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Abstract. In recent years, mobile communication has become more
secure due to TLS encapsulation. TLS enhances user security by encrypt-
ing transmitted data, on the other hand it limits network monitoring and
data capturing which is important for digital forensics. When observ-
ing mobile traffic today most transmissions are encapsulated by TLS.
Encrypted packets causes traditional methods to be obsolete for device
fingerprinting that require visibility of protocol headers of HTTP, IMAP,
SMTP, IM, etc. As a reaction to data encryption, new methods like TLS
fingerprinting have been researched. These methods observe TLS param-
eters which are exchanged in an open form before the establishment of
a secure channel. TLS parameters can be used for identification of a
sending application. Nevertheless, with the constant evolution of TLS
protocol suites, it is not easy to create a unique and stable TLS finger-
print for forensic purposes. This paper presents experiments with JA3
hashes on mobile apps. We focus especially on the stability, reliability
and uniqueness of JA3 fingerprints for digital forensics.

Keywords: Mobile application · TLS fingerprinting · Network
forensics · JA3 hash · Encrypted communication

1 Introduction

With the disclosure of millions of private documents on Wikileaks in 2015, users
and companies massively started to improve the security of transmitted data,
especially against the interception. A high demand for security of transmitted
data led to the adoption of encrypted techniques by many network protocols.
Today, the majority of network applications and services support only encrypted
communication encapsulated by Transport Layer Security (TLS) [10,26].

Encryption was also adopted by many mobile app vendors. Table 1 shows the
structure of network protocols involved in mobile communication. Datasets 1 to
4 created by the authors of this study in 2018 show that the ratio of encrypted
communication to unencrypted varies from 51,7 to 91,7%. You may notice a
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Table 1. Encrypted and unencrypted mobile communication in 2018 and 2019

presence of non-encrypted HTTP traffic. Especially HTTP headers, e.g., User-
Agent, Accept-Language, Accept-Charset, have been largely used as an important
data source for various fingerprinting techniques [11,17].

A year after our first experiments, we noticed that the ratio of encrypted
communication increased to 99% which prevented the further use of traditional
fingerprinting methods. As seen in Fig. 1, besides the encrypted TLS traffic
transmitted over port 443, only Domain Name System (DNS) data remained
open. It is a question for how long because of various attempts to encrypt DNS
traffic using DNS over TLS (DoT) or DNS over HTTP (DoH) [15,16].

As a reaction to the encryption, researchers focused their activity on
analysing behavior of encrypted communication in order to obtain meta data
about the encrypted traffic. One research direction is focused on statistical anal-
ysis of the encrypted transmissions [9,29], the other direction deals with the
features obtained from a TLS handshake that form the so called TLS fingerprint
[3,6,18,24]. A popular implementation of TLS fingerprinting called JA3 finger-
printing was proposed by John B. Althouse, Jeff Atkinson and Josh Atkins in
20151. This method is incorporated into multiple network monitoring and intru-
sion detection systems (IDS) like Flowmon, Bro, or Suricata, where it serves for
the malware detection [4], identification of network applications [19], or black
listing2.

In our research, we focus on mobile devices, especially on the detection of
mobile apps in network traffic. One of the features of mobile apps is that they reg-
ularly communicate over the Internet without explicit user interaction because
of software updates, data synchronization, or checking on the remote status [24].

1 See https://github.com/salesforce/ja3 [April 2020].
2 See SSLBL project at https://sslbl.abuse.ch/ [April 2020].

https://github.com/salesforce/ja3
https://sslbl.abuse.ch/
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This makes it possible to identify a mobile device based on a characteristic set
of applications installed on the device [20]. Mobile apps can be identified from
the captured TLS traffic using JA3 hashes (retrieved from the client’s side of
communication) or JA3S hashes (the server’s side of communication).

However, there are important questions related to digital forensics: Are these
fingerprints reliable enough to identify a specific application? How stable are
they? How can we create a unique fingerprint database of a mobile app? The goal
of this paper is to study the reliability of JA3 fingerprints on selected mobile
apps, to demonstrate how unique fingerprints can be generated and to discuss
the application of JA3 fingerprinting to the digital forensics.

1.1 Contribution

This work analyses the utilization of JA3 fingerprints for mobile apps identifi-
cation. We primarily focus on the reliability and stability of JA3 fingerprints.
Based on our experiments we found out that JA3 hashes alone are not sufficient
for mobile app identification due to the high number of JA3 hashes common
to multiple apps. By introducing additional TLS features like the JA3S server
hash and Server Name Indication (SNI) extension, more accurate identification
becomes possible. One of the contributions is a procedure describing the gener-
ation of unambiguous fingerprints for a given app. We also show the advantages
and limits of the proposed technique. The second contribution is the genera-
tion of datasets with the captured traffic of mobile apps that contain the full
TLS communication useful for further experiments with TLS fingerprinting. The
third contribution includes a discussion of the stability and reliability of JA3 fin-
gerprints which is important for digital forensics and mobile app identification.

1.2 Structure of the Text

The paper is structured as follows. Section 2 overviews recent works related
to TLS fingerprinting and mobile apps identification. Section 3 gives the back-
ground of JA3 fingerprinting method and discusses its reliability for mobile apps
identification. The main part of the paper is in Sect. 4 which describes how
extended JA3 fingerprints of mobile apps are created and used for identifica-
tion. Section 5 brings the results of our experiments and the evaluation of the
proposed technique on the datasets. Section 6 discusses the application of TLS
fingerprinting to digital forensics. The last section concludes our findings.

2 Related Work

TLS fingerprinting is not a new technique and its development is connected
with the security research of Ivan Ristić who developed in 2008 an Apache mod-
ule that passively fingerprinted connected clients based on cipher suites. Using
this technique he created a signature base that identified many browsers and
operating systems [1]. This technique was later applied on the identification of
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HTTP clients [18] and implemented in IDS systems Bro and Surikata for passive
detection.

Blake Anderson et al. in [4] studied millions of TLS encrypted flows and intro-
duced a set of observable data features from TLS client and server hello messages
like TLS version, TLS ciphers suites and TLS extensions that they used for mal-
ware detection. They also observed the server’s certificate and the client’s public
key length, sequence of record lengths, times and types of TLS sessions. They
identified cipher suites and extensions that were present in malware traffic and
missing in normal traffic. The authors defined the TLS client configurations for
the 18 malicious families. Similarly, they identified the TLS server configurations
most visited by the 18 malicious families. They applied TLS features together
with other features (flow data, inter-arrival times, byte distribution) to malware
classification and achieved an accuracy from 96.7% to 98.2%. As demonstrated
by their study, omitting TLS features led to a significantly worse performance.

Kotzias et al. [19] passively monitored the TLS and SSL connections from
2012 to 2015 and observed changes in TLS cipher suites and extensions offered
by clients and accepted by servers. They also used client TLS fingerprinting with
features similar to JA3 fingerprinting. From handshakes they omitted GREASE
values. Using the captured data, they observed 7.3% fingerprint collisions in the
TLS fingerprints. They also mapped fingerprints to a program or library and the
version. One of their main results was the observation of the TLS fingerprints
stability. They noticed that the maximum duration of a fingerprint seen in their
databases was 1.235 days (3 years, 4 months). However, the median of duration 1
day and the mean was 158.8 days. They noticed some fingerprints that were seen
very briefly and did not reappear later. They found out that 1,203 fingerprints of
the 69,874 fingerprints were responsible for 21.75% of connections. Further, they
analysed the vulnerability of TLS against various attacks which is a different
direction comparing to our research. Their results related to the stability and
collisions of TLS fingerprints was also observed in our experiments.

Another interesting approach published by Anderson and McGrew [3] com-
bines the end host data with the network data in order to understand appli-
cation behavior. This approach, however, requires an access to both the end
hosts and the network. Their fingerprint database represented the real traffic
generated by 24,000 hosts and having 471 million benign and millions of mal-
ware connections3. Using the end point data, the authors were able to associate
the destination information with the end point data like the timestamp, end-
point ID, operating system and process name. They also observed that while
GREASE values are generated randomly, their position is deterministic. Thus,
instead of removing GREASE values, they set them to a fixed string 0a0a. They
also studied the similarity of TLS fingerprints using Levenshtein distance. Two
TLS fingerprints were similar if their distance was less than or equal to 10% of
the number of cipher suites, the extension types, and the extension values. The
authors stated that the Levenshtein distance was an intuitive method for identi-
fying close fingerprints. Especially TLS libraries often make minor adjustments

3 Data capturing tools are available at https://github.com/cisco/mercury [April 2020].

https://github.com/cisco/mercury
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to the default cipher suites or extensions between the minor version releases and
more drastic changes between the major version releases. They also noticed that
some TLS libraries change their default parameters to better suit the platform
on which they are running. Another interesting point is the prevalence of appli-
cation categories in the dataset where 37.1% connections belong to browsers,
19.3% to email applications, 17,2% to communication tools, 9% to the system,
etc. Longevity of fingerprints like system libraries, tools osquery and DropBox,
and browsers was 6 months or greater.

The above mentioned approaches worked mostly with common network traf-
fic and network application. Another work closer to ours deals with TLS usage
in Android Apps [24]. The authors analyzed the behavior of TLS in mobile plat-
forms. They developed an Android app Lumen that was installed on a mobile
device where it intercepted the TLS connections and gathered statistics about
the traffic. Using Lumen, the authors observed how 7.258 apps use TLS. They
analyzed handshakes with respect to the TLS API and the library that the app
used. Their work was focused on apps security and TLS vulnerabilities. They
showed that TLS libraries and OS API modified supported cipher suites across
versions which caused changes in the TLS fingerprints. They also showed that
each TLS library and OS version had a unique cipher suite lists. They built
a database of fingerprints paired with corresponding OSes and libraries where
they observed the influence of major and minor revisions of OS or TLS libraries
on the fingerprint. Unfortunately, Lumen was not able to captured TLS hand-
shakes which would have been useful to our research. Thus, we used an additional
approach of how to obtain reliable TLS fingerprints of mobile apps.

The mobile application fingerprinting using characteristic traffic was consid-
ered by Stöber et al. [28]. They created a classifier that identified communicating
applications based on the analysis of side-channel information such as timing
and data volume. Mobile application fingerprinting has been tackled by machine
learning techniques using timing and size of packets [31], which improved pre-
vious work presented in [30] that observed the traffic that was common among
more than one apps. The method is applicable to encrypted traffic, which is
used by most smartphone applications and relies only on information available
from the side channel. The fingerprinting system was trained and tested on 110
most popular Android applications. The training was done automatically using
the implemented application AppScanner. The significant feature of the method
was that it analyzed the traffic represented as bursts. A burst was defined as
a group of packets within TCP flow representing an interaction for a typical
smartphone application that communicated using HTTPS protocol. Statistical
features were then extracted for bursts and used for training random forests clas-
sifier. The method did not rely on any other source of information, e.g., DNS,
TLS, IP addresses, etc. The achieved accuracy as presented by the authors was
between 73 to 96% for the selected set of applications. Recently, the work was
extended by [12] that used a semi-supervised method for both app recognition
and detection of previously unseen apps.

Another line of research that considered mobile device identification is rep-
resented by Govindaraj, Verma and Gupta [14]. They proposed a methodology



6 P. Matoušek et al.

for extracting and analyzing ads on mobile devices to retrieve user-specific infor-
mation, reconstruct a user profile, and predict user identity. As the published
results showed it was possible to identify a user in various settings even if he/she
used multiple devices or different networks. Their work stemmed from the study
by Castelluccia, Kafar and Tran [7] who demonstrated the possibility to infer
user interests from targeted ads.

Our work uses previously published results and focuses on passive identifica-
tion of mobile apps using JA3 fingerprints. It also observes traffic that is common
to multiple apps and that should be excluded from fingerprinting. Based on the
app, we employ JA3, JA3S, and Server Name Indication (SNI) features to accu-
rately identify the unknown traffic that was sent by a mobile app. We are able
to detect only apps that were previously learnt and stored in the fingerprinting
database. Unlike some of the above mentioned approaches, our technique for
mobile app detection is simple, fast and reliable. Its accuracy depends on the
quality of learnt fingerprints.

3 How JA3 Fingerprinting Works

In this section we give a brief overview of principles of TLS communication and
JA3 hashing that is necessary for understanding the proposed method.

Transport Layer Security (TLS) [10,26] is a transmission protocol that works
on top of TCP where it provides privacy and data integrity for communicating
applications. The protocol is composed of two parts: TLS Handshake Proto-
col and TLS Record Protocol. TLS Handshake Protocol negotiates the security
parameters, e.g., version, methods for key exchange, encryption, authentication,
and data integrity, secure channel options, etc. TLS handshake communication is
not encrypted. The TLS Record Protocol encapsulates high-level protocol data
and transmits encrypted packets. An example of TLS handshake is in Fig. 1.

TCP Syn

TCP Syn + Ack

Ack

Client Hello

Server Hello + Certificate + Done

Client KeyExchange + Change Cipher 
Spec

Change Cipher Spec

Application Data

Application Data

Client Server

TCP 
handshake

TLS 
handshake

Fig. 1. Establishing TLS connection.

After opening a TCP connection by a three-way handshake, the TLS negoti-
ates security parameters using TLS Client and Server Hello packets. The client
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application offers a set of supported encryption and authentication methods
using the TLS Client Hello. The TLS server processes these options and sends
back options that are supported on the server side. The server can also include a
server certificate to authenticate itself. After all security parameters are agreed
on, the application data encapsulated by TLS Record Protocol are exchanged.

Most of TLS fingerprinting methods use the first packet sent by the client: the
Client Hello. The Client Hello contains an imprint of TLS configuration of the
client application that depends on the used TLS library and operating system.
In this paper we study JA3 fingerprint that is computed as an MD5 hash from
five TLS handshake fields: TLS Handshake version, Cipher suites, Extensions,
Supported Groups (former Elliptic Curve), and Elliptic Curve point format, see
Fig. 2. Some TLS fingerprinting implementations use different TLS fields, e.g.,
Kotzias et al. [19] omit the TLS version.

Version, Cipher Suites,  Extensions, Supported Groups, EC format

0x00000303 - 49195,49196,52393,49199,49200,52392,158,159,49161,49162,49171,49172,51,57,156,157,47,53 - 
65281,0,23,35,13,16,11,10 - 0x00000017,0x00000018,0x00000019 - 0

771, 49195-49196-52393-49199-49200-52392-158-159-49161-49162-49171-49172-51-57-156-157-47-53, 65281-0-
23-35-13-16-11-10, 23-24-25, 0

n8bvbvyZuTPF4tj89PaJVQ

Fig. 2. Computing JA3 hash

The computation of JA3 fingerprint includes (i) the extraction of selected
fields from TLS Hello packet, (ii) concatenation of extracted data in decimal for-
mat into one string, and (iii) application of MD5 hash algorithm on the string.
The result is a 32-bit string in hexadecimal format. There are open implementa-
tions of JA3 fingerprinting available4. Unlike nmap or web browser fingerprinting
methods which actively request the source device or application, JA3 finger-
printing uses a passive approach. The process of creating TLS fingerprints is
fast because it only works with a TLS header. Common network monitoring
and IDS tools implement the extraction of TLS parameters for analysis of the
encrypted network traffic.

The application of TLS fingerprints to the identification of network apps
requires TLS fingerprint values to be unique, accurate and stable. The following
subsections describe aspects that limits the reliability of TLS fingerprints.

3.1 Impact of TLS Library on JA3 Hashes

A TLS fingerprint of a mobile app depends on the TLS library that was used
during its implementation. There are plenty of TLS libraries available to devel-
opers, e.g., GnuTLS, Oracle JSSE, BSD LibreSSL, OpenSSL, or Mozilla NSS.

4 See https://github.com/salesforce/ja3 or https://ja3er.com/ [April 2020].

https://github.com/salesforce/ja3
https://ja3er.com/
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When two applications are implemented using the same TLS library, their TLS
fingerprints are usually the same. TLS fingerprints can also change with a new
version of the app, TLS library, or operating system. This change can be caused
by adding strong ciphers or removing weak ciphers, changing default parameters
that better suit the running platform, or by adopting a new standard.

Table 2 shows JA3 hashes for popular web browsers: Mozilla Firefox v.73,
Chrome v.80, and Opera v.66 under four operating systems: Linux Ubuntu,
Windows 10, Kali Linux and Mac OS. We can see that Firefox has four unique
JA3 fingerprints. Two of them are present in all tested operating systems. In case
of Chrome and Opera, one JA3 fingerprint value corresponds to both browsers
under all operating systems. These browsers were possibly compiled with the
same TLS library. This experiment proves that TLS fingerprints change with
the version and operating system. A similar experiment over a larger dataset
was carried out by Razaghpanak et al. [24].

Table 2. JA3 hashes of common Web browsers

3.2 Randomized Values in TLS Extensions

In 2016, Google started to Generate Random Extensions And Sustain Extensi-
bility (GREASE) values to TLS. This technique was adopted by IETF in Jan-
uary 2020 as RFC 8701 [5]. GREASE values are randomly generated numbers
of cipher suites, extensions and supported groups present in TLS Hello pack-
ets. They prevent extensibility failures in TLS ecosystem. During TLS hand-
shake, the responding side must ignore unknown values. Peers that do not ignore
unknown values fail to inter-operate which means a bug in the implementation.
Therefore, RFC 8701 adds GREASE values as a part of the list of cipher suites,
extensions and supported groups to detect the invalid implementations.

When experimenting with Opera browser under Win 10 we noticed that the
browser generates 155 unique JA3 fingerprints out of 207 TLS handshakes. By
excluding GREASE values, the number of unique JA3 fingerprints decreased
to four. The high number of JA3 fingerprints was caused by random GREASE
values in TLS handshakes. Table 3 shows six JA3 fingerprints of Opera browser
under Ubuntu with all extracted TLS values (the upper six lines). The last six
lines presents TLS values without GREASE values. The brown values in the
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upper table represent GREASE values as defined in [5]. When ignoring these
values, the last four lines in the upper table would have the same JA3 hashes.

Table 3. JA3 hashes with and without GREASE values

In addition to GREASE values, it is also good to omit extension value 65281
from TLS fingerprinting. This value represents renegotiation option in TLS hand-
shake [27], see red numbers in the list of extensions. Additionally, TLS Client
Hello Padding Extension defined by RFC 7685 [23] can be omitted. The padding
extension (value 21, depicted by green value in the table) is added by a client to
make sure that the packet is of a desired size.

The above mentioned values can be added by a TLS client or server based on
the local setting of a network connection which means they produce volatility of
JA3 fingerprints. By removing these values we can increase the stability of JA3
fingerprints. Most of the JA3 implementations already ignore GREASE values.

3.3 Ads and Tracking Services in TLS Traffic

By observing TLS handshakes of mobile apps, we noticed that an app does
not open the connection to its application server only, but it communicates with
various sides without explicit user activity. These connections include ad servers,
tracking services, or web analytic servers. This is typical especially for free apps
that receive funding from ads providers. The destinations of these services are
usually dynamic which means that each time the application is launched, it
connects to a different site with a different TLS fingerprint. This causes problem
for finding ground-truth communication for learning TLS fingerprints.

Dynamic behavior of ad connections is caused by mobile advertising auc-
tions that redirect the app from the ad server to the content provider based on
the results of an auction [21]. Since different mobile apps include the same ad,
tracking or analytic plugins, the captured traffic of these apps contain the same
TLS fingerprints. This extra traffic is called a communication noise or ambiguous
traffic [31]. Table 4 shows TLS fingerprints obtained from Gmail app communi-
cation. There are five different JA3 fingerprints computed from captured TLS
handshakes that were invoked by the Gmail app. Using the Server Name Indi-
cation (SNI) extension we can recognize the noise traffic directed to Google API
(www.googleapis.com) and Google user content (googleusercontent.com). This
traffic is not directly related to the app and can be found in communication

www.googleapis.com
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of other apps. The remaining fingerprint with SNI mail.google.com uniquely
characterizes the Gmail app. Thus, it is important to exclude ad, tracking and
analytic traffic from TLS fingerprinting. One solution how to remove the noise
traffic is using available black lists of ad and tracking servers5. By comparing
server names in SNI field of TLS handshake with names of ad servers in the black
lists, we can partially clean up the captured TLS communication from the noise
during the learning phase. Table 5 shows a percentage of the noise for selected
mobile apps. Especially free apps include ad plugins producing such noise.

Table 4. JA3 hashes of Gmail App

3.4 Time Stability of JA3 Hashes

A very important issue related to the mobile apps fingerprinting is the stability
of TLS fingerprints over time. We demonstrated, that a TLS fingerprint depends
on TLS library and operating system, see Sect. 3.1. An update of the TLS library,
adding new or excluding weaker ciphers can change the fingerprint. The longi-
tudinal study of TLS fingerprints of Kotzias et al. [19] shows that the maximum
duration of TLS fingerprints is 3 years and 4 months (median is 1 day, mean
158,8 days). If the app is not updated, it keeps its original TLS fingerprint.

Table 5. The number of TLS connections to Ad servers for selected Apps

5 E.g., https://hosts-file.net/ad servers.txt, https://pgl.yoyo.org/adservers/, or https:
//gitlab.com/ookangzheng/dbl-oisd-nl [April 2020].

https://hosts-file.net/ad_servers.txt
https://pgl.yoyo.org/adservers/
https://gitlab.com/ookangzheng/dbl-oisd-nl
https://gitlab.com/ookangzheng/dbl-oisd-nl
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The time instability means that for successful identification of mobile apps
based on TLS fingerprints, we need to update the fingerprint database whenever
a new version is released, otherwise the app will not be correctly identified.
Nevertheless, our experiments show that the variability of TLS fingerprints is
not so large and fingerprints stay the same even when an OS is updated.

4 Identification of Mobile Apps Using TLS Fingerprinting

This section describes how TLS fingerprints are created (learning phase) and
used for mobile apps identification (detection phase).

4.1 Learning TLS Fingerprints

As mentioned above, the crucial task for mobile apps identification using TLS
fingerprints is to create a reliable fingerprint database with unambiguous entries.
Even if an app is running in the controlled environment like the Android Virtual
Studio, the captured traffic contains a mixture of app traffic with communication
of OS, pre-installed apps and plugins that are common to multiple apps. Here, we
introduced a technique, how to clean up the captured traffic in order to receive
only TLS handshake related to the given app, see Fig. 3.

Fig. 3. Creating TLS fingerprints

First, we need to launch an app communication on the mobile device. We
made experiments both with virtual devices running on the Android Virtual
Studio (datasets MA2, MA3) and on real devices (datasets MA1, MA4). When
using the virtual environment, we can capture network traffic on the interface
connected to the virtual environment. However, there can also be communication
of virtual OS and other applications installed on the system. When using real
smart phones, we can create a WiFi connection only for this device and capture
traffic on the WiFi interface. Fingerprint creation include the following steps:
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1. Extract TLS Client Hello packets where tls.handshake.type==1 and obtain
the following data: source and destination IP address, source and destination
port, TLS handshake type (client or server hello), SNI, a list of TLS cipher
suites, extensions, supported groups, and EC point format. Exclude GREASE
values, padding and renegotiation options, see Sect. 3.

2. Compute JA3 hash using TLS values in TLS Client Hello packet as explained
in Sect. 3. Apply MD5 hash function on TLS version, a list of cipher suites,
list of extensions, supported groups and EC point format. JA3 hash uses MD5
function with 32-bit output in hexadecimal format.

3. Compute JA3S hash using TLS values in a Server Hello packet. Link the
JA3S hash with the JA3 hash using IP addresses and ports. The JA3S hash
is a MD5 digest of the TLS version, cipher suite and extensions only.

4. Based on the list of ad servers and tracking servers, remove TLS fingerprints
where SNI matches any domain name present in these lists.

5. From candidate TLS fingerprints select only those fingerprints that are related
to the app based on matching SNI field with keywords related to the app.
Keywords can be obtained manually or using the tools Lumen or AppVersion
that show information about the app like domain names. An example of
keywords that match the app SNI names is listed in Table 6. In most cases,
keywords also include the app name. Formally, the keyword is the maximum
common substring of all SNI names related to the app.

Table 6. Example of app keywords

This procedure does not guarantee uniqueness of the obtained fingerprints
which is essential for successful detection. When analysing JA3 fingerprints learnt
from our datasets, we noticed that there were 30 distinct fingerprints, how-
ever, many of them belonged to multiple applications. Only 21 JA3 hashes were
assigned unambiguously reaching uniqueness of 70%. Thus, we added JA3S fin-
gerprint to a feature set and obtained 122 distinct combinations with 114 unique
fingerprints related to only one app. Remember that one app can have a set of
unique fingerprints. Combination of JA3+JA3S increased uniqueness to 93,44%
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but there were still several JA3+JA3S combinations that belonged to more than
one app. After adding SNI to a feature set we received 154 distinct combinations
with 153 combinations related to only one app. The results are given in Table 7.

Table 7. Uniqueness of features in the TLS fingerprint

The number of unique fingerprints does not express, how many applications
from our MA datasets we can cover with these fingerprints. We further analysed
the sets of unique fingerprints to reveal this information. When using JA3 hashes
only, we can uniquely identify only 33,33% of apps from our dataset. Remaining
apps cannot be identified with JA3 hashes only (66,67%), because there are no
unique JA3 hashes for these apps in our datasets. When adding JA3S hashes,
we are able to cover 79,17% of apps from our datasets. Adding SNI to a feature
set increase the coverage of apps to 91,67%. Using all three features, we were
not able to cover 2 of 24 apps - Messenger and Telegram.

It seems that the combination of JA3, JA3S and SNI provides unique and
reliable TLS fingerprints of mobile apps. This statements is not always true. It
depends on the function of the mobile app. Most mobile apps communicate only
with a limited number of servers related to the app. Some apps, for instance web
browsers, communicate with an open set of destinations based on user activity.
These apps cannot be identified by JA3S and SNI because these features depend
on the destination which changes by each connection. Also for applications that
connect to servers with random or anonymized domain names, only JA3 hash
can be employed for app identification. Interestingly, the JA3 hash of Tor app
was unambiguous and sufficient for successful identification. Most of the apps,
however, require the full combination of JA3, JA3S and SNI features.

4.2 Detection of Mobile Applications Using TLS Fingerprints

The above written procedure describes a generation of TLS fingerprints from
captured TLS traffic. The process includes TLS data pre-processing and refine-
ment that produces a unique TLS fingerprint composed of JA3 hash only, com-
bination of JA3+JA3S or JA3+JA3S+SNI. Having such fingerprints, we can
monitor unknown network traffic, retrieve selected values from the TLS Hello
packets, and compute JA3 and JA3S hashes. By comparison with the fingerprint
database, we can identify an app that initiated this communication.

4.3 Stability and Reliability of TLS Fingerprinting

As mentioned in Sect. 3, the stability of TLS fingerprints of a mobile app depends
on an app version, TLS library, and operating system. When using JA3S hashes,



14 P. Matoušek et al.

it also depends on the server version and its TLS library. This means that we
have to update our fingerprint database whenever a new version of the app is
released. The fingerprint can be generated using the procedure described in Sect.
4.1. In some cases, a new version may keep the same fingerprint as the previous
one. Fingerprint stability is demonstrated on experiments with dataset MA3
where we observed TLS fingerprints of four apps on Android 7.1, 8.1 and 9.
The results are presented in Table 8. The first column represents the number of
unique values of JA3, JA3S and SNI in the TLS fingerprint of a given mobile app
under Android 7. Columns Android 8.1 and 9 show the number of features that
were added or missing in comparison to the previous version. We can see that
SNI for CP app and Mujvlak are stable across versions. JA3S hash of CP app was
changed when migrating from version 7 to 8 but it stayed unchanged to version
9. Adding new values does not negate stability of the fingerprint because the
original fingerprint can still identify the app. If there are more additions, it may
happen that the fingerprint of the older version would not match newly added
features (false negative). However, when updating the fingerprint database by a
new fingerprint, the accuracy of the identification is preserved.

Table 8. Stability of TLS fingerprints over OS version

5 Experiments

This section describes our experiments with fingerprinting mobile apps. First,
we describe our datasets and then achieved results of mobile apps identification.

5.1 Datasets

This section introduces datasets used in the experiments. First we observed avail-
able datasets with the mobile traffic. ReCon dataset6 [25] was created to observe
leakage of personal identifiers through mobile communication. The dataset con-
tains HTTP(s) logs of 512 mobile apps. The logs do not contain TLS headers that
are important for TLS fingerprinting. However, for a given mobile app, we can

6 See https://recon.meddle.mobi/appversions/ [April 2020].

https://recon.meddle.mobi/appversions/
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extract a list of sites the app usually connects to. For example, for accuweather
app, we get fonts.googleapis.com or ssl.google-analytics.com (noise servers), and
vortex.accuweather.com or accuwxturbo.accu-weather.com (app related domain
names). These domain names can be traced in SNI extension during the TLS
analysis which is important for creating unambiguous fingerprints.

An interesting mobile apps dataset is Panoptispy7 [22] that was created to
study media permissions and leaks from Android apps. The dataset consists of
network traffic that have instances of media in an HTTP requests body. Besides
dumps of HTTP requests, it contains a list of apps with a package name, version,
app name and app md5. However, this is not sufficient for TLS fingerprinting.

Andrubis and Cross Platform datasets mentioned in [12] were not located by
the authors of this paper. Nevertheless, we explored Mirage dataset8 [2] which
contains mobile app traffic for ground-truth evaluation. The captured traffic is
stored in a JSON format and contains the bi-flows with src/dst ports, number of
bytes, inter-arrival times, TCP window size, L4 raw data, and various statistics.
Since the TLS header is hidden in byte-wise raw L4 payload, it is not easy to
extract TLS values that are interesting for our research. However, we plan to use
this data for a ground-truth evaluation of our method presented in the paper.

For our experiments we created our own dataset that contains communication
of selected mobile apps, see Table 9. We ran the app five to ten times on the
same platform in order to receive a representative sample of the traffic. In case
of MA3 database we ran each app 10 to 20 times on the three Android’s versions
with and without cache (after restarting a device) in order to observe the impact
on the temporary data saved in the cache. That is why dataset MA3 is larger.

Table 9. Mobile apps communication dataset

Even if using a small number of apps, our datasets are sufficient for studying
typical features of TLS mobile apps fingerprints: uniqueness, stability and relia-
bility, and for training and detection of mobile apps. These datasets are available
in PCAP format in github9 and contain five parts:

Web Browsers (WB). The first dataset consists of TLS communication of web
browsers Chrome v80, Firefox 68.2, Firefox 73.0, Firefox 70.0, Opera 66.0 and

7 See https://recon.meddle/mobi/panoptispy [April 2020].
8 See https://ieee-dataport.org/open-access/mirage-mobile-app-traffic-capture-and-

ground-truth-creation [April 2020].
9 See https://github.com/matousp/ja3s-fingerprinting [July 2020].

https://recon.meddle/mobi/panoptispy
https://ieee-dataport.org/open-access/mirage-mobile-app-traffic-capture-and-ground-truth-creation
https://ieee-dataport.org/open-access/mirage-mobile-app-traffic-capture-and-ground-truth-creation
https://github.com/matousp/ja3s-fingerprinting
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Opera 67.0. These browsers were running under four different operating systems:
Kali Linux, Mac OS, Windows 10 and Linux Ubuntu. During experiments we
requested 10 different URLs. We created TLS fingerprints for all browsers based
on TLS handshakes related to requested URLs. The dataset contains 2.621 TLS
handshakes. It does not contain mobile traffic. It was used to observe an impact
of TLS libraries on JA3 fingerprints, see Sect. 3.1.

Mobile Apps I (MA1). The second dataset includes five mobile applications:
Discord v16.3, Messenger v253.0, Slack v20.03, Telegram v6.0 and WhatsApp
v2.20. The applications were installed on two mobile devices: Sony Xperia X71
Compact with Android 9 (API level 28) and Huawei P9 with Android 7 and
EMUI 5.0.1 (API level 24). Devices were connected to a PC and TLS data cap-
tured using tshark. To make sure that the packets include initial handshake, the
tested application were restarted using ADB commands. The dataset contains
79 TLS handshakes.

Mobile Apps II (MA2). The third dataset includes communication of four
mobile applications: Accuweather, Gmail, Tor and Viber. For tests, we used
Android Emulator which is a part of Android Studio. In the Android Emulator,
we created two virtual devices: Google Pixel C with Android 8.1 and Google
Nexus 10 with Android 6.0. Using ADB interface we installed the above men-
tioned mobile applications on the virtual device and simulated user behavior
using the command-line tool Monkey. The Monkey emulates user behavior on
a given app, thus the captured traffic is initiated by this app only. An example
of emulating Viber app on the virtual device is below. The dataset contains 595
TLS handshakes.

$adb shell monkey -p viber -v 500 # emulate 500 events on package viber

Mobile Apps III (MA3). This dataset includes communication of the follow-
ing mobile applications: Cestovne Poriadky (Time Table), Muj vlak (My train),
Reddit and Seznam. TLS fingerprints of these apps were obtained using Virtual
Box where these apps were installed. The apps were tested on Android version
7.1, 8.1 and 9. On each Android system, the app was repeatedly launched and the
communication captured. We also observed if the application cache has influence
on the communication, so each app was running twenty times without cache and
twenty times with cache on each system. Together, we obtained 3.180.245 TLS
handshakes.

Mobile Apps IV (MA4). The last dataset was focused on a variety of mobile
apps installed on a real device Tecno J8 with Android 6.1. The dataset includes
the following apps: BoomPlay Music, Chrome Browser, Equa Bank app, Face-
book app, Gmail app, Google calender, KB klic, Messenger, Mobilni Banka app,
NextBike, Telegram, TikTok, WhatsApp and Youtube app. Each app was run-
ning five times on the restarted device so that the captured communication
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corresponds to a typical usage. We extracted 5.308 TLS handshakes from the
captured traffic.

5.2 Results

We evaluated our TLS fingerprinting method using datasets MA3 and MA4 as
they contain multiple runs for each application and can be divided into train-
ing and testing sets. In order to get the balanced sets we used reduced dataset
MA3 (11 runs per app). We observed communication of 16 apps captured in
distinguished time windows. We selected one run of each application for test-
ing and the others we used for training. For training, we used the procedure
described in Sect. 4.1. The testing set contained 244 TLS handshakes in total.
These handshakes were classified as belonging to some application or unknown
traffic.

Table 10. Detection of mobile apps based on JA3 hash

Table 10 shows the confusion matrix of TLS handshakes classification based
on JA3 hash only. Letters A to P represent mobile apps as follows: BoomPlay
Music (A), EquaBank (B), Facebook (C), Gmail (D), Google Calendar (E),
Chrome App (F), KB Klic (G), Mobilni Banka (H), NextBike (I), TikTok (J),
WhatsApp (K), Youtube (L), Seznam CZ (M), Reddit (N), Muj vlak (O) and
Cestovne Poriadky (P). Letter X describes unknown traffic. The rows contain
predicted values, columns represent real values.

We can see the limits of JA3 fingerprinting that works well with apps C
(Facebook), D (Gmail), K (WhatsApp) and L (Youtube) but other apps have
JA3 hashes same as unknown traffic (X class). By adding JA3S hash to TLS
fingerprint, the number of correctly classified apps increases, see Table 11. How-
ever, there is still a high number of false positives (column X). Table 12 presents
classification results for three features JA3+JAS3+SNI. We can see that the
classification is more accurate when using all these features with the exception
of apps Chrome (F) and Youtube (L). Table 13 shows the accuracy, precision and
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recall of classification. JA3 hash is reliable only for specific apps and produces
many false negatives (row X). JA3+JA3S classification has the comparable accu-
racy but better recall. This means that it produces a lot of false positives. The
best result shows a combination of JA3+JA3S+SNI. It also places some samples
into the X (unknown app) category, however, this can be improved by extending
a list of keywords and inserting additional SNIs into the fingerprint database.

Table 11. Detection of mobile apps based JA3+JA3S

Table 12. Detection of mobile apps based on JA3+JA3S+SNI

Table 13. Evaluation of combination of TLS features
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6 Application to Digital Forensics

The identification of smartphone apps can be applied to digital forensics as
a complementary method to obtain forensically valuable information. First, the
background traffic of installed apps can be analyzed to identify a communicating
device [28]. This can distinguish a smartphone model from different vendors
based on a pre-installed set of apps [13] and the background traffic. Next, by
the identification of communicating applications, we can observe user-specific
information, habits and interests as well [8].

Most digital investigations that include mobile device analysis use a logical
extraction to access the existing files such as call history, text messages, web
browsing history, pictures and other files available on the smartphone. However,
logical extraction requires the possession of a device and bypassing the pass-
word. With smartphones better protected against the unauthorized access, the
passive monitoring of their activities stands for the complementary data source
for forensic analysis. The possibility to identify the mobile app, and therefore
the device or even the user of the device is applicable in the following scenarios:

– Forensic analysis. LEAs may send a preservation order to the ISP to collect
the communication for a specific device. The captured information can be
used for learning about the activities of a suspect at different points in time.
Creating a profile of the suspect and correlating identified activities with the
information obtained from the other sources can bring an important insight
to the case being investigated. Even if most of the app traffic is encrypted, the
presented method can detect installed applications. The presence and usage
of a specific application at a given point of time may reveal the intention
of the suspect. Later, after the device is physically available to an investiga-
tor the information obtained from the monitoring phase can be corroborated
with the findings of the logical acquisition outcomes to support the reliabil-
ity of the evidence. Criminals aware of secrecy provided by IM apps can use
them for communication to protect against traditional call record analysis
[32]. However, if we can identify the activity of mobile apps, the traffic gen-
erated by the communicating IM hosts can be used to record communication
between suspects. Also, posts published under the anonymous social network
account can be revealed by comparing the time of the public posts with the
time of the actions as inferred by the application usage aiding to hate crime
investigations.

– Intelligence operations. The agencies may be able to trace certain individuals
on basis of tracking the communication characteristic of the apps installed on
their smartphones. To be feasible, the amount of information that needs to be
collected and processed has to be limited. For instance, NetFlow-based moni-
toring is considered as suitable technique for this purpose [33]. The advantage
of TLS fingerprinting can be applied at massive scale. Adding TLS fingerprint-
ing to existing NetFlow monitoring requires to include TLS fingerprints to
NetFlow records, which many existing monitoring solutions already provide
for detection of security threats that use encrypted communication.
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The presented cases consider the scenarios when the method is applied as a part
of legal investigation done under strict law requirements applied to data collec-
tion and analysis. Unfortunately, as for most communication monitoring tech-
niques collecting sensitive information possibly revealing user privacy, also this
method can be misused. For instance, the totalitarian states can easily adapt the
method to block selected apps and because it is computational inexpensive they
can apply it on a large scale. Avoiding this situation requires the modification
of TLS parameters of applications to make their JA3 hashes indistinguishable
or intractable, e.g., by adding randomly generated parameters in the extension
list and avoiding the use of SNI field.

7 Conclusion

Mobile apps fingerprinting can be considered a practical method with potential
applications in digital forensics. In this paper, we have presented a study on the
reliability of JA3-based methods for mobile apps identification. The advantage
of this method is that it only depends on the TLS handshake information that
is obtained during the establishment of the secure channel.

We have shown that using JA3 is not sufficient for the accurate identification
of mobile apps. More reliable results are obtained by a combination of JA3,
JA3S and SNI features that can be easily computed from the TLS handshake
messages. We have also considered the issues of TLS fingerprint volatility. Based
on our experiments the variability of TLS fingerprints is not so large. Also, when
a new major version of the application is released, it is not difficult to obtain a
new fingerprint in the virtual environment and update the fingerprint database.

The presented results are valid for existing TLS versions that provide access
to the source information necessary for computing the fingerprints. However,
ongoing work on TLS protocol suggests an increase of user privacy by hiding
some of currently visible fields, e.g., SNI10, or even the encryption of TLS Hello
message. Addressing these emerging challenges is a topic for our future work.
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