
Mobile Device Fingeprinting
Technical Report, FIT BUT

Authors: Petr Matoušek, Ivana Burgetová,
Malombe Victor

Technical Report no. FIT-TR-2020-05
Faculty of Information Technology, Brno University

of Technology

Last modified: June 24, 2020

Contents

Introduction 1

1 Mobile Device Fingerprinting 3
1.1 About Device Fingerprinting 3
1.2 State of the Art . 5
1.3 Network Multi-level Profiling 8

1.3.1 Structure of Mobile Communication 9
1.3.2 Passive Protocol Fingerprinting 10
1.3.3 Device Profiling . 15
1.3.4 Device Matching . 15

1.4 Case Study . 16
1.4.1 HTTP Fingerprinting 16
1.4.2 TLS Fingerprinting . 16
1.4.3 Device Profile Matching 17
1.4.4 Experiments . 18

1.5 Summary . 19

2 Observing Mobile Privacy Using Lumen 21
2.1 Motivation . 21
2.2 Lumen App . 21

2.2.1 Testing Environment 22
2.3 Experiments . 22

2.3.1 Results . 22
2.4 Summary . 28

3 JA3 Fingerprinting 29
3.1 Motivation . 29

3.1.1 Preliminaries . 31
3.1.2 Datasets . 36

3.2 Related Work . 38
3.3 JA3 Fingerprinting for Web Browsers 41

3.3.1 Background . 41
3.3.2 Testing Environment 42

i

CONTENTS ii

3.3.3 Results . 44
3.3.4 Discussion . 47

3.4 JA3 Fingerprinting for Mobile Apps 47
3.4.1 Learning Phase . 47
3.4.2 Detection Phase . 51
3.4.3 Stability and Reliability 51

3.5 Evaluation . 52
3.6 Use Cases for Digital Forensics 53
3.7 Summary . 55

Abstract

Network communication of mobile devices provides valuable information
about installed apps, user activities and mobile device usage which can be
interesting for network providers and cyber security. Based on meta data
obtained from mobile device communication, we can select specific features
that can identify a device or app and form a mobile device fingerprinting.

This report presents several mobile device fingerprinting techniques de-
veloped by the FIT BUT research team and discusses their usability, reli-
ability and deployment for network monitoring and digital forensics. The
presented techniques include mobile profiling based on meta data obtained
from common network protocols like HTTP, DNS, SSL, QUIC and DHCP.
It also shows how TLS fingerprinting method called JA3 can be applied on
mobile communication. The obtained results show that combination of var-
ious features from TLS handshake together with DNS data can identify a
mobile app with high precision.

Introduction

This technical report summarizes results of the research focused on identifica-
tion of mobile devices and mobile applications from network communication.
This process called fingerprinting is based on extracting specific features from
mobile device communication. The idea behind this method says that each
device or app has a specific setting that is unique and can be used to dis-
tinguish two device even if having the same hardware and operating system.
The main task of mobile fingerprinting is to find out these features. Features
should be obtained from protocol headers and preserve stability, uniqueness
and reliability.

In the past, there were various mobile device fingerprinting methods
based on active or passive approach that focused mostly on data from HTTP
headers. However, with a rapid move to encrypted communication around
2017, most of that technique became unusable. Unless an Internet Provider
has access to unencrypted data through a web proxy or an end system (like
HTTPs server) we deal mostly with SSL/TLS traffic.

This report includes both methods that work with unencrypted traffic
like HTTP, DNS, or DHCP but also with encrypted connections. We show
that even when a mobile traffic is mostly encrypted, we are still able to
identify an application that sends this traffic using features obtained from
TLS headers and DNS traffic.

The reports include our experiments, observations but also techniques
and tools used for mobile device fingerprinting.

Structure of the Report

Text of the report is structured as follows. In chapter 1 we give an overview
of various network device fingerprinting methods and observe their pros and
cons. Then we focus on passive mobile device fingerprinting using values
from common network protocols, more specifically from HTTP headers, DNS
traffic, SSL handshake, DHCP request and QUIC. We discuss reliability and
stability of this multi-level profiling of mobile devices.

Chapter 2 describes our experiments with Luman App developed by Uni-
versity of California. This app is able to collect data from mobile app com-

1

CONTENTS 2

munication. Its primary goal is to detect privacy data leakage. Using this
app we observed obtained data and evaluate their usage for mobile apps
fingerprinting.

In chapter 3 we move our focus to a specific method for TLS fingerprinting
called JA3. Based on previous research we test JA3 and JA3S hashes on our
datasets and observe if this approach gives more reliable results then the
previous method. As shown in Section 3.5, combination of JA3, JA3s and
SNI features provides a unique fingerprint for a mobile app and can be used
for mobile devices fingerprinting as discussed in Section 3.6.

Acknowledgement

This work presented in this document was supported by project "Integrated
platform for analysis of digital data from security incidents", 2017-2020,
No.VI20172020062, granted by Ministry of Interior of the Czech Repub-
lic. The authors would also like to express their thanks to students Matej
Meluš, Radovan Babic and Alberts Saulitis who participated in generation
of datasets that were used for research experiments.

Chapter 1

Mobile Device Fingerprinting

1.1 About Device Fingerprinting

A mobile phone has become an essential part of personal belongings today,
similarly to a wallet, ID card, or house key. Unlike desktops or laptops, we
take our mobile phone always with us. A mobile phone is usually not shared
with our best friends, colleagues, or family members. Its model, setting, us-
age, and applications reflect the person who uses it. Mobile communication,
variability, and frequency of usage of mobile apps, the volume of transmit-
ted data, a list of connected sites, etc. reveal a lot about the mobile device
owner.

Based on these observations, we can search for traits that are related to
specific hardware, operating system, and preferable applications. Having a
snapshot of the network communication within a specified period, we can
create a communication profile of the device. The profile can be used to
identify the given mobile device in another communication trace.

Unlike traditional mobile fingerprinting approaches, the proposed mobile
device profiling takes into account multiple identification techniques based on
communication data. Our method does not require active interaction with
the device or installation of the specific app like current mobile fingerprinting
techniques. The communication snapshot can be obtained by simple passive
data capturing using, e.g., tcpdump.

The approach is based on the assumption, that each operating system,
device drivers, system and user applications, etc. differ in versions, settings,
and implementations that keep traces in network traffic. By profiling, we
extract relevant data from the captured network traffic and build a profile
of the device. Captured communication usually includes both user-initiated
communication, e.g., sending an email, web browsing, chatting, and also
system/application-initiated communication, e.g., connectivity tests, regular
updates, service synchronization, etc. Both types of communication are
valuable sources of features for building a device profile.

3

CHAPTER 1. MOBILE DEVICE FINGERPRINTING 4

In this paper, we describe a structure of mobile device traffic. We show
what protocols can be exploited to obtain fingerprinting data. Using the
combination of different identification techniques we create a multi-level mo-
bile device profile that can be used for identification of a given mobile device
in the network traffic. Unlike other approaches, we restrict ourselves to pas-
sive data capturing so that the result can be applied by LEAs for operational
purposes or as a part of lawful interception.

Definitions.

In this part, we define two important terms related to our work: profiling
and fingerprinting.

Profiling is the process of "discovering" correlations between data in data
bases that can be used to identify and represent a human or nonhuman
subject (individual or group), and/or the application of profiles (sets of
correlated data) to individuate and represent a subject or to identify a
member of a group or category. Data mining technology is generally
considered as a means by which relevant patterns are discovered and
profiles are generated from larger quantities of data.1

Fingerprinting is a method for collecting publicly available information
called attributes or features about a remote computing device for the
purpose of identification. The data forms a digital fingerprint of the
remote device. Fingerprints can be used to fully or partially identify
individual users or devices. Active fingerprinting requests a specific
fingerprinting data from a remote device using querying, e.g., obtaining
web browser parameters or network settings. Passive fingerprinting
relies on data obtained by monitoring the communication of a remote
device without interfering to it.

Since there is a noticeable overlap of these terms, we need to clarify how
these terms are used in our research.

The term fingerprinting describes a method for creating a fingerprint
based on the specific data, e.g., a DHCP fingerprint is derived from DHCP
communication, an HTTP fingerprint uses HTTP headers, etc. Common
fingerprinting methods have a limited scope of accuracy, and mostly they
are not able to distinguish two individual devices with the same hardware
and OS. Rather, these methods identify a group of similar devices based on
the same operating system, local settings, installed applications, etc. Fur-
thermore, computing the fingerprint requires that the device communicates
with peers using the corresponding network protocol, e.g., to obtain a DHCP

1See Geradts, Zeno; Sommer, Peter (2008), "D6.7c: Forensic Profiling", FIDIS Deliv-
erables, 6 (7c), part 3.2. Available at http://www.fidis.net/fileadmin/fidis/deliverables/
[March 2018].

http://www.fidis.net/fileadmin/fidis/deliverables/fidis-wp6-del6.7c.Forensic_Profiling.pdf

CHAPTER 1. MOBILE DEVICE FINGERPRINTING 5

fingerprint we need to capture DHCP communication of the tested device.
If such communication is missing, this fingerprinting method fails.

By profiling we denote the process of device identification that is based
on various data sources, e.g., a TCP/IP fingerprint, a DHCP fingerprint,
etc. Profiling can also be called multi-level fingerprinting. The advantage of
profiling is that uses various data sources. If one source is missing, there is
still a possibility to create a device profile using another data source. As the
definition above states, a profile represents a searched object using a set of
correlated data.

We do not say that the profiling is more precise than the fingerprinting
in object identification. Instead, we use the profiling as the more general
term for object identification than fingerprinting.

1.2 State of the Art

Identification of mobile devices based on the captured network communica-
tion has been researched from different angles in the past. One of the viable
approaches is fingerprinting based on mobile device hardware. This method
evaluates physical characteristics of the device: the image sensor, frequency
response of the speaker-microphone system, an accuracy of the accelerome-
ter, clock skew of GPS, touch screen misalignment, etc.[6]. By this approach,
we can identify a group of devices that have the same or similar hardware.
Obtaining such fingerprint requires active communication with the device
which is usually provided via a specifically-tailored application that extracts
all necessary data from the device. Passive network monitoring cannot easily
obtain hardware features.

Another popular fingerprinting approach is browser fingerprinting which
searches for web browser features, e.g., version, installed plugins, system
fonts, screen size, color depth, touch support, time zone, installed plugins,
language support [8, 14, 20]. Some of these features transmitted within
HTTP headers, e.g., Accept-Encoding, Accept-Language, User-Agent, can be
extracted directly from the captured network traffic. Application of browser
fingerprinting on mobile devices is, however, limited. [20] shows that con-
trary to web browsers on desktops or laptops, the fingerprints taken from
mobile devices are far from unique. This is due to the application isolation
mode, where mobile applications run in sandbox. This means, that in case
of installing a new app, the font list available in the phone’s web browser
does not change. For the same reason, mobile phone browser usually does
not feature a browser plug-in model. This limits a set of data transmitted
in HTTP headers and reduces a list of features for creating the fingerprint.

In addition, most of browser fingerprinting features, e.g., charset, lan-
guage, time zone, plugin versions, screen resolution, font list, can be ob-
tained using active communication only, e.g., by running a JavaScript or

CHAPTER 1. MOBILE DEVICE FINGERPRINTING 6

Flash Applet in the browser, which does not work well for passive network
monitoring.

Today, most of the Internet services, that uses browser fingerprinting for
mobile users’ identification, implement cookies-based identification or active
fingerprinting. Surely, cookies are excellent tool for device identification,
however, their persistency is limited. Also, cookies are generated on per tar-
get base. This means that connection to a new web side imposes generation
of new cookies which limits application of cookies for fingerprinting.

Another interesting approach in mobile user profiling observes personal
traits. As researched by [17, 24, 23], mobile phones are a subject of tracking
user applications via advertising or tracking libraries. Using these libraries,
we can obtain a list of installed applications at the mobile device [24]. This
list can disclose age of the person (child, teenager, adult), family status (sin-
gle, married, parent), hobbies, preferred activities, etc. Similarly, by tracking
the user activity, we can analyze the big-five personality traits, e.g., extro-
version, agreeableness, conscientiousness, emotional stability, and openness
to experience, see [10]. Such traits are deducted from a list of installed ap-
plications, number of Bluetooth connections, number of incoming/outgoing
text messages and their length, number of incoming and outgoing calls, their
average duration, number of unique phone numbers, etc. Although the re-
sults obtained by this approach are remarkable, an active access to the the
device is required.

Since our approach is restricted on captured network communication
only, we focus on fingerprinting methods that extract features from it. Table
1.1 gives an overview of available communication protocols that are typically
used for mobile device fingerprinting.

Layer Protocol Features
L7 DHCP DHCP options, vendor
L7 SSL/TLS SSL/TLS version, cipher-suite list, TLS extensions
L7 HTTP User-Agent, Accept, Accept-Language, Accept-Encoding,

Accept-Charset
L7 DNS Query patterns, time interval
L4 TCP Window Size, Window scale, MSS, TCP options, TCP

flags, Timestamp increment)
L3 IPv4, IPv6 Initial TTL, IP options, Don’t fragment flag
L2 Ethernet MAC address, MTU

Table 1.1: Fingerprinting Network Communication

Very popular fingerprinting method is OS fingerprinting that utilizes val-
ues from L2-L4 headers, mostly IP and TCP headers. Well-known OS fin-

CHAPTER 1. MOBILE DEVICE FINGERPRINTING 7

gerprinting tools are nmap2 for active fingerprinting, and p0f3 for passive
fingerprinting. Although these tools are focused on general OSes, they also
identify mobile device OSes. Since using L3 and L4 headers, OS fingerprint-
ing does not work well for communication that is subject to NAT translation,
tunneling, proxy, or other techniques that break end-to-end connection on
L3 or L4 layers.

When L3 and L4 layers do not provide reasonable results, we can move
on to application layer (L7). One of the popular identification technique is
DHCP fingerprinting. DHCP fingerprinting is built on assumption, that each
DHCP client implementation uses different configuration, especially DHCP
options hostname, requested-parameters, vendor-id, client-id, list of options,
etc. This data together with a MAC address of the sending device can be
used for unique identification [27]. For example, the fingerprinting database
Fingerbank4 contains around 4,900 DHCPv4 and DHCPv6 fingerprints.

The scope of usage of DHCP fingerprints is limited to LAN only since
DHCP communication is broadcasted and the first router on the network
filters DHCP messages. Thus, DHCP fingerprinting does not work outside
the LAN of the sender device.

DNS fingerprinting observes DNS communication and analysis character-
istics of DNS queries specific to each OS, e.g., unique domain names, query
patterns, time intervals [26]. From point of view of mobile device identifi-
cation, it seems more reasonable to observe frequency and distribution of
DNS queries rather than time interval patterns which often depend on DNS
client configuration, TTL value of DNS records and DNS cache setting. In
addition, the authors of the above cited paper were able to identify an OS
of the device, but not the specific device. Nevertheless, this direction seems
to be promising since DNS traffic is not encrypted and provides interesting
data concerning DNS resolver configuration, local system setting, and user
communication.

Utilization of HTTP communication for fingerprinting has been already
discussed in the paragraph about browser fingerprinting. Because of secu-
rity reasons, most of HTTP communication is encrypted today. This limits
HTTP fingerprinting methods to application gateways that decapsulate the
encrypted HTTP traffic. Without encryption, HTTP fingerprinting cannot
be applied.

With the increase of SSL/TLS encryption, a new type of fingerprinting
methods emerged. SSL/TLS fingerprinting uses Client Hello packets to ex-
tract SSL/TLS version, cipher suite list and TLS extensions that are used
to create a SSL/TLS fingerprint. Experiments with SSL/TLS fingerprint-
ing [21] proves viability of this approach. Unlike DHCP fingerprinting, this

2See http://nmap.org [April 2018].
3See http://lcamtuf.coredump.cx/p0f3/ [April 2018].
4See https://fingerbank.org [April 2018].

http://nmap.org
http://lcamtuf.coredump.cx/p0f3/
https://fingerbank.org

CHAPTER 1. MOBILE DEVICE FINGERPRINTING 8

method is not limited to LAN. Moreover, SSL/TLS fingerprints are not the
subject of NAT translation or tunneling.

In our approach, we create mobile device profiles from the captured
network communication obtained by passive monitoring. Thus, active ap-
proaches like browser or hardware fingerprinting are excluded. The point of
traffic monitoring is very important in the approach. If the traffic is captured
on the local network, ARP and DHCP communication can be analyzed, and
MAC addresses and DHCP fingerprints can be extracted. If the traffic is cap-
tured outside the LAN, we are limited to IP/TCP traffic, DNS and SSL/TLS
fingerprinting.

The following text describes the structure of the mobile traffic. We will
see what protocols and features can be used to build a mobile device profile.

1.3 Network Multi-level Profiling

Network profiling is a technique that creates a unique profile of the device
based on the available network. Having a captured network communication
of the device, we (i) analyze selected protocols, (ii) extract a set of features,
(iii) apply data mining methods on the features, and (iv) create the profile.

Given unknown network traffic associated with the specific user, we aim
at profiling common behavior in this traffic. This behavior includes typ-
ical communication patterns with Internet services. The patterns can be
expressed using entropy, traffic volume, feature distribution, temporal prop-
erties, and so on.

Common network traffic profiling techniques work with a limited amount
of information acquired from the network traffic data such as information
from TCP/IP headers. In this work, we consider the offline profiling method
that uses information available in (almost) complete packet traces. In-depth
analysis of its entire communication determines the user’s device profile. To
cope with the possible enormous amount of information we need to identify
and prioritize different sources of information. Answers to the following
questions shape the solution:

• What communication protocols provide suitable sources of information
to compose the profile?

We assume to profile mobile devices. It is essential to identify the
communication protocols that can be observed in mobile device traffic.

• What protocol features can identify dominant patterns / fingerprints
best?

Each protocol has many possible features that can be considered. How-
ever, only some of them are relevant in pattern identification. A col-
lection of identified patterns represents the fingerprint of the device.

CHAPTER 1. MOBILE DEVICE FINGERPRINTING 9

• How to compose a device profile from a given set of fingerprints?

By protocol analysis, we can identify various patterns in the device
traffic. The combination of the patterns creates a fingerprint. To
create a device profile, we collect the fingerprints. The profile is more
than a simple enumeration of fingerprints. Some fingerprints can be
quite general and shared by several devices. Moreover, weighting the
contribution of fingerprints to the profile is important. Also, specific
fingerprints can be unstable having temporal validity only.

• How to efficiently match the profile in the database?

A compact representation of the device profile is required. An efficient
algorithm has to exist for matching extracted behavior with stored
profiles. Because the matching algorithm can be computationally in-
tensive, the distributed environment can be employed to improve the
performance of large databases.

1.3.1 Structure of Mobile Communication

Now, let us look at the structure of typical mobile communication. What
communication protocols are common, which of them can be exploited for
fingerprinting, what features can be employed for building the communica-
tion profile?

For our experiments, we created several datasets with full packet cap-
tured traffic, see Table 1.2. These datasets were created using different sets
of communicating devices over a given period of time.

In our experiments, we observed communication of twelve different mo-
bile devices within an hour. Captured data contained both user-initiated and
system-initiated communication. The structure of the protocols is showed
in Table 1.2. Totally, the captured traffic included 542,725 packets and 434
MB of data.

As expected, the majority of network traffic is encrypted. The number
of transmission protocols is limited; we found about 25 different protocols,
some of them transmitted only a few packets. The most frequent protocols
are mentioned in the Table. The encrypted traffic includes HTTPS, IMAPS,
SMTPS and general SSL/TLS traffic. Observable is also FB Zero protocol
(used by Facebook), QUIC (QUIC UDP Internet Connection) developed by
Google and OpenVPN.

Concerning unencrypted traffic which varies between 5 to 45 %, useful
data includes HTTP traffic, DNS and multicast DNS packets, DHCP version
4 and 6, and L2 system traffic (ICMP, IGMP, ARP). We observed that some
mobile devices tried to open IPv6 connection which was not supported in
our environment, so we did not work accurately with IPv6. However, IPv6
DNS requests are included in the datasets.

CHAPTER 1. MOBILE DEVICE FINGERPRINTING 10

Dataset1 Dataset2 Dataset3 Dataset4
Time 70 min 12 min 37 min 21 min
Size 452 MB 35 MB 423 MB 18 MB
Packets 542 725 44 699 424 922 25 525

Encrypted Traffic
SSL/TLS 44,26 % 86,03 % 30,52 % 80,1 %
IMAPS 0,65 % 1,67 %
FB Zero 0,65% 0,12 % 0,01 % 0,13 %
QUIC 6,15 % 3,9 % 4,74 % 8,07 %
OpenVPN 54,94 %
Total 51,7% 91,7% 90,21 % 88,3 %

Unencrypted Traffic
HTTP 41,47 % 1,65 % 7,55 % 2,12 %
DNS,mDNS 0,93 % 1,78 % 0,64 % 2,41 %
DHCP 0,05 % 0,13% 0,04 % 0,26 %
ICMP,IGMP 0,36 % 0,53 % 0,14 % 0,60 %
ARP 2,11 % 1,01 % 1,62 % 3,17 %
Total 47,05 % 5,12% 9,99 % 8,56 %

Table 1.2: Structure of mobile device traffic

As seen from the list of the protocols, the traffic was captured on LAN.
Protocols like ARP, ICMP, IGMP or DHCP would not be seen outside the
LAN. However, by observing the traffic, we can state that mobile devices
communicate uses a limited set of network protocols and the majority of
the traffic is encrypted. This is observation is important for further steps of
device profiling.

In the next section, we give an overview of identified network protocols
and their features considered in fingerprinting methods.

1.3.2 Passive Protocol Fingerprinting

Protocol fingerprinting techniques reveal differences in the use and imple-
mentation of protocols by different software implementations. Because of
this, the most common Internet protocols can be a target of fingerprinting.

To get the protocol fingerprint, we identify candidate attributes. At-
tributes can equal to protocol fields or can be constructed from the protocol
structure. For instance, User-Agent can be a suitable protocol attribute.

Let a be a protocol attribute. We define a set of possible values for this
attribute, denoted as Ra. In case of User-Agent attribute this set contains all
possible strings that can appear as the value of this field. This gives us the
vocabulary, which can be used to create an attribute vector ~ta using one-hot
encoding:

CHAPTER 1. MOBILE DEVICE FINGERPRINTING 11

• An element in the vector corresponding to the given string value is set
to 1.

• All other elements are set to 0.

The length of this vector corresponds to the size of the vocabulary.
Fingerprint is represented as a (sparse) vector ~t, which is the result of

concatenation of attribute vectors:

~t = ~ta1 · . . . · ~tak
The resulting fingerprint vector can be large, containing hundred thou-

sand elements. Feature hashing [41] can be applied providing a suitable
representation of high dimensional vectors. The main idea of feature hash-
ing is to map the high dimensional input vectors into a lower dimensional
feature space. A hash function determines the location of a feature in the
more moderate dimensional vector. Although feature hashing does not pro-
vide one-to-one mapping, the collision rate is acceptable for sparse vectors.

In the next subsections, we identify a set of attributes suitable for fin-
gerprinting of each selected protocol. The selection of attributes was made
based on published literature and our experiments. Also, it is possible to
compute the amount of information provided by each attribute to confirm
the attribute selection.

TCP/IP communication.

Passive TCP/IP fingerprinting can determine operating system of the device
based on the information in TCP and IP headers. This is possible because
of subtle differences in network stack implementations that uniquely identify
each operating system. Passive method is non-intrusive and relies on the
observation of the normal traffic rather than actively probing the target
system. The widely used passive fingerprinting tool f0p is rule-based and
relies on the manually created database of identified signatures. The OS
fingerprinting includes the following attributes:

• Initial Time to Live

• IPv4/IPv6 Option Length

• Maximum Segment Size

• TCP Window Size

• TCP Window Scaling Factor

• TCP Options and their order

• Selective Acknowledgement Option

• Content of SYN packet

CHAPTER 1. MOBILE DEVICE FINGERPRINTING 12

DHCP communication.

DHCP fingerprinting allows identification of a device and operating system
installed. DHCP supports various options that help to identify the client. In
particular, DHCP header data transmitted in Discover and Request packets
sent by the client is used to build a fingerprint. The most interesting is
the options section where it is possible to find the operating system name,
device name, vendor id, and other values. Besides, each DHCP client offers a
specific set of options which depends on the operating system and its version.

For DHCP fingerprinting we use the following DHCP attributes:

• Client identifier (option 61): client MAC address

• Host name (option 12), e.g., Galaxy-A5-2016

• Vendor class identifier (option 60), e.g., android-dhcp-7.0

• Parameter Request List (option 55), e.g., 1,3,6,15,26,28,51,58,59

There are additional parameters like domain name server, renewal time,
netmask, DHCP server identifier, etc. However, these additional parameters
depend on the ISP provider, so they change when connected to a different
operator. The attributes mentioned above are stable. In addition, these
system data are generated by the client software and cannot be easily forged
by the mobile phone user. As mentioned before, the downside of DHCP
fingerprinting is that it is limited to the LAN only.

DNS communication.

Most of the Internet applications rely on DNS data. By analyzing DNS
data we can identify the operating system, installed applications, and user
activity. Devices do not encrypt DNS communication. Therefore necessary
information can be easily extracted from DNS header.

For fingerprinting, we extract attribute values from standard unicast and
multicast DNS requests. The following data are considered for building DNS
fingerprint:

• DNS request type: most common are A, AAAA, PTR, and ANY, i.e.,
values 1, 12, 28, and 255.

• DNS server IP address: some of DNS clients use DHCP-assigned DNS
name servers, many mobile users prefer to set there own IP address,
e.g., 147.229. 9.43, 8.8.4.4, or 8.8.8.8.

• DNS resolved name: resolutions include not only user initiated names
like facebook.com, but also system-initiated resolutions, e.g., android.
google, apis.com, appchat.xioami.net, _ipps._tcp.local or ap-
plication-initiated domains, e.g., shop.oebb.at, media.novinky.cz.

CHAPTER 1. MOBILE DEVICE FINGERPRINTING 13

In addition to collecting DNS queries, it is possible to identify operating
system and some applications observing DNS query patterns. Operating
systems tend to send specific DNS queries regularly. It can be used as an
additional technique for detecting the OS.

On the other hand, DNS fingerprint depends on user activity and time
of connection. When capturing DNS data of a mobile device for an hour,
we receive hundreds of unique DNS domain names. Thus, it is necessary to
filter these data and find a stable set of DNS names that can be used for
creating the fingerprint. Filtering can be based on the number of occurrences
of unique domain names where domain names under the given threshold are
eliminated from the fingerprint.

HTTP communication.

HTTP headers provide a rich source of interesting data that can be used for
forensic purposes. Even a small number of HTTP packets yield variety of
different values. For example, in our smallest dataset #2 (12 minutes of com-
munication) HTTP traffic formed only 1,65% of all communication. Despite
this, we detected 16 unique HTTP headers with 61 unique values. For HTTP
fingerprinting the most promising headers are those that appeared on more
devices and have the largest entropy of information. From our observations,
we noticed that the most promising headers are User-Agent string, Accept-
Encoding, Cookie and Content-type. For our purposes we limited ourselves
to User-Agent string an Cookie only.

• User-Agent string defines name and type of the web browser, operat-
ing system, and even smart home name and version, e.g., Microsoft-
CryptoAPI/10.0

• Cookie is a small piece of information stored at web browser and sent
as a part of the request. It keeps relation between the server and the
client even if the client reconnects. Time validity of cookies is limited
and depends on the the service.

In our experiments, we notice that a single device uses a reasonably
large set of different User-Agent strings. This is obvious when we realize
that HTTP communication is initiated not only by web browsers but also
using any app communicating over HTTP. Thus, User-Agent fingerprinting
can quite precisely characterize communication of a particular device.

In our device profiling database, we consider a set of User-Agent strings
to form an HTTP fingerprint of one device. For example, in our dataset
#1, each identified device contained 1 to 6 unique user-agent strings. Thus,
fingerprinting is based on matching as many as the possible string in the
profile database. Also, user-agent string is considered as a stable feature
that is not easy to change on mobile devices.

CHAPTER 1. MOBILE DEVICE FINGERPRINTING 14

Web browser fingerprinting is one of the most common ways to track users
in WWW environment.It is used primarily for marketing purposes (targeted
ad for returning users), but also for checking whether the credentials have not
been compromised. Most web based fingerprinting tools, e.g., Panopticlick5,
use an active approach. The user is forced to load a page that contains a
JavaScript code that collects the local browser settings and forwards it to
the server where data are stored in the fingerprint database.

In our approach we can rely on the information found in the HTTP com-
munication only. Most of these attributes characterize web browser instead
of a particular user:

• Accept: enumerates supported document types.

• Accept-Encoding: lists supported encoding of the documents.

• Accept-Charset: states preferred languages of the browser/agent.

In addition to the previous header fields that serve to browser identifi-
cation, we also extract the following variable fields. These fields depend on
the HTTP session and corresponds to user activity:

• Hostname: domain name of the server specified as a part of the HTTP
request.

• Cookies: a small piece of information stored at web browser send as a
part of the request.

SSL/TLS communication.

A significant amount of network communication is encrypted with SSL/TLS.
This reduces fingerprint capabilities based on the communication content.
However, by observing information exchanged during secure connection es-
tablishment, it is possible to identify the implementation of SSL/TLS li-
brary and its version. Operating systems usually contain variety of different
SSL/TLS implementations with unique identifiers and cipher suite sets. For
SSL fingerprinting, the following attributes can be exploited from Client
Hello opening message:

• SSL/TLS Version. Most common versions are SSL 3.0, TLS 1.0,
TLS 1.1 and TLS 1.2.

• Cipher Suite List is a list of available combination of cryptographic
algorithms for encryption and message protecting. Each cipher suite
is identified by a standard value defined by IANA6. The content and

5See https://panopticlick.eff.org/about [April 2018].
6See https://www.iana.org/assignments/tls-parameters/ [May 2018].

https://panopticlick.eff.org/about
https://www.iana.org/assignments/tls-parameters/

CHAPTER 1. MOBILE DEVICE FINGERPRINTING 15

order of available cipher suite items depend on the SSL/TLS library
and its version. Example of a cipher suite list follows: 49195, 49199,
49162, 49171, 49172, 156, 47, 53.

• Supported Extensions: SSL/TLS library also provides a list of available
extensions that can be also used for fingerprinting, e.g., 0, 11, 10,
35, 13, 13172, 16

Each mobile device contains several SSL/TLS-based applications with
different SSL/TLS libraries. Thus, SSL fingerprint includes a list of versions,
cipher suite lists, and extension lists. Our profile database created using
dataset1 contained 1 to tens different SSL fingerprints per device. Thus,
when providing matching, the threshold must be defined for proper analysis.

1.3.3 Device Profiling

The device profile is a collection of vectors produced by the protocol finger-
printing modules. Each fingerprinting module F (e.g., DHCP, SSL, DNS,
HTTP) is used to compute a fingerprint vector ~tF for the known traffic d.
The device profile P is an ordered collection of computed vectors:

P = 〈~tFi |forall fingerprinting modules F1 . . . Fn : ~tFi = TFi(d)〉,

where d is a traffic known to be generated by the target device and TF

is a fingerprinting function of module F . The profile is stored in the profile
database D, and it is used for device matching as described in the next
section.

1.3.4 Device Matching

The created device profile is applied to unknown network traffic to compute
the probability that the network traffic was generated by a known device.
The evaluation whether the known device generated the captured traffic is
done by computing the similarity of the vectors that are the result of process-
ing fingerprinting modules for the captured traffic. Computed fingerprints
are stored in the device profile database.

The similarity is expressed as the distance between vectors. A distance
between vectors can be computed by various methods, e.g., Mahalanobis dis-
tance, Hamming distance, or Euclidean distance. For two arbitrary vectors
~v1, ~v2 we define distFi(~v1, ~v2) ∈ (0 . . . 1) be a distance function for finger-
printing module Fi. Given a profile P = 〈~tF1 , . . . ,~tFn〉 and an ordered set
of vectors Q = 〈TF1(d), . . . , TFn(d)〉 computed by fingerprinting modules for
observed traffic d,we compute the distance vector ~s as follows:

~s = 〈dist(~tFi , TFi(d))|forall i : 1 ≤ i ≤ n〉

CHAPTER 1. MOBILE DEVICE FINGERPRINTING 16

Let ~w is a weight vector, we compute the similarity score from the distance
vector as follows:

s =
n∑

i=1

~s[i] · ~w[i]

The weight vector allows us to specify the contribution of the individual
fingerprints to the similarity score. The similarity score is used to find a
most likely match for the target device within a database of stored profiles.

1.4 Case Study

In this section, we provide demonstration of profile computation and de-
vice matching using the previously described approach. We present rather a
simplistic system that uses only two fingerprinting modules, namely, HTTP
and SSL. The example presents the profile for a smartphone running An-
droid 7.0. The captured communication is processed by tshark tool that
extracts HTTP, and SSL information, respectively. Next, this data is passed
to fingerprint modules.

1.4.1 HTTP Fingerprinting

Various HTTP headers provide the main source of information for HTTP fin-
gerprinting. User-Agent field gives a very detailed description of the client’s
platform. In this example, we combine User-Agent and Accept-Language at-
tributes. Both fields have a string representation, and their value can be
directly used for representing elements of the vector. An example is shown
in Fig. 1.1.

1.4.2 TLS Fingerprinting

TLS Cipher Suites attribute is represented as a string that enumerates all
supported cipher suites. For instance, the following cipher suite list

TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA (0xc014)
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA (0xc00a)
TLS_SRP_SHA_DSS_WITH_AES_256_CBC_SHA (0xc022)
TLS_SRP_SHA_RSA_WITH_AES_256_CBC_SHA (0xc021)

is represented as "49172,49162,49186,49185". The string representation
is suitable for both the occurrences and the order of cipher suite items that
provide valuable information for fingerprinting.

TLS extensions enable to enrich the functionality provided by TLS mes-
sage format. A list of extensions can be extracted from the TLS communi-
cation. We are only interested in the list of extensions offered/required by
the TLS client. Again, the list is represented as a single string, for instance,
0,11,10,35, where each number corresponds to an TLS extension.

CHAPTER 1. MOBILE DEVICE FINGERPRINTING 17

By extracting TLS Cipher Suite and TLS Extension strings from the
captured communication belonging to the device, we compose its TLS fin-
gerprint. An example of the fingerprint is shown in Fig. 1.1.

1.4.3 Device Profile Matching

The profile of a device considered in this example is represented as an col-
lection of computed fingerprints:

P1 = {(http, 〈1, 0, 0, 0, 1, 0, 0, 1, 1, 1〉), (tls, 〈1, 0, 1, 1, 1, 0, 0, 0, 1, 0〉}〉

We use the same distance function that computes how many elements that
occurs in ~y also occurs in ~x:

dist(~x, ~y) =
number of matching ones in x and y

total number of ones in y

To demonstrate the profile matching methods, we consider two unknown
devices for which we captured the communication. The captured communi-
cation of these devices is analyzed and profiles d2 and d3 are computed:

d2 = {(http, 〈0, 0, 0, 0, 1, 0, 0, 0, 1, 0〉), (tls, 〈1, 0, 1, 0, 0, 1, 0, 0, 1, 0〉)}
d3 = {(http, 〈0, 0, 0, 0, 0, 1, 1, 0, 1, 1〉), (tls, 〈0, 1, 0, 1, 1, 0, 0, 1, 1, 0〉)}

Using defined distance function, we compute similarity vectors:

~s2 = 〈1, 0.75〉
~s3 = 〈0.5, 0.6〉

Given weight vector, ~w = 〈0.6, 0.4〉, which slightly prioritizes HTTP finger-
prints, we compute the final similarity scores as follows:

s2 = 0.9 s3 = 0.54

The first device has a better match with the profile than the other device.
Indeed, the device is also Android smartphone running the same version of
the operating system as the known device. The other device is a Windows
Phone which has smaller similarity considering the given fingerprints.

The presented example was radically simplified to demonstrate the prin-
ciples of the presented profiling method. In the example, it is only possible
to detect different groups of devices, e.g., different operating systems and
versions. The full profiling method considers much more attributes as in-
puts to differentiate the devices also by observing activities of users and
applications.

CHAPTER 1. MOBILE DEVICE FINGERPRINTING 18

~thttp =
u1 u2 u3 u4 u5 u6 u7 e1 e2 e3
1 0 0 0 1 0 0 1 1 1

u_1 = "AndroidDownloadManager/7.0 (Linux; U; Android 7.0; SM-A510F Build/NRD90M)"
u_2 = "AndroidDownloadManager/7.1.1 (Linux; U; Android 7.1.1; E5823 Build/32.4.A.1.54)"
u_3 = "Dalvik/1.6.0 (Linux; U; Android 4.3; GT-I9301I Build/JSS15J)"
u_4 = "Dalvik/2.1.0 (Linux; U; Android 5.1; Amazfit Sports Watch Build/LMY47D)"
u_5 = "Dalvik/2.1.0 (Linux; U; Android 7.0; Redmi Note 4 MIUI/V8.5.8.0.NCFMIED)"
u_6 = "Mozilla/5.0 (Windows NT 10.0; Win64; x64) Chrome/61.0.3163.100 Safari/537.36"
u_7 = "Windows-Update-Agent/10.0.10011.16384 Client-Protocol/1.58"
e_1 = ""
e_2 = "cs"
e_3 = "en"

a) HTTP Fingerprint Vector

~ttls =:
c1 c2 c3 c4 x1 x2 x3 x4 x5 x6
1 0 1 1 1 0 0 0 1 0

c_1 = "10,5,4,255"
c_2 = "49196,49195,49200,49199,159,158,156,61,60,53,47,10,5,4"
c_3 = "49196,49195,49200,49199,159,158,61,60,53,47,10"
c_4 = "49196,49195,49200,49199,157,156,61,60,53,47,10"
x_1 = ""
x_2 = "0,10,11,13,35,23,65281"
x_3 = "0,5,10,11,13,35,23,65281"
x_4 = "0,5,10,11,13,35,16,23,24,6528"
x_5 = "0,5,10,11,13,35,16,23,65281"
x_6 = "0,5,10,11,13,35,23,24,65281"

b) TLS Fingerprint Vector

Figure 1.1: An example of HTTP and TLS Fingerprint vectors

1.4.4 Experiments

The above written approach was implemented using a set of scripts for anal-
ysis of HTTP, DNS, SSL, QUIC, and DHCP communication together with
profile matching7.

We performed experiments with several mobile devices obtaining pre-
liminary results to evaluate the capabilities of the presented method. We
captured the communication of about dozen devices at different periods.
For the experiment we used four input datasets (see Table 1.2). We took the
first dataset for creating protocol fingerprints of these devices. The rest of
datasets were used to evaluate the matching algorithm. In experiments, we

7The implementation is available at https://github.com/matousp/mobile-profiling
[June 2020]

https://github.com/matousp/mobile-profiling

CHAPTER 1. MOBILE DEVICE FINGERPRINTING 19

DHCP TLS DNS HTTP
1.00 0.33 0.54 0.90

Table 1.3: Accuracy of protocol fingerprint

considered four fingerprint modules, namely, DHCP, TLS, DNS, and HTTP.
We compute the accuracy of the individual protocol fingerprints. The

overall results are presented in Table 1.3.
While DHCP fingerprint can be used to identify the device with the abso-

lute accuracy, the disadvantage is that DHCP communication is not usually
available. The trivial TLS and DNS fingerprint functions give unacceptable
results. The problem of DNS is that it relies on actual resolution performed
by the device. Some data preprocessing and more sophisticated statistical
methods would be necessary to create a more characteristic fingerprint of the
device. Finally, HTTP fingerprint that only considers User-Agent attribute
provides more exciting results. However, we are aware that this is because
the set of device used in this experiment was rather small.

1.5 Summary

Digital device profiling aims at assist forensics investigator in identifying a
possible user digital profile. In this chapter, we presented a digital device
profiling method specifically focused to mobile devices, although this type of
analysis is suitable to all Internet enabled devices.

The profile is computed by analysis of network communication only. Be-
cause of this, the method is passive, which enables to use it in various sce-
narios. Similarly to other methods that deal with full packet capture, there
are strong privacy concerns.

Although most of the communication is encrypted to protect user data,
by creating a user profile it is possible to reveal sensitive information about
the user. When necessary for profiling, it is possible to analyze only com-
munication metadata. For most protocols, we consider only header fields.

During experiments, we did the following observation:

• It is necessary to combine the fingerprints to create a profile. A single
fingerprint is not enough to reliably discriminate different devices.

• The SSL fingerprint is not as unique as stated in [21]; It may be be-
cause our communication samples were rather short, and most of the
applications use the SSL library provided by the platform.

• Short communication snapshots (about 30 min) can provide enough
data for matching the profile. However, for some protocol fingerprint-
ing modules, the date needs to be filtered or preprocessed to remove
noise and infrequent patterns, e.g., DNS.

CHAPTER 1. MOBILE DEVICE FINGERPRINTING 20

The presented work provides preliminary results on the possibility to
determine a reliable profile of a mobile device user. We prepared dataset
containing the frequent smartphone communication and identified the set of
the most used Internet protocols. Then, based on the literature review we
recognized the possible attributes to form a collection of features for finger-
printing. The individual protocol fingerprints were evaluated with respect
to accuracy. It was shown that no fingerprint gives accurate results by itself.
We also demonstrated the method to create a profile and compute the best
match for the unknown device.

Chapter 2

Observing Mobile Privacy
Using Lumen

2.1 Motivation

For mobile app fingerprinting, we need to understand what traffic is sent by
a specific application. To capture mobile apps traffic we decided to eval-
uated tool Lumen that was created by Int. computer Science Institute in
University of California, Berkeley and IMDEA Networks Institute, Madrid,
Spain. Lumen App is available through Google store1.

Lumen2 is a tool that helps you to keep user personal data under control
and obtain network traffic logs. It analyzes the app’s traffic to identify
personal information leaks and the organizations collecting such sensitive
data.

This chapter brings results of our experiments with Lumen. The goal of
these experiments is to evaluate what information about mobile app traffic
can be obtained by Lumen and if this app can be useful for automated
creation of mobil apps profiles.

The authors state that With Lumen, completely anonymous traffic traces
in the wild can be obtained. Lumen collects aggregated and anonymized
information about how your mobile apps connect with online services. In
addition, Lumen does not export any private information from the phone:
all personal data remains with the user.

2.2 Lumen App

Lumen allows a user to select and block flows to gain control over user
personal data and the traffic emanating from Android apps. Lumen gives for

1See https://play.google.com/store/apps/details?id=edu.berkeley.icsi.
haystack [June 2020]

2See https://haystack.mobi/ [June 2020]

21

https://play.google.com/store/apps/details?id=edu.berkeley.icsi.haystack
https://play.google.com/store/apps/details?id=edu.berkeley.icsi.haystack
https://haystack.mobi/

CHAPTER 2. OBSERVING MOBILE PRIVACY USING LUMEN 22

each app installed on the phone a list of domains that the app communicates
with. Those domains associated with advertising or tracking services will be
indicated with an eye icon. The user is able to select the domains he/she
wants to block.

Some apps may use encrypted channels to upload user personal informa-
tion to their online servers. Lumen can exploit apps that do not use correctly
TLS to perform TLS interception (also known as man-in-the-middle) locally
on the device. This allows a user to understand what data your apps leak
over encrypted channels.

2.2.1 Testing Environment

In our experiments, we used Lumen version 2.2.2 which supports Android
version 4.2 and higher.

The experiments were provided on the mobile device TECNO-J8 with
CPU core-count 4 and CPU frequency 1 3GHz. Internal storage had 16 GB,
RAM 2GB. The screen resolution was 1280X720. The device was equipped
with Android version 5.1.

2.3 Experiments

For monitoring, we used 25 mobile apps: Boomplay, Chrome, Downloads,
Google, Play Store, Duolingo, Facebook, Messenger, FMWhatsApp 2, Drive,
Maps, Photos, Tasks, Google Backup Transport, Gmail, Google, Google
Calendar Sync, YouTube, Weather, TikTok, Equa bank, KB Klic, Nextbike,
Mobilni banka, Telegram and Android system (root).

During experiments we noticed that 88.7% traffic was transmitted by
HTTPs, 4,1% was XMPP, 3,1% was HTTP, and 4.1% other traffic.

We analyzed communication of 8.951 connections to 288 unique IP ad-
dresses. Analyzed traffic had 811 MB.

2.3.1 Results

The following table brings results obtained by Lumen App. It lists all de-
tected privacy leaks with their description and mobile apps that were in-
volved in these leaks.

CHAPTER 2. OBSERVING MOBILE PRIVACY USING LUMEN 23

Table 2.1: Detected Privacy Leaks

Type Risk
Level

Description Leaked Values Apps

Android
ID

High
Risk

This value allows ad net-
works and online trackers
to identify you uniquely
as a unique Google user
for tracking, surveillance or
advertising purposes. This
allows them to track you
uniquely across platforms,
as when you are surfing the
web.

8ac0ea9c54a508ca Messenger Organization: face-
book.com Number of Times: 1
Last time: 04/28/2020 14:41:37
TikTok Organization: musical.ly
Number of Times: 1 Last time:
04/28/2020 13:03:52
Equa bank Organization: equamo-
bile.cz Number of Times: 1 Last
time: 04/28/2020 10:57:23

Device
Serial

High
Risk

This value allows ad net-
works and online trackers
to identify you uniquely
for tracking, surveillance or
advertising purposes

352770081284400 hiOS Android system (root) OS
Organization: reallytek.com Num-
ber of Times: 1 Last time:
04/28/2020 10:46:09

IMSI High
Risk

The IMSI (International
Mobile Station Equipment
Identity) is a value stored
in your SIM card that iden-
tifies your device uniquely.
The receiving organization
can use this information
to track your traffic and
your online behavior. Ap-
plications leaking the IMSI
can cause serious privacy
violations and ease online
tracking and surveillance
when they send this data
over insecure protocols like
HTTP. If you do not want
a given app to access this
information, you can dis-
able their access in your
system settings under the
apps category

639031628116217 hiOS Android system (root) OS
Organization: reallytek.com Num-
ber of Times: 1 Last time:
04/28/2020 10:46:09

Account
(com.
face-
book.
auth.
Iogin)

High
Risk

Many applications request
permissions to access your
online service accounts.
This ranges from your
name to your Google
account and any social
media service accounts. If
Lumen identifies an app
leaking this information,
you may need to consider
whether this is legitimate
(required by the app
itself) or not. If you do
not want a given app to
access this information,
you can disable their
access in your system
settings under the apps
category

Facebook Boomplay Organization: face-
book.com Number of Times: 35
Last time: 04/28/2020 14:46:18
Boomplay Organization.
fbcdn.net Number of Times:
3 Last time: 04/28/2020 12:41:36
Duolingo Organization: face-
book.com Number of Times: 5
Last time: 04/28/2020 11:16:14
Duolingo Organization:
duolingo.com Number of Times: 3
Last time: 04/28/2020 10:58:01
Duolingo Organization: fbcdn.net
Number of Times: 1 Last time:
04/28/2020 10:56:12
Messenger Organization: facebook
com Number of Times: 1 Last
time: 04/28/2020 14:41:37
Messenger Organization: fb com
Number of Times: Last time:
04/28/2020 13:07:35

CHAPTER 2. OBSERVING MOBILE PRIVACY USING LUMEN 24

PHX Browser Organization: face-
book com Number of Times: 6
Last time: 04/28/2020 16:01:03
TikTok Organization: face-
book.com Number of Times: 13
Last time: 04/28/2020 16:00:47
nextbike Organization: facebook
com Number of Times: 1 Last
time: 04/28/2020 09:18:45

Serial
Num-
ber

High
Risk

The serial number identi-
fies uniquely your device.
The receiving organization
can use this information
to track your traffic and
your online behavior. Ap-
plications leaking the IMSI
can cause serious privacy
violations and ease online
tracking and surveillance
when they send this data
over insecure protocols like
HTTP. Applications do not
require any permission to
read and leak this unique
identifier.

0153801720700690 Messenger Organization: face-
book.com Number of Times: 1
Last time: 04/28/2020 14:41:37
Android system (root) Organiza-
tion: reallytek.com Number of
Times: 1 Last time: 04/28/2020
10:46:09

Installed
Apps

Mid
Risk

Apps may monitor which
other apps you have in-
stalled and run on your de-
vice. This allows them to
find out many things about
your personality, taste, and
demographics. It also
allows tracers and ad-
vertisers to perform de-
mographic and marketing
studies and campaigns

com.android.hios.
launcher3

Duolingo Organization:
duolingo.com Number of Times: 3
Last time: 04/28/2020 10:58:01
Messenger Organization: face-
book.com Number of Times: 2
Last time: 04/28/2020 14:41:37

Board
info

Low
Risk

This value identifies your
hardware and the phone
model you use. Appli-
cations typically use this
information to adapt con-
tent to your display or
for improving advertising
efficiency. However, this
information can also re-
veal things about your per-
sonality, taste, wealthiness
and your demographics

unknown Duolingo Organization:
duolingo.com 0 Number of Times:
Last time: 04/28/2020 10:56:10
Messenger Organization: face-
book.com Number of Times: 1
Last time: 04/28/2020 14:41:37

CHAPTER 2. OBSERVING MOBILE PRIVACY USING LUMEN 25

Device
Model

Low
Risk

This value identifies your
device model and man-
ufacturer. Applications
typically use this infor-
mation to adapt content
to your display or for
improving advertising ef-
ficiency. However, this
information can also re-
veal things about your per-
sonality, taste, wealthiness
and your demographics.

TECNO-J8 Boomplay Organization: boom-
playmusic.com Number of Times:
8 Last time: 04/28/2020 14:38:29
Boomplay Organization: face-
book.com Number of Times: Last
time: 29 04/28/2020 13:26:09
Boomplay Organization: apps-
flyer.com Number of Times: 16
Last time: 04/28/2020 12:51:41
Boomplay Organization:
fbcdn.net Number of Times:
5 Last time: 04/28/2020 12:41:36
Boomplay Organization: shall-
try.com Number of Times: 2 Last
time: 04/28/202011:19:33
Boomplay Organization: mobad-
vent.com Number of Times: 2 Last
time: 04/28/2020 09:19:34
Duolingo Organization: face-
book.com Number of Times: 5
Last time: 04/28/202011:16:14
Duolingo Organization:
duolingo.com Number of Times: 6
Last time: 04/28/2020 11:06:01
Duolingo Organization: fbcdn.net
Number of Times: 1 Last time:
04/28/2020 10:56:11
Messenger Organization: face-
book.com Number of Times: 1
Last time: 04/28/2020 14:41:37
FMWhatsApp 2 Organization:
google.com Number of Times: 19
Last time: 04/28/2020 16:00:40
FMWhatsApp 2 Organization:
whatsapp.net Number of Times: 7
Last time: 04/28/2020 14:49:08
Weather •F Organization: accu-
weather.com Number of Times: 3
Last time: 04/28/2020 14:21:00
Equa bank Organization: equamo-
bile.cz Number of Times: 7 Last
time: 04/28/2020 11:42:15
Equa bank Organization: equa.cz
Number of Times: 1 Last time:
04/28/2020 10:57:12
KB Klic Organization: more-
banka.cz Number of Times: 1 Last
time: 04/28/2020 12:50:19
nextbike Organization:
nextbike.net Number of Times: 2
Last time: 04/28/2020 09:18:48
nextbike Organization: face-
book.com Number of Times: 1
Last time: 04/28/2020 09:18:47
nextbike Organization: crashlyt-
ics.com 0 Number of Times: 1 Last
time: 04/28/2020 09:18:46
Mobilni banka Organization:
trusteer.com Number of Times: 3
Last time: 04/28/2020 12:49:01
hiOS Android system (root) OS
Organization: reallytek.com Num-
ber of Times: 1 Last time:
04/28/202010:46:09

CHAPTER 2. OBSERVING MOBILE PRIVACY USING LUMEN 26

Hardware
info

Low
Risk

This value identifies your
hardware and the phone
model you use. Appli-
cations typically use this
information to adapt con-
tent to your display or
for improving advertising
efficiency. However, this
information can also re-
veal things about your per-
sonality, taste, wealthiness
and your demographics

mt6735 AI Messenger Organization: face-
book.com Number of Times: 1
Last time: 04/28/2020 14:41:37
hiOS Android system (root) OS
Organization: reallytek.com Num-
ber of Times: 1 Last time:
04/28/2020 10:46:09

Build
Host

Low
Risk

This value identifies the
host used for building your
Android version

rlk-buildsrv37 Messenger Organization: face-
book.com Number of Times: 1
Last time: 04/28/202014:41:37

CHAPTER 2. OBSERVING MOBILE PRIVACY USING LUMEN 27

Build
Finger-
print

Low
Risk

It is a value that iden-
tifies uniquely your An-
droid OS and the ver-
sion you run. Applications
typically use this informa-
tion to adapt content to
your display or for improv-
ing advertising efficiency.
However, this information,
specially when combined
with other leaks, can re-
veal things about your per-
sonality, taste, wealthiness
and your demographics

LMY47D Boomplay Organization: boom-
playmusic.com Number of Times:
8 Last time: 04/28/2020 14:38:29
Boomplay Organization: face-
book.com Number of Times: 26
Last time: 04/28/2020 13:26:09
Boomplay Organization: apps-
flyer.coM Number of Times: 16
Last time: 04/28/2020 12:51:41
Boomplay Organization:
fbcdn.net Number of Times:
5 Last time: 04/28/2020 12:41:36
Boomplay Organization: shall-
try.com Number of Times: 2 Last
time: 04/28/202011:19:33
Boomplay Organization:
34.255.134.237 Number of Times:
1 Last time: 04/28/2020 09:19:51
Duolingo Organization: face-
book.com Number of Times: 5
Last time: 04/28/2020 11:16:14
Duolingo Organization:
duolingo.com 0 Number of Times:
6 Last time: 04/28/2020 11:06:01
Duolingo Organization: fbcdn.net
Number of Times Last time: 1
04/28/2020 10:56:11
Af Messenger Organization: face-
book.com Number of Times: Last
time: 04/28/2020 14:41:37
FMWhatsApp 2 Organization:
google.com Number of Times: 19
Last time: 04/28/202016:00:40
Weather Organization: accu-
weather.com Number of Times: 3
Last time: 04/28/202014:21:00
PHX Browser Organization: in-
stagram.com Number of Times: 2
Last time: 04/28/2020 09:17:34
PHX Browser Organization:
google.com Number of Times: 1
Last time: 04/28/2020 09:17:33
TikTok Organization: musically
Number of Times: 13 Last
time: 04/28/2020 16:00:41 Equa
bank Organization: equamobile.cz
Number of Times: 6 Last time:
04/28/202.011:42:15
KB Klic Organization: moje-
banka.cz Number of Times: 1 Last
time: 04/28/2020 12:50:19
Mobilni banka Organization:
trusteer.com Number of Times: 3
Last time: 04/28/2020 12:49:01

CHAPTER 2. OBSERVING MOBILE PRIVACY USING LUMEN 28

2.4 Summary

From the the experimental results that can be seen in Table we can notice
various leaked values caused by installed applications. However, in many
cases, the same value was detected in multiple apps. This limits the ability
of Lumen to use leaked values as unique features for fingerprinting.

Chapter 3

JA3 Fingerprinting

3.1 Motivation

In the previous chapter we observed various methods for mobile device finger-
printing. The presented approach based on weighted score, however, depends
on user activity. When a user actively uses selected application, its score is
higher. Our approach also expected that when a mobile device is running
without explicit user activity, there will be traces of network communica-
tion due to the app synchronization, checking update, etc. However, our
experiments proved that when a real device is not used actively, the mobile
operating system starts reducing network communication and mobile apps
change their operating state to sleeping.

Thus, we decided to shift our focus from mobile device fingerprinting to
mobile apps fingerprinting. Thus, our goal is to identify communication of a
mobile app in the network traffic. Due to the rise of encrypted communica-
tion, we focus on TLS and DNS traffic only.

Table 3.1 shows the structure of network protocols involved in mobile
communication. Datasets 1 to 4 created by the authors of this study in
2018 (see also Table 1.2) show that the ratio of encrypted communication
to unencrypted varied from 51,7 to 91,7%. You can also notice a presence
of non-encrypted HTTP traffic. Especially HTTP headers, e.g., User-Agent,
Accept-Language, Accept-Charset, were an important source of data for var-
ious fingerprinting techniques [14, 20].

A year after our first experiments, we noticed that ratio of encrypted
communication increased to 99% which prevented utilization of traditional
fingerprinting methods. As seen in Figure 3.1, besides encrypted TLS traffic
transmitted over port 443, only Domain Name System (DNS) communication
remained unencrypted. It is a question for how long because of various
attempts to encrypt DNS traffic using DNS over TLS (DoT) or DNS over
HTTP (DoH) [19, 18].

As reaction to the encryption of communication, researchers focused their

29

CHAPTER 3. JA3 FINGERPRINTING 30

Table 3.1: Encrypted and Unencrypted Mobile Communication in 2018 and
2019

activity on analysing behavior of encrypted communication in order to obtain
meta data about encrypted protocols and services. One research direction is
focused on statistical analysis of encrypted transmissions [35, 12], the other
effort oriented on extracting features from TLS handshake and computation
of so called TLS fingerprint [21, 7, 3, 30]. One of the popular TLS finger-
printing implementations called JA3 fingerprinting was proposed by John B.
Althouse, Jeff Atkinson and Josh Atkins in 20151. Their method was also
incorporated into network monitoring and intrusion detection systems like
Flowmon, Bro, or Suricata, where it is employed for malware detection [4],
identification of network applications [22], or blacklisting2.

In our research, we focus on mobile devices, especially on detection of
mobile devices based on a set of installed applications. Mobile apps regularly
communicate over the Internet without explicit user interaction in order to
update software, synchronize local data, or retrieve remote status [30]. This
makes possible to identify a mobile device based on a characteristic set of
applications and their versions that are installed on the device [23]. Mobile
application can be identified from captured TLS traffic using JA3 hashes
(retrieved from client communication) or JA3S hashes (retrieved from server
communication).

However, there are important questions related to the digital forensics:
Are these fingerprints reliable enough to identify a specific application? How

1See https://github.com/salesforce/ja3 [April 2020]
2See SSLBL project at https://sslbl.abuse.ch/ [April 2020]

https://github.com/salesforce/ja3
https://sslbl.abuse.ch/

CHAPTER 3. JA3 FINGERPRINTING 31

stable are they? How can we create a unique fingerprint database of mobile
apps? The goal of this paper is to study reliability of JA3 fingerprints on
selected mobile apps, present a way how unique fingerprints can be generated
and discuss the application of JA3 fingerprinting to digital forensics.

3.1.1 Preliminaries

Transport Layer Security (TLS) [13, 32] is a transmission protocol that works
on top of TCP where it provides privacy and data integrity for communicat-
ing applications. The protocol is composed of two parts: TLS Handshake
Protocol and TLS Record Protocol. TLS Handshake Protocol negotiates
security parameters, e.g., protocol version, methods for key exchange, en-
cryption, authentication, and data integrity, secure channel options, etc.
TLS handshake communication is not encrypted. The TLS Record Proto-
col encapsulates high-level protocol data and transmits encrypted packets.
Example of TLS handshake is in Figure 3.1.

TCP Syn

TCP Syn + Ack

Ack

Client Hello

Server Hello + Certificate + Done

Client KeyExchange + Change Cipher

Spec

Change Cipher Spec

Application Data

Application Data

Client Server

TCP

handshake

TLS

handshake

Figure 3.1: Establishing TLS connection.

After opening TCP connection by three-way handshake, the TLS nego-
tiates security parameters using TLS Client and Server Hello packets. The
client application offers a set of supported encryption and authentication
methods using the TLS Client Hello. The TLS server processes these op-
tions and sends back options that are supported on the server side. The
server can also include a server certificate to authenticate itself. After all se-
curity parameters are agreed, application data encapsulated by TLS Record
Protocol are exchanged.

Most of TLS fingerprinting methods use the first packet sent by the client:
Client Hello. The Client Hello contains an imprint of TLS configuration of

CHAPTER 3. JA3 FINGERPRINTING 32

the client application that depends on the used TLS library and operating
system. In this paper we study JA3 fingerprint that is computed as MD5
hash from five TLS handshake fields: TLS Handshake version, Cipher suites,
Extensions, Supported Groups (former Elliptic Curve), and Elliptic Curve
point format, see Figure 3.2. Some TLS fingerprinting implementations use
different TLS fields, e.g., Kotzias et al. [22] omit TLS version.

Version, Cipher Suites, Extensions, Supported Groups, EC format

0x00000303 - 49195,49196,52393,49199,49200,52392,158,159,49161,49162,49171,49172,51,57,156,157,47,53 -
65281,0,23,35,13,16,11,10 - 0x00000017,0x00000018,0x00000019 - 0

771, 49195-49196-52393-49199-49200-52392-158-159-49161-49162-49171-49172-51-57-156-157-47-53, 65281-0-
23-35-13-16-11-10, 23-24-25, 0

n8bvbvyZuTPF4tj89PaJVQ

Figure 3.2: Computing JA3 hash

Computation of JA3 fingerprint includes (i) extraction of selected fields
from TLS Hello packet, (ii) concatenation of extracted data in decimal for-
mat into one string, and (iii) application of MD5 hash algorithm on the
string. The result is a 32-bit string in hexadecimal format. There are open
implementations of JA3 fingerprinting3. Unlike nmap or web browser fin-
gerprinting methods which actively request the source device or application,
JA3 fingerprinting uses passive approach. Application of TLS fingerprints for
identification of network applications requires TLS fingerprint values to be
unique, accurate and stable. There are several aspects that limits reliability
of TLS fingerprints:

TLS library.

TLS fingerprint of an application depends on the TLS library that was used
during implementation. There are plenty of TLS libraries available to de-
velopers, e.g., GnuTLS, Oracle JSSE, BSD LibreSSL, OpenSSL, or Mozilla
NSS. When two applications are implemented using the same TLS library,
it may happen that their TLS fingerprints are the same. TLS fingerprints
can change with a new version of the application, version of the TLS li-
brary, or the operating system. Table 3.2 shows JA3 hashes for common
web browsers: Mozilla Firefox v.73, Chrome v.80, and Opera v.66 under
four operating systems: Linux Ubuntu, Windows 10, Kali Linux and Mac
OS.

We can see that Firefox has four unique JA3 fingerprints. Two of them
are present in all tested operating systems. In case of Chrome and Opera,
one JA3 fingerprint values corresponds to both browsers under all operating
systems. These browser were possibly compiled with the same TLS library.

3See https://github.com/salesforce/ja3 or https://ja3er.com/ [April 2020].

https://github.com/salesforce/ja3
https://ja3er.com/

CHAPTER 3. JA3 FINGERPRINTING 33

Table 3.2: JA3 hashes of common Web browsers

This experiment proves that TLS fingerprints change with the version and
operating system. More observations related to JA3 fingerprinting of web
browsers are written in Section 3.3. Similar experiment over larger dataset
is also mentioned in [30].

Random values in TLS.

In 2016, Google started to Generate Random Extensions And Sustain Ex-
tensibility (GREASE) values to TLS. This technique was adopted by IETF
in January 2020 as RFC 8701 [5]. GREASE values are randomly generated
numbers of cipher suites, extensions and supported groups present in TLS
Hello packets. They prevent extensibility failures in TLS ecosystem. During
TLS handshake, the responding side must ignore unknown values. Peers
that do not ignore unknown values fail to inter-operate which means a bug
in implementation. Therefore, RFC 8701 adds GREASE values as a part of
the list of cipher suites, extensions and supported groups to detect invalid
implementations.

When experimenting with Opera browser under Win 10 we noticed that
the browser generates 155 unique JA3 fingerprints out of 207 TLS hand-
shakes. By excluding GREASE values, the number of unique JA3 finger-
prints decreased to four. The high number of JA3 fingerprints was caused
by random GREASE values in TLS handshakes. Table 3.3 shows six JA3 fin-
gerprints of Opera browser under Ubuntu with all extracted TLS values (the
upper six lines). The last six lines presents TLS values without GREASE
values. The brown values in the upper table represent GREASE values as

Table 3.3: JA3 hashes with and without GREASE values

CHAPTER 3. JA3 FINGERPRINTING 34

defined in RFC 8701. When ignoring these values, last four lines in the upper
table would have the same JA3 hash.

In addition to GREASE values, it is also good to omit extension value
65281 from TLS fingerprinting. This value represents renegotiation option
in TLS handshake [33], see red numbers in the list of extensions. The last
option that can be ignored is the TLS Client Hello Padding Extension defined
by RFC 7685 [29]. The padding extension (value 21, depicted by green value
in the table) is added by a client to make sure that the packet is of a desired
size.

In order to keep JA3 fingerprints stable, it is necessary to eliminate above
mentioned values. Most of JA3 implementations usually exclude GREASE
value from TLS fingerprinting.

Ads, tracking services and web analytics.

By observing TLS handshakes of mobile apps, we noticed that an app does
not sent data only to its application server, but it also opens many con-
nections to various sides without explicit user activity. These connections
include ad servers, tracking services, or web analytic servers. Destinations
of these services are dynamic which means that each time the application is
launched, it connects to different sites using different TLS fingerprints. This
causes problem for finding ground-truth communication for learning TLS
fingerprints.

Dynamic behavior of ad connections is caused by mobile advertising auc-
tions that redirect the application from the ad server to the content provider
based on the results of an auction [25]. Since different applications include
same ad, tracking or analytic plugins, thus captured communication of these
applications may contain the same TLS fingerprints. We call this extra traf-
fic a noise, other researches call it ambiguous traffic [37]. Table 3.4 shows
TLS fingerprints obtained from communication of Gmail app.

Table 3.4: JA3 hashes of Gmail App

There are five different JA3 fingerprints computed of TLS communication
of Gmail app. Using SNI extension in the TLS Client Hello, we are able
to exclude communication to Google API (www.googleapis.com) and user

CHAPTER 3. JA3 FINGERPRINTING 35

content (googleusercontent.com) which is not directly related to the app. The
remaining fingerprint with SNI mail.google.com characterizes Gmail app.

Thus, it is necessary to exclude ad, tracking and analytic communication
from TLS fingerprinting. One solution how to recognize this noise traffic is
using black lists of ad and tracking servers4. By comparing server names
in SNI field with names in ad server lists, we can partially clean up the
captured TLS communication from the noise. Table 3.5 shows a percentage
of ad traffic in communication of selected mobile apps based on ad and
tracking server lists. Especially free apps include ad plugins in order to
receive funding from ads providers.

Table 3.5: The number of TLS connections to Ad servers for selected Apps

Time stability.

Very important issue is stability of TLS fingerprints over time. We demon-
strated, that a TLS fingerprint depends on TLS library and operating system.
Update of TLS library, adding new cipher suites or excluding weaker ciphers
can change the fingerprint. The longitudinal study of TLS fingerprints of
Kotzias et al. [22] shows that the maximum duration of TLS fingerprints
is 3 years and 4 months, the median is 1 day and the mean 158,8 days. If
application is not updated, it keeps its original TLS fingerprint.

The time instability means that for successful identification of mobile
applications based on TLS fingerprints, we need to update the fingerprint
database by a new app version. However, our experiments show that variabil-
ity of TLS fingerprints is not so big. On the other hand, a unique fingerprint
of a particular version of the mobile app can identify communication of the
app in network traffic. When a new version is released, a new fingerprint

4E.g., https://hosts-file.net/ad_servers.txt, https://pgl.yoyo.org/
adservers/, or https://gitlab.com/ookangzheng/dbl-oisd-nl [April 2020]

https://hosts-file.net/ad_servers.txt
https://pgl.yoyo.org/adservers/
https://pgl.yoyo.org/adservers/
https://gitlab.com/ookangzheng/dbl-oisd-nl

CHAPTER 3. JA3 FINGERPRINTING 36

should be added to the fingerprint database. This is especially important for
digital forensics.

3.1.2 Datasets

This section introduces our datasets used in experiments. First we observed
available datasets with mobile traffic. ReCon datasets5 [31] was created
to observe leakage of personal identifiers through mobile communication.
Recon dataset contains HTTP(s) logs of 512 mobile applications. Logs do
not contain TLS headers that are important for TLS fingerprinting. However,
for a given mobile app, we can extract a list of sites the application usually
connects. For example, for accuweather app, we get fonts.googleapis.com
or ssl.google-analytics.com (noise servers), and vortex.accuweather.com or
accuwxturbo.accu-weather.com directly related to the app. These domain
names can be traced in SNI extension during TLS analysis which is important
for creating unambiguous fingerprints.

Interesting mobile apps dataset is Panoptispy6 [28] that was created to
study media permissions and leaks from Android apps. The dataset consists
of network traffic that have instances of media in an HTTP requests body.
Besides dumps of HTTP requests, it contains a list of apps with package
name, version, app name and app md5. However, this is not sufficient for
TLS fingerprinting.

Andrubis and Cross Platform datasets mentioned in [39] were not located
by the authors of this paper. Nevertheless, we explored Mirage dataset7 [2]
which contains mobile app traffic for ground-truth evaluation. The captured
traffic is stored in JSON format and contains bi-flows with source and desti-
nation ports, number of bytes, inter-arrival times, TCP window size, L4 raw
data, and various statistics. Since TLS header is hidden in byte-wise raw
L4 payload, it is not easy to extract TLS values that are interesting for our
research. However, we plan to use this data for ground-truth evaluation of
our method presented in the paper.

For our experiments we created own dataset with communication of se-
lected mobile applications, see Table 3.6.

Table 3.6: Mobile apps communication dataset

We agree that our dataset is not representative, however, it is sufficient
5See https://recon.meddle.mobi/appversions/ [April 2020].
6See https://recon.meddle/mobi/panoptispy [April 2020].
7See https://ieee-dataport.org/open-access/mirage-mobile-app-traffic [April 2020].

https://recon.meddle.mobi/appversions/
https://recon.meddle/mobi/panoptispy
https://ieee-dataport.org/open-access/mirage-mobile-app -traffic-capture-and-ground-truth-creation

CHAPTER 3. JA3 FINGERPRINTING 37

for studying typical features of TLS mobile apps fingerprints. The dataset
is available in PCAP format and as CSV traces of network and TLS param-
eters8. It contains five parts:

Web Browsers (WB).

The first dataset consists of TLS communication of web browsers Chrome v80, Fire-
fox 68.2, Firefox 73.0, Firefox 70.0, Opera 66.0 and Opera 67.0. These browsers
were running under four different operating systems: Kali Linux, Mac OS, Win-
dows 10 and Linux Ubuntu. During experiments we requested 10 different URLs.
We created TLS fingerprints for all browsers based on TLS handshakes related
to requested URLs. The dataset contains 2.621 TLS handshakes used for testing
stability of TLS fingerprints with respect to application versions and underlying
operating system. More detailed description of this dataset is in Table 3.7.

Mobile Apps I (MA1).

The second dataset includes five mobile applications: Discord v16.3, Messenger
v253.0, Slack v20.03, Telegram v6.0 and WhatsApp v2.20. The applications were
installed on two mobile devices: Sony Xperia X71 Compact with Android 9 (API
level 28) and Huawei P9 with Android 7 and EMUI 5.0.1 (API level 24). Devices
were connected to a PC and TLS data captured using tshark. To make sure that
packets include initial handshake, the tested application were restarted using ADB
commands. The dataset contains 79 TLS handshakes.

Mobile Apps II (MA2).

The third dataset includes communication of four mobile applications: Accuweather,
Gmail, Tor and Viber. For tests, we used Android Emulator which is a part of An-
droid Studio. In the Android Emulator, we created two virtual devices: Google
Pixel C with Android 8.1 and Google Nexus 10 with Android 6.0. Using ADB
interface we installed the above mentioned mobile applications on the virtual de-
vice and simulated user behavior using command-line tool Monkey. The Monkey
emulates user behavior on a given app, so the captured communication is initiated
by that app. An example of emulating Viber app on the virtual device is below.
The dataset contains 595 TLS handshakes.

$adb shell monkey -p viber -v 500

Mobile Apps III (MA3).

This dataset includes communication of following mobile applications: Cestovne
Poriadky (Time Table), Muj vlak (My train), Reddit and Seznam. TLS fingerprints
of these apps were obtained using Virtual Box where a virtual Android device with
these apps was installed. The apps were tested on Android version 7.1, 8.1 and

8See https://github.com/matousp/tls-fingerprinting [April 2020]

https://github.com/matousp/tls-fingerprinting

CHAPTER 3. JA3 FINGERPRINTING 38

9. On each Android system, the app was repeatedly launched and communication
captures. We also observed if the application cache has influence on communication,
so each App was running twenty times without cache and twenty times with cache
on each system. Together, we obtained 3.180.245 TLS handshakes.

Mobile Apps IV (MA4).

The last dataset was focused on variety of mobile apps installed on a real device
Tecno J8 with Android 6.1. Dataset includes following apps: BoomPlay Music,
Chrome Browser, Equa Bank app, Facebook app, Gmail app, Google calender, KB
klic, Messenger, Mobilni Banka app, NextBike, Telegram, TikTok, WhatsApp and
Youtube app. Each app was running five times on the restarted device so that
captured communication corresponds to a typical usage. We extracted 5.308 TLS
handshakes from the captured traffic.

The above mentioned datasets were used for experiments with JA3 and
JA3S fingerprints, see Section 3.4 and 4.

3.2 Related Work

TLS fingerprinting is not a new technique and its development is connected
with security research of Ivan Ristić who developed in 2008 an Apache mod-
ule that passively fingerprinted connected clients based on cipher suites. Us-
ing this technique he created a signature base that identified many browsers
and operating systems [1]. This technique was later applied on identification
of HTTP clients [21] and implemented in IDS systems Bro and Surikata for
passive detection.

Blake Anderson et al. in [4] studied millions of TLS encrypted flows and
introduced a set of observable data features from TLS client and server hello
messages like TLS version, TLS ciphers suites and TLS extensions that they
used for malware detection. They also observed server’s certificate and the
client’s public key length, sequence of record lengths, times and types of TLS
sessions. They identified cipher suites and extensions that were present in
malware traffic and missing in normal traffic. The authors defined TLS client
configurations for the 18 malicious families. Similarly, they identified TLS
server configurations most visited by 18 malicious families. They applied
TLS features together with other features (flow data, inter-arrival times,
byte distribution) to malware classification where achieved accuracy from
96.7% to 98.2%. As demonstrated by their study, omitting TLS features
lead to significantly worse performance.

Platon Kotzias et al. in [22] passively monitored TLS and SSL con-
nections from 2012 to 2015 and observed changes in TLS cipher suites and
extensions offered by clients and accepted by servers. They also used client
TLS fingerprinting with features similar to JA3 fingerprinting. From hand-
shakes they omitted GREASE values. Using captured data, they observed

CHAPTER 3. JA3 FINGERPRINTING 39

7.3% fingerprint collisions in TLS fingerprints. They also mapped finger-
prints to a program or library and the version. One of their results was
observation of TLS fingerprints stability. They noticed that maximum dura-
tion when a fingerprint was seen in their databases was 1.235 days (3 years, 4
months). However, the median of duration a fingerprint was seen was 1 day,
the mean 158.8 days. They noticed some fingerprints that were seen very
briefly and did not reappear later. There found out that 1,203 fingerprints
of the 69,874 fingerprints were responsible for 21.75% connections. Further,
they analysed vulnerability of TLS against various attacks which is different
direction unlike our research. Their results related to stability and collisions
of TLS fingerprints was also observed during our experiments.

Another interesting approach published by Anderson and McGrew [3]
combines end host data with network data in order to understand applica-
tion behavior. This approach, however, requires access to both end hosts
and connected network. Their fingerprint database represent the real traf-
fic generated by 24,000 hosts and having 471 million benign and millions of
malware connections 9. Using end point data, the authors were able to asso-
ciate destination information with end point data like timestamp, endpoint
ID, operating system and process name. During fingerprint analysis they
observed that while GREASE values are generated randomly, their position
is deterministic. Thus, instead of removing GREASE values, they set them
to 0a0a. They also studied similarity of TLS fingerprints which was defined
using Levenshtein distance. Two TLS fingerprints were similar if their dis-
tance was less than or equal to 10% of the number of cipher suites, extension
types, and extension values. The authors stated that the Levenshtein dis-
tance was an intuitive method for identifying close fingerprints. Especially
TLS libraries often make minor adjustments to default cipher suites or ex-
tensions between minor version releases and more drastic changes between
major version releases. They also noticed that some TLS libraries change
their default parameters to better suit the platform on which they are run-
ning. Another interesting point is prevalence of application categories in the
dataset where 37.1% connections belong to browsers, 19.3% to email appli-
cations, 17,2% to communication tools, 9% to the system, etc. Longevity of
fingerprints like system libraries, tools osquery and DropBox, and browsers
was 6 months or greater.

The above mentioned approaches worked mostly with common network
traffic and network application. Another work closer to ours deals with TLS
usage in Android Apps [30]. The authors analyzed behavior of TLS in mo-
bile platforms. They developed Android app Lumen that was installed on
a mobile device where intercepted TLS connection and gathered statistics
about the traffic. Using Lumen app, the authors observed how 7.258 apps

9Tools for capturing data are available at https://github.com/cisco/mercury [April
2020]

https://github.com/cisco/mercury

CHAPTER 3. JA3 FINGERPRINTING 40

use TLS. They analyzed handshakes with respect to TLS API and library
that the app used. Their work was focused on apps security and TLS vulner-
abilities. They showed that TLS libraries and OS API modified supported
cipher suites across versions which caused changes in TLS fingerprints. They
also showed that each TLS library and OS version had a unique cipher suite
lists. They built a database of fingerprints paired with corresponding OSes
and libraries where they observed influence of major and minor revisions of
OS or TLS libraries on the fingerprint. Unfortunately, Lumen app was not
able to captured TLS handshakes which would be useful for our research.
Thus, we used additional approach how to obtain reliable TLS fingerprints
of mobile apps.

The mobile application fingerprinting using characteristic traffic was con-
sidered by Stöber et. al [34]. They created a classifier that identified com-
municating applications based on the analysis of side-channel information
such as timing and data volume. Mobile application fingerprinting has been
tackled by machine learning techniques using timing and size of packets [37],
which improved previous work presented in [36] that observed the traffic
that was common among more than one apps. The method is applicable to
encrypted traffic, which is used by most smartphone applications and relies
only on information available from the side channel. The fingerprinting sys-
tem was trained and tested on 110 most popular Android applications. The
training was done automatically using the implemented application App-
Scanner. The significant feature of the method was that it analyzed the
traffic represented as bursts. A burst was defined as a group of packets
within TCP flow representing an interaction for a typical smartphone appli-
cation that communicated using HTTPS protocol. Statistical features were
then extracted for bursts and used for training random forests classifier. The
method did not rely on any other source of information, e.g., DNS, TLS, IP
addresses, etc. The achieved accuracy as presented by the authors was be-
tween 73 to 96 percent for the selected set of applications. Recently, the
work was extended by [39] that used a semi-supervised method for both app
recognition and detection of previously unseen apps.

Another line of research that considered mobile device identification is
represented by Govindaraj, Verma and Gupta [16]. They proposed a method-
ology for extracting and analyzing ads on mobile devices to retrieve user-
specific information, reconstruct a user profile, and predict user identity. As
the published results showed it was possible to identify a user in various set-
tings even if he/she used multiple devices or different networks. Their work
stemmed from the study by Castelluccia, Kafar and Tran [9] who demon-
strated the possibility to infer the interests of users from targeted ads.

Our work uses previously published results and focuses on passive identi-
fication of mobile apps using JA3 fingerprints. It also observes traffic that is
common to multiple apps and that should be excluded from fingerprinting.
Based on the app, we employ JA3, JA3S, and SNI features to accurately

CHAPTER 3. JA3 FINGERPRINTING 41

identify the unknown traffic that was sent by a mobile apps. We are able to
detect only apps that were previously learnt and stored in the fingerprinting
database. Unlike some of the above mentioned approaches, our technique
for mobile app detection is simple, fast and reliable. Its accuracy depends
on the quality of learnt fingerprints.

3.3 JA3 Fingerprinting for Web Browsers

This part includes our preliminary experiments with JA3 fingerprinting of
web browser that were mentioned in Section 3.1.1. In this study we analyzed
JA3 fingerprint of common web browser and observed stability, uniqueness
and reliability of these values for web browser fingerprinting.

Several experiments with annotated web traffic from various web browsers
including Google Chrome, Opera and Firefox were conducted to generate
unique fingerprints and create a database for comparison with unknown
datasets. The study shows possible utilisation of JA3 fingerprinting in
browser identification.

Encrypted communications make it difficult to conduct device or user
fingerprinting that require visibility of protocol headers such as HTTP, IMAP
and others. In order to avoid this limitation, new methods such as TLS
fingerprinting are now becoming popular. Our work has made it possible to
positively identify specific web browsers based on captured network dumps
generated from an unknown environment.

3.3.1 Background

As stated before, during an SSL handshake, most client user agents initiate
an TLS handshake request in a unique way. This includes web browsers
in different operating systems such as Linux, Mac OS and windows. The
fingerprint relies on data from ClientHello messages in the SSL handshake.
We focused on JA3 technique which is a standard for creating SSL client fin-
gerprints. As mentioned above, JA3 gathers the decimal values of the bytes
for the following fields in the Client Hello packet; SSL Version, Accepted
Ciphers, List of Extensions, Elliptic Curves, and Elliptic Curve Formats. It
then concatenates those values together in order, using a comma to delimit
each field and a dash to delimit each value in each field. These strings are
then MD5 hashed to produce an easily consumable and shareable 32 char-
acter fingerprint. This is called JA3 SSL Client Fingerprint.

This study extends JA3 functionalities by making it possible to easily
identify the type of web browser based on network communication. Three
additional SSL handshake fields are introduced to make the data more infor-
mative. This includes time since reference or first frame, source IP address,
and destination IP address.

CHAPTER 3. JA3 FINGERPRINTING 42

3.3.2 Testing Environment

The data used in this experiment consisted of 13 PCAP files from different
browsers and various operating systems. While capturing the traffic, specific
domains and URLs were accessed in all browsers to ensure that communica-
tion can be reliably filtered by analysing DNS records. These include:

• superuser.com/questions/247127/what-is-and-in-linux/247131

• linuxsig.org/files/bash_scripting.html

• strathmore.edu

• vutbr.cz/en

• facebook.com

• adobe.com

• amazon.com

• bitbucket.org/dashboard/overview

• forums.kali.org

• offensive-security.com

The packets relating to these URLs were identified by examining DNS
records. Corresponding IP addresses were gathered and used to filter tls.hello
packets. Table 3.7 describes the captured data in details.

For experiments with JA3 hashes we implemented a tool that consists
of a shell script that processes PCAP files and computes JA3 fingerprints
of known web browsers. Tshark commands are used to extract the relevant
fields from the Client Hello packets. Unix string manipulation commands
parse the fields to prepare for fingerprint generation and hashing. Computed
fingerprints are saved into CSV files so that unknown PCAP files can be
compared.

The script implementation includes various steps intended to extend the
JA3 functionality by being able to identify the web browsers used in a par-
ticular communication. Various command based tools are used to read and
analyse PCAP files in order to reveal the browser identity. Figure 3.3 illus-
trates the architecture of our web browser fingerprinting tool.

The first step uses tshark to extract following packet fields from a PCAP
file: frame.time, ip.src, tcp.srcport and tcp.dstport. In order to fin-
gerprint only packets to known destinations (creating a database of web
browser profiles), packets representing noise from other applications should
not be examined. A full packet capture includes traffic to many destina-
tions, including Operating System, background applications and other run-
ning apps communicating with remote services. Since this experiment is

CHAPTER 3. JA3 FINGERPRINTING 43

Table 3.7: Overview of web browser dataset

focused on web browser TLS fingerprinting only, traffic from other applica-
tions should be eliminated. However, browser traffic includes communication
by browser plugins, advertisements, and other remote services not explicitly
initiated by the user. This should also be eliminated so that it remains only
communication to destinations initiated by the user. This helps to ensure
that the fingerprints are clean and able to identify browsers across different
operating systems or versions. This also has a secondary benefit of minimis-
ing the size of the dataset to be analysed, hence increasing the tool efficiency.

This is achieved by filtering traffic based on known DNS destinations. Ex-
tracted records are analysed and IP addresses matched with known domain
names. TLS Client Hello packets to the identified destinations are extracted
and fingerprints generated. The steps below were followed to achieve this:

1. Identify a set of URLs to use (see above), and run them in a browser.
Capture and save traffic using Wireshark. Use Bulk URL Opener
browser plugin to load multiple URLs at once.

2. Extract DNS A records and DNS response names from the PCAP files
and save the results in CSV files. Combine these in a single CSV file.

CHAPTER 3. JA3 FINGERPRINTING 44

Figure 3.3: Architecture of a web browser fingerprinting tool

3. Search for the DNS response names for the domains identified, and
match with corresponding IP addresses.

4. Calculate JA3 fingerprints, hashed from the above mentioned TLS
handshake fields.

3.3.3 Results

Three web browser under different OSes were used, see Table 3.8.

Firefox

Browser identification was done for Firefox communication across four oper-
ating systems i.e. Kali Linux, Mac OS, Ubuntu and Windows. JA3 finger-
prints were generated from known PCAP files for Firefox. To ensure that
noise is not fingerprinted, DNS analysis was conducted whereby packets in
the PCAP file were filtered based on the destination IP addresses of the
domains entered during the traffic capture. DNS A records were matched
with corresponding DNS response names in order to identify the destination
IP addresses of selected domains. These were identified and all client hello
packets with such destination IPs were fingerprinted. Unique fingerprints
across the four operating systems were identified, see Figure 3.4.

CHAPTER 3. JA3 FINGERPRINTING 45

Browser Operating System Browser version
Google Chrome Kali Linux 80_0_3987_106
Google Chrome Mac OS 80_0_3987_106
Google Chrome Windows 80_0_3987_106
Google Chrome Ubuntu 80_0_3987_132
Firefox Kali Linux 68_2_0esr
Firefox Mac OS 73_0
Firefox Windows 70_0_2
Firefox Ubuntu 73_0_1
Opera Kali Linux 66_0_3515_72
Opera Mac OS 66_0_3515_72
Opera Windows 66_0_3515_95
Opera Ubuntu 67_0_3575_53

Table 3.8: Tested Web Browsers

Figure 3.4: Firefox Fingerprint Entries

Google Chrome and Opera browsers did not have any matching finger-
prints using this JA3 method.

Google Chrome and Opera

Browser identification was done for Google Chrome and Opera communica-
tion across three operating systems i.e. Kali Linux, Mac OS and Windows.
The browser version was different across Kali Linux, Ubuntu, Mac OS and
Windows operating systems. Unique fingerprints could not be identified
across these browsers using the JA3 method.

This led to deep examination of Client Hello fields used in JA3 finger-
printing and identifying the differences in comparison to Firefox. Google
Chrome PCAP files were analysed using Wireshark. It was noted that
the tls.handshake.ciphersuite field was different. It contained Cipher
Suite: Reserved (GREASE) (0x9a9a) which is not in Firefox. GREASE
value was added to Chrome in version 55. GREASE values were also seen
in tls.handshake.extension.type and tls.handshake.extensions_sup-

CHAPTER 3. JA3 FINGERPRINTING 46

ported_group.
It has been proved that the hexadecimal numbers in GREASE are ran-

dom, and change every time a page is refreshed. This explains the instability
of fingerprints that we observed across different browser sessions and oper-
ating systems. The results were similar for Opera browser because it is built
on the Chromium and Blink engine just like Chrome.

Because GREASE has been found to introduce random values, its occur-
rences in the Client Hello messages will be eliminated in the respective fields
and fingerprints generated without it. Tshark was used to extract the Client
Hello fields. These were processed, manipulated and saved as comma sep-
arated values. GREASE related fields were removed and finally MD5 hash
values calculated for each record. A significant decrease in unique records
indicate that GREASE values are quite random, and are different for com-
munications with the same host. Elimination of these values gives a more
consistent flow, which increases the chances of effective fingerprinting.

This process was done for Google Chrome PCAP files from Windows,
Mac OS, Kali Linux and Ubuntu operating Systems. Initial tests show that
one fingerprint (9ff0023372e249c161e03a71055216ca) is unique for Google
Chrome across all the operating systems under review, Table 3.9.

Table 3.9: Google Chrome Fingerprints

PCAP files from Opera browser belonging to Windows, Mac OS, Kali
Linux and Ubuntu operating Systems were analysed and indicated a com-
mon unique fingerprint (9ff0023372e249c161e03a71055216ca) across the four
operating systems as seen in Table 3.10.

The similarity between Google Chrome and Opera Browser is because
they share the same engine, Chromium and Blink engine.

To validate the tool for Chrome and Opera fingerprinting, PCAP files for
Firefox were used and different fingerprints generated as indicated in Table
3.11.

Since Chrome and Opera fingerprints are indistinguishable, we classify
these browsers as one app, see the following Figure.

CHAPTER 3. JA3 FINGERPRINTING 47

Table 3.10: Opera Browser Fingerprints

Table 3.11: Firefox Fingerprints

3.3.4 Discussion

Preliminary results have indicated that Firefox web browsers can be accu-
rately identified across different operating systems. This is because of its
unique fingerprint in the Client Hello TLS message. The application was
modified in order to fingerprint Google Chrome and Opera browsers across
the four operating systems.

Finally, the browser version does not matter with regard to fingerprint
generation. The tests were done using different versions of browsers across
the four operating systems, and similar fingerprints were identified.

3.4 JA3 Fingerprinting for Mobile Apps

3.4.1 Learning Phase

As mentioned above, the crucial task for mobile apps identification using
TLS fingerprints is to create a reliable fingerprint database with unambigu-
ous fingerprints. Even if an app is running in controlled environment like
Android virtual studio, the captured traffic contains mixture of app traffic

CHAPTER 3. JA3 FINGERPRINTING 48

Figure 3.5: Chrome and Opera Identification

and communication of OS, pre-installed apps and plugins that are common
to multiple apps. Here, we introduced a technique, how to clean up the
captured traffic in order to receive only TLS handshake related to the given
app, see Figure 3.6.

Figure 3.6: Creating TLS fingerprints

First, we need to launch an app communication on the mobile device.
We made experiments both with virtual devices running on Android virtual
studio (datasets MA2 and MA3) and on real devices (datasets MA1 and
MA4). When using virtual environment, we can capture network traffic on
the interface connected to the virtual environment. However, there can be
also communication of virtual OS and other applications installed on the
system. When using real smart phones, we can create a WiFi connection

CHAPTER 3. JA3 FINGERPRINTING 49

only for this device and capture traffic on the WiFi interface. Fingerprints
creation include the following steps:

1. Extract TLS Client Hello packets using tls.handshake.type==1Wire-
shark filter and obtain the following data: source and destination IP
address, source and destination port, TLS handshake type (client or
server hello), SNI, a list of TLS cipher suites, extensions, supported
groups, and EC point format. Before computing JA3 hash, we pre-
process TLS parameters and exclude GREASE values, padding and
renegotiation options, see Section 3.1.1.

2. Compute JA3 hash using TLS values in TLS Client Hello packet as
explained in Section 3.1.1. Apply MD5 hash function on TLS ver-
sion, a list of cipher suites, list of extensions, supported groups and
EC point format. JA3 hash uses MD5 function with 32-bit output in
hexadecimal format.

3. Compute JA3S hash using TLS values in TLS Server Hello packet.
JA3S hash is linked with JA3 hash using IP addresses and ports in
Hello packet. JA3S hash is a MD5 digest of TLS version, cipher suite
and extensions only.

4. Based on the list of ad servers and tracking servers, we remove TLS
fingerprints where SNI matches any domain name from these lists. This
excludes TLS fingerprints related to the noise traffic, see Table 3.5.

5. Now we need to select from candidate TLS fingerprints only those
that are really related to the app. Selection is based on matching
SNI field of TLS entries with keywords related to the app. There are
several ways how to obtain app keywords. Applications like Lumen
and AppVersion reveal information about the app which also includes
domain names related to the app, see also Chapter 2. An example of
keywords that match app SNI names is listed in Table 3.12. For many
apps, keywords respond to app names. Formally, the keyword is the
maximum common substring of SNI names related to the app.

The above written procedure describes how to select TLS fingerprints so
that we are sure that the fingerprint belongs exactly to the given mobile app.
Unfortunately, this procedure does not guarantee uniqueness of the obtained
fingerprints which is essential for successful detection. When analysing JA3
fingerprints learnt from our datasets, we noticed that there were 30 distinct
fingerprints, however, many of them belonged to multiple applications. Only
21 JA3 hashes were assigned unambiguously reaching uniqueness of 70%.
Thus, we added JA3S fingerprint to a feature set and obtained 122 distinct
combinations with 114 unique fingerprints per app. Remember that one app
can have a set of unique fingerprints. Combination of JA3+JA3S increases

CHAPTER 3. JA3 FINGERPRINTING 50

Table 3.12: Example of app keywords

uniqueness to 93,44% but there were still several JA3+JA3S combinations
that belonged to more than one app. After adding SNI to a feature set we
received 154 distinct combinations with 153 combinations related to only one
app. The results are given in Tab. 3.13.

Table 3.13: Uniqueness of features in the TLS fingerprint

The table shows percentage of uniqueness of features used for mobile
app identification. When using JA3 hash only, we can uniquely identify only
23,53% of apps from our dataset. Remaining JA3 hashes (76,47%) cannot
be used for identification because they are the same for more than one app.
When adding JA3S hash, uniqueness increases to 81,70%. For this reason,
we create a fingerprint database that uses three features: JA3 hash, JA3S
hash and SNI.

It seems that combination of JA3, JA3S and SNI provides unique and
reliable TLS fingerprints of mobile apps. This statements is not always true.
It depends on the function of the mobile app. Most mobile apps communicate
only with limited number of servers related to the app. Some apps, for
instance web browsers, communication with an open set of destinations based
on user activity. For such apps we cannot use JA3S and SNI because these
features depend on the destination. Also for applications that connect to
servers with random or anonymized domain names, only JA3 hash can be
employed for app identification. Interestingly, the JA3 hash of Tor app was
unambiguous, thus it could be used for mobile app identification.

CHAPTER 3. JA3 FINGERPRINTING 51

3.4.2 Detection Phase

The above written procedure describes generation of TLS fingerprints from
captured TLS traffic. The process includes TLS data pre-processing and re-
finement that produces a unique TLS fingerprint composed of JA3 hash only,
combination of JA3+JA3S or JA3+JA3S+SNI. Having such fingerprints,
we can monitor unknown network traffic, retrieve selected values from TLS
Client and Server Hello packets, and compute JA3 and JA3S hashes. When
these hashes match the fingerprint, we can deduce that the communication
was initiated by the mobile app that is related to the fingerprint.

In real networks, detection engine retrieves TLS data from extended Net-
flow/IPFIX records or IDS logs. Of course, we are able to detect only those
apps whose fingerprints are in the fingerprint database.

3.4.3 Stability and Reliability

As mentioned in Section 3.1.1, stability of TLS fingerprints of s a mobile
app depend on an app version, TLS library, and operating system. When
using JA3S hashes, it also depends on server version and its TLS library.
This means that we have to check a fingerprint of a new app version. The
fingerprint can be generated using procedure described in Section 3.4.1 which
is not complicated. If TLS fingerprint(s) of a new app version are not in
the fingerprint database, it should be added. In some cases, a new version
may keep the same fingerprint as the previous one. Fingerprint stability
is demonstrated on experiments with dataset MA3 where we observed TLS
fingerprints of four apps on Android 7.1, 8.1 and 9. The results are presented
in Table 3.14.

Table 3.14: Stability of TLS fingerprints over OS version

The first column represents the number of unique feature values in TLS
fingerprint of a mobile app under Android 7. Columns Android 8.1 and 9
show the number of features that were added or missing in comparison to

CHAPTER 3. JA3 FINGERPRINTING 52

the previous version. We can see that SNI for CP app and Mujvlak are
stable across versions. JA3S hash of CP app was changed when migrating
from version 7 to 8 but it stayed unchanged to version 9. Adding new values
does not negate stability of the fingerprint because the original fingerprint
can still identify the app. If there are more additions, it may happen that
the fingerprint of the older version would not match newly added features
(false negative). However, when updating the fingerprint database by a new
fingerprint, the accuracy of identification is preserved.

3.5 Evaluation

We evaluated TLS fingerprinting method on dataset MA4. Dataset con-
tains communication of 14 apps captured in five distinguished time windows.
Thus, we used the first four sets for training and creating fingerprints and the
last set for detection. For training, we used procedure described in Section
3.4.1.

Table 3.15: Detection of mobile apps based on JA3 hash

Table 3.15 shows confusion matrix of app classification based on JA3
hash only. Letters A to O represent mobile apps, letter X describes unknown
traffic. Rows contain predicted values, columns represent real values.

We can see limits of JA3 fingerprinting that works well with apps C
(Facebook), D (Gmail), M (WhatsApp) and N (Youtube) but other apps
have JA3 hashes same as unknown traffic (X class). By adding JA3S hash
to TLS fingerprint, the number of correctly classified apps increases, see
Table 3.16. However, there is still high number of false positives (column
X).

Table 3.17 presents classification results for three features JA3+JAS3+SNI.
We can see the classification is more accurate when using all these features.

Table 3.18 shows accuracy, precision and recall of classification.

CHAPTER 3. JA3 FINGERPRINTING 53

Table 3.16: Detection of mobile apps based JA3+JA3S

Table 3.17: Detection of mobile apps based on JA3+JA3S+SNI

JA3 hash is reliable only for specific apps and produces many false nega-
tives (row X). JA3+JA3S classification has worst accuracy but better recall.
This means that it produces a lot of false positives. The best result shows
combination of JA3+JA3S+SNI. It also places some samples into X (un-
known app) category, however, this can be improved by extending a list of
keyword and inserting additional SNIs into fingerprint database.

3.6 Use Cases for Digital Forensics

Identification of smartphone apps can be applied to digital forensics as a
complementary method to obtain forensically valuable information. First,
the background traffic of installed applications can be analyzed to identify a
communicating device [34]. This can distinguish a smartphone model from
different vendors based on a pre-installed set of apps [15] and the background
traffic. Next, by identification of communicating applications, user-specific
information, habits and interests can be observed [11].

CHAPTER 3. JA3 FINGERPRINTING 54

Table 3.18: Evaluation of combination of TLS features

Most digital investigations that include mobile device analysis use logical
extraction method to access the existing files such as call history, text mes-
sages, web browsing history, pictures and other files available on the smart-
phone. However, logical extraction requires the possession of the device and
also the way to bypass passcodes protecting the access to the device. With
smartphones better protected against the unauthorized access the passive
monitoring of their activities stands for the complementary source of data
for forensic analysis. The possibility to identify the smartphone application,
and therefore the device or even the user of a device is applicable at least to
the following scenarios:

• Forensic analysis. Law enforcement agencies may send a preservation
order to the ISP to collect the communication for a specific device.
The captured information can be used for learning about the activities
of a suspect at different points in time. Creating a profile of the sus-
pect and correlating identified activities with the information obtained
from the other sources can bring an important insight to the case being
investigated. Even if the most traffic of smartphone apps is encrypted,
the presented method can detect installed applications. The presence
and usage of a specific application at a given point of time may reveal
the intention of the suspect. Later, after the device is physically avail-
able to an investigator the information obtained from the monitoring
phase can be corroborated with the findings of the logical acquisition
outcomes to support the reliability of evidence.

As an example we consider the common situation today when a crim-
inal communicates using instant messaging (IM) apps available on
smartphones instead of voice calls, which makes this communication
difficult to observe and decode. Traditional call record analysis upon
which law enforcement agencies rely is thus not possible as we do not
have access to the communication channels [38]. Before the specific
method for reconstructing call records based on the observation of traf-
fic patterns is applied, it is required to identify the IM app in use.

Criminals aware of secrecy provided by IM apps can use them for com-
munication to protect against traditional call record analysis [38]. How-
ever, if we can identify the activity of mobile apps, the traffic generated
by the communicating IM hosts can be used to record communication

CHAPTER 3. JA3 FINGERPRINTING 55

between suspects. Also, posts published under the anonymous social
network account can be revealed by comparing the time of the public
posts with the time of the actions as inferred by the application usage
aiding to hate crime investigations.

Although the social network providers are willing or required to coop-
erate With LEA in these cases, it may be sometimes difficult to obtain
enough information for the identification of an author of hate speech.
The knowledge of installed applications and their usage patterns can be
one of many sources for establishing the cyber profile of a suspect. As
several marketing surveys pointed out mobile app usage varies by gen-
eration. The use of this information for creation of a profile, however,
requires a reliable source of up-to-date data.

• Intelligence operations. The agencies may be able to trace certain in-
dividuals on basis of tracking the communication characteristic of the
applications installed on their smartphones. To be feasible, the amount
of information that needs to be collected and processed has to be lim-
ited. For instance, NetFlow-based monitoring is considered as suitable
technique for this purpose [40].The advantage of TLS fingerprinting
is that it can be applied at massive scale. Accommodating TLS fin-
gerprinting to existing NetFlow monitoring system requires to include
TLS fingerprints to NetFlow records, which many existing monitor-
ing solutions already provide for the purpose of detection of security
threats that use encrypted communication.

3.7 Summary

Mobile application fingerprinting can be considered a practical method with
potential applications in digital forensics. In this paper, we have presented
a study on the reliability of JA3-based methods for mobile application iden-
tification. The advantage of the method is that it only depends on the TLS
handshake information that can be obtained from the initialization phase of
the secure channel establishment.

We have shown that using JA3 only is not sufficient for accurate identifi-
cation of apps. More reliable results were obtained by a combination of JA3
hash, JA3S hash, and Server Name Identification (SNI). All these features
can be easily computed from TLS handshake messages. We have also con-
sidered the issues of TLS fingerprint volatility. Based on our experiments
the variability of TLS fingerprints is not so large. Also, when a new ma-
jor version of the application is released, it is not difficult to obtain a new
fingerprint and update the fingerprint database.

The presented results are valid for existing TLS versions that provide
access to the source information necessary for computing the fingerprints.

CHAPTER 3. JA3 FINGERPRINTING 56

However, ongoing work on TLS protocol suggests an increase of user privacy
by hiding more currently available fields, e.g., SNI10, or even encryption of
TLS ClientHello message. Addressing these emerging challenges may be a
topic for future work.

10See Internet Draft at https://tools.ietf.org/html/draft-ietf-tls-esni-06
[March 2020].

https://tools.ietf.org/html/draft-ietf-tls-esni-06

Bibliography

[1] Robert Abel. SSL/TLS fingerprint tampering jumps from thousands
to billions. SC Magazine, 2019.

[2] G. Aceto, D. Ciuonzo, A. Montieri, V. Persico, and A. Pescapé.
MIRAGE: Mobile-app Traffic Capture and Ground-truth Creation. In
2019 4th International Conference on Computing, Communications
and Security (ICCCS), pages 1–8, 2019.

[3] Blake Anderson and David McGrew. TLS Beyond the Browser:
Combining End Host and Network Data to Understand Application
Behavior. In Proceedings of the Internet Measurement Conference,
pages 379–392, 2019.

[4] Blake Anderson, Subharthi Paul, and David McGrew. Deciphering
malware’s use of TLS (without decryption). Journal of Computer
Virology and Hacking Techniques, pages 195–211, 2018.

[5] D. Benjamin. Applying Generate Random Extensions And Sustain
Extensibility (GREASE) to TLS Extensibility. IETF RFC 8701,
January 2020.

[6] Hristo Bojinov, Yan Michalevsky, Gabi Nakibly, and Dan Boneh.
Mobile Device Identification via Sensor Fingerprinting. CoRR,
abs/1408.1416, 2014.

[7] Konstantin Böttinger, Dieter Schuster, and Claudia Eckert. Detecting
Fingerprinted Data in TLS Traffic. In Proceedings of the 10th ACM
Symposium on Information, Computer and Communications Security,
ASIA CCS Â’15, pages 633–638, New York, NY, USA, 2015.
Association for Computing Machinery.

[8] Ralph Broenink. Using Browser Properties for Fingerprinting
Purposes. In 16th Twente Student Conference on IT, January 2012.

[9] Claude Castelluccia, Mohamed-Ali Kaafar, and Minh-Dung Tran.
Betrayed by your ads! In Simone Fischer-Hübner and Matthew

57

BIBLIOGRAPHY 58

Wright, editors, Privacy Enhancing Technologies, pages 1–17, Berlin,
Heidelberg, 2012. Springer Berlin Heidelberg.

[10] G. Chittaranjan, J. Blom, and D. Gatica-Perez. Who’s who with
big-five: Analyzing and classifying personality traits with
smartphones. In 2011 15th Annual International Symposium on
Wearable Computers, pages 29–36, June 2011.

[11] Mauro Conti, Luigi V. Mancini, Riccardo Spolaor, and Nino Vincenzo
Verde. Can’t you hear me knocking: Identification of user actions on
android apps via traffic analysis. In Proceedings of the 5th ACM
Conference on Data and Application Security and Privacy, CODASPY
’15, page 297–304, New York, NY, USA, 2015. Association for
Computing Machinery.

[12] George Danezis. Traffic Analysis of the HTTP Protocol over TLS.
2009.

[13] T. Dierks and E. Rescorla. The Transport Layer Security (TLS)
Protocol Version 1.2. IETF RFC 5246, August 2008.

[14] Peter Eckersley. How unique is your web browser? In Proceedings of
the 10th International Conference on Privacy Enhancing Technologies,
PETS’10, pages 1–18, Berlin, Heidelberg, 2010. Springer-Verlag.

[15] Julien Gamba, Mohammed Rashed, Abbas Razaghpanah, Juan
Tapiador, and Narseo Vallina-Rodriguez. An analysis of pre-installed
android software. In 41st IEEE Symposium on Security and Privacy.
IEEE, 2020.

[16] Jayaprakash Govindaraj, Robin Verma, and Gaurav Gupta. Analyzing
Mobile Device Ads to Identify Users. In Gilbert Peterson and Sujeet
Shenoi, editors, 12th IFIP International Conference on Digital
Forensics (DF), Advances in Digital Forensics XII, pages 107–126,
New Delhi, India, January 2016. Springer International Publishing.

[17] Michael C. Grace, Wu Zhou, Xuxian Jiang, and Ahmad-Reza Sadeghi.
Unsafe Exposure Analysis of Mobile In-app Advertisements. In
Proceedings of the Fifth ACM Conference on Security and Privacy in
Wireless and Mobile Networks, WISEC ’12, pages 101–112, New York,
NY, USA, 2012. ACM.

[18] P. Hoffman and P. McManus. DNS Queries over HTTPS (DoH).
IETF RFC 8484, October 2018.

[19] Z. Hu, L. Zhu, J. Heidemann, A. Mankin, D. Wessels, and P. Hoffman.
Specification for DNS over Transport Layer Security (TLS). IETF
RFC 7858, May 2016.

BIBLIOGRAPHY 59

[20] Thomas Hupperich, Davide Maiorca, Marc Kührer, Thorsten Holz,
and Giorgio Giacinto. On the robustness of mobile device
fingerprinting: Can mobile users escape modern web-tracking
mechanisms? In Proceedings of the 31st Annual Computer Security
Applications Conference, ACSAC 2015, pages 191–200, New York, NY,
USA, 2015. ACM.

[21] Martin Husák, Milan Čermák, Tomáš Jirsík, and Pavel Čeleda. Https
traffic analysis and client identification using passive ssl/tls
fingerprinting. EURASIP Journal on Information Security, 2016.

[22] Platon Kotzias, Abbas Razaghpanah, Johanna Amann, Kenneth G
Paterson, Narseo Vallina-Rodriguez, and Juan Caballero. Coming of
age: A longitudinal study of TLS deployment. In Proceedings of the
Internet Measurement Conference 2018, pages 415–428, 2018.

[23] Andreas Kurtz, Hugo Gascon, Tobias Becker, Konrad Rieck, and Felix
Freiling. Fingerprinting mobile devices using personalized
configurations. Proceedings on Privacy Enhancing Technologies, pages
4–19, 2016.

[24] Andreas Kurtz, Andreas Weinlein, Christoph Settgast, and Felix
Freiling. DiOS: Dynamic Privacy Analysis of iOS Applications.
Technical Report CS-2014-03, Friedrich-Alexander-Universität
Erlangen-Nürnberg, June 2014.

[25] Gabe Kwakyi. How Do Mobile Advertising Auction Dynamics Work?
Incipia Blog, 2018.

[26] T. Matsunaka, A. Yamada, and A. Kubota. Passive os fingerprinting
by dns traffic analysis. In 2013 IEEE 27th International Conference on
Advanced Information Networking and Applications (AINA), pages
243–250, March 2013.

[27] Aruba Networks. ArubaOS DHCP Fingerprinting. Technical report,
Aruba Networks, 2011.

[28] Elleen Pan, Jingjing Ren, Martina Lindorfer, Christo Wilson, and
David Choffnes. Panoptispy: Characterizing Audio and Video
Exfiltration from Android Applications. Proceedings on Privacy
Enhancing Technologies, pages 33–50, 10 2018.

[29] Jon Postel. User Datagram Protocol. IETF RFC 768, August 1980.

[30] Abbas Razaghpanah, Arian Akhavan Niaki, Narseo Vallina-Rodriguez,
Srikanth Sundaresan, Johanna Amann, and Phillipa Gill. Studying
TLS Usage in Android Apps. In Proceedings of the 13th International

BIBLIOGRAPHY 60

Conference on Emerging Networking EXperiments and Technologies,
page 350–362, New York, NY, USA, 2017. ACM.

[31] Jingjing Ren, Ashwin Rao, Martina Lindorfer, Arnaud Legout, and
David Choffnes. ReCon: Revealing and Controlling PII Leaks in
Mobile Network Traffic. In Proceedings of the 14th Annual
International Conference on Mobile Systems, Applications, and
Services, MobiSys ’16, page 361–374, New York, NY, USA, 2016.
ACM.

[32] E. Rescorla. The Transport Layer Security (TLS) Protocol Version
1.3. IETF RFC 8446, August 2018.

[33] E. Rescorla, M. Ray, S. Dispensa, and N. Oskov. Transport Layer
Security (TLS) Renegotiation Indication Extension. IETF RFC 5746,
February 2010.

[34] Tim Stöber, Mario Frank, Jens Schmitt, and Ivan Martinovic. Who
Do You Sync You Are? Smartphone Fingerprinting via Application
Behaviour. In Proceedings of the Sixth ACM Conference on Security
and Privacy in Wireless and Mobile Networks, WiSec ’13, page 7–12,
New York, NY, USA, 2013. ACM.

[35] G. Sun, Y. Xue, Y. Dong, D. Wang, and C. Li. An Novel Hybrid
Method for Effectively Classifying Encrypted Traffic. In 2010 IEEE
Global Telecommunications Conference GLOBECOM 2010, pages 1–5,
2010.

[36] Vincent F Taylor, Riccardo Spolaor, Mauro Conti, and Ivan
Martinovic. Appscanner: Automatic fingerprinting of smartphone apps
from encrypted network traffic. In 2016 IEEE European Symposium
on Security and Privacy (EuroS&P), pages 439–454. IEEE, 2016.

[37] Vincent F. Taylor, Riccardo Spolaor, Mauro Conti, and Ivan
Martinovic. Robust Smartphone App Identification Via Encrypted
Network Traffic Analysis. CoRR, 2017.

[38] F. Tsai, E. Chang, and D. Kao. Whatsapp network forensics:
Discovering the communication payloads behind cybercriminals. In
2018 20th International Conference on Advanced Communication
Technology (ICACT), pages 1–1, 2018.

[39] Thijs van Ede, Riccardo Bortolameotti, Andrea Continella, Jingjing
Ren, Daniel J. Dubois, Martina Lindorfer, David Choffness, Maarten
van Steen, and Andreas Peter. FlowPrint: Semi-Supervised
Mobile-App Fingerprinting on Encrypted Network Traffic. In NDSS.
The Internet Society, 2020.

BIBLIOGRAPHY 61

[40] N. V. Verde, G. Ateniese, E. Gabrielli, L. V. Mancini, and
A. Spognardi. No nat’d user left behind: Fingerprinting users behind
nat from netflow records alone. In 2014 IEEE 34th International
Conference on Distributed Computing Systems, pages 218–227, 2014.

[41] Kilian Weinberger, Anirban Dasgupta, John Langford, Alex Smola,
and Josh Attenberg. Feature hashing for large scale multitask
learning. In Proceedings of the 26th Annual International Conference
on Machine Learning, ICML ’09, pages 1113–1120, New York, NY,
USA, 2009. ACM.

	Introduction
	Mobile Device Fingerprinting
	About Device Fingerprinting
	State of the Art
	Network Multi-level Profiling
	Structure of Mobile Communication
	Passive Protocol Fingerprinting
	Device Profiling
	Device Matching

	Case Study
	HTTP Fingerprinting
	TLS Fingerprinting
	Device Profile Matching
	Experiments

	Summary

	Observing Mobile Privacy Using Lumen
	Motivation
	Lumen App
	Testing Environment

	Experiments
	Results

	Summary

	JA3 Fingerprinting
	Motivation
	Preliminaries
	Datasets

	Related Work
	JA3 Fingerprinting for Web Browsers
	Background
	Testing Environment
	Results
	Discussion

	JA3 Fingerprinting for Mobile Apps
	Learning Phase
	Detection Phase
	Stability and Reliability

	Evaluation
	Use Cases for Digital Forensics
	Summary

