
Learning Probabilistic Automata in
the Context of IEC 104

Technická zpráva FIT VUT v Brně

Vojtěch Havlena, Lukáš Hoĺık, Petr Matoušek

Technická zpráva č. FIT-TR-2020-01
Fakulta informačnı́ch technologíı, Vysoké učenı́ technické v Brně

Last modified: May 18, 2021

Learning Probabilistic Automata in the Context
of IEC 104

Vojtěch Havlena, Lukáš Hoĺık, Petr Matoušek

FIT, IT4I Centre of Excellence, Brno University of Technology, Czech Republic

Abstract. Industrial Control System (ICS) communication transmits
monitoring and control data between industrial processes and the con-
trol station. ICS systems cover various domains of critical infrastructure
such as the power plants, water and gas distribution, or aerospace traffic
control. Security of ICS systems is usually implemented on the perime-
ter of the network using ICS enabled firewalls or Intrusion Detection
Systems (IDSs). These techniques are helpful against external attacks,
however, they are not able to effectively detect internal threats origi-
nating from a compromised device with malicious software. In order to
mitigate or eliminate internal threats against the ICS system, we need
to monitor ICS traffic and detect suspicious data transmissions that dif-
fer from common operational communication. In our research, we ob-
tain ICS monitoring data using standardized IPFIX flows extended with
meta data extracted from ICS protocol headers. Unlike other anomaly
detection approaches, we focus on modelling the semantics of ICS com-
munication obtained from the IPFIX flows that describes typical con-
versational patterns. This paper presents a technique for modelling ICS
conversations using frequency prefix trees and Deterministic Probabilis-
tic Automata (DPA). As demonstrated on the attack scenarios, these
models are efficient to detect common cyber attacks like the command
injection, packet manipulation, network scanning, or lost connection. An
important advantage of our approach is that the proposed technique can
be easily integrated into common security information and event man-
agement (SIEM) systems with Netflow/IPFIX support. Our experiments
are performed on IEC 60870-5-104 (aka IEC 104) control communication
that is widely used for the substation control in smart grids.

1 Introduction

Protection of the critical infrastructure that includes smart grids, water treat-
ment, gas and oil distribution, railways or aerospace traffic control has become
a challenge for security experts during past years [1, 2]. Cyber security is essen-
tial to the safe and reliable operation of modern industrial processes. Industrial
Control Systems (ICS) and Supervisory Control and Data Acquisition (SCADA)
systems are typically used in many industries to monitor and control physical
processes. With adoption of IT technologies like TCP/IP or Ethernet, cyber at-
tacks against ICS/SCADA systems become easier. The attacks on the industrial
systems from the outside can be effectively filtered out on the perimeter of an

ICS network by ICS-enabled firewalls or IDS systems. This protection is, how-
ever, ineffective against the attacks originating from the inside of the network.
Such attacks can be initiated by a malware installed on a control station, from
a compromised host or a rogue device connected to the internal network. At-
tackers first scan the ICS network in order to identify potential attack targets
and then they launch an attack that can control industrial processes, steal sen-
sitive data or damage functionality of the system [3, 4], e.g., the cyber attack
against the Ukrainian power grid in 2016 [5], cyber-espionage group APT33 tar-
geting aerospace and energy sector in the U.S., Saudi Arabia and South Korea
in 2017 [6], or the attack against pharmaceutical company Bayer in 2019.

In order to identify and eliminate internal cyber threats against the ICS sys-
tem, we need to monitor ICS communication and detect suspicious behavior [7,8].
As showed in our previous work [9], high visibility of ICS communication can be
achieved using IPFIX flow monitoring extended with meta data extracted from
ICS protocol headers on the application layer. These so called ICS flow records
contain flow properties extracted from the IP layer (source and destination IP
addresses), transport layer (source and destination ports), and application layer
(e.g., object ID, operation type, response type) [10]. ICS flow records also include
statistical properties of the flow, e.g., the starting and ending time, the number
of transmitted bytes, packets, etc., which make them a valuable source of data
for anomaly detection [11]. Flow records are usually collected on the network
management system where they are analyzed for security purposes [12].

In this paper, we apply a probabilistic approach to model the ICS traffic. The
traffic is seen as a sequence of “conversations” between pairs of ICS devices. Each
conversation is understood as a string with certain probability of occurrence in
a typical traffic. Our approach is based on learning a deterministic probabilistic
automaton (DPA) that describes the distribution of the occurrence probability
over the conversations. For that, we use the learning algorithm [13]. A typical
ICS traffic between two ICS/SCADA devices is stable, predictable, and uses a
limited set of commands [14–16]. This makes it possible to learn a DPA that
represents the ICS traffic accurately, and use it effectively to detect anomalies.

Anomaly detection (AD) compares a DPA representing an input network
traffic with the previously learnt model. If these models differ, it means that
either unknown conversations were found in the input data or that the legitimate
communication strings appeared with an unusual frequency. This points either
to malfunctioning of the network or a cyber attack.

The proof of concept of this technique was demonstrated in our previous
work [10]. In this paper, we focus on effectiveness and accuracy of the method
that is demonstrated on typical classes of cyber attacks [17]. This technical report
is an extended version of paper published in the proceedings of IM’21 [18].

Contribution The main contribution of this paper is a technique that effectively
models ICS communication using probabilistic automata. We consider two prob-
abilistic models: deterministic probabilistic automata and frequency prefix trees.
While prefix trees are easy and fast to construct, DPAs provide more compact

2

representation which is generated in polynomial time [13]. The second contri-
bution involves anomaly detection using DPAs. We introduce two methods: the
first one is based on computing the probability of a single conversation wrt.
DPA, the second one compares two probabilistic distributions representing the
learnt model and the input traffic. The proposed technique was designed so that
(i) it is effective in detection of common cyber attacks on ICS networks, and (ii)
can be easily implemented into a SIEM system. Anomaly detection using DPAs
is demonstrated on IEC 104 traffic.

Structure of the Paper After introduction, Sec. 2 gives an overview of the recent
research related to the anomaly detection of ICS and SCADA systems. Sec. 3
gives preliminaries on probabilistic automata. Sec. 4 describes a process how
DPAs are generated from ICS flow records. Sec. 5 presents anomaly detection
using DPAs. Results of our experiments with IEC 104 communication are given
in Sec. 6. The last section concludes our work and discusses further research.

2 Related Work

Anomaly detection (AD) of ICS/SCADA communication has been explored by
many research teams in previous years as a response to the increasing threats
of cyber attacks against the critical infrastructure [7,16]. Unlike signature-based
approach, anomaly detection creates a model of the legitimate behavior of an
ICS system during normal operations. Then, AD system observes deviations of
an input traffic wrt. the normal behavior model. If the deviation is higher then
a given threshold, the input communication is marked as anomalous.

Rakas et al. [16] divide AD systems into three groups: statistical-based (uni-
variate, multivariate, time series, cumulative sum), knowledge-based (finite au-
tomata, description scripts, expert systems), and machine learning-based (using
Bayesian networks, Markov models, neural networks, fuzzy logic, etc.). Our ap-
proach is a combination of knowledge-based and machine learning-based tech-
niques because we employ probabilistic approach as in Markov models and the
model is implemented as a (probabilistic) automaton.

Similar approach to ours was explored by Lin and Nadjm-Tehrani [19,20] who
observed three attributes of IEC 104 communication (AsduType, CoT, IOA)
and created a probabilistic suffix tree (PST) that represented underlying timing
patterns of spontaneous events for each attribute class. Using the changes of
distribution of inter-arrival times, they categorized the traffic into five different
groups based on periodicity and stability of observed times. They used PSTs to
predict the future behavior of communication and detect possible changes. Their
method is computationally demanding and sensitive to network delays. Instead
of modelling timing features we focus on semantics of IEC 104 conversations in
order to detect irregularities in exchanged commands.

Martinelli et al. [21] employ a network of timed automata (TA) to model
the SCADA water distribution system. Numerical values of water tank level are
mapped into three classes. Time changes represent edges in the TAs. Anomaly

3

detection is implemented using formal verification of pre-defined temporal logic
formulae over the model. This method has a limited usage due to the manual
creation of the model and high demands on model checking computation.

Goldenberg and Wool [22] similarly to us model semantics of ICS protocol,
more specifically, sequences of queries and responses of Modbus communication.
Their model employs deterministic finite automata (DFA) where symbols of the
alphabet represent a tuple of a transaction ID, function code, reference num-
ber, and bit/word count of the Modbus packet. DFA transitions express the
predicted behavior of the system which can be either normal, retransmission,
miss, or unknown. The created model is sensitive to out-of-order messages and
is able to recognize invalid messages. In our work, we also observe probability of
transmitted messages that is important for detection of command injection and
replay attacks.

Probabilistic approach to SCADA communication was applied by Caselli et
al. [23,24] who introduce a sequence-aware intrusion detection system based on
discrete-time Markov chains (DTMC). The modeling process clusters all mes-
sages with the same semantic meaning to one state, e.g., read coils from address
0. Transitions represent a sequence of messages with probability related to the
jump from state A to B. In our approach, messages are represented as strings
accepted by a DPA rather than states as in Caselli’s approach.

An important advantage of our system is that input data is obtained using
standardized IPFIX flow monitoring [25]. Input flow records extended with ICS
header values are sufficient to create an accurate model of ICS communication
suitable for anomaly detection. To our best knowledge, we are not aware of
any published work on using probabilistic automata for modelling ICS/SCADA
semantics for anomaly detection.

3 Preliminaries

3.1 Probabilistic Automata

We write Σ∗ to denote the set of all finite strings over an alphabet Σ, with ε
denoting the empty string. A deterministic probabilistic automaton (DPA) is a
tuple A = (Σ,Q, δ, q0,F) where Σ is an alphabet, Q is a finite set of states,
δ : Q × Σ × Q → [0, 1] is a (total) transition function assigning probabilities
from the interval [0, 1] of rational numbers to transitions, q0 ∈ Q is the initial
state, and F : Q → [0, 1] is a mapping assigning the acceptance probabilities to
states.

The probabilistic automaton must satisfy the consistency condition requir-
ing that for each state q, the sum of probabilities of the outgoing transitions
plus the probability of acceptance is 1, that is, F(q) +

∑
a∈Σ,r∈Q δ(q, a, r) = 1.

Additionally, since the automaton is implicitly deterministic, every state q ∈ Q
must have a unique successor via every symbol a, that is, ∀q ∈ Q,∀a ∈ Σ :
| {r | δ(q, a, r) > 0} | = 1. Moreover for a state q ∈ Q we define the probabilistic
automaton of q as Aq = (Σ,Q, δ, q,F).

4

q0 q1, 0.1 q2, 0.3

b, 0.6

a, 1.0

b, 0.3

c, 0.5

c, 0.2

Fig. 1: Example of a probabilistic automaton. States are labeled with a state
name and the accepting probability (no number corresponds to zero probability).
Transitions are labelled with a symbol and the probability taking this transition.

The automaton defines a probability distribution PA : Σ∗ → [0, 1] over Σ∗

as follows. Each string w = a1 . . . an ∈ Σ∗ has its unique trace, the sequence
π = (q0, a1, q1) · · · (qn−1, an, qn) where δ(qi−1, ai, qi) > 0 for 1 ≤ i ≤ n, and its
probability is defined based on the trace as PA(w) = F(qn)·

∏
1≤i≤n δ(qi−1, ai, qi).

Informally, PA(w) is the probability of the random walk through the automaton
that respects the symbols of w and accepts at the end.

Example 1. Consider a DPA from Fig. 1. Then PA(abc) = 1.0 · 0.3 · (0.2 · 0.3 +
0.5 · 0.1) = 0.033.

A deterministic frequency finite automaton (DFFA) is a tupleA = (Σ,Q, δ, q0,F)
that differs from a probabilistic automaton only so that δ and F assign natural
numbers representing frequencies to transitions and states, i.e., δ : Q×Σ×Q→ N
and F : Q → N, and that consistency here means that there is no state with
the overall frequency equal to 0, where the overall frequency of a state q is
C(q) = F(q) +

∑
a∈Σ,r∈Q δ(q, a, r).

An DFFA can be normalized to an DPA by dividing the acceptance fre-
quencies of each state q and frequencies of its outgoing transitions by its overall
frequency C(q), see [13] (we denote this operation as Normalize).

3.2 Protocol IEC 104

For our experiments, we deal with the IEC 60870-5-104 (aka IEC 104) protocol
[26] that is widely used in smart grids for substation control. IEC 104 is running
on application layer of the TCP/IP model. The IEC 104 packet is formed by
the fixed-length Application Protocol Control Information (APCI) header and
Application Service Data Unit (ASDU) [27].

Control fields in the APCI define three types of the IEC 104 packet: u-frames
used for tests, start and stop of data transfers, s-frames for supervisory function
and i-frames that encapsulate ASDU data units exchanged between a central
telecontrol station (master) and telecontrol outstation (slave).

The ASDU contains a type (e.g., single point of information, measured val-
ued, single command, file ready), cause of transmission (periodic, spontaneous,
activation, confirmation), information object address (IOA), and a list of infor-
mation objects and elements with data transmitted to/from a substation.

In our work, we focus on i-frames only and two ASDU attributes: type
(AsduType) and Cause of Transmission (CoT).

5

4 Modelling SCADA Communication Using Probabilistic
Automata

In this section, we give a brief overview of the approach we use for learning
probabilistic automata models of network communication, and of the specific
techniques we use to pre-process the ICS flow records for the learning algorithm
in order to provide meaningful results.

4.1 Learning Deterministic Probabilistic Automata

We first briefly outline the DPA learning algorithm Alergia from [13] that we
use in our framework. Given a multiset S of strings on the input, the algorithm
outputs a DPA that approximates the probabilities of the individual strings in
S. The algorithm proceeds in the following steps:

1. Create a prefix tree with strings from S where each edge is labeled by the
frequency of occurrences of the respective string prefix in S. Interpret the
prefix tree as an DFFA.

2. Generalize and compact the DFFA by merging “similar” states. In our ex-
periments, we consider two version of the algorithm, one which includes this
step and one which does not. We call the former version (with merging)
Alergia and the latter version Prefix tree.

Now we will describe steps 1 and 2 in more detail.

Prefix tree. The prefix tree is a compact (but still precise) representation of
the multiset S. Its nodes are prefixes of strings in S (hence ε is the root) and there
is an edge labeled by the symbol a from u to u.a if and only if both u and u.a are
prefixes of strings from S, see Fig. 2. The edge is also labeled by the number of
occurrences of the prefix u.a in S, that is, by the number

∑
w∈S,∃v:w=u.v S(w).

Note that by S(w) we denote the number of occurrences of string w in S. DFFA
The prefix tree may be interpreted as a frequency automaton (this we denote

as Fpt(S)), where nodes are states, edges correspond to transitions, ε is the initial
state, and the acceptance frequency of a each state w equals S(w). Further,
normalized Fpt(S) we call prefix tree automaton of S

Prefix tree minimization. The prefix tree automaton for a give set of strings
may be large (basically, it is a tree-shaped PA) with some parts representing the
same probabilistic distribution. In particular, given a PTA A we merge states p
and q if PAp

= PAq
. Note that since only a finite number of strings in PAp

have
nonzero probability, the states to be merged can be efficiently computed.

Generalization. Generalization is the main part of Alergia. Here, we will outline
only the basic idea. Further details we provide in the following sections (or
see [13]). The algorithm performs an exploration of the prefix tree automaton
from the initial state (the root). While exploring the tree, it merges states r

6

on the frontier (Blue set) of the so far undiscovered part of the tree with the
previously discovered states q (Red set).

Merging is a recursive procedure that merges the sub-tree rooted by r into
the automaton reachable from q. The acceptance frequency of r is added to the
acceptance frequency of q. Moreover, for each symbol a, the frequency of the
outgoing a-transition of r is added to the frequency of the outgoing a-transition
of q, and the merging procedure is recursively called on the target states of the
two merged transitions (Merge and Fold operation).

Two states q and r are merged under the condition that they are sufficiently
similar. Similarity here means that their acceptance frequencies are close enough
as well as the frequencies of the outgoing a-transitions for each symbol a. What
similarity is sufficient is controlled by the parameter α of the algorithm. α also
corresponds to the probability that the merged automaton wrongly rejects a
string from S. Additionally, states that are too insignificant, i.e., have a too
small overall frequency, are excluded from merging no matter their similarity.
The threshold overall frequency t0 is the second parameter of the algorithm
(Compatible operation).

Merging States The learning algorithm interatively merges a state from the
Blue set and a state from the Red set. Recall that the Blue set contains still
unprocessed states of the prefix tree. Therefore states from the Blue set have
the only unique predecessor (for arbitrary symbol). If we hence wants to merge
a state qb from the Blue set to a state qr from the Red set, we only need to find
the unique predecessor r of qb and change the destination of the transition going
from r to qb to qr. See lines 1–3 in Alg. 1 for more details.

Algorithm 1: Merge operation

Input: A DFFA A, states qr ∈ Red , qb ∈ Blue
Result: Modified DFFA with merged states qr and qb

1 Find a state p ∈ Q and a symbol a ∈ Σ s.t. v > 0 where v = δfr (p, a, qb);
2 δfr (p, a, qb)← 0;
3 δfr (p, a, qr)← v;
4 return Fold(A, qr, qb);

However, the transition redirection described above is not sufficient for merg-
ing two states. When we redirect the transition, we loose the connection with
subtree rooted at qb (because it has the only predecessor and we removed this
transition). Therefore, we need to insert (or fold) this subtree into the automa-
ton starting from the state qr. The insertion (or folding) of this subtree to the
automaton is done recursively wrt. the subtree. In each recursive call we update
the current transitions in the automaton according to current transitions in the
subtree. This may lead to a possibly update of a frequency of the current tran-
sition in the automaton (if there is a matching transition in the current subtree

7

and in the current automaton) or to add a new transition to the automaton
appending the remaining part of the subtree. See Alg. 2 for more details. This
recursive operation is called as a last step of the Merge operation (Alg. 1).

Algorithm 2: Fold operation

Input: A DFFA A, states q1, q2
Result: Modified DFFA with folded states q1 and q2 (the subtree rooted at q2

is removed)
1 Ffr (q1)← Ffr (q1) + Ffr (q2);
2 foreach a ∈ Σ, r2 ∈ Q s.t. δfr (q2, a, r2) > 0 do
3 if ∃r1 ∈ Q s.t. δfr (q1, a, r1) > 0 then
4 δfr (q1, a, r1)← δfr (q1, a, r1) + δfr (q2, a, r2);
5 A ← Fold(A, r1, r2);

6 else
7 δfr (q1, a, r2)← δfr (q2, a, r2);

8 return A;

The Algorithm Alergia In the last part we describe the details of the algo-
rithm Alergia. The final tile of a puzzle is how to determine whether two states
are compatible for merging (in other word whether they are “similar” as stated
at point 2 in the high-level description above).

To determine two states q1 and q2 are compatible for merging we first check
whether the final-state frequencies Ffr are similar wrt. the value of C. For the
testing whether the frequencies are similar the Hoeffding bounds are used (see
the definition of Test in (1)). The test depends also on the parameter α. This
parameters says how intensively the states should be merged. In the second step
we compare the corresponding outgoing transitions of both states (the same test
as for comparing the final-state frequencies is used). See Alg. 3 for more details.

Test(f1, n1, f2, n2, α) =

∣∣∣∣ f1n1 − f2
n2

∣∣∣∣ < (√ 1

n1
+

√
1

n1

)
·
√

1

2
ln

2

α
. (1)

Now we have all ingredients for the algorithm Alergia. The algorithm works
as described in high-level description in the beginning of this section. In the first
step we create frequency prefix tree for a multiset of strings S. The Red set
contains initially only the root of the prefix tree. The Blue set contains direct
successors of the Red set. Then we iteratively select a state qb from Blue set
s.t. the value C(qb) is above threshold t0. This threshold determines the minimal
number of strings that are necessary to be a state considered for merging. Then
we try to find a red state qr, which is compatible for merging with qb. If we find
such a state, we merge them together. If there is no such state we add qb to
the Red set. Finally we update the Blue set to contain direct successors of the
red states. In the last step we normalize DFFA to obtain a DPA. Basically for

8

Algorithm 3: Compatible operation

Input: A DFFA A, states q1, q2, α > 0
Result: Are states q1, q2 compatible for merging?

1 if ¬Test(Ffr (q1), C(q1),Ffr (q2), C(q2), α) then
2 return false;
3 foreach a ∈ Σ do
4 Find r1 ∈ Q, r2 ∈ Q s.t. δfr (q1, a, r1) > 0 and δfr (q2, a, r2) > 0;
5 v1 ← δfr (q1, a, r1);
6 v2 ← δfr (q2, a, r2);
7 if ¬Test(v1, C(q1), v2, C(q2), α) then
8 return false;

9 return true;

each state q we normalize the value of Ffr (q) and the frequency of each outgoing
transition with C(q). See Alg. 4 for more details.

Algorithm 4: The algorithm Alergia

Input: A multiset of strings S, α > 0, t0 > 0
Result: A DPA B

1 A ← Fpt(S);
2 Red ← {qε};
3 Blue ← {qa | a ∈ Σ ∩ Pref(S)};
4 while Choose qb from Blue s.t. C(qb) ≥ t0 do
5 if ∃qr ∈ Red : Compatible(A, qr, qb, α) then
6 A ← Merge(A, qr, qb);
7 else
8 Red ← Red ∪ {qb};
9 Blue ← {qua | ua ∈ Pref(S) ∧ qu ∈ Red} \ Red ;

10 return B = Normalize(A);

4.2 Data Pre-processing

We will now describe the way in which we obtain ICS flow records and in which
we pre-process them to prepare a suitable sample set S for the DPA learning
algorithm.

Collecting ICS flows To collect ICS flow1, we need to monitor ICS network by
an IPFIX monitoring probe with ICS protocol support2. The probe observes

1 ICS flow is an IPFIX flow extended with ICS meta data [28].
2 This is supported by Flowmon probe, see https://www.flowmon.com/en/

solutions/solutions-by-industry/industrial-control-systems-scada [Sept
2020]

9

https://www.flowmon.com/en/solutions/solutions-by-industry/industrial-control-systems-scada
https://www.flowmon.com/en/solutions/solutions-by-industry/industrial-control-systems-scada

passing traffic and creates ICS flow records3 with meta data extracted from
ICS headers. Flow records describing ICS communication within a given time
window are transmitted to a IPFIX collector or SIEM system. Using ICS flows
we learn a high-level communication model that includes ICS semantics, e.g.,
requested operations, device status, etc. In case of IEC 104 protocol, we focus
on i-messages, i.e., IEC 104 messages that transmit application commands [27].

Partitioning the traffic by communication pairs Given a network flow records,
our aim is to obtain an automaton for each pair of communicating devices de-
scribing the communication between the two. We therefore partition the traffic
according to the communication pairs. This is easily done since each device is
uniquely identified by a pair 〈IP address, port〉.

Splitting the traffic into conversations The learning algorithm from Sec. 4.1
takes a multiset of strings as the input. Network traffic is represented by ICS
flow records which correspond to a single sequence of messages. Therefore, we
first divide ICS flow records into a multiset of conversations, i.e., sequences of
logically connected messages that correspond to one “communication session” of
two devices. The sample set S then consists of the conversations and the learnt
probabilistic automata denote a probability distribution over conversations. Re-
call that we work with messages on the application layer, thus, there can be
multiple ICS conversation within one TCP session. This is typical for IEC 104
protocol.

Identification of a conversation in the sequence of flow records is based on
the expert knowledge of the particular ICS protocol. In case of IEC 104 protocol,
the conversation is started by messages with AsduType = 122 (select file), and
packets with CoT = 7 (confirmation activation), 6 (activation), 3 (spontaneous).
To check, if the conversation is complete, we test if the last packet meets the
following criteria. Conversations are finished by messages with AsduType with
6 (end of initialization), 122–123 (last segment), 124 (ACK file), and packets
with CoT = 7 (confirmation activation), 9 (confirmation deactivation), or 44–
47 (unknown resource) [27].

Message abstraction To represent normal network communication using au-
tomata, we need to set a suitable level of abstraction and remove irrelevant
details from the messages. Too much details would lead to an over-specialised
learnt model that marks small nuances in communication as anomalies while
too little details would blur the boundaries between normal communication and
anomalies. For instance, each message (flow record) contains a timestamp, which
makes the message unique. The learning procedure hence could hardly find any
regular structure in the communication.

For IEC 104 protocol [27], we particularly take into account fields AsduType
and CoT that determine the high-level communication model, and abstract from

3 The flow record contains meta data about the flow, e.g., timestamp, src and dst
address, msg length, duration, etc., see [25].

10

fields containing concrete data values, time, etc. A message (ICS flow record)
after abstraction is modelled as a pair 〈AsduType, CoT〉. Thus, a conversation
between two IEC 104 devices is a sequence of such pairs.

Example 2. Consider a sample of conversations S consisting of four conversations
starting with prefix 〈122,12〉.〈120,13〉.〈122,13〉 . . . and four with only one message
〈36,3〉. Then the automaton constructed from this sample using the Prefix tree
approach is shown in Fig. 2.

q0

q2, 0(0)

q1, 1.0(4)

q3, 0(0) q4, 0(0)〈122, 13〉
0.5(4)

〈36, 3〉
0.5(4)

〈120, 13〉
1.0(4)

〈122, 13〉
1.0(4)

Fig. 2: Prefix tree automaton created from IEC 104 flows. The numbers in brack-
ets denote labels of the prefix tree, numbers in parenthesis express the number
of prefix occurrences

.

Packet Loss Detection When dealing with real network traffic, a natural question
arise. What happen, if some packets are lost (not due to an attack/anomaly, but
for instance due to a realibility of the network). In this part we describe how to
cope with packet loosing. Our procedure works upon two assumptions: (i) such
corrupted conversations occurr rarely, and (ii) there is some other conversation v
that is “similar” to the corrupted one. Here the similarity means that we can add
packets (symbols) at some positions of the corrupted conversation and obtain v.
Ad (ii). For two strings u = a1 . . . an and v the number of symbols that we need
to add to u in order to obtain v can be computed as follows.

dist(u, v) =

{
|v| − |u| if v ∈ L(A∗u),

∞ otherwise.
(2)

where A∗u is a NFA accepting the language Σ∗a1Σ
∗ . . . Σ∗anΣ

∗.
Our procedure then checks if we are able to “repair” less frequent strings

from S. An assumption is that among the less frequent strings (conversations)
there could be the corrupted ones. For that we split the sample into two parts;
high frequent conversations, i.e., Shigh = {w | S(w) > η0} where η0 determines
maximum number of occurrences for a conversation to be considered as “less
frequent”, and low frequent confersations Slow = S \ Shigh . The repairment
then works as follows. If for a string w ∈ Slow we find a string v ∈ Shigh s.t.
dist(w) ≤ η1, we replace w in S with v. Note that η1 is a parameter determining

11

Traffic window
Conversations Cp for a
communication pair p

DPA Ap selectionDetection
Mechanism

Cp, p

Cp,Ap

Fig. 3: Overview of the anomaly detection.

how many packets could be lost from a conversation. Such adjusted sample then
serves as an input for learning/detecting anomalies.

In summary, the data pre-processing includes three steps:

1. From a given dataset, we extract only the IEC 104 flow records with i-
messages and partition them by pairs of communication entities.

2. The modified traffic is further split into conversations.
3. We apply the abstraction on each message (possibly with packet loss detec-

tion).

The pre-processed data forms the input for learning as described in Sec. 4.1.

5 Anomaly Detection

Now we show how the learnt model of the network traffic is used to detect
anomalies. Our detection mechanism works on the level of time windows of a
fixed duration (particularly, 5 minutes) that are collected by the IPFIX moni-
toring probe. The length of a time window is not a fixed parameter and it may
be changed. Its value corresponds to the Netflow export timeout recommended
for flow monitoring in order to minimize flooding of the network by monitoring
data. For time critical systems the timeout can be shortened. The detection has
three consecutive phases, also shown in Fig. 3:

1. The time window is divided into a series of conversations Cp for each pair of
communication devices p identified by end-to-end IP addresses and ports.

2. A learnt probabilistic automaton Ap describing the normal communication
of p is selected using the end-to-end IP addresses and ports.

3. Anomalies are detected based on comparing Cp with Ap.

The last step, anomaly detection based on a comparison of Cp and Ap, is imple-
mented as follows.

5.1 Anomaly Detection via Single Conversation Reasoning

The first mechanism for anomaly detection (we call it Single) is based on reason-
ing about individual conversations. For each conversation c ∈ Cp, we compute

12

the probability PAp
(c) assigned to c by the probabilistic automaton Ap repre-

senting valid communication of the pair of devices p. If the probability is below
the threshold µ, i.e., PAp(c) ≤ µ, an anomaly is detected. In this work, we set
µ to 0, meaning that we are only interested in whether Ap marks c as possible
(no matter how far), or not. The advantage of this mechanism is that it allows
to point to the concrete conversation causing the anomaly.

5.2 Anomaly Detection via Distribution Comparison

The second mechanism focuses on evaluating each 5-minute traffic window as
a whole (instead of on evaluating individual conversations in isolation). The
probabilistic distributions of every window is compared to the probabilistic dis-
tribution of the learnt model of the normal communication traffic. This way,
we can detect anomalies caused by missing conversations (e.g., a device stops
responding) or by a change of a communication profile, which the method Single
cannot detect.

The detection mechanism works as follows. We learn a DPA A′p from a tested
sequence of conversations Cp coming from the traffic window under scrutiny. We
then compare A′p with the DPA Ap (representing the normal traffic) and if the
difference is too large, we report an anomaly. To quantify how much different is
Ap from A′p, we use the 2-Euclid distance (or just Euclid distance), defined as

L2(Ap,A′p) =

√ ∑
w∈Σ∗

(
PAp

(w)− PA′p(w)
)2

(3)

Intuitively, the Euclid distance sums the differences of probabilities assigned to
strings by Ap and A′p. We use a parameter θ to control if these two automata
are different enough to mark anomaly, i.e., L2(Ap,A′p) > θ. The value of θ
expresses sensitivity of detection in interval [0, 1]. Lower value means higher
possibility of false alarms, higher values can cause that some anomalies would
not be discovered. Based on our experiments we recommend values from 0.1 to
0.25.

A good news is that even though the sum in the definition of the Euclid
distance ranges over all strings, distance L is computed in a polynomial time.
The algorithm uses a matrix representation of probabilistic automata and on
expressing the infinite sum in a closed form (see [29] or the following paragraphs
for more details).

Euclid Distance Computation Before we focus on a computation of the
Euclid distance we first provide necessary definitions. In the following text we
use notion of subprobabilistic automaton (SPA). The subprobabilistic automa-
ton is defined as probabilistic automaton except in the consistency condition, the
equality relation = is replaced with ≤. For two PAs A1 = (Σ,Q1, δ1, i1,F1) and
A2 = (Σ,Q2, δ2, i2,F2) we define the product subprobabilistic automaton A1 �
A2 = (Σ,Q1 × Q2, δ3, (i1, i2),F3) where δ3((q1, p1), a, (q2, p2)) = δ1(q1, a, q2) ·

13

δ2(p1, a, p2), and F3((q, p)) = F1(q) · F2(p). Every SPA A = (Σ,Q, δ, i,F) can
be represented in matrix notation, denoted as M(A) and defined as M(A) =
(α, {Aa}a∈Σ ,β), where α is the vector of initial probabilities defined as α[q] =
1.0 if q = i and α[q] = 0 otherwise. Vector β is the vector of acceptance prob-
abilities defined as β[q] = F(q), and Aa is the transition matrix for symbol a
defined as Aa[q, q′] = δ(q, a, q′) for each q, q′ ∈ Q and a ∈ Σ. Further, we define
AΣ =

∑
a∈ΣAa.

Using this matrix representation of SPAs the Euclid distance can be com-
puted using Alg. 5.

Algorithm 5: Computation of L2

Input: DPAs A and A′
Result: L2(A,A′)

1 (α1, {A1
a}a∈Σ ,β1)←M(A�A);

2 (α2, {A2
a}a∈Σ ,β2)←M(A�A′);

3 (α3, {A3
a}a∈Σ ,β3)←M(A′ �A′);

4 ri ← α>i (I−Ai
Σ)−1βi for i ∈ {1, 2, 3};

5 return
√
r1 − 2r2 + r3;

The intuition behind Alg. 5 is the following reasoning:

L2
2(A,A′) =

∑
w∈Σ∗

(PA(w)− PA′(w))
2

(4)

=
∑
w∈Σ∗

(
(PA(w))2 − 2PA′(w)PA(w) + (PA′(w))2

)
=
∑
w∈Σ∗

PA�A(w)− 2
∑
w∈Σ∗

PA′�A(w)
∑
w∈Σ∗

PA′�A′(w)

Further, we use the following lemma ensuring that the product of two proba-
bilistic automata is a subprobabilistic automaton (i.e, for a given state, the sum
of outgoing probabilities and the accepting probability is less or equal to 1).

Lemma 1. Let A,A′ be PAs. Then A�A′ is a SPA.

The last tile into the puzzle is the following lemma showing how to compute
sum of probabilities of all strings of a given SPA using the matrix representation
of the SPA. Note that for a PA this value is 1, but for general SPA it is a value
≤ 1.

Lemma 2. Let A be a SPA. Then,
∑
w∈Σ∗ PA(w) = α>(I − AΣ)−1β where

M(A) = (α, {Aa}a∈Σ ,β).

Finally, using the reasoning about the Euclid distance and Lemmas 1 and 2
we get directly Alg. 5.

14

Table 1: Datasets used for experimental evaluation

Benchmark IEC 104 flows i-messages Conv. Devices

iec104 115 91 31 2
10122018-104Mega 104,533 94,040 6,927 4
10122018-104Mega (part 0) 9,905 8,876 503 2
13122018-mega104 1,460,829 1,313,997 91,957 14
13122018-mega104 (part 1) 62,040 55,772 3,603 2
mega104-14-12-18 14,597 9,657 9,125 2
mega104-17-12-18 58,930 37,661 37,661 2
KTH-RTU1 6,234,474 3,117,251 2,088,540 6
KTH-RTU1 (part 1) 184 96 59 2
KTH-RTU1 (part 2) 168 87 55 2
KTH-RTU4 3,306,086 1,653,046 1,107,537 2
RICS 1,550,304 775,152 519,352 2

6 Experiments

We evaluate our learning and detection methods on a set of flow records of the
IEC 104 traffic. In the first part of the evaluation, we focus on learning (discussed
in Sec. 4). The second part is then describes anomaly detection based on the
learnt automata models (discussed in Sec. 5).

6.1 Learning the Model using IEC 104 Flows

We have implemented the algorithm Alergia presented in Sec. 4 and used it with
the values of the parameters α and t0 set mostly according to our empirical
experience (for more details, how to set parameter values, see [30]):

– The parameter α is set to 0.05 which gives a good balance between the
merging (the strength of generalization and compactness) and classification
error.

– The threshold parameter t0 is set as t0 = blog2 |S|c. The logarithmic function
was chosen to obtain a small increase with the growing number of samples.

We evaluate the algorithm on the real IEC 104 traffic4. The characteristics of
the benchmarks (name, the number of flows, i-messages, conversations, and com-
municating devices) are summarised in Tab. 1. The benchmarks contain from
31 to millions of conversations. The number of devices occurring in the traffic
varies between 2 and 14. The benchmarks containing more than two devices
are partitioned by a conversation pair and one of the partitions is selected (the
parts are annotated with the partition number, e.g., 0, 1, 2). We also include the
full unpartitioned version into this experiment even though the actual anomaly
detection uses partitioned data only.

4 All tested IEC 104 flows are available in CSV format at https://github.com/

matousp/datasets/tree/master/scada-iec104 [Sept 2020]. Datasets KTH-RTU1,
KTH-RTU4, and RICS were provided by the RTSLab in Linköping [19].

15

https://github.com/matousp/datasets/tree/master/scada-iec104
https://github.com/matousp/datasets/tree/master/scada-iec104

T
ab

le
2
:

R
esu

lts
of

th
e

A
lerg

ia
a
n

d
th

e
(red

u
ced

)
P

refi
x

tree
lea

rn
in

g.

B
e
n
ch

m
a
rk

A
le

rg
ia

P
re

fi
x

tre
e

E
st.

pa
ra
m
eters

S
ta
tes

A
ccu

ra
cy

S
ta
tes

A
ccu

ra
cy

R
ed
u
ced

sta
tes

i
e
c
1
0
4

α
=

0
.0

5
,
t
0

=
3

4
4

0
%

(0
/
2
1
)

4
4

0
%

(0
/
2
1
)

2
2

1
0
1
2
2
0
1
8
-
1
0
4
M
e
g
a

α
=

0
.0

5
,
t
0

=
1
1

8
1
0
0
%

(4
6
4
2
/
4
6
4
2
)

4
9

9
9
.8

%
(4

6
3
6
/
4
6
4
2
)

3
5

1
0
1
2
2
0
1
8
-
1
0
4
M
e
g
a

(p
a
rt

0
)
α

=
0
.0

5
,
t
0

=
7

8
9
9
.7

%
(3

3
7
/
3
3
8
)

4
8

9
9
.7

%
(3

3
7
/
3
3
8
)

3
5

1
3
1
2
2
0
1
8
-
m
e
g
a
1
0
4

α
=

0
.0

5
,
t
0

=
1
4

8
9
9
.9

%
(6

1
6
0
6
/
6
1
6
1
2
)

3
8

9
9
.9

%
(6

1
6
0
6
/
6
1
6
1
2
)

2
8

1
3
1
2
2
0
1
8
-
m
e
g
a
1
0
4

(p
a
rt

1
)
α

=
0
.0

5
,
t
0

=
1
0

8
9
9
.9

%
(2

4
1
4
/
2
4
1
5
)

2
8

9
9
.8

%
(2

4
1
2
/
2
4
1
5
)

2
7

m
e
g
a
1
0
4
-
1
4
-
1
2
-
1
8

α
=

0
.0

5
,
t
0

=
1
1

8
1
0
0
%

(6
1
1
4
/
6
1
1
4
)

3
9

1
0
0
%

(6
1
1
4
/
6
1
1
4
)

3
4

m
e
g
a
1
0
4
-
1
7
-
1
2
-
1
8

α
=

0
.0

5
,
t
0

=
1
3

3
1
0
0
%

(2
5
2
3
3
/
2
5
2
3
3
)

3
1
0
0
%

(2
5
2
3
3
/
2
5
2
3
3
)

2
K
T
H
-
R
T
U
1

α
=

0
.0

5
,
t
0

=
1
9

1
2

1
0
0
%

(2
0
8
8
5
4
0
/
2
0
8
8
5
4
0
)

1
2

1
0
0
%

(2
0
8
8
5
4
0
/
2
0
8
8
5
4
0
)

–
K
T
H
-
R
T
U
1

(p
a
rt

1
)

α
=

0
.0

5
,
t
0

=
4

9
9
8
.3

%
(5

8
/
5
9
)

9
9
8
.3

%
(5

8
/
5
9
)

–
K
T
H
-
R
T
U
1

(p
a
rt

2
)

α
=

0
.0

5
,
t
0

=
4

9
1
0
0
%

(5
5
/
5
5
)

9
1
0
0
%

(5
5
/
5
5
)

–
K
T
H
-
R
T
U
4

α
=

0
.0

5
,
t
0

=
1
9

1
0

1
0
0
%

(1
1
0
7
5
3
7
/
1
1
0
7
5
3
7
)

1
0

1
0
0
%

(1
1
0
7
5
3
7
/
1
1
0
7
5
3
7
)

–
R
I
C
S

α
=

0
.0

5
,
t
0

=
1
7

2
1
0
0
%

(5
1
9
3
5
2
/
5
1
9
3
5
2
)

2
1
0
0
%

(5
1
9
3
5
2
/
5
1
9
3
5
2
)

–

16

1, 1.0

5, 0.57
('123', '13') 0.5

0

('125', '13') 0.94

('123', '13') 0.06
2

('125', '13') 0.5
6

('121', '13') 0.5
3

('120', '13') 1.0

4

('36', '3') 0.46

('122', '13') 0.54

('122', '13') 1.0 ('124', '13') 1.0

Fig. 4: A probabilistic automaton learnt using Alergia algorithm applied on
benchmark 13122018-mega104 (part 1). The transitions are labeled with pairs
(AsduType, CoT).

2, 1.0

4, 1.0

8, 1.0

0 3
('100', '7') 1.0 1

('100', '10') 1.0
5

('1', '20') 1.0 ('9', '20') 1.0
6

('9', '3') 1.0

('100', '6') 0.0

9

('45', '6') 0.0

7
('45', '10') 1.0

('45', '7') 1.0

Fig. 5: A prefix tree learnt using Alergia algorithm applied on KTH-RTU4. Note
that the probabilities contains rounded values, therefore the probability denoted
as 0.0 means a very small value (e.g., 1.8 · 10−6 for transitions from 6 to 0 and
6 to 9).

We applied the learning algorithms Alergia and Prefix tree (also with re-
duction) on each benchmark dataset. One third of each dataset was used for
learning, the other two thirds were used for testing, i.e., evaluating the accuracy
of the learnt model. The accuracy was computed as the ratio of the accepted
conversations (with non-zero probability) to all conversations in the testing data.
The results are shown in Tab. 2. Examples of a DPA learnt by Alergia and a
PTA are shown in Fig. 4 and Fig. 5 respectively.

Discussion Tab. 2 shows a high accuracy of both Alergia and Prefix tree (about
99%) in all cases except iec104. The case of iec104 illustrates a scenario with
an insufficient learning data (the learning sample contains only one third of
the 115 messages and 31 conversations, which does not cover the complexity of
the communication enough). The learnt model then has a very little chance to
recognise the testing communication. Notice also that Alergia was not able to
generalize (it returned an automaton of the same size as Prefix tree).

In some cases (namely 13122018-mega104 and 10122018-104Mega), a us-
age of Alergia leads to a slightly smaller number of false positives (i.e., mes-
sages that were wrongly classified as anomalies). In particular 100% (Alergia)
vs. 99.8% (Prefix tree) in the case of 10122018-104Mega. It is caused by the
fact that Alergia uses merging of the prefix tree to generalise the sample and
derive general regularities. This way it can recognise even valid conversations
which do not precisely appear in the learning sample. In this particular case,
Alergia learnt that the file transfer may contain any number of data segments

17

(messages with AsduType=125 and CoT=13, see Fig. 4), and thus classify as
normal also conversations which contain different numbers of data segments not
seen in the learning sample. Prefix tree, however, classifies as anomalies every-
thing that does not appear in the learning sample, as it skips the generalization
phase. The number of false positives generated by the prefix tree is, nevertheless,
small (below 2%). This can be explained by the fact that we are dealing with a
highly regular and relatively simple traffic which is almost entirely covered by the
learning sample. It is also worth noticing that the reduction procedure for PTAs
can significantly reduce the number of states. Since the reduction preserves the
distribution, accuracy is the same as for unreduced version.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800

E
u
c
lid

 d
is
ta
n
ce

Time window

192.168.11.111:61254

-- 192.168.11.248:2404

(a) Injection attack

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800

E
u
c
lid

 d
is
ta
n
ce

Time window

192.168.11.111:61254

-- 192.168.11.248:2404

(b) Connection loss

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800

E
u
c
lid

 d
is
ta
n
ce

Time window

192.168.11.111:61254

-- 192.168.11.248:2404

(c) DoS attack

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800

E
u
c
lid

 d
is
ta
n
ce

Time window

192.168.11.246:2404 -- 192.168.11.111:61254
192.168.11.248:2404 -- 192.168.11.111:61254

(d) Rogue devices

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800

E
u
c
lid

 d
is
ta
n
ce

Time window

192.168.11.111:61254

-- 192.168.11.248:2404

(e) Scanning attack

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800

E
u
c
lid

 d
is
ta
n
ce

Time window

192.168.11.248:2404 -
- 192.168.11.111:61254

(f) Switching attack

Fig. 6: Detection of the anomaly scenarios using Distraler . Each time window
represents a five-minute snapshot of the traffic.

18

Alergia creates more compact automata then Prefix tree, again thanks to the
merging in the generalization and compaction phase. The number of states cre-
ated by Prefix tree is, however, still small, despite the large size of the learning
set, thanks to relative simplicity of the communication. In a couple of bench-
marks, in particular KTH-RTU*, the Prefix tree has the same number of states as
the automaton obtained by Alergia. This is caused by a nature of the benchmarks
containing not enough various traffic to apply the state merging.

The advantage of Prefix tree over Alergia is its simplicity and transparency.
In a our scenario (simple highly regular communication and large learning sets),
it is a viable option.

6.2 Experiments with Anomaly Detection

In this part, we focus on evaluation of our anomaly detection mechanisms (men-
tioned in Sec 5). In the experiment we use IEC 104 dataset mega104-17-12-18
created at Brno University of Technology4. The benchmark consists of 58,930
messages of IEC 104 communication that were captured within 3 days of a real
network traffic. We experimented with six types of anomalies discussed below in
detail. Each type of anomaly was simulated by injecting into or removing com-
munication from our traffic sample while keeping the original features of IEC 104
sessions. The DPA model of the normal traffic was trained on the original traffic.
The results of the anomaly detection when using Alergia were indistinguishable
from results when using Prefix tree for learning, therefore we give only one com-
mon summary of the results. Our anomaly detection was used to analyze input
data within five minutes-long windows. The outputs are visualised in Fig. 6.

Injection attack In this scenario (see Fig. 6 a), an attacker compromised a host
on the ICS network and started sending unusual requests. First, the attacker
sent activation messages with AsduType=45 and CoT=6, which requested
the execution of the command on the target host. The host correctly con-
firmed with CoT=7. The first attack took 5 minutes and included 83 pack-
ets. During the second injection attack the attacker tried to transfer a file
from the target to the compromised host. The attacker sent messages with
AsduType ∈ {122, 120, 121, 124, 125} which represented a file transfer. The
attack included 221 messages and took 15 minutes.

Connection loss This scenario (see Fig. 6 b) represents a short blackout of a de-
vice when connection was lost. The first connection failure took 10 and 146 mes-
sages were lost. The second failure lasted for about one hour and 921 messages were lost.

DoS attack This denial of service (DoS) attack (see Fig. 6 c) was directed against
a control station. The attacker sent hundreds of legitimate packets to the desti-
nation. He used a spoofed IP address, which was sending spontaneous messages
with AsduType=36 and CoT=3. The attack lasted for half an hour and con-
tained about 1049 spoofed messages. As seen in Fig. 6 c), the attack was not

19

detected. It is because the DoS attack scenario contained additional conversa-
tions of the same type A that was present in the training dataset. The time
windows of the valid communication corresponding to the windows where the
attack occurs, also contained many conversations of the type A so that the con-
structed probabilistic automata could not capture the change. To make it clear,
consider for instance a time window containing 10 messages of the type A and
another time window containing 1000 messages of the type A. Then probabilis-
tic automata obtained by Prefix tree corresponding to these windows are equal
(the same is true for the Alergia algorithm). However, this limit of probabilistic
automata approach can be removed by a combination of the detection procedure
with a simple statistical analysis.

Rogue devices A rogue devices was connected to the ICS network and started
communicating with an IEC 104 host using legitimate IEC 104 packets. The
attacker used a sequence of spontaneous messages with AsduType=36 and
CoT=3. The station correctly responded with supervisory APDUs. The attack
lasted about 30 min. and included 417 packets, see Fig. 6 d).

Scanning attack This scenario includes the horizontal scanning (enumerating IP
addresses of the network segment) and the vertical scanning (IOA addresses on
the selected host), see Fig. 6 e). First, the attacker sent IEC 104 Test Frame
messages on port 2404 (used by IEC 104) and observed responses. If a station
responded, the attacker started the vertical scanning of the host using General
Interrogation ASDUs sent to IOA addresses 1 to 127. Each attack took about
15–20 minutes.

Switching attack The switching attack implemented the similar scenario as used
in the attack against Ukrainian power plant using CrashOverride malware [31].
During this attack a series of IEC 104 packets with AsduType=46 and a se-
quence of CoT numbers (6, 7, 10) were sent to the target that caused switching
the device on and off, see Fig. 6 f). The attack lasted for 10 minutes and trans-
ferred 72 packets.

Results We evaluated our detection methods described in Sec. 5 using above
scenarios. For the detection via single conversation reasoning we set threshold
µ = 0 and for the case of the detection via distribution comparison we set
θ = 0.25.

The length of a time window was 5 minutes. The results comparing the pro-
posed methods are shown in Tab. 3. We have compared the detection via single
conversation reasoning (Single), detection via distribution comparison based on
learning DPAs using Alergia (Distraler), and detection via distribution compar-
ison based on learning DPAs using the Prefix tree (Distrpref). The detection
results for Distraler of the considered scenarios are shown in Fig. 6. The graphs
show Euclid distance of the valid traffic and the traffic under inspection for each
time window (see Eq. 3, Sec. 5.2).

20

Table 3: Comparison of the detection methods

Anomaly Single Distrpref Distraler

Communication loss 7 3 3

Switching attack 3 3 3

Scanning attack 3 3 3

DoS attack 7 7 7

Rogue devices 3 3 3

Injection attack 3 3 3

Discussion From Tab. 3 we can see that the Distraler and Distrpref detection
methods are equally successful in all cases except the DoS attack scenario as
discussed above.

The Single detection method does not find anomalies in DoS attack and the
Communication loss scenario. In case of communication loss, Single is not able
to detect an anomaly because it only analyses existing individual conversations
(unlike the distribution comparison method).

From graphs in Fig. 6 we can see that in the case of Distraler , we are able to
detect all anomalies, including multiple occurrences within the scenario (except
the discussed DoS attack scenario) with no false positives. The same is true
also for Distrpref (the graphs look the same, so we do not present them here).
For the case of the Single detection approach, the situation is also encouraging.
This detection approach is able to detect all anomalies including their multiple
occurrences. Our detection methods do not report any false positives (no other
windows in the traffic are evaluated as anomalous). They give alerts exactly on
the ongoing anomalies, except the two missed anomalies discussed above.

7 Conclusion

We have introduced a new technique for efficient modelling of ICS/SCADA com-
munication using probabilistic automata. Since the ICS communication is stable
and regular, the automata capture the normal communication rather precisely
using small number of states and edges. The automata are automatically gener-
ated from samples of ICS communication obtained from ICS flow records. The
automata model the semantics of ICS communication exchanged between two
ICS devices. The semantics is extracted from the protocol headers based on the
expert knowledge. We showed that for IEC 104 communication, it is enough
to consider only AsduType and Cause of Transmission (CoT) extracted from
i-messages. We also make experiments with other ICS protocols (Goose, MMS,
DLMS). Recommended header values of these protocols are listed in [10].

We experimented with two modes of anomaly detection. In Single mode, a
single conversation could be marked as anomalous if it was not recognised by
the learnt automaton. In Distribution mode, probabilistic distributions of entire
five minutes long windows were compared against the distribution of the learnt

21

normal traffic. We demonstrated that these detection methods were able to de-
tect common classes of cyber attacks on ICS/SCADA systems, i.e., the switching
attack, command injection, connection of a rogue device, or the scanning. The
automata were not suitable for detecting denial of service attacks if they used
communication sequences that were present in the training dataset. However, a
DoS could be easily detected by statistical methods.

Our choice of probabilistic automata as a modeling mechanism for the net-
work traffic is based on the idea that DPAs can be efficiently learnt from positive
examples and that besides the regular structure of the communication, they cap-
ture also its probability distribution (which proved beneficial for instance for the
detection of connection loss).

In the future, we would like to apply this technique on other types of SCADA
protocols, e.g., Modbus or Goose, that are built on the publish–subscribe model
rather than the client–server data exchange as in case of IEC 104. Additionally,
we plan to enhance our method with a statistical reasoning that can detect
attacks like denial-of-service, and to investigate possible merits and feasibility of
modeling time of the communication.

References

1. Stouffer, K., Pillitteri, V., Abrams, M., Hahn, A.: Guide to Industrial Control
Systems (ICS) Security. Technical Report NIST-SP-800-82r2, National Institute
of Standards and Technology (2015)

2. Committee, S.G.C.: Guidelines for Smart Grid Cybersecurity. Technical Report
NISTIR-7628r1, National Institute of Standards and Technology (2014)

3. Assante, M.J., Lee, R.M.: The Industrial Control System Cyber Kill Chain. Tech-
nical report, SANS Institute (October 2015)

4. Miller, B., Rowe, D.C.: A survey of SCADA and critical infrastructure incidents. In:
In Proceedings of the 1st Annual conference on Research in information technology,
RIIT ’12, ACM (2012) 51–56

5. Assante, M.J., Lee, R.M., Conway, T.: Modular ICS Malware. Technical report,
Electricity Information Sharing and Analysis Center (E-ISAC) (August 2017)

6. O’Leary, J., Kimble, J., Vanderlee, K., Fraser, N.: Insights into Iranian Cyber Espi-
onage: APT33 Targets Aerospace and Energy Sectors and has Ties to Destructive
Malware (2017)

7. McCarthy, J., Powell, M., Stouffer, K., Tang, C., Zimmerman, T., Barker, W.,
Ogunyale, T., Wynne, D., Wiltberger, J.: Securing Manufacturing Industrial Con-
trol Systems: Behavior Anomaly Detection. Technical Report NISTIR-8219, Na-
tional Institute of Standards and Technology (2018)

8. ENISA: Communication network dependencies for ICS/SCADA Systems. Techni-
cal report, European Union Agency for Network and Information Security (ENISA)
(December 2016)

9. Matoušek, P., Ryšavý, O., Grégr, M.: Increasing Visibility of IEC 104 Communi-
cation in the Smart Grid. In: The 6th International Symposium for ICS & SCADA
Cyber Security Research 2019, BCS Learning and Development Ltd (2019) 21–30

10. Matoušek, P., Ryšavý, O., Grégr, M., Havlena, V.: Flow based monitoring of ICS
communication in the smart grid. Journal of Information Security and Applications
54 (2020) 102535

22

11. Wagner, C., François, J., State, R., Engel, T.: Machine learning approach for
ip-flow record anomaly detection. In Domingo-Pascual, J., Manzoni, P., Palazzo,
S., Pont, A., Scoglio, C., eds.: NETWORKING 2011, Berlin, Heidelberg, Springer
Berlin Heidelberg (2011) 28–39

12. Hofstede, R., Bartoš, V., Sperotto, A., Pras, A.: Towards real-time intrusion detec-
tion for NetFlow and IPFIX. In: Proceedings of the 9th International Conference
on Network and Service Management (CNSM 2013). (Oct 2013) 227–234

13. de la Higuera, C.: Grammatical Inference: Learning Automata and Grammars.
Cambridge University Press, New York, NY, USA (2010)

14. Barbosa, R.R.R.: Anomaly detection in SCADA systems: a network based ap-
proach. PhD thesis, University of Twente (4 2014)

15. Barbosa, R.R.R., Sadre, R., Pras, A.: Towards periodicity based anomaly detection
in SCADA networks. In: Proceedings of 2012 IEEE 17th International Conference
on Emerging Technologies Factory Automation (ETFA 2012). (Sept 2012) 1–4

16. Rakas, S.V.B., Stojanović, M.D., Marković-Petrović, J.D.: A review of research
work on network-based scada intrusion detection systems. IEEE Access 8 (2020)
93083–93108

17. Eder-Neuhauser, P., Zseby, T., Fabini, J., Vormayr, G.: Cyber attack models for
smart grid environments. Sustainable Energy, Grids and Networks 12 (2017) 10 –
29

18. Matoušek, P., Havlena, V., Hoĺık, L.: Efficient modelling of ics communication for
anomaly detection using probabilistic automata. In: Proceedings of IFIP/IEEE
International Symposium on Integrated Network Management. (january 2021) 1–9

19. Lin, C.Y., Nadjm-Tehrani, S.: Understanding IEC-60870-5-104 Traffic Patterns in
SCADA Networks. In: Proceedings of the 4th ACM Workshop on Cyber-Physical
System Security. CPSS ’18, New York, NY, USA, ACM (2018) 51–60

20. Lin, C.Y., Nadjm-Tehrani, S., Asplund, M.: Timing-based anomaly detection in
SCADA networks. In: International Conference on Critical Information Infrastruc-
tures Security, Springer (2017) 48–59

21. Martinelli, F., Mercaldo, F., Santone, A.: Real-Time SCADA Attack Detection
by Means of Formal Methods. In: 2019 IEEE 28th International Conference on
Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE).
(June 2019) 231–236

22. Goldenberg, N., Wool, A.: Accurate modeling of modbus/tcp for intrusion detec-
tion in scada systems. International Journal of Critical Infrastructure Protection
6(2) (2013) 63 – 75

23. Caselli, M., Zambon, E., Kargl, F.: Sequence-aware Intrusion Detection in In-
dustrial Control Systems. In: Proceedings of the 1st ACM Workshop on Cyber-
Physical System Security. CPSS ’15, New York, NY, USA, ACM (2015) 13–24

24. Caselli, M., Zambon, E., Petit, J., Kargl, F.: Modeling message sequences for intru-
sion detection in industrial control systems. In Rice, M., Shenoi, S., eds.: Critical
Infrastructure Protection IX, Cham, Springer International Publishing (2015) 49–
71

25. Claise, B., Trammel, B., Aitken, P.: Specification of the IP Flow Information
Export (IPFIX) Protocol for the Exchange of Flow Information. RFC 7011, IETF
(September 2013)

26. IEC: Telecontrol equipment and systems - Part 5-104: Transmission protocols -
Network access for IEC 60870-5-101 using standard transport profiles. Standard
IEC 60870-5-104:2006, International Electrotechnical Commission, Geneva (June
2006)

23

27. Matoušek, P.: Description and analysis of IEC 104 Protocol. Technical Report
FIT-TR-2017-12, Brno University of Technology (2017)

28. Matoušek, P., Ryšavý, O., Grégr, M.: Security Monitoring of IoT Communication
Using Flows. In: Proceedings of the 6th Conference on the Engineering of Computer
Based Systems. ECBS ’19, Association for Computing Machinery (2019) 1–9

29. Vidal, E., Thollard, F., de la Higuera, C., Casacuberta, F., Carrasco, R.C.: Proba-
bilistic finite-state machines-part i. IEEE Trans. Pattern Anal. Mach. Intell. 27(7)
(July 2005) 1013–1025

30. Havlena, V., Hoĺık, L., Matoušek, P.: Learning Probabilistic Automata in the
Context of IEC 104. Technical report, Brno University of Technology (2020)

31. Dragos: CrashOverride. Analysis of the Threat of Electric Grid Operations. Tech-
nical report, Dragos Inc. (June 2017)

24

	 Learning Probabilistic Automata in the Context of IEC 104

