
The Journal of Supercomputing manuscript No.
(will be inserted by the editor)

Convergence verification of the Collatz problem

David Barina

Received: date / Accepted: date

Abstract This article presents a new algorithmic approach for computational
convergence verification of the Collatz problem. The main contribution of the
paper is the replacement of huge precomputed tables containing O(2N ) entries
with small look-up tables comprising just O(N) elements. Our single-threaded
CPU implementation can verify 4.2×109 128-bit numbers per second on Intel
Xeon Gold 5218 CPU computer and our parallel OpenCL implementation
reaches the speed of 2.2×1011 128-bit numbers per second on NVIDIA GeForce
RTX 2080. Besides the convergence verification, our program also checks for
path records during the convergence test.

Keywords Collatz conjecture · Software optimization · Parallel computing ·
Number theory

1 Introduction

One of the most famous problems in mathematics that remains unsolved is
the Collatz conjecture, which asserts that, for arbitrary positive integer n, a
sequence defined by repeatedly applying the function C(n) = 3n+1 if n is odd,
or C(n) = n/2 if n is even will always converge to the cycle passing through
the number 1. The terms of such sequence typically rise and fall repeatedly,
oscillate wildly, and grow at a dizzying pace. The conjecture has never been
proven. There is however experimental evidence and heuristic arguments that
support it. As of 2020, the conjecture has been checked by computer for all
starting values up to 1020 [1]. There is also an extensive literature, [2, 3], on
this question.

Centre of Excellence IT4Innovations
Faculty of Information Technology
Brno University of Technology
Bozetechova 1/2, Brno, Czech Republic
E-mail: ibarina@fit.vutbr.cz



2 David Barina

The most striking thing about the Collatz conjecture is that it would shed
a light on the relation between the prime factorizations of n and n + 1. The
Collatz function consists of two multiplicative operations and adding 1 that
has a huge effect on the factorization. Note that this problem has led directly to
theoretical work showing that very similar questions are formally undecidable
[4]. Another interesting relation is that the Collatz problem can be encoded
as a simple Emil Post’s tag system [5].

The competitive (past and other ongoing) projects verifying the conver-
gence of the Collatz problem use huge pre-computed sieves and lookup tables
to calculate multiple iterates in a single step. For k steps, the tables have a size
of 2k entries, the entry comprises usually two 64, 96, or 128-bit numbers. Our
approach is fundamentally different. We have realized that the additive step in
the Collatz function can be technically avoided. Rather than tracking the tra-
jectory directly on n, we track the same trajectory on n+ 1. The trick is that,
when calculating the function iterates, we switch between n and n+1 domains
in such a way that we always use only multiplicative operations. Considering
the binary representation of the n, we only use the ctz (count trailing zeros)
operation, right shift, and a small lookup table with precomputed powers of
three (tens of bytes in total).

The rest of the paper is organized as follows. Section 2 reviews related
work, especially competitive projects and the results achieved so far. Section
3 presents a new algorithm for computing iterates of the Collatz function.
Section 4 describes optimization techniques used in conjunction with this al-
gorithm. Section 5 presents performance evaluation and results achieved using
the algorithm. Finally, Section 6 concludes the paper.

2 Related Work

Several past or ongoing projects are trying to verify or disprove the Collatz
conjecture. These projects can be divided into two groups according to the
algorithm they use: (1) The first group checks for the convergence of the prob-
lem for all numbers up to some upper bound. The bottom line is that they
calculate the Collatz function iterates, starting from the initial number n, and
stopping once an iterate drops below n. This is also known as computing the
stopping time [6], or glide. (2) The second group also checks all numbers up
to some upper bound but searches for the highest number of iterates (steps)
before reaching 1. This is known as computing the total stopping time [6], or
delay. Importantly, algorithms used for this second group are at least one order
of magnitude slower compared to the first group. Our work targets the first
group. The question is how fast (in terms of numbers per second) are state-of-
the-art methods in both these groups. The current upper bound under which
the problem is verified is 266.4 [1].

The ongoing project of Eric Roosendaal1 asserts that their problem can
check about 227.3 numbers per second. By examining his program on our AMD

1 http://www.ericr.nl/wondrous/

http://www.ericr.nl/wondrous/


Convergence verification of the Collatz problem 3

Ryzen Threadripper 2990WX we have however found out the speed of 225.7

numbers per second. The algorithm belongs to the second group. All numbers
up to 260 ≈ 1018 have been checked for convergence.

We are also aware of the ongoing BOINC project.2 But we are unable
to find how fast their program is, and which algorithm uses. Based on our
personal correspondence with Eric Roosendaal, we found that this ongoing
BOINC project is meant to disprove the Collatz conjecture by trying to find a
counter-example. The project started off at 271. It looks like they have reached
roughly 272.3. No information can be found regarding whether all numbers up
to that limit have indeed be checked.

In 2017, the yoyo@home project [1] checked for convergence all numbers up
to 1020 ≈ 266.4. The work of Honda et al. [7] claims that they can check 240.25

numbers per second for the convergence (the first group), or 229.9 numbers
per second for the delay, both on GPU. Their programs are however only
able to verify 64-bit numbers (which have been known to converge due to
the yoyo@home project). The paper by Tomás Oliveira e Silva [8] from 2010
claims that the author verified in 2009 the conjecture up to 262.3 ≈ 5.76×1018.
According to information published on his website, the speed of his program
was about 2.25×109 numbers per second on computers of that time. Earlier, in
2008, Tomás Oliveira e Silva3 tested all numbers below 19×258. Much earlier,
in 1992, Leavens and Vermeulen [9] verified the convergence for all numbers
below 5.6 × 1013 ≈ 245.67. And as the first tracked record, in 1973, Dunn [10]
verified the convergence below ca. 224.78. According to [8], there exist other
unpublished records before the year 1992.

3 New Approach

Recall that the Collatz conjecture asserts that a sequence defined by repeatedly
applying the function

C(n) =

{
3n+ 1 if n is odd, or

n/2 if n is even
(1)

will always converge to the cycle passing through the number 1 for arbitrary
positive integer n. Note that the outcome of the odd branch in (1) is always
even, and thus the next iteration must go through the even branch. Thus, the
modified formulation

T (n) =

{
(3n+ 1)/2 if n ≡ 1 (mod 2), or

n/2 if n ≡ 0 (mod 2)
(2)

is often [2] used. Multiplying by 3 and factoring out a power of 2 have only a
small effect on the prime factorization of n. The question here is how does the
prime factorization of n affect the prime factorization of n+ 1.

2 https://boinc.thesonntags.com/collatz/
3 http://sweet.ua.pt/tos/3x+1.html

https://boinc.thesonntags.com/collatz/
http://sweet.ua.pt/tos/3x+1.html


4 David Barina

We have realized that the additive step in the T (n) can be technically
avoided when computing the function iterates. Rather than defining the T (n)
as in (2), and tracking the trajectory directly on n, we can track the same
trajectory on n+ 1 with the auxiliary function

T1(n) =

{
(n+ 1)/2 if n ≡ 1 (mod 2),

3n/2 if n ≡ 0 (mod 2).
(3)

Thus the multiplying by 3 just moved to the even branch. The trick is that,
when calculating the function iterates, we switch between n and n+ 1 in such
a way that we always use only the even branch of either T or T1. Therefore,
the above functions can be expressed as

T (n) =

{
T1(n+ 1) − 1 if n ≡ 1 (mod 2),

n/2 if n ≡ 0 (mod 2),
(4)

and

T1(n) =

{
T (n− 1) + 1 if n ≡ 1 (mod 2),

3n/2 if n ≡ 0 (mod 2).
(5)

There is seemingly still an additive operation in each step. However, con-
sidering the binary representation of the n, these additive operations can be
almost avoided by merging several even steps into a single one. In other words,
we use operation which counts the number of trailing zero bits following the
least significant non-zero bit (ctz operation) and then perform multiple di-
visions by two (right shifts) at once. This also include performing multiple
multiplications by three at once. However, the powers of three can be precom-
puted in a small look-up table and also these multiplications can be performed
using a single one. The size of the small look-up table can be arbitrarily small
and correspond to the number of steps performed at once, thus the space
complexity is O(N), where the N is the number of steps performed in a single
step.

Algorithm 1 Convergence test
Require: n0 is positive integer
1: n← n0

2: repeat
3: n← n+ 1
4: α← ctz(n)
5: n← n× 3α/2α

6: n← n− 1
7: β ← ctz(n)
8: n← n/2β

9: until n < n0



Convergence verification of the Collatz problem 5

Algorithm 2 Convergence test
Require: n is positive integer
1: repeat
2: n← n+ 1
3: α← ctz(n)
4: n← n× 3α/2α

5: n← n− 1
6: β ← ctz(n)
7: n← n/2β

8: until n = 1

Now we can formulate two convergence verification algorithms, in Algo-
rithm 1 and 2, according to the division in Section 2. The first algorithm
checks for the convergence, maximum value reached during the progression,
and glide. The second one is above that able to check for the delay. De-
lay is computed as the sum of all alphas and betas before reaching num-
ber 1. Given that Max(n) is maximum value reached during the progression
n, T (n), T 2(n), . . . , 1, a positive integer m is called a path record if for all
n < m the inequality Max(m) > Max(n) holds. We check for the convergence
of the problem for all numbers starting from 1 up to some upper bound. Under
this assumption, both above algorithms can check for path records (note that
for Algorithm 1 the path record always occurs before n < n0).

4 Sieve

The general form [11] of T k(n) is

T k(2knH + nL) = 3odd(nL)nH + T k(nL), (6)

where odd(nL) is the number of odd steps of T (n) that were taken in the
computation of T k(nL). Competitive programs use this equation to perform
k steps at once (the tables have the size of 2k entries, indices correspond to
nL). The difference between this and competitive algorithms lies in the fact
that the competitive algorithms compute a fixed number of iterates in a single
step (using the equation above). On the contrary, the number of steps in our
algorithm depends on the specific number tested. One can verify that for odd
n, the average number of iterates computed in a single step for both Algorithm
1 and 2 is 4. Thus, using k > 4 in (6) leads to a higher number of iterations
calculated in one step of the algorithm.

However, even more important acceleration technique of the convergence
test is the usage of a sieve (the sieve has the size of 2k entries). Using the
sieve we test only those numbers that do not either converge or join4 the path
of a lower number in k steps. The acceleration obtained from this method is
significant. The disadvantage is a huge memory footprint of such sieves. For
example, the sieve having the size of 234 occupies 234 bits which is exactly 2

4 enhancement proposed by Eric Roosendaal



6 David Barina

gigabytes. We have however found that these convergence sieves (considering
values stored in bits) are formed by constantly repeated bit patterns. Specifi-
cally, the 234 sieve may have a memory footprint of 256 megabytes. The reason
is that this sieve is formed by only fifty constantly repeated 64-bit patterns,
so we can store only indices into a small look-up table. Here we consider 8-bit
indices. Similarly, the 224 sieve has a size of 256 kilobytes. The compression
ratio can reach the value around 1:10 (64 bits represented by 6-bit index).

We experimented with many sieve sizes and came to the conclusion that
the sieve size 234 is optimal for our CPU implementation, whereas the sieve
size 224 is optimal for GPUs. We are aware that other authors have used even
larger sieves (and therefore have reached higher performance), e.g., the sieve
of the size 237 in [7]. However, such a sieve is absolutely impractical since it
occupies 16 gigabytes of memory.

To speed up the convergence verification even further, our CPU program
verifies 240−34 numbers of the same congruence class modulo 234 concurrently.
This particularly means that the program verifies the work units having the
size of 240 numbers and solves the lowest 34 bits at once. Then the code
paths diverge, resulting in the verification of individual numbers up to 240.
We are aware that Eric Roosendaal used a similar ”interlaced” technique in
his convergence algorithm. Note that the size of congruence class 234 exactly
matches the sieve size.

5 Performance Evaluation

Our CPU implementation (written in C), as well as GPU implementation
(OpenCL), can verify work units of 240 128-bit numbers. If the 128-bit arith-
metic is not sufficient, the program switches to multi-precision arithmetic for
the necessary amount of time. Both of these programs implement Algorithm
1. Partial (per work unit) path records are stored during the verification. Ad-
ditionally, the program sums all the αs for all n inside a particular work unit
as proof of work so that the results can be independently verified. This data
was not collected in [7], whereas our program is focused on practical use. A
comparison of our program with competing programs is given in Table 1. Note
that all other programs can process only 64-bit numbers while our program
natively operates on 128-bit arithmetic. Note also that the comparison is made
on different hardware. Finally note that all other programs require tables of
the size O(2N ), whereas our program only requires a small table of the size
O(N). To allow other developers and scientists to benefit from this work and
build on it, the programs used in this article have been released as open-source
software.5

The program presented in this paper runs as a part of a distributed com-
puting project to check the convergence of the Collatz problem. From Septem-
ber 2019 to May 2020, the project managed to verify this conjecture for all

5 https://github.com/xbarin02/collatz/

https://github.com/xbarin02/collatz/


Convergence verification of the Collatz problem 7

authors sieve numbers speed hardware

Honda et al. 237 64-bit 1.31× 1012 NVIDIA GeForce GTX TITAN X
Honda et al. 237 64-bit 5.25× 109 Intel Core i7-4790
Roosendaal 232 64-bit 4.63× 108 contemporary CPUs
Oliveira et al. 246 64-bit 2.25× 109 CPUs of the 2004–2009 era
this paper 234 128-bit 4.21× 109 Intel Xeon Gold 5218
this paper 224 128-bit 2.20× 1011 NVIDIA GeForce RTX 2080

Table 1 Comparison with competitive programs. The speed is given in numbers per second.

numbers below 268. Define t(n) the highest number occurring in the sequence
starting at n. The n is called the path record if for all m < n the inequality
t(m) < t(n) holds. Lagarias and Weiss [12] predicted using the large deviation
theory for random walks that

lim sup
n→∞

log t(n)

log n
= 2. (7)

In other words, the highest number occurring in the sequence for a path
record n grows like n2. The results recorded up to 268 confirm this predic-
tion. The largest know path record below 268 occurs for the starting value
n = 274133054632352106267 (previously unpublished).

6 Conclusion

This article presents a new method for computing iterates of the Collatz func-
tion. The advantage over existing approaches is that it only requires a table of
the size O(N) to compute N steps at once, whereas other approaches require
tables of the size O(2N ) to do the same. In addition, the article presents a new
memory-saving method for representing a sieve that further accelerates the
convergence test. Our programs can process 128-bit numbers, whereas com-
petitive programs can only process 64-bit numbers. The programs used in this
work have been released as open-source software.

Acknowledgement

Computational resources were supplied by the project ”e-Infrastruktura CZ”
(e-INFRA LM2018140) provided within the program Projects of Large Re-
search, Development and Innovations Infrastructures. This work was sup-
ported by The Ministry of Education, Youth and Sports from the Large In-
frastructures for Research, Experimental Development and Innovations project
”IT4Innovations National Supercomputing Center – LM2015070”.



8 David Barina

References

1. Hercher C (2018) Über die Länge nicht-trivialer Collatz-Zyklen. Die
Wurzel 6 and 7

2. Lagarias JC (2003) The 3x+1 problem: An annotated bibliography (1963–
1999) (sorted by author). arXiv:math/0309224

3. Lagarias JC (2006) The 3x + 1 problem: An annotated bibliography, II
(2000-2009). arXiv:math/0608208

4. Conway JH (1972) Unpredictable iterations. In: Proceedings of the 1972
Number Theory Conference, pp 49–52

5. Mol LD (2008) Tag systems and Collatz-like functions. Theoretical Com-
puter Science 390(1):92–101, DOI 10.1016/j.tcs.2007.10.020

6. Lagarias JC (1985) The 3x + 1 problem and its generalizations. The Amer-
ican Mathematical Monthly 92(1):3–23, DOI 10.2307/2322189

7. Honda T, Ito Y, Nakano K (2017) GPU-accelerated exhaustive verifica-
tion of the Collatz conjecture. International Journal of Networking and
Computing 7(1):69–85

8. Oliveira e Silva T (2010) Empirical verification of the 3x+1 and related
conjectures. In: Lagarias JC (ed) The Ultimate Challenge: The 3x+1 Prob-
lem, American Mathematical Society, pp 189–207

9. Leavens GT, Vermeulen M (1992) 3x+1 search programs. Computers &
Mathematics with Applications 24(11):79–99, DOI 10.1016/0898-1221(92)
90034-F

10. Dunn R (1973) On Ulam’s problem. Tech. rep., University of Colorado at
Boulder

11. Oliveira e Silva T (1999) Maximum excursion and stopping time record-
holders for the 3x + 1 problem: Computational results. Mathematics of
Computation 68(225):371–384, DOI 10.1090/S0025-5718-99-01031-5

12. Lagarias JC, Weiss A (1992) The 3x + 1 problem: Two stochastic mod-
els. Annals of Applied Probability 2(1):229–261, DOI 10.1214/aoap/
1177005779


	Introduction
	Related Work
	New Approach
	Sieve
	Performance Evaluation
	Conclusion

