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Abstract—Demonstration of real industrial equipment, manu-
facturing processes, and control communication is essential for
students of technical universities and colleges to improve their
technical competencies and knowledge. To build an industrial
control systems (ICS) lab with real hardware and control soft-
ware usually requires a significant amount of finances. However,
the lab equipment is usually accessible only to a limited number
of students. A possible alternative is a blended classroom envi-
ronment that combines real inexpensive devices connected with
a configurable simulation environment. In such an environment,
groups of students can create their own experiments and observe
a near real-life behavior of an ICS system.

In this paper we demonstrate how a blended ICS classroom
can be built of the Factory I/O 3D software simulator and real
UniPi PLC devices equipped with digital and analog inputs.
Using such an environment, students may design a set of non-
trivial manufacturing scenarios, e.g., a production line, and
make experiments with ICS components. The paper presents
the topology and equipment of the blended ICS classroom. We
also introduce two lab scenarios focused on the security of ICS
processes and analysis of Modbus communication in the ICS
environment.

Index Terms—simulation, industrial system, blended class-
room, ICS security, ICS testbed

I. INTRODUCTION

Industrial Control Systems (ICS) have become more impor-
tant today due to the massive automation and digitization of
manufacturing processes and the increase of intelligent control
in power, gas and water treatment facilities. An ICS system
controls industrial processes, robotic manufacturing, home and
office automation systems, or intelligent transport. It intercon-
nects physical processes with intelligent control devices like
Programmable Logic Controllers (PLCs), Remote Terminal
Units (RTUs), or Intelligent Electronic Devices (IEDs) that
are usually connected to a Human Machine Interface (HMI)
and operated by a Supervisory Control and Data Acquisition
(SCADA) server.

The operation of an ICS/SCADA system significantly dif-
fers from traditional IT services build upon TCP/IP both in
design and requirements. Common ICS protocols are propri-
etary (Siemens S7, Modicon Modbus, OPC) or standardized
by ISO/IEC (Goose, MMS, or DLMS). They are mostly imple-
mented over the data link layer (layer 2) or on the application

layer (layer 7) of the ISO stack in contrast to IT services.
ICS systems are usually a part of the critical infrastructure.
Thus, they must maintain a high level of system availability
and operational resilience [1] which is not required by IT
services. Security ICS systems was traditionally implemented
by dedicated lines and systems that were physically separated
from the outer world. Today, with the convergence of IT
and OT technologies, ICS/SCADA systems are vulnerable
to common attacks known from Internet world. Due to the
limited computational power of ICS/SCADA devices and high
requirements on the system performance with low delays, it
is not easy to implement security measures to ICS/SCADA
systems as it happened in IT services.

The importance of ICS/SCADA systems requires that stu-
dents of technical schools oriented on IT, electrical engi-
neering, automation, or robotics should be acquainted with
the principles, features and behavior of these systems. When
teaching classical networking courses, student can easily ex-
plore behavior of network devices and services using the
lab equipment that includes switches, routers, or WiFi access
points. Common network applications and services can be
installed on common laptops and desktops, or in the virtualized
environment using Virtual Box or VMWare software where
students may carry out experiments.

Implementation of an ICS/SCADA system in the classroom
environment is not so straightforward and has two major
limitations. First, building an ICS system as an off-the-shelf
solution is expensive and not easily extendable [2]. On the
other hand, to design and assemble a functional ICS system
using component parts (a so called ”Do it yourself”, DIY
approach) is a time consuming process that requires particular
skills and expert knowledge. The second limitation relates to
the physical processes that are controlled by an ICS system
and that are not easy to emulate.

Holm et al. [3] mention three basic approaches how to
create an ICS testbed. The first one includes real hardware
and software. Such testbed provides a very high degree of
fidelity but its reconfiguration and maintenance is difficult. Of
course, it costs highly. The second option employs simulation.
Simulation models can be easily reconfigured, maintained and
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are scalable. However, such models have limited fidelity in
comparison to a real world scenarios. The third approach is
based on virtualization. The virtual container emulates a real
environment where we can run multiple instances of system
processes and use an actual software instead of simulation.
Virtualization can be combined with real physical inputs as
showed in our solution.

A. Structure of the text

The paper is structured as follows. After Introduction we
give an overview of the related work where we mention
various approaches of how to build an ICS testbed. Section
III explains the background of SCADA system and Modbus
protocol. Section IV describes our virtual testbed with all com-
ponents that include a Factory I/O simulation software, PLCs
with UniPI technology and an HMI interface programmed in
Python. Section V gives an example of two lab scenarios that
can be run on our testbed. The last section concludes our work.

B. Contribution

This work has two main parts: first, we present how to build
a near real-world ICS testbed using virtualized environment
and real PLCs. The entire testbed can be purchased with costs
under 2600 Euros (prices in 2020). The second contribution
includes two lab scenarios: (i) control and monitoring of the
factory production line, (ii) detection of cyber security attacks
against Modbus communication. Detailed description of the
environment with configuration files and user manual will be
available at the project web site.

II. RELATED WORK

In this section we give a short overview of existing ICS
testbeds and experiences obtained by their authors. We men-
tion both testbeds with real hardware and software as well as
testbeds with virtualized components.

In 2015, Holm et al. [3] published a survey of 30 existing
ICS testbeds from over the world. The authors observed their
architectures and evaluated standard requirements as fidelity,
repeatability, accuracy, and self execution of tests. However, a
detailed description of each of the testbeds is missing.

Green et al. present in [4] their experience with building an
ICS testbed with a range of devices (PLCs, HIMs, RTUs) and
software. They describe the testbed design and architecture to-
gether with experience obtained. There findings are expressed
in ten points. These points have been later updated in [2]. The
updated paper also describes a water treatment plant testbed
built with physical components. The authors also describe
a training and prototyping testbed created using FactoryIO
software and real Siemens and Allan Bradley PLCs.

A modular design of an ICS testbed for security research is
introduced in [5]. The authors define five layers: management,
user, infrastructure bridge, experimental and remote access.
For each layer they present a list of possible implementation
tools that include hardware devices as well as commercial or
open source software. Their study gives a good overview of
available technologies for building a virtualized ICS testbed.

Behavior of a virtualized ICS testbed may differ from
real devices. This was demonstrated by Alves et al. [6] who
examined the fidelity of a virtual SCADA testbed composed
of an OpenPLC software running in the virtual machine under
Linux to a physical testbed where an OpenPLC was running
on the hardware UniPI board. The authors noticed that the
virtual OpenPLC processes the logic faster than the physical
one due to a more powerful hardware. On the other hand,
the response of the virtualized PLC was slower than physical
because of the task scheduler in the operating system.

A combination of a virtualized system and real physical
devices in building an ICS testbed was presented in NISTIR
8089 report [1] where the authors showed three scenarios: (i)
a chemical plant with a continuous process and slow dynamics
implementing the Tennessee Eastman problem [7], (ii) a coop-
erative robotic assembly line for smart manufacturing with a
discrete state process and fast dynamics, and (iii) an intelligent
transport system. Their report focuses on testing the system
performance and resilience during the cyber attacks.

One of the most important tasks related to ICS testbeds
is how to emulate physical processes that are controlled by
ICS systems. Gillen et al. [8] describe a full-scale ICS testbed
that emulates a cooling system of Oak Ridge National Labo-
ratory’s supercomputer. The testbed is equipped with PLCs,
HMI, sensors and actuators. In order to emulate an actual
physical system, they obtained a 30-days historian data from
the production system. They processed and converted historian
data into the emulators that were running on Raspberry PIs.
Their experiments with the testbed showed similar behavior.

To build and maintain a full-scale physical system is very
expensive and unfeasible for teaching purposes. The solu-
tion is to create an ICS testbed with a small-scale physical
model where students learn principles of an ICS system and
provide their own experiments. Here, we mention successful
implementations of such testbeds. Ahmed et al. [9] created in
the University of New Orleans a testbed with three physical
processes: a gas pipeline, a power distribution system, and a
wastewater treatment system. Their paper describes how the
testbed is used for teaching PLC programming, forensics, etc.

An ICS testbed with small-scale physical system for power
energy was presented by S. Mocanu [10]. The testbed is used
in Grenoble for both teaching and research. Researchers in
Singapore University created two full-scale ICS testbeds for
research and training on ICS security: the smart grid testbed
EPIC [11], [12] and the water treatment testbed SWaT [13].

A virtualized ICS testbed for training and teaching was
also implemented by Čeleda et al. [14]. Their testbed contains
PLCs built on UniPi platform, I/O modules, HMI, linear motor
and communication gateway. Their platform is primarily used
for teaching and training cyber security of ICS systems. They
also designed Cyber Security of ICS system course.

This paper presents a SCADA testbed built of several
PLCs, I/O Factory simulation software, and a HMI interface
programmed using Python. It is a scalable and open solution
that provides students an opportunity to create new physical
processes and configure control operations of the system.



III. PRELIMINARIES

A. SCADA system

Supervisory control and data acquisition (SCADA) is a (dis-
tributed) control system architecture for industrial processes,
including manufacturing, process control, power generation,
fabrication, and refining. The SCADA principles can be used
for building both large and small systems. An example of small
SCADA system architecture is shown in Fig. 1.

• Supervisory control and data acquisition (SCADA) system
includes five components [6]: a physical system (process),
wire bridge, human machine interface (HMI), and pro-
grammable logic controllers (PLCs). A physical process
is connected via the wire bridge with a PLC that monitors
and controls a state of a physical process using sensors
and actuators. The PLC is connected to an HMI interface
that enables an operator to see the state of the system on
a visual display and control its behavior.

• Human Machine Interface (HMI) is a software application
that displays information about the current process state.
It also enable an operator to control processes using
simple control elements (buttons,touch screen). HMI re-
ceives data about running processes from PLCs using ICS
control protocols, e.g., Modbus.

• Programmable Logic Controller (PLC) is an industrial
digital controller that is connected to the physical process
unit. It constantly monitors the state of its input lines
(sensors) and makes decision on what to do with its
output lines (actuators) based on a user program. It sends
status data via industrial network to the HMI or SCADA
server.

When creating an ICS/SCADA testbed, we need to implement
all these components as real physical devices and connectors,
virtualized applications, or a simulation software. Typically,
PLCs and HMI are physical devices while a physical system
is simulated or emulated by a software.

Fig. 1. A local ICS network topology

B. Modbus protocol

The Modbus protocol is one of the most widespread com-
munication protocol in ICS networks. Originally, it was devel-
oped for serial (RS232) links. Currently, it is transmitted over
TCP. The Modbu/TCP communicates using a master/slave

architecture. The master node pulls the information from a
slave device. The Modbus network contains a single master
node and up to 247 slave nodes. Modbus defines a simple set
of operations to read and write coils, registers and file records.
A Modbus/TCP communication system uses TCP protocol
for transferring Modbus application messages. The standard
mandates to use TCP port 502 for the Modbus/TCP server.

The Modbus protocol data unit (PDU) consists of:
• Function code - defines the function and therefore also

the type of the payload data. When a message is sent
from a Client to a Server device the function code field
tells the server what kind of action to perform.

• Data - the data which meaning should be interpreted
according to the function. The data field of messages
sent from a client to server devices contains additional
information that the server uses to take the action defined
by the function code. In the reverse order, the data field
can carry the response data or can be empty.

The Modbus communication consists of the exchange of
query and response messages called a transaction. Once the
request of the query message has been processed by a server,
a response message is sent back by the server. Depending on
the result of the processing the response may indicate the error
using an exception function code.

The Modbus protocol provides a set of functions to read
from and write to data sources. Following basic types of
data sources are defined: Coil, Discrete Input, Input Register,
Holding Register, File, Queue. The data sources are address-
able using a 16 bit wide pointer. An example of Read Input
Registers function is provided in Fig. 2. The function requests
to read values of 40 registers starting at address 48. The result
is expected to provide 80 bytes of data content as each register
has 16 bits.

The Modbus protocol does not provide any form of security
to protect the communication against eavesdropping, modifi-
cation, or insertion.

Fig. 2. An Example of Read Input Register Function Message

IV. VIRTUAL ICS TESTBED

In order to enable students to gain experience with industrial
systems, we have assembled a virtual ICS environment. To
provide perception close to reality the virtual ICS testbed
consists of a simulated physical environment with advanced
visualization, hardware PLC and HMI components. The virtual
testbed can simulate possibly large and expensive real physical
environments. Not only the costs are significantly reduced but



the simulated environment is also safe for experiments. The
students can freely modify the physical environment simply by
loading a new scenario from the predefined collections or build
their own from the predefined simulation components. The
virtual ICS can represent various small to mid-size industrial
control environments. The main components of a single virtual
ICS is as follows (Fig. 4):

• Environment simulation software is represented by Fac-
tory I/O software1, which not only simulates the physics
of industrial processes, e.g., production lines, but also
provides appealing 3D visualization (see Fig. 3). Factory
I/O provides a collection of components based on the
most common industrial equipment such as sensors, oper-
ators, stations, warning devices, walkways, etc. Moreover,
the software package offers the possibility to extend the
simulation with new components using the provided API.

• The environment is controlled by PLCs. Contrary to
the simulated environment, the real hardware PLCs are
utilized. To reduce the costs and increase the flexibility
we employ PLC units based UniPi Neuron platform2 and
Advantech USB Modules3. UniPi is an extension board
for Raspberry Pi minicomputer that implements PLC
designed for smart homes, commercial and industrial
applications. Advantech USB-4750, resp. 4704 are USB
data acquisition modules with digital, resp. analog I/O
channels that add measurement and control capability.
PLCs’ digital input and outputs are connected to the PC
running factory simulation software using the digital I/O
USB module.

• The HMI can run on the standalone computer or on the
same machine as the simulated industrial environment.
Any HMI software that communicates with PLCs using
one of the industrial protocols, e.g., Modbus or DNP3
can be used. In our case, we implemented the HMI using
the Python QT library4.

• We use our ICS testbed primarily for security education
and research. Therefore, the testbed exposes networking
infrastructure enabling for demonstrating various security
scenarios. HMI and ICSs are interconnected by the LAN
switch integrated with a router. We used a configurable
Mikrotik router that supports port mirroring for monitor-
ing purposes and VPNs for providing remote access.

The detailed list of used components, their parameters, and
prices are in Table I. The costs of the entire virtual ICS
environment with a single PLC is lower than 2300 euros.

V. SCENARIOS

The virtual ICS testbed can be used for a number of
experiments. In this section, we present two possible scenarios.
The first case demonstrates how the testbed can serve students
for understanding of specifics of control systems monitoring

1https://factoryio.com/
2See https://www.unipi.technology/products/neuron-3.
3See https://www.advantech.com/products/1-2mlkno/usb-4750/mod

43dfaaf0-a44c-4437-a8c8-0f7460c30b26
4See https://pypi.org/project/PyQt5/.

Fig. 3. A screenshot of Factory.IO visualization

Fig. 4. The topology of Virtual ICS testbed

and management and basic principles of the ICS. The second
case focuses on monitoring ICS network traffic and its security
analysis.

A. Simulation of Industrial Processes

Using the virtual ICS environment it is possible to create
and simulate various industrial systems. We are only limited
by the capability of used simulation software that provides a
set of predefined components to create the industrial setup.
The simulation software consists of a rich library of industrial
parts, including robot stations, sensors, conveyors, loaders,
operators, elevators, and many others. The software comes
with predefined setups of different complexity or it is possible
to create a new virtual factory using the available parts. For
educating students in the ICS system design we can use the
testbed for the following training scenarios:

• Design of factory processing lines: students learn how to
build a processing line by composing basic components.
The students need to be aware of physical conditions and
limitations when deploying the hardware parts. On the
other hand, they are shed from too many details needed
to solve in real deployments.

• Control of the factory processes: students are asked to
write a software to control the factory processes. They

https://www.unipi.technology/products/neuron-3
https://www.advantech.com/products/1-2mlkno/usb-4750/mod_43dfaaf0-a44c-4437-a8c8-0f7460c30b26
https://www.advantech.com/products/1-2mlkno/usb-4750/mod_43dfaaf0-a44c-4437-a8c8-0f7460c30b26
https://pypi.org/project/PyQt5/


Item Parameters Price (EUR) Pieces Total (EUR)
Factory.io The 3D factory simulation software. 695 1 695
Mini PC An Intel NUC Kit mini PC to run the simulation software and the HMI. 400 1 400
Router Mikrotik Routerboard RB750Gr3. 60 1 60
I/O USB Module Advantech USB-4750-BE I/O module. 240 2 480
PLC UniPi Neuron PLC. 320 3 960
Total 2255 3135

TABLE I
THE COMPONENT LIST OF THE ICS TESTBED

are taught principles of PLC programming, ICS control
and monitoring. Because of the virtual environment, they
can immediately see the effect of the programs written.
Since we do not use any major brand of PLC devices, the
students are not fixed to a single vendor’s environment
but are rather exposed to the general principles of PLC
programming.

• Troubleshooting problems and component failures: as
for all computer-based systems, debugging and trou-
bleshooting is an essential skill. Students can test different
configurations of the system without being worried about
possible damage caused by system malfunctions. Thanks
to the advanced visualization the effect of any change in
the control software can be immediately observed which
provides the necessary feedback improving the learning
experience.

The expected learning outcomes of this scenario include
understanding basic principles of ICS, cyber-physical compo-
nents and software control of industrial system processes.

Fig. 5. The simple HMI of the system

An example exercise uses a scenario of a sorting line which
sorts emitted objects by weight to various directions (see Fig.
3 for the visualization of virtual factory). It contains two
object emitters, several belt conveyors, several sensors, three
object removers, two pop-up wheel sorters and one weight
scale. Each component can be controlled by an I/O port
of the connected PLC. Software part implements a control
station program that communicates via Modbus to PLCs of
the production line. The control program is written in Python

using pyModbusTCP library5. Also the HMI (see Fig. 5)
is implemented for comfortable control of production line.
This HMI is created using PyQT toolkit. Although the HMI
supports only basic functionality, it is sufficient to demonstrate
the principles of controlling industrial systems. The HMI
creates an event log that is useful for providing post-mortem
forensic analysis of the system behavior.

B. ICS Traffic Security

Industrial Control Systems often form critical infrastructures
such as water, gas or electricity distribution, smart grids, or
various types of manufacturing. The virtual testbed can be
used for education and experiments with ICS security enabling
various paths. For instance, cyber security vulnerabilities can
be tested on functional control systems. Students can find
and deploy exploits to understand the implications of the
vulnerability. For example, the following attacks are easy
to deploy. They convey an illustrative demonstration of the
implications:

• Command injection attack. The attack is executed at the
HMI. As a part of the attack, the command for the Entry
conveyor to stop is sent. It is possible to see that when
the conveyor is stopped while the emitted object was on
it. The consequence is that it did not get to the weight
scale. Thus, the entry sensor on the weight scale does
not register the object, and the whole process line is non-
functional.

• Command modification attack. To demonstrate this attack,
the value of the object’s weight is modified, which leads
to an incorrect sorting function. This attack assumes that
the attacker can intercept the communication and alter
Modbus messages. Because Modbus does not protect the
integrity of the messages the attack is easy to deploy.

Another possible use of the testbed is to monitor an ICS
network traffic and create long-term datasets for different
simulated systems. Datasets can be a source for application
of various anomaly detection methods including statistical
profiling, machine learning approaches, etc.

VI. CONCLUSION

Industrial control systems are often considered to be a
part of critical infrastructure. Historically, these systems were
deployed in the electrical and control systems engineering
areas. As modern systems are often complex networked in-
stallations, software design and network communication are

5See https://pypi.org/project/pyModbusTCP/

https://pypi.org/project/pyModbusTCP/


more involved. Computer engineers often do not have enough
understanding of ICS principles and technology. This paper
presented a testbed that aims to provide a suitable environment
for computer engineering students to understand the ICS area.
The testbed is built around the virtual factory simulated by
the Factory.IO software package. The HMI and PLC devices
are physical components to provide access to basic control
components and their communication. Using the testbed, we
proposed two basic scenarios that cover (i) control and mon-
itoring of the factory production line, (ii) analysis of cyber
security attacks against ICS communication. The scenarios can
be used as hands-on lab exercises, or students can create their
own experiments and observe a near real-life behavior of an
ICS system.
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“KYPO4INDUSTRY: A Testbed for Teaching Cybersecurity of
Industrial Control Systems,” in Proceedings of the 51st ACM Technical
Symposium on Computer Science Education, ser. SIGCSE ’20. New
York, NY, USA: Association for Computing Machinery, 2020, p.
1026–1032.

https://doi.org/10.1145/3338499.3357355
https://www.usenix.org/conference/cset17/workshop-program/presentation/green
https://www.usenix.org/conference/cset17/workshop-program/presentation/green
https://www.usenix.org/conference/cset20/presentation/green
https://www.usenix.org/conference/cset20/presentation/green
https://doi.org/10.1145/3018981.3018988
http://www.sciencedirect.com/science/article/pii/009813549380018I
http://www.sciencedirect.com/science/article/pii/009813549380018I
https://doi.org/10.1145/3018981.3018984
https://hal.archives-ouvertes.fr/hal-01537803
https://hal.archives-ouvertes.fr/hal-01537803
https://doi.org/10.1007/978-3-030-12786-2_3

	Introduction
	Structure of the text
	Contribution

	Related Work
	Preliminaries
	SCADA system
	Modbus protocol

	Virtual ICS testbed
	Scenarios
	Simulation of Industrial Processes
	ICS Traffic Security

	Conclusion
	References

