message_id
 type: u2

 mqtt_message_publish_rel:
 seq:
 - id: message_id
 type: u2

 mqtt_message_publish_comp:
 seq:
 - id: message_id
 type: u2

 mqtt_message_subscribe:
 seq:
 - id: message_id
 type: u2
 - id: topics
 type: mqtt_subscribe_topic

 mqtt_message_subscribe_ack:
 seq:
 - id: message_id
 type: u2
 - id: garanted_qos
 type: mqtt_subscribe_qos

 mqtt_message_unsubscribe:

FIT-TR-2019-01: An IPFIX Extension for MQTT Protocol Monitoring 23

 seq:
 - id: message_id
 type: u2

 mqtt_message_unsubscribe_ack:
 seq:
 - id: message_id
 type: u2

 mqtt_message_ping_request:
 seq:
 - id: payload # usually empty
 size-eos: true

 mqtt_message_response:
 seq:
 - id: payload # usually empty
 size-eos: true

 mqtt_message_disconnect:
 seq:
 - id: payload # usually empty
 size-eos: true

 mqtt_message_authentication:
 seq:
 - id: content_of_message
 size-eos: true
enums:
 mqtt_message_type:
 0: reserved_0
 1: connect
 2: connack
 3: publish
 4: publish_ack
 5: publish_rec
 6: publish_rel
 7: publish_comp
 8: subscribe
 9: subscribe_ack
 10: unsubscribe
 11: unsubscribe_ack
 12: ping_request
 13: ping_response
 14: disconnect
 15: authentication

 mqtt_connect_return_code:
 0: connection_accepted
 1: connection_refused_unacceptable_protocol_version
 2: connection_refused_identifier_rejected
 3: connection_refused_server_unavailable
 4: connection_refused_bad_username_or_password
 5: connection_refused_not_authorized

 mqtt_qos:
 0: at_most_once
 1: at_least_once
 2: exactly_once
 3: reserved

FIT-TR-2019-01: An IPFIX Extension for MQTT Protocol Monitoring 24

B. IPFIX Extension for MQTT
This appendix represents the IPFIX extension to be implemented in netflow monitoring tool.
The IPFIX extension for MQTT adds the new fields to the standard IPFIX record. The fields
depend on the direction of the flow. In addition to the basic extension specified in Section
6.1, the client IPFIX extension contains fields carrying information on an authenticated user,
presence of password and the method in case of an extended authentication.

● Client (Publisher) to the server (Broker) MQTT flow:

Name Type Description

MQTT_CLIENT_ID STRING The client identifier used to register a
client in the Broker. This ID must be
unique for the client. If the client needs to
register again then it can use the same ID.

MQTT_VERSION BYTE The version of MQTT.

MQTT_PROTOCOL_NAME STRING The protocol name should be MQTT
according to the standard, but existing
implementations may use different names,
e.g., “MQIsdp”.

MQTT_PUB_COUNT INTEGER The total number of PUBLISH messages.

MQTT_SUB_COUNT INTEGER The total number of SUBSCRIBE
messages.

MQTT_AUTH_USER STRING A username used for authentication
specified in CONNECT message
(optional).

MQTT_AUTH_PASS BYTE Presence of password in CONNECT
message. Values = 1 (true), 0 (false)

MQTT_AUTH_METHOD STRING Name of the authentication method if
extended authentication is used.

● Server (Broker) to a client (publisher) MQTT flow:

Name Type Description

MQTT_CLIENT_ID STRING The client identifier if not provided by the
client can be generated by the server.

MQTT_VERSION BYTE The version of MQTT.

MQTT_CONNECT_ACK BYTE The return code for the CONNECT

FIT-TR-2019-01: An IPFIX Extension for MQTT Protocol Monitoring 25

request. It can be one of the following: [0]
connection_accepted, [1]
connection_refused_unacceptable_protoc
ol_version. [2]
connection_refused_identifier_rejected,
[3]
connection_refused_server_unavailable,
[4]
connection_refused_bad_username_or_p
assword, [5]
connection_refused_not_authorized.

MQTT_PUB_COUNT INTEGER The total number of PUBLISH messages.

FIT-TR-2019-01: An IPFIX Extension for MQTT Protocol Monitoring 26

C. Tavern Test
The TAVERN testing framework is used to generate sample PCAP files.

test_name: Basic mqtt test
paho-mqtt:
 client:
 transport: tcp
 client_id: tavern-tester
 connect:
 host: test.mosquitto.org
 port: 1883
 timeout: 3
stages:
 - name: step 1 - ping
 mqtt_publish:
 topic: /device/123/ping
 payload: ping
 - name: step 2 - pong
 mqtt_publish:
 topic: /device/123/pong
 payload: pong
 - name: step 3 - ping
 mqtt_publish:
 topic: /device/123/ping
 payload: ping
 - name: step 4 - pong
 mqtt_publish:
 topic: /device/123/pong
 payload: pong

The content of test_mqtt_basic.tavern.yaml configuration file

FIT-TR-2019-01: An IPFIX Extension for MQTT Protocol Monitoring 27

