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Abstract This article presents a single-loop approach
to a 2-D discrete wavelet transform that allows process-

ing infinitely high image strip-maps. The paper gradu-

ally compares several computational strategies to finally

show how to deal with a multi-scale wavelet transform of

infinite image streams. Besides, the transform is followed

by a bit-plane encoder which also processes data in a

single loop. The whole machinery is part of a CCSDS

122.0 image codec which manages to process a single

pixel in about 33 nanoseconds on a contemporary desk-

top computer, without the contribution of any parallel

computing or SIMD vectorization.

Keywords Discrete wavelet transforms · Image

processing · Image compression · CCSDS 122.0

1 Introduction

Perhaps all existing image formats are based on the

processing of image frames (frame-based input data),

originated, e.g., by CCD sensors. However, at least one
format is based on a different principle. The CCSDS

122.0 is able to process infinite strip-based inputs pro-

duced by push-broom type sensors. The resolution of the

input image is therefore infinite (as the height is infinite).

This requires very specific design of the architecture that

will be able to handle such kind of data. Specifically, all

computations must be performed in memory-effective

fashion and in a single pass through the data. This is

in sharp contrast to, e.g., the JPEG 2000 format which
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can only hold images of finite dimensions and buffering

of the entire input and output stream is thus allowed.

This short article gradually compares several com-

putational schemes of the two-dimensional multi-scale

discrete wavelet transform (DWT), which is the heart

of the CCSDS 122.0 format, and eventually answers the

question, ”What is the best scheme for processing infi-

nite image data?” In more detail, the individual schemes

are described in Section 2 of this paper. The same sec-

tion also describes the CCSDS 122.0 image compression

standard. Subsequent Section 3 evaluates the schemes

and then selects the most efficient one, which is able to

compress input data with the rate of 33 nanoseconds

per pixel on a desktop computer. The implementation

is single-threaded and does not exploit any SIMD in-

structions. Finally, Section 5 concludes the paper.

2 Related Work

The CCSDS 122.0 format [1] can hold images of infinite

dimensions. However, at least one of its two dimensions

must be finite. For this reason, it seems appropriate to

consume input data line by line (line-based consump-

tion). Similarly to the JPEG 2000 format, the format

can compress the image either in a lossy or lossless man-

ner. The format can also hold high-bit-depth images

(25 bits for lossless compression, 28 bits for lossy one).

Note that the implementation used in this paper can

handle 16-bit pixels and internally uses 32-bit machine

words. The format is based on a three-level discrete

wavelet transform (see Fig. 1 for better mental picture).

The transform is computed using either real or integer

numbers. The real transform is intended for lossy com-

pression. Conversely, the integer transform is intended

for lossless compression. A compressed image is divided
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Fig. 1 Illustration of the three-level DWT (on the right) on
frequently-used Lenna image (on the left).

into segments and blocks, so the data error is not prop-

agated much. The blocks and segments must be formed

on the fly to comply with the single-loop requirement.

The format covers only the processing of a single image

component. The processing of individual multispectral

components is covered by another standard.

In the beginning, the input image is extended so

that its dimensions are multiples of eight. Three levels

(or scales) of the discrete wavelet transform are then cal-

culated. Interestingly, these three levels produce blocks
of 8 × 8 coefficients with a similar meaning as blocks

of 8 × 8 DCT coefficients in the JPEG format. See Fig.

2 which illustrates the meaning of coefficients within

a block. These coefficients are further encoded by bit-

planes from the most significant to the least significant

one. When all bit-planes of integer wavelet transform
are encoded, we got a lossless compression. The CCSDS

standard uses the CDF 9/7 wavelet [2] for both—the

real DWT intended for lossy compression as well as

the integer-to-integer DWT for lossless processing. The

JPEG 2000, on the contrary, uses the CDF 5/3 wavelet

for lossless compression.

Various computational schemes for 1-D and 2-D

DWT can be found in the literature. Considering the

1-D transform, one usually starts with the transform

defined by two complementary FIR filters. The corre-

sponding computational scheme is referred to as the

LL HL

LH HH

Fig. 2 Illustration of the blocks of 8 × 8 coefficients: a trans-
formed image on the left, a subset of transform coefficients
rearranged into a block on the right. Four wavelet sub-bands
are indicated—LL (DC coefficient), HL, LH, and HH.

convolution. In [3], Sweldens and Daubechies showed

how the convolution scheme can be decomposed into

a sequence of simple filtering steps. These steps are

known as the lifting steps and the scheme as the lifting

scheme. The lifting scheme asymptotically reduces the

number of arithmetic operations by a factor of two. It

is also used for the definition of integer-to-integer trans-

forms (lossless compression). Since the lifting scheme

comprises a sequence of filtering steps, it is tempting to

implement it as a sequence of passes through the input

data (multi-loop approach). This has the advantage of
easy treatment of the signal boundaries. The downside

is the repeated eviction of intermediate data from the

CPU cache [4]. This approach is also not compatible

with single-loop data processing required in our case.

Merging these several filtering steps into a single pass

through the input data forms a single-loop algorithm

(pipelined computation) [5]. As one might expect, the

advantage is friendliness to the CPU cache. However,

the disadvantage is shown in the complicated treatment

of signal boundaries. Namely, the state-of-the-art al-

gorithms treat such boundaries in a complicated and

inflexible way, using special prolog or epilog phases.

In [6], these algorithms are extended to perform the

treatment using a compact streaming core, possibly in

multi-scale fashion. As a result, every input sample is

visited only once, while the results are produced imme-

diately, i.e. without buffering. This fits perfectly with

our single-loop approach.

A two-dimensional DWT is defined [7] as a tensor-

product of two one-dimensional transforms—one for

rows and one for columns. Various computational schemes

for 2-D DWT can be found in the literature as well.

These schemes include the loop fission (splits the ver-

tical loop so it accesses at most as many rows as the

cache associativity) [8, 9], aggregation (adjacent columns

are filtered concurrently) [10, 11], usage of complicated

memory layouts [12–14], interleaving of the vertical and

horizontal loop [15–19], SIMD vectorization and paral-

lelization [14, 15, 19], etc. Basically, naive implementa-

tions implement this transform using two passes through

input data (e.g., OpenJPEG codec). Such a solution

is simple but very slow (repeated eviction of interme-

diate data from the CPU cache), especially for large

images. In [19], Kutil presents a single-loop approach

to 2-D DWT, i.e. interleaving horizontal and vertical

filtering steps. As a result, entire 2-D DWT is computed

using the lifting in a single pass through the input data.

This approach does not suffer from any cache-related or

other issues, except for a very complicated treatment of

image boundaries. As a consequence, the author uses

nine transform phases for all combinations of horizontal

and vertical filterings. This makes the coding arduous
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Fig. 3 CDF 9/7 lifting scheme comprising 4 lifting steps
(identified as α–δ). The highlighted area is evaluated in a
single iteration of the loop (thus a single-loop approach).

Fig. 4 Detail of the 2-tap FIR filter from the CDF 9/7 data-
flow diagram (on the left) and border treatment using the
method presented in [6] (on the right). The switches (in red)
are set according to the position in the input signal.

and the code very complicated. Combining the Kutil’s

approach with the approach presented in [6] creates a

true single-loop approach, i.e. without any shortcomings.

The last unresolved problem regarding the 2-D DWT

is the computation of multi-scale decomposition, which
is difficult to compute in a single pass due to buffering

required to start the next level of transform. This step

has not even been done in [19]. However, such single-

loop multi-scale processing is necessary for processing

infinite images and is, therefore, the subject of the rest

of this article.

3 Single-Loop Approach

At the beginning, let us take a closer look at the treat-

ment of signal boundaries presented in [6]. To better

understand this algorithm, look at Figure 3, which shows

a data-flow diagram of one DWT level with the CDF

9/7 wavelet implemented in a floating-point format. The

highlighted area is a core, which consumes the input

signal from left to right (in a single loop) and produces

output coefficients. The problem with this approach

is the need to buffer the input signal, at least at its

beginning and end. The data-flow diagram in Figure 3

consists of filtering using 2-tap FIR filters. This FIR

filter is shown on the left side of Figure 4. In [6], such a

single-loop approach is modified in such a way that the

input signal does not need to be buffered. Instead, the

LL HL

LH HH

1 2 3

levels

Fig. 5 Quadruple (quad) of LL, HL, LH, and HH coefficients
(on the left) and three-level interleaving of subsequent scales
using these quads (on the right).

filtering by the 2-tap FIR filter is adaptively modified

so that it never accesses an undefined part of the input

signal. This is essentially achieved through two switches

which are set so that the result of the calculation cor-

responds to a symmetric extension of the signal. The

modification is detailed in the right part of Figure 4.

Since this algorithm does not require any input buffer-

ing, it can be used directly for multi-scale processing.

In this case, the subsequent levels of DWT are simply

triggered interlaced, without having to wait for a larger

block of input data.

Because we chose line-based consumption of input

data and because the CCSDS standard internally di-

vides the image into 8×8 pixel blocks, it makes sense to

implement a multi-scale transform either (1a) sequen-

tially (which would prohibit processing infinite image

strips), or (1b) by interleaving individual levels of the

transform in 8-pixel high strips, or (1c) by interleaving

individual levels in blocks 8 × 8 pixels. Similar possibili-

ties arise in the implementation of a single level of the

2-D DWT. The two-dimensional transform can be im-

plemented either (2a) in a separable fashion, (2b) using

line-based processing, or (2c) using the true single-loop

approach (referred to herein as quad-based, since the

smallest unit is a quadruple of LL, HL, LH, and HH

coefficients, see Fig. 5). The underlying one-dimensional

transform can be computed using (3a) single-loop convo-

lution, (3b) multi-loop lifting, or (3c) single-loop lifting

scheme. Because of the two compression modes (lossy

and lossless), all this has to be implemented twice—

once in integer arithmetic and a second time using a

floating-point format. And finally, all this above has

to be implemented both in the encoder and in the de-

coder. It brings together 3 × 3 × 3 × 2 × 2 different

implementations, but not all of them make sense. How-

ever, we have implemented and evaluated all the mean-

ingful ones (the implementation used in this article is

highly configurable). By removing meaningless combina-

tions out of this number, the following options remain

(from the most naive one to the most tuned one): (i)
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Algorithm 1 (i) separable convolution, sequential

1: for each scale do

2: for each row do

3: for each sample do
4: compute convolution coefficient
5: end for

6: end for
7: for each column do

8: for each sample do

9: compute convolution coefficient
10: end for

11: end for
12: end for

Algorithm 2 (ii) separable multi-loop, sequential

1: for each scale do
2: for each row do

3: for each lifting step do

4: for each second sample do
5: compute lifting step
6: end for
7: end for

8: end for

9: for each column do
10: for each lifting step do

11: for each second sample do

12: compute lifting step
13: end for

14: end for

15: end for
16: end for

Algorithm 3 (iii) separable single-loop, sequential

1: for each scale do

2: for each row do

3: for each two samples do
4: for each lifting step do

5: compute lifting step
6: end for
7: end for

8: end for
9: for each column do

10: for each two samples do

11: for each lifting step do
12: compute lifting step
13: end for

14: end for
15: end for

16: end for

Algorithm 4 (iv) line-based, sequential

1: for each scale do

2: for each two rows do
3: compute horizontal transforms
4: for each column do

5: for each lifting step do
6: compute vertical lifting step
7: end for

8: end for
9: end for

10: end for

Algorithm 5 (v) quad-based, sequential

1: for each scale do

2: for each 2 × 2 quad in raster scan do

3: for each lifting step do
4: compute vertical lifting step
5: end for

6: for each lifting step do
7: compute horizontal lifting step
8: end for

9: end for
10: end for

Algorithm 6 (vi) quad-based, strips interleaved

1: for each horizontal strip do

2: for each scale do
3: for each 2 × 2 quad do

4: for each lifting step do

5: compute vertical lifting step
6: end for

7: for each lifting step do
8: compute horizontal lifting step
9: end for

10: end for
11: end for

12: end for

Algorithm 7 (vii) quad-based, blocks interleaved

1: for each block in raster scan do
2: for each scale do

3: for each 2 × 2 quad do

4: for each lifting step do
5: compute vertical lifting step
6: end for

7: for each lifting step do
8: compute horizontal lifting step
9: end for

10: end for
11: end for

12: end for

convolution, horizontal/vertical transforms separated,

scales sequentially; (ii) multi-loop lifting, transforms

separated, scales sequentially; (iii) single-loop lifting,

transforms separated, scales sequentially; (iv) line-based

two-dimensional lifting, scales sequentially; (v) quad-

based two-dimensional lifting, scales sequentially; (vi)

quad-based two-dimensional lifting, scales interleaved

using strips; and (vii) quad-based two-dimensional lift-

ing, scales interleaved using blocks. The interleaving of

subsequent scales in (vi) and (vii) is detailed in Fig. 5.

One has to transform 4× 4 quads at the first levels. The

resulting LL coefficients are then fed into a second-level

transform which transforms 2 × 2 quads. Finally, the

four resulting LL coefficients are fed into a third-level

transform which computes final results. All these im-

plementations have been implemented using integer as

well as floating-point numbers, and also on the encoder

as well as decoder side. To allow the reader to compare
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the individual schemes (i)–(vii), these are presented by

the pseudocode in Algorithms 1–7. The strip means 8

image lines, and the block means 8 × 8 pixels.

The implementation (1a) entails no additional mem-

ory requirements. The implementations (1b) and (1c)

require additional buffers proportional to the image

width (the finite dimension) and number of scales. Sim-

ilarly, the case (2a) does not have any extra memory

requirements, whereas the (2b) and (2c) require for each

scale a buffer of the size proportional to the image width.

Finally, the (3a) and (3b) implementations require ex-

tra space of the same size as the image width (cannot

be computed in-place). The reason why also the (3b)

requires the extra space is the usage of a different data

type for intermediate results. Finally, the (3c) operates

in-place and thus does not require any extra memory.

4 Results

To illustrate the differences, the performance of the

three-level floating-point discrete wavelet transform was

evaluated on an x86-64 machine. The code does not

exploit any SIMD extensions or parallel processing. The

results are shown in Fig. 6. The x-axis shows the image

resolution (in megapixels), the y-axis is the processing

time per pixel (in nanoseconds/pixel). The evaluation

was performed in three different scenarios—for 4:3 as-

pect ratio, for 16:9 ratio, and for 1024-pixel wide strips

(infinite strip-based data). This is because these aspect

ratios are mapped differently to the CPU cache due to

its limited associativity. The results were obtained on

the AMD Ryzen Threadripper 2990WX 32-Core Pro-

cessor (64 MiB L3 cache, 128 GiB DDR4 @ 2933 MHz).

The CPU clock was oscillating around 3.8 GHz. One

might find that the (v) quad-based single-loop lifting

with sequential scale processing shows the highest per-

formance. It achieves asymptotically the time about

12.15 nanoseconds per pixel on image strips. However,

sequential scale processing precludes the processing of in-

finite image strips. Focusing on the strip-based scenario,

one can find that the (vi) quad-based single-loop lifting

with scales interleaved in strips is the most powerful

scheme suitable for processing infinite data. However, its

performance is worse than in case (v). This is the cost

for completely single-pass processing. The time asymp-

totically reaches 12.95 nanoseconds per pixels. On 16:9

ratio, the asymptotic performance is even better—11.7

nanoseconds per pixel–which corresponds to over 40

frames per second for Full HD resolution. This is real-

time processing. Note also that single-loop approaches

do not suffer from cache-related issues and copy the lin-

ear time complexity of the transform, whereas separable
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Fig. 6 The performance of the floating-point forward trans-
form. From top: 4:3 aspect ratio, 16:9 ratio, and 1024-pixel
wide strips.

horizontal and vertical loops lead to unpleasant perfor-

mance anomalies. This is especially evident in the 16:9

ratio. The same behavior was observed by Kutil in [19].

Finally, note that the computation of integer transforms
is noticeably faster, and decoder-side implementations

behave the same way as those on the encoder-side.

Let us also look specifically at the implementation

(ii), which is often implemented in open source libraries

(e.g., OpenJPEG). This implementation suffers from the

performance anomalies that are caused by CPU cache

issues. The main issue here is that this implementation

repeatedly accesses data that have already been evicted

from the cache. Besides, it shows significantly worse per-
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Fig. 7 The performance of the floating-point DWT and BPE
chain for 1024-pixel wide strips.

formance than all single-loop approaches and precludes

the processing of infinite image data.

The second experiment, shown in Fig. 7, evaluates

the performance of the DWT/BPE chain (wavelet trans-

form followed by the bit-plane encoder). The BPE also

processes the data in a single loop. However, this pro-

cessing is more complicated since it handles data in 8×8

blocks, arranges these blocks into segments, and then
compresses the segments at once. The evaluation was

performed in the same scenarios and the same machine.

The results largely copy the results of the previous ex-

periment. This time only the result for 1024-pixel wide

strips is shown. Apart from a slowdown correspond-
ing to bit-plane encoding, the findings described in the

previous paragraph are still valid. The (vi) quad-based

single-loop lifting with scales interleaved using strips

manages to process a single pixel in about 33 nanosec-

onds, which is still enough for real-time processing.

It may be obvious that it is possible to further accel-

erate the above-evaluated schemes using multi-threading

and SIMD vectorization. This step was done for example

in [19, 20]. However, such a step only causes shifting the

curves in Fig. 6 and 7 down, and does not change the
behavior of the schemes.

5 Conclusions

It is possible to compute a multi-scale 2-D discrete

wavelet transform of infinite image strips in real time

on a contemporary desktop computer without any con-

tribution of parallel processing or SIMD instructions.

The key is a single-loop transform approach and simple

treatment of image boundaries. The implementation pre-

sented in this article manages to transform a single pixel

in about 12.95 nanoseconds using floating-point CDF

9/7 transform. The implementation is part of a CCSDS

122.0 image codec which manages to process a single

pixel in about 33 nanoseconds, still considering infinite

image strips. To allow other developers and scientists to

benefit from this work and build on it, the codec used in

this paper has been released as open-source software.1

I believe that the work presented in this article can

find application in other software implementations of the

2-D discrete wavelet transform. It is especially suitable

for the implementation of the JPEG 2000 format (e.g.,

OpenJPEG or FFmpeg).
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