
Project no. VI20172020068

Tools and Methods for Video and Image
Processing to Improve Effectivity of Rescue
and Security Services Operations (VRASSEO)

System architecture
and ViAn Server

report vContinuous

Jaroslav Zendulka, Vladimír Bartík, Tomáš Volf, Radim Kocman

Brno University of Technology
Faculty of Information Technology

Božetěchova 1
Brno, 612 66, Czech Republic

December 2020

Contents

1 Basic system overview 1
1.1 Hardware architecture . 1
1.2 Logical architecture . 1

2 Database schema 4

3 Video System 6
3.1 Basic Notions . 6
3.2 The Structure of Video Boxes 7

4 ViAn SensingAPI 8
4.1 Data manipulation endpoints 8
4.2 Video capturing / recording endpoints 10

5 SensingMQ2ViAn sender 12

6 ViAnAPI 13
6.1 ViAn VianAPI endpoints overview 13
6.2 Metadata querying endpoints 14
6.3 Starting and stopping detections endpoints 18
6.4 Detection data and metadata endpoints 20
6.5 Responses metadata endpoints 21

7 ViAn GUI 23

Abstract

This technical report describes overview of a system for managing
video-data and metadata and one of its component - ViAn server.
This component is responsible for storing and accessing videos and for
storing, reading and querying data extracted from them by sensing
modules. The report describes APIs provided by the ViAn server,
video system supporting basic operations with video streams and a
simple GUI for ViAn fundamental functionality demonstration.

1 Basic system overview

1.1 Hardware architecture

The hardware architecture of the system consists of sensing devices, field sta-
tions and a main central server. The deployment of the software components
to this hardware nodes is shown in Fig. 1.

1. Sensing device — The task of the sensing device, typically a camera, is
to acquire video data for further processing. Input video data will be
captured by one or more cameras, will be streamed by the system’s field
station. At the same time, however, these video data on the input side
may be pre-processed and streamed together with extracted metadata
to the field station.

2. Field stations — Here, images/video and metadata extracted from
external or internal modules are stored in the system. Field station
system allows moving data to a central server and query data stored
on the central server.

3. Central server — The server stores the previously captured data,
namely images/videos and their metadata.

Figure 1: Basic concept of data storage in VRASSEO

1.2 Logical architecture

The logical architecture of the system consists of ViAn Server (VideoAnalysis
Server), sensing modules and operational applications.

1

1. ViAn Server provides management of video data and metadata ex-
tracted from them. It provides database and basic analytical services.
Its task is to support the management of video data and extracted
metadata, including the support of some analytic tasks over these
metadata ViAn Server provides the following set of APIs:

(a) ViAn SensingAPI — the structure of data extracted from video
by sensing modules definition and storing the data. Sensing mod-
ules communicate with ViAn Server via this API only.

(b) ViAnAPI —- provides services to end users and to applications
they use.

2. Sensing modules primarily serve to extract metadata from data cap-
tured by sensing devices. An example of such a module may be one
extracting information about moving objects as people, cars etc. in
the observed area. Several sensing modules can be located at one com-
puting node.

3. Operational applications define the required task, manage its execution
and visualize the results.

ViAn Server with processing and analytic services and operational ap-
plications can be deployed on both the field station and the main server.
The field station deployments can provide limited functionality compared to
the main server one, for example only some processing and analytic modules.
Some modules can be physically deployed to devices other than a field station
or a central server, such as a computer dedicated to more computationally
intensive metadata extraction.

Field stations receive multimedia data and metadata from the sensing
device and allow the user to quickly respond to the processing of this data.
In addition, the user should be able to decide which data and metadata from
his station should be synchronized with the main server, or query the server
for relevant information (e.g., previous occurrences of the object in previous
analyses).

The communication of the three basic system components in a case of
starting a sensing module and receiving data produced by it is depicted in
Fig. 2. First, the user logs on the application, which authenticates him to
ViAn Server (1). Then he selects a sensing module he wants to use. The
application stores the information about the selected module in ViAn Server,
obtains an authentication token for the module (2) and sends the request to
run the module to a corresponding node of modules (3). The module first
sends a header specifying the structure of data that will be sent (4) and
sends data repeatedly.

The communication is designed such a way that each of these components
can be located on a separate physical device.

2

Figure 2: Communication of basic system components

3

2 Database schema

The schema shown in Figure 3 allows storage of datasets from various sources
of video data. It also contains tables designed for storage of information
about the sources, e.g. cameras, sensing modules etc. The PostgreSQL
database is used for the storage.

The ViAn database consists of the PUBLIC schema and the schemas
for each dataset. The main schema (PUBLIC) contains general informa-
tion about datasets stored in the database, users which create them, cam-
eras and sensing modules. Information about sensing modules includes
types of sensing modules (Sensetypes), sensing modules (Sensemodules)
and instances of sensing modules (Sensemodules_instances). The instances
can be grouped in the sensing module nodes (Sensenodes). Information
about detections, which are performed by sensing modules, are stored in
the Dataset_sensemodules_configs table. Here, for example, information
about the dataset for output data, the input camera or the start time and
finish time of the detection are stored. The fetch_stream attribute indi-
cates if the video data are also stored for the detection. The Sequences
table represents the video data, if it is stored together with data from the
sensing modules.

For each dataset there is a new schema in the PostgreSQL database
created. Its name is derived from value of the code_name attribute in
the table Datasets. The main table of the schema for a dataset is
Configs, which is connected with the Dataset_sensemodules_configs
table in the PUBLIC schema. Information about access token and time
information are stored as well. Data from the sensing modules are stored
into Sensedata_cars_XXX or Sensedata_face_XXX tables. Their names
are derived from the data_storage attribute values in the Configs ta-
ble. If the version of a sensing module is changed, information about
the older version’s storage, attributes and data types is stored into the
Sensemodule_datastorage table.

4

E
R

di
ag
ra
m

20
19

.p
ng

F
ig
ur
e
3:

V
iA

n
D
at
ab

as
e
de

si
gn

5

3 Video System

This section gives a detailed description on how video data are handled
in the system. It provides insight into the used notions, technologies, and
principles. Note that the concepts described here are used throughout the
whole system: ViAn server, sensing modules, and operational applications.

3.1 Basic Notions

The proposed video system can be roughly divided into the following four
essential parts. We always give a brief introduction of the notion followed
with further technical details.

Video Streams

When video data needs to be transfered either from an outside source (cam-
era, drone, etc.) into the system or between different parts of the system
(ViAn server, sensing modules, and operational applications), it is done with
video streams.

Inside the system, we always use the encrypted video stream protocol
RTMPS (Real-Time Messaging Protocol over a TLS/SSL connection). All
video streams from outside sources are automatically and seamlessly con-
verted into this format.

Video Files

When a video stream needs to be archived for later use, it is stored as a
standard video file on the ViAn server.

We use the file format FLV (Flash Video), which is fully compatible with
RTMPS and can store all the data without any additional complex format
conversions.

Real-Time Timestamps

When a sensing module detects an event in the video stream, this event needs
to be linked with a specific real time and a video frame. For this purpose we
use real-time timestamps that are transfered inside RTMPS.

We use the standard unix time as a representation for the current real
time. More specifically, since 32-bit timestamps in video streams are not able
to carry the full unix time with milliseconds, we modify the RTMPS stream
in such a way that each video frame carries a timestamp that represents
the current unix time starting from the day when the stream was launched.
Then, if a component of the system knows the launch date of the stream,
the full unix time can be easily reconstructed.

6

Video Boxes

To standardize the workflow with the proposed video system, we have pre-
pared a variety of preprogrammed units called video boxes that can handle
common complex video tasks (such as conversions between different formats
of video streams, the preparation of real-time timestamps, etc.). The ViAn
server and sensing modules commonly use these video boxes to handle the
required tasks. More details can be found in the following section.

3.2 The Structure of Video Boxes

Video boxes are designed as Docker containers that can self-sufficiently per-
form their required function. Structurally, the content of the boxes can be
divided into the following parts:

1. the python script that controls the function of the box,

2. the ffmpeg command that handles the video data,

3. the nginx server that distributes the result outside, and

4. the stunnel that handles the encrypted connection.

Not all four parts are always active, their usage varies depending on the
specific task (e.g., when a video box archives a video stream, it does not
require the nginx server and stunnel).

The following types of video boxes are currently finished and partially
integrated into the system:

• Replicator — standardizes an input video stream (RTMPS + real-time
timestamps) and replicates it for multiple clients. The input is usually
an outside video source and the clients are usually sensing modules or
other video boxes.

• Recorder — records the standardized input video stream into a video
file. This video box is used primarily in the ViAn server for the archiv-
ing of video streams.

• Replay — replays the recorded video file for the use in operational
applications. This video box is usually run by the ViAn server, and
the operational application can traverse the stream in an arbitrary
speed.

• Restreamer — replays the recorded video file as a new live stream.
This box is useful in cases where we need to use a recoded video file as
a new live outside video source.

7

4 ViAn SensingAPI

ViAn SensingAPI is a REST API interface provided by ViAn Server, which
allows a sensing module to sent data to store in ViAn Server. This API
uses general mechanism to store data at runtime, which means that it is not
needed to predefine data on the server-side in advance - storage is created
ad-hoc. Another benefit is simplification for developers in cases, when the
data type ouput is changed; then ViAn server creates new storage for this
data.

For each request it is needed at least following parts of request:

• dataset - passed in URI query string
• access-token - passed in request header

ViAn SensingAPI has a very limited number of endpoints, which are
divided into two groups depending on what they are processing:

• data manipulation endpoints (for sensing modules):

– /data/header - for definition data variables and their types
– /data/store- for sending (storing) data itself

• video capturing / recording endpoints (for controlling video stream
capture on the ViAn server side):

– /video/capture/start - to start recording
– /video/capture/stop - to stop recording

4.1 Data manipulation endpoints

As it was mentioned, these endpoints are designed for sensing modules pur-
poses to transfer data of events detected by sensing modules to the ViAn
server data storage. There is clearly set mandatory sequence of endpoints
usage:

1. Each module uses /data/header endpoint first to define form of data
storage.

2. Only afterwards the module can use /data/store endpoint as much
as it needed to transfer detection data itself.

4.1.1 Responses of data manipulation endpoints request:

HTTP-code of succeeded response: 200

{
"status": "success",
"data": {

8

"access_token": "***",
"token_validity": "2021-01-10T22:35:27+01:00"

}
}

Each endpoint returns HTTP-code 200 if request has succeeded. At the
same time following parts are or may be returned:

• access_token - new access token required for next request
• token_validity - timestamp of token validity otherwise token expires

At the moment returned token is always the same token for easier de-
velopment and testing purposes of API endpoints.

4.1.2 Header endpoint: /data/header

Header endpoint is designed for data storage creation / preparation. It must
be used by sensing module before /data/store endpoint usage. A body
of request contains JSON of key-value pairs, where key is name of event
property and value is a data type of event property itself.

cURL example request:

curl -X POST "https://localhost/vian_sensingapi/data/header?da
taset=test" -H "accept: application/json" -H "access-tok
en: ***" -H "Content-Type: application/json" -d "{\"fo
o\":\"int\", \"bar\":\"string\"}"

↪→

↪→

↪→

4.1.3 Data store endpoints: /data/store

Data store endpoint is designed for data sending (storing) itself. It may be
used repeatedly, but always mandatory after the /data/header endpoint use
only. This endpoint offers 2 modes of data processing in every request:

• single-entry mode
• multiple-entries / batch mode These two modes are distingushed based

on the data format only and so there is no need to use some distin-
guished parametr in the endpoint request.

cURL example request (single-entry):
In this single-entry mode of request a data entry is represented as stan-

dard JSON object / collection.

curl -X POST "https://localhost/vian_sensingapi/data/store?dat
aset=test" -H "accept: application/json" -H "access-toke
n: ***" -H "Content-Type: application/json" -d "{\"foo\":
1234, \"bar\":\"ViAn module test\"}"

↪→

↪→

↪→

9

cURL request (multiple-entries / batch):
In this batch (multiple-entries) mode of request the data entries are rep-

resented as standard JSON array of individual entries, where each individual
entry is represented as standard JSON object / collection (similar to single-
entry mode)

curl -X POST "https://localhost/vian_sensingapi/data/store?dat
aset=test" -H "accept: application/json" -H "access-toke
n: ***" -H "Content-Type: application/json" -d "[{\"fo
o\":1234, \"bar\":\"ViAn module test\"}, {\"foo\":5678,
\"bar\":\"ViAn module test 2\"}]"

↪→

↪→

↪→

↪→

4.2 Video capturing / recording endpoints

ViAn SensingAPI contains also capturing / recording endpoints, which al-
lows to manage recording stream on the ViAn server side.

4.2.1 Start capturing endpoint: /video/capture/start

This endpoint arranges, that the necessary records in the database is filled
and run on the background the auxiliary script for recording stream to the
sequence file on ViAn server datastorage side. This auxiliary script reads an
important information from the stream (for example synchronization times-
tamp) and add it to the particular records about sequence in the database,
it internally uses recorder VideoBox for the recording stream itself.

cURL example request:

curl -X POST "https://localhost/vian_sensingapi/video/capture/
start?dataset=test" -H "accept: application/json" -H "ac
cess-token: ***" -H "Content-Type: application/json" -d "
{\"camera\":\"rtmps://localhost/camera/live\"}"

↪→

↪→

↪→

Response of request:
HTTP-code of succeeded response: 200

{
"status": "success",
"data": {

"capture_id": "2e42a800-e81f-475c-a9ea-6b6c86536cab"
}

}

10

4.2.2 Stop capturing endpoint: /video/capture/stop

This endpoint finishes particular records about recorded sequence in
the database and stop the background script running in endpoint
video/capture/start.

cURL example request:

curl -X POST "https://localhost/vian_sensingapi/video/capture/
stop?dataset=test" -H "accept: application/json" -H "acc
ess-token: ***" -H "Content-Type: application/json" -d "
{\"capture\":\"2e42a800-e81f-475c-a9ea-6b6c86536cab\"}"

↪→

↪→

↪→

Response of request:
HTTP-code of succeeded response: 200

{
"status": "success",
"data": []

}

11

5 SensingMQ2ViAn sender

SensingMQ2ViAn sender was created to facilitate implementation of a spe-
cific ViAn sensing module. It shades a programmer of the specific module
from the knowledge about the communication between module itself and the
ViAn server. It also fully replaced previous Base for C++ sensing module
(which is now deprecated), nevertheless it is build on Base for c++ sensing
module foundations and some of its parts.

SensingMQ2ViAn sender is now conceived per module, so for each
module is required itself instance of sender. It is necessary to run Sens-
ingMQ2ViAn sender first, MQ address is passed as argument on module
startup. SensingMQ2ViAn sender is based on message queues, specifically
RabitMQ. Workflow is following: when sensing module detects new event,
sensing module inserts detected data into message queue. On the opposite
site, where SensingMQ2ViAn listens and waits for new data in message
queue, the data was readed, transformed and sent to ViAn server au-
tonomously without any further intervention of sensing module developer.
For this exchange it is determined partly mandatory format of message:

Mandatory format of message for queue
{

"vian_token": "...", # Access token of sensing module
(passed as argument on module startup)

"vian_server_url": "...", # Base URL of ViAn server (passed
as argument on module startup)

"vian_project_id": "...", # Dataset / work space of data (
passed as argument on module startup)

"header": {
Collection of ALL features and their types of sensing
module (in format "feature": "data type")
...

},
"data": {

"frame_ts": <some tst> # MANDATORY timestamp from
Replicator VideoBox
Collection of features and their values (in format "
feature": "value"
...

}
}

Feature frame_ts is not necessary to define in header, because it is au-
tomatically added during request processing on ViAn server side, on data
section the value of frame_ts is expected (it is mandatory item).

12

6 ViAnAPI

ViAn VianAPI is a REST API interface provided by ViAn Server, which
allows end users and applications to make queries and other database oper-
ations on the data stored in the ViAn database. It allows to get metadata
information about sensing modules, cameras and datasets. It also provides
functionality to start or stop the detection and to read data obtained as
a result of various detections. It is also planned to add functionality that
enables to replay a video, which is stored on the server.

For each request it is needed:

• access-token - passed in the request header At the moment access
tokens are not used, they are designed for future use. Each endpoint
returns HTTP-code 200 if request has succeeded.

6.1 ViAn VianAPI endpoints overview

ViAn VianAPI consists of several endpoints:

• metadata querying endpoints:

– /dataset/* - for querying information about datasets in the
database

– /camera/* - for querying information about cameras used for de-
tections

– /sensing-module/, /sensing-module/all, /sensing-module/id
- for querying information about sensing modules used for detec-
tions

• detection data and metadata endpoints

– /detection/running, /detection/past - for getting information
about detections, which are running or which were finished in the
past

– /detection/data - returns the whole data from a detection - the
data storage table contents

– /detection/records - returns the output data from the detec-
tion, which satisfy a given condition

• starting and stopping the detection endpoints

– /sensing-module/init - starts the detection
– /sensing-module/stop - stop the detection

• responses metadata endpoints

– metadata/* - returns the information about attributes returned
by endpoints mentioned above

13

6.2 Metadata querying endpoints

These endpoints include querying metadata about datasets, cameras and
sensing modules.

6.2.1 The Dataset endpoints: /dataset/*

Three possibilies to query metadata about datasets are available:
Getting information about a dataset by its identifier: /dataset/
For a given identifier (name) of a dataset, which is the only input pa-

rameter of this endpoint, all attribute values of a dataset are returned.

cURL example request

curl -X GET "http://localhost/vian_vianapi/dataset?dataset=tes
t" -H "accept: */*" -H "user-token: 123"↪→

Response of a successful request: 200

{
"status": "success",
"data": {

"friendly_name": "test",
"author": "vb",
"description": "testovaci",
"time_from": "2019-05-05T00:00:00+02:00",
"time_to": "2019-05-06T00:00:00+02:00"

}
}

Getting information about all datasets: /dataset/all
This endpoint does not have any input parameter and returns information

about all datasets in the database. It is returned as a list of items with the
same attributes as the previous endpoint.

cURL example request

curl -X GET "http://localhost/vian_vianapi/dataset/all" -H "a
ccept: */*" -H "user-token: 123"↪→

Advanced querying of datasets: /dataset/id
This endpoint returns a list of dataset identifiers. The dataset, identifier

of which is in the response, must satisfy a condition given in the request
body. Here, it is possible to specify arbitrary of the following attributes and
their values:

14

• sensing-module - sensing module, data of which are stored in the
dataset

• sensing-node - sensing node where a sensing module is placed
• sensetype - required type of sensing module
• camera - camera, data of which are stored in the dataset
• time - time, for which the dataset contains data

cURL example request for condition: sensing-module = ’modul’

curl -X POST "http://localhost/vian_vianapi/dataset/id" -H "a
ccept: */*" -H "user-token: 123" -H "Content-Type: appli
cation/json" -d "{\"sensing-module\":\"modul\"}"

↪→

↪→

Response of a succesful request: 200

{
"status": "success",
"data": [

"test"
]

}

6.2.2 The Camera endpoints: /camera/*

Similarly to the Dataset endpoints, three possibilies to query metadata about
cameras are available:

Getting information about a camera by its identifier: /camera/
For a given identifier (UUID) of a camera (the only input parameter of

this endpoint), all attribute values of a camera are returned.

cURL example request

curl -X GET "abcdefghlocalhost/vian_vianapi/camera?camera=cd0a
bc34-9bdd-42fe-8fef-0d5f8d814d77" -H "accept: */*" -H "u
ser-token: 123"

↪→

↪→

Response of a successful request: 200

{
"status": "success",
"data": {

"friendly_name": "kamera",
"url": "1.11.1.1:2222"

}
}

15

Getting information about all cameras: /camera/all
This endpoint does not have any input parameter and returns information

about all cameras in the database. It is returned as a list of items with the
same attributes as the previous endpoint.

cURL example request

curl -X GET "http://localhost/vian_vianapi/camera/all" -H "ac
cept: */*" -H "user-token: 13"↪→

Advanced querying of cameras: /camera/id
This endpoint returns a list of camera identifiers. The camera, identifier

of which is in the response, must satisfy a condition given in the request
body. Here, it is possible to specify arbitrary of the following attributes and
their values:

• sensing-module - sensing module, which is connected with a camera
• sensing-node - ssensing node where a sensing module connected with

a camera is placed
• sense-type - required type of sensing module
• dataset - identifier of a dataset where data from a camera is stored
• time - time, in which the data from the camera was stored

cURL example request for condition: dataset = ’test’

curl -X POST "http://localhost/vian_vianapi/camera/id" -H "ac
cept: */*" -H "user-token: 123" -H "Content-Type: applic
ation/json" -d "{\"dataset\":\"test\"}"

↪→

↪→

Response of a succesful request: 200

{
"status": "success",
"data": [

"cd0abc34-9bdd-42fe-8fef-0d5f8d814d77",
"78c9d135-2803-4322-9f3e-f4a6330fd741"

]
}

6.2.3 The Sensing Module metadata endpoints: /sensing-module/*

Similarly to previous endpoints, three possibilies to query metadata about
sensing modules are available:

Getting information about a sensing module by its identifier:
/sensing-module/

16

For a given identifier (Docker image) of a sensing module, the only input
parameter of this endpoint, all attribute values of a sensing module and the
list of sensing nodes, where this sensing node is placed, are returned.

cURL example request

curl -X GET "http://localhost/vian_vianapi/sensing-module?sens
emodule=modul" -H "accept: */*" -H "user-token: 123"↪→

Response of a successful request: 200

{
"status": "success",
"data": {

"dockerimg": "modul",
"sensetype": "face",
"friendly_name": "face detection",
"description": "face detection",
"sensenodes": [

"https://localhost/sensingnode2_api",
"https://localhost/sensingnode_api"

]
}

}

Getting information about all sensing modules: /sensing-module/all
This endpoint does not have any input parameter and returns information

about all sensing modules in the database together with sensing nodes, where
the sensing modules are placed. It is returned as a list of items with the same
attributes as the previous endpoint.

cURL example request

curl -X GET "http://localhost/vian_vianapi/sensing-module/all"
-H "accept: */*" -H "user-token: 123"↪→

Advanced querying of sensing modules: /sensing-module/id
This endpoint returns a list of sensing module identifiers. The sensing

modules, identifiers of which is are the response, must satisfy a condition
given in the request body. Here, it is possible to specify arbitrary of the
following attributes and their values:

• camera - camera, data of which are processed by a sensing module

17

• sensing-node - sensing node where a sensing module is placed
• sense-type - required type of sensing module
• dataset - identifier of a dataset where data from the sensing module

is stored
• time - time, in which sensing module is active

cURL example request for condition: dataset = ’test’

curl -X POST "http://localhost/vian_vianapi/sensing-module/id"
-H "accept: */*" -H "user-token: 123" -H "Content-Type:
application/json" -d "{\"dataset\":\"test\"}"

↪→

↪→

Response of a succesful request: 200

{
"status": "success",
"data": [

"demo",
"modul"

]
}

Getting the list of all sensing nodes: /sensing-module/all-sensenodes
This endpoint does not have any input parameter and returns information

about all sensing nodes in the database. It is returned as a list of items with
the following attributes:

• uri
• friendly-name
• desciption

cURL example request

curl -X GET "http://localhost/vian_vianapi/sensing-module/all-
sensenodes" -H "accept: */*" -H "user-token: 123"↪→

6.3 Starting and stopping detections endpoints

6.3.1 Starting a new detection: /sensing-module/init

This endpoint executes a database function, which stores information about
a new detection into database and if this process is successful, returns access
token and its validity. To start a detection, these parameters must be given
in the request body:

18

• dataset - identifier of a dataset where data from a detection should
be stored

• sensing-node - sensing node where a sensing module is placed
• sensing-module - sensing module used for the detection
• camera - camera used for the detection
• friendly-name - friendly name of a detection, which is initialized
• fetch-stream - boolean value, which indicates if the video from this

detection has to be stored

cURL example request

curl -X POST "http://localhost/vian_vianapi/sensing-module/ini
t" -H "accept: */*" -H "user-token: 123" -H "Content-Ty
pe: application/json" -d "{\"dataset\":\"test\",\"sensing-
node\":\"https://localhost/sensingnode_api\",\"sensing-mod
ule\":\"modul\",\"camera\":\"1.11.1.1:2222\",\"friendly-na
me\":\"new detection\",\"fetch-stream\":true}"

↪→

↪→

↪→

↪→

↪→

Response of a succesful request: 200

{
"status": "success",
"data": {

"access_token": "eb1a38382a15bf58bf4c82b86fa80a50",
"token_validity": "2021-01-13 00:00:00+01"

}
}

6.3.2 Stopping a running detection: /sensing-module/stop

Stopping the detection requires sensing node, sensing module and camera.
Meaning of these parameters are the same as in the previous section. If all
parameters are valid, a database function, which stores information about
detection stop time, is executed. No values are returned.

cURL example request

curl -X POST "http://localhost/vian_vianapi/sensing-module/sto
p" -H "accept: */*" -H "user-token: 123" -H "Content-Ty
pe: application/json" -d "{\"sensing-node\":\"https://loca
lhost/sensingnode_api\",\"sensing-module\":\"modul\",\"cam
era\":\"1.11.1.1:2222\"}"

↪→

↪→

↪→

↪→

19

6.4 Detection data and metadata endpoints

These endpoints provide the possibility to get information about running
detections and detections finished in the past and to read the results of
detections from their data storage tables.

6.4.1 Getting metadata about running detections: /detections/running

This endpoint returns all attributes of all running detections (i.e. detection,
which has an empty value of the attribute time_to) for a dataset given
as a parameter of the request. The response contains a set of items, each
representing one detection. For each detection, this set of attributes and its
values is returned:

• config_id: identifier of the detection
• friendly_name: a friendly name of the detection
• sensenode: identifier of a sensing node where the detection is running
• sensemodule: a sensing module, which makes the detection
• camera: identifier of a camera, for which the detection is made
• fetch_stream: boolean value, which indicates if the video from this

detection is stored
• time_from: start time of the detection
• data_storage: a table, which contains the results of the detection
• access_token
• token_valid_to
• last_activity

cURL example request

curl -X GET "http://localhost/vian_vianapi/detection/running?d
ataset=test" -H "accept: */*" -H "user-token: 123"↪→

6.4.2 Getting metadata about past detections: /detections/past

This endpoint returns all attributes of all detections finished in the past for
a dataset given as a parameter of the request. The response contains the
same attributes as the previous endpoint, moreover, the attribute time_to,
which indicates the finish time of a detection is included.

cURL example request

curl -X GET "http://localhost/vian_vianapi/detection/past?data
set=test" -H "accept: */*" -H "user-token: 123"↪→

20

6.4.3 Reading the whole output data of a detection: /detection/data

For a given dataset and detection, this endpoint returns the whole content of
a data storage table, where the results of detection are stored. The attributes
returned in the response depend on the storage table schema.

cURL example request

curl -X GET "http://localhost/vian_vianapi/detection/data?data
set=test&detection=a941c5fd-7d55-4721-a8d8-47499adc46fc"
-H "accept: */*" -H "user-token: 123"

↪→

↪→

6.4.4 Querying the output data of a detection: /detection/records

For a given dataset, detection and a condition, this endpoint returns the
records from a data storage table, which satisfy the given condition. The
condition attname = value is expressed by two parameters of the request:
attname and value. The attributes returned in the response depend on the
storage table schema.

cURL example request

curl -X GET "http://localhost/vian_vianapi/detection/records?d
ataset=test&detection=a941c5fd-7d55-4721-a8d8-47499adc46fc
&attname=foo&value=1237" -H "accept: */*" -H "user-token
: 123"

↪→

↪→

↪→

6.5 Responses metadata endpoints

This endpoint returns information about all attributes and their types of each
entity returned by other endpoints, for example cameras, datasets, sensing
modules etc. These endpoints have no parameters. Here is the list of end-
points, which can be used to get metadata:

• /metadata/dataset-atts - returns set of dataset attributes returned
by the /dataset/* endpoints

• /metadata/sensemodule-atts - returns set of sensing module
attributes returned by the /sensing-module/* endpoints

• /metadata/sensenode-atts - returns set of sensing node attributes
returned by the /sensing-module/all-sensenodes endpoint

• /metadata/camera-atts - returns set of camera attributes returned
by the /camera/* endpoints

• /metadata/detection-atts - returns set of detection attributes re-
turned by the /detection/current-detections endpoint

21

Moreover, there is the /metadata/table-atts endpoint, which allows get-
ting the list of attributes and their data types. For this endpoint, two pa-
rameters are necessary:

• dataset: name of the dataset, which the table is part of
• tablename: name of the table

cURL example request for the metadata/camera-atts endpoint

curl -X GET "http://localhost/vian_vianapi/metadata/camera-att
s" -H "accept: */*" -H "user-token: 123"↪→

Result of this endpoint: Response of a succesful request: 200

{
"status": "success",
"data": [

{
"attname": "friendly_name",
"typname": "varchar"

},
{

"attname": "url",
"typname": "varchar"

},
{

"attname": "id",
"typname": "uuid"

}
]

}

22

7 ViAn GUI

This section describes a demonstration operational application with a graph-
ical user interface — ViAn GUI. ViAn GUI is developed as a multi-platform
application and is based on technologies python, fbs, and PyQt that ensures
compatibility between various operation systems. The application interacts
with the rest of the system primarily over ViAn API and SensingNode API.
Note that the application is currently in early development. In its current
state, it enables to manage the following parts of the system (parts written
in italics are under construction):

• cameras — view, add, edit, remove
• detectors — view
• datasets — view, add, remove
• detections — view, start new detection, stop running detection
• records — view, remove

The application will be also further extended with the ability to browse video
data and to perform search queries over detected events.

A screenshot of the early version of ViAn GUI is in Figure 4.

Figure 4: ViAn GUI (early development)

23

	Basic system overview
	Hardware architecture
	Logical architecture

	Database schema
	Video System
	Basic Notions
	The Structure of Video Boxes

	ViAn SensingAPI
	Data manipulation endpoints
	Video capturing / recording endpoints

	SensingMQ2ViAn sender
	ViAnAPI
	ViAn VianAPI endpoints overview
	Metadata querying endpoints
	Starting and stopping detections endpoints
	Detection data and metadata endpoints
	Responses metadata endpoints

	ViAn GUI

