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Abstract

This technical report describes image-processing and classification
methods for extracting information from image data in order to in-
crease the automation of processing data from the surveillance cam-
eras in real time. Another considered source of image data is mobile
imaging platforms such as drones etc.

Presented research focuses on specific methods for processing im-
ages with lower quality under realistic conditions. Selected techniques
utilizes the high-dynamic-range (HDR) images in addition to the stan-
dard image representation, the development of image information over
time, or the reconstruction of 3D information from multiple images.
As a result of these procedures, specific methods are presented focused
horizon estimation, 6DOF camera localization, or LPR detection in
difficult light conditions.

The report further describes the design of a system for managing
video-data and metadata and their subsequent use in order to extract
context information and detects predefined situation patterns in an
online manner. The system architecture part presents key parts of the
system, its functionalities and designed API.



1 HDR images deghosting

HDR video acquisition is a very important feature of modern surveillance,
traffic monitoring, and other applications that exploit static cameras. Typ-
ically, for both economical and technological reasons, the HDR video is ac-
quired using multi-exposure using sensors with limited dynamic range

Unfortunately, one of the most difficult problems of today’s digital pho-
tography and video is very limited ability of capturing the dynamic range
occurring in the captured scenes. By selection of the aperture and shutter
speed, it is possible to select which part of dynamic range is captured and
which is lost – and, of course, the loss is an adverse affect in the image and
video capture process; however, efforts exist to increase the capability of
capturing in High Dynamic Range (HDR).

The most common approach for HDR acquisition is based on merging
in radiance domain, in the meaning of real illumination in the given scene.
Debevec and Malik [1] proposed an algorithm which can fuse multiple pho-
tographs into a high dynamic range radiance map, whose pixel values are
proportional to the true radiance values in the scene. The contribution of
each pixel is determined from the weight function. HDR image H is then
calculated as a weighted average of the individual exposures L:

H =

∑N
i=1w(Li)

Li
ti∑N

i=1w(Li)
(1)

where N is the number of exposures, ti exposure times and function w the
triangle weight function.

The standard HDR merging algorithms are suitable for static scenes only.
The movement of objects during sequence capturing is causing adverse effect
called ghosting. Various methods to detect and remove ghosting from HDR
images have been developed to date. These methods are called as deghosting
algorithms.

We proposed a ghost detection algorithm based on prediction of pixel
value. It is based on the similar principles as are introduced by Grosch [2].
Since we know the exposition time of each image from sequence, we can
predict a pixel values in subsequent (or precedent) images:

Lx = Ly · (tx/ty) (2)

where tx and ty are exposition times of images. This equation can not
be complied within the over or under-exposed patches in image, where the
information is missing. The ghost detection is performed before the HDR
merging phase, resulting in ghost pixel mask (further called as Ghostmap),
where the positions marked in Ghostmap by GhostF lag and are treated
differently during the HDR merging.
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The function ω tests the two images whether their pixels follows the
prediction:

ω(Li, Li+1) =


1 Li ∗ ti+i

ti
/α > Li+1

1 Li+1/
ti+1

ti
∗ α < Li

0 else
(3)

where the term α represents the tolerance, which must be taken into account,
since the sensor noise, quantization errors and CRF precision may influence
the predicted value and thus cause the false ghost detections. According to
our experiments, we use α = 1.2 as default, but it is dependent on target
sensor or another image source respectively. In general, decreasing of this
ratio leads to more strict ghost detection, where more pixels are marked as
ghosts, which eventually lead to lose of dynamic range. Increasing of ratio,
on the other hands, decreases the chance of successful ghost detection.

The Ghostmap is defined as follows:

G = 1⇔ ∃e = 1; e ∈ {ω(Li, Li+1) | i ∈< 1;n− 1 >} (4)

The algorithm description is simplified by pixel range control - all un-
der and overexposed pixels are omitted from prediction. Anyway, all pixels
are evaluated against extreme changes of value. This algorithm is work-
ing per-pixel and and uses simple arithmetic operations, so it is suitable
for implementation on embedded devices. It is also applicable on arbitrary
number of images, but our pipeline is designed for sequences of three images.
The follow-up HDR merging algorithm is modified and in the areas, where
Ghostmap indicates movement, incorporates only the pixels from reference
image. The reference image is, also in most other related works, the middle
image in the sequence.

The results of our deghosting method are presented on Figures 1. Our
method is applicable for any surveillance purposes and even more; deghost-
ing results are presented on traffic monitoring task, where the main goal
is to preserve as most details as possible for evidence purposes, especially
the license plate of approaching car has to be readable. Figure 1 contains
standard movement of car approaching camera by approx. 50km/h.

2 Horizon Detection for Camera-Pose Estimation

Estimation of viewpoint is critical for understanding a given scene. Quick
(and possibly not quite accurate) guess of the viewpoint is an important
component of the gist of the scene Creating such a representation of an image
can be beneficial not only for human visual processing but also in computer
vision. One of the most mentioned viewpoint aspects is the image’s horizon.
Although horizon is a fairly intuitive characteristic of the viewpoint, in some
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Figure 1: Deghosting method results. Top left quarter contains stripes of
original images, where significant car movement could be observed. The bot-
tom left image reflects movement without our deghosting technique. Top
right image contains Ghostmap used for image recovery (gray signs the
under/overexposed patches). The right bottom image shows the resulting
deghosted image. Under the Ghostmap, the upscaled licence plates are
shown.

complicated scenes (urban, occluded, . . . ), establishing exact horizon can be
complicated for humans and even more so for machines.

Horizon is very often used for camera calibration because two horizontal
vanishing points lie on the horizon line. With the knowledge of the hori-
zon line and the third (vertical) vanishing point, camera calibration can be
done. An approach which estimates the vanishing points by connecting cor-
responding points of the same object and then constructs the horizon is often
used for camera calibration with human tracking , where pedestrian’s head
and feet are connected by lines as the person moves across the scene and
their intersection lies on the horizon line. Similarly, vanishing points and
the horizon line can be localized for example by detecting pedestrians’ toes
in the ground plane. Although camera calibration methods which avoid us-
ing horizon exist, they typically have some constraints, for example, known
pedestrian height distribution , ‘Manhattan world’ scene , or dominant mo-
tion only in one coherent direction Horizon can also be used for estimating
3D scene geometry and object detection support.
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Our goal is to detect the horizon (in the sense of the ideal line of the
ground plane perpendicular to the gravity) in a single static (often surveil-
lance) uncalibrated camera stream based on motion of objects in the scene
without any a priori constraints except that the majority of motions hap-
pen in horizontal planes (which share the same horizon by definition). Such
a method can be later used for automatic camera calibration, scene under-
standing, and other computer vision tasks.

We assume that the scene contains arbitrary objects (pedestrians, cars,
dogs, cattle, machinery, . . . ) with an arbitrary height/size distribution. The
scene does not need to be manhattanian and the motion can appear in any
direction and in virtually any place in the scene. Existing methods for hori-
zon estimationuse a single static image without assumption of a movement in
the scene. Although motion can be used for horizon estimation for example
in the form of cloud motion together with wind velocity , in our work we
assume surveillance cameras without any constraints, no clouds thus need to
be present in the scene and no additional information is provided.

Although datasets with horizon position in image exist (HLW , ECD ,
YUD , they only contain static images without any motion in the scene. To
evaluate the method and to allow for future comparison (to our knowledge,
there is no existing dataset dealing with this issue), we collected a dataset
based on publicly available IP cameras. We manually constructed a ground
truth by using geometric properties of objects in the scene and we also col-
lected human annotations which cast a light on the algorithm’s performance
and allow for its comparison to human (well trained and routinely used) gist
of the scene mentioned earlier.

Most of the recordings were taken from publicly available IP cameras,
some recordings were captured by a camcorder. One scene was used from
the PETS dataset but it is not a very suitable one because of its short
duration.

The recordings differ in many aspects – places, camera positions, day
time, scene type, duration, resolution, . . . The collection includes scenes from
traffic, indoor, outdoor, pedestrians, etc. Some recordings were taken during
night so different light conditions are also available. The duration of the
recordings is in the range from 5 minutes to 30 hours, mean length is about
2.9 hours. The resolution is largely varying with the given IP camera’s
quality in the range from 320 × 240 to 1 920 × 1 080 pixels. In total, 47
different usable scenes were obtained. Some scenes were re-captured under
different conditions (lighting, crowd density, . . . ), yielding 66 recordings in
total.

Obtaining horizon ground truth turned out to be a challenging problem
mostly due to very frequent occlusion of the natural horizon in the scenes
(buildings, horizon out of frame, . . . ). In order to obtain a geometrical esti-
mation of the horizon, we extracted one representative frame from the video
recording and manually annotated groups of lines that are parallel in the orig-
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Figure 2: Scene horizon annotation principles. left: Web annotation tool for
crowsourced data collection. right: ‘Geometric’ ground truth annotation by
using scene parallel lines.

inal 3D scene (edges of a house’s windows, markings on the streets, patterns
in the pavings, etc.). Each of these groups of lines provides one estimated
vanishing point; all vanishing points should be collinear – coincident with
the line of the horizon. The horizon is obtained by using the least-squares
linear regression on the set of the estimated vanishing points obtained as the
minimal error intersections of the lines in the individual groups.

Aside from the geometric horizon estimation, we collected horizon anno-
tations by humans. We created a web annotation tool (Figure 2 left) and
knowledgeable people were asked to estimate the horizon in the scene frame
as precisely as possible. People are able to localize the horizon in a given
image with small error after a short description of what horizon really is. To
prevent people of simply assuming a horizon line being always horizontal in
the image (though this is common in many camera shots), the images given
to the users for annotation were rotated by ±20◦ and the maximal rectangle
was slightly cropped as in Figure 2 left.

Participants estimated the horizon by moving a visual line with markers
on its sides as precisely as possible – the users could try different positions of
the controlled line and look for the best match. Every participant marked 20
least annotated scenes. The annotations were filtered to rid of annotations
clearly skipped or carelessly performed. Finally, 16 – 21 annotations for each
of the 47 scenes are available (mean number 18.42 annotations per scene by
different human subjects).

The proposed algorithm is fully automatic in the sense that no user in-
put is needed per-camera and it works with various scenes (indoor, outdoor,
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traffic, pedestrian, livestock, etc.). The algorithm detects moving objects,
tracks them in time, assesses some of their geometric properties related to
the object dimensions and infers observations related to the position of the
horizon. We collected a dataset of 47 public camera streams observing suit-
able scenes of various nature. We annotated ground truth horizons based on
geometric properties in the images and by direct human input. We evaluate
the proposed algorithm and compare it to human guesses – it turns out that
the algorithm is on par with humans or it outperforms them in the difficult
scenes.

3 Camera-Pose Estimation based on SLAM

In robotic applications, to solve the problems such as automatic navigation
or obstacle avoidance, the map of the environment needs to be estimated.
The ability to build a map allows the mobile robotics to perform various
tasks in complex, unknown environments without relying on the external
reference system such as GPS. The estimation of the map and simultaneous
localization is known as SLAM problem.

The SLAM needs to solve the "chicken and egg" problem, where the
robot needs a map to localize and at the same time to use the pose to build
and update the map. The robotic sensors such as cameras, range scanners
or odometric sensors are inherently subjected to noise. To deal with the
uncertainty of the sensor measurements, various approaches can be applied.

An intuitive way to represent SLAM problem has been proposed in [3] as
a graph based formulation. This formulation represents SLAM problem as an
optimization of graph, where the vertices represent robot poses and landmark
positions and edges represent measurements. Although the measurements
are affected by noise, the solution to the graph is a configuration of the nodes
that is maximally consistent with the measurements. An efficient technique
for solving this SLAM representation has been introduced as soothing and
mapping [4]. Soothing methods estimate the full trajectory of the robot as
well as all landmarks from the set of measurements. The sparse nature of
the SLAM is exploited and efficient implementation and manipulation with
sparse matrices is employed for solving factorization of either information
matrix (containing inverse covariances) or measurement Jacobian.

The general SLAM formulation allows additional sensor measurements
such as odometry, GPS or IMU to be incorporated into the SLAM system
to further improve the accuracy of localization and mapping.

We aim to evaluate existing versions of SLAM solutions able to run on
Micro Aerial Vehicle (MAV) equipped with NVIDIA Jetson 1 platform. Jet-
son platform contains powerful GPU for embedded systems applications. It

1http://www.nvidia.com/object/jetson-tk1-embedded-dev-kit.html
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provides a fully functional NVIDIA CUDA platform for quickly develop-
ing and deploying compute-intensive systems for computer vision, robotics,
medicine, and more. Additionally it is able to compile and run OpenGL 4.4,
and Tegra-accelerated OpenCV software.

The main qualities that important for an autonomous operation of MAV
include range of supported sensors, performance on NVIDIA Jetson plat-
form, compatibility or operation under Robotic Operating Syetem (ROS)
and modularity. We investigated available SLAM softwares and and evalu-
ated them on multiple datesets - aerial drone dataset, to evaluate robustness
and real-time capabilities and dataset with ground truth to evaluate accu-
racy. These algorithms create map of the environment from sensors, and at
the same time estimate the position and rotation of the camera in the scene.
Following algorithms were examined:

• LSD-SLAM [5]

• ORB-SLAM [6]

• Google Cartographer [7]

3.1 LSD-SLAM

LSD SLAM is a monocular visual SLAM system estimating the map and
pose of the camera from a subset of images called keyframes. The move-
ment of the camera is tracked along the keyframes through direct image
alignment. This approach does not use keypoint or feature detection, the
consistency between frames is achieved using intensity information of whole
image, applying photometric error minimization. This allows for creation of
semi-dense inverse depth maps storing information about inverse depth to
3D points corresponding to image pixels. LSD SLAM is capable to perform
loop closure of the camera trajectory, reducing the camera drift caused by
the noise in sensor measurements.

The map is optimized using graph optimization approach, where keyframes
are represented as nodes and the measurements as a edges of a graph. LSD
SLAM runs in two threads, one for camera tracking and one for map building
and measurement incorporation.

3.2 ORB-SLAM

ORB-SLAM is a visual SLAM system that supports monocular cameras as
well as stereo cameras or RGBD cameras. It utilizes ORB features, which
are multi-scale FAST corners with 256 bit descriptors associated. The ad-
vantage of ORB features is its fast feature and descriptor extraction and
good viewpoint invariance, which is especially useful for wide baseline regis-
tration. Loop closure is also supported in ORB SLAM and it is based on a
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bag-of-words database, in which the algorithm can query for actual feature
state to detect previously visited areas.

The map is represented by sparse 3D points. The optimization is also
based on graph optimization algorithm, where the reprojection error of the
observed 3D points in minimized. ORB-SLAM works in 3 threads, camera
tracking, map building and loop closure detection. Implementation of this
approach is available either stand-alone or incorporated to ROS system.

3.3 Google Cartographer

Google cartographer is a 2D/3D SLAM algorithm based on laser scan mea-
surements. Data from odometry and Inertial Measurement Unit (IMU) are
used to track and extrapolate robot position and laser scans to build the
map. The SLAM works at local and global level. At local level, the laser
scans are inserted into a submap, which is considered accurate for small areas.
To cope with the accumulation of error, the map is continually optimized
with pose graph optimization.

Loop closure is also supported by Google Cartographer, by scan matching
actual scan against all finished submaps.

3.4 Datasets and Evaluation

All SLAM algorithms (ORB-SLAM, LSD-SLAM, Cartographer) were run
on NVIDIA Jetson TK1 hardware, and evaluated on MAV dataset 2 and
TUM dataset [8]. TUM dataset contains sequences of camera movements
with known ground truth, therefore the error between the estimated camera
poses and true camera poses can be computed.

Google Cartographer SLAM was tested using 2D laser scan dataset pro-
vided with the implementation to test the capabilities of the Jetson hardware.
3D version of Google Cartographer could not be successfully evaluated yet.

Table 1 shows the overview of the SLAM algorithms, and Table 2 shows
the accuracy and performance results of LSD-SLAM and ORB-SLAM algo-
rithms.

According to the results, ORB-SLAM achieves better accuracy and frame-
rate performance than LSD-SLAM. On the other hand, LSD-SLAM provides
semi-dense 3D occupancy map, which is much more suitable as an input for
robotic navigation and path planning. Further experiments including MAV
datasets with known ground truth need to be performed to obtain results in
real life scenarios.

2https://ivul.kaust.edu.sa/Pages/Dataset-UAV123.aspx
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Algorithm Input Sensors Map type Loop closure
LSD-SLAM monocular camera 3D occupancy semi dense map yes

ORB-SLAM
monocular camera,
sereoscopic camera,
depth camera

sparse 3D point cloud,
keyframe graph yes

Google Cartographer laser range scanner,
odometry, IMU probability grid map yes

Table 1: Overview of SLAM algorithms.

TUM-xyz TUM-desk Drone Cartographer
Error[cm] FPS Error[cm] FPS FPS FPS

LSD-SLAM 15.1 12 16.6 14 11 -
ORB-SLAM 6.8 22 6.2 23 20 -
Google Cartographer - - - - - 8

Table 2: Error and performance evaluation.

4 Data Storage and Management

The hardware architecture of the system consists of sensing devices, field
stations and a main central server.

1. Sensing device - The task of the sensing device, typically a camera,
is to acquire video data for further processing. Input video data will be
captured by one or more cameras, will be streamed by the system’s field
station. At the same time, however, these video data on the input side
may be pre-processed and streamed together with extracted metadata
to the field station.

2. Field stations - Here, images/video and metadata extracted from
external or internal modules are stored in the system. Field station
system allows moving data to a central server and query data stored
on the central server.

3. Central server - the server stores the previously captured data, namely
images/videos and their metadata.

The logical architecture of the system consists of ViAn Server (Video
Analysis Server), processing and analytic modules and operational applica-
tions.

1. ViAn Server provides management of video data and metadata ex-
tracted from them, registers processing and analytic modules. It pro-
vides database and basic analytical services. Its task is to support the
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management of video data and extracted metadata, including the sup-
port of some analytic tasks over these metadata. It uses some parts
of the existing VTApi application interface providing supportive func-
tionality for deploying computer vision algorithms. This interface has
been extended to support algorithms working with real-time video-
data streams by extending its Videos API. ViAn service provides the
following set of APIs:

(a) Dataset API - manipulation of entire datasets encapsulating
video data, metadata, active processing tasks and computed re-
sults.

(b) Videos API - management of videos, images and video streams
and its metadata

(c) Processing tasks API - allows definition of computing jobs to
be assigned to computing processes and generic querying of results

(d) Processes API - control of running processing tasks

(e) Events API - specific event-based querying of results

2. Processing modules primarily serve to extract metadata from data
captured by sensing devices. An example of such a module may be one
extracting information about moving objects in the observed area.

3. Analytic modules perform more advanced analyses of previously ex-
tracted metadata, such as similarity-based search for objects occurring
at a given location within a given time interval.

4. Operational applications define the required task, manage its exe-
cution and visualize the results.

The deployment of the software components to hardware nodes is depicted
in Figure 3.

ViAn Server and processing and analytic modules and operational ap-
plications can be deployed on both the field station and the main server.
The field station deployments can provide limited functionality compared to
the main server one, for example only some processing and analytic modules.
Some modules can be physically deployed to devices other than a field station
or a central server, such as a computer dedicated to more computationally
intensive metadata extraction.

Field stations receive multimedia data and metadata from the sensing
device and allow the user to quickly respond to the processing of this data.
In addition, the user should be able to decide which data and metadata from
his station should be synchronized with the main server, or query the server
for relevant information (e.g., previous occurrences of the object in previous
analyses).
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Figure 3: Basic concept of data storage in VRASSEO

The main server provides similar functionality as field stations. Moreover,
it is also possible to perform offline analyses of historical data stored on the
server. As a source of metadata and video data, computer nodes with sensing
modules can be connected to the server, allowing distributed processing, for
example, when using stationary cameras.

An important stage was the preparation of the interim development and
testing server environment in which the development takes place and will
take place before the new server purchased within the project is put into
operation. The interim development and testing server, which was created
during the first phase of the project solution, includes in particular:

1. Server - for the purposes of the central server, a proactive test server has
been set up and selected libraries and support tools such as PostgreSQL
9.6.2, Libpqtypes 1.5 .1, OpenCV 3.1, PocoProject 1.7.8p2, ZeroMQ
3, Google Protocol Buffers 3.1, and more.

2. Development environment - For a simpler system development, a def-
inition file was created to create a Docker container. The container is
based on Ubuntu 16.04 and has been added to the above mentioned li-
braries and support resources, but in the versions available for Ubuntu
16.04 (for example some versions: PostgreSQL in version 9.5, Opencv
version 2.4, ZeroMQ version 2.2 or Google Protocol Buffers version
2.6).

As a pilot task that will be used during development, video activity
detection was ddeveloped and deployed.
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