
 1

Application of Approximate Matching on Industrial Control System (ICS) Network

Communication Using Ssdeep Algorithm

Student: Nelson Makau Mutua

Strathmore University, Nairobi, Kenya, Email: nmutua@strathmore.edu

Supervisor: Ing. Petr Matousek, PhD., MA

 Brno University of Technology, Brno, Czech Republic, Email: matousp@fit.vutbr.cz

Erasmus Short Term Study Report

ABSTRACT

Network communication is associated with many security challenges. Changes in Internet technologies

have allowed for an increase in networked devices, the complexity of cybercrimes and the transfer of huge

amounts of data, which can easily be intercepted and manipulated by attackers. The goal of this research is

to prove the viability of using approximate pattern matching to profiling Industrial Control System (ICS)

communication. The approximate pattern matching has been successfully used on comparing similarity of

files in the past. Tshark is a network protocol analyser that will be used to extract interesting fields of an

IEC 60870-5 protocol (aka IEC 104) from the ICS communication packet capture files.

IEC 104 is a protocol that provides a communication profile for sending basic telecontrol messages between

two systems in electrical engineering and power system automation. This protocol enables communication

between control station and a substation via a standard TCP/IP network. The communication is based on

the client-server model. An ICS normal profile is computed from the packet capture files to represent a

normal ICS traffic. In the anomaly detection phase, unknown ICS network traffic is compared to the normal

profile using approximate pattern matching algorithm. In this research, Ssdeep pattern matching algorithm

will be used to compute the matching score between profiles to identify anomalies.

Keywords: IEC 104, Industrial Control System, Ssdeep, Anomaly Detection, Network Traffic

mailto:nmutua@strathmore.edu
mailto:matousp@fit.vutbr.cz

 2

Table of Contents

ABSTRACT ... 1

CHAPTER 1: INTRODUCTION .. 4

1.1 Study Background .. 4

CHAPTER 2: LITERATURE REVIEW ... 5

2.1 IEC 60870 Communication.. 5

2.2 IEC 60870-5 - 104 Protocol ... 5

2.3 IEC 104 Vulnerabilities.. 6

2.3.1 Plaintext Mode Message Transmission ... 6

2.3.2 Lack of Authentication Mechanism .. 6

2.4 Approximate Pattern Matching Algorithm .. 6

2.4.1 Block-Based Hashing (BBH) .. 7

2.4.2 Context-Triggered Piecewise Hashing (CTPH) .. 7

2.4.3 Statistically Improbable Features (SFI) ... 7

2.4.4 Block-Based Rebuilding (BBR) .. 8

2.4. Ssdeep ... 8

2.4.1 Levenshtein Distance .. 9

2.5. Ssdeep Test Cases on Files ... 10

2.6 Conclusion ... 11

CHAPTER 3: DATA SET ... 12

CHAPTER 4: SYSTEM DESIGN AND IMPLIMENTATION .. 13

4.1 System Design .. 15

4.2 Use Case Diagram .. 16

4.2.1 Use Case 1: Create-Profile.py Script ... 17

4.2.2 Use Case 2: Data Extraction ... 17

4.2.3 Use Case 3 Profile Hashing ... 18

4.2.4 Use Case 4 Pattern Matching .. 19

4.3 Sequence Diagram ... 20

4.3.1 Load and Extract PCAP File ... 20

4.3.2 Hash Payload File ... 21

4.3.3 Compare Profiles ... 21

CHAPTER 5: RESULTS ... 22

5.1 Overview .. 22

5.2 Ssdeep Set-up and Installation ... 22

 3

5.3 TCP Payload Extraction ... 22

5.4 TCP Payload Hashing .. 23

5.5 Pattern Matching .. 24

5.6 Man-In-The-Middle Attack Simulation ... 26

5.7 System Validation .. 27

5.8 Conclusion ... 28

5.9 Future Work ... 29

REFERENCES... 30

 4

CHAPTER 1: INTRODUCTION

1.1 Study Background

Industrial Control Systems (ICS) incorporates numerous kinds of systems, among them, engineering

workstations, programmable logic controllers (PLC), and supervisory control and data acquisition

(SCADA). Generally, ICS are utilized at the core of national critical infrastructure and usually exposed to

public networks that are at a high risk of cyber-attack. The control procedures of critical infrastructures

such as power plant, oil and gas facilities, chemical processing plants, traffic control systems, among others

are becoming more and more vulnerable to external network threats (Leith & Piper, 2013).

Computer security has moved past ordinary office systems, and attackers are currently likewise focusing

on Industrial Control Systems (ICSs) (Bolzoni et al., 2012). The key reason as to why organisation networks

are targets for hackers is to obtain confidential information. The contemporary network system is

voluminous to such an extent that manual inspection for malware is illogical and a costly task for an

organisation to perform. In recent history, the most critical attack against an ICS is the Stuxnet attack

(Langner, 2013), which is known as the first digital/cyber fighting weapon. The attack was meant to

physically sabotage the Iranian nuclear program. In response to such kind of attacks, the U.S government

in 2007 demonstrated how attackers could possibly destroy a power plant with only 21 lines of code (Zetter,

2016). In addition, a similar attack was carried out in late 2015 and early 2016, whereby hackers sabotaged

two power distribution companies in Ukraine with an aim of shutting down electricity to more than 80, 000

people in the country. Another case was witnessed in Germany in 2015 where attackers compromised a

steel mill and tampered with a blast furnace, leading to massive destruction on the plant (Zetter, 2015).

The motivation/goal of the project is to prove the viability of using approximate pattern matching algorithm

to profiling Industrial Control System communication. I aim to study the pattern matching algorithms, read

recommended papers and experiment with ICS communication packets. Specific objects are: -

1. To find out how to profile ICS communication using approximate matching algorithm.

2. To find out which approximate matching algorithm can be used to profile ICS network

communication.

3. To design and develop an ICS network profiling tool using approximate matching algorithm.

4. To test and validate the effectiveness in terms of accuracy of the solution.

 5

CHAPTER 2: LITERATURE REVIEW

2.1 IEC 60870 Communication

IEC 104 messages are exchanged between the controlled and the controlling station. The controlled station

is also called Remote Terminal Unit (RTU) slave. A master station commands the slave station. The

controlling station (master station) performs controls of outstation. IEC 104 communication is delivered in

the monitoring direction i.e. from the controlled station (slave) to the controlling station (master) or in the

control direction i.e. controlling station (master) to the controlled station (slave). Figure below shows a

topology of IEC 104 router connected with 104 SCADA monitoring systems using IEC104 protocol over

TCP/IP and IEC101 sensors communicating via Modbus RTU with the router (Matoušek, 2017).

Figure 1: IEC 104 topology

2.2 IEC 60870-5 - 104 Protocol

IEC 60870-5-104 is also commonly referred to as IEC 104. This SCADA protocol is defined within a

collection of standards called IEC 60870. This protocol is a TCP/IP adaptation of the long-standing IEC

101 serial protocol, also known as IEC60870-5-101. IEC 101 defines the remote-control functionalities

needed in extensive areas. Within the electrical industry, both IEC 104 and IEC 101 are used extensively

to help in establishing communications links that connect the electrical control stations to the substations

(Haverkort & Remke, 2018).

The application layer of the IEC 104 consists of sub-layers. They are the Application Protocol Control

Information (APCI) and Application Service Data Unit (ASDU) sub-layers. Above the TCP layer lies a

sub-layer, the APCI, which defines three 104 message types. The formats consist: the (I-format) short for

information transfer format, (S-format) known as the numbered supervisory functions and finally the (U-

format) unnumbered control functions. U-format type of messages are used for initiating, halting and

checking the connection statuses. On the other hand, the I-format type of messages transfer data two or

 6

more IEC 104 devices. Finally, S-format messages are crucial in acknowledging I-format messages

previously received (Isakov et. al., 2014).

2.3 IEC 104 Vulnerabilities

The existing cyber vulnerabilities and attacks found within the physical and application layer of IEC 104

protocol are as follows;

2.3.1 Plaintext Mode Message Transmission

Due to data transmission in the form of clear text in IEC 104, information transfer between substations and

the control centre is conceivably prone to high level cyber-attacks such as information alteration, tapping

and espionage. For instance, a cyber-attacker can unveil a Man in-the-Middle (MITM) attack to help in

sniffing as well as gathering remote signals, remote measurement values and remote-control commands

(Papakonstantinou, 2015). For every case packet can be intercepted, modified and re-injected to the

communications channel in order to compromise the security and stability of the SCADA system. These

malicious attacks expose the SCADA to future attacks.

2.3.2 Lack of Authentication Mechanism

Due to lack of authentication mechanism in ICS, malicious attackers can gain unauthorized access and

compromise information integrity and availability. The attackers can also launch different type of attacks

such as; MITM attacks, spoofing attacks or replay attacks. This is a huge system security loophole because

lack of authentication provides hackers with a chance to gain easy access and this pauses a serious system

vulnerability, which can lead to system compromise thus affecting operations, safety and may result into

catastrophic damage (Case, 2016). For example, a false remote-control command such as “open the circuit

breaker” could lead the power system to shed load affecting power supply reliability and at the same time

exposing the operators and the large population to safety concerns.

2.4 Approximate Pattern Matching Algorithm

In evaluation to cryptographic hashing functions, approximate pattern matching algorithm, otherwise

referred to as fuzzy hashing algorithm, attempts to detect the similarity between two or more files by

connecting similar inputs to similar outputs, indistinctly known as a fingerprints or profile. Approximate

matching algorithms analyse files at byte level making them suitable to compare a large chuck of data and

identify similar texts or embedded objects (e.g., an image in a file) or binary fragments (e.g., a virus

contained inside a file or a specific data packet in a network communication).

 7

By utilizing a variety of strategies, approximate pattern matching algorithms are able to identify if even a

single byte has been changed (NIST, 2014). A confidence score is determined upon successful similarity

matching. The confidence score is normally determined by the number of attributes in common between

the objects in correlation. The score is anticipated to be high when similarity between the shared content is

high and low when less content in the two files is similar. Fuzzy hashing can be categorized into the

following four categories: -

 2.4.1 Block-Based Hashing (BBH)

Block-based hashing technique produce and store cryptographic hashes for given block of number with

fixed byte sizes such as 512 bytes. In more subsequent stages of block-based hashing, it compares two

different inputs by evaluating and establishing the number of common blocks on these inputs and providing

the measure of the degree of similarity between them. This fuzzy function was designed by Nicholas

Harbour under a program that he termed as dcfldd (Harbour, 2002). This fuzzy function splits the input data

into several blocks of a fixed length and then computes the corresponding cryptographic hash value for

each block. Despite the fact that the hash-based approach is efficient, more reliable and exceptionally

proficient. A single byte change at the beginning of a file can change all the other block hashes, making

this scheme very vulnerable.

 2.4.2 Context-Triggered Piecewise Hashing (CTPH)

This method was developed by Andrew Tridgell, who actualized spamsum, a CTPH application focused

on the identification of spam e-mails (Tridgell, 1999). The primary idea behind this concept was to help in

locating content markers, known as contexts, within a binary data. This method calculates the hash function

of each segment of the file delimited by the contexts and save the sequence of hashes into a file. Therefore,

the boundaries of each segment are depended on the content of the object and not determined by a

subjectively fixed block size. In 2006, Jesse Kornblum implemented ssdeep based on spamsum. Ssdeep is

one of the principal programs for computing CTPH.

 2.4.3 Statistically Improbable Features (SFI)

This approach was designed based on the idea of identifying several common attributes for every object

under study and then doing a compare whether the features are different. The feature to be identified in this

case refers to a sequence of consecutive bits that are identified based on the criteria from the file containing

the object. For practical implementation, Vassil Roussev chose to utilize entropy in with a reason to find

measurably improbable features. Based on this idea and findings, he developed an algorithm known as

 8

sdhash. The objective of this algorithm was to highlight object features that have a rear chance of occurring

in other data objects (Oliver, Forman, & Cheng, 2014). The score generated by this algorithm range between

zero and one hundred. This range refers to the confidence value to show how certain the algorithm is that

the two data objects being compared have non-trivial amount of similarity.

 2.4.4 Block-Based Rebuilding (BBR)

This function utilizes external data. The data is made up of arbitrary picked blocks, consistently or in a

fixed way, in order to rebuild a file. The process computes the dissimilarity between the bytes of the initial

file to the chosen blocks using the Hamming distance or any other measurement (Breitinger & Baier, 2012).

Two of the best-perceived usage of this method are SimHash and bbHash.

2.4. Ssdeep

In 2006, Jesse Kornblum released ssdeep. Ssdeep is a fuzzy hashing algorithm that employs similarity

digest to be able to determine if the hashes that represent two or more files have similarity. This tool

produces fuzzy hashes, which are considered Context Triggered Piecewise Hashes (CTPH). CTPH

considers two files similar if they have some identical sub-parts. Fuzzy hashes and other rolling hash

methods are useful because they generate a continuous stream of hash values for a rolling window over the

binary (Jesse, 2006). This algorithm computes a matching score ranging in between zero to one hundred

percent. This score is translated as a weighted level of the similarity degree between the input files, whereby

a higher score implies a more similarity between the input files (Martínez, et al., 2015). The signature

format produced by ssdeep comprises of a header followed by one hash as indicated below. The following

represents the content of the header in the latest versions is:

ssdeep,1.1—blocksize: primary hash: secondary hash, filename,

The word ssdeep in the header format above identifies the algorithm, 1.1 identifies the version of the file

format, -- is a separator while the remaining part of the header points out the elements displayed below the

header in this order (block size, primary hash, secondary hash and filename).

To compute similarity in file signatures, this tool takes signatures as regular strings and utilize Levenshtein

distance measure to determine the degree of correlation. The Levenshtein distance is the number of

operations required to change one string into another. There are various ways to characterize the

Levenshtein distance, depending on which tasks are permitted. Ssdeep technique of calculating similarity

is based on the Levenshtein distance between two strings. This distance differentiates two strings and

determines the least number of operations required to transform one string to another. The edit operations

 9

allowed in the distance comparison are deletions, insertions, and substitutions of a single character and

transpositions of two adjacent characters (Kim, et al., 2017).

In forensics, ssdeep is a widely known and used byte wise approximate matching application and it is

considered by a couple of researchers as the de facto standard in a couple of cyber security areas (Breitinger,

Stivaktakis, & Baier, 2013). To compute similarity in file using ssdeep, hashes of the input files are

computed then used for comparison with another hash or with a data file. The outcome in both scenarios

are the same, using one technique or the other is highly depended on the data available to the user. Ssdeep

has increased enormous fame in malware detection and analysis in the recent past. At the time of this

research, the latest version was 2.14.1 accessible through https://github.com/ssdeep-

project/ssdeep/releases/tag/release-2.14.1 (Last accessed on 20th February 2020).

 2.4.1 Levenshtein Distance

The Levenshtein distance is a string metric for measuring the number of edits which will transform one

string to another. Informally, the Levenshtein distance between two strings is the minimum number of

single-character edits (i.e. insertions, deletions, or substitutions) required to change one string into the

other. By performing these three operations, the algorithm tries to modify first string to match the second

one. In the end we get the Levenshtein distance.

The example below demonstrates how this algorithm can be used to compute distance between two strings

“Saturday” and “Sundays”. The character in bold format shows the characters being added or removed at

each progression. The Levenshtein distance in this example is 5.

Saturday deletion→Sturday deletion → Surday deletion → Suday insertion → Sunday insertion → Sundays

Levenshtein distance between two strings, a and b (of length |a| and |b| respectively) is given by equation

below: -

Lev a, b (|a|, |b|).

Where:

Equation 1: Levenshtein Distance Formula

https://github.com/ssdeep-project/ssdeep/releases/tag/release-2.14.1
https://github.com/ssdeep-project/ssdeep/releases/tag/release-2.14.1

 10

From this equation, 1(ai≠bi) is the indicator function equal to 0 while ai≠bi and equal to 1 otherwise, and lev

a, b (i, j) is the distance between the first i characters of (a) and the first j characters of (b). The primary

component inside minimum corresponds to deletion (from a to b), the second to insertion and the third to

match, depending on whether the separate symbols are equivalent.

2.5. Ssdeep Test Cases on Files

Ssdeep can match files with different formats. Like .pdf, .png, .docx, json, csv. One of the most powerful

features of ssdeep is the ability to match the hashes of input against a list of known hashes. The following

3 images will be used do some tests of the ssdeep pattern matching algorithm.

 Image1 Image2 Image3

Md5 hash for the above 3 images can be computed in ssdeep using this command: -

#Md5sum Image1.png Image2.png Image3.png

Md5 hash Image 1: (616892b87f9c4b91a33ab68153ed9fb3)

Md5 hash Image 2: (5d5a9f4f78abfe3a626e1a7dc5153d92)

Md5 Hash Image 3: (616892b87f9c4b91a33ab68153ed9fb3)

Image 1 and Image 3 are the same hence the hash value is the same.

Fuzzy hashing can be used to identify similarity between files. The fuzzy hash of one file should be

computed first and then use the matching mode to match the other file. A matching score percentage is

calculated at the end of every match to show how similar the files are. The higher the matching score the

more similar the files are.

Taking an example of the above images, Image1 is first hashed to image1hash.txt. The hash value of

Image1 is compared with image3.png. Image3 is a duplicate of Image1 hence the match score is 100%.

File signatures for the above images can also be used to compute similarity. After generating fuzzy hashes

for the 3 images, it’s possible to compare those signatures to each other. The comparison of one or more

files of signatures against each other using the –x flag as shown below: -

 11

Command: #ssdeep –x image1hash.txt imagehash3.png

Results: image3hash.png matches image1hash.png (100%)

Comparison of unknown signatures against a set of known signatures can be done through use of –k flag

as shown below: -

Command for hashing all 3 images into one file:

#ssdeep –b image1.png image2.png image3.png >pictures.txt.

#ssdeep –k pictures.txt –k image1.png image2.png image3.png

Results:

image1hash.txt:image1.png matches results.txt:image1.png (100)

image2hash.txt:image2.png matches results.txt:image2.png (100)

image3hash.txt:image3.png matches results.txt:image3.png (100)

image3hash.txt:image3.png matches results.txt:image1.png (100)

Ssdeep can also be used to find truncated files. To prove this functionality, I picked a word document with

582 pages and named this document book 1. I then made a copy of book 1 and truncated the copy to 270

pages and named this document book 2. To compute the similarity between these 2 documents (original

and copy), I hashed the 2 files using this command: -

#ssdeep –b book1.pdf >book1hash.txt

#ssdeep –b book2.pdf >book2hash.txt

The 2 hash files are then saved in different folders. Book1 hash is saved in folder C while book 2 hash is

saved in folder D. – p flag is used for pretty matching mode to compute similarity between these 2 files. –l

flag is used for relative paths for filenames because the files are saved in different folders. The command

below is used to compute similarity between the 2 files.

Command: #ssdeep –l –r –p FolderC FolderD

Results: FolderC/book1hash.txt matches FolderD/book2hash.txt (41%)

2.6 Conclusion

From the test result above, it is evident that ssdeep can be used to match different files with different formats

as this has been validated in the test cases.

 12

CHAPTER 3: DATA SET

The data used in this research was captured from a SCADA to substation network communication using

Wireshark. A total of four packet capture files were generated for IEC 104 analysis in this research. They

include:

i. SCADA_to_substation_normal. pcapng – This packet capture file was captured while the network

communication between the SCADA and the substation was operating in normal conditions with

no human interference. The network communication was between two nodes with IP 172.16.1.1 and

172.16.1.100. This communication took a period of 15 minutes 72 seconds and total of 172 packets

were captured.

ii. SCADA_to_substation_attack1.pcapng – This packet capture file was captured while simulating

Denial of Service attack (DoS). This attack was simulated by continuously switching on and off one

of the communication nodes. This was achieved by using ASDU with C_CD_NA messages (double

command). Not all commands were accepted. Out of the 12 commands that were received, only 4

replies were send back. This simulation took 15 minute and 83 seconds. A total of 217 packets were

captured in this packet capture file.

iii. SCADA_to_substation_attack2.pcapng – This packet capture file was captured while simulating

DoS attack within many substations. This attack involved network nodes ranging from 172.17.1.20

to 172.17.1.119 and was caused by ASDU messages C_IC_NA_1 (interrogation command). During

this attack, a total of 688,979 packets were captured and it took a period of 16 minutes and 30

seconds.

iv. SCADA_to_substation_attack3.pcapng – This packet capture file was captured file simulating a

scanning attack. This attack was meant to retrieve values from various objects on the target device.

This attack used ASDU M_SP_NA messages (single point information). This communication was

between two network nodes with IP 172.16.1.1 and 172.16.1.100. This attack took a period of 14

minutes and 17 seconds. A total of 147 packets were captured in this packet capture file.

 13

CHAPTER 4: SYSTEM DESIGN AND IMPLIMENTATION

System architecture is a conceptual model that outlines the structural design of the system (Giraldo et al.,

2019). The system architecture addresses how various system component interact to achieve the system

functionality. This section provides an understanding of how the system design, structure and user

requirements must be supported by the application. The developed ICS network profiling tool is a command

line-based application that comprises of three python scripts. They include:

i. Create_profile.py Script – This python script is the first to be executed while running the application.

It is integrated with Tshark to extract TCP payload from the packet capture files and save the data

into a text file.

ii. Hash_profile.py Script – This is the second python script to be executed. It is used to hash the

payload files extracted from the packet capture files. Ssdeep is integrated with this script for to be

used for fuzzy hashing.

iii. Compare_profile.py scripts – This is the third python script in the application. This script is used

for pattern matching the fuzzy hashes against the comparative files and generated a matching score.

Ssdeep is used in this script to compute similarity between the input files.

The steps below discuss the processes and functionality of the scripts in detail;

Step 1: Import the Packet Capture File

This is the first step that takes place when the user runs the create_profile.py script. The main goal of this

step is to import packet capture files into the application for further analysis of the IEC 104 protocol. This

is achieved by specifying the names of the files to be analysed.

Step 2: TCP Payload Data Extraction

The second step involves the use of Tshark to filter the payload data from the packet capture files imported

into the application. Tshark attribute filters used at this stage will determine the data to be extracted from

the packet capture files. The Tshark command used in this application to filter IEC 104 payload is: tshark,

-r, pcap_file, -T, fields, -e, tcp. payload, 104apci.

Step 3: TCP Payload Data Hashing

The third step uses the hash_profile.py script to hash the extracted text file in the stage above. Ssdeep is

utilized at this level to fuzzy hash the files. So as to hash a file, ssdeep only utilizes a rolling hash algorithm

to generate a pseudo-random value based on the current context of the input. A sliding window is overridden

 14

as input and every time the generated rolling hash matches the trigger; the algorithm computes a hash on

the current piece. Originating from the spamsum algorithm, ssdeep uses block size for the trigger value.

Step 4: Profile Pattern Matching

The fourth step includes calculating the similarity between files using compare_profiles.py script. During

comparison of two or more ssdeep hashes, ssdeep begins by determining the block size. Ssdeep computes

the block size for the files to be compared. Following stage is the elimination of recurring sequences.

Sequences indicate patterns in the input file which hold little information and therefore have little impact

on the content. Finally, ssdeep computes a weighted Levenshtein distance between the two resulting hashes.

The Levenshtein distance represents the minimal number of edits required to change from one input to the

other. The standardized match score represents a conservative weighted percentage of how much two inputs

are ordered homologous sequences which represents how many of the bits are identical and in the same

order. At last, the application generates a matching score in the range 0 –100. The score is a proportion of

how similar the input files are, where a higher result implies a greater similarity of the files and lower score

is an indication of dissimilarity. Figure below illustrates the processes and interconnections for the ICS

network profiling tool.

 15

Figure 2: System Architecture

4.1 System Design

Since ICS network communication has proved stability within long term monitoring, approximate pattern

matching algorithm was used in this research to detect anomalies in unknown ICS communication. The

developed tool was designed to compute ICS network profile that would be used to identify any anomalies

in ICS network communication. From this, ICS network administrators are better placed to monitor network

communication based on solid facts.

 16

4.2 Use Case Diagram

The application users and interactions of various functionalities of the ICS network profiling tool is

illustrated in the use case diagram below. This use case describes the key features offered by the developed

prototype. All the external tools and users interacting with the developed solution are also highlighted.

Figure 3: Use Case Diagram

 17

4.2.1 Use Case 1: Create-Profile.py Script

Table 1: Create-profile.py Script Use Case

 Use Case Name: Create-profile.py script

Description: - This use case contains instructions to extract TCP payload data from the

PCAP file using Tshark, hashing the network profile and matching the

known profile against the unknown profile.

Primary Actor: - User

Secondary Actor: - None

Include Use Cases: - Data Extraction

- Profile Hashing

- Pattern Matching

- Calculate Matching Score

Extend Use Cases: - None

Precondition: - ICS communication PCAP file must have been captured.

Post Condition: - The python script extracts the TCP payload from the packet capture file.

Main Flow: - The system triggers TCP payload data extraction use case and waits for

it to complete.

Alternative Flows: - Failed data extraction.

- Restart Tshark and rerun the script.

- The use case ends.

4.2.2 Use Case 2: Data Extraction

Table 2: Data Extraction Use Case

 Use Case Name: Data Extraction

Description: - This use case contains procedures for the application to extract TCP

payload data from the ICS captured packet capture file using Tshark as

the analysis tool.

 18

 Use Case Name: Data Extraction

Primary Actor: - None

Secondary Actor: - Tshark

Include Use Cases: - Extract TCP payload data

Extend Use Cases: - None

Precondition: - Tshark must be preinstalled.

Post Condition: - The application extracts the TCP payload from the ICS packet capture

files and saves the results into a text format.

Main Flow: - The application uses tshark to filter IEC104 payload using the

following command: tshark –r packet file.pcapng –T fields –e

iec60870_104.type –e tcp.payload 104apci.

- TCP payload is extracted and saved to a text file for further processing.

Alternative Flows: - Tshark fails to extract payload.

- Restart Tshark.

4.2.3 Use Case 3 Profile Hashing

Table 3: Profile Hashing Use Case

 Use Case Name: Profile Hashing

Description: - This use case contains the procedures for the system to hash the text file

saved after extraction of the payload. Ssdeep is used for generating the

fuzzy hash.

Primary Actor: - None

Secondary Actor: - Ssdeep Pattern Matching Algorithm.

Include Use Cases: - Generate Hash

Extend Use Cases: - None

 19

 Use Case Name: Profile Hashing

Precondition: - Save a text file containing TCP payload.

Post Condition: - Fuzzy hash for the saved TCP payload.

Main Flow: - This use case computes the fuzzy hash of the input file and scores the

results.

Alternative Flows: - File hashing fails.

- Rerun ssdeep.

4.2.4 Use Case 4 Pattern Matching

Table 4: Pattern Matching Use Case

 Use Case Name: Pattern Matching

Description: - This use case compares the known and unknown profiles and computes

the matching score.

Primary Actor: - None

Secondary Actor: - Ssdeep Pattern Matching Algorithm.

Include Use Cases: - Check hash similarity.

Extend Use Cases: - Any difference.

Precondition: - Compute profile hash.

Post Condition: - Matching score of the profiles.

Main Flow: - Ssdeep matches the unknown profile against a file of known profile.

- The similarity match is calculated between the two input files.

Alternative Flows: - Pattern matching algorithm fails to run.

- Rerun ssdeep.

 20

4.3 Sequence Diagram

This is an interaction diagram that depicts time ordering of messages between different system objects.

Creating a normal profile for an ICS network communication and comparing the normal profile against an

unknown communication to identify anomalies in the network communication are amongst the main

features of the ICS network profiling tool. The figure below indicates the main flow of data and events with

regards to the main functionalities of the proposed system.

Figure 4: Sequence Diagram

 4.3.1 Load and Extract PCAP File

Create profile python script starts by triggering Tshark. Tshark network protocol analyser tool is used to

extract network communication TCP payload from the packet capture files. This tool goes through the ICS

packet capture files to analyse the IEC 104 payload data according to the specified attribute filters. The

extracted data from the TCP payload is then saved into a text file in the file system.

 21

 4.3.2 Hash Payload File

The application uses ssdeep algorithm to fuzzy hash the TCP payload data extracted from the ICS packet

capture file. The hash file is also saved in a text file in the file system.

 4.3.3 Compare Profiles

Compare-profile python script is used to compute similarity between the input files. The comparison can

be between the normal profile hashes against the unknown profile hash to compute similarity between the

profiles. Ssdeep pattern matching algorithm computes the similarity between the profiles to generate the

matching score. The higher the similarity score between the profiles, the fewer anomalies can be detected

in the compared profiles.

 22

CHAPTER 5: RESULTS

5.1 Overview

Designing of the proposed application was followed by its development and implementation as per system

design. This chapter concentrates on the testing process of the application. On the implementation section,

the implementation environments are explored together with the main functionality of the application. The

testing part focuses on usability testing and functional testing to validate if the application attains the

objectives of the proposed solution. The relevant screenshots of the prototype are provided.

5.2 Ssdeep Set-up and Installation

Ssdeep-2.14.1 is the latest version accessible in GitHub as of the time of documenting this research. The

source code can be downloaded through this link: https://github.com/ssdeep-

project/ssdeep/releases/tag/release-2.14.1(Last accessed on 13th March 2020). After downloading the

algorithm, the user can change into the downloaded directory by using this command: cd ssdeep-2.14.1.

The next installation step is executing the ./bootstrap file so as to generate the configure script. Once the

script is generated, it is executed by ./configure. Lastly, the ssdeep program can be complied by running

make command, make and install it by make install. For the installation to work, the user logged into the

computer must be a root user on most operating systems to be able to install the program to its default

location, /usr/local/bin. This can also be achieved by running sudo make install command.

5.3 TCP Payload Extraction

The user is required to run create_profile.py script in order for the TCP payload data to be extracted. Tshark

is integrated with the script to extract specific attributes from the ICS packet capture file. In the

create_profile.py script, flag -cp is a predefined argument for creating profile while -o is an argument for

outputting the results into a text file. Extracting TCP payload from the normal communication packet

capture file was achieved through this command:

python create_profile.py -cp SCADA_to_substation_normal.pcapng -o Normal_Payload.txt -cp

SCADA_to_substation_attack1.pcapng -o attack1.txt -cp SCADA_to_substation_attack2.pcap -o

attack2.txt -cp SCADA_to_substation_attack3.pcapng -o attack3.txt

https://github.com/ssdeep-project/ssdeep/releases/tag/release-2.14.1
https://github.com/ssdeep-project/ssdeep/releases/tag/release-2.14.1

 23

Figure 5: TCP Payload Extraction from PCAP

5.4 TCP Payload Hashing

The user is required to run Hash_profile.py script in order to hash the payload text files extracted in the step

above. Flag -ch is defined in the script as an argument for creating hash using ssdeep while -o is defined as

an argument to output all the file hashes into a text file. The command below was used to hash all the

payload files extracted in the stage above in this research.

Python hash_profile.py -ch Normal_Payload.txt -ch attack1.txt -ch attack2.txt -ch attack3.txt -o

HashFile.txt

 24

Figure 6: Payload hashing command

The figure below shows the hash values generated from the ICS payload files and saved into a text file.

Figure 7: Normal and Attack hash values

5.5 Pattern Matching

Compare_profile.py script is used for pattern matching purposes. The user can compare one or more

payload files against the hash values using –c flag. The file containing the hash values to be used for

comparison against the input files can flagged using -hf. The output result is the similarity percentage

between the hash values and the input files.

 25

The results obtained show that the normal profile hash value matches Normal_Payload.txt file 100%. Attack

1 hash value matches Normal_Payload.txt file 50%. Since SCADA_to_substation_attack1 contained

packets of DoS attack simulation, the attack 1 communication profile could not match the normal

communication 100%. Attack 1 packet capture file contained an ASDU messages with double commands.

The attack simulation caused a malfunction between the communication nodes. This resulted to instability

in the IEC 104 network communication. The application was able to detect the threshold of the malicious

packets contained in attack 1 file.

The network profiling tool can also compare one hash file against many files. Compare_profiles.py script

was used to compute similarity of the normal ICS hash value against attack 1, 2 and 3 payloads extracted

from the packet capture files. The similarity matching score between the normal profile and attack 1, attack

2 and attack 3 is 50%, 86% and 50 respectively. The application was able to detect malicious

communication in all the packet files. The command below was used to pattern match the normal hash

against attack 1, attack 2 and attack 3 payloads.

python compare_profile.py -hf Hashfile.txt -c Normal_payload.txt -c Attack1.txt -c Attack2.txt -c

Attack3.txt.

Figure 8: Pattern Matching Different Attack Files

 26

5.6 Man-In-The-Middle Attack Simulation

Through the MITM attack, an attacker can inject or alter readings and commands in the communication

stream in real time. While intercepting packets, some packet can be dropped, altered or a new packet can

be injected with arbitrary outcome. Attackers can inject malicious data into the ICS communication to cause

harm. In this research, MITM attack was simulated by artificially modifying the first APCI control field

byte for the first 20 IEC 104 packets in the normal packet capture file. This binary modification was

performed by using a binary tool editor known as Hex Editor. For instance, the control field in a packet

binary data 680443000000 was modified to 680450000000. The bolded characters represent the changes.

Figure 9: Binary Data Manipulation

 27

After manipulating the first APCI control fields in the first 20 packets, the payload is reextracted from the

edited SCADA_to_substation_normal.pcapng using create_profile.py script. The terminal command used

to extract the payload from the manipulated pcap file is: python create_profile.py -cp SCADA_to_substation

_edited.pcapng -o Edited_Payload.txt

The normal and edited payloads were then hashed using hash_profile.py script. The python command used

to hash the normal and edited payloads is: Python hash_profile.py -ch Normal_payload.txt -ch

Edited_payload.txt -o Editedhash.txt

Similarity was then computed to compare the original normal payload file with the manipulated payload.

The matching score between these packet capture files is 94%. This is a proof that this tool can be used to

detect for any manipulation of binary data in packet capture files. The python command below was used

to pattern match the normal and manipulated packet capture file. Python compare_profile.py Editedhash.txt

-c Normal_payload.txt -c Edited_payload.txt.

5.7 System Validation

System validation is defined as the set of activities and processes aimed at verifying that the application is

performing as expected in line with the set objectives. The main objective of this research was to develop

an application that profiles ICS communication using approximate matching algorithm. The implemented

application was able to achieve the above in that it has been able to extract IEC 104 payload from ICS

packet capture files. The application can then hash the payload using ssdeep and compare different

communication profiles to compute the matching score.

Testing was done to ensure the developed application did not have bugs. A bug is defined as an error or

flaw in a computer application that causes the software to give an incorrect or unexpected result (SteelKiwi,

2015). Testing for bugs was done through conducting several tests repeatedly to determine the result given

was consistent. NIST’s guidelines state that the results of an application should be repeatable and

reproducible (Brunty, 2017).

i. Repeatability refers to obtaining the same results when using the same method on identical test

items in the same environment by the same operator using the same equipment within short intervals

of time. The tests were performed five times using the same packet capture files and produced the

same results.

 28

ii. Reproducibility refers to obtaining the same results being obtained when using the same method

on identical test items in different laboratories with different operators utilizing different equipment.

The application was installed in Mac OS, Linux and Windows operating systems and peer reviewed

using the same packet capture files produced the same results for all instances.

The performance of the developed application was determined by using three metrics namely accuracy,

sensitivity and specifying. Accuracy is the overall success rate of the application. It gives the proportion of

the input test that are correctly identified. Sensitivity also known as true positive is the rate at which attack

profiles were detected by the normal profile to ascertain attacks packets. Specifying also known as true

negative is the rate at which normal communication was correctly detected as normal and attack free.

Therefore, sensitivity quantifies the avoidance of false negative (attack profiles incorrectly detected as

normal profile) while specifying quantifies the avoidance of false positive (normal communication

incorrectly detected to contain an attack).

From the results obtained, the normal profile hash value matched the normal payload 100%. Out of the five

tests done on every operating system, all the results turned out to be true negative (normal communication

was correctly detected). Attack 1, 2 and 3 profiles were positively identified to contain attack packets in

comparison with normal profile with matching scores of 50%, 86% and 50% respectively.

5.8 Conclusion

The objectives of the study sought to understand the ICS network communication and IEC 104 protocol.

Consequently, the study sought to analyse different pattern matching algorithms and find out how similarity

is computed in files. Further, how to profile ICS network communication using pattern matching algorithm.

Extensive research in this study, along with testing different algorithms in files, helped to inform the need

of the developed ICS network profiling tool. This tool was built to inform the ICS network administrators

and researchers on how unknown ICS network communication can be analysed and determine whether

network packet files contain attacks. Unknown network communication profile highly differing with the

known profile can be an indication of malicious packets or attacks contained in a network communication.

Encouragingly, the application was received with positive feedback from the need for its functionality and

usability.

 29

5.9 Future Work

ICS is known to have relatively fixed operational objects and business processes which result in relatively

stable traffic pattern under normal conditions. Fluctuations of network traffic generally indicate the status

change in ICS communication. The scope of this study was to detect anomalies in ICS network packet

capture files using approximate pattern matching algorithm with focus on IEC 104 protocol. Future work

will concern studying how to analyse and detect anomalies in ICS network communication in a real time

manner. This can also be enhanced by incorporating other network attributes such as the source and

destination IP, port number and average time interval between adjust packets. Pattern matching algorithm

can then be used to match to match different attack patterns. Finally, SMS and email alert capability feature

and identification of the attack packets can also be developed for the tool to offer real time monitoring and

more comprehensive security service.

 30

REFERENCES

Breitinger, F., & Baier, H. (2012). A fuzzy hashing approach based on random sequences and hamming

distance.

Breitinger, F., Stivaktakis, G., & Baier, H. (2013). FRASH: A framework to test algorithms of similarity

hashing. Digital Investigation, 10, S50-S58.

Brunty. (2017). Validation of Forensic Tools and Software: A Quick Guide for the Digital Forensic

Examiner.

Case, D. U. (2016). Analysis of the cyber-attack on the Ukrainian power grid. Electricity Information

Sharing and Analysis Center (E-ISAC), 388.

D. Hadžiosmanović, D. Bolzoni, S. Etalle, and P. Hartel, “Challenges and opportunities in securing

industrial control systems,” in 2012 Complexity in Engineering (COMPENG). Proceedings, June

2012, pp. 1–6.

Giraldo, J., Urbina, D., Cardenas, A. A., & Tippenhauer, N. O. (2019, June). Hide and seek: An architecture

for improving attack-visibility in industrial control systems. In International Conference on Applied

Cryptography and Network Security (pp. 175-195). Springer, Cham.

Goel, S., Hong, Y., Papakonstantinou, V., & Kloza, D. (2015). Smart grid security. London: Springer.

Harbour, N. (2002). Dcfldd. defense computer forensics lab. In Net5. 5.2 (Vol. 1).

Ho, T., Oh, S. R., & Kim, H. (2017). A parallel approximate string matching under Levenshtein distance

on graphics processing units using warp-shuffle operations. PloS one, 12(10).

Kerkers, M., Chromik, J. J., Remke, A., & Haverkort, B. R. (2018, February). A Tool for Generating

Automata of IEC60870-5-104 Implementations. In International Conference on Measurement,

Modelling and Evaluation of Computing Systems.

Langer, R. (2013, November). Resources. Retrieved from Langner: Retrieved 13th March 2020 from

(langer.com): https://www.langner.com/wp-content/uploads/2017/03/to-kill-a-centrifuge.pdf

Leith, H. M., & Piper, J. W. (2013). Identification and application of security measures for petrochemical

industrial control systems. Journal of Loss Prevention in the Process Industries, 26(6), 982-993.

Martínez, V. G., Álvarez, F. H., Encinas, L. H., & Ávila, C. S. (2015). A new edit distance for fuzzy hashing

applications. In Proceedings of the international conference on security and management (sam) (p.

326). The Steering Committee of The World Congress in Computer Science, Computer Engineering

and Applied Computing (WorldComp).

https://www.langner.com/wp-content/uploads/2017/03/to-kill-a-centrifuge.pdf

 31

Matoušek, P. (2017). Description and analysis of IEC 104 Protocol. Faculty of Information Technology,

Brno University of Technology, Tech. Rep.

NIST, S. (2014). 800-168,“ Approximate Matching: Definition and Terminology,” Jul.

Oliver, J., Forman, S., & Cheng, C. (2014, November). Using randomization to attack similarity digests.

In International Conference on Applications and Techniques in Information Security (pp. 199-210).

Springer, Berlin, Heidelberg.

Remke, A., & Haverkort, B. R. (2018, February). A Tool for Generating Automata of IEC60870-5-104

Implementations. In Measurement, Modelling and Evaluation of Computing Systems: 19th

International GI/ITG Conference, MMB 2018, Erlangen, Germany, February 26-28, 2018,

Proceedings.

Skoko, V., Atlagic, B., & Isakov, N. (2014, November). Comparative realization of IEC 60870-5 industrial

protocol standards. In 2014 22nd Telecommunications Forum Telfor (TELFOR) (pp. 987-990).

IEEE.

Tridgell, A. (1999). Efficient algorithms for sorting and synchronization.

Zetter, Kim. (2016). Inside the cunning, unprecedented hack of Ukraine’s power grid. Wired Magazine.

Retrieved 12th February 2020 from (wired.com) https://www.wired.com/2016/03/inside-

cunningUnprecedented-hack-ukraines-power-grid/

https://www.wired.com/2016/03/inside-cunningUnprecedented-hack-ukraines-power-grid/
https://www.wired.com/2016/03/inside-cunningUnprecedented-hack-ukraines-power-grid/

