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Abstract. The identification of causes of errors in network systems is
difficult due to their inherent complexity. Network administrators usu-
ally rely on available information sources to analyze the current situation
and identify possible problems. Even though they are able to identify the
symptoms seen in the past and thus can apply their experience gathered
from the solved cases the time needed to identify and correct the errors is
considerable. The automation of the troubleshooting process is a way to
reduce the time spent on individual cases. In this paper, the model that
can be used to automate the diagnostic process of network communica-
tion is presented. The model is based on building the finite automaton to
describe protocol behavior in various situations. The unknown communi-
cation is checked against the model to identify error states and associated
descriptions of causes. The tool prototype was implemented in order to
demonstrate the proposed method via a set of experiments.

Keywords: Network diagnostics · automatic diagnostics · timed au-
tomata · protocol model from traces · encrypted data diagnostics · ap-
plication behavior model.

1 Introduction

Computer networks are complex systems equipped with different network devices
and hosts that provide and consume application services. Various types of er-
rors, such as misconfiguration, device failures, network application crashes, or
even user misbehavior can cause that expected network functions are not avail-
able. Users perceive network problems by the inaccessibility of web services, the
degraded performance of network applications, etc. Usually, it is the role of net-
work administrators to identify the cause of problems and to apply corrective
activities in order to restore the network functions again.

The network troubleshooting process is often described as a systematic ap-
proach to identify, diagnose and resolve problems and issues within a computer
network. Despite the published procedures, methods and techniques, and tool
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support, the network diagnostics is a largely manual and time-consuming pro-
cess. Troubleshooting often requires expert technical knowledge of network tech-
nologies, communication protocols, and network applications. Another complica-
tion is that the administrator often needs to check the number of possible sources
to find the real source of the problem. It amounts to check log files in network
devices or network applications, the current content of various tables, traces
of network communication, etc. Although an experienced administrator usually
has advanced skills in network troubleshooting that helps the administrator to
quickly identify problems there may be situations that are hard to solve and not
evident until the detailed network communication analysis is carried out.

The need for advanced tools that support network diagnostics is expressed
by most network professionals surveyed in the report presented by Zeng et al.
[31]. Existing tools can provide various information about the network, such
as service status and performance characteristics, which is useful for problem
detection but they often do not provide enough information for the cause iden-
tification. In computer networks, there can happen a lot of different problems.
Many of them can be identified by using a network traffic analyzer. The traffic
analyzer is a software to intercept the data packet flow that in the hand of an
experienced administrator enables to check for the latency issues and other net-
working problems which help to reveal the root cause. However, using a traffic
analyzer requires an understanding of different communication protocols. Also,
the number of flows that need to be analyzed can be large making the analysis
long and tedious task.

In order to improve the network troubleshooting process, we propose to de-
velop a tool that automatically generates a protocol behavior model from the
provided examples (traces) of the protocol conversations. In particular, a network
administrator is required to provide two groups of files. The first group contains
traces of normal (expected) behavior, while the second group consists of known,
previously identified error traces. Based on these distinct groups, the tool is able
to construct a protocol model that can be later used for detection and diagnosis
of issues in the observed network communication. Once the model is created,
additional traces may be used to improve the model gradually.

When designing the system, we assumed some practical considerations:

– It should not need to be required to implement custom application protocol
dissectors to understand the communication.

– Application error diagnostics cannot be affected by lower protocols, e.g.,
version of IP protocol, data tunneling protocol.

– The The model should be easily interpretable and also useful for other ac-
tivities too, e.g., security analysis, performance analysis.

The main benefit of this work is a new automatic diagnostic method for the
detection of errors observable from the application protocol communication. The
method is based on the construction of a protocol behavior model that contains
both correct and error communication patterns. An administrator can also use
the created model for documentation purposes and as part of a more detailed
analysis, e.g., performance or security analysis.
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This paper is an extended version of the paper ”Using Network Traces to
Generate Models for Automatic Network Application Protocols Diagnostics” [13].
We have added and improved several parts that extend the original paper, in
particular: i) models of protocols are better described, ii) the processing of un-
generalizable requests (and states) have been completely reworked, iii) the diag-
nostics engine can now include time information, iv) and preliminary evaluation
of encrypted traffic analysis was realized.

The focus of the previous contribution was only on detecting application
layer errors in enterprise networks. We did not consider errors occurred on other
layers and domains, e.g., wireless communication [24], routing errors [10], or per-
formance issues [19]. However, in this extended version, we are also able to cope
with performance problems. Because we are focusing on enterprise networks, we
have made some assumptions on the accessiblity of data sources. For instance,
we expect that administrators using this approach have full access to network
traffic in the network. Even if the communication outside the company’s network
is encrypted, the traffic between the company’s servers and inside the network
can be sometimes available unencrypted, or the data can be decrypted by pro-
viding server’s private key or logging the session keys 3. However, because the
encrypted traffic forms the majority of all communication on the Internet, we
also preliminary evaluated whether the presented approach (generating models
from traces) is applicable to encrypted traffic.

The paper is organized as follows: Section 2 describes existing work com-
parable to the presented approach. Section 3 defines model used for diagnos-
tics. Section 4 overviews the system architecture. Section 5 provides details
on the method, including algorithms used to create and use a protocol model.
Section 6 presents the evaluation of the tool implementing the proposed system.
Section 7 discusses some problems related to our approach. Finally, Section 8
summarizes the paper and identifies possible future work.

2 Related Work

Traditionally, error detection in network systems was mostly a manual process
performed by network administrators as a reaction to the user reported or de-
tected service unavailability or connectivity loss. As it is a tedious task various
tools and automated methods were developed. A survey by [26] classifies the er-
rors to network systems as either application-related or network-related problems.
The most popular tool for manual network traffic analysis and troubleshooting
is Wireshark [20]. It is equipped with a rich set of protocol dissectors that en-
ables to view details on the communication at different network layers. However,
an administrator has to manually analyze the traffic and decide which commu-
nication is abnormal, possibly contributing to the observed problem. Though
Wireshark offers advanced filtering mechanism, it lacks any automation [12].

Network troubleshooting can be done using active, passive, or hybrid meth-
ods [27]. Active methods rely on the tools that generate probing packets to locate

3 http://www.root9.net/2012/11/ssl-decryption-with-wireshark-private.html
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network issues [2]. Specialized tools using generated diagnostic communication
were also developed for testing network devices [23]. The advantage of active
methods is that it is possible to detect a certain class of errors quickly and pre-
cisely identify the problem. On the other hand, generating diagnostic traffic may
be unwanted in some situations. Passive detection methods rely on information
that can be observed in network traffic or obtained from log files, dumps, etc.

During the course of research on passive network diagnostic methods, several
approaches were proposed utilizing a variety of techniques. In the rest of this sec-
tion, we present the different existing approaches to network diagnostics closely
that relates to the presented contribution.

Rule-based Methods. Rule-based systems represent the application of artifi-
cial intelligence (reasoning) to the problem of system diagnosis. While this ap-
proach was mainly popular for automated fault detection of industrial systems,
some authors applied this principle to develop network troubleshooting systems.
[15] introduced rule-based reasoning (RBR) expert system for network fault and
security diagnosis. The system uses a set of agents that provide facts to the di-
agnostics engine. [9] proposed distributed multi-agent architecture for network
management. The implemented logical inference system enables automated iso-
lation, diagnosis, and repairing network anomalies through the use of agents
running on network devices. [11] employed assumption-based argumentation to
create an open framework of the diagnosis procedures able to identify the typical
errors in home networks. Rule-based systems often do not directly learn from
experience. They are also unable to deal with new previously unseen situations,
and it is hard to maintain the represented knowledge consistently [25].

Protocol Analysis. Automatic protocol analysis attempts to infer a model
of normal communication from data samples. Often, the model has the form
of a finite automaton representing the valid protocol communication. An au-
tomatic protocol reverse engineering that stores the communication patterns
into regular expressions was suggested in [30]. Tool ReverX [3] automatically
infers a specification of a protocol from network traces and generates corre-
sponding automaton. Recently, reverse engineering of protocol specification only
from recorded network traffic was proposed to infer protocol message formats
as well as certain field semantics for binary protocols [17]. The automated infer-
ence of protocol specification (message format or even protocol behavior model)
from traffic samples was considered by several authors. [8] presented Discover,
a tool for automatic protocol reverse engineering of protocol message formats
from network traces. The tool works for both binary and text protocols pro-
viding accuracy about 90%. The different approach to solve a similar goal was
proposed by [29]. They instrumented network applications to observe the oper-
ation of processing network messages. Based on this information their method
is able to recreate a message format, which is used to generate protocol parser.
This work was extended by the same authors in [7] with an algorithm for ex-
tracting the state machine for the analyzed protocol. [16] developed a method



Application Error Detection in Networks by Protocol Behavior Model 5

based on Markov models called PRISMA, which infers a functional state machine
and message format of a protocol from network traffic alone. While focused on
malware analysis, the tool is capable to identify communication behavior of ar-
bitrary services using binary or textual protocols. Generating application-level
specification from network traffic is addressed by [28]. They developed a system
called Veritas that using the statistical analysis on the protocol formats is able
to generate a probabilistic protocol state machine to represent the protocol flows.

Statistical and Machine Learning methods. Statistical and machine learn-
ing methods were considered for troubleshooting misconfigurations in the home
networks by [1] and diagnosis of failures in the large networks by [6]. Trana-
lyzer [4] is a flow-based traffic analyzer that performs traffic mining and sta-
tistical analysis enabling troubleshooting and anomaly detection for large-scale
networks. Big-DAMA [5] is a framework for scalable online and offline data min-
ing and machine learning supposed to monitor and characterize extremely large
network traffic datasets.

Automata-based Analysis. Timed automaton is one of the natural represen-
tations of the behavior models for communication protocols. For example, [14]
uses timed automata to model parallel systems and to detect errors by verify-
ing the satisfaction of given properties. However, they do not assume to learn
the model automatically. Another work [21] proposes a heuristic state-merging
algorithm that learns the model automatically. They are using NetFlow records
and time windows to create models that are later used to detect malware and
infected hosts. [18] uses a model described by timed automata to diagnose er-
rors. The system monitors several sensors which values are converted into timed
sequences to be accepted by the timed automata, which are able to detect vio-
lations of the measured values to the predefined model.

3 Model representation

Diagnosed protocols are described using models that define the protocols’ com-
munications as pair sequences. Each pair consists of a request and a reply mes-
sage, as shown in Figure 1. These requests and replies are pre-specified message
types specific for each protocol. In addition to the original paper, models will
take the form of a timed finite automaton, which, in addition to the message
order, will also contain timestamp - time since the last reply was received. The
finite automaton will process the input sequence and will traverse through the
model states. The result of the traverse process will be the result of diagnostics.

Each model processes a message sequence that is distinguished by a 6-tuple:
source and destination IP address, source and destination port, L4 protocol, and
session ID. The session ID is an optional parameter specified for each protocol
to distinguish multiple conversations that are transmitted within a single con-
nection. When transferring multiple conversations over a single connection, the
model does not describe the entire connection, but only individual conversations.
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Fig. 1. An illustration of a protocol messages conversion into a finite state automaton.
Requests and replies are paired together with the time of their arrival since the last
pair.

The finite automaton works with the input alphabet, which is a pair of request
and reply values. Both the request and the reply values are composed of packet
fields, such as the value of the ”ftp.request.command” attribute for the FTP
request and value of the ”ftp.response.code” attribute for its reply. If the input
symbol (request/reply pair) is repeated (which might mean periodic reports),
the model will contain a transition to the same state.

For each request/reply pair, the time since the last reply message or the
beginning of the communication is calculated. Using this time, the interval at
which the message must arrive for the finite automaton to transition through
the state is calculated. Before calculating the interval range, it is necessary to
calculate a minimum, a maximum, and a square root of standard deviation
from the time values. The interval is calculated in the range from ”minimum−√
std deviation” to ”maximum+

√
std deviation”, including extreme values. If

the number of values is less than 5, the interval is from zero to infinity (all pairs
will match this interval).

A model has a form of a timed finite automaton [22, Def.6.4] — a 6-tuple
(S, S0, Σ, Λ,C, δ), where:

– S is a finite set of states,

– S0 ∈ S is an initial state,

– Σ is a finite input alphabet (Σ ∩ S = ∅, ε /∈ Σ), where Σ = (request, reply)
and ε is an empty value,

– Λ is a finite output alphabet (Λ∩S = ∅, ε /∈ Λ), where Λ = error description
and ε is an empty value,

– C is a finite state of clocks,

– δ:S×(Σ∪ε)×Φ(C)→ S×Λ∗×2C is a transition function mapping a triplet
of a state, an input symbol (or empty string), and a clock constraint over C
to a triplet of a new state, an output sequence, and a set of clocks to be reset.
It means, given a specific input symbol, δ shifts the timed transducer from
one state to another while it produces an output if and only if the specified
clock constraint hold.
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4 System Architecture

This section describes the architecture of the proposed system which learns from
communication examples and diagnoses unknown communications. In this ex-
tended version, the architecture now works with timed information inside au-
tomata’s transitions, and a new concept of model generalization is described.
The system takes PCAP files as input data, where one PCAP file contains
only one complete protocol communication. An administrator marks PCAP files
as correct or faulty communication examples before model training. The ad-
ministrator marks faulty PCAP files with error description and a hint on how
to fix the problem. The system output is a model describing the protocol behav-
ior and providing an interface for using this model for the diagnostic process.
The diagnostic process takes a PCAP file with unknown communication and
checks whether this communication contains an error and if yes, returns a list
of possible errors and fixes.

The architecture, shown in Figure 2, consists of multiple components, each
implementing a stage in the processing pipeline. The processing is staged as fol-
lows:

– Input data processing - Preprocessing is responsible for converting PCAP
files into a format suitable for the next stages. Within this stage, the input
packets are decoded using protocol parser. Next, the filter is applied to select
only relevant packets. Finally, the packets are grouped to pair request to their
corresponding responses.

– Model training - The training processes several PCAP files and creates
a model characterizing the behavior of the analyzed protocol. The output
of this phase is a protocol model.

– Diagnostics - In the diagnostic component, an unknown communication
is analyzed and compared to available protocol models. The result is a report
listing detected errors and possible hints on how to correct them.

Model training

Diagnostics

Input data processing

Protocol modelPCAP file

Fig. 2. After the system processes the input PCAP files (the first yellow stage), it uses
the data to create the protocol behavior model (the second green stage) or to diag-
nose an unknown protocol communication using the created protocol model (the-third
purple stage). [13]

In the rest of the section, the individual components are described in detail.
Illustrative examples are provided for the sake of better understanding.
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4.1 Input Data Processing

This stage works directly with PCAP files provided by the administrator. Each
file is parsed by TShark 4 which exports decoded packets to JSON format.
The system further processes the JSON data by filtering irrelevant records and
pairs request packets with their replies. The output of this stage is a list of tuples
representing atomic transactions.

We have improved the data pairing process in this extended paper to support
timed transitions in the model. The system calculates time between the arrival
time of the current and the last reply message. For the first reply message within
the communication, the time since the beginning of the communication is used.
In the case requests do not have corresponding replies, the system uses the
requests arrival times. The result of the pairing process is a sequence of pairs
with time information, where each pair consists of one request and one reply.
The Figure 3 shows an example of this pairing process.

Data filtering output         Data pairing output

Reply: "220"
Request: "EHLO"

Reply: "250"
Reply: "250"
Reply: "250"

Request: "AUTH"
Reply: "334"
Reply: "334"
Reply: "235"

Request: "MAIL"
Reply: "250"

Request: "QUIT"

(None, "220")

("EHLO", "250")
("EHLO", "250")
("EHLO", "250")

("AUTH", "334")
("AUTH", "334")
("AUTH", "235")

 ("MAIL", "250")

("QUIT", None)

time

Fig. 3. An SMTP communication in which the client authenticates, sends an email
and quits. The left part of the example shows a list of requests and replies together
with the time of their arrival in the protocol-independent format. The right part shows
a sequence of paired queries with replies, which are the output of the Input Data
Porcessing stage. For each pair, time since the last pair is also saved. The system pairs
one request and one reply with the special None value.

4.2 Model Training

After the Input Data Processing stage transformed input PCAP files into a list
of request-response pairs, the Model Training phase creates a protocol model.
For example, we can consider regular communication traces that represent typi-
cal POP3 protocol operations with the server: the client is checking a mail-box,
downloading a message or deleting a message. The model is first created for
regular communication and later extended with error behavior.

4 https://www.wireshark.org/docs/man-pages/tshark.html
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Learning from traces with expected behavior. The model creation process
begins by learning the protocol behavior from input data representing regular
communication. The result of this training phase is a description of the protocol
that represents a subset of correct behavior. The model is created from a col-
lection of individual communication traces. When a new trace is to be added,
the tool identifies the longest prefix of the trace that is accepted by the current
model. The remaining of the trace is then used to enrich the model.

During a traverse within the model, the time attribute of each request-reply
pair is added to transitions (each transition has an auxiliary variable containing
a list of time attributes). If the number of saved time values within a transi-
tion is greater than 5, the time interval of the model transition is recalculated
as described in Section 3.

Model generalization. Unfortunately, TShark marks some unpredictable data
(e.g., authentication data) in some protocols as regular requests and does not
clearly distinguish between them. These values are a problem in later process-
ing because these unpredictable values create ungeneralizable states during the
model learning phase. Therefore, all transitions that contain requests with un-
predictable values are removed from the model and replaced by new transitions.

An unpredictable request value is a request value which is contained inside
only one transition - no matter the previous state, the next state, and the reply
value. The wildcard value will replace these request values. The time interval
of the transition is kept at value from zero to infinity. Which requests contain
unpredictable values is determined during the learning process of the model.
During this process, the amount of times a request value is being used (no matter
the current automata state) is counted (count 1 = unpredictable).

Multiple transitions with unpredictable requests and an identical reply value
may originate from a single finite automata state. In this case, all these transi-
tions with the next finite automata states are merged. The merging idea is dis-
played in Figure 4. After all input traces are used for the model to learn, there
is a state from which four transitions are originating. The gray dashed lines are
transitions that occurred only once within the input. These two transitions con-
tain various request values, but the same reply value (“OK”). After generalizing
these three transitions, a new transition containing the request wildcard value
and the “OK” reply value will be added to the model.

When traversing through an automaton, in each state, transitions with ex-
plicit commands are checked as first. When no match is found, the model checks
if there is a wildcard command value and a reply value for the current state.

Learning the errors. After the system learns the protocol from regular com-
munication, the model can be extended with error traces. The system expects
that the administrator prepares that error trace as the result of previous (man-
ual) troubleshooting activities. The administrator should also provide error de-
scription and information about how to fix the error.
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Fig. 4. Illustration of replacing unpredictable requests by a wildcard value (*). The
replaced transitions are merged into one generic transition.

When extending the model with error traces, the procedure is similar to when
processing correct traces. Automaton attempts to consume as long prefix of input
trace as possible ending in state s. The following cases are possible:

– Remaining input trace is not empty : The system creates a new state s′

and links it with from state s. It marks the new state as an “error” state
and labels it with a provided error description.

– Remaining input trace is empty :
• State s is error state: The system adds the new error description to ex-

isting labeling of an existing state s.
• State s is correct state: The system marks the state as possible error and

adds the error description.

4.3 Diagnostics

After the system creates a behavioral model that is extended by error states, it is
possible to use the model to diagnose unknown communication tracks. The sys-
tem runs diagnostics by processing a PCAP file in the same way as in the learning
process and checks the request-reply sequence with their time attributes against
the automaton. Diagnostics distinguishes between these classes:

– Normal: The automaton accepts the input trace and ends in the correct
state.

– Error: The automaton accepts the input trace and ends in the error state.
– Possible error: The automaton accepts the input trace and ends in the pos-

sible error state. In this case, the system cannot distinguish if the commu-
nication is correct or not. Therefore, the system reports an error description
from the state and leaves the final decision on the user.

– Unknown: The automaton does not accept entire the input trace, which
may indicate that the trace represents a behavior not fully recognized by the
underlying automaton.

It is important to notice that during the traverse within the automaton,
the time attribute of each request-reply pair is compared with time constraints.
In case the time attribute does not fulfill the constraint, the model generates
a warning message. However, the diagnostic process does not stop, and the tra-
verse process continues to the next state in the same way as if the time constraint
was fulfilled.
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5 ALGORITHMS

This section provides algorithms for (i) creating a model from normal traces,
(ii) generalization of the model, (iii) updating the model from error traces and
(iv) evaluating a trace if it contains an error. The algorithms are based on algo-
rithms from the original paper. The difference is that in this version, they need
to work with timed transitions. All presented algorithms work with a model that
uses a deterministic timed finite automaton (DTFA) as its representation.

To simplify algorithms’ codes, we have defined time interval 〈0;∞〉 as the
default interval. If the interval is not specified, the model uses this value which
has less priority when traversing throw the model states. Only when there is no
match with a specific interval, the system checks default values.

5.1 Adding Correct Traces

Algorithm 1 takes the input model (DTFA) and adds missing transitions and
states based on the input sequence (P). The algorithm starts with the init state
and saves it into the previous state variable. The previous state variable is used
to create a transition from one state to the next. In each loop of the while section,
the algorithm assigns the next pair into the current state variable until there
is no next pair. From the previous state and the current state, the transition
variable is created, and the system checks if the DTFA contains this transition.
If the DTFA does not contain it, it is added together with the time value.
Otherwise, the new time value is added to the transition. If at least five time
values are saved, the time interval is calculated and applied to the transition.

Before continuing with the next loop, the current state variable is assigned
to the previous state variable. The updated model will be used as the input for
the next input sequence. After processing all the input sequences, which represent
normal behavior, the resulting automaton is a model of normal behavior.

Algorithm 1 Updating model from the correct traces

Inputs: P = query-reply pairs sequence with time value; DTFA = set of the transitions
Output: DTFA = set of the transitions
previous state = init state
while not at end of input P do

current state = get next pair from P
transition = previous state→ current state
if DTFA does not contain transition then

add transition to DTFA and save time value to the transition
else

add time value to the saved times in transition
if saved times >= 5 then

calculate the time interval constraint and apply it to the transition
previous state = current state

end
return DTFA
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Algorithm 2 Generalization of the model

Inputs: DTFA = set of transitions
Output: DTFA = set of transitions
foreach transition ∈ DTFA do

if transition contains only one time then
new transition = make copy of transition
remove transition from DTFA
replace request in new transition by wildcard
if DTFA does not contain new transition then

add new transition to DTFA
end
return DTFA

5.2 Model Generalization

The Algorithm 2 takes all transitions from a model one by one (variable transition),
calculates the number of times each transition was used, and checks whether
the transition was used only once (contains only one time value). Only one time
value means that in all of the input traces, the transition was used only once.
The model creates a new copy of the transition (variable new transition) and
removes the old one.

The wildcard value replaces the request value in the new transition. The al-
gorithm checks whether the model contains this new transition, and if not, it
is inserted into the model. This presence control ensures that a single transition
replaces multiple ungeneralizable states with a wildcard request value.

Algorithm 3 Extending the model with error traces

Inputs: P = query-reply pairs sequence; DTFA = set of transitions; Error = description
of the error

Output: DTFA = set of transitions
previous state = init state
while not at end of input P do

current state = get next pair from P
transition = previous state→ current state
if DTFA contains transition then

if transition fulfills time interval then
if transition contains error then

append error to transition in DTFA
return DTFA

previous state = current state
else

add transition to DTFA and mark it with error
return DTFA

else
add transition to DTFA and mark it with error
return DTFA

end
return DTFA
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5.3 Adding Error Traces

The Algorithm 3 has one more input (Error), which is a text string describing
a user-defined error. The start of the algorithm is the same as in the previous
case. The difference is in testing whether the automaton contains the transition
specified in the input sequence. If so, the system checks whether the transition
fulfills the time interval. This time interval checking is an improvement of the
algorithm from the previous paper. Only when the time interval is fulfilled,
the system checks to see if the saved transition also contains errors. In this
case, the algorithm updates the error list by adding a new error. Otherwise,
the algorithm continues to process the input string to find a suitable place to in-
dicate the error. If the transition does not fulfill the time interval restriction or
the transition does not exist, it is created and marked with the specified error.

5.4 Testing Unknown Trace

The Algorithm 4 uses previously created automaton (DTFA variable) to check
the input sequence P. According to the input sequence, the algorithm traverses
the automaton and checks whether the transitions contain errors. If an error
in some transition is found, the system returns an errors description messages
(errors) to the user. If the transition was not found, the algorithm returns
an unknown error. In this case, it is up to the user to analyze the situation and
possibly extend the automaton for this input.

In this extended paper, the system also verifies if the input sequence fulfills
transitions time restrictions. With each transition, the time value is compared
to the time interval. If the transition does not fulfill the time interval, the
system creates a warning message to the user. More than one warning message
can be generated because the generating of warning messages does not stop the
diagnostic process.

Algorithm 4 Checking an unknown trace

Inputs: P = query-reply pairs sequence; DTFA = set of transitions
Output: Errors = one or more error descriptions
previous state = init state
while not at end of input P do

current state = get next pair from P
transition = previous state→ current state
if DTFA contains transition then

if transition doesn’t fulfill time interval then
create warning that transition does not matched the interval and continue

if transition contains error then
return errors from transition

previous state = current state
else

return ”unknown error”
end
return ”no error detected”
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6 EVALUATION

We have implemented a proof-of-concept tool which implements the Algorithm 1,
2, 3, and 4. In this section, we provide the evaluation of our proof-of-concept tool
to demonstrate that the proposed solution is suitable for diagnosing application
protocols. Another goal of the evaluation is to show how the created model
changes by adding new input data to the model. We have chosen four application
protocols with different behavioral patterns for evaluation.

The results from the original’s subsections 5.1-5.3 are the same and still
valid. From this reason the subsections 6.1 and 6.3 are the same as in the original
paper, and in the subsection 6.2 the figure showing the model’s complexity during
the model training is omitted. The new content is in the following subsections.
Section 6.4 tests the benefit of using finite automata as the model by detecting
a performance problem inside a communication. The last section 6.5 tries to
verify whether the proposed approach is somehow usable for encrypted traffic.

6.1 Reference Set Preparation and Model Creation

Our algorithms create the automata states and transitions based on the se-
quence of pairs. The implication is that repeating the same input sequence
does not modify the learned behavior model. Therefore, it is not important
to provide a huge amount of input files (traces) but to provide unique traces
(sequences of query-reply pairs). We created our reference datasets by captur-
ing data from the network, removing unrelated communications, and calculating
the hash value for each trace to avoid duplicate patterns. Instead of a correlation
between the amount of protocols in the network and the amount of saved traces,
the amount of files correlates with the complexity of the analyzed protocol. For
example, hundreds of DNS query-reply traces captured from the network can be
represented by the same query-reply sequence (A type query,No error).

After capturing the communication, all the traces were manually checked and
divided into two groups: (i) traces representing normal behavior and (ii) traces
containing some error. In case the trace contains an error, we also identified
the error and added the corresponding description to the trace. We split both
groups of traces into the training set and the testing set.

It is important to notice that the tool uses traces to create a model for one
specific network configuration and not for all possible configurations. Focus on
a single configuration results in a smaller set of unique traces and smaller created
models. This allows an administrator to detect situations which may be correct
for some network, but not for a diagnosed network, e.g., missing authentication.

6.2 Model Creation

We have chosen the following four request-reply application protocols with dif-
ferent complexity for evaluation:

– DNS: Simple stateless protocol with communication pattern - domain name
query (type A, AAAA, MX, ...) and reply (no error, no such name, ...).
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– SMTP: Simple state protocol in which the client has to authenticate, specify
email sender and recipients, and transfer the email message. The protocol
has a large predefined set of reply codes resulting in many possible states in
DTFA created by Algorithm 1 and 2.

– POP: In comparison with SMTP, the protocol is more complicated because
it allows clients to do more actions with email messages (e.g., download,
delete). However, the POP protocol replies only with two possible replies
(+OK, -ERR), which reduce the number of possible states.

– FTP: Stateful protocol allowing the client to do multiple actions with files
and directories on server. The protocol defines many reply codes.

Table 1. For each protocol, the amount of total and training traces is shown.
These traces are separated into proper (without error) and failed (with error) groups.
The training traces are used to create two models, the first without errors and the sec-
ond with errors. The states and transitions columns show the complexity of the mod-
els. [13]

Protocol
Total
traces

Training
traces

Model without
error states

Model with
error states

Proper Failed Proper Failed States Transitions States Transitions

DNS 16 8 10 6 18 28 21 34

SMTP 8 4 6 3 11 18 14 21

POP 24 9 18 7 16 44 19 49

FTP 106 20 88 14 33 126 39 137

The proof-of-concept tool took input data of selected application protocols
and created models of the behavior without errors and a model with errors.
The Table 1 shows the distribution of the input data into a group of correct
training traces and a group of traces with errors. Remaining traces will be later
used for testing the model. The right part of the table shows the complexity
of the generated models in the format of states and transitions count.

Based on the statistics of models, we have made the following conclusions:

– transitions sum depicts the model’s complexity better than the state’s sum;
– there is no direct correlation between the complexity of the protocol and

the complexity of the model. As can be seen with protocols DNS and SMTP,
even though the model SMTP is more complicated than DNS model, there
were about 50% fewer unique traces resulting in a model with 21 transitions,
while the DNS model consists of 34 transitions. The reason is that one DNS
connection can contain more than one query-reply and because the protocol
is stateless, any query-reply can follow the previous query-reply value.

Part of the original paper is a figure with four charts outlining the same
four protocols, as displayed in Table 1. These four charts show the progress
of increasing the model size and decreasing the number of diagnostic errors
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when new traces are added to the model. The model creation process was split
into two parts: training from traces without errors and learning the errors.

6.3 Evaluation of Test Traces

Table 2 shows the amount of successful and failed testing traces; the right part
of Table 2 shows testing results for these data. All tests check whether:

1. a successful trace is marked as correct (TN);
2. a failed trace is detected as an error trace with correct error description

(TP);
3. a failed trace is marked as correct (FN);
4. a successful trace is detected as an error or failed trace is detected as an error

but with an incorrect error description (FP);
5. true/false (T/F) ratios which are calculated as (TN+TP )/(FN+FP ). T/F

ratios represents how many traces the model diagnosed correctly.

Table 2. The created models have been tested by using testing traces, which are split
into proper (without error) and failed (with error) groups. The correct results are
shown in the true negative (TN ) and true positive (TP) columns. The columns false
positive (FP) and false negative (FN ) on the other side contain the number of wrong
test results. The ratio of correct results is calculated as a true/false ratio (T-F ratio) .
This ratio represents how many testing traces were diagnosed correctly. [13]

Protocol
Testing traces

Testing against model
without error states

Testing against model
with error states

Proper Failed TN TP FN FP T-F ratio TN TP FN FP T-F ratio

DNS 6 2 4 2 0 2 75 % 4 1 1 2 63 %

SMTP 2 1 2 1 0 0 100 % 2 1 0 0 100 %

POP 6 2 6 2 0 0 100 % 6 2 0 0 100 %

FTP 18 6 18 6 0 0 100 % 18 5 1 0 96 %

TN - true negative, TP - true positive, FN - false negative,
FP - false positive, T-F ratio - true/false ratio

As the columns T-F ratio in Table 2 shows, most of the testing data was diag-
nosed correctly. We have analyzed the incorrect results and made the following
conclusions:

– DNS: False positive - One application has made a connection with the DNS
server and keeps the connection up for a long time. Over time several queries
were transferred. Even though the model contains these queries, the order
in which they came is new to the model. The model returned an error result
even when the communication ended correctly. An incomplete model causes
this misbehavior. To correctly diagnose all query combinations, the model
has to be created from more unique training traces.
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– DNS: False positive - The model received a new SOA update query. Even
if the communication did not contain the error by itself, it is an indication
of a possible anomaly in the network. Therefore, we consider this as the ex-
pected behavior.

– DNS: False negative - The situation was the same as with the first DNS
False positive mistake - the order of packets was unexpected. Unexpected
order resulted in an unknown error instead of an already learned error.

– FTP: False negative - The client sent a PASS command before the USER
command. This resulted in an unexpected order of commands, and the model
detected an unknown error. We are not sure how this situation has hap-
pened, but because it is nonstandard behavior, we are interpreting this as
an anomaly. Hence, the proof-of-concept tool provided the expected outcome.

All the incorrect results are related to the incomplete model. In the stateless
protocols (like DNS), it is necessary to capture traces with all combinations
of query-reply states. For example, if the protocol defines 10 types of queries,
3 types of replies, the total amount of possible transitions is (10 ∗ 3)2 = 900.
Another challenge is a protocol which defines many error reply codes. To create
a complete model, all error codes in all possible states need to be learned from
the traces.

We have created the tested tool as a prototype in Python language. Our goal
was not to test the performance, but to get at least an idea of how usable our
solution is, we gathered basic time statistics. The processing time of convert-
ing one PCAP file (one trace) into a sequence of query-replies and adding it
to the model took on average 0.4s. This time had only small deviations because
most of the time took initialization of the TShark. The total amount of time re-
quired to learn a model depends on the amount of PCAPs. At average, to create
a model from 100 PCAPs, 30 seconds was required.

6.4 Timed transitions

For this test, we took a model of the SMTP protocol from the previous test, and
we have extended it with new PCAP files. These new PCAP files contain two
problems that could not be detected without a timed finite automata model:

1. overloaded SMTP server - all requests from the server have a high delay;
2. overloaded authentication LDAP server - the SMTP server responds

to requests at an average speed, but user authentication, which uses an ex-
ternal LDAP server takes considerably longer.

Unfortunately, we do not have PCAP files with these errors from a real
production network, so we had to create them. We achieved this by manually
overloading the SMTP server, LDAP server, or creating a delay for the commu-
nication between these two servers.

The part of the extended model that covers authentication problems is dis-
played in Figure 5. Red colored transitions cover situations where, regardless
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of the authentication type and authentication result, a slow response is detected.
The model describes two authentication methods: simple authentication (name
and password in one message) and login authentication (name and password sent
separately). As described in Algorithm 3, these new transitions have a time inter-
val with the value < 0;∞ >. Therefore all traces that do not match the original
time restrictions are matched by these new transitions.

Fig. 5. The segment of the SMTP model which contains new transitions and states
related to the high delay from the authentication server.

We have tested the created model on other captured PCAP files. With over-
loaded LDAP servers or high communication latency between an SMTP and
an LDAP server, the model correctly detected a problem related to the authen-
tication. When the SMTP server was overloaded, the model correctly detected
overload at the beginning of the communication.

However, the extended SMTP model was not able to correctly diagnose a sit-
uation where the beginning of the communication was OK, and the overload
of the SMTP server began during client authentication. Although other delayed
responses followed the delayed response for authentication, the system stopped
at the first error and erroneously detected an authentication problem.

6.5 Encrypted data diagnostics

We have performed another type of evaluation aimed at verifying if the method
proposed by us applies to encrypted traffic or not. As described in the previous
sections, the diagnostic process uses request-reply values, but we are not able
to detect this in encrypted communication. To overcome this limitation, we have
proposed a modification to the model in the way that the model uses the size
of the encrypted data (TLS record size) instead of the request-reply value.

Because we only consider the size of the application data, which can eas-
ily vary even if the request value or the reply value is the same, it is neces-
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sary to work with a range of values. We are using an algorithm similar to the
one used to calculate the range for time intervals. From the set of values, we
calculate the minimum, maximum, and square root of the standard deviation.
The range of the interval that will accept messages will have a value ranging from
”minimum−

√
std deviation” to ”maximum+

√
std deviation”. The difference

from the calculation of the time intervals is that with a range of application data
sizes, the interval is calculated from even a single value, and it is not required
to have at least five values.

With this modified approach of diagnostics, we are not able to diagnose such
a range of errors as in unencrypted traffic. However, we are still able to obtain
at least basic information about the state of communication. We have based this
idea on the fact that protocol communication between endpoints goes through
different states. Protocol standards specify these states and their order. Diag-
nostics of encrypted communication, do not analyze exactly what caused the
error but only when (or in which state) the error occurred.

As in the case of unencrypted communications, a model should be cre-
ated only from traces belonging to one service (on a single server) and applied
to the same service. With other configurations, the content of messages can
be different, which would cause different sizes of the messages themselves.

To verify the idea of diagnostics based on the size of application data, we have
captured ten correct and three error SMTP communication traces. From these
communications, a model was created, which is shown in Figure 6. The Figure
shows three detectable errors that also separate the SMTP protocol states -
welcoming client, user authentication, and e-mail sending. Based on this test,
we have reached the conclusion that the approach is usable. However, to use
the model in the real-world, the model should be trained from more traces.

Fig. 6. The segment of the SMTP model which contains new transitions and states
related to the high delay from the authentication server.
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7 DISCUSSION

This chapter describes some of the topics we have come across when developing
and using the tool.

7.1 Fully trained model

One of the fundamental questions when using the tool is when the model is
fully (or for X%) trained and when it is possible to switch from training mode
to diagnostic mode. The simplest way of specifying how much percent the model
is trained is by calculating all possible transitions. Transitions are connecting
any two states, which are defined by request/reply values. The total number
of states is requests count ∗ replies count, and the total number of transitions
is states count2. Of course, many combinations of requests and replies do not
make sense, but the algorithm can never be sure which combinations are valid
and which are not. The problem with counting all possible combinations is that
without predefined knowledge of the diagnosed protocol, the tool can never be
sure if all possible requests and replies have already been seen or not.

One way to determine whether a model is trained without knowing the total
number of states is by checking the list of trained states when processing new
input data. If the system has not detected a new state for a certain amount
of iterations, it will declare that the list is complete, and the model is fully
trained. Here comes the problem of determining how long to wait for a new
value.

Basically, there are three approaches that can be combined:

A1 amount of new files - waiting for X new files to be processed (e.g., 100);
A2 training duration- waiting for an X lasting interval;
A3 unique amount of clients - waiting for X unique clients (e.g., 10).

Unfortunately, each of these approaches has drawbacks that cannot be elim-
inated entirely:

ReA1 If most (or all) new files have the same content type (for example, the same
client queries the same DNS translation type), then the number of these files
is not important. We have partially solved this problem by creating commu-
nications fingerprints and ignoring duplicate fingerprint files. This is why the
evaluation section describes so few unique communications. As an example,
we take the SMTP protocol. Most conversations had an identical pattern
- welcoming the client, user authentication, and sending an email. The re-
sponses to all commands were without any error. Although the welcome
message (timestamp), login information, email addresses, and email content
varied from one communication to the next, the fingerprint was the same
as all of this data was deleted in the Input Data Processing stage. So even
though we had dozens of these conversations, we counted them as just one
conversation.
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ReA2 By taking communications carried during a limited time frame, e.g. 24 hours,
we may not cover situations that arise less frequently or irregularly. For ex-
ample, SMTP clients can process requests to send a message even when
the client is offline and then send these messages at once when the client is
online again. However, the situation, when a client sends multiple messages
at once, does not occur often, and a 24-hour window might not be enough.

ReA3 This criterion can only be applied if a large number of clients connect to
a single server. In the case of a pre-defined server-server communication,
this criteria makes no sense. Even with a larger amount of clients, all clients
may use the same application, the same settings, and perform the same
activity.

In our opinion, the best option is to combine all three mentioned approaches
and select parameters so that the data sample used is relevant and that the model
is trained within an acceptable time. For example, waiting for 100 unique se-
quences in the SMTP protocol or 1000 communications if only one communica-
tion happens per day is meaningless. However, even in this case, we are not able
to capture the following situations:

– Protocol updates can introduce new version of the protocol which may in-
troduce new types of commands or responses.

– Another version (e.g., by an update) of the application or a brand new
application will appear on the network. This may cause the client to start
to communicate with the server with a different pattern of behavior.

– Some types of errors are associated with less frequently used features, which
occur very irregularly. Such errors are hard to catch and get into the model.

From our experience, it is not possible to determine when the model is fully
trained or at least trained from X%. Even if the model does not grow for a long
time, it can suddenly expand by processing a new trace (new extensions, pro-
grams with specific behavior, program updates).

Nevertheless, the model incorporates means to train even in the diagnostic
phase (when the tool is deployed). An administrator that encounters a false error
can always improve the model. Consequently, as time passes, the model can adapt
to handle infrequent communications and protocol/application updates.

7.2 Data labeling

During model training, an administrator needs to determine if there is an error
in conversation manually. If an error is detected, an administrator creates a de-
scription of this error. This process is time-consuming and requires knowledge
of the modeled protocol and computer networks in general. However, it is im-
portant to realize that in the case of manual diagnosis, the administrator has to
perform a similar diagnosis. Hence, our approach does not introduce additional
requirements for administrators’ skills. Therefore, we do not think that the need
to manually mark communications is a disadvantage of our method.
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Another possible way to label data can be by applying artificial intelligence
or machine learning. However, we think that even with machine learning, su-
pervised learning has to be used. Therefore, it is still necessary to analyze the
content of the communications manually and instruct the algorithm. Another
question is, how easy it is for the network administrator to work with artificial
intelligence, and whether network administrators without programming knowl-
edge understand working with machine learning.

7.3 Model of models

As part of our proposed approach, we do not model relationships between indi-
vidual communications or between different protocols. Each model describes one
particular communication with one protocol. However, there are more complex
errors that cannot be detected or diagnosed by analyzing just a single communi-
cation. An example is downloading a web page content. This activity can consist
of multiple individual communications: user authentication, HTML page down-
load, and download of other elements such as images or scripts. Another example
is that during communication with an application server, the server establishes
another connection to the RADIUS server to authenticate the user.

To be able to diagnose problems that are spread across multiple commu-
nications correctly (even over multiple protocols), it is necessary to create a
model which will consist of several models describing individual communica-
tions (“model of models”). This high-level model can check one communication
and, based on its result, launch another model for the following communication
or generate a diagnostic report.

7.4 Another usage of models

The proposed models do not apply to network diagnosis only. Another applica-
tion is the security analysis. The model can be trained to accept only commu-
nications which fulfill the security policy. Other communications that are not
accepted by the trained model are reported as possibly dangerous. Another type
of security analysis is by visualizing the model and employing a manual analy-
sis. Our tool can export models to a format suitable for graphical visualization.
From the trained models, an administrator can make some deductions. For ex-
ample, if some users are not using the recommended authentication or some
communications contain outdated commands.

Another possible model usage is related to time transitions within the model.
We think it makes sense to investigate whether it is possible to use models
for profiling communications. For example, in the case of FTP communication,
if the browsing and downloading of files are without delays caused by user in-
teraction, it is possible to associate such communication with a tool that auto-
matically browses and downloads server content.
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8 CONCLUSIONS

In the presented paper, we have proposed an automatic method for generating
automata from network communication traces and their use in the network di-
agnostic process. The diagnostic system is designed to learn from both normal
error-free communication sequences as well as from erroneous traces in order to
create an automata-based model for the communication protocol behavior. The
states in the automaton can be labeled with additional information that provides
diagnostic information for the error detected.

The method requires network traces prepared by an expert to create a good
model. The expert is expected to annotate network traces and label the known
errors. The current model is only applicable to query-response protocols and
those that provides a sufficient amount of information to observe their state. We
demonstrated that if the model is created based on the reasonable sample of
good and error behavior it can be used in any network environment.

We have implemented the method in a proof-of-concept tool5 and use it in
a set of experiments for demonstration purposes. The tool has been tested on
a limited set of application protocols of different types, e.g., e-mail transfer, file
download, domain name resolution. Experiments show that the suitability and
usability of the model heavily depend on the network protocol. Although the
model typically does not cover all possible scenarios, it is useful for diagnosis of
repetitive error. As the model can learn errors during deployment, an adminis-
trator does not have to deal with errors not encountered during learning phase
more than once.
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