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Chapter 1

Introduction

Protection of industrial communication systems against cyber attacks has
become a great challenge during the past years due to the convergence of
Operational Technologies (OT) and Information Technologies (IT), adoption
of the TCP/IP to industrial networks, and the rising level of automation
and intelligent control of industrial processes. Security and safety of critical
infrastructure systems that include power plants, substations, water and gas
distribution, traffic control systems, etc., can be implemented on various
levels.

One way is to monitor network communication of Industrial Control Sys-
tems (ICS) and analyze its typical communication patterns. In our previous
work [18] we extended flow-based monitoring system standardized by IPFIX
protocol with selected application-level data extracted from ICS protocols.
This enhancement provides additional monitoring data related to ICS pack-
ets which can be further analyzed using anomaly detection methods.

This report focuses on application of selected statistical methods to
anomaly detection of ICS protocols deployed in smart grids, namely IEC
104, GOOSE and MMS. Using extended IPFIX monitoring of ICS protocols
we are able to enhance visibility of ICS transmission and disclose anoma-
lies that differ from expected communication. Industrial network stations
are typically pre-configured hardware devices that operate in master-slave
mode and exhibits stable and periodic communication patterns over a long
time. Due to the stability of ICS communication, statistical models present
a natural way for detection of common ICS anomalies including cyber se-
curity threats, device malfunctioning, network congestion, etc. In addition,
monitoring time properties of ICS/SCADA protocols is extremely impor-
tant to secure proper operation of critical industrial processes which work in
real-time environment.

For probabilistic modeling of network behavior we employ the following
statistical features: distribution of packet inter-arrival times, packet size, and
packet direction. Unlike previous works that apply statistical-based anomaly
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CHAPTER 1. INTRODUCTION 2

detection on SCADA networks, we do not observe the above mentioned fea-
ture on IP or TCP layers, but we model behavior of application protocols
which gives a more precise insight into ICS behavior.

This report presents the results of our experiments with three statistical
methods: the Box Plot, Three Sigma Rule and Local Outlier Factor (LOF)
which worked best for ICS datasets.

The main advantage of the statistical model is that it does not require
high processing power and time to extract packet features and build the
model, so it can be easily implemented on a monitoring probe or IDS device.
On the other hand, statistical methods are sensitive to outliers which are
particular data with exceptionally low probability that can be incorrectly
marked as anomalies. Hence, an important question for statistical modeling
of network communication is how to represent probabilistic distribution of a
given data set so that the model is precise enough and includes even samples
with low probability, and at the same time is able to correctly detect any
anomaly. The level of detection accuracy is usually controlled by a threshold
variable which should be determined with respect to a specific environment.

1.1 Structure of the Report

The report is structured as follows. Chapter 2 overviews preliminaries cov-
ering the theory of used statistical methods and a description of industrial
protocols used in our experiments. Chapter 3 discusses results of previous
work focused on utilizing statistical methods for anomaly detection of ICS
and SCADA traffic. Chapter 4 forms the core of the report. It provides a
deep insight into processing of ICS data, building a probabilistic model of
communication, and anomaly detection. Our experiments are provided with
dataset created at our University or obtained from our partners, see Section
4.1. The last chapter concludes our results and discusses possible deploy-
ment. The full reports of our experiments can be found in Appendices A
and B.

1.2 Acknowledgement

This work was funded by project “Security Monitoring of ICS Communica-
tion (Bonnet)” (2019–2022), no. VI20192022138, provided by Ministry of
Interior of the Czech Republic.



Chapter 2

Preliminaries

2.1 Statistical Methods

Since an outlier detection is a non-trivial task, many different methods have
been developed to address this issue. These methods differ in the principle
used, in the computational complexity and they can be suitable for different
datasets. In our study we focus on statistical methods, because they are able
to detect outliers in reasonable time and they are suitable for our datasets.

Statistical methods assume data spreading according to some distribu-
tion or probability model (e.g. normal distribution). Then, the probability
of a particular data point being generated can be estimated from this model.
Data points with exceptionally low probability can be labeled as an outliers
(anomalies). There exists several statistical tests that allows outlier evalu-
ation. For our purposes we tested two basic test for fast outlier detection:
the Three Sigma Rule [19] and Box Plot Rule based on interquartile range
(IQR) [23].

2.1.1 Three Sigma Rule

Three Sigma Rule says that for normal distribution roughly 99.7% of data
points lie within the interval 〈m − 3 ∗ σ,m + 3 ∗ σ〉, where m is the mean
and σ is a standard deviation [20]. Remaining points (roughly 0.3% of data
points) are labeled as outliers by this method.

2.1.2 Box Plot Rule based on Interquartile Range

Interquartile Range (IQR) outlier detection relies on different measures of
dispersion of the data. It utilizes percentiles and is defined as the difference
between the 75th (Q3) and 25th (Q1) percentiles of the data. With this
measure, the range of normal values is defined as 〈Q1−1.5∗ IQR,Q3 + 1.5∗
IQR〉, while points outside this range are marked as outliers. For normal
distribution, roughly 99.3% of data points lie within this interval.
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CHAPTER 2. PRELIMINARIES 4

2.1.3 Limitations of Basic Tests

Described statistical methods are loaded by three important limitations.
First of all, they can be used for analysis of data bescribed by single attribute
(one value). Secondly, they can be applied on unimodal data distribution.
Finally, statistical methods suspect normal data distribution.

2.2 LOF Method for Outlier Detection

Local Outlier Factor (LOF) is a popular method for anomaly detection. It
compares the local density of the target object with the local densities of its
neighbors. If the density around the target data point is significantly lower,
the object is marked as an outlier. The main advantage of this method is
that it can correctly distinguish outliers even in datasets that are a mixture
of clusters of points with different densities.

For our experiments we employed the LOF implementation from scikit-
learn python library. There are two basic modes of this method, which are
suitable for different situations:

• Outlier detection: simply detect the outliers in the given dataset. For
each target data point it considers all other data points from the
dataset. Using this mode the anomalies cannot form the clusters, oth-
erwise they are not detected by the method.

• Novelty detection: in this mode it is possible to distinguish the training
set without outliers and the testing set, where outliers may occur.
Then, for each point from the testing dataset only the data points
from training set are considered. Therefore, the outliers in the testing
set can form clusters.

For our experiments we used novelty detection mode since the attacks in
our dataset lasted for a longer period of time and led to a larger number of
similar data points that represented them.

LOF method outputs can be significantly affected by the choice of two
key parameters:

• n_neighbors: determines the number of neighbors that are considered
for local density estimation.

• contamination: allows to specify the expected proportion of outliers in
the dataset. It affects the threshold which is used for the final labeling
of the points.

For our experiments, we decided to use the default value ’auto’ for the pa-
rameter contamination. Since the other values forced the method to mark
more or less outliers and suppressed the natural labeling of the data. And
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they also led to many false positive points (false alarms) or to some false
negative points (missed attacks).

TODO: přidat obrázek, který ukazuje vliv parametru auto?
The best values for the n_neighbors parameter for each dataset we searched

during the validation phase with respect to the number of produced false pos-
itive points. We tested the values from the interval 3 to 30. The bast values
for each dataset are listed in tables in section 4.3.

2.3 Industrial Communication and Security

Industrial communication typically includes control and monitoring trans-
missions that are exchanged between Intelligent Electronic Devices (IEDs),
Human-Machine Interfaces (HMIs), control stations, and gateways. Con-
nected devices typically use standardized ICS protocols like IEC 104, MMS
or GOOSE [12]. The communication is often not secured which makes it
an easy target for cyber attacks. In the recent years, industrial systems ex-
perienced several damaging attacks on critical infrastructure [?, 11, 5, 22].
Such attacks were often driven by malware installed on an internal control
station. The malware usually employs industrial communications to discover
ICS network resources, requests execution of unauthorized commands, col-
lects sensitive data, or even manipulates ICS processes, see Fig. 2.1, that is
not easy to detect.

To better understand behavior of ICS protocols, we give here a short
overview of ICS protocols IEC 104 and GOOSE that we later use in our
experiments. In addition, we also define the inter-arrival time that we observe
for modelling ICS behavior.

Protocols IEC 104

The protocol IEC 104 [15] transmits data in the monitor direction (from the
controlled station) and in the control direction (from the controlling station)
in the power grid. Data are transmitted either over the link layer (IEC 101) or
TCP/IP (IEC 104). IEC 104 communication includes data acquisition that
periodically collects data from controlling stations, interrogation, command
transmission, etc.

For statistical modeling, we observe all IEC 104 packets. The monitoring
probe collects their inter-arrival times in each direction. They are later
used for creating a statistical model (learning phase) and anomaly detection
(testing phase).

Protocol GOOSE

GOOSE [16] is an Ethernet-based protocol used for Intelligent Electronic
Devices (IED) that transfers time-critical events in substations. The com-
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Figure 2.1: Industroyer Attack on Power Grid in 2016 [8].

munication model is based on autonomous decentralization where substation
events are transported through multicast or broadcast services. GOOSE uses
a publish-subscribe communication model where the publisher writes the val-
ues into a local buffer at the sending side and the subscribe reads data from
a local buffer on the receiving side. GOOSE messages are regularly sent as
keep-alives with sending time locally configured. If there are no changes on
the publisher side, packets are almost identical. Statistical model aggregates
GOOSE packets based on the destination multicast address.

Packet inter-arrival time

Packet inter-arrival time ∆t is the amount of time between the arrival of two
subsequent packets. It is computed by a monitoring probe as a difference
between timestamps of these two packets. Its value depends on the location
of the probe in the network, see Fig. 2.2, but the distribution stays the same
regardless of a probe location.

In case of industrial communication, we can model the inter-arrival time
distribution for one direction or for bi-directional traffic. This depends on
the underlying ICS protocols. Bi-directional distribution makes sense for
IEC 104 master-slave communication while the one-directional distribution
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model better fits GOOSE publish-subscribe mechanism.



Chapter 3

Related Work

Statistical-based anomaly detection is one of the widely used techniques
[1, 9]. The basic idea of statistical methods is to detect significant devi-
ations of observed behavior from the normal one. Successful statistical mod-
eling requires stable and predictable behavior of modeled traffic. Stability
and regularity of ICS/SCADA communication was previously studied and
demonstrated for major industrial protocols like Modbus [24], IEC 104 [13],
or DNP3 [10].

In our own work [17] we observed regularity of Internet of Things traf-
fic and created a simple statistical model for representing resource usage of
Constrained Application Protocol (CoAP) [21]. The CoAP resource was de-
scribed by a pair operation (e.g., PUT command) and resource URL address
(e.g., floor_light). In each time window we observed the number of packets
and octets associated with the resource and created a usage profile related
to the specific resource and device. The model was created by application
of expectation-maximization (EM) algorithm [7] and represented as a joint
probability function and computed threshold value. The obtained results
showed hit ratio (recall) about 75 to 90% with false positive ration about
2 to 6.4%. Since ICS traffic is more stable and regular than CoAP com-
munication, we applied a statistical model with simpler computation which,
however, gives quite precise results.

Statistical properties of ICS communication were widely explored by Bar-
bosa, et al. in [2, 4] where the authors compared periodicity, throughput
and topology changes in SCADA and SNMP traffic. Their results show that
SCADA communication exhibits periodic behavior at a smaller scale, has
constant throughput over a long period of time, and keeps a stable num-
ber of connections. Its periodicity is caused by a polling mechanism used
to retrieve data from SCADA slaves [3]. The authors demonstrated that
attacks like scanning, denial of service, network protocol manipulation, or
buffer overflow disturb the periodicity, thus, it can be detected by anomaly
detection. For modeling the SCADA communication, Barbose et al. use

8



CHAPTER 3. RELATED WORK 9

time series representing the number of packets belonging to a specific flow.
During periodicity learning, they generate a periodogram for each flow using
Fast Fourier Transform. In detection phase, using discrete-time Short-Time
Fourier Transform they create a spectrogram for monitoring changes in pe-
riodicity. Our approach comes out of Barbosa’s observations. Instead of
monitoring a simple number of transmitted packets we provide a more subtle
classification using arrival times distribution. This is faster in computation
while providing similar results.

Valdes and Cheung [24] introduced pattern-based and flow-based anomaly
detection of ICS communication. Their patterns include source and desti-
nation IP addresses and ports. During detection, they monitor previous
n-occurrences of the pattern and compute the historical probability of the
pattern. If the probability is less than the given threshold, an alert is gener-
ated. Their solution includes a periodic update of the patterns and pruning
the rare patterns. The second technique presented by Valdes and Cheung
uses flow records for anomaly detection. Flow records include more attributes
like source and destination addresses, the time of the last packet, the average
number of bytes per packet, the variance of bytes per packet, or mean and
variance of packet inter-arrival time. Similarly to pattern-based detection,
they compare the traffic with historical flow records and compute a difference.
If a record does not exist or differs too much, the alert is raised. They tested
the approach on MODBUS network with periodic data retrieval. They were
able to detect anomalies like scanning, modified data, denial of service, and
system degradation. Unfortunately, their results do not show the number of
false positives and implementation. Our approach does not observe individ-
ual flows but creates a model for entire communication between groups of
communicating ICS nodes.

Lin and Nadjm-Tehrani [13] analyzed timing patterns of spontaneous
events of the IEC 104 protocol which are asynchronously generated by an
RTU. The authors model inter-arrival times of IEC 104 packets using Proba-
bilistic Suffix Trees (PSTs) and analyze phase transitions, predictability, and
frequent patterns. They describe inter-arrival times as sequences of symbols
representing groups of "similar" inter-arrival times. The symbolic sequences
are further processed (smoothing, finding boundaries) and used to create a
PST. Having the PST, the authors define a phase transition, i.e., a period
of time during which the distribution of inter-arrival times is stable. They
found five groups of traffic patterns based on phase transitions: strongly
cyclic, weakly cyclic, stable, bursty, and transitional communication. Using
the probability of communication patterns, they predict future behavior, i.e.,
that a certain pattern would appear in the next segment. The approach is,
however, computationally very intensive. We also deal with IEC 104 commu-
nication, but we do not restrict to spontaneous events only but model all IEC
104 packets. We use a simpler statistical model with lower computational
requirements.
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In their other work, Lin et al. [14] propose a timing-based anomaly
detection system for SCADA networks where they employ inter-arrival time
of packets similarly to us. They built a statistical model for selected packets
of three ICS protocols: request and responses of S7, requests and responses
of Modbus, and IEC 104 spontaneous events. Their model includes sampling
distribution defined by the sample mean, standard deviation, and the Central
Limit Theorem (CLT). For detection, they use a sliding window where they
calculate the sample mean and sample range. They verified the proposed
model on normal traffic and various attacks including flooding, injection,
and prediction (spoofing). They reached a 99% detection rate with 1.4%
false positives. In our case, we divide packets into several regions based on
inter-arrival time and direction, and for these regions we create a statistical
model which is more accurate.



Chapter 4

Anomaly Detection

In this chapter, we describe the proposed statistical method for anomaly
detection in industrial communication. As we mentioned in 2.1.3, statis-
tical methods are loaded by few limitations. Therefore, it is necessary to
describe the communication flow by a set of suitable characteristics. These
chacteristics should be stable enough to provide reasonable model of normal
traffic and they should be also affected by possible attacks on these systems.
For such description, it is possible to define the range of usual values for
each variable in normal traffic for given communication flow. Then, during
monitoring of the system, we can use these ranges to detect the anomalies.

We start this section with the description of the datasets utilized in our
experiments. Then, we explain how we process the traffic data, gather the
characteristics and build the traffic description. Subsequently, we describe
how this description can be utilized for traffic monitoring and anomaly de-
tection. Finally, we describe performed experiments and obtained results.

4.1 Datasets

In our study, we focused on two industrial protocols: GOOSE and IEC104.
This section contains the description of the used datasets.

For our experiments we used several datasets with IEC 104 and GOOSE
traffic, see Table 4.1. The first four datasets were created at our university1,
datasets RTU and RICS are from Linköping University, Sweden. GOOSE
communication was captured at GIGS Lab in Grenoble, FR.

4.1.1 IEC104

For our experiments, we deal with the IEC 60870-5-104 (shortly IEC104)
protocol, that is widely used in smart grids for substation control. We uti-

1Available at https://github.com/matousp/datasets/scada-iec104 [May 2021].
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lized seven different datasets of ICS flows for IEC 104 protocol listed in Table
4.1.

Dataset Packets Time Devices Organization
10122018-104Mega 104,534 4h 53min 4 VUT
13122018-mega104 1,460,829 71h 17min 14 VUT
mega104-14-12-18 14,597 15h 38min 2 VUT
mega104-17-12-18 58,931 67h 55min 2 VUT

KTH-RTU8 3,463,632 162h 30min 2 RTSLab
KTH-RTU11 1,836,723 162h 30min 2 RTSLab

RICS 883,183 309h 40min 2 RTSLab

Table 4.1: IEC104 Datasets. Column Devices shows the number of commu-
nicating devices in the given dataset.

In order to test the ability of attack detection we also used a special
simulated set of records of ICS flow. These records were obtained by injection
into or removing communication from the record mega104-17-12-18. We
experimented with six types of attacks:

• Injection attack

• Connection loss

• DoS attack

• Rogue devices

• Scanning attack

• Switching attack

The details about these attacks are summarized in table XXXX.
TODO:Doplnit tabulku, která by shrnovala útoky

čas, trvání, počet přidaných/odstaněných paketů?

4.1.2 GOOSE

We tested the suitability of the proposed method also for GOOSE protocol.
We validated our method on the records listed in table 4.2. In the case of
GOOSE communication datasets, we focused on flows instead of packets.

4.2 Data pre-processing

Statistical anomaly detection methods require stable description of the given
IEC traffic. According to [6] it is useful to describe the communication be-
tween two devices as a flow of packets, where for each packet i two properties
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Dataset Flows Time Devices
gics-goose 2,177 19h 26min 4
goose-mms3 2,566 43h 2min 4

Table 4.2: GOOSE Datasets. Column Devices shows the number of commu-
nicating devices in the given dataset.

are considered: its size si and the inter-arrival time between previous and
current packet ∆ti. Hovewer, in statistical modelling we do not care about
the individual packets, rather we characterize the flow by some summary
statistics. Basically, we describe the given communication by the amount
of packets transmitted during five minute window in the given direction be-
tween considered devices. To make our characterization more subtle and
precise, we utilize more features obtained by splitting the number of trans-
mitted packets into the groups of packets according to their inter-arrival
time. In order to get really stable characteristics, several issues needed to be
solved:

1. Partitioning the traffic into two directions (from the master, towards
the master). As usual in ICS/SCADA communication, there is one
device (master) that communicate with all other devices in each of
our datasets. Originally, we partitioned each dataset into the com-
munications of each pair of devices. Hovewer, these partitioning has
proved unsuitable for some datasets (namely 10122018-104Mega and
13122018-mega104). In such datasets, each pair of devices commu-
nicate only for short time period and therefore, we were not able to
find stable description of the communication for these pairs of devices
(see fig. 4.1). One possible solution allows two normal state of such
communication. However, this solution will prevent the detection of
many attacks, as they lead to a decrease in the number of transmitted
packets. After closer examination, we realized that in these datasets
at each time, the master device communicate with only one device,
and also the communication of the master is continuous. Therefore,
we split the traffic into two directions - from master and to master (see
fig. A.1).

2. Determining inter-arrival time for each packet. Due to the division of
the traffic into two directions, there are two possibilities to determine
an inter-arrival time for each packet: before the division of the traffic
and after it. In principle, both possibilities can be used, however with
the determination of inter-arrival time before the division we achieved a
slightly better results in anomaly detection (we detected some attacks
in both directions). In such case, missing or added packets in one
direction will affect an inter-arrival time of the packets in the other
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Figure 4.1: Graph of the amounts of transmitted packets in five minute
windows in 13122018-mega104 dataset (conversation of one pair of devices
in the direction from master).

direction and therefore we can detect such change in both directions.

3. Finding suitable split-point for the given IEC communication. In our
research we tested several ways how to split the amount of transmit-
ted packets according to their inter-arrival time to obtain more subtle
characterization of the given traffic.

First of all, we utilized maximal inter-arrival time observed in the given
dataset and determined four equally large intervals that cover all pos-
sible inter-arrival times of the given dataset. Not surprisingly, such
intervals are not suitable for the traffic characterization. Typically,
inter-arrival time of few packets is much grater then inter-arrival time
of the rest of the packets (see table 4.3). With such intervals, the ma-
jority of packets falls into one or two intervals of the inter-arrival time.
On the other hand, very few packets fall into the remaining intervals, so
they do not provide any additional information about the given traffic
(see fig. 4.2).

Secondly, we searched for some predefined spilt-points that would rea-
sonably divide the packets of all datasets. We also reduced the number
of split-points and intervals of the inter-arrival time that we search for,
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Dataset Dir. min 25% 50% 75% max
10122018-104Mega fm 0.00000 0.0000 0.0003 0.0005 8.2033

tm 0.0000 0.0002 0.0004 0.0598 5.2006
13122018-mega104 fm 0.0000 0.0000 0.0003 0.0004 16.1905

tm 0.0000 0.0002 0.0004 0.0600 10.1331
mega104-14-12-18 fm 0.0000 1.6701 3.2010 5.2896 19.7166

tm 0.0000 1.0076 3.0301 6.0784 19.2687
mega104-17-12-18 fm 0.0000 1.9989 3.5909 5.6002 19.9873

tm 0.0001 1.0091 3.0332 6.0831 19.2696
KTH-RTU8 fm 0.0000 0.2025 0.2044 0.2184 1.2111

tm 0.0000 0.0142 0.0145 0.0146 15.5452
KTH-RTU11 fm 0.0000 0.2109 0.3734 0.4792 2.4896

tm 0.0000 0.0060 0.0121 0.0145 1.4055
RICS fm 0.0000 0.0464 0.0830 3.8960 20.0577

tm 0.0000 0.0073 0.0124 0.1410 10.1876

Table 4.3: Inter-arrival time distribution in individual datasets and directions
(five-number summary).

since the total amount of packets transmitted in five minute window in
some datasets is not large enough to be divided into more than three
intervals. Unfortunately, split-points that are useful for some datasets
does not divide the packets of another datasets at all (see fig. 4.3).
In addition, split-points suitable for one direction do not work well for
the other direction (see fig. 4.4). The difficulty of finding split-point
suitable for all datasets and direction is also apparent from the distri-
bution of the inter-arrival times in individual datasets and directions.
These distributions differ significantly between individual datasets and
directions.

Given these facts, we suggest the method that automatically finds the
suitable split-points for individual direction of the given traffic. Also,
we recommend to reduced the number of split-points and intervals of
the inter-arrival time that we search for in order to reduce the com-
plexity of this task. Therefore we search for one split-point for each
direction that provide two additional characteristics for the given di-
rection of the traffic.

In order to set up the split-point automatically we suggest to utilize the
distribution of the inter-arrival time of packets transmitted in the given
direction of the traffic and also the standard deviation of the resulting
distribution of the packets. Undoubtedly, different split-points produce
different characteristics. Our experiments show the potential of some
split-points to filter-out the periodic behavior from at least on of the
resulting characteristic. Such split-points are suitable for the statistical
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Figure 4.2: Graph of the amount of packets transmitted in five minute win-
dows in 13122018-mega104 dataset, additional characteristics show the effect
of using four equally large intervals of inter-arrival time.

anomaly detection methods as they produce stable characteristics (see
fig. 4.5 and 4.6). Unfortunately, it is not clear where to look for a
suitable split-point in the distribution of the measured inter-arrival
times. While for some datasets the median of the measured inter-
arrival times is an accurate split-point, for others it is a value close to
the quartile Q1 or Q3 (see table 4.4 and 4.5). Therefore, we recommend
to test four different values of split-point (Q1, Q2, mean and Q3) and
select the one that produce such packet distribution, where one of the
characteristics is the most stable one (characteristic with the smallest
standard deviation).

Split-point ∆t < split− point ∆t ≥ split− point
∆t distribution value mean std mean std

Q1 2.00 12.66 3.80 36.82 8.08
Q2 3.60 25.29 8.34 24.19 3.94

mean 4.13 28.89 9.38 20.59 3.33
Q3 5.66 37.36 10.99 12.12 2.83

Table 4.4: Split-point selection in dataset mega104-17-12-18 for the direc-
tion from master. Table shows the possible value of split-points and mean
and standard deviation of the resulting characteristics. In this case, the value
5.66 is used as split-point as it produce characteristic with the smallest stan-
dard deviation. (∆t distribution is derived from the first 48 hours of the
captured traffic in order to decrease the influence of the periodicity.)

One additional issue should be mentioned in the context of suitable
split-points choice. For some datasets the split-points which lead to
most stable characteristics divide the amount of packets in such man-
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(a) RICS (from master).
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(b) RICS (to master).
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(c) KTH-RTU11 (from master).
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(d) KTH-RTU11 (to master).

Figure 4.3: Graphs of the amount of packets transmitted in five minute
windows in RICS dataset ((a) and (b)) and KTH-RTU11 dataset ((c) and (d)),
additional characteristics show the effect of using the same predefined split-
points of inter-arrival time for both datasets.

ner, that the stable characteristic contain only few packets in each five
minute window. Such characteristic is not effective in anomaly detec-
tion with statistical methods. This is the case of the characteristics
their mean is not grater than the triple of standard deviation. Then,
the range of normal values exceeds below zero and the characteristic is
not capable to detect many types of attacks. Therefore, we suggest to
add a second condition for selection of a suitable split-point: choose a
split-point that produce such characteristics, one of which is the one
with the smallest possible standard deviation and at the same time the
following condition applies to it: mean− 3σ > 0.

Due to previous observations, we process individual datasets and gather
traffic characteristics as follows:

• Consider an input consisting of the sequence T = (td1, t
d
2, ..., t

d
n), where

d ∈ {t, f} denotes the direction to master and from master and ti
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(a) KTH-RTU8 (from master).
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(b) KTH-RTU8 (to master).

Figure 4.4: Graphs of the amount of packets transmitted in five minute win-
dows in KTH-RTU8 dataset, additional characteristics show the effect of using
the same predefined split-points of inter-arrival time for both directions.

Split-point ∆t < split− point ∆t ≥ split− point
∆t distribution value mean std mean std

Q1 1,01 6,04 2,33 16,78 2,23
Q2 3,03 10,92 3,13 11,90 2,86

mean 4,29 14,61 3,34 8,21 3,01
Q3 6,08 16,90 3,37 5,93 3,02

Table 4.5: Split-point selection in dataset mega104-17-12-18 for the direc-
tion to master. Table shows the possible value of split-points and mean and
standard deviation of the resulting characteristics. In this case, the value 1.01
is used as split-point as it produce characteristic with the smallest standard
deviation. (∆t distribution is derived from the first 48 hours of the captured
traffic in order to decrease the influence of the periodicity.)

denotes the time of capturing for the individual transmitted packets.

1. Determine inter-arrival time for each packet ∆tdi = tdi − ti−1 and create
a new sequence ∆T = (∆td1,∆t

d
2, ...,∆t

d
n) that hold the inter-arrival

time for each packet.

2. Partition the input sequence and the sequence of inter-arrival times
into two subsequences according to the direction of individual values:
T f = (tdi : d = f ∧ 1 ≤ i ≤ n) and T t = (tdi : d = t ∧ 1 ≤ i ≤ n),
∆T f = (∆tdi : d = f ∧1 ≤ i ≤ n) and ∆T t = (∆tdi : d = t∧1 ≤ i ≤ n).
Subsequences T f and ∆T f represent the direction from master and
subsequences T t and ∆T t represent the direction to master.

3. Consider the distribution of the values in ∆T f and ∆T t subsequences
and find the set of candidates for split-points for each distributions:
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Figure 4.5: Graph of the amount of packets transmitted in five minute win-
dows in mega104-17-12-18 dataset, additional characteristics show the effect
of using different split-points (direction from master).

Df = {Q1f , Q2f ,meanf , Q3f} andDt = {Q1t, Q2t,meant, Q3t}, where
Q1 is the first quartile, Q2 is the median, Q3 is the third quartile and
mean is arithmetic mean.

4. For each direction and each sp ∈ Dd find five minute characteristics
of the traffic as the amount of packets transmitted during each five
minute window with specified inter-arrival time:

Sd,L
sp = (a1, ..., am : aj = |tdi |, k ∗ w ≤ ti < (k + 1) ∗ w, k = 0... tnw ∧

∆tdi < sp) and

Sd,U
sp = (b1, ..., bm : bj = |tdi |, k ∗w ≤ ti < (k+ 1)∗w, k = 0... tnw ∧∆tdi ≥
sp),

where w is the size of time window (w = 300 for five minute window)
and |tdi | denotes the number of elements of sequence T d that satisfies
specified conditions.

5. For each direction find the set of mean values (two values for each
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Figure 4.6: Graph of the amount of packets transmitted in five minute win-
dows in mega104-17-12-18 dataset, additional characteristics show the effect
of using different split-points (direction to master).

candidate split-point):

Md = {md,e
sp : e ∈ {L,U}, sp ∈ Dd},

where md,e
sp = 1

m

∑m
j=1 aj and aj ∈ Sd,e

sp .

And also set of standard deviations:

DEV d = {σd,esp : e ∈ {L,U}, sp ∈ Dd},

where σd,esp =
√

1
n

∑m
j=1(aj −m

d,e
sp )2 and aj ∈ Sd,e

sp .

6. For each direction find the smallest σd,esp in DEV d that also satisfies
condition: md,e

sp − 3 ∗ σd,esp > 0. Save the spd value as the selected
split-point for the given direction (sspd).

7. For each direction find a summary five minute characteristic of the
traffic:

Sd,T = (c1, ..., cm : cj = |tdi |, k ∗ w < ti ≤ (k + 1) ∗ w, k = 0... tnw )
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and find the mean md,T and standard deviation σd,T for this charac-
teristic.

8. Using 3-sigma rule, filter out the outlier values from Sd,T and Sd,e
ssp

characteristics generated with selected split-point (filter out the points
that does not fit in the ranfe < m− 3 ∗ σ,m+ 3 ∗ σ >):

Sd,e,R
ssp = (a′1, ..., a

′
o : a′j ∈ S

d,e
ssp ∧ (md,T

ssp − 3 ∗ σd,Tssp ) ≤ a′j ≤ (md,T
ssp + 3 ∗

σd,Tssp ), j = 1...o).

Sd,T,R = (c′1, ..., c
′
o : c′j ∈ Sd,T ∧ (md,T − 3 ∗ σd,T ) ≤ c′j ≤ (md,T + 3 ∗

σd,T ), j = 1...o),

9. Find the mean and standard deviation for each reduced characteristic:
md,T,R, σd,T,R, md,L,R

ssp , σd,L,Rssp , md,U,R
ssp and σd,U,Rssp .

10. Determine the boundaries of intervals of normal values with the 3-
sigma rule for all three characteristics of the traffic:

to1 = md,T,R − 3 ∗ σd,T,R, to2 = md,T,R + 3 ∗ σd,T,R,
sm1 = md,L,R

ssp − 3 ∗ σd,L,Rssp , sm2 = md,L,R
ssp + 3 ∗ σd,L,Rssp ,

ge1 = md,U,R
ssp − 3 ∗ σd,U,Rssp , ge2 = md,U,R

ssp + 3 ∗ σd,U,Rssp .

11. Build up a final description for the given direction of the traffic as a
4-tuple consisting of the value of selected split-point and of a triple of
ranges of normal (expected) values: (ssp,< to1; to2 >,< sm1; sm2 >
,< ge1; ge2 >), where < to1; to2 > specify the range of normal values of
the total amount of the transmitted packets in the five minute window,
< sm1; sm2 > specify the range of normal values of the amount of
packets with ∆t < ssp and < ge1; ge2 > specify the range of the
normal values of the amount of the packets with ∆t ≥ ssp.

Figures A.1 - A.7 show the collected characteristics for individual datasets
(total amount of packets for each five minute window and amounts of packets
transmitted in two ranges of their inter-arrival time). Table 4.6 shows the
descriptions of the traffic for individual datasets that we build up for the
validation purposes. Each traffic is described by a couple of description
defined previously - one for each direction. In order to define the ranges of
normal values for individual characteristics we utilize 3-sigma rule. We also
tested the ranges of normal values based on IQR, but these intervals proved
to be too narrow to accept characteristics of normal communication flow.

4.2.1 Traffic monitoring and anomaly detection

Traffic monitoring system based on our statistical method has to gather the
statistical information for individual five minute windows. For each five
minute window, it is necessary to collect information about the number of
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transmitted packets and about their inter-arrival times. Traffic in each di-
rection (from master and to master) is monitored separately, however inter-
arrival time should be determined in both-direction traffic. The descriptions
for both directions of the given traffic contain all information essential for
such traffic monitoring. First component of each description determines how
to divide the packets according to their inter-arrival time into two groups.
Then, the amount of packets in each group and also total amount of trans-
mitted packets are compared with the ranges of normal values contained in
the description. If any of the values does not fit into the specified range, an
anomaly is detected. This is the principle of the simple-detection method.

Besides this simple-detection method, monitoring system can also utilize
3-value-detection method. The purpose of this method is to allow short
anomalies after them the traffic properties returns back to normal values and
to reduce the number of false positives window. In this method, we consider
three consecutive five minute windows. An anomaly is reported only if at
least two of the three windows detect the values outside the specified range
for some characteristic of the traffic.

Dataset Dir. Description
10122018-104Mega fm (0.10,<1200.78;1413.44>,<1104.74;1311.42>,<79.51;119.30>)

tm (0.40,<367.10;427.92>,<314.46;375.33>,<47.91;54.49>)
13122018-mega104 fm (0.09,<1260.54;1357.95>,<1171.15;1270.40>,<45.17;131.89>)

tm (0.46,<390.15;411.42>,<336.42;359.35>,<46.27;59.52>)
mega104-14-12-18 fm (5.28,<17.74;82.24>,<0.27;72.10>,<4.82;22.70>)

tm (1.01,<19.39;26.28>,<-1.43;12.03>,<11.09;23.98>)
mega104-17-12-18 fm (5.66,<20.30;76.94>,<4.70;68.05>,<3.90;20.62>)

tm (1.01,<19.39;26.22>,<-1.01;12.26>,<10.67;23.64>)
KTH-RTU8 fm (0.186,<1329.00;1858.74>,<86.53;524.54>,<1230.18;1346.55>)

tm (0.014,<147.58;206.59>,<10.04;58.02>,<92.85;193.18>)
KTH-RTU11 fm (0.211,<368.79;1302.63>,<-231.92;644.10>,<541.62;713.65>)

tm (0.006,<40.97;144.76>,<9.69;36.95>,<11.34;127.58>)
RICS fm (1.35,<169.52;248.56>,<114.27;191.58>,<50.29;62.05>)

tm (0.14,<24.56;33.61>,<14.25;29.47>,<0.84;13.56>)

Table 4.6: Description of the normal traffic in our datasets.

4.2.2 GOOSE protocol specifics

The proposed method is suitable also for other ICS communication proto-
cols. In this section, we describe the application of the method on GOOSE
communication. In this case, we focus on modelling flow properties rather
than packets or virtual flows as in case of IEC 104. When analyzing GOOSE
flows we need to re-define the inter-arrival time. Since we are able to record
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the start time and the end times of each flows, we can define the inter-
arrival time of individual flows as the difference between timestamps of the
subsequent flows. With this abstraction, the inter-arrival time includes the
duration of the flow. However, the duration of flows is constant, so we can
determine the inter-arrival time in this simple way.

fe80::221:c1ff:fe25:8a2 fe80::209:8eff:fefa:c045
Q1 69.3031 60.0071
Q2 69.3032 60.0080

mean 69.3032 60.0148
Q3 69.3033 60.0089

Table 4.7: Inter-arrival time (of flows) distribution for two publishers from
goose-mms3 dataset (rounded to 4 decimal places).

The communication in GOOSE protocol differs from communication in
IEC104 in many ways. These differences greatly simplify the modelling pro-
cess:

• Publisher-subscriber mode of GOOSE communication allows to skip the
second step (splitting the communication based on the direction) of the
modelling process and leads to the model for one-sided communication.

• Regular inter-arrival times enable to omit the additional character-
istics obtained by splitting flows based on selected split-point. The
inter-arrival times in the observed datasets are almost stable and un-
changeable for the given flow. Therefore all quartiles and mean value
vary in thousandths of a second (see table 4.7). Even though we can
apply proposed method and find the suitable split-point for the given
communication, such split-point produce rather random split of the
individual flows (see fig. 4.7). Furthermore, the main characteristic is
so stable that additional characteristics no longer provide any benefit.
Altogether, we suggest to model the GOOSE communication only with
the main characteristic (total number of flows captured in the specified
time window) and its range of normal values (given by mean± 3 ∗ σ).

On the other hand, the high stability of the inter-arrival times of GOOSE
flows brings the problem of zero standard deviation of the gathered charac-
teristic (see fig. 4.8a). This leads to too narrow range of normal values that
is very sensitive to even very small changes in the flow distribution. This
problem arises if the size of the time window is almost infinitely divisible
by the average inter-arrival time. Time windows with the size disjoint with
average inter-arrival time provide more robust range of normal values for the
given traffic (see fig. 4.8b).

While inter-arrival times of flows in Goose communication seems to be
too stable to refine the statistical model of the given communication, other
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(a) split-point = 60.007 (Q1) (b) split-point = 60.008 (Q2)

(c) split-point = 60.015 (mean) (d) split-point = 60.009 (Q3)

Figure 4.7: Graph of the amount of packets transmitted in five minute win-
dows in gics-goose dataset for publisher fe80::209:8eff:fefa:c045 (blue line),
additional characteristics (green and orange) show the effect of using different
split-points.

flows properties allows to extend the statistical model. Our analysis revealed
that the size of the flow expressed in packets or bytes almost does not change
over time. As a result, this property can be used for more robust statistical
modeling of Goose traffic. In addition to the characteristic indicating the
number of flows in a time window, an interval of normal values for the
volume of flows (in packets or bytes) transmitted in a time window can
also be determined. Such extension allows detection of flows whose size is
changed, although the frequency of sending them remain unchanged (see fig.
4.9).

4.3 Experiments

Performed experiments were designed in order to test the applicability of
statistical methods (especially 3-sigma method) for anomaly detection in
industrial communication. These experiments can be divided into two groups
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(a) window size 300s (b) window size 330s

Figure 4.8: Effect of time window size in gics-goose dataset for publisher
fe80::209:8eff:fefa:c045. The median of the inter-arrival times in this com-
munication is 60.008 seconds.

- validation tests and anomaly detection experiments.
At first, we examined proposed description of the communication flow.

We tested the stability of this description throughout our datasets. For these
validation tests we divided the available datasets into two parts. We used
the first part (2/3 of the captured traffic) to find the description of the given
communication flow. Then, we tested established description and its ranges
on the second part (1/3 of the flow) of the given communication flow. We
tested both detection methods described in section 4.2.1. We searched for
detection method that would lead to almost perfect fit of the second part of
the communication flow into the given ranges. Such method will not produce
the false positives during the detection. On the other hand, this method must
also be able to detect possible attacks on the given infrastructure.

The anomaly detection experiments focus on the ability to detect an
attack on the given infrastructure. We use the description of the communi-
cation flow and the detection method selected by the previous experiments.

Subsections 4.3.1 and 4.3.2 describe performed experiments for IEC104
protocol and obtained results.

We also tested the proposed description of the communication flow with
LOF method. Obtained results are provided in section 4.3.3.

4.3.1 3-sigma validation tests

Validation tests were performed to confirm the applicability of statistical
methods and correctness of defined ranges for individual features (character-
istics) that we use to describe the communication flow.

In order to find the range of expected values for each feature, we analyze
the first two thirds of the communication flow for all datasets. For each flow,
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(a) Stable flows volume (b) Unstable flows volume

Figure 4.9: Volume of flows characteristic in mms3-goose dataset. The left
part shows the usual goose communication, while the right part shows the
communication containing the anomaly that changed the volume of the flows
in the specified time window (300 seconds).

we gather the statistics (features) as described in section 4.2 and build up
its description.

Validation of the determined ranges is performed on the last third of
each communication flow. Table 4.8 list all five minute windows in our
datasets, their characteristics does not fit into determined ranges of expected
values. This simple-detection method marks many five minute windows as
anomalies, even if only on the basis of one feature. However, we can see
that the characteristics of the communication flow usually return back to
specified interval in next five minute window. This small deviations from
determined range of normal values can be caused by switching devices or by
some network delay. Such behaviour is quite common in normal traffic (see
figure A.1).

There exist more possibilities, how to solve this problem. One possibility
is to enlarge the determined range of expected normal values. However,
this solution may allow too large range of normal values to prevent anomaly
detection. Another approach utilizes floating window that allows to test if
the values return back to predefined range. Therefore, we propose detection
method the utilizes 3-values window, where 2 of three values have to fit into
determined range of expected values.

Table 4.9 list five minutes windows detected by 3-value-detection method
as anomalies. 3-value-detection method produces much less false positives
elements and therefore is more suitable for anomaly detection. Tables 4.10
and 4.11 shows the accuracy of both detection methods. Table 4.10 shows
the accuracy of the individual features separately. Table 4.11 summarizes
the overall accuracy.
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Dataset Dir. Char. List of windows
10122018-104Mega tm ∆t ≥ sp 40
13122018-mega104 fm total 618, 725

∆t < sp 618, 725
13122018-mega104 tm total 618, 725

∆t < sp 618, 725
mega104-17-12-18 fm total 784

∆t < sp 784
∆t ≥ sp 654, 754

mega104-17-12-18 tm ∆t < sp 795
∆t ≥ sp 795

KTH-RTU8 fm ∆t ≥ sp 1492, 1497, 1527 - 1529, 1812
- 1813, 1818, 1924

KTH-RTU11 fm ∆t ≥ sp 1417, 1421, 1429, 1448, 1456,
1460, 1463, 1467, 1482, 1650,
1745, 1749, 1932, 1940

tm ∆t < sp 1482, 1632, 1833
RICS fm total 2564, 2609, 3458, 3498

∆t < sp 2609, 3458, 3498
∆t ≥ sp 2543, 2555, 2574, 2682, 2841,

2849, 2850, 2860, 2942, 3130,
3140, 3141, 3160, 3237, 3263,
3420, 3421, 3423, 3426, 3429,
3431, 3474, 3707, 3712, 3713

RICS tm total 3716
∆t < sp 2543, 2578, 3140, 3207, 3420,

3498, 3716
∆t ≥ sp 2543, 2553, 2575, 2869, 3001,

3138, 3140, 3716

Table 4.8: Simple-detection method validation - list of five minute windows
that does not fit into predefined range of values. Only datasets and charac-
teristics with false positive elements are included.
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Dataset Direction Char. List of windows
KTH-RTU8 fm ∆t ≥ sp 1526 - 1528, 1811 - 1812

RICS fm ∆t ≥ sp 2848 - 2849, 3139 - 3140, 3419
- 3421, 3429, 3711 - 3712

RICS tm ∆t ≥ sp 3138

Table 4.9: 3-value-detection method validation - list of first five minute win-
dow of 3-value window for which 2 of the three values do not fit into pre-
defined range of values. Start position of 3-value window is reported. Only
datasets and characteristics with false positive elements are included.

Simple-detection 3-value-detection
Dataset Dir. Char. FP/all Acc FP/all Acc

10122018-104Mega fm any 0/20 100% 0/20 100%
10122018-104Mega tm ∆t ≥ sp 1/20 95% 0/20 100%
13122018-mega104 fm total 2/285 99,30% 0/285 100%

∆t < sp 2/285 99,30% 0/285 100%
13122018-mega104 tm total 2/285 99,30% 0/285 100%

∆t < sp 2/285 99,30% 0/285 100%
mega104-14-12-18 fm any 0/63 100% 0/63 100%
mega104-14-12-18 tm any 0/63 100% 0/63 100%
mega104-17-12-18 fm total 1/273 99.63% 0/273 100%

∆t < sp 1/273 99.63% 0/273 100%
∆t ≥ sp 2/273 99.27% 0/273 100%

mega104-17-12-18 tm ∆t < sp 1/273 99.63% 0/273 100%
∆t ≥ sp 1/273 99.63% 0/273 100%

KTH-RTU8 fm ∆t ≥ sp 9/650 98.62% 5/650 99.23%
KTH-RTU8 tm any 0/650 100% 0/650 100%
KTH-RTU11 fm ∆t ≥ sp 14/650 97.85% 0/650 100%
KTH-RTU11 tm ∆t < sp 3/650 99.54% 0/650 100%

RICS fm total 4/1240 99.68% 0/1240 100%
∆t < sp 3/1240 99.76% 0/1240 100%
∆t ≥ sp 25/1240 97.98% 10/1240 99.19%

RICS tm total 1/1240 99.92% 0/1240 100%
∆t < sp 7/1240 99.44% 0/1240 100%
∆t ≥ sp 8/1240 99.34% 1/1240 99.92%

Table 4.10: Validation results - results for individual characteristics.
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Simple-detection 3-value-detection
Dataset FP/all Acc FP/all Acc

10122018-104Mega 1/20 95% 0/20 100%
13122018-mega104 2/285 99.30% 0/285 100%
mega104-14-12-18 0/63 100% 0/63 100%
mega104-17-12-18 4/273 98.53% 0/273 100%

KTH-RTU8 9/650 98.62% 5/650 99.23%
KTH-RTU11 16/650 97.54% 0/650 100%

RICS 37/1240 97.02% 11/1240 99.11%

Table 4.11: Validation - summary results.

4.3.2 3-sigma anomaly detection

In the previous section, we show that our description of the traffic together
with 3-value-detection method is able to describe the normal behaviour of
the given communication flow with sufficient accuracy. In this section, we
describe the results obtained by processing datasets with simulated attacks.
Figures A.8 - A.13 show the collected characteristics for mega104-17-12-18
datasets with simulated attacks (total amount of packets for each five minute
window and amounts of packets transmitted in two ranges of their inter-
arrival time).

For these tests, we build up a description of the traffic from the whole
mega104-17-12-18 dataset. For the anomaly detection we applied 3-value-
detection method. Tables 4.12, 4.13 and 4.14 list the 5 minute windows that
were revealed as anomalies.

The results show that the method is able to detect the majority of sim-
ulated attacks. Our method does not correctly recognize only one attack -
first injection attack. This attack does not involve the amount of transmitted
packets significantly and therefore it is not detectable by this method. Other
attacks were correctly detected at least in one direction of the communication
flow.

4.3.3 LOF validation and anomaly detection

We applied the LOF novelty detection method to the same IEC104 traffic
description as our 3-sigma method. We applied LOF method on data points
with three attributes: total amount of packets for each five minute window
and amounts of packets transmitted in two ranges of their inter-arrival time.
On the final labeling of the LOF method we again applied 3-value-detection
method to filter out short deviation in the traffic. We search for such 3
consecutive values where at least two of them were labeled as outliers by
LOF method. Both direction of the traffic we treated separately.

Table 4.15 shows the best value of n_neighbors parameter, the number
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Dir. Char. Connection loss Injection attack
310-312 498-510 59-60 365-368

fm total 311-312 ↓ 499-511 ↓ - -
∆t < sp - 500-510 ↓ - -
∆t ≥ sp - 499-510 ↓ - -

tm total 311-313 ↓ 499-511 ↓ - 367-369 ↓
∆t < sp - - - -
∆t ≥ sp 311-312 ↓ 499-511 ↓ - -

Table 4.12: Connection loss and injection attack detection. The header of
the columns list the real five minute windows in which the attack occurred,
lines denote windows in which the attack was detected by individual charac-
teristics. Arrows indicate whether the amount of packets was above or below
the range of specified values.

Dir. Char. DoS attack Roque device
110-128 142-161 8-13

fm total - - 10-14↓
∆t < sp - - 10-14 ↓
∆t ≥ sp 112-114, 117-121, 125-128 ↑ 145-161 ↑ 10-14 ↓

tm total 111-130 ↓ 143-162 ↓ 9-14 ↓
∆t < sp - - -
∆t ≥ sp 111-129 ↓ 143-162 ↓ 9-14 ↓

Table 4.13: DoS attack and roque device detection. The header of the
columns list the real five minute windows in which the attack occurred, lines
denote windows in which the attack was detected by individual characteris-
tics. Arrows indicate whether the amount of packets was above or below the
range of specified values.

of false positive windows and the accuracy for each IEC104 dataset. The
results of LOF and 3-sigma method are roughly comparable, however LOF
method produces slightly more false positive windows and it requires finding
a suitable n_neighbors parameter value. For some datasets the right value
of n_neighbors parameter is crucial, since bad value can result in an increase
in the number of false positive windows to more than six times (up to 41 FP
for mega104-17-12-18 dataset).

In addition, we encountered a problem with the LOF method during
anomaly detection. In this case LOF method produced many false positive
points. We examined the results of the LOF method and found that the
method is sensitive to changes in the density of data points. Since our
dataset with normal traffic contains many identical points (duplicates), the
LOF method identified as outliers such points around which the frequency
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Dir. Char. Scanning attack Switching attack
239-242 413-417 190-192

fm total 240-242 ↓ - -
∆t < sp 241-242 ↓ - -
∆t ≥ sp 240-242 ↓ - -

tm total 240-243 ↓ 414-417 ↑ 191-192 ↑
∆t < sp - - 191-192 ↑
∆t ≥ sp 240-243 ↓ - -

Table 4.14: Scanning and switching attack detection. The header of the
columns list the real five minute windows in which the attack occurred, lines
denote windows in which the attack was detected by individual characteris-
tics. Arrows indicate whether the amount of packets was above or below the
range of specified values.

3-sigma method LOF
Dataset FP/all Acc FP/all Acc best k

10122018-104Mega 0/20 100% 0/20 100% k = 28, 29
13122018-mega104 0/285 100% 4/285 98.60% k = 4
mega104-14-12-18 0/63 100% 0/63 100% k = 10...12, 18...20, 29
mega104-17-12-18 0/273 100% 6/273 97.80% k = 6

KTH-RTU8 5/650 99.23% 0/650 100% 9 ≤ k ≤ 11
KTH-RTU11 0/650 100% 0/650 100% k ≥ 6

RICS 11/1240 99.11% 18/1240 98.55% k = 3, 23, 24

Table 4.15: LOF validation results compared to 3-sigma method results.

of occurrence of points decreased significantly (see fig. 4.10). Such labeling
is not desired behavior for the traffic monitoring and anomaly detection.

To avoid the problem with duplicates, we filtered them out and performed
the validation test The results of these experiments together with the bast
values of the parameter n_neighbors are summarized in table 4.16. The
results of anomaly detection performed on the reduced set with n_neighbors
parameter set to value 6 are presented in table 4.17.

The ability of LOF method to detect the individual attacks is the same
as of 3-sigma method. It is not possible to detect the first injection attack
by both methods due to the used description of the communication flow.
LOF method on the reduced dataset produces the slightly better result than
3-sigma method in the term of false positive windows. On the other hand,
the 3-sigma method employs a simpler model and the evaluation of time
windows is extremely clear and fast.
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(a) LOF labeling

(b) Frequency of point in the cluster

Figure 4.10: LOF method behavior on the mega104-17-12-18 dataset with
DoS attack and with duplicates (to master direction). As outliers (red points)
are marked points around which the frequency of occurrence of points de-
creased significantly. The frequency of the points in the cluster is depicted
in (b).

LOF
Dataset FP Acc best k

10122018-104Mega 0 100% k ≥ 9
13122018-mega104 0 100% k ≥ 21
mega104-14-12-18 0 100% ∀k
mega104-17-12-18 0 100% ∀k

KTH-RTU8 0 100% 9 ≤ k ≤ 24
KTH-RTU11 0 100% k ≥ 6

RICS 0 100% ∀k

Table 4.16: LOF validation results on reduced dataset (without duplicates).
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Attack 3-sigma LOF
TM FM TM FM

Connection loss 1 X X X X
Connection loss 2 X X X X
Injection attack 1 × × × ×
Injection attack 2 × X × X

DoS attack 1 X X X X
DoS attack 2 X X X X
Roque Device X X X X

Scanning attack 1 X X X X
Scanning attack 2 × X × X
Switching attack × X × X

Table 4.17: Comparison of the anomaly detection with 3-sigma method and
LOF method.

4.3.4 Summary

Performed experiments show that the total amount of packets transmitted
in five minute window is useful feature of the communication flow. In order
to provide more subtle description it is possible to divide the amount of
transmitted packets into groups defined by ∆ti intervals.

3-sigma rule can be used to define the ranges of normal values for the
designed features. 3-value-detection method is capable to detect almost all
simulated attack while produce only reasonably small number of false posi-
tive windows.

On the other hand, in some datasets, we can see, that the range of
expected values is quite wide. Usually, this is true for communication flows
that show some periodicity. In such case, more precise method based on the
detected period might be more appropriate.
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Figure A.1: Graphs of the amounts of transmitted packets in five minute
windows in 13122018-mega104 dataset (whole communication splitted by
the direction, automatic setting of split points).
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Figure A.2: Graphs of the amounts of transmitted packets in five minute
windows in 10122018-104Mega dataset (whole communication splitted by
the direction, automatic setting of split points).
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(b) Characteristics of the traffic to the master device.

Figure A.3: Graphs of the amounts of transmitted packets in five minute
windows in mega104-14-12-18 dataset (whole communication splitted by
the direction, automatic setting of split points).
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Figure A.4: Graphs of the amounts of transmitted packets in five minute
windows in mega104-17-12-18 dataset (whole communication splitted by
the direction, automatic setting of split points).
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(b) Characteristics of the traffic to the master device.

Figure A.5: Graphs of the amounts of transmitted packets in five minute
windows in RICS dataset (whole communication splitted by the direction,
automatic setting of split points).
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(b) Characteristics of the traffic to the master device.

Figure A.6: Graphs of the amounts of transmitted packets in five minute
windows in KTH-RTU8 dataset (whole communication splitted by the direc-
tion, automatic setting of split points).
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Figure A.7: Graphs of the amounts of transmitted packets in five minute
windows in KTH-RTU11 dataset (whole communication splitted by the direc-
tion, automatic setting of split points).
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Figure A.8: Graphs of the numbers of packets transmitted in five minute
windows in mega104-17-12-18 dataset with injection attack (whole commu-
nication splitted by the direction, automatic setting of split points).
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Figure A.9: Graphs of the numbers of packets transmitted in five minute
windows in mega104-17-12-18 dataset with connection loss attack (whole
communication splitted by the direction, automatic setting of split points).



APPENDIX A. FIGURES WITH AUTOMATIC SPLIT-POINTS 48

0 288 576
0

10

20

30

40

50

60

70

80 total
delta_t < split_point
delta_t >= split_point

(a) Characteristics of the traffic from the master device.

0 288 576

0

5

10

15

20

25

total
delta_t < split_point
delta_t >= split_point

(b) Characteristics of the traffic to the master device.

Figure A.10: Graphs of the numbers of packets transmitted in five minute
windows in mega104-17-12-18 dataset with DoS attack (whole communica-
tion splitted by the direction, automatic setting of split points).
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Figure A.11: Graphs of the numbers of packets transmitted in five minute
windows in mega104-17-12-18 dataset with rogue devices attack (whole com-
munication splitted by the direction, automatic setting of split points).
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Figure A.12: Graphs of the numbers of packets transmitted in five minute
windows in mega104-17-12-18 dataset with scanning attack (whole commu-
nication splitted by the direction, automatic setting of split points).
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Figure A.13: Graphs of the numbers of packets transmitted in five minute
windows in mega104-17-12-18 dataset with switching attack (whole commu-
nication splitted by the direction, automatic setting of split points).
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Figures and tables with manual
split-points

Hovewer, splitting points of inter-arrival defined above, are not exactly the
most appropriate for mega104-17-12-18 dataset. The total amount of pack-
ets transmitted in five minute windows of these communication flow is much
smaller than in other datasets. Subsequently, usual inter-arrival time is
greater. We found experimentally more suitable splitting point: 1.0 and 5.0.
Figures B.8 - B.14 show the characteristics of the dataset mega104-17-12-18
utilizing splitting points 1.0 and 5.0 and also this dataset with different types
of attacks.

Figure B.4 shows that ∆t intervals used to provide more subtle distri-
bution of the number of transmitted packets are not optimal. We can see,
that the majority of the packets are transmitted after ∆t ≥ 1.0. Basi-
cally, intervals < 0, 0.2), < 0.2, 1.0) and ∆t ≥ 1.0 are useful for datasets
with greater amount of packets transmitted in each 5 minute window. The
number of transmitted packets in five minute window in mega104-17-12-18
dataset fluctuate around 50 packets in the direction from master and around
23 packets in the opposite direction. Therefore intervals, that allow grater
∆ti might describe given communication flow more properly. Table B.6 list
the 5 minute windows that were revealed as anomalies with the following
∆ti intervals: < 0, 1.0), < 1.0, 5.0) and ∆t ≥ 1.0. The results show that
these intervals allow the detection all but one attacks with no false positive
windows.
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Dataset Dir. Char. List of windows
13122018-mega104 fm total 618, 725

∆t ∈< 0, 0.2) 618, 725
13122018-mega104 tm total 618, 725

∆t ∈< 0, 0.2) 618, 725
∆t ∈< 0.2, 1.0) 738, 850

mega104-14-12-18 fm ∆t ∈< 0, 0.2) 125
mega104-14-12-18 tm ∆t ∈< 0.2, 1.0) 143

∆t ≥ 1.0 143
mega104-17-12-18 fm total 784

∆t ∈< 0, 0.2) 683, 686
∆t ∈< 0.2, 1.0) 781, 795, 811

mega104-17-12-18 tm ∆t ∈< 0, 0.2) 698, 702, 714
∆t ∈< 0.2, 1.0) 761, 767, 775

∆t ≥ 1.0 713
KTH-RTU8 fm ∆t ∈< 0.2, 1.0) 1497, 1527 - 1529

∆t ≥ 1.0 1345, 1354, 1507
KTH-RTU8 tm ∆t ∈< 0.2, 1.0) 1488, 1607, 1848 - 1849

∆t ≥ 1.0 1452, 1637
KTH-RTU11 fm ∆t ≥ 1.0 1526 - 1529, 1539, 1813, 1896

RICS fm total 2564, 2609, 3458, 3498
∆t ∈< 0, 0.2) 3458, 3498

∆t ∈< 0.2, 1.0) 2572, 2659, 2855, 2934, 3057,
3124, 3439, 3692, 3710

∆t ≥ 1.0 2557, 2561, 2846, 2849, 2860,
2942, 3130, 3138, 3140, 3236,
3420, 3429, 3474, 3712

RICS tm total 3716
∆t ∈< 0, 0.2) 2543, 2578, 3140, 3160, 3420,

3498, 3716
∆t ∈< 0.2, 1.0) 2575, 2582, 2871, 3139, 3147,

3242, 3439, 3526, 3567
∆t ≥ 1.0 2543, 2673, 2841, 2849, 2860,

2933, 3001, 3006, 3140, 3160,
3263, 3419, 3420, 3421, 3427,
3429, 3434, 3474, 3712

Table B.1: Simple validation - list of five minute windows that does not fit
into predefined range of values (manual setting of split-points).
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Dataset Direction Characteristic List of windows
KTH-RTU8 from master ∆t ∈< 0.2, 1.0) 1528, 1529, 1530
KTH-RTU8 to master ∆t ∈< 0.2, 1.0) 1849, 1850
KTH-RTU11 from master ∆t > 1.0 1527, 1528, 1529, 1530

RICS from master ∆t > 1.0 3140
RICS to master ∆t > 1.0 3420, 3421, 3422, 3429

Table B.2: 3-value window validation - list of first five minute window of 3-
value window for which 2 of the three values do not fit into predefined range
of values (manual setting of split-points). Only datasets with false positive
elements are included.
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Simple validation 3-value validation
Dataset Dir. Char. FP Acc FP Acc

10122018-104Mega fm all 0 100% 0 100%
10122018-104Mega tm all 0 100% 0 100%
13122018-mega104 fm total 2 99,30% 0 100%

∆t ∈< 0, 0.2) 2 99,30% 0 100%
13122018-mega104 tm total 2 99,30% 0 100%

∆t ∈< 0, 0.2) 2 99,30% 0 100%
∆t ∈< 0.2, 1.0) 2 99,30% 0 100%

mega104-14-12-18 fm ∆t ∈< 0, 0.2) 1 98.41% 0 100%
mega104-14-12-18 tm ∆t ∈< 0.2, 1.0) 1 98.41% 0 100%

∆t ≥ 1.0 1 98.41% 0 100%
mega104-17-12-18 fm total 1 99.63% 0 100%

∆t ∈< 0, 0.2) 2 99.27% 0 100%
∆t ∈< 0.2, 1.0) 3 98.90% 0 100%

mega104-17-12-18 tm ∆t ∈< 0, 0.2) 3 98.90% 0 100%
∆t ∈< 0.2, 1.0) 3 98.90% 0 100%

∆t ≥ 1.0 1 99.63% 0 100%
KTH-RTU8 fm ∆t ∈< 0.2, 1.0) 4 99.38% 3 99.53%

∆t ≥ 1.0 3 99.53% 0 100%
KTH-RTU8 tm ∆t ∈< 0.2, 1.0) 4 99.38% 2 99.69%

∆t ≥ 1.0 2 99.69% 0 100%
KTH-RTU11 fm ∆t ≥ 1.0 7 98.92% 4 99.38%

RICS fm total 4 99.68% 0 100%
∆t ∈< 0, 0.2) 2 99.84% 0 100%

∆t ∈< 0.2, 1.0) 9 99.27% 0 100%
∆t ≥ 1.0 14 98.87% 1 99.9%

RICS tm total 1 99.92% 0 100%
∆t ∈< 0, 0.2) 7 99.44% 0 100%

∆t ∈< 0.2, 1.0) 9 99.27% 0 100%
∆t ≥ 1.0 19 98.47% 4 99.7%

Table B.3: Validation results - results for individual characteristics (manual
setting of split-points).
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Simple validation 3-value validation
Dataset FP Acc FP Acc

10122018-104Mega 0 100% 0 100%
13122018-mega104 4 98.60% 0 100%
mega104-14-12-18 2 96.83% 0 100%
mega104-17-12-18 13 95.24% 0 100%

KTH-RTU8 13 98.00% 5 99.23%
KTH-RTU11 7 98.92% 4 99.38%

RICS 49 96.05% 5 99.60%

Table B.4: Validation-summary results (manual setting of split-points).

Dataset Dir. Char. List of windows
Connection-lost fm total 309-310, 497-509

∆t ∈< 0, 0.2) 156
∆t ≥ 1.0 309-310, 498-508

tm total 309-311, 497-509
∆t ≥ 1.0 310-311, 497-509

Injection-attack fm ∆t ∈< 0, 0.2) 156
tm total 365-367

∆t ≥ 1.0 365-367
DoS-attack fm ∆t ∈< 0, 0.2) 110-111, 119-122, 124-126,

144, 146-151, 155-159
tm total 109-128, 141-160

∆t ≥ 1.0 109-128, 141-160
Rogue-devices fm total 8-12

∆t ∈< 0, 0.2) 156
∆t ≥ 1.0 8-12

tm total 7-12
∆t ≥ 1.0 7-12

Scanning-attack fm total 238-240
∆t ∈< 0, 0.2) 156

∆t ≥ 1.0 238-240
tm total 238-241, 412-415

∆t ∈< 0.2, 1.0) 413-414
∆t ≥ 1.0 238-241

Switching-attack fm ∆t ∈< 0, 0.2) 156
tm total 189-190

∆t ∈< 0.2, 1.0) 189-190

Table B.5: Attacks detection - results obtained with split points 0.2 and 1.0
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Dataset Dir. Char. List of windows
Connection-lost fm total 309-310, 497-509

∆t ≥ 5.0 309-310, 497-508
tm total 309-311, 497-509

∆t ∈< 1.0, 5.0) 498-508
Injection-attack tm total 365-367

DoS-attack fm ∆t ≥ 5.0 110-112, 115-119,
124-125, 143-159

tm total 109-128, 141-160
∆t ∈< 1.0, 5.0) 110-127, 142-160

Rogue-devices fm total 8-12
∆t ≥ 5.0 7-12

tm total 7-12
∆t ∈< 1.0, 5.0) 8-12

Scanning-attack fm total 238-240
∆t ≥ 5.0 238-241

tm total 238-241, 412-415
∆t ∈< 0, 1.0) 414

∆t ∈< 1.0, 5.0) 239-240
Switching-attack fm ∆t ∈< 0, 1.0) 189-191

tm total 189-190
∆t ∈< 0, 1.0) 189-190

Table B.6: Attacks detection - results obtained with split points 1.0 and 5.0
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(a) Characteristics of the traffic from the master device.
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(b) Characteristics of the traffic to the master device.

Figure B.1: Graphs of the amounts of transmitted packets in five minute
windows in 13122018-mega104 dataset (whole communication splitted by
the direction, manual setting of split points).



APPENDIX B. FIGURES AND TABLES WITH MANUAL SPLIT-POINTS59

10 20 30 40 50

0

1000

2000

3000

4000

number_of_packets
<0,0.2)
<0.2,1.0)
delta_t > 1.0

(a) Characteristics of the traffic from the master device.
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(b) Characteristics of the traffic to the master device.

Figure B.2: Graphs of the numbers of packets transmitted in five minute
windows in 10122018-104Mega dataset (whole communication splitted by
the direction, manual setting of split points).
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(a) Characteristics of the traffic from the master device.
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(b) Characteristics of the traffic to the master device.

Figure B.3: Graphs of the numbers of packets transmitted in five minute
windows in mega104-14-12-18 dataset (whole communication splitted by the
direction, manual setting of split points).
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(a) Characteristics of the traffic from the master device.
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(b) Characteristics of the traffic to the master device.

Figure B.4: Graphs of the numbers of packets transmitted in five minute
windows in mega104-17-12-18 dataset (whole communication splitted by the
direction, manual setting of split points).
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(a) Characteristics of the traffic from the master device.
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(b) Characteristics of the traffic to the master device.

Figure B.5: Graphs of the numbers of packets transmitted in five minute
windows in RICS dataset (whole communication splitted by the direction,
manual setting of split points).
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(a) Characteristics of the traffic from the master device.
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(b) Characteristics of the traffic to the master device.

Figure B.6: Graphs of the numbers of packets transmitted in five minute
windows in KTH-RTU8 dataset (whole communication splitted by the di-
rection, manual setting of split points).
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(a) Characteristics of the traffic from the master device.
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(b) Characteristics of the traffic to the master device.

Figure B.7: Graphs of the numbers of packets transmitted in five minute
windows in KTH-RTU11 dataset (whole communication splitted by the di-
rection, manual setting of split points).
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(a) Characteristics of the traffic from the master device.

0 100 200 300 400 500 600 700 800

0

5

10

15

20

25
number_of_packets
<0,1.0)
<1.0,5.0)
delta_t > 5.0

(b) Characteristics of the traffic to the master device.

Figure B.8: Graphs of the numbers of packets transmitted in five minute
windows in mega104-17-12-18 dataset with splitting points 1.0 and 5.0 (whole
communication splitted by the direction, manual setting of split points).
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(a) Characteristics of the traffic from the master device.
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(b) Characteristics of the traffic to the master device.

Figure B.9: Graphs of the numbers of packets transmitted in five minute
windows in mega104-17-12-18 dataset with injection attack (whole commu-
nication splitted by the direction, manual setting of split points).
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(a) Characteristics of the traffic from the master device.
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(b) Characteristics of the traffic to the master device.

Figure B.10: Graphs of the numbers of packets transmitted in five minute
windows in mega104-17-12-18 dataset with connection loss attack (whole
communication splitted by the direction, manual setting of split points).
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(a) Characteristics of the traffic from the master device.
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(b) Characteristics of the traffic to the master device.

Figure B.11: Graphs of the numbers of packets transmitted in five minute
windows in mega104-17-12-18 dataset with DoS attack (whole communica-
tion splitted by the direction, manual setting of split points).
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(a) Characteristics of the traffic from the master device.
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(b) Characteristics of the traffic to the master device.

Figure B.12: Graphs of the numbers of packets transmitted in five minute
windows in mega104-17-12-18 dataset with rogue devices attack (whole com-
munication splitted by the direction, manual setting of split points).
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(a) Characteristics of the traffic from the master device.
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(b) Characteristics of the traffic to the master device.

Figure B.13: Graphs of the numbers of packets transmitted in five minute
windows in mega104-17-12-18 dataset with scanning attack (whole commu-
nication splitted by the direction, manual setting of split points).
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(a) Characteristics of the traffic from the master device.
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(b) Characteristics of the traffic to the master device.

Figure B.14: Graphs of the numbers of packets transmitted in five minute
windows in mega104-17-12-18 dataset with switching attack (whole commu-
nication splitted by the direction, manual setting of split points).
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