
Simulation of Industrial Processes
using I/O Factory and UniPi

Technical Report, FIT BUT

Petr Matoušek, Ján Pristaš, Mária Masárová

Technical Report no. FIT-TR-2020-09
Faculty of Information Technology, Brno University of Technology

Last modified: 03.03.2021

Contents

Introduction 1

1 Simulation of the factory 2

2 Hardware part 6

2.1 Unipi configuration . 7

3 Software part 9

3.1 Sorting line control . 13

3.1.1 Human machine interface 14

3.1.2 Usage . 14

3.2 Assembly line control . 15

3.2.1 Usage . 15

4 Conclusions 16

A Wiring scheme 18

B Registers and coils 20

i

Abstract

Industrial networks form a special class of computer networks that employ
specific devices, communication protocols and communication patterns. In
order to study industrial networks, it is important to have an access to
industrial devices and their communication. This is, however, not easy to
implement in university environment. Real devices are expensive, require
regular maintenance and are available to few operators. As alternative to
the real industrial environment, it is possible to combine real devices with
emulated environment.

This study shows how it is possible to create an industrial network with
Modbus protocols and real devices like PLCs and RTUs together with em-
ulator of physical processes using I/O Factory software. In this study we
show how to build a virtual factory that includes a simple assembly line and
the sorting conveyor controlled by PLCs.

Introduction

As a members of the TRACTOR1 (TRaffic Analysis and seCuriTy OpeRa-
tions for ICS/SCADA) project at Faculty of Information Technology, Brno
University of Technology, our task was to create a testing environment for
Modbus TCP communication protocol, which would allow testing of various
types of attacks on SCADA networks.

Nowadays, great emphasis is placed on the automation of various in-
dustrial systems. However, the more it is automated, the more number of
components that need to be interconnected increases. With a large number
of these devices, it is impossible to communicate on the physical layer, and
therefore their mutual communication had to be transferred to the IP layer.
However, moving to the IP layer gives attackers new ways to break into the
system, which we would like to prevent, as these systems are often a part
of the critical infrastructure and their disruption could cause major damage
(power plant - interruption of electricity supply to thousands of households,
factory - production shutdown, etc.) [2].

Our job was to create a testing environment where Modbus TCP com-
munication can be created, captured and analysed. Our testing environment
simulate real world production line, where single components communicate
via Modbus TCP protocol. It also allows to create several types of attacks
and analyse how the system would behave.

Section 1 describes creation of two types of production lines in Factory
I/O simulation program. The hardware part, which includes all physical
components and their interconnections, is described in Section 2. Software
part is described in Section 3, where main focus is on scripts for automatic
control of our lines. One line also can be controlled via HMI (Human Ma-
chine Interface), where user can control several part of line manually.

1https://www.fit.vut.cz/research/project/1321/.en

1

Chapter 1

Simulation of the factory

Our production lines are simulated by Factory I/O1 simulation software.
Factory I/O is a software for 3D factory simulation that allows to build a
virtual factory using common industrial parts and control each component
of this factory production line directly with PLCs connected to computer.

Factory I/O includes a list of example scenes which are inspired by typ-
ical industrial systems. In this project we choose sorting line, which sorts
items by weight and assembly line, which creates one object from two parts
(base and lid). First scene uses both analog and digital inputs/outputs,
which is what we need for our future testing scenarios. This scene was
slightly modified to use more pins from the PLCs, but the modifications
couldn’t be very large because we were limited by number of PLCs, that we
could use. The appearance of this sorting line can be seen in Figure 1.1a.
Second scene is much simpler and uses only digital inputs/outputs. This
scene was created as an exercise for students and can be seen in Figure 1.1b.

Factory I/O software displays a 3D visualization of the production line,
where after starting the line, the user can monitor the operation of the line in
real time. However, without virtual or physical PLCs the software supports
only manual control over the production line which is not always sufficient.
For automatic operation there have to be added some PLCs. Factory I/O
software supports several PLCs from various brands. In this testbed Ad-
vantech USB-4750 and Advantech USB-4704 are used. First one is used for
digital inputs/outputs and second for digital and analog inputs/outputs.

A detailed description how to work with Advantech PLCs in the Factory
I/O program can be seen on the factoryio website2. In case of problems,
it is necessary to check whether the drivers were automatically downloaded
when connecting the Advantech PLCs to the computer. If not, they can be

1https://factoryio.com/
2https://docs.factoryio.com/manual/drivers/advantech/

2

CHAPTER 1. SIMULATION OF THE FACTORY 3

(a) Sorting line (b) Assembly line

Figure 1.1: Production lines in Factory I/O

downloaded additionally from the advantech website3.

In Factory I/O software, there is a menu on top bar of application, where
File menu item can be found. This item contains Drivers item, where
Advantech PLCs can be attached to the software. Then, the individual
sensors and actuators can be mapped to specific input or output pins of the
Advantech PLCs. In Figure 1.2 you can see how the sensors and actuators
of our sorting line are connected to the PLCs pins. In Figure 1.3 you can
see mapping of sensors and actuators of our assembly line.

As you can see in the pictures, sensors are mapped on the left side and
represent the outputs of the Advantech PLCs, while actuators are mapped
on the right side as the inputs of Advantech PLCs. Sensors and actuators
are assigned with a name in Factory I/O software for better understanding
and work with them. It is not necessary to map all sensors and actuators,
but it is necessary to keep in mind that those that are not mapped will not
be possible to control using PLCs. As you can see, our lines do not use
all sensors and actuators. Firstly, it is because some are not necessary, but
also because we could map them to Advantech PLCs, but we do not have
a sufficient number of UniPi PLCs, which means that we would still not be
able to control them. Difference between these PLCs is described in next
section.

3https://www.advantech.com/support/details/driver?id=1-13L33UP

CHAPTER 1. SIMULATION OF THE FACTORY 4

Figure 1.2: Drivers of Sorting line

CHAPTER 1. SIMULATION OF THE FACTORY 5

Figure 1.3: Drivers of Assembly line

Chapter 2

Hardware part

Our testing environment consists of two types of PLCs:

• Advantech USB-4750 1/ Advantech USB-4704 2

• UniPi Neuron S103 3

As already mentioned, the Factory I/O software runs a simulation of
the production line where sensors and actuators from this production line
are mapped to the pins of Advantech PLCs. But since we wanted to create
testing environment for Modbus TCP, we had to use another type of PLC,
because Advantech PLCs doesn’t support Modbus TCP communication.

Advantech PLCs are connected directly to computer via USB cables
and Unipi PLCs are connected directly to Advantech I/O ports via copper
wires. We need to use two types of PLCs, because Factory I/O doesn’t
support Unipi PLCs and Advantech PLCs cannot be configured as Modbus
TCP servers. Unipi PLCs are build on Raspberry Pi 3 platform and were
configured as Modbus TCP servers. Unipi also provides Opensource OS 4 for
Raspberry Pi which is booted to system through SD card. Configuration
procedure for Unipi PLCs is described below.

1https://www.advantech.com/products/1-2mlkno/usb-4750/mod 43dfaaf0-a44c-4437-
a8c8-0f7460c30b26

2https://www.advantech.com/products/1-2mlkno/usb-4704/mod 4d0800cc-f6fd-402a-
9782-24cd0ffdaf42

3https://www.unipi.technology/unipi-neuron-s103-p93
4https://kb.unipi.technology/cs:files:software:os-images:00-start?tns

6

CHAPTER 2. HARDWARE PART 7

2.1 Unipi configuration

Each Unipi PLC was configured as Modbus TCP Server through SSH with
commands:

1. echo "DAEMON OPTS=--listen=0.0.0.0" |

sudo tee -a /etc/default/unipi-modbus-tools

> /dev/null

2. sudo systemctl restart unipitcp

SSH credentials:

• Login: unipi

• Password: unipi.technology

Physical wiring can be seen in Figure 2.1. There is also possible to see
what the UniPi Neuron S103 PLCs looks like (blue) and what the Advantech
USB PLCs looks like (black). The physical connection is made using copper
wires. Wiring diagram, where is better illustration of connections, can be
seen in Appendix A. As you can see, we created four circuit boards with
pull-up resistors, because Advantech PLCs weren’t able to provide enough
output voltage to Unipi input ports5. Because of this connection, there
is a need to invert output ports on Advantech PLCs in Drivers section of
Factory I/O software.

As you can see on the pictures, our testbed consists of four UniPi Neuron
PLCs and two Advantech PLCs. But we are using only three Unipi PLCs
as we were limited by number of ethernet ports on our router. On Figure
2.2 you can see our Modbus TCP Client/Server topology, that we are using
in the testbed.

Values of actuators in Factory I/O software can be controlled by changing
their values on specific pins in those UniPi PLCs. Sensor values in Factory
I/O software can be determined using UniPi by reading specific pins. Fig-
ure 1.2 and Figure 1.3 shows how the individual sensors and actuators are
mapped to specific pins of Advantech PLCs in the Factory I/O software.

For example, in our Sorting line, the sensor named At scale entry is
connected to Advantech USB-4750 PLC on pin IDO4. This pin is then
connected via copper wire to PLC2, which is the name for one of the UniPi
Neuron S103 PLCs, to pin DI1. This means that if the user wants to know
the value of the At scale entry sensor, he needs to read the value of pin
DI1 on PLC2. The same applies to actuators. For example, an actuator

5https://docs.factoryio.com/tutorials/wiring-diagrams/

CHAPTER 2. HARDWARE PART 8

Figure 2.1: Physical wiring

called Sorter - left is connected to the Advantech USB-4704 to its pin DI2.
Subsequently, this pin is connected to pin DO3 on PLC3. So if the user
wants to change the value of the Sorter - left actuator, he has to change the
value on pin DO3 on PLC3.

Figure 2.2: Modbus TCP Client/Server

Chapter 3

Software part

The software part of this project was to create scripts and HMI (Human
machine interface) to control the lines simulated in Factory I/O software.
This program (scripts and HMI) acts as a Modbus TCP client. The main
task was the ability to capture communication between Modbus TCP client
(program) and Modbus TCP servers (UniPi Neuron S103 PLCs). For our
two lines, sorting line and assembly line, we created two separate control
programs. First program, which control our sorting line, is more complex
and also contains HMI. Second program, which control our assembly line, is
simpler and serves mainly for study purposes.

Modbus TCP client was implemented in programming language Python
version 3.7 with usage of pyModbusTCP library1. It is important to in-
stall python and some other python packages/libraries to your computer
before starting to use our line control scripts and HMI. For assembly line,
only python version 3.7 and pyModbusTCP library has to be installed. For
sorting line, there has to be python version 3.7, pyModbusTCP library and
PyQt5.

We used the PyCharm2, from JetBrains company, to create these scripts
and HMI that control lines. PyCharm is the Python IDE which offers com-
munity version that is open-source and free. PyQt5 and pyModbusTCP
packages were download through this IDE.

PyQt5 is a comprehensive set of Python bindings for Qt v5. Qt is a
cross-platform application development framework, which allows user to cre-
ate graphical user interface programs. PyQt also offers QtDesigner, which
is a GUI builder, that is used to create a GUI using the drag and drop
method. When creating our HMI, we mainly relied on this manual3. QtDe-

1https://pymodbustcp.readthedocs.io/en/latest/index.html
2https://www.jetbrains.com/pycharm/
3https://doc.qt.io/qt-5/qtdesigner-manual.html

9

CHAPTER 3. SOFTWARE PART 10

signer offers a number of labels, buttons, fields and more. However, it does
not offer anything that would serve as a switch. Therefore, it was neces-
sary to define the switch separately. The code defined on this page4, which
we have slightly modified for our purposes, served as a template. In order
to use the switch in our project, we had to connect it to QtDesigner. We
followed the instructions5,6 that described how to connect a custom widget
to QtDesigner. Once we had created the final design of our GUI in QtDe-
signer, it had to be converted to a python file that we could work with. This
conversion of a .ui file to a .py file is done using the PyUIC package. For
easier work with QtDesigner and PyUIC, it is possible to connect them to
PyCharm, so that they can be launched with a simple click in the IDE. A
description of the procedure is described in this manual7. The procedure for
creating a GUI was then as follows:

1. Open PyCharm.

2. In Tools −→ External Tools in PyCharm, open QtDesigner.

3. Create a GUI according to your own design.

4. Save .ui file and turn off QtDesigner.

5. In Tools −→ External Tools in PyCharm, execute PyUIC, to convert
.ui file to .py file.

6. Use this .py file as your main file and add anything that you need.

PyModbusTCP library gives access to Modbus TCP server through the
ModbusClient object. To work with this object, it has to be initialized at
first. Initialization can be performed in two ways. The first way is to create
a ModbusClient object by entering the IP address and port of the server.

plc 2 = ModbusClient(host="192.168.88.252", port=502)

The second way is to create a ModbusClient object without specifying pa-
rameters and then supplement them using host() and port() functions.
We used the second option in our implementation.

plc 2 = ModbusClient()

plc 2.host("192.168.88.252")

plc 2.port(502)

4https://stackoverflow.com/questions/56806987/switch-button-in-pyqt
5https://stackoverflow.com/questions/47259825/how-to-insert-video-in-ui-file-which-

made-at-qt-designer/47273625#47273625
6https://www.riverbankcomputing.com/static/Docs/PyQt5/designer.html
7https://www.programmersought.com/article/44931884816/

CHAPTER 3. SOFTWARE PART 11

Each Modbus TCP server needs its own ModbusClient object. Since
we used three PLCs in our testbed, we had to create three ModbusClient
objects, one for each PLC.

After initialization of the object, it is possible to access the pins of the
server (Unipi PLC). For this purpose, the Modbus protocol provides a set
of functions to read from and write to data sources (coils, registers, input
registers, holding registers, etc.)[3]. The pyModbusTCP library allows valid
Modbus commands to be sent by using these functions. Here are few exam-
ples of how to use these functions in code:

plc 2.write single coil(2, True)

plc 2.read coils(4, 4)

plc 2.read holding registers(3, 1)

One UniPi Neuron S103 PLC has four digital inputs, four digital outputs,
one analog input and one analog output. If we want to access values of
these inputs/outputs using the functions in the pyModbusTCP library, it is
necessary to know at which addresses the individual inputs and outputs are
located so that they can be read or written to.

For accessing each of the registers and coils there are two possible meth-
ods. As each group features its own processor, all the registers of the given
group are accessible through a unit (address) according to the Group num-
ber (i.e. 1 – 3) and at the same time through unit 0. So all registers/coils of
the given product are accessible through unit 0. If the access through unit
0 is used, register numbers are shifted according to 100*(group number – 1)
formule. Thus, it is possible to use both methods.

For example, register 1 of the Group 1 is accessible through the unit 1
on the address 1 and through the unit 0 on the register 1 as well. Register
1 of the group 2 is accessible through the unit 2 on register 1 and through
the unit 0 on the register 101[1].

Table 3.1 shows the individual register addresses, while Table 3.2 shows
the coils. NR in the table is an abbreviation for number. These two tables
are just a slice of the most important registers and coils, which we use in
our testbed. Complete tables of registers and coils can be seen in Appendix
B.

Based on the knowledge of these tables and an explanation of how to
approach the individual inputs and outputs of UniPi Neuron S103 PLCs, we
can explain the individual commands mentioned above. The first command
would write the value to bit 2 (Digital output 1.3) of the PLC 2 and since it
is connected via Advantech PLC to the actuator with name Right emitter,
this function will turn on this emitter. If there was False instead of True,

CHAPTER 3. SOFTWARE PART 12

Register number
Content Bit NR

Unit 0 Unit x Reg. NR

0 1 x 0

Digital input 1.1 0
Digital input 1.2 1
Digital input 1.3 2
Digital input 1.4 3

1 1 x 1

Digital output 1.1 0
Digital output 1.2 1
Digital output 1.3 2
Digital output 1.4 3

2 1 x 2 Analog output 1

3 1 x 3 Analog input 1

4 1 x 4 Analog input 2

5 1 x 5 VrefInt

1009 1 x 1009 Vref

Table 3.1: Registers - group 1

the function would cause the emitter to shut down. Second command reads
all digital inputs of PLC 2 and returns an array with their values, so we
know values of sensors At scale entry, At scale and At scale exit. The last
digital input (Digital input 1.4) is not connected to any sensor in Factory
I/O software.

The last function reads the register values at address 3 and returns an
array with these values. At index 0, there is then a value of the analog
input 1. Analog input usually serves for reading Voltage 0-10 V. In Factory
I/O software, this value is named Weight. However, the value returned by
the UniPi Neuron PLC does not correspond to the actual object weight
displayed in the Factory I/O software. Weight in Factory I/O software is
in range 0-10 V, actual weight of boxes and object is in range 0-20 kg, but
weight values returned by UniPi Neuron PLC are in range 0-4096. This
value is in volts, so if we want to know the actual weight of the box, we have
to use a formula to convert. For correct measurement of analog input, it is
necessary to do a correction of converted value with reference voltage stored
in the processor and also a correction of other coefficients read directly from
corresponding registers. For doing so there is a following formula of voltage
calculation:

UAI1true =

(
3.3 ∗

Vref

VrefInt

)
∗ 3 ∗ VAI

4096
∗
(

1 +
AI1vdev
10000

)
+

AI1voffset
10000

[V]

CHAPTER 3. SOFTWARE PART 13

Coil number
Content

Unit 0 Unit x Coil

0 1 x 0 Digital output 1.1

1 1 x 1 Digital output 1.2

2 1 x 2 Digital output 1.3

3 1 x 3 Digital output 1.4

4 1 x 4 Digital input 1.1

5 1 x 5 Digital input 1.2

6 1 x 6 Digital input 1.3

7 1 x 7 Digital input 1.4

Table 3.2: Coils - group 1

3.1 Sorting line control

Four files written in Python are used to control our sorting line. They are:

• tractorHMI.py - represents HMI

• tractor.py - controls line

• init script.py - initializes values

• qswitchbutton.py - defines the appearance of the switch

As already mentioned, the sorting line in the Factory I/O software can
be controlled either manually in the software or it can be controlled using
connected PLCs. A Python script, tractor.py, has been implemented for
automation of the sorting line.

The script runs in seven threads, where each thread controls a certain
part of the line. Since we can’t allow more than one thread to write to
one pin of PLC at a time, we decided to set aside one special thread that
does nothing but read and write values from/to PLCs. This thread reads all
digital inputs from all PLCs and store values to variables which symbolize
sensors. Then it reads analog input from PLC2 and subsequently it writes
values to all digital outputs on PLC2, PLC3 and PLC4. These values are
stored in variables that represent the state of the actuators. Their name
starts with state and continue with the name of actuator. For example
variable state entry conveyor, which represents state of the Entry conveyor,
is True when entry conveyor is on and False when entry conveyor is off. Same
goes for sensors. For example variable state sent from left, which represents
state of the sensor Sent from left, is True when sensor is active and False
when sensor is inactive. The other six threads work only with these state
variables, from which they read (if they are sensors state variables) or write
to them (if they are actuators state variables).

CHAPTER 3. SOFTWARE PART 14

Before running the control script, it is important first to run the ini-
tialization script stored in the init script.py file, which sets the individual
components in the Factory I/O software to their required values.

As additional manipulation with actuators was required, we implemented
the HMI, which is located in the tractorHMI.py file. HMI is described in
detail in next section.

3.1.1 Human machine interface

For easier execution of the scripts and the extended manipulation, an ap-
plication in Python language with usage of PyQt library was created which
simplifies the user’s work with a sorting production line. Implementation of
this HMI is saved in tractorHMI.py file.

It allows you to set which emitter will be used, to run an initialization
script as well as start or stop a script for automation of sorting line. The
HMI also shows the number of objects that the sorting production line sent
in which direction (left, forward, right) and shows weight of current box.
It also allows you to turn on or turn off some actuators. Actuators whose
values can be changed at runtime are both emitters, entry conveyor and load
scale. These actuators are distinguished by a switch, the appearance and
operation of which are defined in the qswitchbutton.py file.

3.1.2 Usage

To run our sorting line, it is necessary to proceed as follows:

1. Run the Factory I/O software with sorting line.

2. Connect sensors and actuators to the Advantech PLCs (in File −→
Drivers).

3. Invert output sensors values (check the box on the left).

4. Open HMI using file tractorHMI.py. In Command line run python

tractorHMI.py.

5. Press Init. This will run initialization script init script.py.

6. Press Start. This will run control script tractor.py

7. Turn on some emittor.

8. Press Stop to end the control script.

CHAPTER 3. SOFTWARE PART 15

3.2 Assembly line control

Assembly line serves for creating one complete object from two parts (base
and lid). Line contains gripper which grab lid from one conveyor and put
it on base on another conveyor. When the object is complete, it’s moved to
the remover.

Assembly line is simpler than sorting line. This line is controlled only
by one script, written in Python programming language. The name of a file
is cv2-solution.py. Undone version of this file is cv2.py, which is part of a
laboratory for students. They have to finish cv2.py, so that this script can
control the line.

3.2.1 Usage

To run our assembly line, it is necessary to proceed as follows:

1. Run the Factory I/O software with assembly line.

2. Connect sensors and actuators to the Advantech PLCs (in File −→
Drivers).

3. Invert output sensors values (check the box on the left).

4. Open Command line and run python cv2.py

5. Press Stop (square in main panel) in Factory I/O to stop the line.

Chapter 4

Conclusions

This paper dealt with the topics of creating a test environment and then
capturing the Modbus TCP communication between the client and servers.

Within the project, a sorting line and an assembly line were created.
These lines are simulated using the Factory I/O software and controlled
automatically with scripts written in Python programming language. For
sorting line, HMI was also created where user can control some parts of line
manually through it.

Our testbed allows to create various types of attack on SCADA networks,
which can be captured and analyzed. It also serve for educational purposes
for students as it can be used in laboratories.

Our designed production lines are quite simple and shows only what
are the options of Factory I/O software. For bigger, more realistic looking
factory, more Unipi and Advantech PLCs would be needed, together with
more routers to create bigger local network. Factory I/O software is really
good tool for simulation of factory environment, and with proper hardware
enables to create real-looking testing environment for SCADA networks.

Acknowledgements

This work is supported by Brno University of Technology project “Applica-
tion of AI methods to cyber security and control systems”(2020–2022), no.
FIT-S-20-6293.

16

Bibliography

[1] Product line of programmable controllers and extension modules, UniPi
Neuron. User manual and technical documentation. pages 11

[2] Ján Pristaš. Generováńı provozu IoT śıt́ı a detekce bezpečnostńıch inci-
dent̊u, 6 2018. pages 1

[3] Ondřej Ryšavý and Petr Matoušek. Monitoring Modbus/TCP traffic
using IPFIX. Technical Report FIT-TR-2020-03, Faculty of Information
Technology BUT, 2020. pages 11

17

18

APPENDIX A. WIRING SCHEME 19

Appendix A

Wiring scheme

Appendix B

Registers and coils

20

Page 1 of 3

UniPi Neuron S10x
Registers – group 1

Register Number R/W DataType Content Bit Nr.

 Unit 0 Unit × Reg. NR

0 1 × 0 R MixedBits Digital inputs of group 1

Digital input 1.1 0

Digital input 1.2 1

Digital input 1.3 2

Digital input 1.4 3

1 1 × 1 RW MixedBits Digital outputs of group 1

Digital output 1.1 0

Digital output 1.2 1

Digital output 1.3 2

Digital output 1.4 3

2 1 × 2 RW Word Analog output 1

3 1 × 3 R Word Analog input 1

4 1 × 4 R Word Analog input 2

5 1 × 5 R Word VrefInt

6 1 × 6 RW MixedBits MasterWatchDog (MWD) status of group 1

MWD enable 0

MWD reboot detected 1

7 1 × 7 R Word Length of TX queue

8 – 9 1 × 8 – 9 RW DWord Counter of Digital input 1.1

10 – 11 1 × 10 – 11 RW DWord Counter of Digital input 1.2

12 – 13 1 × 12 – 13 RW DWord Counter of Digital input 1.3

14 – 15 1 × 14 – 15 RW DWord Counter of Digital input 1.4

16 1 × 16 RW Word PWM of DO1.1

17 1 × 17 RW Word PWM of DO1.2

18 1 × 18 RW Word PWM of DO1.3

19 1 × 19 RW Word PWM of DO1.4

20 1 × 20 RW MixedBits User programmable LED settings

User LED X1 0

User LED X2 1

User LED X3 2

User LED X4 3

1000 1 × 1000 R Firmware version of group 1

1001 1 × 1001 R MixedBits Number of DI/Dos

Number of Dos 0 – 7

Number of Dis 8 – 15

1002 1 × 1002 R MixedBits Number of AI/Ao/Serials of group 1

Number of seriál lines 0 – 3

Number of AOs of 4 – 7

Number of AIs of 8 – 15

1003 1 × 1003 R HW Version of group 1

1004 1 × 1004 R Word Board HW version of group 1

1005 – 1006 1 × 1005 – 1006 R DWord Board serial number of group 1

1007 1 × 1007 R MixedBits Interrupt mask of group 1

Serial line RX quque not empty 0

Sending on srial line finished 1

Receiveing ModBus RTU frame finished 2

APPENDIX B. REGISTERS AND COILS 21

Page 2 of 3

Baud rate configuration

Value Speed [bps]

11 2 400

12 4 800

13 9 600

14 19 200

15 38 400

4097 57 600

4098 115 200

Digital input changed state 3

1008 1 × 1008 RW word MWD timeout of group 1

1009 1 × 1009 R word Vref

1010 1 × 1010 RW word Debounce time of DI1.1 [100µs]

1011 1 × 1011 RW word Debounce time of DI1.2 [100µs]

1012 1 × 1012 RW word Debounce time of DI1.3 [100µs]

1013 1 × 1013 RW word Debounce time of DI1.4 [100µs]

1014 1 × 1014 RW MixedBits Direct Switch function of group 1

Enable DS on DI1.1 0

Enable DS on DI1.2 1

Enable DS on DI1.3 2

Enable DS on DI1.4 3

1015 1 × 1015 RW MixedBits Enable DS polarity function of group 1

Enable DS arity on DI1.1 0

Enable DS polarity on DI1.2 1

Enable DS polarity on DI1.3 2

Enable DS polarity on DI1.4 3

1016 1 × 1016 RW MixedBits Enable DS toggle function of group 1

Enable DS toggle on DI1.1 0

Enable DS toggle on DI1.2 1

Enable DS toggle on DI1.3 2

Enable DS toggle on DI1.4 3

1017 1 × 1017 RW word PWM prescale of group 1

1018 1 × 1018 RW word PWM cycle of group 1

1019 1 × 1019 RW MixedBits AO 1 settings of

Enable current output 0

1020 1 × 1020 R Word AO 1 Voltage deviation

1021 1 × 1021 R Word AO 1 Voltage offset

1022 1 × 1022 R Word AO 1 Curent deviation

1023 1 × 1023 R Word AO 1 Current offset

1024 1 × 1024 RW MixedBits AI 1 settings

Enable current input 0

1025 1 × 1025 R Word AI 1 Voltage deviation

1026 1 × 1026 R Word AI 1 Voltage offset

1027 1 × 1027 R Word AI 1 Curent deviation

1028 1 × 1028 R Word AI 1 Current offset

1029 1 × 1029 R Word AI 2 Voltage deviation (on AO1)

1030 1 × 1030 R Word AI 2 Voltage offset (on AO1)

1031 1 × 1031 RW MixedBits Configuration of RS485 serial line

Baud rate 0 – 12

Parity enable 13

Parity – 0=Even, 1=Odd 14

ModBus RTU support enabled (interrupt) 15

APPENDIX B. REGISTERS AND COILS 22

Page 3 of 3

Coils – group 1

Coil Number R/W Content

Unit 0 Unit × Coil

0 1 × 0 RW Digital Output 1.1

1 1 × 1 RW Digital Output 1.2

2 1 × 2 RW Digital Output 1.3

3 1 × 3 RW Digital Output 1.4

4 1 × 4 RW Digital Input 1.1

5 1 × 5 RW Digital Input 1.2

6 1 × 6 RW Digital Input 1.3

7 1 × 7 RW Digital Input 1.4

8 1 × 8 RW User programmable LED X1

9 1 × 9 RW User programmable LED X2

10 1 × 10 RW User programmable LED X3

11 1 × 11 RW User programmable LED X4

1000 1 × 1000 RW MWD reset indication/reset of group 1

1001 1 × 1001 RW Disable 1-Wire bus

1002 1 × 1002 RW Reset CPU of group 1

1003 1 × 1003 RW Save current config as default to NV RAM of group 1

1016 1 × 1016 RW Enable DS on DI 1.1

1017 1 × 1017 RW Enable DS on DI 1.2

1018 1 × 1018 RW Enable DS on DI 1.3

1019 1 × 1019 RW Enable DS on DI 1.4

1020 1 × 1020 RW Enable DS polarity on DI 1.1

1021 1 × 1021 RW Enable DS polarity on DI 1.2

1022 1 × 1022 RW Enable DS polarity on DI 1.3

1023 1 × 1023 RW Enable DS polarity on DI 1.4

1024 1 × 1024 RW Enable DS toggle on DI 1.1

1025 1 × 1025 RW Enable DS toggle on DI 1.2

1026 1 × 1026 RW Enable DS toggle on DI 1.3

1027 1 × 1027 RW Enable DS toggle on DI 1.4

APPENDIX B. REGISTERS AND COILS 23

	Introduction
	Simulation of the factory
	Hardware part
	Unipi configuration

	Software part
	Sorting line control
	Human machine interface
	Usage

	Assembly line control
	Usage

	Conclusions
	Wiring scheme
	Registers and coils

