
Using Rule-Based Decision Trees for Automatic
Passive Diagnostics of the Network Problems

Martin Holkovič

Flowmon Networks
Sochorova 3232/34

Brno 61600, CZ
Email: martin.holkovic@flowmon.com

Ondřej Ryšavý

Faculty of Information Technology
Brno University of Technology

Brno 61266, CZ
Email: rysavy@fit.vutbr.cz

Abstract—Network troubleshooting often requires a detailed anal-
ysis that may involve network packet capturing and a manual
analysis using tools such as Wireshark. This is time-consuming
and requires deep knowledge of communication protocols. There-
fore, this domain is a suitable candidate for the deployment
of an expert system. In this paper, we consider a rule-based system
integrating the expert knowledge that performs an automatic root
cause analysis of network problems identifiable from network
communications. The system is open, thus it is possible to add
new rules as needed, e.g., for specific and recurring cases
of a target environment. The rules are evaluated in a tree-
based fashion, which enables us to collect additional information
during the problem search to better explain the possible causes.
We successfully deployed the tool as part of a commercial tool
for network monitoring.

Keywords–Network diagnostics; rule-based diagnostics; fault
tree analysis; event-based diagnostics; decision trees.

I. INTRODUCTION

Network infrastructure and applications are complex, prone
to cyber attacks, outages, performance problems, misconfigu-
rations, and problems caused by software or hardware incom-
patibility. All these problems may affect network performance
and user experience [2], which may have fatal consequences
for critical network infrastructure, e.g., e-health, e-government,
Industrial IoT, smart grid, etc. Network troubleshooting is
thus among the most common and important activities by
network administrators. Despite the help of the current network
monitoring tools, identification of a root cause of issues
can be a complicated and mostly manual activity. The tools
often reveal symptoms of the problem but the reasoning and
problem localization are left for human operators expecting
that they understand the problem and have sufficient knowl-
edge of the technologies involved. Even if it is the case,
the troubleshooting can be a lengthy and tiresome process
that requires inspection of different sources of information,
e.g., log files, the content of various tables, communication
traces, etc. Application communication protocols are designed
to implement the data exchange of remote parties. The protocol
specification defines the syntax and meaning of messages, the
way the conversation is controlled, and also the indication of
error states. Thus, by inspecting the network communication it
is possible to understand the situation and identify the indicated
errors and in many cases also their probable cause.

Unfortunately, many network administrators do not have
the proper tools and/or knowledge to diagnose and fix network

problems effectively, and they require an automated tool to
diagnose these errors [3]. Zeng et al. [4] provide a short survey
on network troubleshooting from the administrators’ viewpoint
identifying the most common network problems: reachability
problems, degraded throughput, high latency, and intermittent
connectivity. The consulted network administrators expressed
the need for a network monitoring tool that would be able
to identify such problems.

This paper proposes a system, which creates diagnostic
information only by performing passive network traffic packet-
level analysis. Previous research and development provided
tools for helping administrators to diagnose faults [5] and
performance problems [6]. However, these tools either require
installation of agents on hosts, active monitoring, or providing
rich information about the environment. The idea behind our
proposal is to automate the reasoning usually done by network
analysts when investigating the root cause of an error from the
captured network traces. It means that it is not necessary to
change the network environment nor deploy any new devices.
The troubleshooting process may remain unchanged except
that one of the most labor-intensive parts represented by the
packet-level traffic analysis is automated. Still, the user can
verify the results obtained from the automated analysis as
the process provides sufficient diagnostic information for the
identification of problem relevant artifacts.

One of the most common ways of analyzing network
traffic is by using a network packet analyzer (e.g., Wireshark).
The analyzer works with captured network traffic (PCAP
files) and displays structured information of layered protocols
contained in every packet (encapsulated protocols, protocol
fields). Administrators work with this information, check trans-
ferred content and compare the data with expected values.
This process, done manually, is time-consuming and requires
a good knowledge of network protocols and technologies.

The main contribution of this paper is a proposal of a tool
for automatic diagnoses of network related problems from
network communication only. Our approach tries to imitate
a diagnostic process of a real administrator using the fault tree
method and a popular packet parsing tool TShark. We have
also implemented a proof-of-concept implementation to con-
firm the viability of the approach. This paper is an extension
of our previous paper [1]. The most significant change is the
improvement of input data processing. A new more efficient
mechanism of converting input data into a specific indexable

format has been implemented. This change required significant
modification of the method the system uses to access the data.
However, the new format simplifies processing of other data
types and reduces the execution time of the whole diagnostic
significantly. A simple example of a tool usage for another
data type (log files) is also presented.

The paper is organized as follows. Section II defines
the problem statement and research questions. Section III
discusses related work and describes diagnostic approaches.
Our solution consists of five stages and is introduced in Sec-
tion IV. Section V instructs network administrators how to use
our system and shows how we model diagnostic knowledge.
Section VI shows the output from the tool and evaluates the
performance. Finally, Section VII is the conclusion, which
summarizes the current state and proposes future work.

II. RESEARCH QUESTIONS

Our primary goal is to design a system that infers possible
causes accountable for network related problems, such as
service unreachability or application errors. Offering a list
of actions for fixing the errors’ cause is the secondary and
optional goal. All this information is gathered only from
captured network communication, which makes this approach
applicable to various scenarios.

In our work, we focus on enterprise networks that have
complex networking topologies, usually consisting of various
network and end-point devices. The availability of network
traces in the form of packet captures is essential to our method.
Thus, we expect that administrators can collect network com-
munication at appropriate locations in the network. Also, we
consider that the capturing process creates packet captures
without packet losses. As this may be difficult to guarantee
for high-speed networks without using specialized hardware,
for the diagnostic we usually do not require all communication.
Thus, the packet capture can be recorded by applying a suitable
filter to reduce the amount of data that needs to be processed.

To achieve our goal, we need to find answers
to the following research questions:

1) How to model different network faults in a suitable way
for implementation in a diagnostic system? Reachability,
application specific, and device malfunctioning problems
can cause various networking issues. We need to have
a unified approach for modeling these problems to iden-
tify the symptoms and link them with root causes.

2) What information should be extracted from the captured
network communication to identify symptoms of failures?
In our case, we can passively access the communica-
tion in the monitored network and extract the necessary
data to detect possible symptoms. An approach that can
efficiently detect the symptoms in terms of precision and
performance is needed.

3) How to identify the root cause of the problem, if we have
a set of related symptoms? The core part of the diagnostic
engine is to apply knowledge gathered from observed
symptoms to infer the possible root cause of the problem.
The result should provide the information in sufficient
detail. For instance, if the authentication during the estab-
lishing of the connection fails, then we would like to know
this specific information instead of a more general expla-
nation (e.g., unable to establish a connection).

4) What actions can be provided to the administrator to fix
the problems? Based on the observed symptoms and
the root cause, the system should be able to provide fixing
guidelines. These guidelines are supposed to be easy
to understand even for an inexperienced administrator.

III. RELATED WORK

A lot of research activities were dedicated to the diagnoses
of network faults. Various methods were proposed for different
network environments [5], in particular, home networks [7],
enterprise networks [8]–[11], data centers [6], backbone and
telecommunications networks [12], mobile networks [13], In-
ternet of Things [14], Internet routing [15] and host reach-
ability. Methods of network troubleshooting can be roughly
divided into the following classes:

Active methods use traffic generators to send probe packets
that can detect the availability of services or check
the status of applications [16]. Usually, generators create
diagnostic communication according to the test plan [8].
The responses are evaluated and provide diagnostic infor-
mation that may help to reveal device misconfiguration
or transient fail network states. Diagnostic probes intro-
duce extra traffic, which may pose a problem for large in-
stallations [11]. Also, active methods may rely on the de-
ployment of an agent within the environment to get
information about the individual nodes [9].

Passive methods detect symptoms from existing data sources,
e.g., traffic metadata [12], traffic capture files, network
log files [15], performance counters. Passive methods can
utilize the data commonly provided by various network
monitoring systems.

Some systems combine passive traffic monitoring to detect
faults with active probing to determine the cause of fail-
ure. Identifying anomalies related to network faults and
linking them with possible causes commonly utilizes some
of the following approaches:

Inference-based approach uses a model to identify the depen-
dence among components and to infer the faults using
a collection of facts about the individual components [9],
[17].

Rule-based approach uses predefined rules to diagnose
faults [10]. The rules identify symptoms and determine
how these contribute to the cause. The rules may be or-
ganized in a collaborative environment for sharing knowl-
edge between administrators [7]. Kim et al. [18] propose
a rule-based reasoning (RBR) expert system for network
fault and security diagnosis. The system uses a set of
agents that provide facts to the diagnostics engine. De
Paola et al. [19] deals with a distributed multi-agent
architecture for network management. The implemented
logical inference system enables automated isolation,
diagnosis, and repairing network anomalies through the
use of agents running on network devices. Dong and
Dulay [20] developed an assumption-based argumentation
to create an open framework of the diagnosis procedures
able to identify the typical errors in home networks. Rule-
based systems often do not directly learn from experience.
They are also unable to deal with new previously unseen
situations, and it is hard to maintain the represented
knowledge consistently [5].

Figure 1. The top-level architecture of the proposed system. The architecture consists of five stages and one intermediate data storage (index file). The grey
area represents optional architecture extensions — additional data sources.

Classifier-based approach requires training data to learn
the normal and faulty states. The classifier can identify
a fault and its likely cause [21]. Classifier-based methods
were considered for misconfiguration detection in the
home networks [22] and in the large network infrastruc-
ture [23]. Tranalyzer [24] is a flow-based analyzer that
does traffic mining and a statistical analysis for large-
scale networks. Big-DAMA [25] is a novel framework
for detection and diagnosis of network traffic anomalies.

Network diagnostics based on traffic analysis can also
use methods proposed for anomaly detection as some types
of faults result in network communication anomalies.

Compared to other rule-based solutions, our system uses
decision trees, which allows us to define more complex sit-
uations. Compared to simple rules (as used, for example, by
a fishbone diagram), it is possible to make decisions based
on previous diagnostic steps. Another difference is that our
system does not need to know in advance what is wrong or
what to focus on. Also, our system is not limited to only one
type of data, and diagnostic rules are understandable by real
administrators (not just scientists and programmers).

IV. PROPOSED SYSTEM ARCHITECTURE

We have built an expert system for analyzing network traf-
fic, that has already been integrated into a worldwide business
product [26]. The system combines rule-based and inference-
based methods as it is easy to understand for network admin-
istrators. While the use of classifier-based methods has been
proven very suitable for anomaly detection it lacks the capabil-
ity to provide additional information for the detected case. The
advantage of learning from provided data can only be exploited
if a large set of annotated data is available. Contrary, the rule-
based method can be extended also for detecting rare cases.
The system only requires captured network traffic containing
enough information about the event. Thus it is a completely
passive method. Active methods generate additional traffic into
a network (which can be unwanted in some situations) and
require access to the network.

The proposed system is a processing pipeline that consists
of several stages, as shown in Figure 1. The first stage, labeled
as Protocol Analyzer, filters and decodes input packets using
an external tool. The second stage takes decoded packets
and converts them into a format for easier and faster data
access (PCAP index file). The third stage, named Fact Finder,

executes simple rules to identify facts significant from the di-
agnostics point of view. In the fourth Tree Engine stage, the
decision tree utilizes the Fact Finder and identifies the possible
problem cause. The fifth, and the last, stage Event Generator
generates diagnostic outputs that contain detected errors and
suggested solutions. Stages three, four, and five are easily
extendable by the administrator who can add new rules and
definitions.

The system can also be extended to use different data
sources (e.g., log files or NetFlow records), as shown on the
second row in Figure 1. Each data source requires specific
data preprocessing that leads to the creation of an index
file. The common part starts with the Fact Finder that can
search indexed data of different data sources. If not specified
otherwise, in the rest of the paper, we describe and evaluate the
system only for a single data source represented by captured
packet traces.

A. Protocol Analyzer

The first step in the processing pipeline is decoding cap-
tured network traffic in the PCAP format into a readable JSON
format. We employ the tool TShark, which is a command-line
version of the widely-used network protocol analyzer Wire-
shark. Because TShark follows the field naming convention
used by Wireshark, we can use Wireshark Display Filter Ex-
pressions to select packet attributes. TShark supports all packet
dissectors available in Wireshark. An example of TShark’s
output format with some omitted data is displayed in Figure 2.

{

...

 "_source": {
 "layers": {
 "frame": {
 "frame.number": "15",
 "frame.len": "84",

 "ip": {
 "ip.ttl": "50",
 "ip.proto": "6",

 "tcp": {
 "tcp.srcport": "25",
 "tcp.dstport": "1470",

 "smtp": {
 "smtp.response.code": "235",
}

...

...

...

...

Figure 2. An output from the TShark’s JSON format.

Using TShark brings the following benefits:

• many protocol dissectors are available and the community
quickly provides a parser for an emerged protocol;

• tunneled, segmented and reassembled data are support;
• data presentation is consistent with the Wireshark, which

allows the creation of an easy-to-read API for diagnostics.

TShark provides not only data of fields from supported
network protocols but also some computed data, such as round
trip time, missing or retransmitted TCP segments, which can
be used in diagnostic rules.

Even if our primary use case is to diagnose problems inside
the captured network data, we would like to test that our system
can work with other data sources as well. For this test, we have
chosen to use the log files. Because each application has its
own format of log messages and we were not able to find a
universal tool that can parse the content of any log message
into a JSON object, we have implemented a custom parser.

Our data preparation script takes log records one by one,
and if a record matches some of the predefined regular expres-
sions, the record is converted into a JSON format, as shown
in Figure 3. Currently, only a few applications are supported
- postfix, dovecot, and fail2ban. The output JSON format has
the same structure as the JSON from the TShark tool, so future
processing will remain the same.

Feb 20 01:12:19 mail dovecot: auth: passwd-file(info,
185.36.81.57): unknown user (SHA1 of given password:
ece4e6)

 {
 "time": "1582161139", # Feb 20 01:12:19
 "service": "mail dovecot",

 "mode": "auth",
 "username": "info",
 "ip": "185.36.81.57",
 "description": "unknown user"
 }

Figure 3. Conversion of a single log record into a JSON object.

B. Data Indexer
Data Indexer converts data from the JSON format into

a format suitable for fast searching by packets’ field names
(attributes) and their values. Most of the time, it will not be
necessary to process the packets one by one, which signif-
icantly improves the resulting diagnostic speed. Each input
packet is indexed and the following data is stored:

1) the packet itself;
2) a set of all field names of the packet;
3) map of values assigned to each packet’s field.

Figure 4 shows an example of how indexing works. The en-
tire index is represented by an associative array. First, the
packet is stored under the raw key and a packet number
(in this case, 3). Using this value, it is possible to retrieve
the packet in the same format as returned by TShark. Subse-
quently, the packet number is stored under a set of all indexed
packets stored under the packets key. This set will simplify
some operations, and its usage can be seen in Figure 5. In
the next steps, for each packet attribute and its values (each
attribute can contain multiple values) a set of packet numbers is
created (when it does not already exist). After that, the current
packet number is added to the set.

1 index = dict() # associative array in
Python

2 index["_raw/3"] = {"frame.number":
["3"], "dns.id": ["0x00007df5"],
"ip.addr": ["192.168.1.1",
"192.168.1.100"],...} # under the
_raw + packet number key, the
original packet in the JSON format
is stored

3 index["_packets"] = {1, 2, 3} #
_packets index contains set of all
packet numbers

4 index["dns.id"] = {3} # all packets
with any "dns.id" field value are
saved under the field name key

5 index["dns.id/0x00007df5"] = {3} #
packets which contain "dns.id" field
with value "0x00007df5" are saved

under field name/field value key
6 index["ip.addr"] = {1, 2, 3}
7 index["ip.addr/192.168.1.1"] = {1, 3}
8 index["ip.addr/192.168.1.100"] = {3}

Figure 4. An example of the indexing of a few fields from the DNS packet.
The bold text is showing index keys and values, which have been added

because of the new packet.

C. Fact Finder
The Fact Finder aims to identify specific situations useful

for network diagnostics. Facts can be attributed to one or more
packets, which are in some relation. For example, a successful
DNS name resolution is a fact that consists of a query and
a corresponding reply DNS messages. The facts are specified
by rules describing which packets should be found and which
relation they should fulfill. The format of these rules is de-
scribed in Subsection V-B. A rule can consist of up to three
parts:

1) a list of packet filters;
2) a list of assertions to express relation constraints;
3) parameters for the filters and assertions.

The system evaluates rules as follows: (i) Parameters are
replaced by provided values. (ii) Each packet filter returns a list
of packets matching the filter. (iii) Assertions are evaluated
to select sets of packets satisfying the constraints. A result
has the form of a collection of sets of packet numbers, e.g.,
a rule that identifies DNS request-reply pairs checks that
the transaction ID in both the request and reply packets match.
The last step is converting sets of packet numbers into lists
of packets. Packets in lists are ordered by the packet numbers.

Filter expressions use Wireshark’s display filter language.
By using this language, the expression can be first tested
in Wireshark before it is used in a Fact Finder rule. Assertion
constraints use our created language that is based on the
Wireshark’s display filter language. There are three changes
made to the original language, which add support of:

1) working with packets from filter expressions;
2) simple math operations (+, -, *, /);
3) parameters for expressions. The parameters do not in-

crease language capability but aim to simplify rule defi-
nition.

The evaluation of the facts begins with searching for
packets with specific attributes. However, this varies depending
on how these attributes are specified. In the case of a simple
condition, it is possible to use the index created in the Data
Indexer step, but with more complex conditions, this is not
possible. A more complex condition is one that contains
either a regular expression, function (string length, substring),
or some comparison (<,<=, >,>=).

If it is possible to search for packets using the created
index, the appropriate packet numbers are searched for using
each attribute specified. Based on the specific relation between
attributes, the adequate set operation is applied to the sets
of packets. This process is shown in Figure 5. This figure
describes finding packets by using the created index.

1 search: dns
2 result = index["dns"]
3
4 search: dns.flags.response == 1
5 result = index["dns.flags.response/1"]
6
7 search: dns and ip.addr == "10.10.10.1"
8 dns_packets = index["dns"]
9 ip_packets=index["ip.addr/10.10.10.1"]

10 result = dns_packets.intersection(
ip_packets) # packets both in
dns_packets and ip_packets

11
12 search:smtp.response.code != 250
13 all_packets = index["_packets"]
14 skip_packets = index["smtp.response.

code/250"]
15 result = all_packets.difference(

skip_packets) # packets in
all_packets but not in skip_packets

Figure 5. An example of index usage when searching for packets that meet
the specified constraints. When combining attributes in constraints, results
from individual attributes are combined using set operations. The bold text

shows the packet specification.

In case the packet specification cannot be evaluated using
the created index, it is necessary to go through each packet
and evaluate the condition for its values. This is accom-
plished by replacing the attributes in the expression (e.g.,
smtp.response.code matches ”[45] [0-9] [0-9]” and ip.addr =
”10.10.1.1”) with values from each packet. Because a list of
values represents each attribute’s value, the evaluation process
must try all value combinations. If at least one combination
fulfills the packet specification, the packet is added to the set of
fulfilling packets. The principle is shown in Figure 6. Because
there was not such a complicated rule in DNS protocol, we
are showing this principle on the SMTP rule.

After all packets have been searched, they are represented
only by a list of packet numbers. Before working with the
packet’s data, it is necessary to replace these packet numbers
with the actual packets. After that, constraints defining packet
relationships can be evaluated (assert rules). An example
of a relationship is a request-reply pair of packets that are
linked together by a request ID. Searching for such packets
is accomplished by creating all possible packet combinations
(Cartesian product) and evaluating all conditions for each
combination.

1 search packets: smtp.response.code
matches "[45] [0-9] [0-9]" and
ip.addr = "10.10.1.1"

2 import re # regular expression module
3 result = set()
4 def check_packet(packet):
5 values = {}
6 for value in packet["smtp.response.

code"]: # only packets with field
smtp.response.code are used

7 values["smtp.response.code"]=value
8 for value in packet["ip.addr"]: #

only packets with attribute ip.
addr are used

9 values["ip.addr"] = value
10 if re.search(values["smtp.

response.code"],"[45][0-9]
[0-9]") and values["ip.addr"]
== "10.10.1.1":

11 result.add(packet_number)
12 return result
13
14 for packet_number in index["_packets"]:
15 packet = index["_raw/"+packet_number]
16 result = check_packet(packet, result)
17 return result

Figure 6. An example of finding all packets that meet the specified
condition, which can not be evaluated by using the created indexes. When

evaluating a condition, all value combinations are tested for each packet. The
bold text shows the packet specification and the corresponding condition.

The principle of evaluating the assert conditions is shown
in Figure 7. The code in the figure contains a relation()
function that combines all possible values (similar to the
code in Figure 6) and compares whether at least one value
combination meets the defined relation function (e.g., ” == ”
for equality). The relation() function works with a packets
dictionary that contains a list of packets that are saved under
the keys defined in the facts section of the rule.

1 facts:
2 dns_query: dns.flags.response == 0
3 dns_reply: dns.flags.response == 1
4 asserts:
5 - dns_query[udp.stream] ==

dns_reply[udp.stream]
6 - dns_query[dns.id] ==

dns_reply[dns.id]
7
8 result = []
9 for query in packets["dns_query"]:

10 for reply in packets["dns_reply"]:
11 if relation(query["udp.stream"],

"==", reply["udp.stream"])
12 and relation(query["dns.id"],"==",

reply["dns.id"]): # relation()
function checks all combinations of
values from two lists

13 result.append({"dns_query": query
, "dns_reply": reply})

14 return result

Figure 7. Example of a packet set search (DNS query and response) that
meets the defined constraint (packets from the same UDP stream and the

same request ID). The bold text is sharing assert constraints and the
corresponding relation() function.

D. Tree Engine
The tree engine infers the possible error cause by evaluating

a decision tree that contains expert knowledge about supported
network protocols and services. Each node of the tree con-
tains a diagnostic question. Questions refer to facts identified
by the Fact Finder. Based on the question’s result, the next tree
node is chosen. This node transition creates a path that begins
in a root node and finishes in a leaf node. Paths in the tree
represent gathered knowledge and lead to the possible cause
of the problem.

The decision tree consists of declarative specifications
of tree nodes enriched by Python code. The declarative part is
responsible for creating the tree and consists of a rule name,
a rule type, a Fact Finder rule, and two branches, which cover
the success and the fail result of the Fact Finder. Both branches
can define the next rule, which should be processed.

Python codes are located inside the success and fail
branches. These codes are responsible for processing logic
(e.g., saving packets for future tree nodes or translating error
codes from packets into human-readable format) and gener-
ating diagnostic results. The format of rules is described in
Subsection V-A.

E. Event Generator
During the diagnostic process, a report is created to provide

diagnostic information for network administrators. The diag-
nostic report is produced in a human-readable format, as well
as in a machine format useful for further processing or
visualization. The report consists of events that are constructed
in tree nodes based on the derived knowledge and processed
packets. Each event describes one situation that happened in
the network. For example, the connection to the HTTP server
has been detected.

Each rule consists of a name, description, and severity of
the detected situation. Additionally, the event may include a
suggestion message and data from the provided packet. The
provided packet is specified as a parameter in the tree rule.
By using this packet, parameters such as flow identification or
timestamp can be associated with the event. Subsection V-C
describes the format of the event rules.

V. RULE SPECIFICATION

The diagnostic engine defines each protocol as a decision
tree. The tree consists of nodes representing administrator
questions, and edges representing answers to these questions.
The edge can move the diagnostic process from one question
to another (within the same protocol or another) or finish
the process with the discovered result.

Administrator

Does the PCAP
contain a DNS

query?

Is the reply OK?
Is there any reply
for the detected

query?
Is the used DNS
server running?NO

...

YES

YES

NO ...

...

Figure 8. A simple illustration of a binary decision tree. An administrator
diagnoses a DNS problem by anwering questions in the predefined order.

The questions simulate thinking of a real administrator.
Typically, an administrator starts to search for certain network
packet values and after the search for them is finished, the ad-
ministrator searches for next values based on the result. In
our solution, each question can only have two answers: success
or failure. This yields a binary decision tree. Figure 8 shows
an example of a small portion of the DNS tree.

The decision tree needs to be converted to a format
understandable by our system. This conversion is split into
three steps: 1) defining tree nodes (Tree node rules), 2) defining
conditions for choosing tree nodes (Fact Finder rules) and
3) defining the diagnostic report (Event definition rules). The
following subsections describe the syntax for each of these
rules. The reason why a node rule does not contain a lookup
code and an event definition directly and they need to be
defined in separate rules is that multiple rules would not be able
to use the same lookup code and events (increases reusability).

The conversion of the decision tree assigns a name to each
tree node. We use the node names as labels for switching from
one node to another. Each node tries to find specific facts,
defined as a Fact Finder rule. Based on the condition, if some
fact was found or not, the next diagnostic step is chosen. Each
rule can have one or none success and fail branches. Branches
contain executable Python code and the next node rule name.
After the execution of the Python code, the analysis switches
to the next node. Figure 9 shows the pseudocode for writing
tree nodes.

1 tree_node_id:
2 if fact_finder_rule finds some facts:
3 success branch_code
4 jump to the next tree_node_id
5 else:
6 fail branch_code
7 jump to the next tree_node_id

Figure 9. Pseudocode for writing a tree node. Each node should have
a unique id, lookup condition, and branch codes.

A. Tree Node Rules
All the rules are saved in a declarative YAML format.

This format is easily understandable by programming code
and by people without programming skills (we assume that
not all network administrators are also programmers). Even if
the system already contains some protocols, the administrators
can easily add new protocols or can extend capabilities of the
current protocols by updating the rules. In the following
paragraphs, the format of the rules will be described. Names
of the sections as they used in rules are placed inside the text.

The rule definition begins with the rule name (rule section
id) and the execution of a Fact Finder rule (rule section query).
The result of the Fact Finder is a list of associative arrays. Each
array can contain multiple packets, where the packet name is
the key to the array. These packets will be processed according
to the Tree Node rule type (rule section type). The default
behavior selects the first array from the list of arrays (the list is
ordered by the arrival time of packets) and marks it as a found
fact. The second type of rule is a ”foreach” type, which iterates
through the list of arrays and progressively marks each array as
a fact and executes the defined rule. For example, the foreach
rule can analyze each query to the server or each response to
the selected query (as shown in Figure 10).

1 id : DNS query d e t e c t e d # name of the
rule

2 query : e x i s t s DNS r e p l y f o r t h e d e t e c t e d
que ry ? # Facts Finder rule

3 type : f o r e a c h
4 s u c c e s s :
5 s t a t e : i s r e p l y ok ? # next state
6 code : | # Python code follows
7 rep ly pkt = f a c t ["dns_reply"]
8 save ("dns_reply" , r ep ly pkt)
9 event ("reply_detected" , r ep ly pkt)

10 f a i l :
11 s t a t e : f i n d any r e p l y from t h e same

d e s t i n a t i o n s e r v e r # next state
12 code : | # Python code follows
13 query pkt = load ("dns_query")
14 event ("reply_not_detected" , query pkt)

Figure 10. Simple Tree Engine rule showing what should be done if a DNS
query was detected.

Furthermore, the rule consists of two parts, with only one
executed (depending on whether the diagnostic engine has
found the searched fact or not). The format of both parts
is the same. Each part consists of the name of the next rule
with which the diagnostics should continue (rule section state)
and the Python code (rule section code). Each rule can switch
to to a rule from another protocol to diagnose problems across
several protocols, e.g., if an SMTP communication is not
detected, we will check if there are any ICMP unreachable
messages, failed TCP connection attempts or incorrect DNS
resolutions. If the next rule is not specified, the diagnostic
engine stops the diagnostic process.

The Python code can process packet data, make logical
decisions and most importantly, generate diagnostic output.
Within the Python code, it is possible to use any Python 3
code and it is also possible to utilize the following variables
and functions defined by the engine:

1) fact - contains the first fact found (or the next one in the
foreach type rule)

2) facts - contains all the facts found
3) save() - saving any value for further processing (inside

another Tree node rule or as a parameter in the Fact
Finder rule);

4) load() - read the value previously saved by the save()
function;

5) event() - generates a diagnostic report, where the param-
eter is a packet to which the report refers.

Figure 10 shows an example of a rule defining the middle
node from the tree in Figure 8. The figure shows a node de-
scribing that a DNS query has been detected (id) and the rule is
looking for a DNS response for the detected query (query). For
each detected reply, a successful section (success) is executed
(foreach type). The response is saved, the diagnostic message is
generated (code), and the diagnostic process continues to check
whether the response is without error (state). If no response
to the query is found, the failure section is executed (fail).
First, the original query is retrieved, the diagnostic message
is generated (code), and then the diagnostic process continues
with the next state (state).

B. Fact Finder Rules
Rules in this section describe how a question is converted

into packet lookup functions. Each rule may look for several
independent packets, which are combined and checked if their
relation fulfills assert conditions. Each question returns a list
of associative arrays, where each arrays represents a unique
combination of packets fulfilling the assert conditions (packet
names are arrays keys).

Each rule needs to have a name (rule section id), which is
used inside the Tree Node rules. The rule can have parameters
to make rules more reusable (rule section params). For exam-
ple, instead of creating a rule for each error code, it is possible
to create one rule with a parameter containing the expected
error code. Parameters are used as variables in the following
sections and can have a format of a single value or single
packet (previously saved by save() function within the Tree
Node rule). Rule section facts define the name of the searched
packets and the filter. The filter uses Wireshark display lan-
guage and specifies which packets should be assigned to the
specified name (each packet can be assigned to multiple packet
names). Rule section asserts define conditions for the detection
of packets. The conditions use our custom language, which is
based on the Wireshark display language. However, the custom
language allows to:

• use math operations addition(+), subtraction(-), multipli-
cation(*) and division(/);
• use single value parameters as if the values were directly

inserted into the condition;
• use values from packets (provided from packets or params

section). The format is packet name[field.name], where
field.name is the Wireshark name assigned to the attribute.

Figure 11 shows an example of a simple rule for the ques-
tion Is there any DNS reply for the detected DNS query? After
the rule name (id), the parameter dns query for the assert
conditions is specified (params). The rule contains a definition
of the dns reply packet (packets), which is used in the assert
conditions. The conditions (asserts) are checking whether the
dns reply belongs to the same UDP stream as the provided
dns query and if the reply packet is answering to the specific
query.

1 id : e x i s t s DNS r e p l y f o r t h e d e t e c t e d
que ry ? # name of the rule

2 params: # saved data from any tree rule
3 −dns query
4 f a c t s : # which packets we are looking

for
5 −dns rep ly : dns . f l a g s . r e s p o n s e == 1
6 a s s e r t s : # packets relation constrain
7 −dns query [udp . stream]== dns rep ly [udp .

stream]
8 −dns query [dns . id]== dns rep ly [dns . id]

Figure 11. Example of a DNS fact rule for checking if the PCAP file
contains a reply for the provided query or not.

By default, the Fact Finder rules are working with the data
saved inside the PCAP index file. To allow searching for facts
from different data index files, it is necessary to specify the
data type (rule section type). Figure 12 shows an example of
such a rule that looks for a log record containing specific values
related to the wrong username event. Because the rules are

using the same Tree Node engine, the rule of one type can use
parameters from a different type of rule. In our example, we
are looking for a record with the same IP address as used in
the provided imap query packet.

1 id : wrong username ?
2 params: # saved packet from previous

rules
3 −imap query
4 type : l o g # the data are saved in

different index file
5 f a c t s :
6 −auth : d e s c r i p t i o n == "unknown user"

and i p == imap query [s r c . i p]

Figure 12. Fact rule for different data source (log file). The rule is checking
presence of a specific record in input log file.

C. Event Definitions

Event rules describe how the diagnostic message will look.
The message is created by calling a function event() from
the Tree Node rule. In addition to the event name, the event
function also accepts a packet parameter (the event is related
to this packet). The idea is that from the provided packet,
the time, the flow identification, and possibly other specified
values are extracted and inserted into the message.

Each rule consists of a name, severity, description, instruc-
tions on how to fix the problem, and a list of fields from the
provided packet. The field list contains the names according
to the Wireshark terminology. An optional part of each field is
its description to help the administrator understand its value.
The description and suggestion may contain variables. The
variables are written as {fieldname}, and will be replaced
by values from the provided packet when the diagnostic report
is generated.

Figure 13 shows an event describing the error that no
DNS response was detected for the DNS query. From the pro-
vided packet, the queried domain name is inserted into the
description and the DNS server address into the suggestion.
Additional items will be also included in the output: transaction
ID, queried domain name, and DNS server IP address.

1 id : r e p l y n o t d e t e c t e d
2 s e v e r i t y : e r r o r
3 d e s c r i p t i o n : "No reply for query ’{dns.

qry.name}’ has been detected."
4 s u g g e s t i o n : "Check if the DNS service is

running on {ip.dst}. If yes, check
the firewall on the server and the
path between server and the client."

5 f i e l d s :
6 − name: dns . i d
7 d e s c r i p t i o n : T r a n s a c t i o n ID
8 − name: dns . q ry . name
9 d e s c r i p t i o n : Que r i ed domain name

10 − name: i p . d s t
11 d e s c r i p t i o n : S e r v e r IP a d d r e s s

Figure 13. A DNS event example, that reports that the query wasn’t detected.

VI. USE CASE AND EVALUTION

The goal of the tool is on-demand diagnostic of the selected
network traffic. It is essential to note that the goal is not an
on-line (24/7) analysis or analysis of a large amount of data.
The idea is based on a use case that when an administrator
detects a problem on the network, it triggers a capture on
the selected network traffic. For example, if a client with the
address 192.168.0.20 is unable to establish a TLS connection
with the server on the address 192.168.0.1, the administrator
will capture the communication between these two stations.

We have implemented diagnostic rules for several appli-
cation and service protocols. Table I shows the current list
of supported protocols and their complexity in term of Tree
node and Fact Finder rule count, and their capabilities in term
of Event rule count.

Table I. Supported protocols and amount of rules and success, warning, error
events which describe various protocol behavior situations.

Protocol Tree nodes Fact finders Events
Success Warning Error

DHCP 24 22 10 9 4
DNS 12 12 8 4 5
FTP 24 10 15 6 7
HTTP 3 3 2 1 1
ICMP 4 2 0 0 4
IMAP 15 8 7 3 9
POP 21 7 5 10 7
SIP 38 22 15 1 8
SLAAC 8 7 1 6 1
SMB 27 25 20 3 5
SMTP 17 13 9 6 9
SSL 2 2 2 0 1
TCP 10 10 0 7 2

We have tested the functionality and performance of the
implemented tool. Table II provides a sample of data from
performance experiments. The execution time is divided into
TShark tool processing time, time used for indexing the JSON
from TShark, and the analysis time. Five files of different sizes
containing some representative data are presented. The tests
were performed on a CPU Intel Xeon Silver 4116 2.10 GHz
and 4 GB RAM. It should be noted that only one CPU core
was used for the diagnostics on the given processor, as TShark
as well as the implemented tool are single-core applications.

Table II. The table shows the diagnostics execution time for the selected
PCAP files of different sizes.

Size [MB] Packets Flows Time [s]
TShark Indexes Analysis Total

182.253 222 372 7155 18.717 27.407 19.678 65.802
21.569 62 471 7002 5.004 5.940 7.748 18.692
9.640 14 509 954 1.969 1.533 1.464 4.966
1.687 3 544 373 1.295 0.589 1.186 3.070
0.978 4 848 84 0.821 0.669 1.291 2.781

The output of the tool is a report in JSON format, which
enables easy machine processing. We have created a web
interface to visualize the report in a more human-readable
format. The visualization consists of two parts. The first part
shows a list of all detected events. After clicking on any event,
the detail of this event is displayed in the second part. Below
an event name, a suggestion for fixing the problem is displayed
in which real values from the packet have replaced the message
variables (written in curly brackets). After the suggestion
message, the rest of the event attributes are displayed.

To demonstrate the functionality of the tool, we have
diagnosed a PCAP file that was captured on a station with
the IP address 10.10.1.4. The tool diagnoses all predefined
protocols and displays the detected events in a hierarchical
structure. Figure 14 shows this situation, with some events
omitted for simplicity. For each event, a description and an
icon of the event are displayed. The highest severity is then
propagated from the deepest events out so that it is possible
to find problem situations in a large number of events quickly.
In addition to the detected error with the DNS response, it
is possible to see other communications in the picture, which
were without error.

Figure 14. The figure shows a list of detected events for a diagnosed PCAP
file. The list contains events from multiple protocols with different severities.
The screenshot was taken from the Flowmon Packet Investigator, a product

that has integrated the proposed tool.

After selecting an event from the list (represented by a
blue rectangle), a detailed description of the event is displayed.
Figure 15 shows this output, which describes the reason why
the domain name translation failed. In addition to the event
name, the listing is divided into three sections: 1) suggestions
for the administrator on how to fix the error, 2) a brief summary
of the event (description, severity, and flow), and 3) attributes
extracted from the packet that triggered the displayed event.

Figure 15. The figure shows an example of diagnostic output for a DNS
error. It suggests to an administrator to check the domain name and the

server configuration. The screenshot was taken from the Flowmon Packet
Investigator, a product that has integrated the proposed tool.

VII. CONCLUSION

Network troubleshooting can be a nightmare for adminis-
trators because of system complexity. There may not be an
evident link between the issue reported by a user and the real
cause of the problem. Some of the errors can be identified
and analyzed by examining network traffic. However, using
the traditional mostly manual approach is time-consuming and
requires significant expertise. The presented paper describes
the automatized approach to network traffic analysis able to
identify errors using the rule-based approach. The rules encode
expert knowledge and are evaluated for the captured traffic.

While the rule-based approach may be considered
as an old-fashioned approach these days when the majority
of research considers a machine learning-based approach, it
was demonstrated that knowledge encoded in the form of
rules provides an efficient method for network troubleshooting.
Moreover, because of expert-designed rules, it is possible to
add information that explains the possible cause of the issue
and recovery options. Mainly the explainability associated with
this approach seems to be the biggest benefit for users. The
drawback, of course, is related to the necessity of creating and
testing the rules base. Also, the method is susceptible to the
quality of data sources. When the captured communication is
incomplete, the method can provide incorrect results.

The performance is important for any method to be prac-
tically usable. The presented method uses a rule evaluation
engine that traverses decision trees for problem domains,
which can be evaluated in a reasonable timeframe. However,
as nodes of the tree contain expressions that can potentially
require complex operations over the input data, the set of
indexes is precomputed to improve the performance.

The proof-of-concept demonstrating the approach was im-
plemented and further finalized to the tool integrated into
the commercial suite for network monitoring. The tool is
commercially provided on the market by Flowmon Networks
company as Flowmon Packet Investigator [26].

Future work will focus on:
• adding support of new protocols, e.g., NTP or SNMP;
• even though the current performance is good enough, it

can always be better, and our goal will be to decrease the
execution time of the diagnostic process;

• because the quality of the diagnostic output highly de-
pends on the quality of the input data, we would like to
create a validation technique (maybe by using machine
learning techniques) to check the validity of the input
data (e.g., detection of packets loss);

• after separating the processing of the input data from
the Fact Finder into Data Indexer, it is now possible to
create a distributive solution that consists of many data
collection points across the network. At each point, the
data would be indexed by the Data Indexer and sent to
the central processing unit.

ACKNOWLEDGMENT

This work was supported by project ”Network Diag-
nostics from Intercepted Communication” (2017-2019),
no. TH02010186, funded by the Technology Agency
of the Czech Republic, the BUT FIT grant FIT-S-20-6293,
”Application of AI methods to cyber se-curity and control sys-
tems”, and by private network monitoring company Flowmon
Networks.

REFERENCES

[1] M. Holkovič and O. Ryšavý, “Network diagnostics using passive
network monitoring and packet analysis,” The Fifteenth International
Conference on Networking and Services (ICNS), 2019, pp. 47–51.

[2] R. Wang, D. Wu, Y. Li, X. Yu, Z. Hui, and K. Long, “Knight’s tour-
based fast fault localization mechanism in mesh optical communication
networks,” Photonic Network Communications, vol. 23, no. 2, 2012,
pp. 123–129.

[3] M. Solé, V. Muntés-Mulero, A. I. Rana, and G. Estrada, “Survey
on models and techniques for root-cause analysis,” arXiv preprint
arXiv:1701.08546, 2017.

[4] H. Zeng, P. Kazemian, G. Varghese, and N. McKeown, “A survey
on network troubleshooting,” Technical Report Stanford/TR12-HPNG-
061012, Stanford University, Tech. Rep., 2012.

[5] M. łgorzata Steinder and A. S. Sethi, “A survey of fault localization
techniques in computer networks,” Science of computer programming,
vol. 53, no. 2, 2004, pp. 165–194.

[6] C. Guo et al., “Pingmesh: A large-scale system for data center network
latency measurement and analysis,” in ACM SIGCOMM Computer
Communication Review, vol. 45, no. 4. ACM, 2015, pp. 139–152.

[7] B. Agarwal, R. Bhagwan, T. Das, S. Eswaran, V. N. Padmanabhan, and
G. M. Voelker, “Netprints: Diagnosing home network misconfigurations
using shared knowledge,” in Proceedings of the 6th USENIX Sympo-
sium on Networked Systems Design and Implementation, ser. NSDI’09.
Berkeley, CA, USA: USENIX Association, 2009, pp. 349–364.

[8] L. Lu, Z. Xu, W. Wang, and Y. Sun, “A new fault detection method
for computer networks,” Reliability Engineering & System Safety, vol.
114, 2013, pp. 45–51.

[9] S. Kandula et al., “Kandula, srikanth and mahajan, ratul and verkaik,
patrick and agarwal, sharad and padhye, jitendra and bahl, paramvir,”
ACM SIGCOMM Computer Communication Review, vol. 39, no. 4,
2009, pp. 243–254.

[10] M. Luo, D. Zhang, G. Phua, L. Chen, and D. Wang, “An interactive rule
based event management system for effective equipment troubleshoot-
ing,” in IECON 2011-37th Annual Conference on IEEE Industrial
Electronics Society. IEEE, 2011, pp. 2329–2334.

[11] A. Mohamed, “Fault detection and identification in computer networks:
A soft computing approach,” Ph.D. dissertation, University of Waterloo,
2010.

[12] D. Brauckhoff, X. Dimitropoulos, A. Wagner, and K. Salamatian,
“Anomaly extraction in backbone networks using association rules,”
in Proceedings of the 9th ACM SIGCOMM conference on Internet
measurement. ACM, 2009, pp. 28–34.

[13] L. Benetazzo, C. Narduzzi, P. A. Pegoraro, and R. Tittoto, “Passive
measurement tool for monitoring mobile packet network performances,”
IEEE transactions on instrumentation and measurement, vol. 55, no. 2,
2006, pp. 449–455.

[14] K.-H. Kim, H. Nam, J.-H. Park, and H. Schulzrinne, “Mot: a collabo-
rative network troubleshooting platform for the internet of things,” in
Wireless Communications and Networking Conference (WCNC), 2014
IEEE. IEEE, 2014, pp. 3438–3443.

[15] T. Qiu, Z. Ge, D. Pei, J. Wang, and J. Xu, “What happened in my
network: mining network events from router syslogs,” in Proceedings of
the 10th ACM SIGCOMM conference on Internet measurement. ACM,
2010, pp. 472–484.

[16] M. Vásquez-Bermúdez, J. Hidalgo, M. del Pilar Avilés-Vera, J. Sánchez-
Cercado, and C. R. Antón-Cedeño, “Analysis of a network fault detec-
tion system to support decision making,” in International Conference
on Technologies and Innovation. Springer, 2017, pp. 72–83.

[17] S. Jamali and M. S. Garshasbi, “Fault localization algorithm in computer
networks by employing a genetic algorithm,” Journal of Experimental
& Theoretical Artificial Intelligence, vol. 29, no. 1, 2017, pp. 157–174.

[18] S. Kim, S. j. Ahn, J. Chung, I. Hwang, S. Kim, M. No, and S. Sin, “A
rule based approach to network fault and security diagnosis with agent
collaboration,” in Artificial Intelligence and Simulation, T. G. Kim, Ed.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 597–606.

[19] A. De Paola, S. Fiduccia, S. Gaglio, L. Gatani, G. Lo Re, A. Pizzitola,
M. Ortolani, P. Storniolo, and A. Urso, “Rule based reasoning for
network management,” in Seventh International Workshop on Computer
Architecture for Machine Perception (CAMP’05), July 2005, pp. 25–30.

[20] C. Dong and N. Dulay, “Argumentation-based fault diagnosis for home
networks,” in Proceedings of the 2nd ACM SIGCOMM Workshop
on Home Networks, ser. HomeNets ’11. New York, NY, USA:
Association for Computing Machinery, 2011, p. 37–42. [Online].
Available: https://doi.org/10.1145/2018567.2018576

[21] E. S. Ali and M. Darwish, “Diagnosing network faults using bayesian
and case-based reasoning techniques,” in Computer Engineering &
Systems, 2007. ICCES’07. International Conference on. IEEE, 2007,
pp. 145–150.

[22] B. Aggarwal, R. Bhagwan, T. Das, S. Eswaran, V. N.
Padmanabhan, and G. M. Voelker, “NetPrints: Diagnosing home
network misconfigurations using shared knowledge,” Proceedings of
the 6th USENIX symposium on Networked systems design and
implementation, vol. Di, no. July, 2009, pp. 349–364. [Online].
Available: http://portal.acm.org/citation.cfm?id=1559001

[23] M. Chen, A. Zheng, J. Lloyd, M. Jordan, and E. Brewer, “Failure
diagnosis using decision trees,” International Conference on Autonomic
Computing, 2004. Proceedings., 2004, pp. 36–43. [Online]. Available:
http://ieeexplore.ieee.org/document/1301345/

[24] S. Burschka and B. Dupasquier, “Tranalyzer: Versatile high performance
network traffic analyser,” in 2016 IEEE Symposium Series on Compu-
tational Intelligence, SSCI 2016, 2017.

[25] P. Casas, T. Zseby, and M. Mellia, “Big-DAMA: Big Data Analytics
for Network Traffic Monitoring and Analysis,” Proceedings of the 2016
Workshop on Fostering Latin-American Research in Data Communica-
tion Networks (ACM LANCOMM’16), 2016.

[26] “Flowmon products overview,” https://www.flowmon.com/en/overview,
accessed: 2020-May-27.

