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Overview
Transcranial ultrasound therapyis a rapidly emerging technologyused to treat major brain disor-ders. The key challenge is to en-sure the ultrasound energy is de-livered to a precise location iden-tified by a clinician. This is difficultbecause the skull is very rigid andcauses reflections and distortionsof the ultrasound waves. Theseeffects may be predicted and cor-rected for by the use of complexnumerical models of the ultrasound waves propagation in the body(see figure). Unfortunately, these models can take many hours or daysto run even on large supercomputers. The reduction of the computetime is thus critical for clinical workflows.

Ultrasound Wave Propagation in Tissue
The governing equations modeling the ultrasound wave propagationin heterogeneous absorbing tissues can be written as follows:
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These equations are discretized using the k-space pseudospectral ap-proach which achieves excellent convergence and low dispersion, butrequires multiple evaluations of 3D Fourier transforms (3D FFTs) pertime step.

Global and Local Gradient Operators
The k-space gradient operator is traditionally implemented globally bymeans of distributed 3D FFTs. The local version partitions the simula-tion domain into overlapping subdomains and computes the 3D FFTslocally. These two approaches offer a trade-off between the amountof communication and local computation. This poster investigates howNvidia’s NVlink high-bandwidth GPU interconnect influences this trade-off compared to conventional PCI-Express based architectures.
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1 Overview 

High-intensity focused ultrasound (HIFU) is an emerging non-

invasive cancer therapy that uses tightly focused ultrasound waves to 

destroy tissue cells through localised heating. The treatment planning 

goal is to select the best transducer position and transmit parameters 

to accurately target the tumour. The path of the ultrasound waves can 

be predicted by solving acoustic equations based on momentum, 

mass, and energy conservation. However, this is a computationally 

difficult problem because the domain size is very large compared to 

the acoustic wavelength. 
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Nonlinear Ultrasound Wave Propagation in Tissue 

The governing equations must account for the nonlinear propagation 

of ultrasound waves in tissue, which is a heterogeneous and 

absorbing medium. Accurately accounting for acoustic absorption is 

critical for predicting ultrasound dose under different conditions. The 

required acoustic equations can be written as: 

These equations are discretised using the k-space pseudo-spectral 

method and solved iteratively. This reduces the number of required 

grid points per wavelength by an order of magnitude compared to 

finite element or finite difference methods. For uniform Cartesian 

grids, the gradients can be calculated using the fast Fourier transform. 

Local Fourier Basis Accuracy 

Since the gradient is not calculated on the whole data, numeric error 

is introduced. Its level can be tuned by the thickness of the halo 

region.  

Performance Investigation 

The strong scaling and simulation time breakdown were investigated 

on Emerald and Anselm clusters with up to 128 GPUs. 

momentum conservation 

mass conservation 

pressure-density relation 

Local Fourier Basis Decomposition 

Local domain decomposition reduces the communication burden by 

partitioning the domain into a grid of local subdomains where 

gradients are calculated locally and the global communication is 

replaced by the nearest-neighbor halo exchange. 

The gradient calculation with the hallo on an i-th subdomain reads as 

follows (b is a bell function smoothening the subdomain interface): 

𝜕𝑝𝑖
𝜕𝑡

= 𝔽−1 𝑖𝑘𝑖𝔽(𝑏 ∙ 𝑝𝑖)  

subdomain 1 subdomain 2 subdomain 3 

local data 

bell function 

periodic data 

Realistic Simulations and Their Costs 

Pressure field from a prostate ultrasound transducer simulated using 

a domain size of 1536 x 1024 x 2048 (45mm x 30mm x 60mm) with 

48,000 time steps (60μs). 
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Compute  Resources Simulation Time  Simulation Cost 

96 GPUs 14h 09m $475 

128 GPUs 9h 29m $426 

128 CPU cores 6d 18h $1,826 

256 CPU cores 3d 0h $1,623 

512 CPU cores 2d 5h $2,395 
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Simulation Accuracy
When the gradient is calculated by the local operator, numerical erroris introduced. The error level can be controlled by the shape of the bellfunction and the size of the overlap region.
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Architectures of Dense Multi-GPU Systems
Fast interconnections such as NVlink 2.0 in Nvidia DGX-2 (right) makecommunication intensive multi-GPU algorithms including distributed3D FFTs feasible. These algorithms have been very limited by the PCI-Express 3.0 interconnection in multi-GPU servers such as PNY (left).
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The all-to-all NVlink network does also not suffer from the communi-cation bottleneck introduced by the QPI links between CPU sockets.

Performance of the Gradient Operator
The local gradient operator shows a massive speedup on the PCI-Express machine (left), while being often overcome by the global vari-ant on the NVlink machine (right). This points towards hybrid decom-positions with the global operator within multi-GPU nodes and the lo-cal one among them.
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Performance and Scaling
The transition from P40 in the PNY machine to V100 GPUs in the DGX-2 machine results in a speedup of 2. Since the maximum attainedspeedup by DGX-2 reaches almost 4 when 8 GPUs and 32 grid pointoverlaps are used, the NVlink must bring another factor of two.
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The left figure shows weak scaling for two fixed subdomain sizes and16 point overlaps. Note the desired flattening between 8 and 16 sub-domains when the full 3D decomposition rank is achieved. On theright, the execution time breakdown for a 10243 grid point simulationacross 8 GPUs shows up to 10 times reduction in the communicationoverhead due to NVlink.

Domain Decomposition and Mapping
Multi-socket PCI-Express based machines are very sensitive to themapping between subdomains and GPUs, which is caused by the QPIlinks between sockets hindering GPU-to-GPU communication. In con-trast, DGX-2 is not affected by the changes in mapping at all.
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The sequential mapping (SEQ) maps neighboring subdomains to theclosest GPUs while the spread mapping (SPR) maps them to GPUsacross QPI or the GPU board boundary.

Impact and Outlook
A typical simulation needed in transcranial ultrasound therapy cov-ers 30 cm× 30 cm× 30 cm with the maximum frequency of 1 MHz. Thistranslates into a simulation over 12003 grid points and 7200 time steps.Such a simulation can be computed within 30 min using either 128dual-socket 12-core Haswell CPU nodes or a single DGX-2 GPU server.

k-Wave
A MATLAB toolbox for the time-domain
simulation of acoustic wave fields
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