
Finite Automata Methods
for Automated Reasoning

Habilitation Thesis

Lukáš Holík
Brno, Autumn 2020

i

Abstract
This habilitation thesis summarises the results of the author around algo-
rithmic techniques for finite automata over finite words and trees and their
applications in automated reasoning. Finite automaton is a core concept of
computer science that comes with a versatile toolbox facilitating simple and
elegant solutions to many problems, with strong theoretical guarantees in
the sense of complexity and completeness. Automata research has been con-
stantly delivering results relevant to a range of domains such as automated
reasoning, pattern matching, formal verification, language processing, data-
bases, web technologies, etc. The practical impact of research in automata has
been however lagging behind the theoretical one, often due to an insufficient
scalability of automata algorithms. This thesis summarises our work on im-
proving scalability and general usability of automata technology. It is focused
on efficient heuristics for general automata problems as well as on utilising
application opportunities for automata and application specific techniques,
mainly in verification of pointer programs, parallel programs, string manip-
ulating programs, deciding logics WS1S and WSkS, and pattern matching.
Some results on related models of concurrent systems such as Petri nets and
well-structured systems are also mentioned.

Keywords
Finite automata, tree automata, non-determinism, alternation, size reduction,
counting automata, concurrency, Petri Nets, well-structured systems, pointer
programs, parallel pointer programs, formal verification, decisionprocedures,
shape analysis, tree automata, separation logic, string constraints, monadic
second-order logic, WS1S, WSkS, pattern matching.

ii

Acknowledgment
I thank my Ph.D. advisor Tomáš Vojnar and my postdoc mentor Parosh Aziz Ab-
dulla for guiding me through the beginnings of this work and my academic career.
The results discussed here were achieved together with my colleagues and students,
who also made the process an overwhelmingly positive experience. My thanks to Mo-
hamed Faouzi Atig, Ahmed Bouajjani, Milan Češka (both), Yu-Fang Chen, Lorenzo
Clemente, Tomáš Fiedor, Peter Habermehl, Vojtěch Havlena, Frédéric Haziza, Mar-
tin Hruška, Petr Janků, Bengt Jonsson, Lisa Kaati, Filip Konečný, Ondřej Lengál,
Anthony Widjaja Lin, Roland Meyer, Richard Mayr Bui Phi Diep, Cong Qui Trinh,
Ahmed Rezine, Othmanne Rezine, Adam Rogalewicz, Philipp Rümmer, Jiří Šimáček,
Marek Trtík, Lenka Turoňová, Margus Veanes, Sebastian Wolff.

Over the time, I was supported by a number of grant projects, mainly by the Czech
Science Foundation andMinistry of Education, Youth and Sports of Czech Republic.

Contents

Contents iii

1 Introduction 1

2 Automata Algorithms 3
2.1 At the Beginning Was Regular Model Checking 3
2.2 Simulation-based Reduction . 4
2.3 Antichain Algorithms . 7
2.4 Alternation . 10
2.5 Counting . 11
2.6 Future Directions . 12

3 Applications of Automata 13
3.1 Deciding WSkS . 13
3.2 Verification of Pointer Programs 16
3.3 String Solving . 21
3.4 Pattern Matching . 24

4 Concurrent Systems 29

Bibliography 33

A Selected Papers 51
A.1 Reduction of Nondeterministic Tree Automata 52
A.2 Efficient InclusionChecking onExplicit and Semi-symbolic Tree

Automata . 71
A.3 String constraints with concatenation and transducers solved

efficiently . 87
A.4 Regex Matching with Counting-Set Automata 119
A.5 Forest Automata for Verification of Heap Manipulation 149
A.6 String Constraints for Verification 173
A.7 All for the Price of Few . 190
A.8 An Integrated Specification andVerification Technique forHig-

hly Concurrent Data Structures 210

iii

Chapter 1

Introduction

This habilitation thesis is a brief overview of the authors research. It is cen-
tered around results on algorithmic techniques for finite word and tree auto-
mata, on their applications in automated reasoning, mainly program verifica-
tion and deciding related logics, and it also touches on extensions of automata
such as Petri nets, well-structured systems, grammars, or automata on infinite
words. Finite automaton is a basic mathematical model of a computing ma-
chine. Automata research has been influential (for instance, in that 6 Turing
award winners, Rabin, Scott, Pnueli, Sifakis, Clarke, and Emerson, worked in
automata-related fields in the last 30 years), tens or hundreds of extensions of
the basic automata model were proposed and automata were used to derive
a plethora of strong theoretical results applicable in many areas. Besides the
most prominent applications of basic variants of automata in pattern match-
ing and compiler construction, the application possibilities include deciding
rich logics about finite words, trees, sets, graphs, or integer arithmetic [77,
93, 95, 116, 118, 134, 159, 238, 254, 255]; model checking of finite state sys-
tems [63, 95, 134] as well as infinite state systems [57, 59, 84, 155, 187, 213];
synthesis [156]; safety and security analysis of string and pointer programs
[28, 172, 194, 201, 206]; type-checking general XML transformations [60, 91,
212, 251, 253]; reasoning about UML schemes [62, 160, 161, 188]; compress-
ing XML files, program code, or digital images [120, 250], and others. The
reach of extended variants of automata is even greater: Due to the famous re-
sults like those of Büchi andRabin, automata over infinitewords and trees can
be used to decide extremely expressive fragments of monadic second order
logic (MSO) [94, 95, 134, 226], to test program behavior wrt complex patterns
expressible in temporal logics such as linear temporal logic (LTL) [111, 112,
137, 220, 225, 267], and even a fairly general automated synthesis of programs
[221, 227]. Numerous automata extensions support reasoning about proper-
ties of computations such as time, costs, or probabilities over various kinds of
infinite alphabets like integers, reals, strings.

1

2 CHAPTER 1. INTRODUCTION

Only a fraction of this potential is however utilised in practice. The major
obstacle is that the central computational problems in automata theory are
of a high worst-case complexity (typically ranging from PSPACE-complete
to non-elementary) and the textbook algorithms do not scale well enough in
practical instances. Around 2006, when the work discussed here was starting,
most of successful automata technologywas based on textbook algorithms for
deterministic automata [77, 88, 159], and it was reaching its limits. This was
most visible in the more ambitious application areas such as deciding general
logics, verification, or synthesis.

A good example is the tool MONA [133, 185], the best-known solver for
the logics WS1S and WS2S, that implements most of the standard algorithms
for deterministic automata. MONA has found numerous applications in ver-
ification of programs with dynamic linked data structures [109, 200, 201, 213,
284], strings [252], arrays [287], of parametric systems [69, 75, 89], distributed
systems [184, 244], in hardware verification [68], automated synthesis [156,
169, 235], or computational linguistics [214]. MONA adds to textbook algo-
rithms a rich set of heuristics and an outstanding engineering, which helped
it to stay unbeaten for about 20 years. Despite that, the high worst-case com-
plexity often strikes back, forcing the users to seekworkarounds, restrict their
input, or abandon the automata approach altogether (e.g. [200, 201, 273]).

The impulse that initiated the research discussed in this thesis was the
appearance of the antichain algorithms for non-deterministic automata [277].
They could solve language inclusion and universality dramatically faster then
the most optimised textbook algorithms for deterministic automata, showing
that non-determinism combined with smart heuristics can lead to substantial
efficiency gains. We started by elaborating on the antichain idea and later
branched the research by included concepts such as simulation reduction,
abstraction, variants of symbolic representation, non-determinism or alterna-
tion. In some cases, we indeed succeeded in significantly extending scalability
of automata methods, and in using them to advance state of the art in practi-
cal application domains such as pointer program verification, string program
analysis, or pattern matching. The thesis will briefly outline these results.

Plan of the thesis. Chapter 2 summarises our work on efficient solutions for
classical finite automata problems. We explain our initialmotivations in regu-
larmodel checking in Section 2.1, thenwe present results on simulation-based
size-reduction of automata in Section 2.2, antichain algorithms in Section 2.3,
use of alternation in Section 2.4, and on counting in Section 2.5. Chapter 3
outlines our work in applications of automata in deciding the logics WS1S
and WSkS (Section 3.1), in verification of pointer programs (Section 3.2), in
string solving (Section 3.3), and in pattern matching (Section 3.4). Chapter 4
outlines work on analysis of concurrent systems. Each section is concluded
by the list of the author’s publications contributing to the topic. Several rep-
resentative papers are attached in Appendix A.

Chapter 2

Automata Algorithms

In this chapter, we will discuss our results on algorithms and techniques for
classical automata problems. We will first explain the initial motivation of
this work in abstract regular model checking and then summarise the main
results on simulation-based reduction, antichain algorithms, and means of
succinct automata representation such as alternation or counters.

2.1 At the Beginning Was Regular Model Checking

The initial phase of this work was motivated by the method of abstract regular
model checking (ARMC), which is a versatile automata-based verification fra-
mework applicable in a wide range of systems. ARMC belongs to the family
of techniques of regular model checking, first mentioned probably in [181],
that approximate state spaces or the transition relations of a system as a reg-
ular set (or as rational relations, respectively). The idea was elaborated on
in a large number of flavours, e.g. [55, 56, 76, 88, 108, 123, 177, 257] to name
few, and continues to find applications and being rediscovered (lately for in
stance in the context of analysis of string constraints [18, 107, 280]).

ARMC [87] particularly computes the set of all configurations reachable
in a systemwith the set of initial configuration I given as an automaton (word
or tree) and the transition relation δ given in the form of a transducer or as
a special procedure that manipulates automata structure. The task is then to
compute the automaton representing the set δ∗(I) of all reachable configu-
ration in the form of the fixpoint µX. I ∪ δ(X). ARMC uses an overapproxi-
mating abstraction over the automata structure to accelerate the computation
and achieve convergence, and a counterexample guided refinement to adjust
the abstraction. The abstraction refinement uses backward concrete run from
bad states in order to findwhether, where, and howdid the abstraction caused
their occurrence. ARTMC [84] is a generalisation of ARMC to tree automata
that allows reasoning about systems with complex graph configurations such
as pointer programs or communication protocols with non-trivial topologies,

3

4 CHAPTER 2. AUTOMATA ALGORITHMS

or XML documents. AR(T)MC uses heavily automata operations such as
product construction, determinization, minimization, and language inclusion
test. It is, as most of similar automata techniques at the time, originally based
on deterministic automata. Determinization and forms of product construc-
tion are called frequently and so state explosion is a major bottleneck, despite
that deterministic minimization is used to keep automata size at bay.

The works of De’Wulf and Raskin [277] on antichain algorithms for inclu-
sion testing of non-deterministic finiteword automata (NFA) showed that the
potentially much smaller NFA can be used efficiently as symbolic represen-
tations of sets. Inspired by these works, we started to search for possibilities
of building the entire framework of ARTMC on non-deterministic tree auto-
mata. The main ingredients that allowed us to achieve the needed efficiency
were generalisation of the antichain algorithms and also of simulation-based
reduction to tree automata [2, 14]. This indeed brought a huge scalability
improvement compared to the earlier deterministic version, confirming that
non-determinism may really work in practice when treated with care. The
implementation of the ARTMC framework of [14], even though rather basic,
is still among the most efficient implementation of regular model checking
(as also recently observed in [108]).

2.2 Simulation-based Reduction

Minimization or size reduction1 is useful in almost all applications of finite au-
tomata. It is especially important in applications such asARMCor in deciding
automata related logics like WSkS, where automata are created by sequences
of heavy automata construction such as product or subset construction. Since
the increase of automata is after each single operation carried over to the sub-
sequent steps, even a moderate increase per step may mean an overall super
exponential explosion. Using minimization or size reduction after every step
is then indispensable.

The size of non-deterministic automata can bedecreased bymerging states
(replacing two states by one that inherits all incoming and outgoing transi-
tions of the original states). States with the same forward language can be
merged (words accepted by a run starting at a state) as well as states with
the same backward language (words accepted by a run ending at a state)
while preserving the language. Computing language equivalence/inclusion
between states is however expensive, PSPACE-complete for word automata
and EXPTIME-complete for tree automata. A cheaper feasible alternative is
the well known technique of simulations and bisimulations-based automata
reduction (e.g. [97, 115, 162, 171]). Simulation relations can be computed in

1Tominimize is usually understood as a to compute the unique minimal automaton, which
exists for deterministic automata. In the context of non-deterministic automata, where a
unique minimal automaton needs not exist, we speak about size reduction.

2.2. SIMULATION-BASED REDUCTION 5

the time mn for finite word automata, where m is the number of transitions
and n is the number of states. Bisimulation can be computed in time m log n
[217, 266]. Modern algorithms such as [102, 228] can cut the complexity of
computing simulation down evenmore (the number of states n is replaced by
the number of simulation equivalence classes) and are very fast in practice.
Algorithms for computing bisimulation use similar techniques and are even
faster. Simulation is a coarser relation then bisimulation and allows to reduce
automata more. In our experience, the additional cost of simulation is well
worth the better reduction, and so we focused on simulations.

The basic definition of the word automata simulation preorder � (the max-
imal simulation, we call it simply simulation here) is the following: it is the
maximal relation satisfying that (1) if q � r, then for all a-successors q′ of q,
there is an a-successor r′ of r′ that simulates q, and that (2) a non-final state
cannot simulate a final state. In other words, it is the largest relation where
non-final states cannot simulate final ones and which is monotonic with re-
spect to the transition relation (bisimulation is then a simulation which is
symmetrical). In the definition of backward simulation, the transition relation
is replaced by its reverse and final states are replaced by initial ones. The
standard version is then called forward simulation.

Our first steps toward non-deterministic automata-based ARTMC was to
generalize simulation-based reduction to tree automata (bisimulation rela-
tion already existed [54, 164], but it did not provide satisfactory reduction).
Simulations and bisimulation in tree automata do not have symmetrical up-
ward and downward variants, corresponding to forward and backward for
words—trees do not look the same from the top as from the bottom. The
easier variant is the downward simulation, which underapproximates the in-
clusion of downward languages of sates (languages of trees accepted from
the state at their root by following transitions downwards). Namely, state q
simulates r only if for every tree transition q a−→ (q1, . . . , qn) of q, there is a
transition r a−→ (r1, . . . , rn) where each state qi is simulated by the state ri.2
The upward simulation, the tree counterpart of the word backward simulation,
is more complex and technical (see [2] for details).

Both tree automata simulations can be used for size reduction by merg-
ing simulation equivalent states. We have also discovered that besides the
standard merging of forward/backward or upward/downward-simulation
equivalent states, the two types of relations can be combined, giving a rise
to a new relation, which we call mediated preorder, that can be coarser and
can still be used to merge equivalent states while preserving automata lan-
guage. The idea can be roughly explained as follows. Standard merging of
simulation equivalent states can be seen allowing the automaton jump from a
state to any simulation equivalent state (it could be simulated by introducing
ε-transitions between simulation equivalent states). This does not alter the

2We will be writing tree automata rules in the top-down manner.

6 CHAPTER 2. AUTOMATA ALGORITHMS

language since for instance in the case of forward word simulation, the sim-
ulation equivalent state at the end of the jump can further accept the same
word as the source state of the jump and vice versa. Merging of states equiv-
alent in the mediated preorder pushes the idea a little further. Roughly, the
automaton can be allowed to jump from a state q to r if there is a witness that
prefixes accepted in q connected with suffixes accepted from r are already
in the language (hence jumping from q to r cannot lead to accepting a word
outside the language). Such witness may be a state s which backward simu-
lates q and forward simulates r. Forward and backward word simulation and
upward and downward tree simulation can be combined into the mediated
equivalence where witnesses are guaranteed to exist for equivalent states and
the states can be merged without affecting the language. Mayr and Clemente
later elaborated on these ideas even further in [113–115].

A somewhat unexpected by-product of ourwork on simulationminimiza-
tion was a technique of computing tree automata simulations by means of
reduction to computation of the standard word automata simulations. Ad-
vanced word automata algorithms as [102, 228] can be then used to compute
tree automata simulations, for no extra cost. The translation for the down-
ward simulation particularly works as follows. A tree automaton is trans-
lated into a word automaton that has transitions between the original states
and the former left hand sides of transitions: For an original tree transition
(q1, . . . , qn)

a−→ q, all states qi will originate an "unnamed" transition to the
state (q1, . . . , qn), which in turn will originate an a-transition to q. The simula-
tion preorder on the word automaton, restricted to the original states, is then
the simulation preorder on the tree automaton.

We have achieved similar results with tree automata bisimulations, which
are coarser but easier to compute, and studiedways of combining simulations
with bisimulations to achieve trade-offs between speed and reduction [4, 7].
Later studied some more advanced forms of simulations in context of tree
automata in [8] (such as lookahead simulation).

Last, we transferred these results to alternating Büchi word automata in
[3]. Alternating automata are similar to tree automata in that their runs are
also trees. Their transitions are similar to tree automata transitions. The differ-
ence from tree automata that matters in the definitions of simulations is only
that the left-hand side tuples of states in transitions of alternating automata
are not ordered. We have defined upward and downward simulations and
their combinations analogously as for tree automata and shown that they can
be used for merging states. We also found means of computing alternating
automata simulations by means of computing normal automata simulations,
similarly as in [2] for tree automata. Although the main results in [3] are a
quite close analogy to [2], the considered Büchi acceptance condition together
with alternation made the correctness proof in [3] quite challenging.

2.3. ANTICHAIN ALGORITHMS 7

Contributed Papers3

[1] Parosh A. Abdulla, Ahmed Bouajjani, Lukáš Holík, Lisa Kaati, and Tomáš
Vojnar. “Composed Bisimulation for Tree Automata”. In: Proc. of CIAA’08.
Vol. 5148. LNCS. Springer Berlin Heidelberg, 2008, pp. 212–222.

[2] Parosh A. Abdulla, Ahmed Bouajjani, Lukáš Holík, Lisa Kaati, and Tomáš
Vojnar. “Computing Simulations over TreeAutomata”. In:Proc. of TACAS’08.
Vol. 4963. LNCS. Springer Berlin Heidelberg, 2008, pp. 93–108.

[3] Parosh A. Abdulla, Yu-Fang Chen, Lukáš Holík, and Tomáš Vojnar. “Me-
diating for Reduction (on Minimizing Alternating Büchi Automata)”. In:
Proc. of FSTTCS’09. Vol. 4. Leibniz International Proceedings in Informatics
(LIPIcs). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2009, 1–12.

[4] Parosh Aziz Abdulla, Ahmed Bouajjani, Lukáš Holík, Lisa Kaati, and Tomáš
Vojnar. “Composed Bisimulation for Tree Automata”. In: International Jour-
nal of Foundations of Computer Science 04 (2009), pp. 685–700.

[5] Parosh Aziz Abdulla, Yu-Fang Chen, Lorenzo Clemente, Lukáš Holík, Chih-
Duo Hong, Richard Mayr, and Tomáš Vojnar. “Simulation Subsumption in
Ramsey-Based Büchi AutomataUniversality and Inclusion Testing”. In:Proc.
of CAV’10. Vol. 6174. LNCS. Springer Berlin Heidelberg, 2010, pp. 132–147.

[6] Parosh Aziz Abdulla, Yu-Fang Chen, Lukáš Holík, and Tomáš Vojnar. “Me-
diating for reduction (on minimizing alternating Büchi automata)”. In: The-
oretical Computer Science 552.0 (Oct. 2014), pp. 26–43.

[7] Parosh Aziz Abdulla, Lukáš Holík, Lisa Kaati, and Tomáš Vojnar. “A Uni-
form (Bi-) Simulation-Based Framework for Reducing Tree Automata”. In:
Electron. Notes theor. Comput. Sci. 251 (2009), pp. 27–48.

[8] Ricardo Almeida, Lukáš Holík, and Richard Mayr. “Reduction of Non-
deterministic Tree Automata”. In: Proc. of TACAS’16. Vol. 9636. LNCS.
Springer, 2016, 717–735.

[9] Lukáš Holík. “Simulations and Antichains for Efficient Handling of Finite
Automata”. PhD thesis. Brno, CZ: Department of Intelligent Systems FIT
BUT, 2011.

[10] Lukáš Holík and Jiří Šimáček. “Optimizing an LTS-Simulation Algorithm”.
In:Proc. ofMEMICS’09. Znojmo,CZ: Faculty of InformaticsMU, 2009, 93–101.

[11] Lukáš Holík, Ondřej Lengál, Juraj Síč, Margus Veanes, and Tomáš Vojnar.
“SimulationAlgorithms for Symbolic Automata”. In:Proceedings of ATVA’18.
Vol. 11138. LNCS. Springer, 2018, pp. 109–125.

2.3 Antichain Algorithms
The antichain algorithms was the other research direction that we persuaded
in the context ofARTMC. They are namely useful in language inclusion check-
ing used to detect convergence of the fixpoint computation. The antichain
principle was discovered by Doyen, DeWulf, and Raskin in their papers [276,

3The work [8] (in bold) is attached to this thesis.

8 CHAPTER 2. AUTOMATA ALGORITHMS

277] where it was applied to solving games of imperfect information and to
testing finite word automata language inclusion and universality. The idea
is best explained on testing finite word automata language universality (is
the language Σ∗?). The classical algorithm builds the deterministic automa-
ton accepting the complement language by the subset construction and then
tests that it has no reachable accepting state (in other words, is a set of states
not containing a final state reachable in the automaton created by the subset
construction?). The number of subsets is however at most exponential and
the construction may explode. The first observation leading to the antichain
algorithm is that in order to test universality, it is not necessary to build the
entire deterministic machine. Its state space can instead be searched on-the-
fly, while it is being built, and parts that are clearly irrelevant to whether the
target will be reached or not can be omitted. Namely, in the deterministic
automaton accepting the complement language, larger subset states simulate
the smaller ones, and so if an accepting state (not containing final states) is
reachable from the larger state, then it is reachable from the smaller state too.
We say that the smaller set subsumes the larger state, and the subsumed larger
state can be discarded. The algorithm thus builds amuch reduced state space,
only the antichain of the smallest states. This dramatically decreases the run-
ning times.4

To enable non-deterministic automata-basedARTMC,wehave generalised
antichain-baseduniversality and inclusion testing from [277] to tree automata
[14]. We first focused on extending well known bottom-up tree automata al-
gorithms and subset construction (see [116]) resulting in an algorithm anal-
ogous to the original word automata version. We have then shown in [13]
that antichain algorithms (for word as well as tree automata) can utilise pre-
computed simulation relations for even more aggressive subsumption prun-
ing. Namely, in the simplest case of universality testing, a set subsumes an-
other if for every state in the subsuming set, there is a state in the subsumed
set that simulates it. Depending on the size of the simulation relation, this
definition of subsumption may be much more liberal then the original rela-
tion of being a subset. This basic idea becomes a little more involved when it
comes to inclusion testing.5 We have then elaborated also on the top-down al-
gorithm for inclusion testing of tree automata combined with antichains and
simulation in [3, 15]. The basic principle of the top-down inclusion testing is
much less obvious then the bottom-up approach. It turned out that we actu-

4We note that, in the spirit, the antichain algorithms can be but into the category of prop-
erty driven reachability algorithms, which is a term nowadays used for modern model check-
ing algorithms PDR/IC3 [90, 163]. The antichain idea can also be seen as a specialisation of
the techniques used in deciding coverability in Petri nets and generally well-structured sys-
tems [53] (Indeed, a relation is a simulation if and only if the transition relation is monotone
with respect to it. The subset construction produces a monotone well-structured system.).

5Raskin and Doyen arrived independently to almost the same result and published it si-
multaneously at the same conference [131].

2.3. ANTICHAIN ALGORITHMS 9

ally rediscovered it, it was published before in [167], in the context of analy-
sis of XMLmanipulations. The combination with the antichain principle and
other technical solutions in [15] were however still new.

Based on the work [140], that uses antichains to speed-up the Ramsey-
based algorithm to Büchi universality testing [96, 243], we have noticed that
simulations can be combined with antichains also in the world of infinite
words. The Ramsey-based algorithms build a set of so called transition pro-
files. A transition profile is the set of pairs of states which characterises the
automaton’s behaviour on some word: the word takes the automaton from
any right state of a pair in the relation to its left state (it is an element of the
so called transition monoid of the automaton). The antichain principle can
be used to prune the space of the transition profiles [140]. We found that the
pruning can also be strengthened based on simulation, and that even com-
bining variants of forward and backward simulation is possible, justified by
similar principles as those discussed in Section 2.2 in context of combining
forward and backward simulation for reducing automata size [5, 209]. Since
the Büchi automata algorithms are more expensive then their word automata
counterparts, and tend to explode more, using the simulation relations pays
off more than in the case of word automata.

This line of work was later continued in works on testing of inclusion of
context free grammars [16, 17] in a regular language and later solving context
free games with regular objectives. Here the transition profiles are used to
summarise non-terminals of the grammar (similar to procedure summaries)
and the antichain principle can be used analogously as in [5, 140, 209].

Contributed Papers6

[5] Parosh Aziz Abdulla, Yu-Fang Chen, Lorenzo Clemente, Lukáš Holík, Chih-
Duo Hong, Richard Mayr, and Tomáš Vojnar. “Simulation Subsumption in
Ramsey-Based Büchi AutomataUniversality and Inclusion Testing”. In:Proc.
of CAV’10. Vol. 6174. LNCS. Springer Berlin Heidelberg, 2010, pp. 132–147.

[12] Parosh Aziz Abdulla, Yu-Fang Chen, Lorenzo Clemente, Lukáš Holík, Chih-
Duo Hong, Richard Mayr, and Tomáš Vojnar. “Advanced Ramsey-Based
Büchi Automata Inclusion Testing”. In: Proc. of CONCUR’11. Vol. 6901.
LNCS. Springer Berlin Heidelberg, 2011, pp. 187–202.

[13] Parosh Aziz Abdulla, Yu-Fang Chen, Lukáš Holík, Richard Mayr, and To-
máš Vojnar. “When Simulation Meets Antichains”. In: Proc. of TACAS’10.
Vol. 6015. LNCS. Springer Berlin Heidelberg, 2010, pp. 158–174.

[14] Ahmed Bouajjani, Peter Habermehl, Lukáš Holík, Tayssir Touili, and Tomáš
Vojnar. “Antichain-Based Universality and Inclusion Testing over Nonde-
terministic Finite Tree Automata”. In: Proc. of CIAA’08. Vol. 5148. LNCS.
Springer Berlin Heidelberg, 2008, pp. 57–67.

6The work [15] (in bold) is attached to this thesis.

10 CHAPTER 2. AUTOMATA ALGORITHMS

[15] Lukáš Holík, Ondřej Lengál, Jiří Šimáček, and Tomáš Vojnar. “Efficient
Inclusion Checking on Explicit and Semi-symbolic Tree Automata”. In:
Proc. of ATVA’11. Vol. 6996. LNCS. Springer Berlin Heidelberg, 2011,
pp. 243–258.

[16] LukášHolík and RolandMeyer. “Antichains for the Verification of Recursive
Programs”. In: Proc. of NETYS’15. Vol. 9466. LNCS. Springer, 2015, 322–336.

[17] Lukáš Holík, Roland Meyer, and Sebastian Muskalla. “Summaries for Con-
text-Free Games”. In: Proc. of FSTTCS’16. Vol. 65. LIPIcs. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik, 2016, 41:1–41:16.

2.4 Alternation
Alternating automata (originating in [92, 104]) extend the expressive means
of non-deterministic automata by allowing conjunctive transitions. Non-de-
terminism allows disjunction, that is “thewordmust be accepted by following
either this or that transition”, and alternation allows to say “the wordmust be
accepted by following this as well as that transition”. Alternating automata
allow succinct representation of intersection (conjunction) and also comple-
mentation (negation). Complementation can be done by complementing the
acceptance of states and swapping the polarity of logical operators in the tran-
sition relation. Boolean automata [92] are then an even more succinct vari-
ant which also allows to negate transitions. The price for succinctness of al-
ternating automata is paid in testing emptiness which becomes exponential
(PSPACE-complete for finite word alternating automata). A possible way of
testing language emptiness is to first non-determinize the alternating auto-
maton and then test its emptiness through the linear search for an accepting
state. The non-determinization can explode exponentially, similarly as subset
construction in determinization. Therefore, we have been trying to alleviate
the cost of emptiness test by using smart heuristics in testing emptiness di-
rectly on the alternating automata, without the prior non-determinization.
Antichain algorithms are applicable, since non-determinization is a variation
on the subset construction. [145] has proposed an interesting possibility of
combining antichains with abstraction refinement. Also the recent congru-
ence algorithms [78] were tried with alternating automata in [121].

Us [18] and also others [119, 144, 270] were experimenting with using
modern model checking algorithms. We were namely focusing on the rela-
tively new IC3/PDR algorithm [163] applied to alternating automata empti-
ness in the context of string solving (we will discuss string solving more in
Section 3.3). The translation from an alternating automata emptiness into
the model checking problem is fairly straightforward and the results show a
great potential of similar techniques. A meaningful comparison of existing
algorithms is needed, and it is a part of our immediate future work.

2.5. COUNTING 11

Contributed Papers7

[3] Parosh A. Abdulla, Yu-Fang Chen, Lukáš Holík, and Tomáš Vojnar. “Me-
diating for Reduction (on Minimizing Alternating Büchi Automata)”. In:
Proc. of FSTTCS’09. Vol. 4. Leibniz International Proceedings in Informatics
(LIPIcs). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2009, 1–12.

[18] Lukáš Holík, Petr Janků, Anthony W. Lin, Philipp Rümmer, and Tomáš
Vojnar. “String constraints with concatenation and transducers solved ef-
ficiently”. In: PACMPL 2.POPL (2018), 4:1–4:32.

2.5 Counting
Recently we have started investigating the possibility of using counting in au-
tomata for succinctness in the context of regular pattern matching. Regular
expressions often use bounded repetition where e.g. the regex (ab){100}
means 100 repetitions of ab. Similar bounded repetitions arise other appli-
cations of automata too: WS1S formulae may talk about repetitions of cer-
tain patterns as well as automata encodings of Presburger formulae [275],
string constraints generated from string programs talk about abut numeric
constraints on lengths of strings, automata from the program verification fra-
mework of [158] may describe a control flow with a bounded for-loop as a
bounded repetitions of the automaton describing the body. These proper-
ties are still regular, but the size of the automaton is linear to the repetition
count, hence exponential the numeral that specifies it. Using standard auto-
mata methods then becomes problematic.

We have therefore started investigating variants of simple counter auto-
mata, that we call counting automata, that combine counting with finite state
control to express such structural repetitions concisely. They are modest vari-
ants of counter automata characterised by a very limited set of allowed op-
erations on the counters (essentially only increment, reset to 0, and compari-
son with a constant) and a bounded state space. Similar automata were con-
sidered in works on pattern matching before for instance in [168, 183, 245,
248]. Our first results concern succinct determinization of these automata
in order to facilitate fast regular pattern matching [19, 20] (discussed in Sec-
tion 3.4). One of our goals is to generalise all basic automata algorithms (such
as boolean operations andminimization/reduction) in away thatwould keep
the succinctness of counters in order tomake this kind of automata applicable
in a range of domains.

7The work [18] (in bold) is attached to this thesis.

12 CHAPTER 2. AUTOMATA ALGORITHMS

Contributed Papers8

[19] LukášHolík, Ondřej Lengál, Olli Saarikivi, Lenka Turoňová,Margus Veanes,
and Tomáš Vojnar. “Succinct Determinisation of Counting Automata via
Sphere Construction”. In: Proc. of APLAS’19. Vol. 11893. LNCS. Springer,
2019, pp. 468–489.

[20] Lenka Turoňová, LukášHolík, Ondřej Lengál, Olli Saarikivi,MargusVea-
nes, and Tomáš Vojnar. Regex Matching with Counting-Set Automata. ac-
cepted at OOPSLA’20. 2020.

2.6 Future Directions
One of the most obvious future directions is to implement a well engineered
library that would include efficient techniques discussed above, be efficient
and easily modifiable by others. It would also provide a platform for much
needed comparison of newly emerging algorithms, for instance those for lan-
guage inclusion or alternating automata language emptiness checking (there
are the antichain algorithms [15, 131, 277], the PDR/IC3-based approaches
[90, 163], an algorithm that uses abstraction refinement automata structure
[145], and the modulo congruence algorithms [78, 121], which were pro-
posed in different contexts and never compared). We believe the ideas on the
property driven search as well the idea of abstracting the automata structure
are very promising. Another interesting direction is combining approaches as
antichains and property driven reachability with deterministic minimization
or simulation-based size reduction (minimization is of of the most crucial op-
timization of the frameworks such as those of MONA and AR(T)MC, but it
cannot be combined with the aforementioned techniques out of the box). We
also wish to elaborate on the idea of succinct representation of counting con-
straints from [19, 20] and develop a complete toolbox for counting or count-
ing set automata. More inspiration for designing further automata heuristics
may be drawn from the successful algorithms used in SAT solving. Compu-
tation of truly minimal non-deterministic automata, which could go beyond
reduction by merging and similar techniques, is also a project which could
yield interesting theoretical and perhaps also practical results. Generally, we
wish to improve efficiency of automata in practice and so we will be work-
ing in the context of practical applications, continuing with the application
domains discussed in Chapter 3 and search for new ones.

8The work [20] (in bold) is attached to this thesis.

Chapter 3

Applications of Automata

This chapterwill be focused on applications of automata and techniquesmore
or less specific to particular application domains. We will focus on deciding
the logics WS1S and WSkS, verification of pointer manipulating programs
(shape analysis), string solving, and regular pattern matching.

3.1 Deciding WSkS

Weak monadic second-order logic of k successors (WSkS) is a logic for describing
regular properties of finite k-ary trees. WSkS can specify complex properties
of trees and also of a rich class of general graphs by referring to their tree
backbones [213]. WS1S is the variant restricted to one successor function, the
trees are restricted to words. WSkS and WS1S offer extreme succinctness for
the price of a non-elementaryworst-case complexity. The authors of [147] no-
ticed that through clever implementation techniques and heuristics, the trade-
off between complexity and succinctness can be made advantageous. The
idea was realized in the tool MONA [133, 185], the best-known implementa-
tion of decision procedures forWS1S andWS2S.MONAhas found numerous
applications in verification of programs with complex dynamic linked data
structures [109, 200, 201, 213, 284], string programs [252], array programs
[287], parametric systems [69, 75, 89], distributed systems [184, 244], hard-
ware verification [68], automated synthesis [156, 169, 235], and even compu-
tational linguistics [214].

On the other hand, despite the extensive research and engineering effort
invested into MONA, due to which it still offers the best all-around perfor-
mance among existing implementations of WS1S/WS2S decision procedures,
it is easy to reach its scalability limits. Particularly, MONA implements the
classical WS1S/WS2S decision procedure [116] that builds a word/tree au-
tomaton representing all models of the formula and then check emptiness
of the automaton’s language. The automaton is constructed by induction to
the formula structure: the construction starts from predefined automata for

13

14 CHAPTER 3. APPLICATIONS OF AUTOMATA

atomic predicates and uses automata counterparts of the logical operators to
construct an automaton for a formula from the automata for its sub-formulae.
The non-elementary worst-case complexity comes from that every quantifier
alternation requires determinization, which is exponential. Problematic in
practice are also complex boolean combinations of automata. Conjunction
and disjunction use the product construction, which is itself quadratic, but a
sequence of successive applications of these operations becomes exponential
to its length, and it indeed turns out very expensive in practice.

We have been attempting to solve these scalability issues in our works [21,
22, 25]. [21, 22] were inspired by the antichain algorithms [13, 14, 131, 277],
discussed in Section 2.3. Recall that the antichainNFAuniversality test checks
language emptiness of the complement automaton on-the-fly, while building
the complement by the subset construction. The on-the-fly approach allows
for significant savings by property-driven pruning—pruning the state space
that is irrelevant for the language emptiness test. Antichain algorithms use
in fact two forms of pruning. First, subsumption, the main optimization, was
discussed in Section 2.3. It prunes out states that are “less likely” to lead to
a discovery of an accepting state (it basically means disregarding proof obli-
gations that are implied by other ones). Second, early termination allows to
terminate the search as soon as non-emptiness is proved.

Our decision procedures for WSkS andWS1S generalize the subsumption
and early termination discussed above. Essentially, when restricted to quan-
tifier free boolean combinations of atomic predicates, our algorithms search
through an implicitly represented state space of the automaton that would be
built by the classical decision procedure. The states are represented as auto-
mata terms combined from states of the atomic automata by boolean connec-
tives, constructed by induction to the input formula. The transition relation
between the terms is defined inductively to the terms structure, as well as
initial and accepting terms. The main algorithm then searches for an initial
term backwards from accepting terms while building the state space of terms
on-the-fly. Deciding general quantified formulae then requires to replace a
search for an initial state, a simple fixpoint computation, by a nested fixpoint
computation, with one nested level for each quantifier alternation. General-
ized subsumption (defined inductively to the structure of the terms) is used
for pruning as in the antichain algorithms Early termination is generalized
into a more interesting form of lazy evaluation of nested fixpoints.

In the case of WS1S and word automata [21], the automata terms may
be given a simple language semantics defined inductively based on the lan-
guages of the individual states, where the logical operators have their stan-
dard set interpretation. This makes proving the correctness of the algorithm
almost trivial. Interestingly, in [25] we have not found a direct analogy of this
in tree automata. The problem is that the algorithm works in the bottom-up
manner, but a single state in a tree automaton does not have a simply defined
bottom-up semantics in a form of a language of trees. We therefore had to

3.1. DECIDING WSKS 15

prove correctness of the algorithm through defining the meaning of a term
more technically, via the classical automata constructions they represent.

We have implemented this approach in several proof of concept tools and
compared with MONA. Our tools were able to outperform MONA signifi-
cantly on certain classes of formulae. It should be said, however, that MONA
still remains the bets tool for deciding WSkS overall. One reason is that our
tools lack maturity. Another reason is that the on-the-fly approach cannot
use classical automata minimization. MONA uses minimization almost after
every step, and it is a major tool allowing it to keep automata size at bay.
Minimization is however not directly usable in the on-the-fly construction
with pruning property driven pruning because it requires the automaton con-
structed up-front. Combining the on-the-fly and the explicit approach is dif-
ficult but it seems promising. We have achieved good results with our first
attempt in which we let MONA build minimized automata for sub-formulae
(up to certain size of automata or sub-formula depth) and then use our ap-
proach to solve the reminder of the formula, with the automata for the sub-
formulae playing role of atomic automata.

Our latestwork ondecidingWSkS is a study on the utility of antiprenexing
[24]. It is a well known optimization techniques in SAT/SMT/QBF-solving
and theorem proving, essentially trying to restrict the scope of quantifiers by
pushing them as deep into the formula as possible. However, it must be used
in a controlledway, since an unrestricted use of antiprenexingmay enlarge the
formula substantially (exponentially in the worst-case). We have therefore
designed a heuristic, based on machine learning from data from a number
of runs of MONA, to decide whether and which anti-prenexing rules to use
(the machine learning is used to estimate the size of an automaton built for a
sub-formula). The experiments show that it has a substantial positive impact
on the performance of MONA.

Future work. We plan to investigate more sophisticated combinations of
classical and on-the-fly approaches, use of abstraction, and techniques for
minimization and reduction. One interesting direction is utilising non-de-
terministic or alternating automata in the explicit automata approach, in the
spirit of the non-deterministic automata-based ARTMC [14]. A challenge
here is to find a way to complement non-deterministic automata without the
need of always determinizing them and to compute projection of an alternat-
ing automaton without non-determinizing them. Abstraction in context of
WSkS may be used in two flavours. First, the on-the-fly approaches could
be combined with ideas from PDR/IC3 [90, 163]. Secondly, the classical ap-
proach could be combinedwith abstraction of the automata structure, such as
in [145] and [87]. A new efficient implementation of WSkS might potentially
be built on top of a new library of alternating automata, which is one of our
primary goals for the nearest future.

16 CHAPTER 3. APPLICATIONS OF AUTOMATA

Contributed Papers1

[21] Tomáš Fiedor, Lukáš Holík, Petr Janků, Ondřej Lengál, and Tomáš Vojnar.
“Lazy Automata Techniques for WS1S”. In: Proc. of TACAS’17. Vol. 10205.
LNCS. Springer, 2017, pp. 407–425.

[22] Tomáš Fiedor, Lukáš Holík, Ondřej Lengál, and Tomáš Vojnar. “Nested An-
tichains forWS1S”. English. In: Proc. of TACAS’15. Vol. 9035. LNCS. Springer
Berlin Heidelberg, Jan. 2015, pp. 658–674.

[23] Tomáš Fiedor, Lukáš Holík, Ondřej Lengál, and Tomáš Vojnar. “Nested an-
tichains for WS1S”. In: Acta Inf. 56.3 (2019), pp. 205–228.

[24] Vojtěch Havlena, Lukás Holík, Ondrej Lengál, Ondrej Vales, and Tomás Vo-
jnar. “Antiprenexing for WSkS: A Little Goes a Long Way”. In: Proc. of
LPAR’20. Vol. 73. EPiC Series in Computing. EasyChair, 2020, 298–316.

[25] VojtěchHavlena, LukášHolík, Ondřej Lengál, and TomášVojnar. “Automata
Terms in a LazyWSkSDecision Procedure”. In: Proc. of CADE’19. Vol. 11716.
LNCS. Springer, 2019, pp. 300–318.

3.2 Verification of Pointer Programs
Ourwork on verification of pointer programs (shape analysis) with automata
is based on our results with non-deterministic tree automata-based ARTMC.
Verification of pointer programs is an opportunity to apply these results in
an application domain which is interesting by itself: it is a competitive field
and symbolic representation of sets of graphs is a theoretically challenging as
well as practically relevant problem.

State of the art in shape analysis. There aremany approaches to shape anal-
ysis. They are based on logics, e.g., [71, 72, 100, 105, 132, 153, 190, 199, 202,
213, 215, 231, 234, 278, 284], automata [82, 86, 128], graph grammars [157,
272], upward closed sets [52], SMT solving [204], and other formalisms. They
differ in their generality, efficiency, and degree of automation. Even though
the field as a whole is getting close to practical applications but none of the
so far proposed approaches is fully satisfactory.

The leading approach has lately been that of separation logic [231], with
the concepts of separation and local reasoning being its main strengths. Local
reasoning stands for the ability of modelling small, local changes of the heap,
such as redirecting of a single pointer, through small and local modifications
of the abstract representation of the heap. This is achieved through the use of
so called separation conjunction that allows to easily express two separated
parts of the heap. Local reasoning allows separation logic-based tools such
as [72, 190, 278] or [132]2 to achieve relatively impressive scalability. These

1The work [25] (in bold) is attached to this thesis.
2based on a graph formalism inspired by separation logic

3.2. VERIFICATION OF POINTER PROGRAMS 17

approaches however handle only a restricted class of shape graphs, usually
a restricted class of lists, at best also doubly linked, circular, or nested, and
especially [72, 278] pay for the scalability by a high imprecision of their anal-
ysis. They cannot handle any data structure that cannot be expressed by a
fixed set of so called shape predicates (inductive descriptions of lists and sim-
ilar structures). Already trees are mostly beyond their capabilities. Some
separation logic-based approaches, namely [153, 189], do handle more com-
plex data structures. They are able to learn inductive predicates automati-
cally. These approaches are however fragile. They seem to be dependent on
that the data structures are built in a “nice” way conforming to the structure
of the predicate to be learnt (meaning, e.g., that lists are built by adding el-
ements at the end only). The code creating the structure must in fact in a
way resemble the desired inductive predicate. [189] for instance fails on ex-
amples that might seem easy, e.g., on simple variants of creations and dele-
tions of a doubly-linked list. The principles of learning predicates based on
bi-abductionproposed in [189] are however very promising, despite their cur-
rent shortcomings. Other separation logic approaches that can handle com-
plex data structures, such as [105, 202, 215], are only semi-automated. They
require the user to provide the needed inductive predicates, which essentially
means providing the shape invariant.

Other less mainstream butmature approach is the grammar-based encod-
ing of heaps from [157, 272], which is conceptually close to our forest auto-
mata approach discussed below and also to separation logic (the grammar
non-terminal may be loosely compared to inductive predicates of separation
logic). It is seldom compared to other approaches, perhaps because it spe-
cialises on Java programs, but it seems powerful and viable.

Several older approaches could handle quite complex data strucuters. Suc-
cessfullwas especially TVLA(three valued logic) [196, 234] and earlier automata-
based approaches [81, 83, 86]. Their common disadvantage is a monolithic
encoding of the heap that does not allow local reasoning, which harms scala-
bility. TVLA also often requires a nontrivial assistance from the user.

Almost all mentioned approaches have difficulties with refining their ab-
straction and checking spuriousness of counterexamples. Lack of precision
and inability to refine the abstraction is often problematic, especially when
the needed invariant combines shape properties with properties of the data
stored in the heap (e.g. red-black tree manipulations). There are works that
try to remedy this, in separation logic [61, 70, 80], [196], a CEGAR-based
approach proposed for automated refinement of the Boolean heap abstraction
[222], the ARTMC-based approaches of [81], or the 2LS approach [204] that
leverages SMT solving and bounded model checking.

Our solution discussed below was designed to combine features that do
not appear together in any of the approaches discussed above, namely 1) high
efficiency, 2) automation, 3) generality and robustness of handled class of
shape graphs, and 4) counterexample-based abstraction refinement.

18 CHAPTER 3. APPLICATIONS OF AUTOMATA

x
1

2

3

y
4

next

next

next

next

next
data

data

data

data

data

data

data

datanext

next

next

(a) A heap graphwith cut-points high-
lighted in red

x
1

2

2

3

3

3

y
4

2

next

next

next next

next

nextnext

next

data

data

data data

data

datadata

data

(b) The (canonical) tree decomposi-
tion of the heapwith x ordered before y

Figure 3.1: A heap graph and its tree decomposition

Shape analysis via Forest Automata. Our approach targets verification of
sequential C-like programs with complex dynamic pointer data structures
such as various forms of singly and doubly-linked lists (SLLs/DLLs), possi-
bly cyclic, shared, hierarchical, and/or having different additional (head, tail,
data, and similar) pointers, as well as various forms of trees. In [29], we have
proposed an approach of representing sets of heaps via tree automata. A heap
is split into several tree components whose roots are the so-called cut-points.
Cut-points are nodes pointed to by program variables or having several in-
coming edges. The tree components can refer to the roots of each other, and
hence they are “separated” much like heaps described by formulae joined by
the separating conjunction in separation logic. See Figs. 3.1a and 3.1b. Using
this decomposition, sets of heaps with a bounded number of cut-points are
represented by a new class of automata called forest automata (FAs), which are
basically tuples of TAs accepting tuples of trees whose leaves can refer back
to the roots of the trees. The alphabet symbols used by the FAs may contain
nested FAs, leading to a hierarchical encoding of heaps, so that FAs can repre-
sent even sets of heaps with an unbounded number of cut-points (e.g., sets
of DLLs). Particularly, a nested FA can describe a part of a heap with a boun-
ded number of cut-points (e.g., a DLL segment). Heaps with an unbounded
number of cut-points can be described by using the FA as an alphabet sym-
bol (called box) on transitions of other FA. See Figs. 3.2a and 3.2b showing a
representation of a DLL (the nested structure may be more complex and can
be connected to its environment at more then two points).

3.2. VERIFICATION OF POINTER PROGRAMS 19

next

prev

next

prev

next

prev

(a) A part of a DLL

DLL DLL DLL

next
prev

(b) A hierarchical encoding of the DLL

Figure 3.2: Encoding of a DLL using boxes

FAs appearing in the alphabet of some higher-level FA play a role in some
sense similar to that of inductive predicates in separation logic.3 We however
prohibit unbounded recursive nesting and require nesting to form a finite hi-
erarchy. This is obviously different from separation logic where recursive in-
ductive predicates are standard. Instead, we represent this kind of recursion
through cycles of tree automata transitions which is easier to handle by finite
automata techniques.

We showed in [29] that entailment of non-nested FAs (i.e., having a boun-
ded number of cut-points) is decidable. This covers sets of complex structures
like SLLs with head/tail pointers. We also showed that entailment can be de-
cided or quite precisely approximated for a large class of nested FAs. Further,
C program statements manipulating pointers can be encoded as operations
modifying FAs. This made it possible to generalise the essential parts (mainly
the forward state space exploration) of the framework of abstract regular tree
model checking (ARTMC) [85, 86] to forest automata and implement a shape
analyser Forester based on it. In [34], we improved Foresterwith automated
learning of boxes. It could then automatically verify programs manipulating
data structures as complex as two or three level skip-lists. In [33], we gave
an algorithm to compute forest automata intersection (under-approximated
or even precise for a large class of nested FAs) and implement a generalisa-
tion of the counterexample-based abstraction refinement of [85, 86] based on
it. This allowed forester to learn complex invariants that combine shape and
data properties.

Forest automata in fact combine advantages automata and separation logic.
They allow local reasoning similar to that of separation logic. At the same

3For instance, we use a nested FA to encode a DLL segment of length 1. In separation logic,
the corresponding inductive predicate would represent segments of length 1 or more. In our
approach, the repetition of the segment is encoded in the structure of the top-level FA.

20 CHAPTER 3. APPLICATIONS OF AUTOMATA

time, they inherit higher generality and flexibility of the abstraction of auto-
mata approaches, and allow to leverage the recent advances in efficiency of
automata technology.

Discussion andFutureDirections. Forester has automatically verified com-
plex properties of programs with complex data structures such as various
flavours of (nested and/or circular) lists, trees, or skip lists. In SV-Comp
(Software Verification Competition), it was able to handle a number of bench-
marks with complex data structures that no other tool can successfully verify
[30–32]. Foresterwas however not meant as a long term software project nor
as an all-round capable competitor in SV-Comp. This would require more
substantial and systematic implementation effort. Building amore robust tool
is one of our future goals. Before that, we are aiming at redesigning the ba-
sic formalism of forest automata, in order to remove some of its flaws, such as
that forest automata are not closed under union, to get closer to the theoretical
limits of decidability of entailment, and to have an overall simpler and cleaner
formalism. We are currently trying to develop an new tree automata-based
formalism around the ideas of recent works on deciding entailment in sepa-
ration logic or tree-automata encoded graphs [173, 179]. We wish to utilise
such formalism again in a framework inspired by ARMTC, combined with
the principle of bi-abduction [100, 189] which promises the ability to handle
large and even open code (e.g. analysing a function without the knowledge
of its environment), much needed in practice.

Contributed Papers4

[26] ParoshAziz Abdulla, LukášHolík, Bengt Jonsson, Ondřej Lengál, CongQuy
Trinh, andTomášVojnar. “Verification ofHeapManipulating Programswith
OrderedData by Extended Forest Automata”. In: Proc. of ATVA’13. Vol. 8172.
LNCS. Springer International Publishing, 2013, pp. 224–239.

[27] Parosh Aziz Abdulla, Lukáš Holík, Bengt Jonsson, Ondřej Lengál, CongQuy
Trinh, and Tomáš Vojnar. “Verification of Heap Manipulating Programs
with Ordered Data by Extended Forest Automata”. In: Acta Inf. 53.4 (2016),
pp. 357–385.

[28] Peter Habermehl, Lukáš Holík, Adam Rogalewicz, Jiří Šimáček, and Tomáš
Vojnar. “Forest Automata for Verification of Heap Manipulation”. In: Proc.
of CAV’11. Vol. 6806. LNCS. Springer Berlin Heidelberg, 2011, pp. 424–440.

[29] Peter Habermehl, Lukáš Holík, Adam Rogalewicz, Jiří Šimáček, and To-
máš Vojnar. “Forest Automata for Verification of HeapManipulation”. In:
Formal Methods in System Design 1 (2012), pp. 83–106.

4The work [29] (in bold) is attached to this thesis.

3.3. STRING SOLVING 21

[30] LukášHolík,MartinHruška, Ondřej Lengál, AdamRogalewicz, Jiří Šimáček,
and Tomáš Vojnar. “Forester: From Heap Shapes to Automata Predicates -
(Competition Contribution)”. In: Proc. of TACAS’17. Vol. 10206. LNCS.
Springer, 2017, 365–369.

[31] LukášHolík,MartinHruška, Ondřej Lengál, AdamRogalewicz, Jiří Šimáček,
andTomášVojnar. “Forester: ShapeAnalysisUsingTreeAutomata”. English.
In: Proceedings of TACAS’15. Vol. 9035. LNCS. Springer Berlin Heidelberg,
Jan. 2015, 432–435.

[32] LukášHolík,MartinHruška, Ondřej Lengál, AdamRogalewicz, Jiří Šimáček,
and Tomáš Vojnar. “Run Forester, Run Backwards! - (Competition Contri-
bution)”. In: Proc. of TACAS’16. Vol. 9636. LNCS. Springer, 2016, 923–926.

[33] Lukáš Holík, Martin Hruška, Ondřej Lengál, Adam Rogalewicz, and Tomáš
Vojnar. “Counterexample Validation and Interpolation-Based Refinement
for Forest Automata”. In: Proc. of VMCAI’16. Vol. 10145. LNCS. Springer,
2017, pp. 288–309.

[34] Lukáš Holík, Ondřej Lengál, Adam Rogalewicz, Jiří Šimáček, and Tomáš Vo-
jnar. “Fully Automated Shape Analysis Based on Forest Automata”. In: Proc.
of CAV’13. Vol. 8044. LNCS. Springer Berlin Heidelberg, 2013, pp. 740–755.

3.3 String Solving
Strings are a fundamental data type in many programming languages. This
statement is true nowmore than ever, especially owing to the rapidly growing
popularity of scripting languages (e.g. JavaScript, Python, PHP, and Ruby).
String manipulations are often difficult to reason about automatically and
could easily lead to unexpected programming errors. Such errors can even
have serious security consequences, e.g., cross-site scripting (a.k.a. XSS), ran-
ked among the top three classes of web application security vulnerabilities by
OWASP [216].

Popular methods for analysing string manipulations include symbolic exe-
cutions [74, 98, 99, 149, 180, 197, 229, 236, 240] built on top of constraint solvers
over the domain of strings (a.k.a. string solvers). String solving have been the
subject of much research in the past decade or two, e.g., [40, 65, 67, 74, 122,
141–143, 165, 166, 182, 191–194, 236, 259, 260, 268, 271, 279–282, 286]. Most
of these works follow the standard approach of Satisfiability Modulo Theories
(SMT) [126] which is an extension of the problem of satisfiability of Boolean
formulae wherein each atomic proposition can be interpreted over some log-
ical theories (typically, quantifier-free).

Unlike the case of theories such as integer/real arithmetic (where many
decidability and undecidability results are known and powerful algorithms
are already available, e.g., the simplex algorithm), string constraints aremuch
less understood. There are many different string operations that can be in-
cluded in a theory of strings, e.g., concatenation, length comparisons, regular
constraints (matching against a regular expression), replace-all (i.e. replac-

22 CHAPTER 3. APPLICATIONS OF AUTOMATA

ing every occurrence of a string by another string), or conversions between
integers and strings. Even for the theory of strings with the concatenation op-
eration alone, existing string solvers cannot handle the theory (in its full gen-
erality) in a sound and completemanner, despite the existence of a theoretical
decision procedure for the problem [129, 154, 174, 203, 218, 219]. This situa-
tion is exacerbated when we add extra operations like string-length compar-
isons, in which case even decidability is a long-standing open problem [143].
In addition, recent works in string solving have argued in favour of adding
the replace-all operator or, more generally, finite-state transducers to string
solvers [194, 259, 279, 280] in view of their importance for modelling relevant
sanitisers (e.g. backslash-escape) and implicit browser transductions (e.g.
an application of HTML-unescape by innerHTML) [122, 165, 268]. However,
naively combining the replace-all operator and concatenation yields undecid-
ability [194]. Yet another operation, much needed in application such analy-
sis of scripting languages and yet unexplored, is string-integer conversion.

Among many emerging solutions, automata and transducer-based for-
malisms seem to be an approach with a good ratio of efficiency, generality,
and completeness guarantees [18, 35, 40, 122, 165, 182, 194, 268, 279–281].
Automata are indeed a natural means of representing regular sets of strings.
One of the pioneeringwork on using automata in string solvingwas our work
[40]. It targets string constraints that combine regular constraints, word equa-
tion, and Presburger constraints over lengths of strings. In short, word equa-
tions are turned into new regular constraints, all (original and new) regu-
lar constraints are translated into new constraints on string lengths through
computing Parikh images5 of regular languages, and all (original and new)
Presburger constraints are given to an integer arithmetic solver.

A crucial idea is the so called automata splitting that eliminates concatena-
tion and transforms the constraints into purely regular ones. As an example,
consider the constraint x.y ∈ L. It specifies that the concatenation of the val-
ues of string variables x and y belongs to a given regular language L. Is there
a satisfying assignment for x and y? (What are the possible assignments?)
Automata splitting works as follows. Assuming that L is represented as a fi-
nite automaton A, we reason as follows. Every word in L is accepted by a run
of A, in which some state q marks the end of the prefix x and beginning of the
suffix y. Thus every state q of A represents a class of satisfying assignments
where words accepted at q are the x-prefixes and words accepted from q are
the y-suffixes. Hence, the entire constraint can be rewritten as a disjunction
that has a disjunct x ∈ Lq ∧ y ∈ qL for every state q, where Lq is the language of
words accepted at q (the automaton A butwith the only final state q) and qL is
the language of words accepted from q (the automaton A but with three only

5The Parikh image of a word assigns to each letter the numbers of its occurrences in the
word. The Parikh image of a language is a set of Parikh images of its words. It is usually
expressed as an arithmetic formula (semi-linear for regular and context free languages).

3.3. STRING SOLVING 23

initial state q). This eliminates concatenation from the constraint. Automata
splitting can be straightforwardly generalised to transducers that encode re-
lations between string variables as shown in [194]. It was then elaborated on
in a number of other works [18, 35, 38, 66, 106, 107, 194].

In [18], we propose an efficient implementation of automata splitting that
uses alternating automata to encode the large disjunctions produced by the
splitting succinctly. Although the alternating automata-based representation
means that more expensive satisfiability test, PSPACE-complete namely, its
high worst-case complexity can be mitigated by a use of heuristics. We have
particularly tried to use the relative recent successful model checking algo-
rithms of IC3/PDR [90, 163] to test emptiness of produced alternating auto-
mata. This resulted in a prototype implementation able to handle very com-
plex combinations of transducers and concatenations. Similar attempts were
to use model checking methods to solve automata problems made in [119,
270] and even earlier [144]. In our recent paper [39], we have generalised
the class of string constraints for which the techniques based on splitting
is complete. The resulting chain-free fragment of the string constraints logic
is one of the largest known decidable logical fragments that combine regu-
lar/transducer constraints, concatenation, and length constraints, strictly ex-
tending a number of previously proposed fragments (such as the acyclic frag-
ment of [40] or the straight line fragment of [194]) and it seems to precisely
capture the limits of the automata splitting.

Our second line of work that started with [35], also starting with that of
[40], focuses on using approximation of string constraints that allows their
lightweight encoding to Presburger constraints, in effect avoiding expensive
automata operations altogether. The idea is that string constraints can be
quite faithfully under-approximated by the so called flat automata: automata
where simple loops are spawned from a central straight acyclic branch lead-
ing from accepting to the final state. The central property of flat automata is
that their runs can be precisely characterised by their Parikh images. All main
types of string constraints can be under-approximated as flat automata and
subsequently turned into arithmetic formulae through a Parikh image con-
struction, including word equations, regular constrains, transducers, or even
context-free constraints. The arithmetic formula is then given to an arithmetic
SMT solver. The main advantage of this method is that it mostly avoids com-
plex automata construction such as product construction, determinization,
or emptiness test of alternating machines, that are needed in the approaches
such as [40, 194, 270]. The under-approximation is parameterised by the al-
lowed length of the central branch of the flat automaton and by the length of
the attached simple loops. It can be refined by increasing these two parame-
ters. It is complete in the sense that if the string constraint is satisfiable, the
solution will be found with some setting of the parameters. The method is
very efficient in proving satisfiability. For proving unsatisfiability, it can be
paired with any available technique (in our implementation we use [38]). In

24 CHAPTER 3. APPLICATIONS OF AUTOMATA

our most recent paper [39], we have extended this approach with the abil-
ity to handle string-integer constraints that are crucial in applications such
as verification of PHP programs. The latest version of our implementation is
currently competing very successfully with the best string constraint solvers.

The field of string solving is lively now, partly due its major role in analy-
sing security of web applications. This domain still requires more expressive
string constraints handled even more efficiently. There are many avenues of
continuing the work discussed here in this direction. Efficient automata tech-
niques, some of which are discussed in this thesis, seem very relevant.

Contributed Papers6

[18] Lukáš Holík, Petr Janků, Anthony W. Lin, Philipp Rümmer, and Tomáš
Vojnar. “String constraints with concatenation and transducers solved ef-
ficiently”. In: PACMPL 2.POPL (2018), 4:1–4:32.

[35] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Yu-Fang Chen, Bui Phi Diep,
Lukáš Holík, Ahmed Rezine, and Philipp Rümmer. “Flatten and conquer:
A framework for efficient analysis of string constraints”. In: Proc. of PLDI’17.
ACM Trans. Comput. Log., 2017, 602–617.

[36] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Yu-Fang Chen, Bui Phi Diep,
Lukáš Holík, Ahmed Rezine, and Philipp Rümmer. “Trau: SMT solver for
string constraints”. In: Proc. of FMCAD’18. IEEE, 2018, pp. 1–5.

[37] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Yu-Fang Chen, Lukáš Holík,
Ahmed Rezine, Philipp Rümmer, and Jari Stenman. “Norn: An SMT Solver
for String Constraints”. In: Proc. of CAV’15. Vol. 9206. LNCS. Springer, 2015,
pp. 462–469.

[38] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Bui Phi Diep, LukášHolík, and
Petr Janků. “Chain-Free String Constraints”. In: Proc. of ATVA’19. Vol. 11781.
LNCS. Springer, 2019, pp. 277–293.

[39] ParoshAziz Abdulla et al. “Efficient handling of string-number conversion”.
In: Proc. of PLDI’20. ACM, 2020, pp. 943–957.

[40] ParoshAziz Abdulla, MohamedFaouzi Atig, Yu-Fang Chen, Lukáš Holík,
Ahmed Rezine, Philipp Rümmer, and Jari Stenman. “String Constraints
for Verification”. English. In: Proc. of CAV’14. Vol. 8559. LNCS. Springer
International Publishing, 2014, pp. 150–166.

3.4 Pattern Matching
Matching regular expressions is a ubiquitous component of computer sys-
temsused e.g. for searching, data validation, parsing, find/replace, data scrap-
ping, syntax highlighting, and it is a commonly used and natively supported
in most programming languages [117]. About 30-40% of Java, JavaScrip, and

6The works [18, 40] (in bold) are attached to this thesis.

3.4. PATTERN MATCHING 25

Python software uses regex matching (as reported in multiple studies, e.g.
[124]). Network Intrusion Detection Systems (IDSes) use hardware acceler-
ated pattern matching. Frameworks such as Snort [198], Suricata [208], or
Bro [232], are widely used to secure internet connection against attacks and
malicious traffic.

We will discuss two lines of work on pattern matching, one more relevant
to pattern matching of software, one more relevant to pattern matching of
hardware. The challenges we are addressing are specific to the given context,
therefore we discuss the two separately.

Counting in Software Pattern Matching

This line of work aims at improving efficiency of software regular pattern
matching for the particular case of regexes with bounded repetition, which
are often problematic for existing matchers.

Efficiency of matching engines have a significant impact on the overall us-
ability of software applications. Unpredictability of a matchers performance
may lead to catastrophic consequences, witnessed by events such as the recent
catastrophic outage of Cloudfare services [152], caused by a single poorly
written regex, and it is a doorway for the so called ReDOS attack, a denial
of service attack based on overwhelming the matching engine by providing a
specially crafted regex or text. In 2016 ReDoS caused for instance an outage at
StackOverflow [138], or rendered vulnerable websites that used the popular
Express.js framework [64]. Also works such as [124, 125] argue that ReDOS
is not just a niche problem, but rather a common and serious thread.

Failures of matching are mostly caused by “catastrophic backtracking”, a
situation when variants of Spencer’s simulation of an NFA by backtracking
[247] exhibits a behaviour super-linear to the length of the text. Spencer style
algorithms are implementedmost often, though they are at worst exponential
in the text length. An alternative with a much lower worst-case complexity
in the text size is to use deterministic automata (DFA). In the ideal case, the
DFA is pre-computed. Matching can then be linear in text length, constant in
processing each character. This is the so called static DFA simulation [242].
The major drawback of this approach is that the determinization of NFAmay
explode, rendering the method unusable. Variants of Thompson’s NFA-to-
DFA simulation [256], where the deterministic automaton is built on-the-fly,
reduce the impact of exploding determinization. Naive implementation of
Thompson’s algorithmwould have to pay a hefty price for eachmatched char-
acter (at most linear to the size of the NFA, one step of the on-the-fly subset
construction may use all transitions and states of the NFA), but the modern
implementations, such as [148, 150, 269] use caching of the already visited
DFA states to achieve high efficiency (even though even they are completely
immune to exploding implementation).

26 CHAPTER 3. APPLICATIONS OF AUTOMATA

In our works [19, 20], we focus on eliminating a frequent cause of DFA
explosion—a use of the counting operator also known as the operator of limited
repetition. It can succinctly express patterns such as (ab){1,100} representing
words where ab appears 1 to 100 times. Such expressions are very common
(cf. [79]), e.g., in the RegExLib library [230], which collects expressions for
recognising URIs, markup code, pieces of Java code, or SQL queries; in the
Snort rules [198] used for finding attacks in network traffic; in real-life XML
schemas, with the counter bounds being as large as 10 million [79]; or in de-
tecting information leakage from traffic logs [19].

To illustrate the principal difficultywithmatching of bounded repetitions,
consider the regex .*a.{k} where k ∈ N (a appears k-characters from the
end). The minimal DFA accepting the language has 2k+1 states because it
must remember all the positions where a was seen during the last k + 1 steps.
This requires a finite memory of k+ 1 bits and thus 2k+1 reachable DFA states.
Determinizing explicitly is hence out of question. The Thompson style algo-
rithms, using on the on-the-fly determinization, will also run into problems
since processing nearly every character will require generating a new DFA
state, represented as set of NFA states of the size up to k.

As a cure to this problem, we have proposed in [20] to use a translation
from regexes with repetition to small deterministic machines that can be sim-
ulated in matching with nearly constant character complexity. Our compila-
tion from regexes to CsA proceeds in two steps. First, we compile the regexes
into non-deterministic counting automata (CA), automatawith bounded coun-
ters. Variants of CA have been used in several other works under different
names e.g. [19, 168, 183, 245, 248] all essentially boiling down to variations
on counter automata with counters limited to a bounded range of values. The
compilation from regular expressions is cheap and produces counting auto-
mata with the size independent of the counter bounds. The major technical
problem is then determinization of the CA in a way that would not explode in
the counter bounds and would ideally produce deterministic machines of a
size independent of the counter bounds.Our first solution, published in [19],
was to produce a deterministic CA which would for a practically significant
class of regexes be of a size linear to the counter bounds. [20] improves on this
and presents an algorithm that produces deterministic a counting set automata
(CsA) in time independent of the counter bounds.

The idea of the CA to CsA determinization of [20] is best explained by
comparison with the naive determinization of CA which creates a DFA by
explicit subset construction. The states of the DFA are sets of runtime config-
urations of the CA: each CA-configuration consisting of a control state and a
counter valuation. Counter valuations are hence “unfolded”, they become an
explicit part of the DFA control states, and the succinctness provided by coun-
ters is completely lost. In contrast to this, our CsA represents the counter val-
uations implicitly: it computes them dynamically on-the-fly and stores them
in the counting sets. To do that, CsA are equipped with a special type of reg-

3.4. PATTERN MATCHING 27

isters, called counting sets, that can hold a set of bounded integer values and
support a limited set of simple set operations that can all be implemented to
run in constant time (add 0, add 1, empty the set, increase all, compare the
maximal element with a constant). The counter valuations are hence not a
part a control state and their overall number influences neither the size of the
CsA nor the time needed to build them. Even though our determinization so
far does not work for the full class of regular expressions with counting, the
supported class of regexes is general enough to handle the absolute majority
of regular expressions found in practice. Our experimental results from [20]
confirm that CsA are able to eliminate most problems that modern regexes,
such as grep [148], RE2 [150], and [269] have with bounded counting.

This work has many promising future directions. Matching would utilise
efficient boolean operations over CsA andmeans of minimization/size reduc-
tion. CsA also have a good potential for the use as a symbolic representation
of sets. Applications may arise from frameworks for verification of programs,
such as [158], where automata represent the control flow and a bounded for-
loop induces an automaton with counting. Other applications may appear in
solvingWS1S formulas or Presburger formulas with automata, in string solv-
ing where constraints over string lengths are common and can be encoded in
automata using counting. A challenging open problem is an emptiness check
for this kind of automata with a run-time ideally independent of the counter
bounds, it is needed in all these application domains.

Approximation in Hardware Accelerated Regex Matching

The work discussed here aims at hardware accelerated regex matching, na-
mely, at minimization of hardware resources needed to realize matching of
large and complicated patterns in network monitoring.

Intrusion Detection Systems (IDSes), such as Snort [198], Suricata [208],
or Bro [232] arewidely used to secure Internet connection against attacks and
malicious traffic. One of the prominent approaches for IDSes is deep packet
inspection (DPI), which is based on matching regular expressions describing
attack patterns against network traffic.

The networks operate at impressive and still growing speeds—telecom-
munication companies started to deploy 100Gbps links, the 400Gbps Ether-
net standard has recently been ratified [170], and large data centers already
call for a 1 Tbps technology. Existing IDSes struggle. The best software-based
solutions, such as [265], can achieve a 100Gbps throughput using Bro on
a cluster of servers. A single-box IDS is at such speeds far beyond the capa-
bilities of software-based solutions—hardware acceleration is needed.

A technology increasingly used in data centers [101, 224] that provides
provide high computing power and flexibility is that of field-programmable gate
arrays (FPGAs). They achieve matching speeds over 100Gbps [207], how-
ever, only for the price of massive parallelization that puts excessive demands

28 CHAPTER 3. APPLICATIONS OF AUTOMATA

on the resources of FPGAs. For instance, in the HW architecture that we
propose, processing 400Gbps input network traffic requires 256 concurrently
functioning regex matching units. Reducing the consumed resources is thus
of paramount importance.

The FPGA matching units implement either deterministic or non-deter-
ministic finite automata (hardware parallelization allows efficient implemen-
tation of the Thomposon’s NFA simulation [256]). In our works [41, 103], we
focus on NFAs since they take much less resources on the FPGA, as shown,
e.g., by [110, 195, 241, 246, 283]. We propose a method of reducing the sizes
of NFAs even for the price of over-approximating the language, by techniques
that provide good trade-offs between the precision and reduction factors and
overall much greater reduction then known exact techniques (such as sim-
ulation reduction). Subsequently, we propose a multi-stage architecture [41]
of the regex matching engine. Consider an NFA A that recognizes the lan-
guage L of a given set of regexes. The proposed architecture is composed
of several stages where each subsequent stage uses more precise and hence
larger automata, but requires less parallelization as it receives traffic filtered
by the previous less precise but faster and more parallelized stage.

The first version of our approximate reduction techniques [103]was based
on learning probabilistic model of traffic in a form of a probabilistic automa-
ton, computing its product with the automaton to beminimized, and pruning
andmerging insignificant states. This method gives some interesting theoret-
ical guarantees but is rather expensive in practice. Therefore, in [41] we use
a more lightweight approach. Given an NFA constructed from the regexes of
interest, we label its states with their significance—the likelihood that theywill
be used during processing a packet obtained by running a sample of the net-
work traffic trough the automaton and counting how many times each state
was used–and then simplify the least significant parts of the automaton. The
simplification is again implemented by pruning and merging of the insignifi-
cant states. This methods scales well. On regexes taken from the IDS Snort
and other resources, it yielded a substantial reduction of the size of the NFAs
while keeping the number of false positives low. When usedwithin themulti-
stage architecture, it enabled to performmatching at 100 and 400Gbps on sets
of regexes whose sizes were far beyond the capabilities of previous solutions.

We plan to continue this work by exploring other means of approximate
automata state space reduction, such as those inspired by classical simulation-
based reductions, perhaps close to probabilistic simulations [127]. We will
also have a closer look into the process of translating automata to FPGA hard-
ware and analyse opportunities for better integration with the approximate
reductions there.

Chapter 4

Concurrent Systems

This chapter discusses research on extensions of automata with parallelism,
Petri nets and their generalizations, with applications in verification of pa-
rameterized systems and parallel pointer programs.

We started this direction with a work on verification framework for lock-
free implementations of pointer data structures [45]. To verify linearisability
of lock-free data structures such as queues or stacks, we combined three com-
ponents: 1) thread-modular reasoning to handle parallelism, 2) a specifica-
tion mechanism based on finite automata observer to specify the behaviour
of locks and stacks (e.g. the FIFO or the LIFO property), and 3) a simple
abstract domain specialised to capture configurations of parallel programs
manipulating singly linked lists. One of the highlights of the work was the
idea of using automata to specify essentially non-regular behaviours of stacks
and queues. We showed that under the assumption of data independence,
adapted from [274] (essentially, the program does not look at the data stored
in the data structure), the violations of the stack or queue-like behavioursmay
be captured by regular properties over the alphabet of simple events (such ass
insert(a), delete(b), where a and b are one of about three abstract data values).

The main obstacle turned out to be the insufficient precision of thread-
modular abstraction which wewere using to capture unbounded parallelism.
Namely, thread-modular abstraction abstracts a state of a program with ar-
bitrarily many threads into a set of local states of the individual threads. In
the case of heap configurations, the local state would refer roughly to the part
of the heap reachable from the local variables of the thread and from global
variables. Reasoning about programs such as Michael and Scot’s queue [211]
under thread-modular abstraction however produces false positives.

On the way to remedy this, we discovered that the precision of thread-
modular abstraction may be improved in a parametric manner. Simply said,
instead of remembering a local state of one thread, one can remember a lo-
cal state every k-tuple of threads, for some constant k which is a parameter
of the abstract domain. We call these k-tuples views. The higher the k, the

29

30 CHAPTER 4. CONCURRENT SYSTEMS

more precision the abstract domain has. Interestingly, as we show in [43],
general coverability of well-structured systems (e.g. Petri nets or, broadcast
communication protocols, lossy channels) can always be verified with a high
enough k. This gives a complete algorithm for checking coverability in well-
structured systems: run the system with increasing values of k until either it
is proven safe or a real counterexample trace is discovered. Among modern
approaches and heuristics for coverability in Petri nets and well-structured
transition systems [42, 51, 146, 178, 186, 249], view abstraction provides very
good compromise between efficiency and simplicity. It makes it easy to gen-
eralise to other, more complex, systems. With our prototype implementation,
we were able to verify, besides a number of Petri net models, models of com-
munication protocols with various complex topologies. The notion of a view
easily generalises from a tuple of a threads to e.g. a limited sub-graph of the
topology. In [47], we further extended the abstract domain of views with so
called contexts which led to a verification algorithm complete even beyond
well-structured systems. Intuitively, views represent an universal property:
all views within a program state must satisfy it. The contexts on the other
hand represent an existential property: if a view appears in the global state,
then the global state must have also some other property. This allowed to
verify certain non-monotonic systems such as e.g. the full Szymanski’s mu-
tual exclusion protocol (to the best of our knowledge, there is still no other
automatic method capable of verifying Szymanski’s protocol).

The work on verification of linearisability properties could then be com-
pleted using the technique of [43]which allowed to refine the thread-modular
abstraction sufficiently. Namely, we could verify basic lock-free data struc-
tures such as Treiber’s stack [258] and Michael and Scott’s queue [211], and
the method delivered overall comparable or better performance and preci-
sion then the closest work [261, 263] based on separation logic and assume
guarantee reasoning.

We have continued this work in [48, 49] where we studied the same prob-
lem, verification of linearizability of stacks and queues, but with an emphasis
on achieving good scalability under the absence of garbage collector. In this
situation, the so called ABA problemmay cause that a program correct under
garbage collection becomes incorrect due to the possibility of an accidental
reuse of previously freed memory. Verification of absence of ABA related
bugs under the absence of garbage collector requires substantially more pre-
cision, which in turn induces very high computational demands. We have
succeeded in devising techniques for proving such programs correct with
relatively minimal additional costs. Namely, in [48], we have proposed a no-
tions of pointer races, an analogue of the classical notion of race, and shown
that verification can be divided into two easier sub-tasks: first, show that ab-
sence of strong pointer races, second, under the assumption of strong pointer
race freeness, verify the original property of interest under the much less de-
manding garbage collecting semantics. Further, in [49] we proposed a tech-

31

nique of so called summaries to limit the cost of the abstract transformer in
the thread-modular abstract domain. Roughly, the original code is replaced
with so called summaries, pieces of atomic and “stateless” code that overap-
proximates the original program. The abstract post operator then becomes
much cheaper. The verification is again split into two simpler tasks, verifying
that the overapproximation is sound, and verify that the overapproximation
preserves the original property of interest. This considerably improves scala-
bility of the entire method.

Our work on parallel pointer program verification lies on a crossroad of
the field of shape analysis and analysis of parallelism, and it is relevant to
a wide context of related works. There have been many works on thread-
modular and assume guarantee, with a general focus as well as focused on
pointer programs [73, 139, 151, 175, 205, 239, 262–264]. Other techniques for
parallel program verification include atomicity abstraction [50, 135, 136, 176,
223, 233] relevant especially to [49] and simulation [130, 135, 237, 285]. We
omit the entire rich field of sequential pointer program analysis, which is dis-
cussedmore in Section 3.2. Our originalwork [45]was very close to theworks
of Vafeiadis [262–264] who obtained similar results using assume-guarantee
reasoning in separation logic. Ourworks [48, 49] are still among themost suc-
cessful in verifying pointer programswith complex low level synchronisation,
together with several follow-ups of our colleagues [58, 210] which elaborated
on some of their aspects further.

Contributed Papers1

[42] Parosh Aziz Abdulla, Frédéric Haziza, and Lukáš Holík. “All for the Price
of Few”. In: Proc. of VMCAI’13. Vol. 7737. LNCS. Springer Berlin Heidel-
berg, 2013, pp. 476–495.

[43] Parosh Aziz Abdulla, Frédéric Haziza, and Lukáš Holík. “Parameterized
Verification through View Abstraction”. In: Int. J. Softw. Tools Technol. Transf.
18.5 (2016), 495–516.

[44] ParoshAziz Abdulla, Frédéric Haziza, and LukášHolík. “ViewAbstraction -
A Tutorial (Invited Paper)”. In: Proc. of SynCoP’15. Vol. 44. OASICS. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015, pp. 1–15.

[45] Parosh Aziz Abdulla, Frédéric Haziza, Lukáš Holík, Bengt Jonsson, and Ah-
med Rezine. “An Integrated Specification and Verification Technique for
Highly Concurrent Data Structures”. In: Proc. of TACAS’13. Vol. 7795. LNCS.
Springer Berlin Heidelberg, 2013, pp. 324–338.

[46] Parosh Aziz Abdulla, Frédéric Haziza, Lukáš Holík, Bengt Jonsson, and
Ahmed Rezine. “An Integrated Specification and Verification Technique
for Highly Concurrent Data Structures”. In: Int. J. Softw. Tools Technol.
Transf. 19.5 (2017), pp. 549–563.

1The works [42, 46] (in bold) are attached to this thesis.

32 CHAPTER 4. CONCURRENT SYSTEMS

[47] ParoshAziz Abdulla, Frédéric Haziza, and Lukáš Holík. “Block Me If You
Can!” English. In: Proc. of SAS’14. Vol. 8723. LNCS. Springer International
Publishing, Jan. 2014, pp. 1–17.

[48] Frédéric Haziza, Lukáš Holík, Roland Meyer, and Sebastian Wolff. “Pointer
Race Freedom”. In: Proc. of VMCAI’16. Vol. 9583. LNCS. Springer, 2016,
pp. 393–412.

[49] LukášHolík, RolandMeyer, TomášVojnar, and SebastianWolff. “Effect Sum-
maries for Thread-Modular Analysis - Sound Analysis Despite an Unsound
Heuristic”. In: Proc. of SAS’17. Vol. 10422. LNCS. Springer, 2017, 169–191.

Bibliography

[1] P. A. Abdulla, A. Bouajjani, L. Holík, L. Kaati, and T. Vojnar. “Composed
Bisimulation for Tree Automata”. In: Proc. of CIAA’08. Vol. 5148. LNCS.
Springer Berlin Heidelberg, 2008, pp. 212–222.

[2] P. A. Abdulla, A. Bouajjani, L. Holík, L. Kaati, and T. Vojnar. “Computing
Simulations over Tree Automata”. In: Proc. of TACAS’08. Vol. 4963. LNCS.
Springer Berlin Heidelberg, 2008, pp. 93–108.

[3] P. A. Abdulla, Y.-F. Chen, L. Holík, and T. Vojnar. “Mediating for Reduc-
tion (on Minimizing Alternating Büchi Automata)”. In: Proc. of FSTTCS’09.
Vol. 4. Leibniz International Proceedings in Informatics (LIPIcs). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2009, 1–12.

[4] P. A. Abdulla, A. Bouajjani, L. Holík, L. Kaati, and T. Vojnar. “Composed
Bisimulation for Tree Automata”. In: International Journal of Foundations of
Computer Science 04 (2009), pp. 685–700.

[5] P. A. Abdulla, Y.-F. Chen, L. Clemente, L. Holík, C.-D. Hong, R. Mayr, and T.
Vojnar. “Simulation Subsumption in Ramsey-Based Büchi AutomataUniver-
sality and Inclusion Testing”. In: Proc. of CAV’10. Vol. 6174. LNCS. Springer
Berlin Heidelberg, 2010, pp. 132–147.

[6] P. A. Abdulla, Y.-F. Chen, L. Holík, and T. Vojnar. “Mediating for reduction
(on minimizing alternating Büchi automata)”. In: Theoretical Computer Sci-
ence 552.0 (Oct. 2014), pp. 26–43.

[7] P. A. Abdulla, L. Holík, L. Kaati, and T. Vojnar. “A Uniform (Bi-) Simu-
lation-Based Framework for Reducing Tree Automata”. In: Electron. Notes
theor. Comput. Sci. 251 (2009), pp. 27–48.

[8] R. Almeida, L. Holík, and R. Mayr. “Reduction of Nondeterministic Tree
Automata”. In: Proc. of TACAS’16. Vol. 9636. LNCS. Springer, 2016, 717–735.

[9] L. Holík. “Simulations and Antichains for Efficient Handling of Finite Au-
tomata”. PhD thesis. Brno, CZ: Department of Intelligent Systems FIT BUT,
2011.

[10] L. Holík and J. Šimáček. “Optimizing an LTS-Simulation Algorithm”. In:
Proc. of MEMICS’09. Znojmo, CZ: Faculty of Informatics MU, 2009, 93–101.

[11] L. Holík, O. Lengál, J. Síč, M. Veanes, and T. Vojnar. “Simulation Algorithms
for Symbolic Automata”. In: Proceedings of ATVA’18. Vol. 11138. LNCS.
Springer, 2018, pp. 109–125.

33

34 BIBLIOGRAPHY

[12] P. A. Abdulla, Y.-F. Chen, L. Clemente, L. Holík, C.-D. Hong, R. Mayr, and T.
Vojnar. “Advanced Ramsey-Based Büchi Automata Inclusion Testing”. In:
Proc. of CONCUR’11. Vol. 6901. LNCS. Springer Berlin Heidelberg, 2011,
pp. 187–202.

[13] P. A. Abdulla, Y.-F. Chen, L.Holík, R.Mayr, and T. Vojnar. “When Simulation
Meets Antichains”. In: Proc. of TACAS’10. Vol. 6015. LNCS. Springer Berlin
Heidelberg, 2010, pp. 158–174.

[14] A. Bouajjani, P. Habermehl, L. Holík, T. Touili, and T. Vojnar. “Antichain-
Based Universality and Inclusion Testing over Nondeterministic Finite Tree
Automata”. In: Proc. of CIAA’08. Vol. 5148. LNCS. Springer Berlin Heidel-
berg, 2008, pp. 57–67.

[15] L. Holík, O. Lengál, J. Šimáček, and T. Vojnar. “Efficient Inclusion Check-
ing on Explicit and Semi-symbolic Tree Automata”. In: Proc. of ATVA’11.
Vol. 6996. LNCS. Springer Berlin Heidelberg, 2011, pp. 243–258.

[16] L. Holík and R. Meyer. “Antichains for the Verification of Recursive Pro-
grams”. In: Proc. of NETYS’15. Vol. 9466. LNCS. Springer, 2015, 322–336.

[17] L. Holík, R. Meyer, and S. Muskalla. “Summaries for Context-Free Games”.
In: Proc. of FSTTCS’16. Vol. 65. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2016, 41:1–41:16.

[18] L. Holík, P. Janků, A. W. Lin, P. Rümmer, and T. Vojnar. “String constraints
with concatenation and transducers solved efficiently”. In: PACMPL 2.POPL
(2018), 4:1–4:32.

[19] L.Holík, O. Lengál, O. Saarikivi, L. Turoňová,M.Veanes, and T. Vojnar. “Suc-
cinct Determinisation of Counting Automata via Sphere Construction”. In:
Proc. of APLAS’19. Vol. 11893. LNCS. Springer, 2019, pp. 468–489.

[20] L. Turoňová, L.Holík, O. Lengál, O. Saarikivi,M.Veanes, andT. Vojnar. Regex
Matching with Counting-Set Automata. accepted at OOPSLA’20. 2020.

[21] T. Fiedor, L. Holík, P. Janků, O. Lengál, and T. Vojnar. “Lazy Automata Tech-
niques for WS1S”. In: Proc. of TACAS’17. Vol. 10205. LNCS. Springer, 2017,
pp. 407–425.

[22] T. Fiedor, L. Holík, O. Lengál, and T. Vojnar. “Nested Antichains for WS1S”.
English. In: Proc. of TACAS’15. Vol. 9035. LNCS. Springer Berlin Heidelberg,
Jan. 2015, pp. 658–674.

[23] T. Fiedor, L. Holík, O. Lengál, and T. Vojnar. “Nested antichains for WS1S”.
In: Acta Inf. 56.3 (2019), pp. 205–228.

[24] V. Havlena, L. Holík, O. Lengál, O. Vales, and T. Vojnar. “Antiprenexing for
WSkS: A Little Goes a Long Way”. In: Proc. of LPAR’20. Vol. 73. EPiC Series
in Computing. EasyChair, 2020, 298–316.

[25] V. Havlena, L. Holík, O. Lengál, and T. Vojnar. “Automata Terms in a Lazy
WSkS Decision Procedure”. In: Proc. of CADE’19. Vol. 11716. LNCS. Sprin-
ger, 2019, pp. 300–318.

[26] P. A.Abdulla, L.Holík, B. Jonsson,O. Lengál, C. Q. Trinh, and T. Vojnar. “Ver-
ification of Heap Manipulating Programs with Ordered Data by Extended
Forest Automata”. In: Proc. of ATVA’13. Vol. 8172. LNCS. Springer Interna-
tional Publishing, 2013, pp. 224–239.

BIBLIOGRAPHY 35

[27] P. A.Abdulla, L.Holík, B. Jonsson,O. Lengál, C. Q. Trinh, and T. Vojnar. “Ver-
ification of Heap Manipulating Programs with Ordered Data by Extended
Forest Automata”. In: Acta Inf. 53.4 (2016), pp. 357–385.

[28] P. Habermehl, L. Holík, A. Rogalewicz, J. Šimáček, and T. Vojnar. “Forest Au-
tomata for Verification of HeapManipulation”. In: Proc. of CAV’11. Vol. 6806.
LNCS. Springer Berlin Heidelberg, 2011, pp. 424–440.

[29] P. Habermehl, L. Holík, A. Rogalewicz, J. Šimáček, and T. Vojnar. “Forest Au-
tomata for Verification of Heap Manipulation”. In: Formal Methods in System
Design 1 (2012), pp. 83–106.

[30] L. Holík, M. Hruška, O. Lengál, A. Rogalewicz, J. Šimáček, and T. Vojnar.
“Forester: From Heap Shapes to Automata Predicates - (Competition Con-
tribution)”. In: Proc. of TACAS’17. Vol. 10206. LNCS. Springer, 2017, 365–369.

[31] L. Holík, M. Hruška, O. Lengál, A. Rogalewicz, J. Šimáček, and T. Vojnar.
“Forester: Shape Analysis Using Tree Automata”. English. In: Proceedings of
TACAS’15. Vol. 9035. LNCS. Springer Berlin Heidelberg, Jan. 2015, 432–435.

[32] L. Holík, M. Hruška, O. Lengál, A. Rogalewicz, J. Šimáček, and T. Vojnar.
“Run Forester, Run Backwards! - (Competition Contribution)”. In: Proc. of
TACAS’16. Vol. 9636. LNCS. Springer, 2016, 923–926.

[33] L. Holík, M. Hruška, O. Lengál, A. Rogalewicz, and T. Vojnar. “Counterex-
ample Validation and Interpolation-Based Refinement for Forest Automata”.
In: Proc. of VMCAI’16. Vol. 10145. LNCS. Springer, 2017, pp. 288–309.

[34] L. Holík, O. Lengál, A. Rogalewicz, J. Šimáček, and T. Vojnar. “Fully Au-
tomated Shape Analysis Based on Forest Automata”. In: Proc. of CAV’13.
Vol. 8044. LNCS. Springer Berlin Heidelberg, 2013, pp. 740–755.

[35] P. A. Abdulla, M. F. Atig, Y. Chen, B. P. Diep, L. Holík, A. Rezine, and P.
Rümmer. “Flatten and conquer: A framework for efficient analysis of string
constraints”. In: Proc. of PLDI’17. ACM Trans. Comput. Log., 2017, 602–617.

[36] P. A. Abdulla, M. F. Atig, Y. Chen, B. P. Diep, L. Holík, A. Rezine, and P.
Rümmer. “Trau: SMT solver for string constraints”. In: Proc. of FMCAD’18.
IEEE, 2018, pp. 1–5.

[37] P. A. Abdulla, M. F. Atig, Y. Chen, L. Holík, A. Rezine, P. Rümmer, and J.
Stenman. “Norn: An SMT Solver for String Constraints”. In: Proc. of CAV’15.
Vol. 9206. LNCS. Springer, 2015, pp. 462–469.

[38] P. A. Abdulla, M. F. Atig, B. P. Diep, L. Holík, and P. Janků. “Chain-Free
String Constraints”. In: Proc. of ATVA’19. Vol. 11781. LNCS. Springer, 2019,
pp. 277–293.

[39] P. A. Abdulla et al. “Efficient handling of string-number conversion”. In:
Proc. of PLDI’20. ACM, 2020, pp. 943–957.

[40] P. Abdulla, M. Atig, Y.-F. Chen, L. Holík, A. Rezine, P. Rümmer, and J. Sten-
man. “String Constraints for Verification”. English. In: Proc. of CAV’14.
Vol. 8559. LNCS. Springer International Publishing, 2014, pp. 150–166.

[41] M. Ceska et al. “Deep Packet Inspection in FPGAs via Approximate Nonde-
terministic Automata”. In: Proc. of FCCM’19. IEEE, 2019, pp. 109–117.

36 BIBLIOGRAPHY

[42] P. A. Abdulla, F. Haziza, and L. Holík. “All for the Price of Few”. In: Proc. of
VMCAI’13. Vol. 7737. LNCS. Springer Berlin Heidelberg, 2013, pp. 476–495.

[43] P. A. Abdulla, F. Haziza, and L. Holík. “Parameterized Verification through
View Abstraction”. In: Int. J. Softw. Tools Technol. Transf. 18.5 (2016), 495–516.

[44] P. A. Abdulla, F. Haziza, and L. Holík. “View Abstraction - A Tutorial (In-
vited Paper)”. In: Proc. of SynCoP’15. Vol. 44. OASICS. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2015, pp. 1–15.

[45] P. A. Abdulla, F. Haziza, L. Holík, B. Jonsson, and A. Rezine. “An Integrated
Specification and Verification Technique for Highly Concurrent Data Struc-
tures”. In: Proc. of TACAS’13. Vol. 7795. LNCS. Springer Berlin Heidelberg,
2013, pp. 324–338.

[46] P. A. Abdulla, F. Haziza, L. Holík, B. Jonsson, and A. Rezine. “An Integrated
Specification and Verification Technique for Highly Concurrent Data Struc-
tures”. In: Int. J. Softw. Tools Technol. Transf. 19.5 (2017), pp. 549–563.

[47] P. Abdulla, F. Haziza, and L. Holík. “Block Me If You Can!” English. In:
Proc. of SAS’14. Vol. 8723. LNCS. Springer International Publishing, Jan.
2014, pp. 1–17.

[48] F. Haziza, L. Holík, R. Meyer, and S.Wolff. “Pointer Race Freedom”. In: Proc.
of VMCAI’16. Vol. 9583. LNCS. Springer, 2016, pp. 393–412.

[49] L. Holík, R. Meyer, T. Vojnar, and S. Wolff. “Effect Summaries for Thread-
Modular Analysis - SoundAnalysis Despite anUnsoundHeuristic”. In: Proc.
of SAS’17. Vol. 10422. LNCS. Springer, 2017, 169–191.

[50] M. Abadi and L. Lamport. “The Existence of Refinement Mappings”. In:
Proc. of LICS’88. IEEE Computer Society, 1988, pp. 165–175.

[51] P. A. Abdulla. “Well (and better) quasi-ordered transition systems”. In:
Bulletin of Symbolic Logic 16.4 (2010), pp. 457–515.

[52] P. A. Abdulla, A. Bouajjani, J. Cederberg, F. Haziza, and A. Rezine. “Mono-
tonic Abstraction for Programs with Dynamic Memory Heaps”. In: Proc. of
CAV’08. Vol. 5123. LNCS. Springer, 2008, pp. 341–354.

[53] P. A. Abdulla, G. Delzanno, and M. Montali. “Well Structured Transition
Systems with History”. In: Proc. of GandALF’15. Vol. 193. EPTCS. 2015,
pp. 115–128.

[54] P. A. Abdulla, J. Högberg, and L. Kaati. “Bisimulation Minimization of Tree
Automata”. In: Int. J. Found. Comput. Sci. 18.4 (2007), pp. 699–713.

[55] P. A. Abdulla, B. Jonsson, M. Nilsson, and J. d’Orso. “Algorithmic Improve-
ments in Regular Model Checking”. In: Proc. of CAV’03. Vol. 2725. LNCS.
Springer, 2003, pp. 236–248.

[56] P. A. Abdulla, B. Jonsson, M. Nilsson, J. d’Orso, and M. Saksena. “Regular
Model Checking for LTL(MSO)”. In: Proc. of CAV’04. Vol. 3114. LNCS.
Springer, 2004, pp. 348–360.

[57] P. A. Abdulla, B. Jonsson, M. Nilsson, andM. Saksena. “A Survey of Regular
Model Checking”. In: Proc. of CONCUR’04. Vol. 3170. LNCS. Springer, 2004,
pp. 35–48.

BIBLIOGRAPHY 37

[58] P. A. Abdulla, B. Jonsson, and C. Q. Trinh. “Automated Verification of Lin-
earization Policies”. In: Proc. of SAS’16. Vol. 9837. Springer, 2016, 61–83.

[59] P. A. Abdulla, A. Legay, J. d’Orso, and A. Rezine. “Tree Regular Model
Checking: A Simulation-Based Approach”. In: J. Log. Algebr. Program. 69.1-2
(2006), pp. 93–121.

[60] A. V. Aho and J. D. Ullman. “Translations on a Context-Free Grammar”. In:
Inf. Comput. 19.5 (1971), pp. 439–475.

[61] A. Albarghouthi, J. Berdine, B. Cook, and Z. Kincaid. “Spatial Interpolants”.
In: Proc. of ESOP’15. Vol. 9032. LNCS. Springer, 2015.

[62] R. Alur andM. Yannakakis. “Model Checking ofMessage Sequence Charts”.
In: Proc. of CONCUR’99. Vol. 1664. LNCS. Springer, 1999, pp. 114–129.

[63] A. Avron, N. Dershowitz, and A. Rabinovich. “Boris A. Trakhtenbrot: Aca-
demic Genealogy and Publications”. In: Pillars of Computer Science: Essays
Dedicated to Boris (Boaz) Trakhtenbrot on theOccasion ofHis 85th Birthday. Sprin-
ger, 2008, pp. 46–57.

[64] A. Baldwin. Regular Expression Denial of Service affecting Express.js. 2016.
[65] D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic, E. Kirda, C. Kruegel, and

G. Vigna. “Saner: Composing Static and Dynamic Analysis to Validate San-
itization in Web Applications”. In: Proc. of S&P’08. IEEE Computer Society,
2008, pp. 387–401.

[66] P. Barceló, C. Hong, X. B. Le, A. W. Lin, and R. Niskanen. “Monadic De-
composability of Regular Relations”. In: Proc. of ICALP’19. Vol. 132. LIPIcs.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019, 103:1–103:14.

[67] C. W. Barrett, C. Tinelli, M. Deters, T. Liang, A. Reynolds, and N. Tsiskari-
dze. “Efficient solving of string constraints for security analysis”. In: Proc. of
HotSoS’16. ACM Trans. Comput. Log., 2016, pp. 4–6.

[68] D. Basin and N. Klarlund. “Automata Based Symbolic Reasoning in Hard-
ware Verification”. In: Proc. of CAV’98. LNCS. Springer, 1998, pp. 349–361.

[69] K. Baukus, S. Bensalem, Y. Lakhnech, and K. Stahl. “Abstracting WS1S Sys-
tems to Verify Parameterized Networks”. In: Proc. of TACAS’00. Vol. 1785.
LNCS. Springer, 2000, pp. 188–203.

[70] J. Berdine, A. Cox, S. Ishtiaq, and C. Wintersteiger. “Diagnosing Abstraction
Failure for Separation Logic-based Analyses”. In: Proc. of CAV’12. Vol. 7358.
LNCS. Springer, 2012.

[71] J. Berdine, C. Calcagno, B. Cook, D. Distefano, P.W. O’Hearn, T.Wies, andH.
Yang. “Shape Analysis for Composite Data Structures”. In: Proc. of CAV’07.
Vol. 4590. LNCS. Springer, 2007, pp. 178–192.

[72] J. Berdine, B. Cook, and S. Ishtiaq. “SLAyer: Memory Safety for Systems-
Level Code”. In: Proc. of CAV’11. Vol. 6806. LNCS. Springer, 2011, 178–183.

[73] J. Berdine, T. Lev-Ami, R. Manevich, G. Ramalingam, and S. Sagiv. “Thread
Quantification forConcurrent ShapeAnalysis”. In:Proc. of CAV’08. Vol. 5123.
LNCS. Springer, 2008, pp. 399–413.

38 BIBLIOGRAPHY

[74] N. Bjørner, N. Tillmann, and A. Voronkov. “Path Feasibility Analysis for
String-Manipulating Programs”. In: Proc. of TACAS’09. Vol. 5505. LNCS.
Springer, 2009, pp. 307–321.

[75] J. Bodeveix and M. Filali. “FMona: A Tool for Expressing Validation Tech-
niques over Infinite State Systems”. In: Proc. of ETAPS’00. Vol. 1785. LNCS.
Springer, 2000, pp. 204–219.

[76] B. Boigelot, A. Legay, and P. Wolper. “Iterating Transducers in the Large
(Extended Abstract)”. In: Proc. of CAV’03. Vol. 2725. LNCS. Springer, 2003,
pp. 223–235.

[77] B. Boigelot and P. Wolper. “Representing Arithmetic Constraints with Finite
Automata: An Overview”. In: Proc. of ICLP’02. Vol. 2401. LNCS. Springer,
2002, pp. 1–19.

[78] F. Bonchi and D. Pous. “Checking NFA equivalence with bisimulations up
to congruence”. In: Proc. of POPL’13. ACM, 2013, pp. 457–468.

[79] E. Börklund, W. Martens, and T. Timm. “Efficient Incremental Evaluation of
Succinct Regular Expressions”. In: Proc. of CIKM’15. ACM. 2015.

[80] M. Botincan, M. Dodds, and S. Magill. “Refining Existential Properties in
Separation Logic Analyses”. In: CoRR abs/1504.08309 (2015). arXiv: 1504.
08309.

[81] A. Bouajjani, P. Habermehl, A. Rogalewicz, and T. Vojnar. “Abstract Regular
(Tree) Model Checking”. In: International Journal on Software Tools for Tech-
nology Transfer 14.2 (2012), pp. 167–191.

[82] A. Bouajjani, M. Bozga, P. Habermehl, R. Iosif, P. Moro, and T. Vojnar. “Pro-
gramswith Lists are Counter Automata”. In: FormalMethods in SystemDesign
38.2 (2011), pp. 158–192.

[83] A. Bouajjani, P.Habermehl, P.Moro, andT. Vojnar. “Verifying Programswith
Dynamic 1-Selector-Linked Structures in RegularModel Checking”. In: Proc.
of TACAS’05. Vol. 3440. LNCS. Springer, 2005, pp. 13–29.

[84] A. Bouajjani, P. Habermehl, A. Rogalewicz, and T. Vojnar. “Abstract regular
(tree) model checking”. In: Int. J. Softw. Tools Technol. Transf. 14.2 (2012),
pp. 167–191.

[85] A. Bouajjani, P. Habermehl, A. Rogalewicz, and T. Vojnar. “Abstract Regu-
lar Tree Model Checking”. In: Electr. Notes Theor. Comput. Sci. 149.1 (2006),
pp. 37–48.

[86] A. Bouajjani, P. Habermehl, A. Rogalewicz, and T. Vojnar. “Abstract Regular
Tree Model Checking of Complex Dynamic Data Structures”. In: Proc. of
SAS’06. Vol. 4134. LNCS. Springer, 2006, pp. 52–70.

[87] A. Bouajjani, P. Habermehl, and T. Vojnar. “Abstract Regular Model Check-
ing”. In: Proc. of CAV’04. Vol. 3114. LNCS. Springer, 2004, pp. 372–386.

[88] A. Bouajjani, B. Jonsson, M. Nilsson, and T. Touili. “Regular Model Check-
ing”. In: Proc. of CAV’00. Vol. 1855. LNCS. Springer, 2000, pp. 403–418.

[89] M. Bozga, R. Iosif, and J. Sifakis. “Structural Invariants for Parametric Verifi-
cation of SystemswithAlmost LinearArchitectures”. In:CoRR abs/1902.02696
(2019). arXiv: 1902.02696.

BIBLIOGRAPHY 39

[90] A. R. Bradley and Z. Manna. “Checking Safety by Inductive Generalization
of Counterexamples to Induction”. In: Proc. of FMCAD’07. IEEE Computer
Society, 2007, pp. 173–180.

[91] A. Brüggemann-Klein, M. Murata, and D. Wood. Regular Tree and Regular
Hedge Languages over Unranked Alphabets. Tech. rep. HKTUST-TCSC-2001-05.
HKTUST, 2001.

[92] J. A. Brzozowski and E. L. Leiss. “On Equations for Regular Languages,
Finite Automata, and Sequential Networks”. In:Theor. Comput. Sci. 10 (1980),
pp. 19–35.

[93] J. R. Büchi. “On a decision method in a restricted second order arithmetic”.
In: Proc. of CLMPS. Stanford Univ. Press, 1960, pp. 1–11.

[94] J. R. Büchi. “On a Decision Method in Restricted Second Order Arithmetic”.
In: The Collected Works of J. Richard Büchi. New York, NY: Springer New York,
1990, pp. 425–435.

[95] J. R. Büchi. “Weak Second-Order Arithmetic and Finite Automata”. In:Math-
ematical Logic Quarterly 6.1-6 (1960), pp. 66–92. eprint: https://onlinelib
rary.wiley.com/doi/pdf/10.1002/malq.19600060105.

[96] J. R. Büchi. “On a DecisionMethod in Restricted Second-Order Arithmetic”.
In: Proc. of International Congress on Logic, Methodology, and Philosophy of Sci-
ence. Stanford University Press, 1962, pp. 1–11.

[97] D. Bustan and O. Grumberg. “Simulation Based Minimization”. In: Proc. of
CADE’00. Vol. 1831. LNCS. Springer, 2000, pp. 255–270.

[98] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler. “EXE:
Automatically Generating Inputs of Death”. In: ACM Trans. Inf. Syst. Secur.
12.2 (2008), 10:1–10:38.

[99] C.Cadar, P.Godefroid, S. Khurshid, C. S. Pasareanu,K. Sen,N. Tillmann, and
W. Visser. “Symbolic execution for software testing in practice: preliminary
assessment”. In: Proc. of ICSE’2011. 2011, pp. 1066–1071.

[100] C. Calcagno, D. Distefano, P. W. O’Hearn, and H. Yang. “Compositional
Shape Analysis by Means of Bi-Abduction”. In: ACM Trans. Comput. Log. 58
(2011), 26:1–26:66.

[101] A. Caulfield et al. “A Cloud-Scale Acceleration Architecture”. In: Proc. of
MICRO’16. 2016.

[102] G. Cécé. “Foundation for a series of efficient simulation algorithms”. In:
Proc. of LICS’17. IEEE Computer Society, 2017, pp. 1–12.

[103] M. Ceska, V. Havlena, L. Holík, O. Lengál, and T. Vojnar. “Approximate
Reduction of FiniteAutomata forHigh-SpeedNetwork IntrusionDetection”.
In: Proc. of TACAS’18. Vol. 10806. LNCS. Springer, 2018, pp. 155–175.

[104] A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer. “Alternation”. In: J. ACM
28.1 (Jan. 1981), pp. 114–133.

[105] B. E. Chang, X. Rival, and G. C. Necula. “Shape Analysis with Structural
Invariant Checkers”. In: Proc. of SAS’07. Vol. 4634. LNCS. Springer, 2007,
pp. 384–401.

40 BIBLIOGRAPHY

[106] T. Chen, Y. Chen, M. Hague, A. W. Lin, and Z. Wu. “What is decidable about
string constraintswith theReplaceAll function”. In:PACMPL 2.POPL (2018),
3:1–3:29.

[107] T. Chen, M. Hague, A. W. Lin, P. Rümmer, and Z. Wu. “Decision procedures
for path feasibility of string-manipulating programs with complex opera-
tions”. In: PACMPL 3.POPL (2019), 49:1–49:30.

[108] Y. Chen, C. Hong, A. W. Lin, and P. Rümmer. “Learning to Prove Safety over
ParameterisedConcurrent Systems (Full Version)”. In:CoRR abs/1709.07139
(2017).

[109] W. Chin, C. David, H. H. Nguyen, and S. Qin. “Automated verification of
shape, size andbagproperties via user-definedpredicates in separation logic”.
In: Sci. Comput. Program. 77.9 (2012), pp. 1006–1036.

[110] C. R. Clark and D. E. Schimmel. “Efficient Reconfigurable Logic Circuits
for Matching Complex Network Intrusion Detection Patterns”. In: FPL’03.
Springer, 2003, pp. 956–959.

[111] E. M. Clarke, E. A. Emerson, and A. P. Sistla. “Automatic Verification of
Finite-State Concurrent Systems Using Temporal Logic Specifications”. In:
ACM Trans. Program. Lang. Syst. 8.2 (Apr. 1986), pp. 244–263.

[112] E. M. Clarke, O. Grumberg, and D. A. Peled. Model checking. London, Cam-
bridge: MIT Press, 1999.

[113] L. Clemente. “Büchi Automata Can Have Smaller Quotients”. In: Proc. of
ICALP’11. Vol. 6756. LNCS. Springer, 2011, pp. 258–270.

[114] L. Clemente and R. Mayr. “Advanced Automata Minimization”. In: Proc. of
POPL’13. ACM Trans. Comput. Log., 2013, pp. 63–74.

[115] L. Clemente and R. Mayr. “Efficient reduction of nondeterministic automata
with application to language inclusion testing”. In: Logical Methods in Com-
puter Science 15.1 (2019).

[116] H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez, S.
Tison, and M. Tommasi. Tree Automata Techniques and Applications. Available
on: http://www.grappa.univ-lille3.fr/tata. release October, 12th 2007.
2007.

[117] W. contributors. Regular expression—Wikipedia. 2019.
[118] B. Courcelle and J. Engelfriet. Graph Structure andMonadic Second-Order Logic:

A Language-Theoretic Approach. 1st. Cambridge University Press, 2012.
[119] A. Cox and J. Leasure. “Model Checking Regular Language Constraints”.

In: CoRR abs/1708.09073 (2017).
[120] K. Culik and J. Kari. “Image compression using weighted finite automata”.

In: Computers & Mathematics with Applications 17.3 (1993), pp. 305–313.
[121] L. D’Antoni, Z. Kincaid, and F. Wang. “A Symbolic Decision Procedure for

Symbolic Alternating Finite Automata”. In: CoRR abs/1610.01722 (2016).
[122] L. D’Antoni and M. Veanes. “Static Analysis of String Encoders and De-

coders”. In: Proc. of VMCAI’13. Vol. 7737. LNCS. Springer, 2013, 209–228.
[123] D. Dams, Y. Lakhnech, and M. Steffen. “Iterating transducers”. In: J. Log.

Algebr. Program. 52-53 (2002), pp. 109–127.

BIBLIOGRAPHY 41

[124] J. C. Davis. “Rethinking Regex Engines to Address ReDoS”. In: Proc. of
ESEC/FSE’19. ESEC/FSE 2019. Tallinn, Estonia: ACM, 2019, pp. 1256–1258.

[125] J. C. Davis, C. A. Coghlan, F. Servant, and D. Lee. “The Impact of Regular
Expression Denial of Service (ReDoS) in Practice: An Empirical Study at the
Ecosystem Scale”. In: Proc. of ESEC/FSE’18. ESEC/FSE 2018. Lake Buena
Vista, FL, USA: ACM, 2018, pp. 246–256.

[126] L. De Moura and N. Bjørner. “Satisfiability modulo theories: introduction
and applications”. In: Commun. ACM 54.9 (2011), pp. 69–77.

[127] J. Desharnais, F. Laviolette, andM. Tracol. “Approximate Analysis of Proba-
bilistic Processes: Logic, Simulation and Games”. In: Proc. of QEST’08. Sept.
2008, pp. 264–273.

[128] J. Deshmukh, E. Emerson, and P. Gupta. “Automatic Verification of Parame-
terized Data Structures”. In: TACAS’06. Vol. 3920. LNCS. Springer, 2006.

[129] V. Diekert. “Makanin’s Algorithm”. In: Algebraic Combinatorics on Words.
Vol. 90. Encyclopedia of Mathematics and its Applications. Cambridge Uni-
versity Press, 2002. Chap. 12, pp. 387–442.

[130] S. Doherty, L. Groves, V. Luchangco, and M. Moir. “Formal Verification of
a Practical Lock-Free Queue Algorithm”. In: Proc. of FORTE’04. Vol. 3235.
LNCS. Springer, 2004, pp. 97–114.

[131] L. Doyen and J.-F. Raskin. “Antichain Algorithms for Finite Automata”. In:
Proc. of TACAS’10. Vol. 6015. LNCS. Springer, 2010, pp. 2–22.

[132] K.Dudka, P. Peringer, and T. Vojnar. “Predator: A Practical Tool for Checking
Manipulation of Dynamic Data Structures Using Separation Logic”. In: Proc.
of CAV’11. Vol. 6806. LNCS. Springer, 2011, pp. 372–378.

[133] J. Elgaard, N. Klarlund, and A. Møller. “MONA 1.x: new techniques for
WS1S andWS2S”. In: Proc. of CAV’98. Vol. 1427. LNCS. BRICS, Department
of Computer Science, Aarhus University. Springer, 1998, pp. 516–520.

[134] C. C. Elgot. “Decision Problems of Finite Automata Design and Related
Arithmetics”. In: Transactions of the AmericanMathematical Society 98.1 (1961),
pp. 21–51.

[135] T. Elmas, S. Qadeer, A. Sezgin, O. Subasi, and S. Tasiran. “Simplifying Lin-
earizability Proofs with Reduction and Abstraction”. In: Proc. of TACAS’10.
Vol. 6015. LNCS. Springer, 2010, pp. 296–311.

[136] T. Elmas, S. Qadeer, and S. Tasiran. “A calculus of atomic actions”. In: Proc.
of POPL’09. ACM, 2009, pp. 2–15.

[137] E. A. Emerson and E. M. Clarke. “Characterizing correctness properties of
parallel programsusing fixpoints”. In:Automata, Languages and Programming.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1980, pp. 169–181.

[138] S. Exchange. Outage Postmortem. 2016.
[139] C. Flanagan and S. Qadeer. “Thread-Modular Model Checking”. In: Proc. of

SPIN’03. Vol. 2648. LNCS. Springer, 2003, pp. 213–224.
[140] S. Fogarty andM. Y. Vardi. “Efficient Büchi Universality Checking”. In: Proc.

of TACAS’10. Vol. 6015. LNCS. Springer, 2010, pp. 205–220.

42 BIBLIOGRAPHY

[141] X. Fu and C. Li. “Modeling Regular Replacement for String Constraint Solv-
ing”. In: Proc. of NFM’10. Vol. NASA/CP-2010-216215. NASA. 2010, 67–76.

[142] X. Fu,M.C. Powell,M. Bantegui, andC. Li. “Simple linear string constraints”.
In: Formal Asp. Comput. 25.6 (2013), pp. 847–891.

[143] V. Ganesh,M.Minnes, A. Solar-Lezama, andM. C. Rinard. “Word Equations
with Length Constraints: What’s Decidable?” In: Proc. of HVC’12. Vol. 7857.
LNCS. Springer, 2012, pp. 209–226.

[144] G. Gange, J. A. Navas, P. J. Stuckey, H. Søndergaard, and P. Schachte. “Un-
bounded Model-Checking with Interpolation for Regular Language Con-
straints”. In: Proc. of TACAS’13. Vol. 7795. LNCS. Springer, 2013, 277–291.

[145] P. Ganty, N. Maquet, and J. Raskin. “Fixed point guided abstraction re-
finement for alternating automata”. In: Theor. Comput. Sci. 411.38-39 (2010),
pp. 3444–3459.

[146] P. Ganty, J. Raskin, and L. V. Begin. “A Complete Abstract Interpretation
Framework for Coverability Properties of WSTS”. In: Proc. of VMCAI 2006.
Vol. 3855. LNCS. Springer, 2006, pp. 49–64.

[147] J. Glenn and W. Gasarch. “Implementing WS1S via Finite Automata”. In:
Proc. of Workshop on Implementing Automata. Vol. 1260. LNCS. Springer, 1996,
pp. 50–63.

[148] GNU. grep. https://www.gnu.org/software/grep/.
[149] P. Godefroid, N. Klarlund, and K. Sen. “DART: directed automated random

testing”. In: Proc. of PLDI’05. 2005, pp. 213–223.
[150] Google. RE2. https://github.com/google/re2.
[151] A. Gotsman, J. Berdine, B. Cook, andM. Sagiv. “Thread-modular shape anal-

ysis”. In: Proc. of PLDI’07. ACM, 2007, pp. 266–277.
[152] J. Graham-Cumming. Details of the Cloudflare outage on July 2, 2019. 2019.
[153] B. Guo, N. Vachharajani, and D. I. August. “Shape Analysis with Inductive

Recursion Synthesis”. In: SIGPLAN Not. 42.6 (June 2007), pp. 256–265.
[154] C. Gutiérrez. “Solving Equations in Strings: On Makanin’s Algorithm”. In:

Proc. of LATIN. 1998, pp. 358–373.
[155] J. Y. Halpern and V. Weissman. “Using First-Order Logic to Reason about

Policies”. In: ACM Trans. Comput. Log. 11.4 (2008), 21:1–21:41.
[156] J. Hamza, B. Jobstmann, and V. Kuncak. “Synthesis for regular specifications

over unbounded domains”. In: Proc. of FMCAD’10. IEEE Computer Society,
2010, pp. 101–109.

[157] J. Heinen, T. Noll, and S. Rieger. “Juggrnaut: Graph Grammar Abstraction
for Unbounded Heap Structures”. In: Electr. Notes Theor. Comput. Sci. 266
(2010), pp. 93–107.

[158] M. Heizmann, J. Hoenicke, and A. Podelski. “Software Model Checking for
PeopleWho Love Automata”. In: Proc. of CAV’13. Vol. 8044. LNCS. Springer,
2013, pp. 36–52.

[159] J. G. Henriksen, J. L. Jensen, M. E. Jørgensen, N. Klarlund, R. Paige, T. Rauhe,
and A. Sandholm. “Mona: Monadic Second-Order Logic in Practice”. In:
Proc. of TACAS ’95. Vol. 1019. LNCS. Springer, 1995, pp. 89–110.

BIBLIOGRAPHY 43

[160] J. G. Henriksen, M. Mukund, K. N. Kumar, and P. S. Thiagarajan. “On Mes-
sage Sequence Graphs and Finitely Generated RegularMSC Languages”. In:
Proc. of ICALP’00. Vol. 1853. LNCS. Springer, 2000, pp. 675–686.

[161] J. G. Henriksen, M. Mukund, K. N. Kumar, and P. S. Thiagarajan. “Regular
Collections of Message Sequence Charts”. In: Proc. of MFCS’00. Vol. 1893.
LNCS. Springer, 2000, pp. 405–414.

[162] M. R.Henzinger, T. A.Henzinger, andP.W.Kopke. “Computing Simulations
on Finite and Infinite Graphs”. In: Proc. of FOCS’95. Washington, DC, USA:
IEEE, 1995, pp. 453–462.

[163] K. Hoder and N. Bjørner. “Generalized Property Directed Reachability”. In:
Proc. of SAT’12. Vol. 7317. LNCS. Springer, 2012, pp. 157–171.

[164] J. Högberg, A. Maletti, and J. May. “Backward and Forward Bisimulation
Minimisation of Tree Automata”. In: Proc. of CIAA’07. Vol. 4783. LNCS.
Springer, 2007, pp. 109–121.

[165] P. Hooimeijer, B. Livshits, D. Molnar, P. Saxena, and M. Veanes. “Fast and
Precise Sanitizer Analysis with BEK”. In: Proc. of USENIX’11. USENIX As-
sociation, 2011.

[166] P. Hooimeijer and W. Weimer. “StrSolve: Solving string constraints lazily”.
In: Autom. Softw. Eng. 19.4 (2012), pp. 531–559.

[167] H.Hosoya, J. Vouillon, and B. C. Pierce. “Regular expression types for XML”.
In: ACM Trans. Program. Lang. Syst. 27.1 (2005), pp. 46–90.

[168] D. Hovland. “Regular Expressions with Numerical Constraints and Auto-
mata with Counters”. In: Proc. of ICTAC. Vol. 5684. LNCS. Springer, 2009,
pp. 231–245.

[169] T. Hune and A. Sandholm. “A Case Study on Using Automata in Control
Synthesis”. In: Proc. of FASE’00. Vol. 1783. LNCS. Springer, 2000, 349–362.

[170] “IEEE Standard for Ethernet - Amendment 10:Media Access Control Param-
eters, Physical Layers, and Management Parameters for 200 Gb/s and 400
Gb/s Operation”. In: IEEE Std 802.3bs-2017 (2017), pp. 1–372.

[171] L. Ilie and S. Yu. “Follow automata”. In: Information and Computation 186.1
(2003), pp. 146–162.

[172] R. Iosif, A. Rogalewicz, and J. Šimáček. “The TreeWidth of Separation Logic
with RecursiveDefinitions”. In: Proc. of CADE’13. Vol. 7898. LNCS. Springer,
2013, pp. 21–38.

[173] R. Iosif, A. Rogalewicz, and T. Vojnar. “Deciding Entailments in Inductive
Separation Logicwith TreeAutomata”. In:Proc. of ATVA’14. Vol. 8837. LNCS.
Springer, 2014, pp. 201–218.

[174] A. Jez. “Recompression: A Simple and Powerful Technique for Word Equa-
tions”. In: J. ACM 63.1 (2016), 4:1–4:51.

[175] C. B. Jones. “Tentative Steps Toward a Development Method for Interfering
Programs”. In: ACM Trans. Program. Lang. Syst. 5.4 (1983), pp. 596–619.

[176] B. Jonsson. “Using refinement calculus techniques to prove linearizability”.
In: Formal Asp. Comput. 24.4-6 (2012), pp. 537–554.

44 BIBLIOGRAPHY

[177] B. Jonsson and M. Nilsson. “Transitive Closures of Regular Relations for
Verifying Infinite-State Systems”. In: Proc. of TACAS’00. Vol. 1785. LNCS.
Springer, 2000, pp. 220–234.

[178] A. Kaiser, D. Kroening, and T. Wahl. “Efficient Coverability Analysis by
Proof Minimization”. In: Proc. of CONCUR 2012. Vol. 7454. LNCS. Springer,
2012, pp. 500–515.

[179] J. Katelaan, C. Matheja, and F. Zuleger. “Effective Entailment Checking for
Separation Logic with Inductive Definitions”. In: Proceedings of TACAS’19.
Vol. 11428. LNCS. Springer, 2019, pp. 319–336.

[180] S. Kausler and E. Sherman. “Evaluation of String Constraint Solvers in the
Context of Symbolic Execution”. In: Proc. of ASE’14. ASE ’14. Vasteras,
Sweden: ACM, 2014, pp. 259–270.

[181] Y. Kesten, O. Maler, M. Marcus, A. Pnueli, and E. Shahar. “Symbolic model
checking with rich assertional languages”. In: Theor. Comput. Sci. 256.1-2
(2001), pp. 93–112.

[182] A. Kiezun, V. Ganesh, S. Artzi, P. J. Guo, P. Hooimeijer, and M. D. Ernst.
“HAMPI: A solver for word equations over strings, regular expressions, and
context-free grammars”. In:ACMTrans. Comput. Log. 21.4 (2012), 25:1–25:28.

[183] P. Kilpeläinen and R. Tuhkanen. “One-unambiguity of regular expressions
with numeric occurrence indicators”. In: Information and Computation 205.6
(2007), pp. 890–916.

[184] N. Klarlund, M. Nielsen, and K. Sunesen. “A Case Study in Automated Ver-
ification Based on Trace Abstractions”. In: Formal System Specification, The
RPC-Memory Specification Case Study. Vol. 1169. LNCS. Springer Verlag,
1996.

[185] N. Klarlund and A. Møller. MONA Version 1.4 User Manual. Notes Series
NS-01-1. Available from http://www.brics.dk/mona/. Revision of BRICS
NS-98-3. BRICS, Department of Computer Science, Aarhus University. Jan.
2001.

[186] J. Kloos, R. Majumdar, F. Niksic, and R. Piskac. “Incremental, Inductive Cov-
erability”. In: Proc. of CAV 2013. Vol. 8044. LNCS. Springer, 2013, 158–173.

[187] D. Kozen. Automata and computability. UTiCS. Springer, 1997.
[188] D. Kuske. “A Further Step towards a Theory of Regular MSC Languages”.

In: Proc. of STACS’02. Vol. 2285. LNCS. Springer, 2002, pp. 489–500.
[189] Q. L. Le, C. Gherghina, S. Qin, and W. Chin. “Shape Analysis via Second-

Order Bi-Abduction”. In: Proc. of CAV’14. Vol. 8559. LNCS. Springer, 2014,
pp. 52–68.

[190] O. Lee, H. Yang, andR. Petersen. “ProgramAnalysis forOverlaidData Struc-
tures”. In: Proc. of CAV’11. Vol. 6806. LNCS. Springer, 2011, pp. 592–608.

[191] T. Liang, A. Reynolds, C. Tinelli, C. Barrett, and M. Deters. “A DPLL(T)
Theory Solver for a Theory of Strings and Regular Expressions”. In: Proc. of
CAV’14. Vol. 8559. LNCS. Springer, 2014, pp. 646–662.

[192] T. Liang, A. Reynolds, N. Tsiskaridze, C. Tinelli, C. Barrett, and M. Deters.
“An efficient SMT solver for string constraints”. In: Formal Methods in System
Design 48.3 (2016), pp. 206–234.

BIBLIOGRAPHY 45

[193] T. Liang, N. Tsiskaridze, A. Reynolds, C. Tinelli, and C. Barrett. “A Deci-
sion Procedure for Regular Membership and Length Constraints over Un-
bounded Strings”. In: Proc. of FroCoS’15. Vol. 9322. LNCS. Springer, 2015,
pp. 135–150.

[194] A. W. Lin and P. Barceló. “String solving with word equations and transduc-
ers: Towards a logic for analysing mutation XSS”. In: Proc. of POPL’16. ACM
Trans. Comput. Log., 2016, pp. 123–136.

[195] C. Lin, C. Huang, C. Jiang, and S. Chang. “Optimization of PatternMatching
Circuits for Regular Expression on FPGA”. In: IEEE Trans. VLSI Syst. 15.12
(2007), pp. 1303–1310.

[196] A. Loginov, T. Reps, and M. Sagiv. “Abstraction Refinement via Inductive
Learning”. In: Proc. of CAV’05. Vol. 3576. LNCS. Springer, 2005, pp. 519–533.

[197] B. Loring, D. Mitchell, and J. Kinder. “ExpoSE: Practical Symbolic Execution
of Standalone JavaScript”. In: Proc. of SPIN. 2017.

[198] M. Roesch et al. Snort: A Network Intrusion Detection and Prevention System.
http://www.snort.org. Cisco and/or its affiliates.

[199] P. Madhusudan, G. Parlato, and X. Qiu. “Decidable Logics Combining Heap
Structures and Data”. In: SIGPLAN Not. 46.1 (Jan. 2011), pp. 611–622.

[200] P. Madhusudan, G. Parlato, and X. Qiu. “Decidable logics combining heap
structures and data”. In: Proc. of POPL’11. ACM Trans. Comput. Log., 2011,
pp. 611–622.

[201] P. Madhusudan and X. Qiu. “Efficient Decision Procedures for Heaps Using
STRAND”. In: Proc. of SAS’11. Vol. 6887. LNCS. Springer, 2011, pp. 43–59.

[202] S. Magill, M.-H. Tsai, P. Lee, and Y.-K. Tsay. “Automatic Numeric Abstrac-
tions for Heap-manipulating Programs”. In: Proc. of POPL’10. ACM, 2010,
pp. 211–222.

[203] G. S.Makanin. “The problemof solvability of equations in a free semigroup”.
In: Sbornik: Mathematics 32.2 (1977), pp. 129–198.

[204] V. Malík, M. Hruska, P. Schrammel, and T. Vojnar. “Template-Based Verifi-
cation of Heap-Manipulating Programs”. In: Proc. of FMCAD’18. IEEE, 2018,
pp. 1–9.

[205] A. Malkis, A. Podelski, and A. Rybalchenko. “Thread-Modular Verification
Is Cartesian Abstract Interpretation”. In: Proc. of ICTAC’06. Vol. 4281. LNCS.
Springer, 2006, pp. 183–197.

[206] C. Matheja, C. Jansen, and T. Noll. “Tree-Like Grammars and Separation
Logic”. In: Proc. of APLAS’15. Vol. 9458. LNCS. Springer, 2015, pp. 90–108.

[207] D.Matousek, J. Korenek, andV. Pus. “High-speedRegular ExpressionMatch-
ing with Pipelined Automata”. In: Proc. of FPT’16. IEEE, 2016, pp. 93–100.

[208] Matt Jonkman et al. Suricata. Emerging Threats, 2017.
[209] R. Mayr and L. Clemente. “Advanced automata minimization”. In: Proc. of

POPL 2013. ACM, 2013, pp. 63–74.
[210] R. Meyer and S. Wolff. “Pointer life cycle types for lock-free data structures

with memory reclamation”. In: PACMPL 4.POPL (2020), 68:1–68:36.

46 BIBLIOGRAPHY

[211] M. M. Michael and M. L. Scott. “Simple, Fast, and Practical Non-Blocking
and Blocking Concurrent Queue Algorithms”. In: Proc. of PODC’96. ACM,
1996, pp. 267–275.

[212] A. Møller and M. I. Schwartzbach. “The Design Space of Type Checkers for
XML Transformation Languages”. In: Proc. of ICDT’05. 2005, pp. 17–36.

[213] A. Møller and M. I. Schwartzbach. “The Pointer Assertion Logic Engine”.
In: Proc. of PLDI’01. ACM Trans. Comput. Log., 2001, pp. 221–231.

[214] F. Morawietz and T. Cornell. “The Logic-Automaton Connection in Linguis-
tics”. In: Proc. of LACL’97. Vol. 1582. LNAI. Springer Verlag, 1997.

[215] H. H. Nguyen, C. David, S. Qin, andW.-N. Chin. “Automated Verification of
Shape and Size Properties Via Separation Logic”. In: VMCAI’07. Vol. 4349.
LNCS. Springer, 2007, pp. 251–266.

[216] OWASP. https : / / www . owasp . org / images / f / f8 / OWASP _ Top _ 10_ -
_2013.pdf. 2013.

[217] R. Paige and R. E. Tarjan. “Three Partition Refinement Algorithms”. In:
SIAM J. Comput. 16.6 (1987), pp. 973–989.

[218] W. Plandowski. “An efficient algorithm for solving word equations”. In:
Proc. of STOC. 2006, pp. 467–476.

[219] W. Plandowski. “Satisfiability ofword equationswith constants is in PSPACE”.
In: J. ACM 51.3 (2004), pp. 483–496.

[220] A. Pnueli. “The Temporal Logic of Programs”. In: Proc. of FOCS’77. IEEE
Computer Society, 1977, pp. 46–57.

[221] A. Pnueli and R. Rosner. “On the Synthesis of a Reactive Module”. In: Proc.
of POPL’89. ACM Press, 1989, pp. 179–190.

[222] A. Podelski andT.Wies. “Counterexample-Guided Focus”. In:Proc. of POPL’10.
ACM, 2010, pp. 249–260.

[223] C. Popeea, A. Rybalchenko, and A. Wilhelm. “Reduction for compositional
verification ofmulti-threaded programs”. In: Proc. of FMCAD’14. IEEE, 2014,
pp. 187–194.

[224] A. Putnam et al. “A Reconfigurable Fabric for Accelerating Large-Scale Dat-
acenter Services”. In: Proc. of ISCA’14. IEEE Press, 2014, pp. 13–24.

[225] J. P. Queille and J. Sifakis. “Specification and verification of concurrent sys-
tems in CESAR”. In: International Symposium on Programming. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 1982, pp. 337–351.

[226] M.O. Rabin. “Decidability of second-order theories and automata on infinite
trees”. In: Bull. Amer. Math. Soc. 74.5 (Sept. 1968), pp. 1025–1029.

[227] M. O. Rabin. Automata on Infinite Objects and Church’s Problem. USA: Ameri-
can Mathematical Society, 1972.

[228] F. Ranzato and F. Tapparo. “An efficient simulation algorithm based on ab-
stract interpretation”. In: Information and Computation 208 (2010), pp. 1–22.

[229] G. Redelinghuys, W. Visser, and J. Geldenhuys. “Symbolic execution of pro-
grams with strings”. In: Proc. of SAICSIT. 2012, pp. 139–148.

BIBLIOGRAPHY 47

[230] RegExLib.com. The Internet’s first Regular Expression Library, http://regexl
ib.com/.

[231] J. C. Reynolds. “Separation logic: a logic for sharedmutable data structures”.
In: Proc. of LICS’02. July 2002, pp. 55–74.

[232] Robin Sommer et al. The Bro Network SecurityMonitor. http://www.bro.org.
[233] P. da Rocha Pinto, T. Dinsdale-Young, and P. Gardner. “TaDA: A Logic for

Time and Data Abstraction”. In: Proc. of ECOOP’14. Vol. 8586. LNCS. Sprin-
ger, 2014, pp. 207–231.

[234] M. Sagiv, T. Reps, and R. Wilhelm. “Parametric Shape Analysis via 3-valued
Logic”. In: ACM Transactions on Programming Languages and Systems 24.3
(2002), pp. 217–298.

[235] A. Sandholm and M. I. Schwartzbach. “Distributed Safety Controllers for
Web Services”. In: Proc. of FASE’98. Springer, 1998, pp. 270–284.

[236] P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant, and D. Song. “A
Symbolic Execution Framework for JavaScript”. In: Proc. of S&P’10. IEEE
Computer Society, 2010, pp. 513–528.

[237] G. Schellhorn, J. Derrick, and H. Wehrheim. “A Sound and Complete Proof
Technique for Linearizability of Concurrent Data Structures”. In:ACMTrans.
Comput. Log. 15.4 (2014), 31:1–31:37.

[238] D. Seese. “The Structure ofModels ofDecidableMonadic Theories ofGraphs”.
In: Ann. Pure Appl. Logic 53.2 (1991), pp. 169–195.

[239] M. Segalov, T. Lev-Ami, R. Manevich, G. Ramalingam, and M. Sagiv. “Ab-
stract Transformers for Thread Correlation Analysis”. In: Proc. of APLAS’09.
Vol. 5904. LNCS. Springer, 2009, pp. 30–46.

[240] K. Sen, S. Kalasapur, T. G. Brutch, and S. Gibbs. “Jalangi: a selective record-
replay and dynamic analysis framework for JavaScript”. In: Proceedings of
ESEC/FSE’13. 2013, pp. 488–498.

[241] R. Sidhu and V. K. Prasanna. “Fast Regular Expression Matching Using FP-
GAs”. In: Proc. of FCCM’01. IEEE Computer Society, 2001, pp. 227–238.

[242] M. Sipser. Introduction to Theory of Computation. Vol. 2. Thomson Course
Technology Boston, 2006.

[243] A. P. Sistla, M. Y. Vardi, and P. Wolper. “The Complementation Problem for
Büchi AutomatawithApplications to Temporal Logic (ExtendedAbstract)”.
In: Proc. of ICALP’85. Vol. 194. LNCS. Springer, 1985, pp. 465–474.

[244] M. A. Smith and N. Klarlund. “Verification of a Sliding Window Protocol
Using IOA andMONA”. In: Proc. of FORTE/PSTV’00. Vol. 183. IFIP. Kluwer,
2000, pp. 19–34.

[245] R. Smith, C. Estan, S. Jha, and I. Siahaan. “Fast Signature Matching Using
Extended Finite Automaton (XFA)”. In: Proc. of ICISS’08. Vol. 5352. LNCS.
Springer, 2008, pp. 158–172.

[246] I. Sourdis, J. Bispo, J. M. P. Cardoso, and S. Vassiliadis. “Regular Expres-
sion Matching in Reconfigurable Hardware”. In: Journal of Signal Processing
Systems 51.1 (2008), pp. 99–121.

48 BIBLIOGRAPHY

[247] H. Spencer. “Software Solutions in C”. In: San Diego, CA, USA: Academic
Press Professional, Inc., 1994. Chap. A Regular-expression Matcher, 35–71.

[248] M. Sperberg-McQueen. Notes on finite state automata with counters. https:
//www.w3.org/XML/2004/05/msm-cfa.html. Accessed: 2018-08-08.

[249] T. Strazny. “An algorithmic framework for checking coverability in well-
structured transition systems”. PhD thesis. Universität Oldenburg, 2014.

[250] H. Subramanian and P. Shankar. “Compressing XML Documents Using Re-
cursive Finite State Automata”. In: Proc. of CIAA’05. 2005, pp. 282–293.

[251] M. Takahashi. “Generalizations of Regular Sets and Their Application to a
Study of Context-Free Languages”. In: Inf. Comput. 27.1 (1975), pp. 1–36.

[252] T. Tateishi, M. Pistoia, and O. Tripp. “Path- and index-sensitive string analy-
sis based on monadic second-order logic”. In: ACM Trans. Comput. Log. 22.4
(2013), 33:1–33:33.

[253] J. W. Thatcher. “Characterizing Derivation Trees of Context-Free Grammars
through a Generalization of Finite Automata Theory”. In: J. Comput. Syst.
Sci. 1.4 (1967), pp. 317–322.

[254] J. W. Thatcher and J. B. Wright. “Generalized Finite Automata Theory with
an Application to a Decision Problem of Second-Order Logic”. In:Mathemat-
ical Systems Theory 2.1 (1968), pp. 57–81.

[255] W. Thomas. “Languages, Automata, and Logic”. In:Handbook of Formal Lan-
guages: Volume 3 Beyond Words. Springer, 1997, pp. 389–455.

[256] K. Thompson. “Programming Techniques: Regular Expression Search Algo-
rithm”. In: Commun. ACM 11.6 (June 1968), pp. 419–422.

[257] T. Touili. “Regular Model Checking using Widening Techniques”. In: Electr.
Notes Theor. Comput. Sci. 50.4 (2001), pp. 342–356.

[258] R. K. Treiber. Systems programming: Coping with parallelism. International
Business Machines Incorporated, Thomas J. Watson Research . . ., 1986.

[259] M. Trinh, D. Chu, and J. Jaffar. “Progressive Reasoning over Recursively-
Defined Strings”. In: Proc. of CAV’16. Vol. 9779. LNCS. Springer, 2016,
pp. 218–240.

[260] M. Trinh,D. Chu, and J. Jaffar. “S3:A Symbolic String Solver forVulnerability
Detection inWeb Applications”. In: Proc. of CCS. ACM Trans. Comput. Log.,
2014, pp. 1232–1243.

[261] V. Vafeiadis. “RGSep Action Inference”. In: Proc. of VMCAI’10. Vol. 5944.
LNCS. Springer, 2010.

[262] V. Vafeiadis. “RGSep Action Inference”. In: Proc. of VMCAI’10. Vol. 5944.
LNCS. Springer, 2010, pp. 345–361.

[263] V. Vafeiadis. “Shape-Value Abstraction for Verifying Linearizability”. In:
Proc. of VMCAI’09. Vol. 5403. LNCS. Springer, 2009, pp. 335–348.

[264] V. Vafeiadis and M. J. Parkinson. “A Marriage of Rely/Guarantee and Sep-
aration Logic”. In: Proc. of CONCUR ’07. Vol. 4703. LNCS. Springer, 2007,
pp. 256–271.

BIBLIOGRAPHY 49

[265] M. Vallentin, R. Sommer, J. Lee, C. Leres, V. Paxson, and B. Tierney. “The
NIDSCluster: Scalable, StatefulNetwork IntrusionDetection onCommodity
Hardware”. In: Proc. of RAID’07. Springer, 2007, pp. 107–126.

[266] A. Valmari. “Simple BisimilarityMinimization inO(m log n) Time”. In: Fun-
dam. In shape. 105.3 (2010), pp. 319–339.

[267] M. Y. Vardi. “An automata-theoretic approach to linear temporal logic”. In:
Logics for Concurrency: Structure versus Automata. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1996, pp. 238–266.

[268] M. Veanes, P. Hooimeijer, B. Livshits, D. Molnar, and N. Bjørner. “Symbolic
finite state transducers: Algorithms and applications”. In: Proc. of POPL’12.
ACM Trans. Comput. Log., 2012, pp. 137–150.

[269] M. Veanes, O. Saarikivi, E. Xu, and T. Wan. “Symbolic Regex Matcher”. In:
Proc. of TACAS. 2019.

[270] H. Wang, T. Tsai, C. Lin, F. Yu, and J. R. Jiang. “String Analysis via Auto-
mata Manipulation with Logic Circuit Representation”. In: Proc. of CAV’16.
Vol. 9779. LNCS. Springer, 2016, pp. 241–260.

[271] G.Wassermann, D. Yu, A. Chander, D. Dhurjati, H. Inamura, and Z. Su. “Dy-
namic test input generation forweb applications”. In: Proc. of ISSTA’08. ACM
Trans. Comput. Log., 2008, pp. 249–260.

[272] A. D. Weinert. “Inferring Heap Abstraction Grammars”. BSc thesis. RWTH
Aachen, 2012.

[273] T. Wies, M. Muñiz, and V. Kuncak. “An Efficient Decision Procedure for
Imperative Tree Data Structures”. In: Proc. of CADE’11. Vol. 6803. LNCS.
Springer, 2011, pp. 476–491.

[274] P. Wolper. “Expressing Interesting Properties of Programs in Propositional
Temporal Logic”. In: Proc. of POPL’86. ACM Press, 1986, pp. 184–193.

[275] P. Wolper. “On the Use of Automata for Deciding Linear Arithmetic”. In:
Proc. of TABLEAUX’09. Vol. 5607. LNCS. Springer, 2009, p. 16.

[276] M. D. Wulf, L. Doyen, and J.-F. Raskin. “A Lattice Theory for Solving Games
of Imperfect Information”. In: Proc. of HSCC’06. Vol. 3927. LNCS. Springer
Verlag, 2006.

[277] M. D.Wulf, L. Doyen, T. A. Henzinger, and J. Raskin. “Antichains: ANewAl-
gorithm for Checking Universality of Finite Automata”. In: Proc. of CAV’06.
Vol. 4144. LNCS. Springer, 2006, pp. 17–30.

[278] H. Yang, O. Lee, J. Berdine, C. Calcagno, B. Cook, D. Distefano, and P. W.
O’Hearn. “Scalable Shape Analysis for Systems Code”. In: Proc. of CAV’08.
Vol. 5123. LNCS. Springer, 2008, pp. 385–398.

[279] F. Yu, M. Alkhalaf, and T. Bultan. “Stranger: An Automata-Based String
Analysis Tool for PHP”. In: Proc. of TACAS’10. Vol. 6015. LNCS. Sprin-
ger, 2010, pp. 154–157.

[280] F. Yu, M. Alkhalaf, T. Bultan, and O. H. Ibarra. “Automata-based symbolic
string analysis for vulnerability detection”. In: Formal Methods in System De-
sign 44.1 (2014), pp. 44–70.

50 BIBLIOGRAPHY

[281] F. Yu, T. Bultan, andO.H. Ibarra. “Relational String VerificationUsingMulti-
Track Automata”. In: Int. J. Found. Comput. Sci. 22.8 (2011), pp. 1909–1924.

[282] F. Yu, T. Bultan, and O. H. Ibarra. “Symbolic String Verification: Combining
String Analysis and Size Analysis”. In: Proc. of TACAS’09. Vol. 5505. LNCS.
Springer, 2009, pp. 322–336.

[283] S. Yun and K. Lee. “Optimization of Regular Expression Pattern Matching
Circuit Using At-Most Two-Hot Encoding on FPGA”. In: Proc. of FPL’10.
2010.

[284] K. Zee, V. Kuncak, and M. C. Rinard. “Full functional verification of linked
data structures”. In: Proc. of PLDI’08. ACM, 2008, pp. 349–361.

[285] S. J. Zhang and Y. Liu. “Model Checking a Lazy Concurrent List-Based Set
Algorithm”. In: Proc. of SSIRI’10. IEEE Computer Society, 2010, pp. 43–52.

[286] Y. Zheng, X. Zhang, and V. Ganesh. “Z3-str: A Z3-based string solver for web
application analysis”. In: Proc. of ESEC/FSE’13. ACM Trans. Comput. Log.,
2013, pp. 114–124.

[287] M. Zhou, F. He, B. Wang, M. Gu, and J. Sun. “Array Theory of Bounded
Elements and its Applications”. In: J. Autom. Reasoning 52.4 (2014), 379–405.

Appendix A

Selected Papers

For each section of this thesis discussing a particular research direction, we
have selected one or two representative papers to be attached to the thesis.
The selection is based on the overall importance in the repsective line of re-
search. In the case of Sections 2.2, 2.3, and 2.4, the selection was adjusted in
order to avoid an intersection with the author’s dissertation [9]. The follow-
ing papers were selected:

[8] R. Almeida, L. Holík, and R. Mayr. “Reduction of Nondeterministic Tree
Automata”. In: Proc. of TACAS’16. Vol. 9636. LNCS. Springer, 2016, 717–735.

[15] L. Holík, O. Lengál, J. Šimáček, and T. Vojnar. “Efficient Inclusion Check-
ing on Explicit and Semi-symbolic Tree Automata”. In: Proc. of ATVA’11.
Vol. 6996. LNCS. Springer Berlin Heidelberg, 2011, pp. 243–258.

[18] L. Holík, P. Janků, A. W. Lin, P. Rümmer, and T. Vojnar. “String constraints
with concatenation and transducers solved efficiently”. In: PACMPL 2.POPL
(2018), 4:1–4:32.

[20] L. Turoňová, L.Holík, O. Lengál, O. Saarikivi,M.Veanes, andT. Vojnar. Regex
Matching with Counting-Set Automata. accepted at OOPSLA’20. 2020.

[29] P. Habermehl, L. Holík, A. Rogalewicz, J. Šimáček, and T. Vojnar. “Forest Au-
tomata for Verification of Heap Manipulation”. In: Formal Methods in System
Design 1 (2012), pp. 83–106.

[40] P. Abdulla, M. Atig, Y.-F. Chen, L. Holík, A. Rezine, P. Rümmer, and J. Sten-
man. “String Constraints for Verification”. English. In: Proc. of CAV’14.
Vol. 8559. LNCS. Springer International Publishing, 2014, pp. 150–166.

[42] P. A. Abdulla, F. Haziza, and L. Holík. “All for the Price of Few”. In: Proc. of
VMCAI’13. Vol. 7737. LNCS. Springer Berlin Heidelberg, 2013, pp. 476–495.

[46] P. A. Abdulla, F. Haziza, L. Holík, B. Jonsson, and A. Rezine. “An Integrated
Specification and Verification Technique for Highly Concurrent Data Struc-
tures”. In: Int. J. Softw. Tools Technol. Transf. 19.5 (2017), pp. 549–563.

51

Reduction of Nondeterministic Tree Automata

Ricardo Almeida1, Lukáš Hoĺık2, and Richard Mayr1(B)

1 University of Edinburgh, Edinburgh, UK
rmayr@staffmail.ed.ac.uk

2 Brno University of Technology, Brno, Czech Republic

Abstract. We present an efficient algorithm to reduce the size of non-
deterministic tree automata, while retaining their language. It is based
on new transition pruning techniques, and quotienting of the state space
w.r.t. suitable equivalences. It uses criteria based on combinations of
downward and upward simulation preorder on trees, and the more general
downward and upward language inclusions. Since tree-language inclusion
is EXPTIME-complete, we describe methods to compute good approxima-
tions in polynomial time.

We implemented our algorithm as a module of the well-known
libvata tree automata library, and tested its performance on a given
collection of tree automata from various applications of libvata in reg-
ular model checking and shape analysis, as well as on various classes of
randomly generated tree automata. Our algorithm yields substantially
smaller and sparser automata than all previously known reduction tech-
niques, and it is still fast enough to handle large instances.

1 Introduction

Background. Tree automata are a generalization of word automata that accept
trees instead of words [14]. They have many applications in model checking
[5,6,12], term rewriting [15], and related areas of formal software verification,
e.g., shape analysis [3,18,20]. Several software packages for manipulating tree
automata have been developed, e.g., MONA [9], Timbuk [16], Autowrite [15]
and libvata [22], on which other verification tools like Forester [23] are based.

For nondeterministic automata, many questions about their languages are
computationally hard. The language universality, equivalence and inclusion prob-
lems are PSPACE-complete for word automata and EXPTIME-complete for tree
automata [14]. However, recently techniques have been developed that can solve
many practical instances fairly efficiently. For word automata there are antichain
techniques [2], congruence-based techniques [10] and techniques based on gener-
alized simulation preorders [13]. The antichain techniques have been generalized
to tree automata in [11,21] and implemented in the libvata library [22]. Per-
formance problems also arise in computing the intersection of several languages,
since the product construction multiplies the numbers of states.

This work was supported by the Czech Science Foundation, project 16-24707Y.

c© Springer-Verlag Berlin Heidelberg 2016
M. Chechik and J.-F. Raskin (Eds.): TACAS 2016, LNCS 9636, pp. 717–735, 2016.
DOI: 10.1007/978-3-662-49674-9 46

52

718 R. Almeida et al.

Automata Reduction. Our goal is to make tree automata more computation-
ally tractable in practice. We present an efficient algorithm for the reduction of
nondeterministic tree automata, in the sense of obtaining a smaller automaton
with the same language, though not necessarily with the absolute minimal pos-
sible number of states. (In general, there is no unique nondeterministic automa-
ton with the minimal possible number of states for a given language, i.e., there
can be several non-isomorphic nondeterministic automata of minimal size. This
holds even for word automata.) The reason to perform reduction is that the
smaller reduced automaton is more efficient to handle in a subsequent computa-
tion. Thus there is an algorithmic tradeoff between the effort for reduction and
the complexity of the problem later considered for this automaton. The main
applications of reduction are the following: (1) Helping to solve hard problems
like language universality/equivalence/inclusion. (2) If automata undergo a long
chain of manipulations/combinations by operations like union, intersection, pro-
jection, etc., then intermediate results can be reduced several times on the way
to keep the automata within a manageable size. (3) There are fixed-parameter
tractable problems (e.g., in model checking where an automaton encodes a logic
formula) where the size of one automaton very strongly influences the overall
complexity, and must be kept as small as possible.

Our Contribution. We present a reduction algorithm for nondeterministic tree
automata. (The tool is available for download [7].) It is based on a combination
of new transition pruning techniques for tree automata, and quotienting of the
state space w.r.t. suitable equivalences. The pruning techniques are related to
those presented for word automata in [13], but significantly more complex due
to the fundamental asymmetry between the upward and downward directions in
trees.

Transition pruning in word automata [13] is based on the observation that
certain transitions can be removed (a.k.a pruned) without changing the lan-
guage, because other ‘better’ transitions remain. One defines some strict partial
order (p.o.) between transitions and removes all transitions that are not maxi-
mal w.r.t. this order. A strict p.o. between transitions is called good for pruning
(GFP) iff pruning w.r.t. it preserves the language of the automaton. Note that
pruning reduces not only the number of transitions, but also, indirectly, the num-
ber of states. By removing transitions, some states may become ‘useless’, in the
sense that they are unreachable from any initial state, or that it is impossible to
reach any accepting state from them. Such useless states can then be removed
from the automaton without changing its language. One can obtain computable
strict p.o. between transitions by comparing the possible backward- and forward
behavior of their source- and target states, respectively. For this, one uses com-
putable relations like backward/forward simulation preorder and approximations
of backward/forward trace inclusion via lookahead- or multipebble simulations.
Some such combinations of backward/forward trace/simulation orders on states
induce strict p.o. between transitions that are GFP, while others do not [13].

53

Reduction of Nondeterministic Tree Automata 719

However, there is always a symmetry between backward and forward, since finite
words can equally well be read in either direction.

This symmetry does not hold for tree automata, because the tree branches
as one goes downward, while it might ‘join in’ side branches as one goes
upward. While downward simulation preorder (resp. downward language inclu-
sion) between states in a tree automaton is a direct generalization of forward
simulation preorder (resp. forward language inclusion) on words, the correspond-
ing upward notions do not correspond to backward on words. Comparing upward
behavior of states in tree automata depends also on the branches that ‘join in’
from the sides as one goes upward in the tree. Thus upward simulation/language
inclusion is only defined relative to a given other relation that compares the
downward behavior of states ‘joining in’ from the sides [1]. So one speaks of
“upward simulation of the identity relation” or “upward simulation of downward
simulation”. When one studies strict p.o. between transitions in tree automata
in order to check whether they are GFP, one has combinations of three relations:
the source states are compared by an upward relation X(Y) of some downward
relation Y , while the target states are compared w.r.t. some downward relation
Z (where Z can be, and often must be, different from Y). This yields a richer
landscape, and many counter-intuitive effects.

We provide a complete picture of which combinations of upward/downward
simulation/trace inclusions are GFP on tree automata; cf. Fig. 4. Since tree-
(trace)language inclusion is EXPTIME-complete [14], we describe methods to com-
pute good approximations of them in polynomial time. Finally, we also generalize
results on quotienting of tree automata [19] to larger relations, such as approxi-
mations of trace inclusion.

We implemented our algorithm [7] as a module of the well-known libvata

[22] tree automaton library, and tested its performance on a given collection of
tree automata from various applications of libvata in regular model checking
and shape analysis, as well as on various classes of randomly generated tree
automata. Our algorithm yields substantially smaller automata than all pre-
viously known reduction techniques (which are mainly based on quotienting).
Moreover, the thus obtained automata are also much sparser (i.e., use fewer
transitions per state and less nondeterministic branching) than the originals,
which yields additional performance advantages in subsequent computations.

2 Trees and Tree Automata

Trees. A ranked alphabet Σ is a set of symbols together with a function # :
Σ → N0. For a ∈ Σ, #(a) is called the rank of a. For n ≥ 0, we denote by Σn

the set of all symbols of Σ which have rank n.
We define a node as a sequence of elements of N, where ε is the empty

sequence. For a node v ∈ N∗, any node v′ s.t. v = v′v′′, for some node v′′, is
said to be a prefix of v, and if v′′ �= ε then v′ is a strict prefix of v. For a node
v ∈ N∗, we define the i-th child of v to be the node vi, for some i ∈ N. Given
a ranked alphabet Σ, a tree over Σ is defined as a partial mapping t : N∗ → Σ

54

720 R. Almeida et al.

such that for all v ∈ N∗ and i ∈ N, if vi ∈ dom(t) then (1) v ∈ dom(t), and (2)
#(t(v)) ≥ i. In this paper we consider only finite trees.

Note that the number of children of a node v may be smaller than #(t(v)). In
this case we say that the node is open. Nodes which have exactly #(t(v)) children
are called closed. Nodes which do not have any children are called leaves. A tree
is closed if all its nodes are closed, otherwise it is open. By C(Σ) we denote the
set of all closed trees over Σ and by T(Σ) the set of all trees over Σ. A tree t is
linear iff every node in dom(t) has at most one child.

The subtree of a tree t at v is defined as the tree tv such that dom(tv) = {v′ |
vv′ ∈ dom(t)} and tv(v

′) = t(vv′) for all v′ ∈ dom(tv). A tree t′ is a prefix of
t iff dom(t′) ⊆ dom(t) and for all v ∈ dom(t′), t′(v) = t(v). For t ∈ C(Σ), the
height of a node v of t is given by the function h: if v is a leaf then h(v) = 1,
otherwise h(v) = 1 + max(h(v1)), . . . , h(v#(t(v)))). We define the height of a
tree t ∈ C(Σ) as h(ε), i.e., as the number of levels of t.

Tree Automata, Top-Down. A (finite, nondeterministic) top-down tree
automaton (TDTA) is a quadruple A = (Σ, Q, δ, I) where Q is a finite set of
states, I ⊆ Q is a set of initial states, Σ is a ranked alphabet, and δ ⊆ Q×Σ×Q+

is the set of transition rules. A TDTA has an unique final state, which we rep-
resent by ψ. The transition rules satisfy that if 〈q, a,ψ〉 ∈ δ then #(a) = 0, and
if 〈q, a, q1 . . . qn〉 ∈ δ (with n > 0) then #(a) = n.

A run of A over a tree t ∈ T(Σ) (or a t-run in A) is a partial mapping
π : N∗ → Q such that v ∈ dom(π) iff either v ∈ dom(t) or v = v′i where
v′ ∈ dom(t) and i ≤ #(t(v′)). Further, for every v ∈ dom(t), there exists either
(a) a rule 〈q, a,ψ〉 such that q = π(v) and a = t(v), or (b) a rule 〈q, a, q1 . . . qn〉
such that q = π(v), a = t(v), and qi = π(vi) for each i : 1 ≤ i ≤ #(a). A leaf
of a run π on t is a node v ∈ dom(π) such that vi ∈ dom(π) for no i ∈ N. We
call it dangling if v �∈ dom(t). Intuitively, the dangling nodes of a run over t are
all the nodes which are in π but are missing in t due to it being incomplete.
Notice that dangling leaves of π are children of open nodes of t. The prefix of
depth k of a run π is denoted πk. Runs are always finite since the trees we are
considering are finite.

We write t
π

=⇒ q to denote that π is a t-run of A such that π(ε) = q. We use

t =⇒ q to denote that such run π exists. A run π is accepting if t
π

=⇒ q ∈ I. The
downward language of a state q in A is defined by DA(q) = {t ∈ C(Σ) | t =⇒ q},
while the language of A is defined by L(A) =

⋃
q∈I DA(q). The upward language

of a state q in A, denoted UA(q), is then defined as the set of open trees t,
such that there exists an accepting t-run π with exactly one dangling leaf v s.t.
π(v) = q. We omit the A subscript notation when it is implicit which automaton
we are considering.

In the related literature, it is common to define a tree automaton bottom-
up, reading a tree from the leaves to the root [11,14,21]. A bottom-up tree
automaton (BUTA) can be obtained from a TDTA by reversing the direction of
the transition rules and by swapping the roles between the initial states and the
final states. See [8] for an example of a tree automaton presented in both BUTA
and TDTA form.

55

Reduction of Nondeterministic Tree Automata 721

3 Simulations and Trace Inclusions

We consider different types of relations on states of a TDTA which under-
approximate language inclusion. Note that words are but a special case of
trees where every node has only one child, i.e., words are linear trees. Down-
ward simulation/trace inclusion on TDTA corresponds to direct forward simula-
tion/trace inclusion in special case of word automata, and upward corresponds to
backward [13].

Forward Simulation on Word Automata. Let A = (Σ, Q, δ, I, F) be a NFA.
A direct forward simulation D is a binary relation on Q such that if q D r, then

1. q ∈ F =⇒ r ∈ F , and
2. for any 〈q, a, q′〉 ∈ δ, there exists 〈r, a, r′〉 ∈ δ such that q′ D r′.

The set of direct forward simulations on A contains id and is closed under union
and transitive closure. Thus there is a unique maximal direct forward simulation
on A, which is a preorder. We call it the direct forward simulation preorder on
A and write �di.

Forward Trace Inclusion on Word Automata. Let A = (Σ, Q, δ, I, F) be
a NFA and w = σ1 σ2 . . . σn ∈ Σ∗ a word of length n. A trace of A on w (or a

w-trace) starting at q is a sequence of transitions π = q0
σ1→ q1

σ2→ · · · σn→ qn such
that q0 = q. The direct forward trace inclusion preorder ⊆di is a binary relation
on Q such that q ⊆di r iff

1. (q ∈ F =⇒ r ∈ F), and
2. for every word w = σ1 σ2 . . . σn ∈ Σ∗ and for every w-trace (starting at q)

πq = q
σ1→ q1

σ2→ · · · σn→ qn, there exists a w-trace (starting at r) πr = r
σ1→

r1
σ2→ · · · σn→ rn such that (qi ∈ F =⇒ ri ∈ F) for each i : 1 ≤ i ≤ n.

Since πr is required to preserve the acceptance of the states in πq, trace inclusion
is a strictly stronger notion than language inclusion (see [8] for an example).

Downward Simulation on Tree Automata. Let A = (Σ, Q, δ, I) be a TDTA.
A downward simulation D is a binary relation on Q such that if q D r, then

1. (q = ψ =⇒ r = ψ), and
2. for any 〈q, a, q1 . . . qn〉 ∈ δ, there exists 〈r, a, r1 . . . rn〉 ∈ δ s.t. qi D ri for

i : 1 ≤ i ≤ n.

Since the set of all downward simulations on A is closed under union and under
reflexive and transitive closure (cf. Lemma 4.1 in [19]), it follows that there is
one unique maximal downward simulation on A, and that relation is a preorder.
We call it the downward simulation preorder on A and write �dw.

56

722 R. Almeida et al.

Downward Trace Inclusion on Tree Automata. Let A = (Σ, Q, δ, I) be a
TDTA. The downward trace inclusion preorder ⊆dw is a binary relation on Q
s.t. q ⊆dw r iff for every tree t ∈ C(Σ) and for every t-run πq with πq(ε) = q
there exists another t-run πr s.t.

1. πr(ε) = r, and
2. (πq(v) = ψ =⇒ πr(v) = ψ) for each leaf node v ∈ dom(t).

Generally, one way of making downward language inclusion on the states of an
automaton coincide with downward trace inclusion is by modifying the automa-
ton to guarantee that (1) there is one unique final state which has no outgoing
transitions, (2) from any other state, there is a path ending in that final state.
Note that in a TDTA these two conditions are automatically satisfied: (1) since
the final state is reached after reading a leaf of the tree, and (2) because only
complete trees are in the language of the automaton. Thus, in a TDTA, down-
ward language inclusion and downward trace inclusion coincide.

Backward Simulation on Word Automata. Let A = (Σ, Q, δ, I, F) be a
NFA. A backward simulation B is a binary relation on Q s.t. if q B r, then

1. (q ∈ F =⇒ r ∈ F) and (q ∈ I =⇒ r ∈ I), and
2. for any 〈q′, a, q〉 ∈ δ, there exists 〈r′, a, r〉 ∈ δ s.t. q′ B r′.

Like for forward simulation, there is a unique maximal backward simulation on
A, which is a preorder. We call it the backward simulation preorder on A and
write �bw.

Backward Trace Inclusion on Word Automata. Let A = (Σ, Q, δ, I, F) be
a NFA and w = σ1 σ2 . . . σn ∈ Σ∗ a word of length n. A w-trace of A ending

at q is a sequence of transitions π = q0
σ1→ q1

σ2→ · · · σn→ qn such that qn = q.
The backward trace inclusion preorder ⊆bw is a binary relation on Q such that
q ⊆bw r iff

1. (q ∈ F =⇒ r ∈ F) and (q ∈ I =⇒ r ∈ I), and
2. for every word w = σ1 σ2 . . . σn ∈ Σ∗ and for every w-trace (ending at q)

πq = q0
σ1→ q1

σ2→ · · · σn→ q, there exists a w-trace (ending at r) πr = r0
σ1→

r1
σ2→ · · · σn→ r such that (qi ∈ F =⇒ ri ∈ F ∧ qi ∈ I =⇒ ri ∈ I) for each

i : 1 ≤ i ≤ n.

Upward Simulation on Tree Automata. Let A = (Σ, Q, δ, I) be a TDTA.
Given a binary relation R on Q, an upward simulation U(R) induced by R is a
binary relation on Q such that if q U(R) r, then

1. (q = ψ =⇒ r = ψ) and (q ∈ I =⇒ r ∈ I), and
2. for any 〈q′, a, q1 . . . qn〉 ∈ δ with qi = q (for some i : 1 ≤ i ≤ n), there exists

〈r′, a, r1 . . . rn〉 ∈ δ such that ri = r, q′ U(R) r′ and qj R rj for each j : 1 ≤
j �= i ≤ n.

57

Reduction of Nondeterministic Tree Automata 723

Similarly to the case of downward simulation, for any given relation R, there is a
unique maximal upward simulation induced by R which is a preorder (cf. Lemma
4.2 in [19]). We call it the upward simulation preorder on A induced by R and
write �up(R).

Upward Trace Inclusion on Tree Automata. Let A = (Σ, Q, δ, I) be a
TDTA. Given a binary relation R on Q, the upward trace inclusion preorder
⊆up (R) induced by R is a binary relation on Q such that q ⊆up (R) r iff (q =
ψ =⇒ r = ψ) and the following holds: for every tree t ∈ T (Σ) and for every
t-run πq with πq(v) = q for some leaf v of t, there exists a t-run πr s.t.

1. πr(v) = r,
2. for all prefixes v′ of v, (πq(v

′) ∈ I =⇒ πr(v
′) ∈ I), and

3. if v′x ∈ dom(πq), for some strict prefix v′ of v and some x ∈ N s.t. v′x is not
a prefix of v, then πq(v

′x) R πr(v
′x).

Downward trace inclusion is EXPTIME-complete for TDTA [14], while forward
trace inclusion is PSPACE-complete for word automata. The complexity of upward
trace inclusion depends on the relation R (e.g., it is PSPACE-complete for R = id).
In contrast, downward/upward simulation preorder is computable in polynomial
time [1], but typically yields only small under-approximations of the correspond-
ing trace inclusions.

4 Transition Pruning Techniques

We define pruning relations on a TDTA A = (Σ, Q, δ, I). The intuition is that
certain transitions may be deleted without changing the language, because ‘bet-
ter’ transitions remain. We perform this pruning (i.e., deletion) of transitions
by comparing their endpoints over the same symbol σ ∈ Σ. Given two binary
relations Ru and Rd on Q, we define the following relation to compare transitions.

P (Ru, Rd) = {(〈p, σ, r1 · · · rn〉, 〈p′, σ, r′
1 · · · r′

n〉) | p Ru p′ and (r1 · · · rn) R̂d (r′
1 · · · r′

n)},

where R̂d results from lifting Rd ⊆ Q × Q to R̂d ⊆ Qn × Qn, as defined below.
The function P is monotone in the two arguments. If t P t′ then t may be pruned
because t′ is ‘better’ than t. We want P (Ru, Rd) to be a strict partial order (p.o.),
i.e., irreflexive and transitive (and thus acyclic). There are two cases in which
P (Ru, Rd) is guaranteed to be a strict p.o.: (1) Ru is some strict p.o. <u and R̂d

is the standard lifting ≤̂d of some p.o. ≤d to tuples. I.e., (r1 · · · rn)≤̂d(r
′
1 · · · r′

n) iff
∀1≤i≤n. ri ≤d r′

i. The transitions in each pair of P (<u,≤d) depart from different
states and therefore the transitions are necessarily different. (2) Ru is some p.o.
≤u and R̂d is the lifting <̂d of some strict p.o. <d to tuples (defined below).
In this case the transitions in each pair of P (≤u, <d) may have the same origin
but must go to different tuples of states. Since for two tuples (r1 · · · rn) and
(r′

1 · · · r′
n) to be different it suffices that ri �= r′

i for some 1 ≤ i ≤ n, we define
<̂d as a binary relation such that (r1 · · · rn)<̂d(r

′
1 · · · r′

n) iff ∀1≤i≤n. ri ≤d r′
i, and

∃1≤i≤n. ri <d r′
i.

58

724 R. Almeida et al.

Let A = (Σ, Q, δ, I) be a TDTA and let P ⊆ δ × δ be a strict par-
tial order. The pruned automaton is defined as Prune(A,P) = (Σ, Q, δ′, I)
where δ

′ = {(p, σ, r) ∈ δ | �(p′, σ, r′) ∈ δ. (p, σ, r)P (p′, σ, r′)}. Note that the
pruned automaton Prune(A,P) is unique. The transitions are removed with-
out requiring the re-computation of the relation P , which could be expen-
sive. Since removing transitions cannot introduce new trees in the language,
L(Prune(A,P)) ⊆ L(A). If the reverse inclusion holds too (so that the lan-
guage is preserved), we say that P is good for pruning (GFP), i.e., P is GFP iff
L(Prune(A,P)) = L(A).

We now provide a complete picture of which combinations of simulation and
trace inclusion relations are GFP. Recall that simulations are denoted by square
symbols � while trace inclusions are denoted by round symbols ⊆. For every
partial order R, the corresponding strict p.o. is defined as R\R−1.

P (⊂bw,⊂di) is not GFP for word automata (see Fig. 2(a) in [13] for a
counterexample). As mentioned before, words correspond to linear trees. Thus
P (⊂up (R),⊂dw) is not GFP for tree automata (regardless of the relation R).
Figure 1 presents several more counterexamples. For word automata, P (⊂bw,�di)
and P (�bw,⊂di) are not GFP (Fig. 1b and c) even though P (⊆bw,�di) and
P (�bw,⊆di) are (cf. [13]). Thus P (⊂up (R),�dw) and P (�up (R),⊂dw) are not
GFP for tree automata (regardless of the relation R). For tree automata,
P (�up(�dw), id) and P (�up(⊂dw),�dw) are not GFP (Fig. 1a and d). Moreover,
a complex counterexample (see [8]) is needed to show that P (�up(�dw),⊂dw) is
not GFP.

The following theorems and corollaries provide several relations which are
GFP.

Theorem 1. For every strict partial order R ⊂ ⊆dw, it holds that P (id , R)
is GFP.

Corollary 1. By Theorem 1, P (id ,⊂dw) and P (id ,�dw) are GFP.

Theorem 2. For every strict partial order R ⊂ ⊆up(id), it holds that P (R, id)
is GFP.

Corollary 2. By Theorem 2, P (⊂up(id), id) and P (�up(id), id) are GFP.

Definition 1. Given a tree automaton A, a binary relation W on its states is
called a downup-relation iff the following condition holds: If p W q then for
every tree t ∈ T(Σ) and accepting t-run π from p there exists an accepting t-run
π′ from q such that ∀v ∈ N∗ π(v) �up(W) π′(v).

Lemma 1. Any relation V satisfying (1) V is a downward simulation, and (2)
id ⊆ V ⊆ �up(V) is a downup-relation. In particular, id is a downup-relation,
but �dw and �up(id) are not.

Theorem 3. For every downup-relation W , it holds that P (�up (W),⊆dw) is
GFP.

59

Reduction of Nondeterministic Tree Automata 725

Fig. 1. GFP counterexamples. A transition is drawn in dashed when a different tran-
sition by the same symbol departing from the same state already exists. We draw a
transition in thick red when it is better than another transition (drawn in thin blue).

60

726 R. Almeida et al.

Proof. Let A′ = Prune(A,P (�up (W),⊆dw)). We show L(A) ⊆ L(A′). If t ∈
L(A) then there exists an accepting t-run π̂ in A. We show that there is an
accepting t-run π̂

′
in A′.

For each accepting t-run π in A, let level i(π) be the tuple of states that π

visits at depth i in the tree, read from left to right. Formally, let (x1, . . . , xk)
with xj ∈ Ni be the set of all tree positions of depth i s.t. xj ∈ dom(π), in
lexicographically increasing order. Then level i(π) = (π(x1), . . . ,π(xk)) ∈ Qk.
By lifting partial orders on Q to partial orders on tuples, we can compare such
tuples w.r.t. �up(W). We say that an accepting t-run π is i-good iff it does not
contain any transition from A − A′ from any position v ∈ N∗ with |v| < i. I.e.,
no pruned transition is used in the first i levels of the tree.

We now define a strict partial order <i on the set of accepting t-runs in A.
Let π <i π′ iff ∃k ≤ i. levelk(π) �up(W) levelk(π′) and ∀l < k. level l(π) �up(W)
level l(π

′). Note that <i only depends on the first i levels of the run. Given A, t
and i, there are only finitely many different such i-prefixes of accepting t-runs.
By our assumption that π̂ is an accepting t-run in A, the set of accepting t-runs
in A is non-empty. Thus, for any i, there must exist some accepting t-run π in
A that is maximal w.r.t. <i.

We now show that this π is also i-good, by assuming the contrary and deriv-
ing a contradiction. Suppose that π is not i-good. Then it must contain a tran-
sition 〈p, σ, r1 · · · rn〉 from A − A′ used at the root of some subtree t′ of t at
some level j < i. Since A′ = Prune(A,P (�up (W),⊆dw)), there must exist
another transition 〈p′, σ, r′

1 · · · r′
n〉 in A′ s.t. (1) (r1, . . . , rn) ⊆dw (r′

1, . . . , r
′
n) and

(2) p �up(W) p′.
First consider the implications of (2). Upward simulation propagates upward

stepwise (though only in non-strict form after the first step). So p′ can imitate the
upward path of p to the root of t, maintaining �up(W) between the corresponding
states. The states on side branches joining in along the upward path from p can
be matched by W -larger states in joining side branches along the upward path
from p′. From Definition 1 we obtain that these W -larger states in p′s joining
side branches can accept their subtrees of t via computations that are everywhere
�up(W) larger than corresponding states in computations from ps joining side
branches. So there must be an accepting run π′ on t s.t. (3) π′ is at state
p′ at the root of t′ and uses transition 〈p′, σ, r′

1 · · · r′
n〉 from p′, and (4) for all

v ∈ N∗ where t(v) /∈ t′ we have π(v) �up(W) π′(v). Moreover, by conditions (1)
and (3), π′ can be extended from r′

1, . . . , r
′
n to accept also the subtree t′. Thus

π′ is an accepting t-run in A. By conditions (2) and (4) we obtain that ∀l ≤
j. level l(π) �up(W) level l(π

′). By (2) we get even level j(π) �up(W) level j(π
′)

and thus π <j π′. Since j < i we also have π <i π′ and thus π was not maximal
w.r.t. <i. Contradiction. So we have shown that for every t ∈ L(A) there exists
an i-good accepting run for every finite i.

If t ∈ L(A) then there exists an accepting t-run π̂ in A. Then there exists an
accepting t-run π̂

′
that is i-good, where i is the height of t. Thus π̂

′
is a run in

A′ and t ∈ L(A′). ��

61

Reduction of Nondeterministic Tree Automata 727

Corollary 3. It follows from Lemma 1 and from the fact that GFP is downward
closed that P (�up(V),⊆dw), P (�up(V),⊂dw), P (�up(V),�dw), P (�up(V),�dw),
P (�up(V), id), P (�up(id),⊆dw), P (�up(id),⊂dw), P (�up(id),�dw) and P (�up

(id),�dw) are GFP.

Theorem 4. P (⊆up(�dw),�dw) is GFP.

Proof. Let A′ = Prune(A,P (⊆up (�dw),�dw)). We show L(A) ⊆ L(A′). If t ∈
L(A) then there exists an accepting t-run π̂ in A. We show that there is an
accepting t-run π̂

′
in A′.

For each accepting t-run π in A, let level i(π) be the tuple of states that π

visits at depth i in the tree, read from left to right. Formally, let (x1, . . . , xk)
with xj ∈ Ni be the set of all tree positions of depth i s.t. xj ∈ dom(π), in
lexicographically increasing order. Then level i(π) = (π(x1), . . . ,π(xk)) ∈ Qk.
By lifting partial orders on Q to partial orders on tuples we can compare such
tuples w.r.t. �dw. We say that an accepting t-run π is i-good if it does not
contain any transition from A − A′ from any position v ∈ N∗ with |v| < i. I.e.,
no pruned transitions are used in the first i levels of the tree.

We now show, by induction on i, the following property (C): For every i and
every accepting t-run π in A there exists an i-good accepting t-run π′ in A s.t.
level i(π) �dw level i(π

′).
The base case is i = 0. Every accepting t-run π in A is trivially 0-good itself

and thus satisfies (C).
For the induction step, let S be the set of all (i−1)-good accepting t-runs π′

in A s.t. level i−1(π) �dw level i−1(π
′). Since π is an accepting t-run, by induc-

tion hypothesis, S is non-empty. Let S′ ⊆ S be the subset of S containing
exactly those runs π′ ∈ S that additionally satisfy level i(π) �dw level i(π

′).
From level i−1(π) �dw level i−1(π

′) and the fact that �dw is preserved downward-
stepwise, we obtain that S′ is non-empty. Now we can select some π′ ∈ S′ s.t.
level i(π

′) is maximal, w.r.t. �dw, relative to the other runs in S′. We claim that
π′ is i-good and level i(π) �dw level i(π

′). The second part of this claim holds
because π′ ∈ S′.

We show that π′ is i-good by contraposition. Suppose that π′ is not i-good.
Then it must contain a transition 〈p, σ, r1 · · · rn〉 from A − A′. Since π′ is (i −
1)-good, this transition must start at depth (i − 1) in the tree. Since A′ =
Prune(A,P (⊆up(�dw),�dw)), there must exist another transition 〈p′, σ, r′

1 · · · r′
n〉

in A′ s.t. p ⊆up(�dw) p′ and (r1, . . . , rn) �dw (r′
1, . . . , r

′
n). From the definition of

⊆up (�dw) we obtain that there exists another accepting t-run π1 in A (that
uses the transition 〈p′, σ, r′

1 · · · r′
n〉) s.t. level i(π

′) �dw level i(π1). The run π1

is not necessarily i-good or (i − 1)-good. However, by induction hypothesis,
there exists some accepting t-run π2 in A that is (i − 1)-good and satisfies
level i−1(π1) �dw level i−1(π2). Since �dw is preserved stepwise, there also exists
an accepting t-run π3 in A (that coincides with π2 up-to depth (i − 1)), which
is (i − 1)-good and satisfies level i(π1) �dw level i(π3). In particular, π3 ∈ S′.

From level i(π
′) �dw level i(π1) and level i(π1) �dw level i(π3) we obtain

level i(π
′) �dw level i(π3). This contradicts our condition above that π′ must

62

728 R. Almeida et al.

be level i maximal w.r.t. �dw in S′. This concludes the induction step and the
proof of property (C).

If t ∈ L(A) then there exists an accepting t-run π̂ in A. By property (C),
there exists an accepting t-run π̂

′
that is i-good, where i is the height of t.

Therefore π̂
′
does not use any transition from A − A′ and is thus also a run in

A′. So we obtain t ∈ L(A′). ��

Corollary 4. It follows from Theorem 4 and the fact that GFP is downward
closed that P (⊂up (�dw),�dw), P (�up (�dw),�dw), P (�up (�dw),�dw), P (⊆up

(id),�dw), P (⊂up(id),�dw), P (�up(id),�dw) and P (id ,�dw) are GFP.

5 State Quotienting Techniques

A classic method for reducing the size of automata is state quotienting. Given
a suitable equivalence relation on the set of states, each equivalence class is
collapsed into just one state. From a preorder � one obtains an equivalence
relation ≡ := � ∩ �. We now define quotienting w.r.t. ≡. Let A = (Σ, Q, δ, I)
be a TDTA and let � be a preorder on Q. Given q ∈ Q, we denote by [q] its
equivalence class w.r.t ≡. For P ⊆ Q, [P] denotes the set of equivalence classes
[P] = {[p] | p ∈ P}. We define the quotient automaton w.r.t. ≡ as A/ ≡ :=
(Σ, [Q], δA/ ≡, [I]), where δA/ ≡ = {〈[q], σ, [q1] . . . [qn]〉 | 〈q, σ, q1 . . . qn〉 ∈ δA}. It
is trivial that L(A) ⊆ L(A/≡) for any ≡. If the reverse inclusion also holds, i.e.,
if L(A) = L(A/≡), we say that ≡ is good for quotienting (GFQ).

It was shown in [19] that �dw∩�dw and �up(id)∩ �up(id) are GFQ. Here we
generalize this result from simulation to trace equivalence. Let ≡dw := ⊆dw∩⊇dw

and ≡up(R) := ⊆up(R)∩ ⊇up(R).

Theorem 5. ≡dw is GFQ.

Theorem 6. ≡up(id) is GFQ.

In [8] we present a counterexample showing that ≡ :=�up(�dw∩�dw)∩ �up(�dw

∩�dw) is not GFQ. This is an adaptation from the Example 5 in [19], where the
inducing relation is referred to as the downward bisimulation equivalence and
the automata are seen bottom-up.

One of the best methods previously known for reducing TA performs state
quotienting based on a combination of downward and upward simulation [4].
However, this method cannot achieve any further reduction on an automaton
which has been previously reduced with the techniques we described above [8].

6 Lookahead Simulations

Simulation preorders are generally not very good under-approximations of trace
inclusion, since they are much smaller on many automata. Thus we consider
better approximations that are still efficiently computable.

63

Reduction of Nondeterministic Tree Automata 729

For word automata, more general lookahead simulations were introduced in
[13]. These provide a practically useful tradeoff between the computational effort
and the size of the obtained relations. Lookahead simulations can also be seen as a
particular restriction of the more general (but less practically useful) multipebble
simulations [17]. We generalize lookahead simulations to tree automata in order
to compute good under-approximations of trace inclusions.

Intuition by Simulation Games. Normal simulation preorder on labeled
transition graphs can be characterized by a game between two players, Spoiler
and Duplicator. Given a pair of states (q0, r0), Spoiler wants to show that (q0, r0)
is not contained in the simulation preorder relation, while Duplicator has the
opposite goal. Starting in the initial configuration (q0, r0), Spoiler chooses a tran-

sition q0
σ→ q1 and Duplicator must imitate it stepwise by choosing a transition

with the same symbol r0
σ→ r1. This yields a new configuration (q1, r1) from

which the game continues. If a player cannot move the other wins. Duplicator
wins every infinite game. Simulation holds iff Duplicator wins.

In normal simulation, Duplicator only knows Spoiler’s very next step (see
above), while in k-lookahead simulation Duplicator knows Spoiler’s k next steps
in advance (unless Spoiler’s move ends in a deadlocked state - i.e., a state with no
transitions). As the parameter k increases, the k-lookahead simulation relation
becomes larger and thus approximates the trace inclusion relation better and
better. Trace inclusion can also be characterized by a game. In the trace inclusion
game, Duplicator knows all steps of Spoiler in the entire game in advance.

For every fixed k, k-lookahead simulation is computable in polynomial time,
though the complexity rises quickly in k: it is doubly exponential for downward-
and single exponential for upward lookahead simulation (due to the downward
branching of trees). A crucial trick makes it possible to practically compute it
for nontrivial k: Spoiler’s moves are built incrementally, and Duplicator need not
respond to all of Spoiler’s announced k next steps, but only to a prefix of them,
after which he may request fresh information [13]. Thus Duplicator just uses the
minimal lookahead necessary to win the current step.

Lookahead Downward Simulation. We say that a tree t is k-bounded iff
for all leaves v of t, either (a) |v| = k, or (b) |v| < k and v is closed. Let
A = (Σ, Q, δ, I) be a TDTA. A k-lookahead downward simulation Lk−dw is a
binary relation on Q such that if q Lk−dw r, then (q = ψ =⇒ r = ψ) and
the following holds: Let πk be a run on a k-bounded tree tk with π(ε) = q
s.t. every leaf node of πk is either at depth k or downward-deadlocked (i.e.,
no more downward transitions exist). Then there must exist a run π′

k over a
nonempty prefix t′k of tk s.t. (1) π′

k(ε) = r, and (2) for every leaf v of π′
k,

πk(v) Lk−dw π′
k(v). Since, for given A and k ≥ 1, lookahead downward simula-

tions are closed under union, there exists a unique maximal one that we call the
k-lookahead downward simulation on A, denoted by �k-dw. While �k-dw is triv-
ially reflexive, it is not transitive in general (cf. [13], Appendix B). Since we only
use it as a means to under-approximate the transitive trace inclusion relation ⊆dw

64

730 R. Almeida et al.

(and require a preorder to induce an equivalence), we work with its transitive
closure �k-dw:= (�k-dw)+. In particular, �k-dw⊆ ⊆dw.

Lookahead Upward Simulation. Let A = (Σ, Q, δ, I) be a TDTA.
A k-lookahead upward simulation on A induced by a relation R is a binary
relation Lk−up(R) on Q s.t. if q Lk−up(R) r, then (q = ψ =⇒ r = ψ) and the
following holds: Let π be a run over a tree t ∈ T(Σ) with π(v) = q for some
bottom leaf v s.t. either |v| = k or 0 < |v| < k and π(ε) is upward-deadlocked
(i.e., no more upward transitions exist).

Then there must exist v′, v′′ such that v = v′v′′ and |v′′| ≥ 1 and a run π′

over tv′ s.t. the following holds. (1) π′(v′′) = r, (2) π(v′) Lk−up(R) π′(ε), (3)
π(v′x) ∈ I =⇒ π′(x) ∈ I for all prefixes x of v′′, (4) If v′xy ∈ dom(π) for
some strict prefix x of v′′ and some y ∈ N where xy is not a prefix of v′′ then
π(v′xy) R π′(xy).

Since, for given A, k ≥ 1 and R, lookahead upward simulations are closed
under union, there exists a unique maximal one that we call the k-lookahead
upward simulation induced by R on A, denoted by �k-up(R). Since both R and
�k-up(R) are not necessarily transitive, we first compute its transitive closure,
R+, and we then compute �k-up(R) := (�k-up(R+))+, which under-approximates
the upward trace inclusion ⊆up(R+).

7 Experiments

Our tree automata reduction algorithm (tool available [7]) combines transition
pruning techniques (Sect. 4) with quotienting techniques (Sect. 5). Trace inclu-
sions are under-approximated by lookahead simulations (Sect. 6) where higher
lookaheads are harder to compute but yield better approximations. The parame-
ters x, y ≥ 1 describe the lookahead for downward/upward lookahead simulations,
respectively. Downward lookahead simulation is harder to compute than upward
lookahead simulation, since the number of possible moves is doubly exponential
in x (due to the downward branching of the tree) while for upward-simulation it
is only single exponential in y. We use (x, y) as (1, 1), (2, 4) and (3, 7).

Besides pruning and quotienting, we also use the operation RU that removes
useless states, i.e., states that either cannot be reached from any initial state or
from which no tree can be accepted. Let Op(x, y) be the following sequence
of operations on tree automata: RU , quotienting with �x-dw, pruning with
P (id ,≺x-dw), RU , quotienting with �y-up (id), pruning with P (≺y-up (id), id),
pruning with P (�up(id),�x-dw), RU , quotienting with �y-up(id), pruning with
P (�y-up(�dw),�dw), RU . It is language preserving by the Theorems of Sects. 4
and 5. The order of the operations is chosen according to some considerations
of efficiency. (No order is ideal for all instances.)

Our algorithm Heavy(1, 1) just iterates Op(1, 1) until a fixpoint is reached.
For efficiency reasons, the general algorithm Heavy(x, y) does not iterate
Op(x, y), but uses a double loop: it iterates the sequence Heavy(1, 1)Op(x, y)
until a fixpoint is reached.

65

Reduction of Nondeterministic Tree Automata 731

We compare the reduction performance of several algorithms.

RU: RU . (Previously present in libvata.)
RUQ: RU and quotienting with �dw. (Previously present in libvata.)
RUQP: RUQ, plus pruning with P (id ,�dw). (Not in libvata, but simple.)
Heavy: Heavy(1, 1), Heavy(2, 4) and Heavy(3, 7). (New.)

We tested these algorithms on three sets of automata from the libvata dis-
tribution. The first set are 27 moderate-sized automata (87 states and 816 tran-
sitions on avg.) derived from regular model checking applications. Heavy(1,1),
on avg., reduced the number of states and transitions to 27 % and 14 % of the
original sizes, resp. (Note the difference between ‘to’ and ‘by’.) In contrast, RU
did not perform any reduction in any case, RUQ, on avg., reduced the number
of states and transitions only to 81 % and 80 % of the original sizes and RUQP
reduced the number of states and transitions to 81 % and 32 % of the original
sizes; cf. Fig. 2. The average computation times of Heavy(1,1), RUQP, RUQ and
RU were, respectively, 0.05 s, 0.03 s, 0.006 s and 0.001 s.

The second set are 62 larger automata (586 states and 8865 transitions, on
avg.) derived from regular model checking applications. Heavy(1,1), on avg.,
reduced the number of states and transitions to 4.2 % and 0.7 % of the original
sizes. In contrast, RU did not perform any reduction in any case, RUQ, on
avg., reduced the number of states and transitions to 75.2 % and 74.8 % of the
original sizes and RUQP reduced the number of states and transitions to 75.2 %
and 15.8 % of the original sizes [8]. The average computation times of Heavy(1,1),
RUQP, RUQ and RU were, respectively, 2.7 s, 2.1 s, 0.2 s and 0.02 s.

The third set are 14,498 automata (57 states and 266 transitions on avg.) from
the shape analysis tool Forester [23]. Heavy(1,1), on avg., reduced the number
of states/transitions to 76.4 % and 67.9 % of the original, resp. RUQ and RUQP
reduced the states and transitions only to 94 % and 88 %, resp. The average
computation times of Heavy(1,1), RUQP, RUQ and RU were, respectively, 0.21 s,
0.014 s, 0.004 s, and 0.0006 s.

Due to the particular structure of the automata in these 3 sample
sets, Heavy(2, 4) and Heavy(3, 7) had hardly any advantage over Heavy(1, 1).
However, in general they can perform significantly better.

We also tested the algorithms on randomly generated tree automata, accord-
ing to a generalization of the Tabakov-Vardi model of random word automata
[24]. Given parameters n, s, td (transition density) and ad (acceptance density),
it generates tree automata with n states, s symbols (each of rank 2), n ∗ td ran-
domly assigned transitions for each symbol, and n ∗ ad randomly assigned leaf
rules. Figure 3 shows the results of reducing automata of varying td with different
methods.

8 Summary and Conclusion

The tables in Figs. 4 and 5 summarize all our results on pruning and quotienting,
respectively. Note that negative results propagate to larger relations and positive
results propagate to smaller relations (i.e., GFP/GFQ is downward closed).

66

732 R. Almeida et al.

Fig. 2. Reduction of 27 moderate-sized tree automata by methods RUQ (top row),
RUQP (middle row), and Heavy (bottom row). A bar of height h at an interval [x, x+10[
means that h of the 27 automata were reduced to a size between x % and (x + 10) %
of their original size. The reductions in the numbers of states/transitions are shown
on the left/right, respectively. On this set of automata, the methods Heavy(2,4) and
Heavy(3,7) gave exactly the same results as Heavy(1,1).

Fig. 3. Reduction of Tabakov-Vardi random tree automata with n = 100, s = 2 and
ad = 0.8. The x-axis gives the transition density td , and the y-axis gives the average
number of states after reduction with the various methods (smaller is better). Each
data point is the average of 400 random automata. Note that Heavy(2,4) reduces much
better than Heavy(1,1) for td ≥ 3.5. Computing Heavy(x,y) for even higher x, y is very
slow on (some instances of) random automata.

67

Reduction of Nondeterministic Tree Automata 733

Fig. 4. GFP relations P (Ru(Ri), Rd)
for tree automata. Relations which
are GFP are marked with �, those
which are not are marked with × and
− is used to mark relations where
the test does not apply due to them
being reflexive (and therefore not
asymmetric).

Fig. 5. GFQ relations R for tree automata.
Relations which are GFQ are marked with
� and those which are not are marked with
×. The relations marked with − are not
even reflexive in general (unless all transi-
tions are linear; in this case we have a word
automaton and these relations are the same
as �up(id) and ⊆up(id), respectively).

The experiments show that our Heavy(x,y) algorithm can significantly reduce
the size of many classes of nondeterministic tree automata, and that it is suf-
ficiently fast to handle instances with hundreds of states and thousands of
transitions.

References

1. Abdulla, P.A., Bouajjani, A., Hoĺık, L., Kaati, L., Vojnar, T.: Computing simula-
tions over tree automata. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008.
LNCS, vol. 4963, pp. 93–108. Springer, Heidelberg (2008)

2. Abdulla, P.A., Chen, Y.-F., Hoĺık, L., Mayr, R., Vojnar, T.: When simulation
meets antichains. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol.
6015, pp. 158–174. Springer, Heidelberg (2010)

68

734 R. Almeida et al.

3. Abdulla, P.A., Hoĺık, L., Jonsson, B., Lengál, O., Trinh, C.Q., Vojnar, T.: Ver-
ification of heap manipulating programs with ordered data by extended forest
automata. In: Van Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172, pp.
224–239. Springer, Heidelberg (2013)

4. Abdulla, P.A., Hoĺık, L., Kaati, L., Vojnar, T.: A uniform (bi-)simulation-based
framework for reducing tree automata. Electr. Notes Theor. Comput. Sci. 251,
27–48 (2009)

5. Abdulla, P.A., Legay, A., d’Orso, J., Rezine, A.: Simulation-based iteration of tree
transducers. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440,
pp. 30–44. Springer, Heidelberg (2005)

6. Abdulla, P.A., Legay, A., d’Orso, J., Rezine, A.: Tree regular model checking: a
simulation-based approach. J. Log. Algebr. Program. 69(1–2), 93–121 (2006)

7. Almeida, R., Hoĺık, L., Mayr, R.: HeavyMinOTAut (2015). http://tinyurl.com/
pm2b4qk

8. Almeida, R., Hoĺık, L., Mayr, R.: Reduction of nondeterministic tree automata.
Technical report EDI-INF-RR-1421, University of Edinburgh (2016). arXiv
1512.08823

9. Basin, D., Karlund, N., Møller, A.: Mona (2015). http://www.brics.dk/mona
10. Bonchi, F., Pous, D.: Checking NFA equivalence with bisimulations up to con-

gruence. In: Principles of Programming Languages (POPL), Rome, Italy. ACM
(2013)

11. Bouajjani, A., Habermehl, P., Hoĺık, L., Touili, T., Vojnar, T.: Antichain-based
universality and inclusion testing over nondeterministic finite tree automata. In:
Ibarra, O.H., Ravikumar, B. (eds.) CIAA 2008. LNCS, vol. 5148, pp. 57–67.
Springer, Heidelberg (2008)

12. Bouajjani, A., Habermehl, P., Rogalewicz, A., Vojnar, T.: Abstract regular tree
model checking of complex dynamic data structures. In: Yi, K. (ed.) SAS 2006.
LNCS, vol. 4134, pp. 52–70. Springer, Heidelberg (2006)

13. Clemente, L., Mayr, R.: Advanced automata minimization. In: 40th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL,
pp. 63–74. ACM (2013)

14. Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez, D.,
Tison, S., Tommasi, M.: Tree automata techniques and applications (2008). http://
www.grappa.univ-lille3.fr/tata. Release 18 November 2008

15. Durand, I.: Autowrite (2015). http://dept-info.labri.fr/∼idurand/autowrite
16. Genet, T., et al.: Timbuk (2015). http://www.irisa.fr/celtique/genet/timbuk/
17. Etessami, K.: A hierarchy of polynomial-time computable simulations for

automata. In: Brim, L., Jančar, P., Křet́ınský, M., Kučera, A. (eds.) CONCUR
2002. LNCS, vol. 2421, pp. 131–144. Springer, Heidelberg (2002)

18. Habermehl, P., Hoĺık, L., Rogalewicz, A., Šimáček, J., Vojnar, T.: Forest automata
for verification of heap manipulation. In: Gopalakrishnan, G., Qadeer, S. (eds.)
CAV 2011. LNCS, vol. 6806, pp. 424–440. Springer, Heidelberg (2011)

19. Hoĺık, L.: Simulations and Antichains for Efficient Handling of Finite Automata.
Ph.D. thesis, Faculty of Information Technology of Brno University of Technology
(2011)

20. Hoĺık, L., Lengál, O., Rogalewicz, A., Šimáček, J., Vojnar, T.: Fully automated
shape analysis based on forest automata. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 740–755. Springer, Heidelberg (2013)

21. Hoĺık, L., Lengál, O., Šimáček, J., Vojnar, T.: Efficient inclusion checking on
explicit and semi-symbolic tree automata. In: Bultan, T., Hsiung, P.-A. (eds.)
ATVA 2011. LNCS, vol. 6996, pp. 243–258. Springer, Heidelberg (2011)

69

Reduction of Nondeterministic Tree Automata 735

22. Lengál, O., Simácek, J., Vojnar, T.: Libvata: highly optimised non-deterministic
finite tree automata library (2015). http://www.fit.vutbr.cz/research/groups/
verifit/tools/libvata/

23. Lengál, O., Simácek, J., Vojnar, T., Habermehl, P., Hoĺık, L., Rogalewicz, A.:
Forester: tool for verification of programs with pointers (2015). http://www.fit.
vutbr.cz/research/groups/verifit/tools/forester/

24. Tabakov, D., Vardi, M.: Model Checking Büchi Specifications. In LATA, volume
Report 35/07. Research Group on Mathematical Linguistics, Universitat Rovira i
Virgili, Tarragona (2007)

70

Efficient Inclusion Checking on Explicit and
Semi-symbolic Tree Automata�

Lukáš Holı́k1,2, Ondřej Lengál1, Jiřı́ Šimáček1,3, and Tomáš Vojnar1

1 FIT, Brno University of Technology, Czech Republic
2 Uppsala University, Sweden

3 VERIMAG, UJF/CNRS/INPG, Gières, France

Abstract. The paper considers several issues related to efficient use of tree au-
tomata in formal verification. First, a new efficient algorithm for inclusion check-
ing on non-deterministic tree automata is proposed. The algorithm traverses the
automaton downward, utilizing antichains and simulations to optimize its run.
Results of a set of experiments are provided, showing that such an approach of-
ten very significantly outperforms the so far common upward inclusion checking.
Next, a new semi-symbolic representation of non-deterministic tree automata,
suitable for automata with huge alphabets, is proposed together with algorithms
for upward as well as downward inclusion checking over this representation of
tree automata. Results of a set of experiments comparing the performance of these
algorithms are provided, again showing that the newly proposed downward inclu-
sion is very often better than upward inclusion checking.

1 Introduction

Finite tree automata play a crucial role in several formal verification techniques, such
as (abstract) regular tree model checking [3,5], verification of programs with complex
dynamic data structures [6,11], analysis of network firewalls [7], and implementation
of decision procedures of logics such as WS2S or MSO [15], which themselves have
numerous applications (among the most recent and promising ones, let us mention at
least verification of programs manipulating heap structures with data [16]).

Recently, there has been notable progress in the development of algorithms for ef-
ficient manipulation of non-deterministic finite tree automata (TA), more specifically,
in solving the crucial problems of automata reduction [1] and of checking language
inclusion [18,4,2]. As shown, e.g., in [4], replacing deterministic automata by non-
deterministic ones can—in combination with the new methods for handling TA—lead
to great efficiency gains. In this paper, we further advance the research on efficient
algorithms for handling TA by (i) proposing a new algorithm for inclusion checking
that turns out to significantly outperform the existing algorithms in most of our exper-
iments and (ii) by presenting a semi-symbolic multi-terminal binary decision diagram
(MTBDD) based representation of TA, together with various important algorithms for
handling TA working over this representation.

� This work was supported by the Czech Science Foundation (projects P103/10/0306 and
102/09/H042), the Czech Ministry of Education (projects COST OC10009 and MSM
0021630528), the BUT FIT project FIT-S-11-1, and the Swedish UPMARC project.

T. Bultan and P.-A. Hsiung (Eds.): ATVA 2011, LNCS 6996, pp. 243–258, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

71

244 L. Holı́k et al.

The classic textbook algorithm for checking inclusion L(AS) ⊆ L(AB) between two
TA AS (Small) and AB (Big) first determinizes AB, computes the complement automa-
ton AB of AB, and then checks language emptiness of the product automaton accepting
L(AS)∩L(AB). This approach has been optimized in [18,4,2] which describe variants
of this algorithm that try to avoid constructing the whole product automaton (which
can be exponentially larger than AB and which is indeed extremely large in many prac-
tical cases) by constructing its states and checking language emptiness on the fly. By
employing the antichain principle [18,4], possibly combined with using upward simula-
tion relations [2], the algorithm is often able to prove or refute inclusion by constructing
a small part of the product automaton only1. We denote these algorithms as upward al-
gorithms to reflect the direction in which they traverse automata AS and AB.

The upward algorithms are sufficiently efficient in many practical cases. However,
they have two drawbacks: (i) When generating the bottom-up post-image of a set S of
sets of states, all possible n-tuples of states from all possible products S1 × . . .×Sn, Si ∈
S need to be enumerated. (ii) Moreover, these algorithms are known to be compatible
with only upward simulations as a means of their possible optimization, which is a
disadvantage since downward simulations are often richer and also cheaper to compute.

The alternative downward approach to checking TA language inclusion was first pro-
posed in [13] in the context of subtyping of XML types. This algorithm is not derivable
from the textbook approach and has a more complex structure with its own weak points;
nevertheless, it does not suffer from the two issues of the upward algorithm mentioned
above. We generalize the algorithm of [13] for automata over alphabets with an arbi-
trary rank ([13] considers rank at most two), and, most importantly, we improve it sig-
nificantly by using the antichain principle, empowered by a use of the cheap and usually
large downward simulation. In this way, we obtain an algorithm which is complemen-
tary to and highly competitive with the upward algorithm as shown by our experimental
results (in which the newly proposed algorithm significantly dominates in most of the
considered cases).

Certain important applications of TA such as formal verification of programs with
complex dynamic data structures or decision procedures of logics such as WS2S or
MSO require handling very large alphabets. Here, the common choice is to use the
MONA tree automata library [15] which is based on representing transitions of TA
symbolically using MTBDDs. However, the encoding used by MONA is restricted to
deterministic automata only. This implies a necessity of immediate determinisation after
each operation over TA that introduces nondeterminism, which very easily leads to
a state space explosion. Despite the extensive engineering effort spent to optimize the
implementation of MONA, this fact significantly limits its applicability.

As a way to overcome this difficulty, we propose a semi-symbolic representation
of non-deterministic TA which generalises the one used by MONA, and we develop

1 The work of [18] does, in fact, not use the terminology of antichains despite implementing
them in a symbolic, BDD-based way. It specialises to binary tree automata only. A more gen-
eral introduction of antichains within a lattice-theoretic framework appeared in the context of
word automata in [19]. Subsequently, [4] has generalized [19] for explicit upward inclusion
checking on TA and experimentally advocated its use within abstract regular tree model check-
ing [4]. See also [10] for other combinations of antichains and simulations for word automata.

72

Efficient Inclusion Checking on Explicit and Semi-symbolic Tree Automata 245

algorithms implementing the basic operations on TA (such as union, intersection, etc.)
as well as more involved algorithms for computing simulations and for checking inclu-
sion (using simulations and antichains to optimize it) over the proposed representation.
We also report on experiments with a prototype implementation of our algorithms show-
ing again a dominance of downward inclusion checking and justifying usefulness of our
symbolic encoding for TA with large alphabets.

The rest of this paper is organised as follows. Section 2 contains basic definitions
for tree automata, tree automata languages, and simulations. Section 3 describes our
downward inclusion checking algorithm and its experimental comparison with the up-
ward algorithms. Further, Section 4 presents our MTBDD-based TA encoding, the algo-
rithms working over this encoding, and an experimental evaluation of these algorithms.
Section 5 then concludes the paper.

2 Preliminaries

A ranked alphabet Σ is a set of symbols together with a ranking function # : Σ →
N. For a ∈ Σ, the value #a is called the rank of a. For any n ≥ 0, we denote by Σn

the set of all symbols of rank n from Σ. Let ε denote the empty sequence. A tree t
over a ranked alphabet Σ is a partial mapping t : N∗ → Σ that satisfies the following
conditions: (1) dom(t) is a finite prefix-closed subset of N∗ and (2) for each v ∈ dom(t),
if #t(v) = n ≥ 0, then {i | vi ∈ dom(t)} = {1, . . . ,n}. Each sequence v ∈ dom(t) is called
a node of t. For a node v, we define the ith child of v to be the node vi, and the ith subtree
of v to be the tree t ′ such that t ′(v′) = t(viv′) for all v′ ∈ N∗. A leaf of t is a node v which
does not have any children, i.e., there is no i ∈ N with vi ∈ dom(t). We denote by TΣ the
set of all trees over the alphabet Σ.

A (finite, non-deterministic) tree automaton (abbreviated sometimes as TA in the
following) is a quadruple A = (Q,Σ,Δ,F) where Q is a finite set of states, F ⊆ Q is
a set of final states, Σ is a ranked alphabet, and Δ is a set of transition rules. Each
transition rule is a triple of the form ((q1, . . . ,qn),a,q) where q1, . . . ,qn,q ∈ Q,a ∈ Σ,
and #a = n. We use equivalently (q1, . . . ,qn)

a−→ q and q
a−→ (q1, . . . ,qn) to denote

that ((q1, . . . ,qn),a,q) ∈ Δ. The two notations correspond to the bottom-up and top-
down representation of tree automata, respectively. (Note that we can afford to work
interchangeably with both of them since we work with non-deterministic tree automata,
which are known to have an equal expressive power in their bottom-up and top-down
representations.) In the special case when n = 0, we speak about the so-called leaf rules,
which we sometimes abbreviate as

a−→ q or q
a−→.

For an automaton A = (Q,Σ,Δ,F), we use Q# to denote the set of all tuples of
states from Q with up to the maximum arity that some symbol in Σ has, i.e., if r =
maxa∈Σ #a, then Q# =

⋃
0≤i≤r Qi. For p ∈ Q and a ∈ Σ, we use downa(p) to denote the

set of tuples accessible from p over a in the top-down manner; formally, downa(p) =

{(p1, . . . , pn) | p
a−→ (p1, . . . , pn)}. For a ∈ Σ and (p1, . . . , pn) ∈ Q#a, we denote by

upa((p1, . . . , pn)) the set of states accessible from (p1, . . . , pn) over the symbol a in
the bottom-up manner; formally, upa((p1, . . . , pn)) = {p | (p1, . . . , pn)

a−→ p}. We also
extend these notions to sets in the usual way, i.e., for a ∈ Σ, P ⊆ Q, and R ⊆ Q#a,
downa(P) =

⋃
p∈P downa(p) and upa(R) =

⋃
(p1,...,pn)∈R upa((p1, . . . , pn)).

73

246 L. Holı́k et al.

Let A = (Q,Σ,Δ,F) be a TA. A run of A over a tree t ∈ TΣ is a mapping π : dom(t) →
Q such that, for each node v ∈ dom(t) of rank #t(v) = n where q = π(v), if qi = π(vi)

for 1 ≤ i ≤ n, then Δ has a rule (q1, . . . ,qn)
t(v)−→ q. We write t

π
=⇒ q to denote that

π is a run of A over t such that π(ε) = q. We use t =⇒ q to denote that t
π

=⇒ q for
some run π. The language accepted by a state q is defined by LA(q) = {t | t =⇒ q},
while the language of a set of states S ⊆ Q is defined as LA(S) =

⋃
q∈S LA(q). When

it is clear which TA A we refer to, we only write L(q) or L(S). The language of A
is defined as L(A) = LA (F). We also extend the notion of a language to a tuple of
states (q1, . . . ,qn) ∈ Qn by letting L((q1, . . . ,qn)) = L(q1)×·· ·×L(qn). The language
of a set of n-tuples of sets of states S ⊆ (2Q)

n
is the union of languages of elements of

S, the set L(S) =
⋃

E∈S L(E). We say that X accepts y to express that y ∈ L(X).
A downward simulation on TA A = (Q,Σ,Δ,F) is a preorder relation �D⊆ Q × Q

such that if q �D p and (q1, . . . ,qn)
a−→ q, then there are states p1, . . . , pn such that

(p1, . . . , pn)
a−→ p and qi �D pi for each 1 ≤ i ≤ n. Given a TA A = (Q,Σ,Δ,F) and

a downward simulation �D, an upward simulation �U⊆ Q× Q induced by �D is a re-
lation such that if q �U p and (q1, . . . ,qn)

a−→ q′ with qi = q, 1 ≤ i ≤ n, then there are
states p1, . . . , pn, p′ such that (p1, . . . , pn)

a−→ p′ where pi = p, q′ �U p′, and q j �D p j

for each j such that 1 ≤ j = i ≤ n.

3 Downward Inclusion Checking

Let us fix two tree automata AS = (QS,Σ,ΔS,FS) and AB = (QB,Σ,ΔB,FB) for which we
want to check whether L(AS) ⊆ L(AB) holds. If we try to answer this query top-down
and we proceed in a naı̈ve way, we immediately realize that the fact that the top-down
successors of particular states are tuples of states leads us to checking inclusion of the
languages of tuples of states. Subsequently, the need to compare the languages of each
corresponding pair of states in these tuples will again lead to comparing the languages
of tuples of states, and hence, we end up comparing the languages of tuples of tuples of
states, and the need to deal with more and more nested tuples of states never stops.

For instance, given a transition q
a−→ (p1, p2) in AS, transitions r

a−→ (s1,s2) and
r

a−→ (t1,t2) in AB, and assuming that there are no further top-down transitions from q
and r, it holds that L(q) ⊆ L(r) if and only if L((p1, p2)) ⊆ L((s1,s2))∪ L((t1,t2)).
Note that the union L((s1,s2))∪ L((t1, t2)) cannot be computed component-wise, this
is, L((s1,s2))∪L((t1,t2)) = (L(s1)∪L(t1))× (L(s2)∪L(t2)). For instance, provided
L(s1) = L(s2) = {b} and L(t1) = L(t2) = {c}, it holds that L((s1,s2))∪L((t1, t2)) =
{(b,b),(c,c)}, but the component-wise union is (L(s1)∪L(t1)) × (L(s2)∪L(t2)) =
{(b,b),(b,c),(c,b),(c,c)}. Hence, we cannot simply check whether L(p1) ⊆ L(s1)∪
L(t1) and L(p2) ⊆ L(s2)∪L(t2) to answer the original query, and we have to proceed
by checking inclusion on the obtained tuples of states. However, exploring the top-down
transitions that lead from the states that appear in these tuples will lead us to dealing
with tuples of tuples of states, etc.

Fortunately, there is a way out of the above trap. In particular, as first observed in [13]
in the context of XML type checking, we can exploit the following property of the
Cartesian product of sets G,H ⊆ U: G× H = (G× U)∩ (U × H).

74

Efficient Inclusion Checking on Explicit and Semi-symbolic Tree Automata 247

Hence, when we continue with our example, we get L((p1, p2)) = L(p1)×L(p2) ⊆
L((s1,s2))∪L((t1,t2)) = (L(s1)×L(s2))∪(L(t1)×L(t2)) = ((L(s1)×TΣ)∩(TΣ ×
L(s2))) ∪ ((L(t1) × TΣ) ∩ (TΣ × L(t2))). This can further be rewritten, using the dis-
tributive laws in the (2TΣ×TΣ ,⊆) lattice, as L(p1)× L(p2) ⊆ ((L(s1)× TΣ)∪ (L(t1)×
TΣ)) ∩ ((L(s1) × TΣ) ∪ (TΣ × L(t2))) ∩ ((TΣ × L(s2)) ∪ (L(t1) × TΣ)) ∩ ((TΣ ×
L(s2))∪ (TΣ × L(t2))). It is easy to see that the inclusion holds exactly if it holds for
all components of the intersection, i.e., if and only if L(p1)×L(p2) ⊆ ((L(s1)×TΣ)∪
(L(t1)× TΣ)) ∧ L(p1)× L(p2) ⊆ ((L(s1)× TΣ)∪ (TΣ × L(t2))) ∧ L(p1)× L(p2) ⊆
((TΣ × L(s2))∪ (L(t1)× TΣ)) ∧ L(p1)× L(p2) ⊆ ((TΣ × L(s2))∪ (TΣ × L(t2))).

Two things should be noted in the above condition: (1) If we are computing the union
of languages of two tuples such that they have TΣ at all indices other than some index
i, we can compute it component-wise. For instance, L(p1)× L(p2) ⊆ ((L(s1)× TΣ)∪
(L(t1) × TΣ)) = (L(s1) ∪ L(t1)) × TΣ. This clearly holds iff L(p1) ⊆ L(s1) ∪ L(t1).
(2) If TΣ does not appear at the same positions as in the inclusion L(p1)× L(p2) ⊆
((L(s1)×TΣ)∪(TΣ ×L(t2))), it must hold that either L(p1) ⊆ L(s1) or L(p2) ⊆ L(t2).

Using the above observations, we can finally rewrite the equation L(p1)× L(p2) ⊆
L((s1,s2))∪ L((t1,t2)) into the following formula that does not contain languages of
tuples but of single states only: L(p1) ⊆ L(s1)∪ L(t1) ∧ (L(p1) ⊆ L(s1)∨ L(p2) ⊆
L(t2)) ∧ (L(p1) ⊆ L(t1)∨L(p2) ⊆ L(s2)) ∧ L(p2) ⊆ L(s2)∪L(t2).

The above reasoning can be generalized to dealing with transitions of any arity as
shown in Theorem 1, proved in [12]. In the theorem, we conveniently exploit the notion
of choice functions. Given PB ⊆ QB and a ∈ Σ, #a = n ≥ 1, we denote by cf (PB,a) the set
of all choice functions f that assign an index i, 1 ≤ i ≤ n, to all n-tuples (q1, . . . ,qn) ∈ Qn

B
such that there exists a state in PB that can make a transition over a to (q1, . . . ,qn);
formally, cf (PB,a) = { f : downa(PB) → {1, . . . ,#a}}.

Theorem 1. Let AS = (QS,Σ,ΔS,FS) and AB = (QB,Σ,ΔB,FB) be tree automata. For
sets PS ⊆ QS and PB ⊆ QB it holds that L(PS) ⊆ L(PB) if and only if ∀pS ∈ PS ∀a ∈ Σ :
if pS

a−→ (r1, . . . ,r#a),

then

⎧
⎪⎪⎨
⎪⎪⎩

downa(PB) = {()} if #a = 0,

∀ f ∈ cf (PB,a) ∃1 ≤ i ≤ #a : L(ri) ⊆
⋃

u∈downa(PB)
f (u)=i

L(ui) if #a > 0.

3.1 Basic Algorithm of Downward Inclusion Checking

Next, we construct a basic algorithm for downward inclusion checking on tree automata
AS = (QS,Σ,ΔS,FS) and AB = (QB,Σ,ΔB,FB). The algorithm is shown as Algorithm 1.
Its main idea relies on a recursive application of Theorem 1 in function expand1.
The function is given a pair (pS,PB) ∈ QS × 2QB for which we want to prove that
L(pS) ⊆ L(PB)—initially, the function is called for every pair (qS,FB) where qS ∈ FS.
The function enumerates all possible top-down transitions that AS can do from pS (lines
3–8). For each such transition, the function either checks whether there is some tran-
sition pB

a−→ for pB ∈ PB if #a = 0 (line 5), or it starts enumerating and recursively

75

248 L. Holı́k et al.

checking queries L(p′
S) ⊆ L(P′

B) on which the result of L(pS) ⊆ L(PB) depends ac-
cording to Theorem 1 (lines 9–16).

The expand1 function keeps track of which inclusion queries are currently be-
ing evaluated in the set workset (line 2). Encountering a query L(p′

S) ⊆ L(P′
B) with

(p′
S,P

′
B) ∈ workset means that the result of L(p′

S) ⊆ L(P′
B) depends on the result of

L(p′
S) ⊆ L(P′

B) itself. In this case, the function immediately successfully returns be-
cause the result of the query then depends only on the other branches of the call tree.

Algorithm 1. Downward inclusion
Input: Tree automata AS = (QS,Σ,ΔS,FS),AB = (QB,Σ,ΔB,FB)
Output: true if L(AS) ⊆ L(AB), false otherwise
foreach qS ∈ FS do1

if ¬expand1(qS,FB, /0) then return false;2
return true;3

Function. expand1(pS, PB, workset)

/* pS ∈ QS, PB ⊆ QB, and workset ⊆ QS × 2QB */
if (pS,PB) ∈ workset then return true;1
workset := workset∪{(pS,PB)};2
foreach a ∈ Σ do3

if #a = 0 then4
if downa(pS) = /0∧downa(PB) = /0 then return false;5

else6
W := downa(PB);7

foreach (r1, . . . ,r#a) ∈ downa(pS) do /* pS
a−→ (r1, . . . ,r#a) */8

foreach f ∈ {W → {1, . . . ,#a}} do9
found := false;10
foreach 1 ≤ i ≤ #a do11

S := {qi | (q1, . . . ,q#a) ∈ W, f ((q1, . . . ,q#a)) = i};12
if expand1(ri,S,workset) then13

found := true;14
break;15

if ¬found then return false;16
return true;17

Using Theorem 1 and noting that Algorithm 1 necessarily terminates because all its
loops are bounded, and the recursion in function expand1 is also bounded due to the
use of workset, it is not difficult to see that the following theorem holds.

Theorem 2. When applied on TA AS = (QS,Σ,ΔS,FS) and AB = (QB,Σ,ΔB,FB), Algo-
rithm 1 terminates and returns true if and only if L(AS) ⊆ L(AB).

3.2 Optimized Algorithm of Downward Inclusion Checking

In this section, we propose several optimizations of the basic algorithm presented above
that, according to our experiments, often have a huge impact on the efficiency of the
algorithm—making it in many cases the most efficient algorithm for checking inclusion
on tree automata that we are currently aware of. In general, the optimizations are based

76

Efficient Inclusion Checking on Explicit and Semi-symbolic Tree Automata 249

Algorithm 2. Downward inclusion (antichains + preorder)

Input: TA AS = (QS,Σ,ΔS,FS),AB = (QB,Σ,ΔB,FB),�⊆ (QS ∪QB)2

Output: true if L(AS) ⊆ L(AB), false otherwise
Data: NN := /0
foreach qS ∈ FS do1

if ¬expand2(qS,FB, /0) then return false;2
return true;3

Function. expand2(pS, PB, workset)

/* pS ∈ QS, PB ⊆ QB, and workset ⊆ QS × 2QB */
if ∃(p′

S,P
′
B) ∈ workset : pS � p′

S ∧P′
B �∀∃ PB then return true;1

if ∃(p′
S,P

′
B) ∈ NN : p′

S � pS ∧PB �∀∃ P′
B then return false ;2

if ∃p ∈ PB : pS � p then return true;3
workset := workset∪{(pS,PB)};4
foreach a ∈ Σ do5

if #a = 0 then6
if downa(pS) = /0∧downa(PB) = /0 then return false;7

else8
W := downa(PB);9

foreach (r1, . . . ,r#a) ∈ downa(pS) do /* pS
a−→ (r1, . . . ,r#a) */10

foreach f ∈ {W → {1, . . . ,#a}} do11
found := false;12
foreach 1 ≤ i ≤ #a do13

S := {qi | (q1, . . . ,q#a) ∈ W, f ((q1, . . . ,q#a)) = i};14
if expand2(ri,S,workset) then15

found := true;16
break;17

if ∃(r′,H) ∈ NN : r′ � ri ∧S �∀∃ H then18
NN := (NN \{(r′,H) | H �∀∃ S,ri � r′})∪{(ri,S)};19

if ¬found then return false;20
return true;21

on an original use of simulations and antichains in a way suitable for the context of
downward inclusion checking.

In what follows, we assume that there is available a preorder �⊆ (QS ∪ QB)2 com-
patible with language inclusion, i.e., such that p � q =⇒ L(p) ⊆ L(q), and we use
P �∀∃ R where P,R ⊆ (QS ∪QB)2 to denote that ∀p ∈ P∃r ∈ R : p � r. An example of
such a preorder, which can be efficiently computed, is the (maximal) downward simu-
lation �D. We propose the following concrete optimizations of the downward checking
of L(pS) ⊆ L(PB):
1. If there exists a state pB ∈ PB such that pS � pB, then the inclusion clearly holds

(from the assumption made about �), and no further checking is needed.
2. Next, it can be seen without any further computation that the inclusion does not

hold if there exists some (p′
S,P

′
B) such that p′

S � pS and PB �∀∃ P′
B, and we have al-

ready established that L(p′
S) ⊆ L(P′

B). Indeed, we have L(PB) ⊆ L(P′
B) ⊇ L(p′

S) ⊆
L(pS), and therefore L(pS) ⊆ L(PB).

3. Finally, we can stop evaluating the given inclusion query if there is some (p′
S,P

′
B) ∈

workset such that pS � p′
S and P′

B �∀∃ PB. Indeed, this means that the result of
L(p′

S) ⊆ L(P′
B) depends on the result of L(pS) ⊆ L(PB). However, if L(p′

S) ⊆
L(P′

B) holds, then also L(pS) ⊆ L(PB) holds because we have L(pS) ⊆ L(p′
S) ⊆

L(P′
B) ⊆ L(PB).

77

250 L. Holı́k et al.

Table 1. Percentages of cases in which the respective methods were the fastest

Size Pairs Timeout Up Up+s Down Down+s Avg up Avg down
speedup speedup

50–250 323 20 s 31.21 % 0.00 % 53.50 % 15.29 % 1.71 3.55
400–600 64 60 s 9.38 % 0.00 % 39.06 % 51.56 % 0.34 46.56

The version of Algorithm 1 including all the above proposed optimizations is shown
as Algorithm 2. The optimizations can be found in the function expand2 that replaces
the function expand1. In particular, line 3 implements the first optimization, line 2 the
second one, and line 1 the third one. In order to implement the second optimization, the
algorithm maintains a new set NN. This set stores pairs (pS,PB) for which it has already
been shown that the inclusion L(pS) ⊆ L(PB) does not hold2.

As a further optimization, the set NN is maintained as an antichain w.r.t. the pre-
order that compares the pairs stored in NN such that the states from QS on the left are
compared w.r.t. �, and the sets from 2QB on the right are compared w.r.t. �∃∀ (line 19).
Clearly, there is no need to store a pair (pS,PB) that is bigger in the described sense
than some other pair (p′

S,P
′
B) since every time (pS,PB) can be used to prune the search,

(p′
S,P

′
B) can also be used.

Taking into account Theorem 2 and the above presented facts, it is not difficult to see
that the following holds.

Theorem 3. When applied on TA AS = (QS,Σ,ΔS,FS) and AB = (QB,Σ,ΔB,FB), Algo-
rithm 2 terminates and returns true if and only if L(AS) ⊆ L(AB).

3.3 Experimental Results

We have implemented Algorithm 1 (which we mark as Down in what follows) as well as
Algorithm 2 using the maximum downward simulation as the input preorder (which is
marked as Down+s below). We have also implemented the algorithm of upward inclu-
sion checking using antichains from [4] and its modification using upward simulation
proposed in [2] (these algorithms are marked as Up and Up+s below). We tested our
approach on 387 tree automata pairs of different sizes generated from the intermediate
steps of abstract regular tree model checking of the algorithm for rebalancing red-black
trees after insertion or deletion of a leaf node [4].

The results of the experiments are presented in the following tables. Table 1 com-
pares the methods according to the percentage of the cases in which they were the
fastest when checking inclusion on the same automata pair. The results are grouped
into two sets according to the size of the automata measured in the number of states.
The table also gives the average speedup of the fastest upward approach compared to
the fastest downward approach in case the upward computation was faster than the
downward one (and vice versa). Table 2 provides a comparison of the methods that

2 In [12], a further optimization exploiting that L(pS) ⊆ L(PB) has been shown to hold is pro-
posed, but it is much more complicated in order to avoid memorizing possibly invalid assump-
tions made during the computation.

78

Efficient Inclusion Checking on Explicit and Semi-symbolic Tree Automata 251

Table 2. Percentages of cases in which the methods were the fastest
when not counting the time for computing the simulation

Size Pairs Timeout Up+s Down+s Avg up Avg down
speedup speedup

50–250 323 20 s 81.82 % 18.18 % 1.33 3.60
400–600 64 60 s 20.31 % 79.69 % 9.92 2116.29

Table 3. Percentages of successful runs that did not timeout

Size Pairs Timeout Up Up+s Down Down+s
50–250 323 20 s 100.00 % 100.00 % 74.92 % 99.07 %

400–600 64 60 s 51.56 % 51.56 % 39.06 % 90.62 %

use simulation (ei-
ther upward for Up+s
or downward for
Down+s) without
counting the time for
computing simulation
(in such cases they
were always faster
than the methods not
using simulations).
This comparison is
motivated by the ob-
servation that inclu-
sion checking may be
used as a part of a
bigger computation that anyway computes the simulation relations (which happens,
e.g., in abstract regular model checking where the simulations are used for reducing the
size of the encountered automata). Finally, Table 3 summarizes how often the particular
methods were successful in our testing runs (i.e., how often they did not timeout.).

The results show that the overhead of computing upward simulation is too high in all
the cases that we have considered, causing upward inclusion checking using simulation
to be the slowest when the time for computing the simulation used by the algorithm is
included3. Next, it can be seen that for each of the remaining approaches there are cases
in which they win in a significant way. However, the downward approaches are clearly
dominating in significantly more of our test cases (with the only exception being the
case of small automata when the time of computing simulations is not included). More-
over, the dominance of the downward checking increases with the size of the automata
that we considered in our test cases.

4 Semi-symbolic Representation of Tree Automata

We next consider a natural, semi-symbolic, MTBDD-based encoding of non-determin-
istic TA, suitable for handling automata with huge alphabets. We propose algorithms
for computing downward simulations and for efficient downward inclusion checking on
the considered representation. Due to space restrictions, we defer algorithms for further
operations on the considered semi-symbolic representation of TA, including upward
inclusion checking, to [12].

4.1 Binary Decision Diagrams

Let B = {0,1} be the set of Boolean values. A Boolean function of arity k is a func-
tion of the form f : Bk → B. We extend the notion of Boolean functions to an arbitrary

3 Note that Up+s was winning over Up in the experiments of [2] even with the time for computing
simulation included, which seems to be caused by a much less efficient implementation of the
antichains in the original algorithm.

79

252 L. Holı́k et al.

nonempty set S where a k-ary Boolean function extended to the domain set S is a func-
tion of the form f : Bk → S.

A reduced ordered binary decision diagram (ROBDD) [8] r over n Boolean variables
x1, . . . ,xn is a connected directed acyclic graph with a single source node (denoted as
r.root) and at least one of the two sink nodes 0 and 1. We call internal the nodes which
are not sink nodes. A function var assigns each internal node a Boolean variable from
the set X = {x1, . . . ,xn}, which is assumed to be ordered by the ordering x1 < x2 <
· · · < xn. For every internal node v there exist 2 outgoing edges labelled low and high.
We denote by v.low a node w and by v.high a node z such that there exists a directed edge
from v to w labelled by low and a directed edge from v to z labelled by high, respectively.
For each internal node v, it must hold that var(v) < var(v.low) and var(v) < var(v.high)
and also v.low = v.high. A node v represents an n-ary Boolean function �v� : Bn → B
that assigns to each assignment to the Boolean variables in X a corresponding Boolean
value defined in the following way (using x as an abbreviation for x1 . . .xn): �0�= λ x . 0,
�1� = λ x . 1, and �v� = λ x . (¬xi ∧ �v.low�)∨ (xi ∧ �v.high�) for var(v) = xi. For every
two nodes v and w, it holds that v = w =⇒ �v� = �w�. We say that an ROBDD r
represents the Boolean function �r� = �r.root�. Dually, for a Boolean function f , we
use 〈 f 〉 to denote the ROBDD representing f , i.e., f = �〈 f 〉�.

We generalise the standard Apply operation for manipulation of Boolean functions
represented by ROBDDs in the following way: let op1, op2, and op3 be in turn arbitrary
unary, binary, and ternary Boolean functions. Then the functions Apply1, Apply2, and
Apply3 produce a new ROBDD which is defined as follows for ROBDDs f , g, and h:
Apply1(f ,op1) = 〈λ x . op1(� f (x)�)〉, Apply2(f ,g,op2) = 〈λ x . op2(� f (x)�,�g(x)�)〉,
and Apply3(f ,g,h,op3) = 〈λ x . op3(� f (x)�,�g(x)�,�h(x)�)〉. In practice, one can also
use Apply operations with side-effects.

The notion of ROBDDs is further generalized to multi-terminal binary decision dia-
grams (MTBDDs) [9]. MTBDDs are essentially the same data structures as ROBDDs,
the only difference being the fact that the set of sink nodes is not restricted to two nodes.
Instead, it can contain an arbitrary number of nodes labelled uniquely by elements of
an arbitrary domain set S. All standard notions for ROBDDs can naturally be extended
to MTBDDs. An MTBDD m then represents a Boolean function extended to S, i.e.,
�m� : Bn → S. Further, the concept of shared MTBDDs is used. A shared MTBDD s is
an MTBDD with multiple source nodes (or roots) that represents a mapping of every
element of the set of roots R to a function induced by the MTBDD corresponding to the
the given root, i.e., �s� : R → (Bn → S).

4.2 Encoding the Transition Function of a TA Using Shared MTBDDs

We fix a tree automaton A = (Q,Σ,Δ,F) for the rest of the section. We consider both
a top-down and a bottom-up representation of its transition function. This is because
some operations on A are easier to do on the former representation while others on the
latter. We assume w.l.o.g. that the input alphabet Σ of A is represented in binary using
n bits. We assign each bit in the binary encoding of Σ a Boolean variable from the set
{x1, . . . ,xn}. We can then use shared MTBDDs with a set of roots R and a domain set S
for encoding the various functions of the form R → (Σ → S) that we will need.

Our bottom-up representation of the transition function Δ of the TA A uses a shared
MTBDD Δbu over Σ where the set of root nodes is Q#, and the domain of labels of

80

Efficient Inclusion Checking on Explicit and Semi-symbolic Tree Automata 253

sink nodes is 2Q. The MTBDD Δbu represents a function �Δbu� : Q# → (Σ → 2Q)

defined as �Δbu� = λ (q1, . . . ,qp) a . {q | (q1, . . . ,qp)
a−→ q}. It clearly holds that

�Δbu((q1, . . . ,qp),a)� = upa((q1, . . . ,qp)).
Our top-down representation of the transition function Δ of the TA A uses a shared

MTBDD Δtd over Σ where the set of root nodes is Q, and the domain of labels of sink
nodes is 2Q#

. The MTBDD Δtd represents a function �Δtd� : Q → (Σ → 2Q#
) defined as

�Δtd� = λ q a . {(q1, . . . ,qp) | q
a−→ (q1, . . . ,qp)}. Clearly, �Δtd(q,a)� = downa(q).

Sometimes it is necessary to convert between the bottom-up and top-down repre-
sentation of a TA. For instance, when computing downward simulations (as explained
below), one needs to switch between the bottom-up and top-down representation. For-
tunately, the two representations are easy to convert (cf. [12]).

4.3 Downward Simulation on Semi-symbolically Encoded TA

We next give an algorithm for computing the maximum downward simulation rela-
tion on the states of the TA A whose transition function is encoded using our semi-
symbolic representation. The algorithm is inspired by the algorithm from [14] proposed
for computing simulations on finite (word) automata. For use in the algorithm, we ex-
tend the notion of downward simulation to tuples of states by defining (q1, . . . ,qn) �D

(r1, . . . ,rn) to hold iff ∀1 ≤ i ≤ n : qi �D ri.
Our algorithm for computing downward simulations, shown as Algorithm 3, starts

with a gross over-approximation of the maximum downward simulation, which is then
pruned until the maximum downward simulation is obtained. The algorithm uses the
following main data structures:

– For each q ∈ Q, sim(q) ⊆ Q is the set of states that are considered to simulate q at
the current step of the computation. Its value is gradually pruned during the compu-
tation. At the end, it encodes the maximum downward simulation being computed.

– The set remove ⊆ Q# × Q# contains pairs ((q1, . . . ,qn),(r1, . . . ,rn)) of tuples of
states, for which it is known that (q1, . . . ,qn) �D (r1, . . . ,rn), for processing.

– Finally, cnt is a shared MTBDD encoding a function �cnt� : Q# → (Σ → (Q → N))
that for each (q1, . . . ,qn) ∈ Q#, a ∈ Σ, and q ∈ Q, gives a value h ∈ N such that
(q1, . . . ,qn) can make a bottom-up transition over a to h distinct states r ∈ sim(q).

The algorithm works in two phases. We assume that we start with a TA whose transition
function is represented bottom-up. In the initialization phase, the dual top-down repre-
sentation of the transition function is first computed (note that we can also start with a
top-down representation and compute the bottom-up representation as both are needed
in the algorithm). The three main data structures are then initialized as follows:

– For each q ∈ Q, the set sim(q) is initialized as the set of states that can make top-
down transitions over the same symbols as q, which is determined using the Apply
operation on line 9. This is, when starting the main computation loop on line 17,
the value of sim for each state q ∈ Q is sim(q) = {r | ∀a ∈ Σ : q

a−→ (q1, . . . ,qn) =⇒
r

a−→ (r1, . . . ,rn)}.
– The remove set is initialized to contain each pair of tuples of states ((q1, . . . ,qn),

(r1, . . . ,rn)) for which it holds that the relation (q1, . . . ,qn) �D (r1, . . . ,rn) is broken

81

254 L. Holı́k et al.

Algorithm 3. Computing downward simulation on semi-symbolic TA

Input: Tree automaton A = (Q,Σ,Δbu,F)
Output: Maximum downward simulation �D⊆ Q2

/* initialization */
Δtd := invertMTBDD(Δbu);1
remove := /0;2

initCnt := 〈λ a . /0〉 ; /* �initCnt� : Σ → (Q → N) */3
foreach q ∈ Q do4

sim(q) := /0;5

initCnt := Apply2(Δtd(q), initCnt,(λ X Y . Y ∪{(q, |X |)});6
foreach r ∈ Q do7

isSim := true;8

Apply2(Δtd(q),Δtd(r),(λ X Y . if (X = /0∧Y = /0) then isSim := false)) ;9
if isSim then10

sim(q) := sim(q)∪{r};11
else12

foreach (q1, . . . ,qn) ∈ Q#,(r1, . . . ,rn) ∈ Q# : ∃1 ≤ i ≤ n : qi = q∧ ri = r do13
remove := remove∪{((q1, . . . ,qn),(r1, . . . ,rn))};14

cnt := 〈λ (q1, . . . ,qn) a . /0〉 ; /* �cnt� : Q# → (Σ → (Q → N)) */15

foreach (q1, . . . ,qn) ∈ Q# do cnt((q1, . . . ,qn)) := initCnt;16
/* computation */
while ∃((q1, . . . ,qn),(r1, . . . ,rn)) ∈ remove do17

remove := remove\{((q1, . . . ,qn),(r1, . . . ,rn))};18
cnt((q1, . . . ,qn)) :=19

Apply3(Δbu((r1, . . . ,rn)),Δbu((q1, . . . ,qn)),cnt((q1, . . . ,qn)),(refine sim remove));
return {(q,r) | q ∈ Q,r ∈ sim(q)};20

Function. refine(&sim, &remove, upaR, upaQ, cntaQ)
newCntaQ := cntaQ;1
foreach s ∈ upaR do2

newCntaQ(s) := newCntaQ(s)− 1;3
if newCntaQ(s) = 0 then4

foreach p ∈ upaQ : s ∈ sim(p) do5
foreach (p1, . . . , pn) ∈ Q#,(s1, . . . ,sn) ∈ Q# : ∃1 ≤ i ≤ n : pi = p∧ si = s do6

if ∀1 ≤ j ≤ n : s j ∈ sim(pj) then7
remove := remove∪{((p1, . . . , pn),(s1, . . . ,sn))};8

sim(p) := sim(p)\{s};9
return newCntaQ;10

even for the initial approximation of �D, i.e., for some position 1 ≤ i ≤ n there is
a pair qi,ri ∈ Q such that ri /∈ sim(qi).

– To initialize the shared MTBDD cnt, the algorithm constructs an auxiliary MTBDD
initCnt representing a function �initCnt� : Σ → (Q → N). Via the Apply operation
on line 6, this MTBDD gradually collects, for each symbol a ∈ Σ, the set of pairs
(q,h) such that q can make a top-down transition to h distinct tuples over the symbol
a. This MTBDD is then copied to the shared MTBDD cnt for each tuple of states
(q1, . . . ,qn) ∈ Q#. This is justified by the fact that we start by assuming that the
simulation relation is equal to Q× Q, which for a symbol a ∈ Σ and a pair (q,h) ∈
cnt((q1, . . . ,qn)) means that (q1, . . . ,qn) can make a bottom-up transition over a to
h distinct states r ∈ sim(q).

82

Efficient Inclusion Checking on Explicit and Semi-symbolic Tree Automata 255

The main computation phase gradually restricts the initial over-approximation of the
maximum downward simulation being computed. As we have said, the remove set con-
tains pairs ((q1, . . . ,qn),(r1, . . . ,rn)) for which it holds that (q1, . . . ,qn) cannot be simu-
lated by (r1, . . . ,rn), i.e., (q1, . . . ,qn) �D (r1, . . . ,rn). When such a pair is processed, the
algorithm decrements the counter �cnt((q1, . . . ,qn),a,s)� for each state s for which there
exists a bottom-up transition over a symbol a ∈ Σ such that (r1, . . . ,rn)

a−→ s. The mean-
ing is that s can make one less top-down transition over a to some (t1, . . . ,tn) such that
(q1, . . . ,qn) �D (t1, . . . ,tn). If �cnt((q1, . . . ,qn),a,s)� drops to zero, it means that s cannot
make a top-down transition over a to any (t1, . . . ,tn) such that (q1, . . . ,qn) �D (t1, . . . ,tn).
This means, for all p ∈ Q such that p can make a top-down transition over a to (q1, . . . ,qn),
that s no longer simulates p, i.e., p �D s. When the simulation relation between p and
s, p �D s, is broken, then the simulation relation between all m-tuples (p1, . . . , pm) and
(s1, . . . ,sm) such that ∃1 ≤ j ≤ m : p j = p ∧ s j = s must also be broken, therefore the
pair ((p1, . . . , pm),(s1, . . . ,sm)) is put to the remove set (unless the simulation relation
between some other states in the tuples has already been broken before).

Correctness of the algorithm is summarised in the below theorem, which can be
proven analogically as correctness of the algorithm proposed in [14], taking into ac-
count the meaning of the above described MTBDD-based structures and the operations
performed on them.

Theorem 4. When applied on a TA A = (Q,Σ,Δ,F) whose transition function is en-
coded semi-symbolically in the bottom-up way as Δbu, Algorithm 3 terminates and re-
turns the maximum downward simulation on Q.

4.4 Downward Inclusion Checking on Semi-symbolically Encoded TA

We now proceed to an algorithm of efficient downward inclusion checking on semi-
symbolically represented TA. The algorithm we propose for this purpose is derived from
Algorithm 2 by plugging the expand3 function instead of the expand2 function. It is
based on the same basic principle as expand2, but it has to cope with the symbolically
encoded transition relation. In particular, in order to inspect whether for a pair (pS,PB)
and all symbols a ∈ Σ the inclusion between each tuple from downa(pS) and the set of
tuples downa(PB) holds, the doesInclusionHold parameter initialized to true is passed
to the Apply operation on line 9 of the expand3 function. If the algorithm finds out that
the inclusion does not hold in some execution of the procDown function in the context
of a single Apply, doesInclusionHold is assigned the false value, which is later returned
by expand3. Otherwise expand3 returns its original true value.

4.5 Experimental Results

We have implemented a prototype of a library for working with TA encoded semi-
symbolically as described above. We have used the CUDD library [17] as an imple-
mentation of shared MTBDDs. The prototype contains the algorithms presented in this
section and some more presented in [12]. The results on downward inclusion checking
that we have obtained with the explicitly represented TA encouraged us to also com-
pare performance of the upward inclusion checking and downward inclusion checking
on automata with large alphabets using our prototype.

83

256 L. Holı́k et al.

Function. expand3(pS, PB, workset)

/* pS ∈ QS, PB ⊆ QB, and workset ⊆ QS × 2QB */
if ∃(p′

S,P
′
B) ∈ workset : pS � p′

S ∧P′
B �∀∃ PB then return true;1

if ∃(p′
S,P

′
B) ∈ NN : p′

S � pS ∧PB �∀∃ P′
B then return false ;2

if ∃p ∈ PB : pS � p then return true;3
workset := workset∪{(pS,PB)};4
tmp := 〈λ a . /0〉;5
foreach pB ∈ PB do6

tmp := Apply2(tmp,Δtd
B (pB),(λ X Y . X ∪Y));7

doesInclusionHold := true;8

Apply2(Δtd
S (pS), tmp,(procDown doesInclusionHold workset));9

return doesInclusionHold;10

Function. procDown(&doesInclusionHold, &workset, downa pS, downaPB)

if () ∈ downa pS ∧ () /∈ downaPB then1
doesInclusionHold := false;2

else3
W := downaPB;4

foreach (r1, . . . ,rn) ∈ downa pS do /* pS
a−→ (r1, . . . ,rn) */5

foreach f ∈ {W → {1, . . . ,n}} do6
found := false;7
foreach 1 ≤ i ≤ n do8

S := {qi | (q1, . . . ,qn) ∈ W, f ((q1, . . . ,qn)) = i};9
if expand3(ri,S,workset) then10

found := true;11
break;12

if ∃(r′,H) ∈ NN : r′ � ri ∧S �∀∃ H then13
NN := (NN \{(r′,H) | H �∀∃ S,ri � r′})∪{(ri,S)};14

if ¬found then15
doesInclusionHold := false;16
return;17

We have compared the upward inclusion checking algorithm from [4] adapted for
semi-symbolically represented tree automata, which is given in [12] (and marked as
UpSym in the following), with the downward inclusion checking algorithm presented
above. In the latter case, we let the algorithm use either the identity relation, which
corresponds to downward inclusion checking without using any simulation (this case is
marked as DownSym below), or the maximum downward simulation (which is marked
as DownSym+s in the results). We have not considered upward inclusion checking with
upward simulation due to its negative results in our experiments with explicitly encoded
automata4. For the comparison, we used 97 pairs of tree automata with a large alphabet
which we encoded into 12 bits. The size of the automata was between 50 and 150 states
and the timeout was set to 300 s. The automata were obtained by taking the automata
considered in Section 3.3 and labelling their transitions by randomly generated sets of
symbols from the considered large alphabet.

The results that we have obtained are presented in the following tables. Table 4 com-
pares the methods according to the percentage of the cases in which they were the

4 We, however, note that possibilities of implementing upward inclusion checking combined
with upward simulations over semi-symbolically encoded TA and a further evaluation of this
algorithm are still interesting subjects for the future.

84

Efficient Inclusion Checking on Explicit and Semi-symbolic Tree Automata 257

fastest when checking inclusion on the same automata pair. This table also presents the
average speedup of the upward approach compared to the fastest downward approach
in case the upward computation was faster than the downward one (and vice versa).
Table 5 summarizes how often each of the methods was successful in the testing runs.

Table 4. Percentages of cases in which the respective meth-
ods were the fastest

UpSym DownSym DownSym+s Avg up Avg down
speedup speedup

6.67 % 90.67 % 2.67 % 24.39 4389.76

Table 5. Successful runs that did not timeout (in %)

UpSym DownSym DownSym+s
77.32 % 77.32 % 26.08 %

When we compare theabove
experimental results with the
results obtained on the explic-
itly represented automata pre-
sented in Section 3.3, we may
note that (1) downward inclu-
sion checking is again signifi-
cantly dominating, but (2) the
advantage of exploiting down-
ward simulation has decreased.
According to the information
we gathered from code profil-
ing of our implementation, this
is due to the overhead of the CUDD library which is used as the underlying layer for
storage of shared MTBDDs of several data structures (which indicates a need of a dif-
ferent MTBDD library to be used or perhaps of a specialised MTBDD library to be
developed).

We also evaluated performance of the implementation of the described algorithms
using a semi-symbolic encoding of TA with performance of the algorithms using an
explicit encoding of TA considered in Section 3 on the automata with the large alphabet.
The symbolic version was in average 8676 times faster than the explicit one as expected
when using a large alphabet.

5 Conclusion

We have proposed a new algorithm for checking language inclusion over non-determi-
nistic TA (based on the one from [13]) that traverses automata in the downward manner
and uses both antichains and simulations to optimize its computation. This algorithm
is, according to our experimental results, mostly superior to the known upward algo-
rithms. We have further presented a semi symbolic MTBDD-based representation of
non-deterministic TA generalising the one used by MONA, together with important
tree automata algorithms working over this representation, most notably an algorithm
for computing downward simulations over TA inspired by [14] and the downward lan-
guage inclusion algorithm improved by simulations and antichains proposed in this
paper. We have experimentally justified usefulness of the symbolic encoding for non-
deterministic TA with large alphabets.

Our experimental results suggest that the MTBDD package CUDD is not very ef-
ficient for our purposes and that better results could probably be achieved using a
specialised MTBDD package whose design is an interesting subject for further work.
Apart from that, it would be interesting to encode antichains used within the language
inclusion checking algorithms symbolically as, e.g., in [18]. An interesting problem
here is how to efficiently encode antichains based not on the subset inclusion but on a

85

258 L. Holı́k et al.

simulation relation. Finally, as a general target, we plan to continue in our work towards
obtaining a really efficient TA library which could ultimately replace the one of MONA.

References

1. Abdulla, P.A., Bouajjani, A., Holı́k, L., Kaati, L., Vojnar, T.: Computing Simulations over
Tree Automata: Efficient Techniques for Reducing Tree Automata. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 93–108. Springer, Heidelberg (2008)

2. Abdulla, P.A., Holı́k, L., Chen, Y.-F., Mayr, R., Vojnar, T.: When Simulation Meets An-
tichains (On Checking Language Inclusion of Nondeterministic Finite (Tree) Automata). In:
Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 158–174. Springer,
Heidelberg (2010)

3. Abdulla, P.A., Jonsson, B., Mahata, P., d’Orso, J.: Regular Tree Model Checking. In:
Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 555–568. Springer, Hei-
delberg (2002)

4. Bouajjani, A., Habermehl, P., Holı́k, L., Touili, T., Vojnar, T.: Antichain-based Universality
and Inclusion Testing over Nondeterministic Finite Tree Automata. In: Ibarra, O.H., Raviku-
mar, B. (eds.) CIAA 2008. LNCS, vol. 5148, pp. 57–67. Springer, Heidelberg (2008)

5. Bouajjani, A., Habermehl, P., Rogalewicz, A., Vojnar, T.: Abstract Regular Tree Model
Checking. ENTCS, vol. 149. Elsevier, Amsterdam (2006)

6. Bouajjani, A., Habermehl, P., Rogalewicz, A., Vojnar, T.: Abstract Regular Tree Model
Checking of Complex Dynamic Data Structures. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134,
pp. 52–70. Springer, Heidelberg (2006)

7. Bourdier, T.: Tree Automata-based Semantics of Firewalls. In: Proc. of SAR-SSI 2011. IEEE,
Los Alamitos (2011)

8. Bryant, R.E.: Graph-based Algorithms for Boolean Function Manipulation. IEEE Trans.
Computers (1986)

9. Clarke, E.M., McMillan, K.L., Zhao, X., Fujita, M., Yang, J.: Spectral Transforms for Large
Boolean Functions with Applications to Technology Mapping. FMSD 10 (1997)

10. Doyen, L., Raskin, J.F.: Antichain Algorithms for Finite Automata. In: Esparza, J., Majum-
dar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 2–22. Springer, Heidelberg (2010)

11. Habermehl, P., Holı́k, L., Rogalewicz, A., Šimáček, J., Vojnar, T.: orest Automata for Veri-
fication of Heap Manipulation. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 424–440. Springer, Heidelberg (2011)

12. Holı́k, L., Lengál, O., Šimáček, J., Vojnar, T.: Efficient Inclusion Checking on Explicit and
Semi-Symbolic Tree Automata. Tech. rep. FIT-TR-2011-04, FIT BUT, Czech Rep. (2011)

13. Hosoya, H., Vouillon, J., Pierce, B.C.: Regular Expression Types for XML. ACM Trans.
Program. Lang. Syst. 27 (2005)

14. Ilie, L., Navarro, G., Yu, S.: On NFA Reductions. In: Karhumäki, J., Maurer, H., Păun, G.,
Rozenberg, G. (eds.) Theory Is Forever. LNCS, vol. 3113, pp. 112–124. Springer, Heidelberg
(2004)

15. Klarlund, N., Møller, A., Schwartzbach, M.I.: MONA Implementation Secrets. International
Journal of Foundations of Computer Science, 13(4) (2002)

16. Madhusudan, P., Parlato, G., Qiu, X.: Decidable Logics Combining Heap Structures and
Data. SIGPLAN Not. 46 (2011)

17. Somenzi, F.: CUDD: CU Decision Diagram Package Release 2.4.2 (May 2011)
18. Tozawa, A., Hagiya, M.: XML Schema Containment Checking Based on Semi-implicit

Techniques. In: Ibarra, O.H., Dang, Z. (eds.) CIAA 2003. LNCS, vol. 2759, pp. 213–225.
Springer, Heidelberg (2003)

19. De Wulf, M., Doyen, L., Henzinger, T.A., Raskin, J.-F.: Antichains: A New Algorithm for
Checking Universality of Finite Automata. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS,
vol. 4144, pp. 17–30. Springer, Heidelberg (2006)

86

4

String Constraints with Concatenation and Transducers
Solved Efficiently

LUKÁŠ HOLÍK, Brno University of Technology, Czech Republic
PETR JANKŮ, Brno University of Technology, Czech Republic
ANTHONY W. LIN, University of Oxford, United Kingdom
PHILIPP RÜMMER, Uppsala University, Sweden
TOMÁŠ VOJNAR, Brno University of Technology, Czech Republic

String analysis is the problem of reasoning about how strings are manipulated by a program. It has numerous
applications including automatic detection of cross-site scripting, and automatic test-case generation. A popular
string analysis technique includes symbolic executions, which at their core use constraint solvers over the
string domain, a.k.a. string solvers. Such solvers typically reason about constraints expressed in theories
over strings with the concatenation operator as an atomic constraint. In recent years, researchers started to
recognise the importance of incorporating the replace-all operator (i.e. replace all occurrences of a string by
another string) and, more generally, finite-state transductions in the theories of strings with concatenation.
Such string operations are typically crucial for reasoning about XSS vulnerabilities in web applications,
especially for modelling sanitisation functions and implicit browser transductions (e.g. innerHTML). Although
this results in an undecidable theory in general, it was recently shown that the straight-line fragment of the
theory is decidable, and is sufficiently expressive in practice. In this paper, we provide the first string solver that
can reason about constraints involving both concatenation and finite-state transductions. Moreover, it has a
completeness and termination guarantee for several important fragments (e.g. straight-line fragment). Themain
challenge addressed in the paper is the prohibitive worst-case complexity of the theory (double-exponential
time), which is exponentially harder than the case without finite-state transductions. To this end, we propose
a method that exploits succinct alternating finite-state automata as concise symbolic representations of string
constraints. In contrast to previous approaches using nondeterministic automata, alternation offers not only
exponential savings in space when representing Boolean combinations of transducers, but also a possibility
of succinct representation of otherwise costly combinations of transducers and concatenation. Reasoning
about the emptiness of the AFA language requires a state-space exploration in an exponential-sized graph, for
which we use model checking algorithms (e.g. IC3). We have implemented our algorithm and demonstrated its
efficacy on benchmarks that are derived from cross-site scripting analysis and other examples in the literature.

CCS Concepts: · Theory of computation → Automated reasoning; Verification by model checking;
Program verification; Program analysis; Logic and verification; Complexity classes;

Authors’ addresses: Lukáš Holík, Brno University of Technology, Faculty of Information Technology, IT4Innovations
Centre of Excellence, Božetěchova 2, Brno, CZ-61266, Czech Republic, holik@fit.vutbr.cz; Petr Janků, Brno University of
Technology, Faculty of Information Technology, IT4Innovations Centre of Excellence, Božetěchova 2, Brno, CZ-61266,
Czech Republic, ijanku@fit.vutbr.cz; Anthony W. Lin, Department of Computer Science, University of Oxford, Wolfson
Building, Parks Road, Oxford, OX1 3QD, United Kingdom, anthony.lin@cs.ox.ac.uk; Philipp Rümmer, Department of
Information Technology, Uppsala University, Box 337, Uppsala, 75105, Sweden, philipp.ruemmer@it.uu.se; Tomáš Vojnar,
Brno University of Technology, Faculty of Information Technology, IT4Innovations Centre of Excellence, Božetěchova 2,
Brno, CZ-61266, Czech Republic, vojnar@fit.vutbr.cz.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the Association for Computing Machinery.
2475-1421/2018/1-ART4
https://doi.org/10.1145/3158092

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 4. Publication date: January 2018.

87

4:2 Lukáš Holík, Petr Janků, Anthony W. Lin, Philipp Rümmer, and Tomáš Vojnar

Additional Key Words and Phrases: String Solving, Alternating Finite Automata, Decision Procedure, IC3

ACM Reference Format:
Lukáš Holík, Petr Janků, Anthony W. Lin, Philipp Rümmer, and Tomáš Vojnar. 2018. String Constraints with
Concatenation and Transducers Solved Efficiently . Proc. ACM Program. Lang. 2, POPL, Article 4 (January 2018),
32 pages. https://doi.org/10.1145/3158092

1 INTRODUCTION
Strings are a fundamental data type in many programming languages. This statement is true
now more than ever, especially owing to the rapidly growing popularity of scripting languages
(e.g. JavaScript, Python, PHP, and Ruby) wherein programmers tend to make heavy use of string
variables. String manipulations are often difficult to reason about automatically, and could easily
lead to unexpected programming errors. In some applications, some of these errors could have
serious security consequences, e.g., cross-site scripting (a.k.a. XSS), which are ranked among the
top three classes of web application security vulnerabilities by OWASP [OWASP 2013].

Popular methods for analysing how strings are being manipulated by a program include symbolic
executions [Bjùrner et al. 2009; Cadar et al. 2008, 2011; Godefroid et al. 2005; Kausler and Sherman
2014; Loring et al. 2017; Redelinghuys et al. 2012; Saxena et al. 2010; Sen et al. 2013] which at their
core use constraint solvers over the string domain (a.k.a. string solvers). String solvers have been
the subject of numerous papers in the past decade, e.g., see [Abdulla et al. 2014; Balzarotti et al.
2008; Barrett et al. 2016; Bjùrner et al. 2009; D’Antoni and Veanes 2013; Fu and Li 2010; Fu et al.
2013; Ganesh et al. 2013; Hooimeijer et al. 2011; Hooimeijer and Weimer 2012; Kiezun et al. 2012;
Liang et al. 2014, 2016, 2015; Lin and Barceló 2016; Saxena et al. 2010; Trinh et al. 2014, 2016; Veanes
et al. 2012; Wassermann et al. 2008; Yu et al. 2010, 2014, 2009, 2011; Zheng et al. 2013] among many
others. As is common in constraint solving, we follow the standard approach of Satisfiability Modulo
Theories (SMT) [De Moura and Bjùrner 2011], which is an extension of the problem of satisfiability
of Boolean formulae wherein each atomic proposition can be interpreted over some logical theories
(typically, quantifier-free).

Unlike the case of constraints over integer/real arithmetic (where many decidability and un-
decidability results are known and powerful algorithms are already available, e.g., the simplex
algorithm), string constraints are much less understood. This is because there are many different
string operations that can be included in a theory of strings, e.g., concatenation, length comparisons,
regular constraints (matching against a regular expression), and replace-all (i.e. replacing every
occurrence of a string by another string). Even for the theory of strings with the concatenation
operation alone, existing string solver cannot handle the theory (in its full generality) in a sound
and complete manner, despite the existence of a theoretical decision procedure for the problem
[Diekert 2002; Gutiérrez 1998; Jez 2016; Makanin 1977; Plandowski 2004, 2006]. This situation is
exacerbated when we add extra operations like string-length comparisons, in which case even
decidability is a long-standing open problem [Ganesh et al. 2013]. In addition, recent works in string
solving have argued in favour of adding the replace-all operator or, more generally finite-state
transducers, to string solvers [Lin and Barceló 2016; Trinh et al. 2016; Yu et al. 2010, 2014] in view
of their importance for modelling relevant sanitisers (e.g. backslash-escape) and implicit browser
transductions (e.g. an application of HTML-unescape by innerHTML), e.g., see [D’Antoni and
Veanes 2013; Hooimeijer et al. 2011; Veanes et al. 2012] and Example 1.1 below. However, naively
combining the replace-all operator and concatenation yields undecidability [Lin and Barceló 2016].

Example 1.1. The following JavaScript snippetÐan adaptation of an example from [Kern 2014;
Lin and Barceló 2016]Ðshows use of both concatenation and finite-state transducers:

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 4. Publication date: January 2018.

88

String Constraints with Concatenation and Transducers Solved Efficiently 4:3

var x = goog.string.htmlEscape(name);
var y = goog.string.escapeString(x);
nameElem.innerHTML = '<button onclick= "viewPerson(\'' + y + '\')">' + x + '</button>';

The code assigns an HTML markup for a button to the DOM element nameElem. Upon click, the
button will invoke the function viewPerson on the input namewhose value is an untrusted variable.
The code attempts to first sanitise the value of name. This is done via The Closure Library [co 2015]
string functions htmlEscape and escapeString. Inputting the value Tom & Jerry into name gives
the desired HTML markup:
<button onclick="viewPerson('Tom & Jerry')">Tom & Jerry</button>

On the other hand, inputting value ');attackScript();// to name, results in the markup:
<button onclick="viewPerson('');attackScript();//')">');attackScript();//')</button>

Before this string is inserted into the DOM via innerHTML, an implicit browser transduction will
take place [Heiderich et al. 2013; Weinberger et al. 2011], i.e., HTML-unescaping the string inside
the onclick attribute and then invoking the attacker’s script attackScript() after viewPerson.
This subtle DOM-based XSS bug is due to calling the right escape functions, but in wrong order. □

One theoretically sound approach proposed in [Lin and Barceló 2016] for overcoming the
undecidability of string constraints with both concatenation and finite-state transducers is to
impose a straight-line restriction on the shape of constraints. This straight-line fragment can be
construed as the problem of path feasibility [Bjùrner et al. 2009] in the following simple imperative
language (with only assignment, skip, and assert) for defining non-branching and non-looping
string-manipulating programs that are generated by symbolic execution:

S ::= y := a | assert(b) | skip | S1; S2, a ::= f (x1, . . . ,xn), b ::= д(x1)

where f : (Σ∗)n → Σ∗ is either an application of concatenation x1 ◦ · · · ◦ xn or an application
of a finite-state transduction R (x1), and д tests membership of x1 in a regular language. Here,
some variables are undefined łinput variables”. Path feasibility asks if there exist input strings that
satisfy all assertions and applications of transductions in the program. It was shown in [Lin and
Barceló 2016] that such a path feasibility problem (equivalently, satisfiability for the aforementioned
straight-line fragment) is decidable. As noted in [Lin and Barceló 2016] such a fragment can express
the program logic of many interesting examples of string-manipulating programs with/without
XSS vulnerabilities. For instance, the above example can be modelled as a straight-line formula
where the regular constraint comes from an attack pattern like the one below:
e1 = /<button onclick=

"viewPerson\(' (' | [^']*[^'\\] ') \); [^']*[^'\\]' \)">.*<\/button>/

Unfortunately, the decidability proof given in [Lin and Barceló 2016] provides only a theoretical
argument for decidability and complexity upper bounds (an exponential-time reduction to the
acyclic fragment of intersection of rational relations1 whose decidability proof in turn is a highly
intricate polynomial-space procedure using Savitch’s trick [Barceló et al. 2013]) and does not yield
an implementable solution. Furthermore, despite its decidability, the string logic has a prohibitively
high complexity (EXPSPACE-complete, i.e., exponentially higher than without transducers), which
could severely limit its applicability.

1This fragment consists of constraints that are given as conjunctions of transducers ∧m
i=1 Ri (xi , yi), wherein the graph G

of variables does not contain a cycle. The graphG contains vertices corresponding to variables xi , yi and that two variables
x, y are linked by an edge if x = xi and y = yi for some i ∈ {1, . . . ,m }.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 4. Publication date: January 2018.

89

4:4 Lukáš Holík, Petr Janků, Anthony W. Lin, Philipp Rümmer, and Tomáš Vojnar

Contributions. Our paper makes the following contributions to overcome the above challenges:
(1) We propose a fast reduction of satisfiability of formulae in the straight-line fragment and in

the acyclic fragment to the emptiness problem of alternating finite-state automata (AFAs).
The reduction is in the worst case exponential in the number of concatenation operations2,
but otherwise polynomial in the size of a formula. In combination with fast model checking
algorithms (e.g. IC3 [Bradley 2012]) to decide AFA emptiness, this yields the first practical
algorithm for handling string constraints with concatenation, finite-state transducers (hence,
also replace-all), and regular constraints, and a decision procedure for formulae within the
straight-line and acyclic fragments.

(2) We obtain a substantially simpler proof for the decidability and PSPACE-membership of
the acyclic fragment of intersection of rational relations of [Barceló et al. 2013], which was
crucially used in [Lin and Barceló 2016] as a blackbox in their decidability proof of the
straight-line fragment.

(3) We define optimised translations from AFA emptiness to reachability over Boolean transition
systems (i.e. which are succinctly represented by Boolean formulae). We implemented our
algorithm for string constraints in a new string solver called Sloth, and provide an extensive
experimental evaluation. Sloth is the first solver that can handle string constraints that
arise from HTML5 applications with sanitisation and implicit browser transductions. Our
experiments suggest that the translation to AFAs can circumvent the EXPSPACE worst-case
complexity of the straight-line fragment in many practical cases.

An overview of the results. The main technical contribution of our paper is a new method for
exploiting alternating automata (AFA) as a succinct symbolic representation for representing
formulae in a complex string logic admitting concatenation and finite-state transductions. In
particular, the satisfiability problem for the string logic is reduced to AFA language emptiness, for
which we exploit fast model checking algorithms. Compared to previous methods [Abdulla et al.
2014; Lin and Barceló 2016] that are based on nondeterministic automata (NFA) and transducers,
we show that AFA can incur at most a linear blowup for each string operation permitted in the
logic (i.e. concatenation, transducers, and regular constraints). While the product NFA representing
the intersection of the languages of two automata A1 and A2 would be of size O (|A1 | × |A2 |), the
language can be represented using an AFA of size |A1 | + |A2 | (e.g. see [Vardi 1995]). The difficult
cases are how to deal with concatenation and replace-all, which are our contributions to the paper.
More precisely, a constraint of the form x := y.z ∧ x ∈ L (where L is the language accepted by an
automaton A) was reduced in [Abdulla et al. 2014; Lin and Barceló 2016] to regular constraints on
y and z by means of splitting A, which causes a cubic blow-up (since an łintermediate state” in A
has to be guessed, and for each state a product of two automata has to be constructed). Similarly,
taking the post-image R (L) of L under a relation R represented by a finite-state transducer T gives
us an automaton of size O (|T | × |A|). A naïve application of AFAs is not helpful for those cases,
since also projections on AFAs are computationally hard.

The key idea to overcome these difficulties is to avoid applying projections altogether, and instead
use the AFA to represent general k-ary rational relations (a.k.a. k-track finite-state transductions
[Barceló et al. 2013; Berstel 1979; Sakarovitch 2009]). This is possible because we focus on formulae
without negation, so that the (implicit) existential quantifications for applications of transducers
can be placed outside the constraint. This means that our AFAs operate on alphabets that are
exponential in size (for k-ary relations, the alphabet is {ϵ, 0, 1}k). To address this problem, we
introduce a succinct flavour of AFA with symbolically represented transitions. Our definition is

2This is an unavoidable computational limit imposed by EXPSPACE-hardness of the problem [Lin and Barceló 2016].

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 4. Publication date: January 2018.

90

String Constraints with Concatenation and Transducers Solved Efficiently 4:5

similar to the concept of alternating symbolic automata in [D’Antoni et al. 2016] with one difference.
While symbolic AFA take a transition q →ψ φ from a state q to a set of states satisfying a formula φ
if the input symbol satisfies a formulaψ , our succinct AFA can mix constraints on successor states
with those on input symbols within a single transition formula (similarly to the symbolic transition
representation of deterministic automata in MONA [Klarlund et al. 2002], where sets of transitions
are represented as multi-terminal BDDs with states as terminal nodes). We show how automata
splitting can be achieved with at most linear blow-up.

The succinctness of our AFA representation of string formulae is not for free since AFA language
emptiness is a PSPACE-complete problem (in contrast to polynomial-time for NFA). However,
modern model checking algorithms and heuristics can be harnessed to solve the emptiness problem.
In particular, we use a linear-time reduction to reachability in Boolean transition systems similar to
[Cox and Leasure 2017; Wang et al. 2016], which can be solved by state of the art model checking
algorithms, such as IC3 [Bradley 2012], k-induction [Sheeran et al. 2000], or Craig interpolation-
based methods [McMillan 2003], and tools like nuXmv [Cavada et al. 2014] or ABC [Brayton and
Mishchenko 2010].
An interesting by-product of our approach is an efficient decision procedure for the acyclic

fragment. The acyclic logic does not a priori allow concatenation, but is more liberal in the use of
transducer constraints (which can encode complex relations like string-length comparisons, and
the subsequence relation). In addition, such a logic is of interest in the investigation of complex
path-queries for graph databases [Barceló et al. 2013; Barceló et al. 2012], which has been pursued
independently of strings for verification. Our algorithm also yields an alternative and substantially
simpler proof of PSPACE upper bound of the satisfiability problem of the logic.
We have implemented our AFA-based string solver as the tool Sloth, using the infrastructure

provided by the SMT solver Princess [Rümmer 2008], and applying the nuXmv [Cavada et al. 2014]
and ABC [Brayton and Mishchenko 2010] model checkers to analyse succinct AFAs. Sloth is
a decision procedure for the discussed fragments of straight-line and acyclic string formulae, and
is able to process SMT-LIB input with CVC4-style string operations, augmented with operations
str.replace, str.replaceall3, and arbitrary transducers defined using sets of mutually recursive
functions. Sloth is therefore extremely flexible at supporting intricate string operations, including
escape operations such as the ones discussed in Example 1.1. Experiments with string benchmarks
drawn from the literature, including problems with replace, replace-all, and general transducers,
show that Sloth can solve problems that are beyond the scope of existing solvers, while it is
competitive with other solvers on problems with a simpler set of operations.

Organisation. We recall relevant notions from logic and automata theory in Section 2. In Section 3,
we define a general string constraint language and mention several important decidable restrictions.
In Section 4, we recall the notion of alternating finite-state automata and define a succinct variant
that plays a crucial role in our decision procedure. In Section 5, we provide a new algorithm
for solving the acyclic fragment of the intersection of rational relations using AFA. In Section 7,
we provide our efficient reduction from the straight-line fragment to the acyclic fragment that
exploits AFA constructions. To simplify the presentation of this reduction, we first introduce in
Section 6 a syntactic sugar of the acyclic fragment called acyclic constraints with synchronisation
parameters. In Section 8, we provide our reduction from the AFT emptiness to reachability in a
Boolean transition system. Experimental results are presented in Section 9. Our tool Sloth can be
obtained from https://github.com/uuverifiers/sloth/wiki. Finally, we conclude in Section 10. Missing
proofs can be found in the full version.
3str.replaceall is the SMT-LIB syntax for the replace-all operation. On the other hand, str.replace represents the
operation of replacing the first occurrence of the given pattern. In case there is no such occurrence, the string stays intact.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 4. Publication date: January 2018.

91

4:6 Lukáš Holík, Petr Janků, Anthony W. Lin, Philipp Rümmer, and Tomáš Vojnar

2 PRELIMINARIES
Logic. Let B = {0, 1} be the set of Boolean values, and A a set of Boolean variables. We write FA

to denote the set of Boolean formulae over A. In this context, we will sometimes treat subsets A′ of
A as the corresponding truth assignments {s 7→ 1 | s ∈ A′} ∪ {s 7→ 0 | s ∈ A \ A′} and write, for
instance, A′ |= φ for φ ∈ FA if the assignment satisfies φ. An atom is a Boolean variable; a literal is
either a atom or its negation. A formula is in disjunctive normal form (DNF) if it is a disjunction
of conjunctions of literals, and in negation normal form (NNF) if negation only occurs in front
of atoms. We denote the set of variables in a formula φ by var(φ). We use x̄ to denote sequences
x1, . . . ,xn of length |x̄ | = n of propositional variables, and we write φ (x̄) to denote that x̄ are the
variables of φ. If we do not fix the order of the variables, we write φ (X) for a formula with X being
its set of variables. For a variable vector x̄ , we denote by {x̄ } the set of variables in the vector.
We say that φ is positive (negative) on an atom α ∈ A if α appears under an even (odd) number

of negations only. A formula that is positive (negative) on all its atoms is called positive (negative),
respectively. The constant formulae true and false are both positive and negative. We use F+S and
F−S to denote the sets of all positive and negative Boolean formulae over S , respectively.

Given a formula φ, we write φ̃ to denote a formula obtained by replacing (1) every conjunction
by a disjunction and vice versa and (2) every occurrence of true by false and vice versa. Note
that x̃ = x , which means that φ̃ is not the same as the negation of φ.

Strings and languages. Fix a finite alphabet Σ. Elements in Σ∗ are interchangeably called words
or strings, where the empty word is denoted by ϵ . The concatenation of strings u, v is denoted by
u ◦ v , occasionally just by uv to avoid notational clutter. We denote by |w | the lenght of a word
w ∈ Σ∗. For any word w = a1 . . . an , n ≥ 1, and any index 1 ≤ i ≤ n, we denote by w[i] the
letter ai . A language is a subset of Σ∗. The concatenation of two languages L,L′ is the language
L ◦ L′ = {w ◦w ′ | w ∈ L ∧w ′ ∈ L′}, and the iteration L∗ of a language L is the smallest language
closed under ◦ and containing L and ϵ .

Regular languages and rational relations. A regular language over a finite alphabet Σ is a subset of
Σ∗ that can be built by a finite number of applications of the operations of concatenation, iteration,
and union from the languages {ϵ } and {a},a ∈ Σ. An n-ary rational relation R over Σ is a subset of
(Σ∗)n that can be obtained from a regular language L over the alphabet of n-tuples (Σ ∪ {ϵ })n as
follows. Include (w1, . . . ,wn) in R iff for some (a11, . . . ,a1n), . . . , (ak1 , . . . ,akn) ∈ L,wi = a1 ◦ · · · ◦ ak
for all 1 ≤ i ≤ n. Here, ◦ is a concatenation over the alphabet Σ, and k denotes the length of the
wordswi . In practice, regular languages and rational relations can be represented using various
flavours of finite-state automata, which are discussed in detail in Section 4.

3 STRING CONSTRAINTS
We start by recalling a general string constraint language from [Lin and Barceló 2016] that supports
concatenations, finite-state transducers, and regular expression matching. We will subsequently
state decidable fragments of the language for which we design our decision procedure.

3.1 String Language
We assume a vocabulary of countably many string variables x ,y, z, . . . ranging over Σ∗. A string
formula over Σ is a Boolean combination φ of word equations x = t whose right-hand side t might
contain the concatenation operator, regular constraints P (x), and rational constraints R (x̄):

φ ::= x = t | P (x) | R (x̄) | φ ∧ φ | φ ∨ φ | ¬φ, t ::= x | a | t ◦ t .
In the grammar, x ranges over string variables, x̄ over vectors of string variables, and a ∈ Σ over
letters. R ⊆ (Σ∗)n is assumed to be an n-ary rational relation on words of Σ∗, and P ⊆ Σ∗ is a regular

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 4. Publication date: January 2018.

92

String Constraints with Concatenation and Transducers Solved Efficiently 4:7

language. We will represent regular languages and rational relations by succinct automata and
transducers denoted as R and A, respectively. The automata and transducers will be formalized in
Section 4. When the transducer R or automaton A representing a rational relation R or regular
language P is known, we write R (x̄) or A (x̄) instead of R (x̄) or P (x̄) in the formulae, respectively.
A formula φ is interpreted over an assignment ι : var(φ) → Σ∗ of its variables to strings over

Σ∗. It satisfies φ, written ι |= φ, iff the constraint φ becomes true under the substitution of each
variable x by ι (x). We formalise the satisfaction relation for word equations, rational constraints,
and regular constraints, assuming the standard meaning of Boolean connectives:
(1) ι satisfies the equation x = t if ι (x) = ι (t), extending ι to terms by setting ι (a) = a and

ι (t1 ◦ t2) = ι (t1) ◦ ι (t2).
(2) ι satisfies the rational constraint R (x1, . . . ,xn) iff (ι (x1), . . . , ι (xn)) belongs to R.
(3) ι satisfies the regular constraint P (x), for P a regular language, if and only if ι (x) ∈ P .
A satisfying assignment for φ is also called a solution for φ. If φ has a solution, it is satisfiable.
The unrestricted string logic is undecidable, e.g., one can easily encode Post Correspondence

Problem (PCP) as the problem of checking satisfiability of the constraint R (x ,x), for some rational
transducer R [Morvan 2000]. We therefore concentrate on practical decidable fragments.

3.2 Decidable Fragments
Our approach to deciding string formulae is based on two major insights. The first insight is that
alternating automata can be used to efficiently decide positive Boolean combinations of rational
constraints. This yields an algorithm for deciding (an extension of) the acyclic fragment of [Barceló
et al. 2013]. The minimalistic definition of acyclic logic restricts rational constraints and does not
allow word equations (in Section 5.1 a limited form of equations and arithmetic constraints over
lengths will be shown to be encodable in the logic). Our definition of the acyclic logic AC below
generalises that of [Barceló et al. 2013] by allowing k-ary rational constraints instead of binary.

Definition 3.1 (Acyclic formulae). Particularly, we say that a string formula φ is acyclic if it does
not contain word equations, rational constraints R (x1, . . . ,xn) only appear positively and their
variables x1, . . . ,xn are pairwise distinct, and for every sub-formulaψ ∧ψ ′ at a positive position of
φ (and also every ψ ∨ψ ′ at a negative position) it is the case that |free(ψ) ∩ free(ψ ′) | ≤ 1, i.e., ψ
andψ ′ have at most one variable in common. We denote by AC the set of all acyclic formulae.

The second main insight we build on is that alternation allows a very efficient encoding of
concatenation into rational constraints and automata (though only equisatisfiable, not equivalent).
Efficient reasoning about concatenation combined with rational relations is the main selling point
of our work from the practical perspectiveÐthis is what is most needed and was so far missing
in applications like security analysis of web-applications. We follow the approach from [Lin
and Barceló 2016] which defines so called straight-line conjunctions. Straight-line conjunctions
essentially correspond to sequences of program assignments in the single static assignment form,
possibly interleaved with assertions of regular properties. An equation x = y1◦· · ·◦yn is understood
as an assignment to a program variable x . A rational constraint R (x ,y) may be interpreted as an
assignment to x as well, in which case we write it as x = R (y) (though despite the notation, R is
not required to represent a function, it can still mean any rational relation).

Definition 3.2 (Straight-line conjunction). A conjunction of string constraints is then defined to
be straight-line if it can be written as ψ ∧∧m

i=1 xi = Pi where ψ is a conjunction of regular and
negated regular constraints and each Pi is either of the form y1 ◦ · · · ◦ yn , or R (y) and, importantly,
Pi cannot contain variables xi , . . . ,xm . We denote by SL the set of all straight-line conjunctions.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 4. Publication date: January 2018.

93

4:8 Lukáš Holík, Petr Janků, Anthony W. Lin, Philipp Rümmer, and Tomáš Vojnar

Example 3.3. The program snippet in Example 1.1 would be expressed as x = R1 (name) ∧ y =
R2 (x) ∧ z = w1 ◦ y ◦ w2 ◦ x ◦ w3 ∧ u = R3 (z). The transducers Ri correspond to the string
operations at the respective lines: R1 is the htmlEscape, R2 is the escapeString, and R3 is the
implicit transduction within innerHTML. Line 3 is translated into a conjunction of the concatenation
and the third rational constraint encoding the implicit string operation at the assignment to
innerHTML. In the concatenation, w1,w2,w3 are words that correspond to the three constant
strings concatenated with x and y on line 3. To test vulnerability, a regular constraint A (u)
encoding the pattern e1 is added as a conjunct.
The fragment of straight-line conjunctions can be straightforwardly extended to disjunctive

formulae. We say that a string formula is straight-line if every clause in its DNF is straight-
line. A decision procedure for straight-line conjunctions immediately extends to straight-line
formulae: instantiate the DPLL(T) framework [Nieuwenhuis et al. 2004] with a solver for straight-
line conjunctions.

The straight-line and acyclic fragments are clearly syntactically incomparable: AC does not have
equations, SL restricts more strictly combinations of rational relations and allows only binary
ones. Regarding expressive power, SL can express properties which AC cannot: the straight-line
constraint x = yy cannot be expressed by any acyclic formula. On the other hand, whether or not
AC formulae can be expressed in SL is not clear. Every AC formula can be expressed by a singlen-ary
acyclic rational constraint (c.f. Section 5), hence acyclic formulae and acyclic rational constraints
are of the same power. It is not clear however whether straight-line formulae, which can use only
binary rational constraints, can express arbitrary n-ary acyclic rational constraint.

4 SUCCINCT ALTERNATING AUTOMATA AND TRANSDUCERS
We introduce a succinct form of alternating automata and transducers that operate over bit vectors,
i.e., functions b : V → B where V is a finite, totally ordered set of bit variables. This is a variant of
the recent automata model in [D’Antoni et al. 2016] that is tailored to our problem. Bit vectors can
of course be described by strings over B, conjunctions of literals over V , or sets of those elements
v ∈ V such that b (v) = 1. In what follows, we will use all of these representations interchangeably.
Referring to the last mentioned possibility, we denote the set of all bit vectors over V by P (V).

An obvious advantage of this approach is that encoding symbols of large alphabets, such as UTF,
by bit vectors allows one to succinctly represent sets of such symbols using Boolean formulae. In
particular, symbols of an alphabet of size 2k can be encoded by bit vectors of size k (or, alternatively,
as Boolean formulae over k Boolean variables). We use this fact when encoding transitions of our
alternating automata.

Example 4.1. To illustrate the encoding, assume the alphabet Σ = {a,b, c,d } consisting of symbols
a, b, c , and d . We can deal with this alphabet by using the set V = {v0,v1} and representing, e.g., a
as ¬v1 ∧¬v0, b as ¬v1 ∧v0, c as v1 ∧¬v0, and d as v1 ∧v0. This is, a, b, c , and d are encoded as the
bit vectors 00, 01, 10, and 11 (for the orderingv0 < v1), or the sets ∅, {v0}, {v1}, {v0,v1}, respectively.
The set of symbols {c,d } can then be encoded simply by the formula v1. □

4.1 Succinct Alternating Finite Automata
A succinct alternating finite automaton (AFA) over Boolean variablesV is a tupleA = (V ,Q,∆, I , F)
whereQ is a finite set of states, the transition function ∆ : Q → FV∪Q assigns to every state a Boolean
formula over Boolean variables and states that is positive on states, I ∈ F+Q is a positive initial
formula, and F ∈ F−Q is a negative final formula. Letw = b1 . . .bm ,m ≥ 0, be a word where each bi ,
1 ≤ i ≤ m, is a bit vector encoding the i-th letter ofw . A run of the AFA A overw is a sequence
ρ = ρ0b1ρ1 . . .bmρm where bi ∈ P (V) for every 1 ≤ i ≤ m, ρi ⊆ Q for every 0 ≤ i ≤ m, and

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 4. Publication date: January 2018.

94

String Constraints with Concatenation and Transducers Solved Efficiently 4:9

bi ∪ ρi |= ∧
q∈ρi−1 ∆(q) for every 1 ≤ i ≤ m. The run is accepting if ρ0 |= I and ρm |= F , in which

case the word is accepted. The language of A is the set L(A) of accepted words.
Notice that instead of the more usual definition of ∆, which would assign a positive Boolean

formula over Q to every pair from Q × P (V) or to a pair Q × FV as in [D’Antoni et al. 2016], we
let ∆ assign to states formulae that talk about both target states and Boolean input variables. This
is closer to the encoding of the transition function as used in MONA [Klarlund et al. 2002]. It
allows for additional succinctness and also for a more natural translation of the language emptiness
problem into a model checking problem (cf. Section 8).4 Moreover, compared with the usual AFA
definition, we do not have just a single initial state and a single set of accepting states, but we
use initial and final formulae. As will become clear in Section 5, this approach allows us to easily
translate the considered formulae into AFAs in an inductive way.
Note that standard nondeterministic finite automata (NFAs), working over bit vectors, can be

obtained as a special case of our AFAs as follows. An AFA A = (V ,Q,∆, I , F) is an NFA iff (1) I is
of the form ∨

q∈Q ′ q for some Q ′ ⊆ Q , (2) F is of the form ∧
q∈Q ′′ ¬q for some Q ′′ ⊆ Q , and (3) for

every q ∈ Q , ∆(q) is of the form ∨
1≤i≤m φi (V) ∧ qi wherem ≥ 0 and, for all 1 ≤ i ≤ m, φi (V) is

a formula over the input bit variables and qi ∈ Q .
Example 4.2. To illustrate our notion of AFAs, we give an example of an AFA A over the

alphabet Σ = {a,b, c,d } from Example 4.1 that accepts the language {w ∈ Σ∗ | |w | mod 35 = 0 ∧
∀i∃j : (1 ≤ i ≤ |w | ∧ w[i] ∈ {a,b}) → (i < j ≤ |w | ∧ w[j] ∈ {c,d })}, i.e., the length of
the words is a multiple of 35, and every letter a or b is eventually followed by a letter c or d .
In particular, we let A = ({v0,v1}, {q0, . . . ,q4,p0, . . . ,p6, r1, r2}},∆, I , F) where I = q0 ∧ p0, F =
¬q1 ∧ . . .∧¬q4 ∧¬p1 ∧ . . .∧¬p6 ∧¬r1 (i.e., the accepting states are q0, p0, and r2), and ∆ is defined
as follows:
• ∀0 ≤ i < 5 : ∆(qi) = (¬v1 ∧ q (i+1) mod 5 ∧ r1) ∨ (v1 ∧ q (i+1) mod 5),
• ∀0 ≤ i < 7 : ∆(pi) = p(i+1) mod 7,
• ∆(r1) = (v1 ∧ r2) ∨ (¬v1 ∧ r1) and ∆(r2) = r2.

Intuitively, the q states check divisibility by 5. Moreover, whenever, they encounter an a or b symbol
(encoded succinctly as checking ¬v1 in the AFA), they spawn a run through the r states, which
checks that eventually a c or d symbol appears. The p states then check divisibility by 7. The desired
language is accepted due to the requirement that all these runs must be synchronized. Note that
encoding the language using an NFA would require quadratically more states since an explicit
product of all the branches would have to be done. □

The additional succinctness of AFA does not influence the computational complexity of the
emptiness check compared to the standard variant of alternating automata.

Lemma 4.3. The problem of language emptiness of AFA is PSPACE-complete.

The lemma is witnessed by a linear-space transformation of the problem of emptiness of an AFA
language to the PSPACE-complete problem of reachability in a Boolean transition system. This
transformation is shown in Section 8.

4.2 Boolean Operations on AFAs
From the standard Boolean operations over AFAs, we will mainly need conjunction and disjunction
in this paper. These operations can be implemented in linear space and time in a way analogous to
[D’Antoni et al. 2016], slightly adapted for our notion of initial/final formulae, as follows. Given
4[D’Antoni et al. 2016] also mentions an implementation of symbolic AFAs that uses MONA-like BDDs and is technically
close to our AFAs.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 4. Publication date: January 2018.

95

4:10 Lukáš Holík, Petr Janků, Anthony W. Lin, Philipp Rümmer, and Tomáš Vojnar

two AFAsA = (V ,Q,∆, I , F) andA ′ = (V ,Q ′,∆′, I ′, F ′) withQ ∩Q ′ = ∅, the automaton accepting
the union of their languages can be constructed as A ∪ A ′ = (V ,Q ∪ Q ′,∆ ∪ ∆′, I ∨ I ′, F ∧ F ′),
and the automaton accepting the intersection of their languages can be constructed as A ∩A ′ =
(V ,Q ∪Q ′,∆ ∪ ∆′, I ∧ I ′, F ∧ F ′). Seeing correctness of the construction of A ∩A ′ is immediate.
Indeed, the initial condition enforces that the two AFAs run in parallel, disjointness of their state-
spaces prevents them from influencing one another, and the final condition defines their parallel
runs as accepting iff both of the runs accept. To see correctness of the construction of A ∪ A ′,
it is enough to consider that one of the automata can be started with the empty set of states
(corresponding to the formula ∧

q∈Q ¬q for A and likewise for A ′). This is possible since only one
of the initial formulae I and I ′ needs to be satisfied. The automaton that was started with the empty
set of states will stay with the empty set of states throughout the entire run and thus trivially
satisfy the (negative) final formula.

Example 4.4. Note that the AFA in Example 4.2 can be viewed as obtained by conjunction of two
AFAs: one consisting of the q and r states and the second of the p states. □

To complement an AFA A = (V ,Q,∆, I , F), we first transform the automaton into a form
corresponding to the symbolic AFA of [D’Antoni et al. 2016] and then use their complementation
procedure. More precisely, the transformation to the symbolic AFA form requires two steps:
• The first step simplifies the final condition. The final formula F is converted into DNF, yielding
a formula F1 ∨ . . . ∨ Fk , k ≥ 1, where each Fi , 1 ≤ i ≤ k , is a conjunction of negative literals
overQ . The AFAA is then transformed into a union of AFAsAi = (V ,Q,∆, I , Fi), 1 ≤ i ≤ k ,
where each Ai is a copy of A except that it uses one of the disjuncts Fi of the DNF form of
the original final formula F as its final formula. Each resulting AFAs hence have a purely
conjunctive final condition that corresponds a set of final states of [D’Antoni et al. 2016]
(a set of final states F ⊆ Q would correspond to the final formula ∧

q∈Q\F ¬q).
• The second step simplifies the structure of the transitions. For every q ∈ Q , the transition
formula ∆(q) is transformed into a disjunction of formulae of the form (φ1 (V)∧ψ1 (Q))∨ . . .∨
(φm (V) ∧ψm (Q)) where the φi (V) formulae, called input formulae below, speak about input
bit variables only, while theψi (Q) formulae, called target formulae below, speak exclusively
about the target states, for 1 ≤ i ≤ m. For this transformation, a slight modification of
transforming a formula into DNF can be used.

The complementation procedure of [D’Antoni et al. 2016] then proceeds in two steps: the
normalisation and the complementation itself. We sketch them below:
• For every q ∈ Q , normalisation transforms the transition formula ∆(q) = (φ1 (V) ∧ψ1 (Q)) ∨
. . . ∨ (φm (V) ∧ ψm (Q)) so that every two distinct input formulae φ (V) and φ ′(V) of the
resulting formula describe disjoint sets of bit vectors, i.e., ¬(φ (V) ∧ φ ′(V)) holds. To achieve
this (without trying to optimize the algorithm as in [D’Antoni et al. 2016]), one can consider
generating all Boolean combinations of the original φ (V) formulae, conjoining each of them
with the disjunction of those state formulae whose input formulae are taken positively in the
given case. More precisely, one can take∨

I ⊆{1, ...,m } (
∧
i ∈I φi))∧(

∧
i ∈{1, ...,m }\I ¬φi))∧

∨
i ∈I ψi .

• Finally, to complement the AFAs normalized in the above way, one proceeds as follows:
(1) The initial formula I is replaced by Ĩ . (2) For every q ∈ Q and every disjunct φ (V) ∧ψ (Q)

of the transition formula ∆(q), the target formula ψ (Q) is replaced by ψ̃ (Q). (3) The final
formula of the form ∧

q∈Q ′ ¬q,Q ′ ⊆ Q , is transformed to the formula∧
q∈Q\Q ′ ¬q, and false

is swapped for true and vice versa.
Clearly, the complementation contains three sources of exponential blow-up: (1) the simplification

of the final condition, (2) the simplification of transitions and (3) the normalization of transitions.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 4. Publication date: January 2018.

96

String Constraints with Concatenation and Transducers Solved Efficiently 4:11

Note, however, that, in this paper, we will apply complementation exclusively on AFAs obtained
by Boolean operations from NFAs derived from regular expressions. Such AFAs already have the
simple final conditions, and so the first source of exponential blow-up does not apply. The second
and the third source of exponential complexity can manifest themselves but note that it does not
show up in the number of states. Finally, note that if we used AFAs with explicit alphabets, the
second and the third problem would disappear (but then the AFAs would usually be bigger anyway).

4.3 Succinct Alternating Finite Transducers
In our alternating finite transducers, we will need to use epsilon symbols representing the empty
word. Moreover, as we will explain later, in order to avoid some undesirable synchronization
when composing the transducers, we will need more such symbolsÐdiffering just syntactically.
Technically, we will encode the epsilon symbols using a set of epsilon bit variables E, containing one
new bit variable for each epsilon symbol. We will draw the epsilon bit variables from a countably
infinite set E. We will also assume that when one of these bits is set, other bits are not important.
LetW be a finite, totally ordered set of bit variables, which we can split to the set of input

bit variables V (W) = W \ E and the set of epsilon bit variables E (W) = W ∩ E. Given a word
w = b1 . . .bm ∈ P (W)∗, m ≥ 0, we denote by ⟩w⟨ the word that arises from w by erasing
all those bi , 1 ≤ i ≤ m, in which some epsilon bit variable is set, i.e., bi ∩ E , ∅. Further,
let k ≥ 1, and letW ⟨k⟩ = W × [k], assuming it to be ordered in the lexicographic way. The
indexing of the bit variables will be used to express the track on which they are read. Finally,
given a word w = b1 . . .bm ∈ P (W ⟨k⟩)∗, m ≥ 0, we denote by w ↓i , 1 ≤ i ≤ k , the word
b ′1 . . .b

′
m ∈ P (W)∗ that arises fromw by keeping the contents of the i-th track (without the index i)

only, i.e., b ′j × {i} = bj ∩ (W × {i}) for 1 ≤ j ≤ m.
A k-track succinct alternating finite transducer (AFT) overW is syntactically an alternating

automatonR = (W ⟨k⟩,Q,∆, I , F), k ≥ 1. LetV = V (W). The relation Rel (R) ⊆ (P (V)∗)k recognised
by R contains a k-tuple of words (x1, . . . ,xk) over P (V) iff there is a word w ∈ L(R) such that
xi = ⟩w↓i ⟨ for each 1 ≤ i ≤ k .

Below, we will sometimes say that the wordw encodes the k-tuple of words (x1, . . . ,xk). More-
over, for simplicity, instead of saying that R has a run over w that encodes (x1, . . . ,xk), we will
sometimes directly say that R has a run over (x1, . . . ,xk) or that R accepts (x1, . . . ,xk).
Finally, note that classical nondeterministic finite transducers (NFTs) are a special case of our

AFTs that can be defined by a similar restriction as the one used when restricting AFAs to NFAs.
In particular, the first track (with letters indexed with 1) can be seen as the input track, and the
second track (with letters indexed with 2) can be seen as the output track. AFTs as well as NFTs
recognize the class of rational relations [Barceló et al. 2013; Berstel 1979; Sakarovitch 2009].

Example 4.5. We now give a simple example of an AFT that implements escaping of every
apostrophe by a backlash in the UTF-8 encoding. Intuitively, the AFT will transform an input string
x'xx to the string x\'xx, i.e., the relation it represents will contain the couple (x'xx,x\'xx). All
the symbols should, however, be encoded in UTF-8. In this encoding, the apostrophe has the binary
code 00100111, and the backlash has the code 00101010. We will work with the set of bit variables
V8 = {v0, . . . ,v7} and a single epsilon bit variable e . We will superscript the bit variables by the
track on which they are read (hence, e.g., v2

1 is the same as (v1, 2), i.e., v1 is read on the second
track). Let api = vi0 ∧ vi1 ∧ vi2 ∧ ¬vi3 ∧ ¬vi4 ∧ vi5 ∧ ¬vi6 ∧ ¬vi7 ∧ ¬ei represent an apostrophe read
on the i-th track. Next, let bci = ¬vi0 ∧ vi1 ∧ ¬vi2 ∧ vi3 ∧ ¬vi4 ∧ vi5 ∧ ¬vi6 ∧ ¬vi7 ∧ ¬ei represent
a backlash read on the i-th track. Finally, let eqi, j = ei ↔ e j ∧∧

0≤k<8vik ↔ v jk denote that the
same symbol is read on the i-th and j-th track. The AFT that implements the described escaping can

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 4. Publication date: January 2018.

97

4:12 Lukáš Holík, Petr Janků, Anthony W. Lin, Philipp Rümmer, and Tomáš Vojnar

be constructed as follows: R = ((V8 ∪ {e})⟨2⟩, {q0,q1},∆,q0,¬q1) where the transition formulae are
defined by ∆(q0) = (¬ap1 ∧ eq1,2 ∧ q0) ∨ (ap1 ∧ bc2 ∧ q1) and ∆(q1) = e

1 ∧ ap2 ∧ q0. □

5 DECIDING ACYCLIC FORMULAE
Our decision procedure for AC formulae is based on translating them into AFTs. For simplicity, we
assume that the formula is negation free (after transforming to NNF, negation at regular constraints
can be eliminated by AFA complementation). Notice that with no negations, the restriction AC
puts on disjunctions never applies. We also assume that the formula contains rational constraints
only (regular constraint can be understood as unary rational constraints).
Our algorithm then transforms a formula φ (x̄) into a rational constraint Rφ (x̄) inductively on

the structure of φ. As the base case, we get rational constraints R (x̄), which are already represented
as AFTs, and regular constraints A (x), already represented by AFAs. Boolean operations over
regular constraints can be treated using the corresponding Boolean operations over AFAs described
in Section 4.2. The resulting AFAs can then be viewed as rational constraints with one variable
(and hence as a single-track AFT).

Once constraints Rφ (x̄) and Rψ (ȳ) are available, the induction step translates formulae Rφ (x̄) ∧
Rψ (ȳ) and Rφ (x̄) ∨Rψ (ȳ) to constraints Rφ∧ψ (z̄) and Rφ∨ψ (z̄), respectively. To be able to describe
this step in detail, let Rφ = ((V ∪ Eφ)⟨|x̄ |⟩,Qφ ,∆φ , Iφ , Fφ) and Rψ = ((V ∪ Eψ)⟨|ȳ |⟩,Qψ ,∆ψ , Iψ , Fψ)
such that w.l.o.g. Qφ ∩Qψ = ∅ and Eφ ∩ Eψ = ∅.

Translation of conjunctions to AFTs. The construction of Rφ∧ψ has three steps:
(1) Alignment of tracks that ensures that distinct variables are assigned different tracks and

that the transducers agree on the track used for the shared variable.
(2) Saturation by ϵ-self loops allowing the AFTs to synchronize whenever one of them makes

an ϵ move on the shared track.
(3) Conjunction on the resulting AFTs viewing them as AFAs.

Alignment of tracks. Given constraints Rφ (x̄) and Rψ (ȳ), the goal of the alignment of tracks is
to assign distinct tracks to distinct variables of x̄ and ȳ, and to assign the same track in both of the
transducers to the shared variableÐif there is one (recall that, by acyclicity, x̄ and ȳ do not contain
repeating variables and share at most one common variable). This is implemented by choosing
a vector z̄ that consists of exactly one occurrence of every variable from x̄ and ȳ, i.e., {z̄} = {x̄ } ∪ {ȳ},
and by subsequently re-indexing the bit vector variables in the transition relations. Particularly, in
∆φ , every indexed bit vector variable vi (including epsilon bit variables) is replaced by v j with j
being the position of xi in z̄, and analogously in ∆ψ , every indexed bit variable vi is replaced by v j
with j being the position of yi in z̄. Both AFTs are then considered to have |z̄ | tracks.

Saturation by ϵ-self loops. This step is needed if x̄ and ȳ share a variable, i.e., {x̄ }∩{ȳ} , ∅. The two
input transducers then have to synchronise on reading its symbols. However, it may happen that,
at some point, one of them will want to read from the non-shared tracks exclusively, performing an
ϵ transition on the shared track. Since reading of the non-shared tracks can be ignored by the other
transducer, it should be allowed to perform an ϵ move on all of its tracks. However, that needs
not be allowed by its transition function. To compensate for this, we will saturate the transition
function by ϵ-self loops performed on all tracks. Unfortunately, there is one additional problem
with this step: If the added ϵ transitions were based on the same epsilon bit variables as those
already used in the given AFT, they could enable some additional synchronization within the given
AFT, thus allowing it to accept some more tuples of words. We give an example of this problem
below (Example 5.2). To resolve the problem, we assume that the two AFTs being conjuncted use
different epsilon bit variables (more of such variables can be used due the AFTs can be a result of

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 4. Publication date: January 2018.

98

String Constraints with Concatenation and Transducers Solved Efficiently 4:13

several previous conjunctions). Formally, for any choice σ ,σ ′ ∈ {φ,ψ } such that σ , σ ′, and for
every state q ∈ Qσ , the transition formula ∆σ (q) is replaced by ∆σ (q) ∨ (q ∧∨

e ∈Eσ ′
∧
i ∈[|z̄ |] ei).

Conjunction of AFTs viewed as AFAs. In the last step, the input AFTs with aligned tracks and satu-
rated by ϵ-self loops are conjoined using the automata intersection construction from Section 4.2.

Lemma 5.1. LetR ′φ andR ′ψ be the AFTs obtained from the input AFTsRφ andRψ by track alignment
and ϵ-self-loop saturation, and let Rφ∧ψ = R ′φ ∩ R ′ψ . Then, Rφ∧ψ (z̄) is equivalent to Rφ (x̄) ∧ Rψ (ȳ).

To see that the lemma holds, note that both R ′φ and R ′ψ have the same number of tracksÐnamely,
|z̄ |. This number can be bigger than the original number of tracks (|x̄ | or |ȳ |, resp.), but the AFTs
still represent the same relations over the original tracks (the added tracks are unconstrained).
The ϵ-self loop saturation does not alter the represented relations either as the added transitions
represent empty words across all tracks only, and, moreover, they cannot synchronize with the
original transitions, unblocking some originally blocked runs. Finally, due to the saturation, the two
AFTs cannot block each other by an epsilon move on the shared track available in one of them only.5

Example 5.2. We now provide an example illustrating the conjunction of AFTs, including the
need to saturate the AFTs by ϵ-self loops with different ϵ symbols. We will assume working with
the input alphabet Σ = {a,b} encoded using a single input bit variable v0: let a correspond to ¬v0
and b to v0. Moreover, we will use two epsilon bit variables, namely, e1 and e2. We consider the
following two simple AFTs, each with two tracks:
• R1 = ({v0, e1}⟨2⟩, {q0,q1,q2},∆1,q0,¬q0∧¬q2) with ∆1 (q0) = (a1∧b2∧q1)∨ (a1∧a2∧q1∧q2),
∆1 (q1) = false, and ∆1 (q2) = e

1
1 ∧ q1. Note that Rel (R1) = {(a,b)} since the run that starts

with a1 ∧ a2 gets stuck in one of its branches, namely the one that goes to q2. This is because
we require branches of a single run of an AFT to synchronize even on epsilon bit variables,
and the transition from q2 cannot synchronize with any move from q1.
• R2 = ({v0, e2}⟨2⟩, {p0,p1,p2},∆2,p0,¬p0 ∧ ¬p1) such that ∆2 (p0) = (a1 ∧ b2 ∧ p1), ∆2 (p1) =
e12 ∧ b2 ∧ p2, and ∆2 (p2) = false. Clearly, Rel (R2) = {(a,bb)}.

Let Qi , Ii , Fi denote the set of states, initial constraint, and final constraint of Ri , i ∈ {1, 2},
respectively. Assume that we want to construct an AFT for the constraint R1 (x ,y) ∧ R2 (x , z).
This constraint represents the ternary relation {(a,b,bb)}. It can be seen that if we apply the
above described construction for intersection of AFTs to R ′1 and R ′2, where R ′1 = R1 and R ′2
is the same as R2 up to all symbols from track to 2 are moved to track 3, we will get an AFT
R = ({v0, e1, e2}⟨3⟩,Q1 ∪Q2,∆, I1 ∧ I2, F1 ∧ F2) representing exactly this relation. We will not list
here the entire ∆ but let us note the below:
• ∆ will contain the following transition obtained by ϵ-self-loop saturation of R1: ∆(q1) =
(e12 ∧ e22 ∧ q1). This will allow R to synchronize its run through q1 with its run from p1 to p2.
Without the saturation, this would not be possible, and Rel (R) would be empty.
• On the other hand, if a single epsilon bit variable e was used in both AFTs as well as in
their saturation, the saturated ∆1 would include the transition ∆1 (q1) = (e1 ∧ e2 ∧ q1). This
transition could synchronize with the transition ∆1 (q2) = e

1∧q1, and the relation represented
by the saturated R1 would grow to Rel (R1) = {(a,b), (a,a)}. The result of the intersection
would then (wrongly) represent the relation {(a,b,bb), (a,a,bb)}. □

5Note that the same approach cannot be used for AFTs sharing more than one track. Indeed, by intersecting two general
rational relations, one needs not obtain a rational relation.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 4. Publication date: January 2018.

99

4:14 Lukáš Holík, Petr Janků, Anthony W. Lin, Philipp Rümmer, and Tomáš Vojnar

Translation of disjunctions to AFTs. The construction of an AFT for a disjunction of formulae
is slightly simpler. The alignment of variables is immediately followed by an application of the
AFA disjunction construction. That is, the AFT Rφ∨ψ is constructed simply as R ′φ ∪ R ′ψ from the
constraints R ′φ (z̄) and R ′ψ (z̄) produced by the alignment of the vectors of variables x̄ and ȳ in
Rφ (x̄) and Rψ (ȳ). The construction of R ′φ and R ′ψ does not require the saturation by ϵ-self loops
because the two transducers do not need to synchronise on reading shared variables. The vectors x̄
and ȳ are allowed to share any number of variables.

Theorem 5.3. Every acyclic formula φ (x̄) can be transformed into an equisatisfiable rational
constraint R (x̄) represented by an AFT R. The transformation can be done in polynomial time unless
φ contains a negated regular constraint represented by a non-normalized succinct NFA.

Corollary 5.4. Checking satisfiability of acyclic formulae is in PSPACE unless the formulae contain
a negated regular constraint represented by a non-normalized succinct NFA.

PSPACEmembership of satisfiability of acyclic formulae with binary rational constraints (without
negations of regular constraints and without considering succinct alphabet encoding) is proven
already in [Barceló et al. 2013]. Apart from extending the result to k-ary rational constraints, we
obtain a simpler proof as a corollary of Theorem 5.3, avoiding a need to use the highly intricate
polynomial-space procedure based on the Savitch´s trick used in [Barceló et al. 2013]. Not consid-
ering the problem of negating regular constraints, our PSPACE algorithm would first construct
a linear-size AFT for the input φ. We can then use the fact that the standard PSPACE algorithm for
checking emptiness of AFAs/AFTs easily generalises to succinct AFAs/AFTs. This is proved by our
linear-space reduction of emptiness of the language of succinct AFAs to reachability in Boolean
transition systems, presented in Section 8. Reachability in Boolean transition systems is known to
be PSPACE-complete.

5.1 Decidable Extensions of AC
The relatively liberal condition that AC puts on rational constraints allow us to easily extend
AC with other features, without having to change the decision procedure. Namely, we can add
Presburger constraints about word length, as well as word equations, as long as overall acyclicity
of a formula is preserved. Length constraints can be added in the general form φPres (|x1 |, . . . , |xk |),
where φPres is a Presburger formula.

Definition 5.5 (Extended acyclic formulae). A string formula φ augmented with length constraints
φPres (|x1 |, . . . , |xk |) is extended acyclic if every word equation or rational constraint contains each
variable at most once, rational constraints R (x1, . . . ,xn) only appear at positive positions, and for
every sub-formulaψ ∧ψ ′ at a positive position of φ (and also everyψ ∨ψ ′ at a negative position)
it is the case that |free(ψ) ∩ free(ψ ′) | ≤ 1, i.e.,ψ andψ ′ have at most one variable in common.

Any extended AC formula φ can be turned into a standard AC formula by translating word
equations and length constraints to rational constraints. Notice that, although quite powerful,
extended AC still cannot express SL formulae such as x = yy, and does not cover practical properties
such as, e.g., those in Example 3.3 (where two conjuncts contain both x and y).

Word equations to rational constraints. For simplicity, assume that equations do not contain
letters a ∈ Σ. This can be achieved by replacing every occurrence of a constraintb by a fresh variable
constrained by the regular language {b}. An equation x = x1 ◦ · · · ◦xn without multiple occurrences
of any variables is translated to a rational constraint R (x ,x1, . . . ,xn) with R = (W ⟨n + 1⟩,Q =

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 4. Publication date: January 2018.

100

String Constraints with Concatenation and Transducers Solved Efficiently 4:15

{q0, . . . ,qn },∆, I = q0, F = qn). The transitions for i ∈ [n] are
∆(qi−1) = (qi−1 ∨ qi) ∧

∧

j ∈[n]\{i }
e j ∧

∧

v ∈W ⟨n+1⟩
(vi ↔ v0).

and ∆(qn) = false. That is, the symbol on the first track is copied to the ith track while all the
other tracks read ϵ . Negated word equations can be translated to AFTs in a similar way.

Length constraints to rational constraints. The translation of length constraints to rational con-
straints is similarly straightforward. Suppose an extended AC formula contains a length con-
straint φPres (|x1 |, . . . , |xk |), where φPres is a Presburger formula over k variables y1, . . . ,yk ranging
over natural numbers. It is a classical result that the solution space of φPres forms a semi-linear
set [Ginsburg and Spanier 1966], i.e., can be represented as a finite union of linear sets Lj =
{ȳ0+∑m

i=1 λiȳi | λ1, . . . , λm ∈ N} ⊆ Nk with ȳ0, . . . ȳm ∈ Nk . Every linear setLj can directly be trans-
lated to a succinct k-track AFT recognising the relation {(x1, . . . ,xk) ∈ (Σ∗)k | (|x1 |, . . . , |xk |) ∈ Lj },
and the union of AFTs be constructed as shown in Section 4.2, resulting in an AFT RφPres (x1, . . . ,xk)
that is equivalent to φPres (|x1 |, . . . , |xk |).
6 RATIONAL CONSTRAINTS WITH SYNCHRONISATION PARAMETERS
In order to simplify the decision procedure for SL, which we will present in Section 7, we introduce
an enriched syntax of rational constraints. We will then extend the AC decision procedure from
Section 5 to the new type of constraints such that it can later be used as a subroutine in our decision
procedure of SL. Before giving details, we will outline the main idea behind the extension.

The AC decision procedure expects acyclicity, which prohibits formulae that are, e.g., of the form
(φ (x)∧φ ′(y))∧ψ (x ,y). Indeed, after replacing the inner-most conjunction by an equivalent rational
constraint, the formula turns into the conjunction Rφ∧φ′ (x ,y)∧Rψ (x ,y), which is a conjunction of
the form R (x ,y) ∧ S (x ,y). In general, satisfiability of such conjunctions is not decidable, and they
cannot be expressed as a single AFT since synchronisation of ϵ-moves on multiple tracks is not
always possible. However, our example conjunction does not compose two arbitrary AFTs. By its
construction, Rφ∧φ′ (x ,y) actually consists of two disjoint AFT parts. Each of the parts constrains
symbols read on one of the two tracks only and is completely oblivious of the other part. Due to
this, an AFT equivalent to Rφ∧φ′ (x ,y) ∧ Rψ (x ,y) can be constructed (let us outline, without so far
going into details, that the construction would saturate ϵ-moves for each track of Rφ∧φ′ separately).
Indeed, the original formula can also be rewritten as φ (x) ∧ (φ (y) ∧ψ (x ,y)), which is AC and can
be solved by the algorithm of Section 5.

The idea of exploiting the independence of tracks within a transducer can be taken a step further.
The two independent parts do not have to be totally oblivious of each other, as in the case of Rφ∧φ′
above, but can communicate in a certain limited way. To define the allowed form of communication
and to make the independent communicating parts syntactically explicit within string formulae,
we will introduce the notion of synchronisation parameters of AFTs. We will then explain how
formulae built from constraints with synchronisation parameters can be transformed into a single
rational constraint with parameters by a simple adaptation of the AC algorithm, and how the
parameters can be subsequently eliminated, leading to a single standard rational constraint.

Definition 6.1 (AFT with synchronisation parameters). An AFT with parameters s̄ = s1, . . . , sn is
defined as a standard AFTR = (V ,Q,∆, I , F) with the difference that the initial and the final formula
can talk apart from states about so-called synchronisation parameters too. That is, I , F ⊆ FQ∪{s̄ }
where I is still positive on states and F is still negative on states, but the synchronisation parameters
can appear in I and F both positively as well as negatively. The synchronisation parameters put an
additional constraint on accepting runs. A run ρ = ρ0 . . . ρm over a k-tuple of words w̄ is accepting

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 4. Publication date: January 2018.

101

4:16 Lukáš Holík, Petr Janků, Anthony W. Lin, Philipp Rümmer, and Tomáš Vojnar

only if there is a truth assignment ν : {s̄} → B of parameters such that ν |= I and ν |= F . We then
say that w̄ is accepted with the parameter assignment ν .

String formulae can be built on top of AFTs with parameters in the same way as before. We write
φ[s̄](x̄) to denote a string formula that uses AFTs with synchronisation parameters from s̄ in its
rational constraints. Such a formula is interpreted over a union ι ∪ ν of an assignment ι : var(φ) →
P (V)∗ from string variables to strings, as usual, and a parameter assignment ν : {s̄} → B. An atomic
constraint R[s̄](x̄) is satisfied by ι ∪ν , written ι ∪ν |= R[s̄](x̄), if R accepts (ι (x1), . . . , ι (x |x̄ |)) with
the parameter assignment ν . Atomic string constraints without parameters are satisfied by ι ∪ ν iff
they are satisfied by ι. The satisfaction ι ∪ ν |= φ of a Boolean combination φ of atomic constraints
is then defined as usual.

Notice that within a non-trivial string formula, parameters may be shared among AFTs of several
rational constraints. They then not only synchronise initial and final configuration of a single
transducer run, but provide the aforementioned limited way of communication among AFTs of the
rational constraints within the formula.

Definition 6.2 (ACwith synchronisation parametersÐACsp). The definition of AC extends quite
straightforwardly to rational constraints with parameters. There is no other change in the definition
except for allowing rational constraints to use synchronisation parameters as defined above.

Notice that since we do not consider regular constraints with parameters, constraints with
parameters in ACsp formulae are never negated.
The synchronisation parameters allow for an easier transformation of string formulae into AC.

For instance, consider a formula of the form φ (x ,y)∧ψ (x ,y) where one of the conjuncts, say φ, can
be rewritten as φ1[s̄1](x) ∧ φ2[s̄2](y). The whole formula can be written as φ1[s̄1](x) ∧ (φ2[s̄2](y) ∧
ψ (x ,y)), which falls into ACsp. An example of such a formula φ (x ,y), commonly found in the
benchmarks we experimented with as presented later on, is a formula saying that x ◦ y belongs
to a regular language, expressed by an AFA A. This can be easily expressed by a conjunction
R1[s̄](x)∧R2[s̄](y) of two unary rational constraints with parameters. Intuitively, the AFTs R1 and
R2 are two copies of A. R1 nondeterministicaly chooses a configuration where the prefix of a run
of A reading a word x ends, accepts, and remembers the accepting configuration in parameter
values (it will have a parameter per state). R2 then reads the suffix of x , using the information
contained in parameter values to start from the configuration where R1 ended. We explain this
construction in detail in Section 7.
An ACsp formula φ with parameters can be translated into a single, parameter-free, rational

constraint and then decided by an AFA language emptiness check described in Section 8. The
translation is done in two steps:
(1) A generalised AC algorithm translates φ (x̄) to Rφ [s̄](x̄).
(2) Parameter elimination transforms Rφ [s̄](x̄) to a normal rational constraint R ′φ (x̄).
Generalised AC algorithm. To enable eliminations of conjunctions and disjunctions from ACsp

formulae, just a small modification of the procedure from Section 5 is enough. The presence
of parameters in the initial and final formulae does not require any special treatment, except
that, unlike for states (which are implicitly renamed), it is important that sets of synchronisation
parameters stay the same even if they intersect, so that the synchronisation is preserved in the
resulting AFT. That is, for □ ∈ {∧,∨}, Rφ [r̄](x̄), and Rψ [s̄](ȳ), the constraint Rφ□ψ [t̄](z̄) is created
in the same way as described in Section 5, the parameters within the initial and the final formulae
of the input AFTs are passed to the AFA construction □ unchanged, and {t̄ } = {r̄ } ∪ {s̄}.

Lemma 6.3. Rφ [r̄](x̄) □ Rψ [s̄](ȳ) is equivalent to Rφ□ψ [t̄](z̄).

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 4. Publication date: January 2018.

102

String Constraints with Concatenation and Transducers Solved Efficiently 4:17

Elimination of parameters. The previous steps transform the formula into a single rational con-
straint with synchronisation parameters. Within such a constraint, every parameter communicates
one bit of information between the initial and final configuration of a run. The bit can be encoded
by an additional automata state passed from a configuration to a configuration via transitions
through the entire run, starting from an initial configuration where the parameter value is decided
in accordance with the initial formula, to the final configuration where it is checked against the final
formula. A technical complication, however, is that automata transitions are monotonic (positive
on states). Hence, they cannot prevent arbitrary states from appearing in target configurations
even though their presence is not enforced by the source configuration. For instance, starting
from a single state q1 and executing a transition ∆(q1) = q2 can yield a configuration q2 ∧ q3. The
assignment of 0 to a parameter cannot therefore be passed through the run in the form of absence
of a single designated state as it can be overwritten anywhere during the run.

To circumvent the above, we use a so-called two rail encoding of parameter values: every parameter
s is encoded using a pair of value indicator states, the positive value indicator s+ and the negative
value indicator s−. Addition of unnecessary states into target configurations during a run then cannot
cause that a parameter silently changes its value. One of the indicators can still get unnecessarily set,
but the other indicator will stay in the configuration too (states can be added into the configurations
reached, but cannot be removed). The parameter value thus becomes ambiguousÐboth s− and s+ are
present. The negative final formula can exclude all runs which arrive with ambiguous parameters
by enforcing that at least one of the indicators is false.
Formally, the parameter elimination replaces a constraint R (x̄)[s̄] with R = (W ⟨|x̄ |⟩,Q,∆, I , F)

and |s̄ | = n by a parameter free constraint R ′(x̄) with R ′ = (W ⟨|x̄ |⟩,Q ′,∆′, I ′, F ′) where
• Q ′ = Q ∪ {s+i , s−i | 1 ≤ i ≤ n} (parameters are added to Q), and
• ∆′ = ∆ ∪ {s+i 7→ s+i , s

−
i 7→ s−i | 1 ≤ i ≤ n} (once active value indicators stay active).

• I ′ = I+ ∧Choose where I+ is a positive formula that arises from I by replacing every negative
occurrence of a parameter ¬s by a positive occurrence of its negative indicator s−, and the
positive formula Choose = ∧n

i=1 s
+
i ∨ s−i enforces that every parameter has a value.

• F ′ = F− ∧Disambiguate where F− is a negative formula that arises from F by replacing every
positive occurence of a parameter s by a negative occurrence of its negative indicator ¬s−,
and the negative formula Disambiguate =

∧n
i=1 ¬s+i ∨¬s−i enforces that indicators determine

parameter values unambiguously, i.e., at most one indicator per parameter is set.

Lemma 6.4. ∃s̄ : R (x̄)[s̄] is equivalent to R ′(x̄).
7 DECIDING STRAIGHT-LINE FORMULAE
Our algorithm solves string formulae using the DPLL(T) framework [Nieuwenhuis et al. 2004]6,
whereT is a sound and complete solver for AC and SL. Loosely speaking, DPLL(T) can be construed
as a collaboration between a DPLL-based SAT-solver and theory solvers, wherein the input formula
is viewed as a Boolean formula by the SAT solver, checked for satisfiability by the SAT-solver, and if
satisfiable, theory solvers are invoked to check if the Boolean assignment found by the SAT solver
can in fact be realised in the involved theories. The details of the DPLL(T) framework are not so
important for our purpose. However, the crucial point is that all queries that a DPLL(T) solver asks
a T-theory solver are conjunctions from the CNF of the input formula (or their parts), enabling us
to concentrate on solving SL conjunctions only.

Our decision procedure for SL conjunctions transforms the input SL conjunction into an equisat-
isfiable ACsp formula, which is then decided as discussed in Section 6. The rest of the section is
thus devoted to a translation of a positive SL conjunction φ to an ACsp formula. The translation
6Also see [Kroening and Strichman 2008] for a gentle introduction to DPLL(T).

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 4. Publication date: January 2018.

103

4:18 Lukáš Holík, Petr Janků, Anthony W. Lin, Philipp Rümmer, and Tomáš Vojnar

internally combines rational constraints and equations into a more general kind of constraints in
which rational relations are mixed with concatenations and synchronisation parameters.

Example 7.1. As a running example for the section, we use an SL conjunction that captures the
essence of the vulnerability pattern from Example 1.1: A sanitizer is applied on an input string to
get rid of symbols c, replacing them by d, hoping that this will prevent a dangerous situation which
arises when a symbol d apears in a string somewhere behind c. However, the dangerous situation
will not be completely avoided since it is forgotten that the sanitized string will be concatenated
with another string that can still contain c.7

To formalize the example, assume a bit-vector encoding of an alphabet Σ which contains the
symbols c and d. Assume that each a ∈ Σ denotes the conjunction of (negated) bit variables encoding
it. As our running example, we will then consider the formula φ : y = R (x) ∧ z = x ◦y ∧A (z). The
AFT R = (W ⟨2⟩,Q = {q},∆ = {q 7→ q ∧ ¬d1 ∧ (c1 → d2) ∧∧

a∈Σ\{c} (a1 ↔ a2))}, I = q, F = true)
is a sanitizer that produces y by replacing all occurrences of c in its input string x by d, and it also
makes sure that x does not include d. The AFAA = (V ,Q ′ = {r0, r1, r2},∆′, I ′ = r0, F ′ = ¬r0 ∧¬r1)
where ∆′(r0) = (r0∧¬c)∨ (r1∧c), ∆′(r1) = (r1∧¬d)∨ (r2∧d), and ∆′(r2) = true is the specification.
It checks whether the opening symbol c can be later followed by the closing symbol d in the string
z. The formula is satisfiable. □

Definition 7.2 (Mixed constraints). A mixed constraint is of the form x = R[s̄](y1 ◦ · · · ◦yn) where
R is a binary AFT, with a concatenation of variables as the right-hand side argument, and s̄ is
a vector of synchronisation parameters. Such constraint has the expected meaning: it is satisfied
by the union ν ∪ ι of an assignment ι to string variables and an assignment ν to parameters iff
(ι (x), ι (y1) ◦ · · · ◦ ι (yn)) is accepted by R[s̄] with the parameter assignment ν .
All steps of our translation of the input SL formulaφ to an ACsp formula preserve the SL fragment,

naturally generalised to mixed constraints as follows.
Definition 7.3 (Generalised straight-line conjunction). A conjunction of string constraints is defined

to be generalised straight-line if it can be written as ψ ∧∧m
i=1 xi = Fi where ψ is a conjunction

over regular and negated regular constraints and each Fi is either of the form y1 ◦ · · · ◦ yn or
R[s̄](y1 ◦ · · · ◦ yn) such that it does not contain variables xi , . . . ,xm .
For simplicity, we assume that φ has gone through two preprocessing steps. First, all negations

were eliminated by complementing regular constraints, resulting in a purely positive conjunction.
Second, all theÐnow only positiveÐregular constraints were replaced by equivalent rational con-
straints. Particularly, a regular constraint A (x) is replaced by a rational constraint x ′ = R ′(x)
where x ′ is a fresh variable and R ′ is an AFT with Rel (R ′) = P (V)∗ × L(A). The AFT R ′ is created
from A by indexing all propositions in the transition relation by the index 2 of the second track.
It is not difficult to see that since x ′ is fresh, the replacement preserves SL, and also satisfiability,
since P (x) ∧ψ is equivalent to ∃x ′ : x ′ = R (x) ∧ψ for everyψ .

Example 7.4. In Example 7.1, the preprocessing replaces the conjunct A (z) by z ′ = S (z) where
S is the same asA, except occurrences of bit-vector variables in ∆′ are indexed by 2 since z will be
read on its second track. We obtain φ ′0 : y = R (x) ∧ z = x ◦ y ∧ z ′ = S (z) where z ′ is free. □

Due to the preprocessing, we are starting with a formula φ ′0 in the form of an SL conjunction of
rational constraints and equations. The translation to ACsp will be carried out in the following
three steps, which will be detailed in the rest of the section:
7In reality, where one undesirably concatenates a string command(′... with some string ...′); attack(); the situation is, of
course, more complex and sanitization is more sophisticated. However, having a real-life example, such as those used in our
experiments, as a running example would be too complex to understand.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 4. Publication date: January 2018.

104

String Constraints with Concatenation and Transducers Solved Efficiently 4:19

(1) Substitution transforms φ ′0 to a conjunction φ1 of mixed constraints.
(2) Splitting transforms φ1 to a conjunction φ2 of rational constraints with parameters.
(3) Ordering transforms φ2 to an AC conjunction φ3 with parameters.

Substitution. Equations in φ ′0 are combined with rational constraints into mixed constraints by
a straightforward substitution. In one substitution step, a conjunction x = y1◦· · ·◦yn∧ψ is replaced
by ψ [y1 ◦ · · · ◦ yn/x] where all occurrences of x are replaced by y1 ◦ · · · ◦ yn . The substitution
preserves the generalised straight-line fragment.

Lemma 7.5. If x = y1 ◦ · · · ◦ yn ∧ψ is SL, thenψ [y1 ◦ · · · ◦ yn/x] is equisatisfiable and SL.
The substitution steps are iterated eagerly in an arbitrary order until there are no equations.

Every substitution step obviously decreases the number of equations, so the iterative process
terminates after a finitely many steps with an equation-free SL conjunction of mixed constraints φ1.

Example 7.6. The substitution eliminates the equation z = x ◦ y in φ ′0 from Example 7.4, trans-
forming it to φ1 : y = R (x) ∧ u = S (x ◦ y). □

Splitting. We will now explain how synchronisation parameters are used to eliminate concatena-
tion within mixed constraints. The operation of binary splitting applied to an SL conjunction of
mixed constraints, φ : x = R (y1 ◦ · · · ◦ym ◦ z1 ◦ · · · ◦ zn)[s̄]∧ψ , where R = (W ⟨2⟩,Q,∆, I , F) and
Q = {q1, . . . ,ql } splits the mixed constraint and substitutes x by a concatenation of fresh variables
x1 ◦ x2 inψ . That is, it outputs the conjunction φ ′ : ζ ∧ψ [x1 ◦ x2/x] of mixed constraints, where
the rational constraint was split into the following conjunction ζ of two constraints:

ζ : x1 = R1 (y1 ◦ · · · ◦ ym)[s̄, t̄] ∧ x2 = R2 (z1 ◦ · · · ◦ zn)[s̄, t̄]
The vector t̄ consists of l fresh parameters, x1 and x2 are fresh string variables, and each AFT with
parameters Ri = (W ⟨2⟩,Q,∆, Ii , Fi), i ∈ {1, 2}, is derived from R by choosing initial/final formulae:

I1 = I , F1 =
l∧

i=1
qi → ti , I2 =

l∧

i=1
ti → qi , F2 = F .

Intuitively, each run ρ of R is split into a run ρ1 of R1, which corresponds to the first part of ρ in
which y1 ◦ · · · ◦ym is read along with a prefix x1 of x , and a run ρ2 of R2, which corresponds to the
part of ρ in which z1 ◦ · · · ◦ zn is read along with the suffix x2 of x . Using the new synchronisation
parameters t̄ , the formulae F1 and I2 ensure that the run ρ1 of R1 must indeed start in the states in
which the run ρ2 of R2 ended, that is, the original run ρ of R can be reconstructed by connecting
ρ1 and ρ2. Every occurrence of x inψ is replaced by the concatenation x1 ◦ x2.
Lemma 7.7. In the above, φ is equivalent to ∃x1x2t̄ : φ ′.
The resulting formula φ ′ is hence equisatisfiable to the original φ. Moreover, φ ′ is still generalised

SLÐthe two new constraints defining x1 and x2 can be placed at the position of the original
constraint defining x that was split, and the substitution [x1 ◦ x2/x] in the rest of the formula only
applies to the right-hand sides of constraints (since x can be defined only once).

Lemma 7.8. If φ is an SL conjunction of mixed constraints, then so is φ ′.

Moreover, by applying binary splitting steps eagerly in an arbitrary order onφ1, we are guaranteed
that all concatenations will be eliminated after a finite number of steps, thus arriving at the SL
conjunction of rational constraints with parameters φ2. The termination argument relies on the
straight-line restriction. Although it cannot be simply said that every step reduces the number
of concatenations because the substitution x1 ◦ x2 introduces new ones, the new concatenations
x1 ◦ x2 are introduced only into constraints defining variables that are higher in the straight-line

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 4. Publication date: January 2018.

105

4:20 Lukáš Holík, Petr Janků, Anthony W. Lin, Philipp Rümmer, and Tomáš Vojnar

ordering than x . It is therefore possible to define a well-founded (integer) measure on the formulae
that decreases with every application of the binary splitting steps.

Lemma 7.9. All concatenations in the SL conjunction of mixed constraints φ1 will be eliminated
after a finite number of binary splitting steps.

We note that our implementation actually uses a slightly more efficient n-ary splitting instead of
the described binary. It splits a mixed constraint in one step into the number of conjuncts equal
to the length of the concatenation in its right-hand side. We present the simpler binary variant,
which eventually achieves the same effect.

Example 7.10. The formula from Example 7.6 would be transformed into φ2 : y = R (x) ∧ u1 =
S1[s̄](x) ∧ S2[s̄](y) where S1,S2 are as S up to that S1 has the final formula I ′ ∧∧2

i=0 (ri → s0)
and S2 has the final formula F ′ ∧∧2

i=0 (si → ri). Notice that u1 = S1[s̄](x) ∧ u2 = S2[s̄](y) still
enforce that x ◦ y has c eventually followed by d. The parameters remember where S1 ended its
run and force R2 to continue from the same state. □

Reordering modulo associativity. Substitution and splitting transform φ0 to a straight-line con-
junction φ2 of rational constraints with parameters. Before delegating it to the ACsp formulae
solver, it must be reorganized modulo associativity to achieve a structure satisfying the definition
of AC. One way of achieving this is to order the formula into a conjunction ∧m

i=1 xi = R[s̄i](yi)
satisfying the condition in the definition of SL (the definition of SL only requires that the formula
can be assumed). An simple way is discussed in [Lin and Barceló 2016]. It consists of drawing the
dependency graph of φ, a directed graph with the variables var(φ) as vertices which has an edge
x → y if and only if φ contains a conjunct x = R (y). Due to the straight-line restriction, the graph
must be acyclic. The ordering of variables can be then obtained as a topological sort of the graphs
vertices, which is computable in linear time (e.g. [Cormen et al. 2009], for instance by a depth-first
traversal). The final acyclic formula φ3 then arises when letting ∧m

i=1 associate from the right:
φ3 : (x1 = R1 (y1) ∧ (x2 = R2 (y2) ∧ (. . . ∧ (xm−1 = Rm−1 (ym−1) ∧ xm = Rm (ym)) . . .))).

To see that φ3 is indeed ACsp, observe that every conjunctive sub-formula is of the form (
∧
i<k xi =

Ri (yi)) ∧ xk = Rk (yk) where xk is by the definition of SL not present in the left conjunct. The left
and right conjuncts can therefore share at most one variable, yk .

Theorem 7.11. The formula φ3 obtained by substitution, splitting, and reordering from φ0 is
equisatisfiable and acyclic.

Example 7.12. The ACsp formula φ3 : y = R (x) ∧ u1 = S1[s̄](x)) ∧ S2[s̄](y) would be the final
result of the SL to ACsp translation. Let us use φ3 to also briefly illustrate the decision procedure
for ACsp of Section 6. The first step is the transformation to a single rational constraint with
parameters by induction over formula structure. This will produce R ′[s̄](x ,y, z) with states and
transitions consisting of those in R, S1 with indexes of alphabet bits incremented by one (y, and
z are now not the first and the second, but the second and the third track), and a copy S′2 of S2
with states replaced by their primed variant (so that they are disjoint from that of S1) and also
incremented indexes of alphabet bits. The initial and final configuration will be the conjunctions of
those of R,S1 and S′2. The last step, eliminating of parameters, will lead to the addition of positive
and negative indicator states for parameters s̄ = s1, s2, s3 with the universal self-loops and the
update of the initial and final formula as in Section 6. The rest is solved by the emptiness check
discussed in Section 8. Notice the small size of the resulting AFT. Compared to the original formula
from Example 7.1, it contains only one additional copy of A (the S′2), the six additional parameter
indicator states with self-loops and the initial and final condition on the parameter indicators. □

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 4. Publication date: January 2018.

106

String Constraints with Concatenation and Transducers Solved Efficiently 4:21

A note on the algorithm of [Lin and Barceló 2016]. We will now comment on the differences of
our algorithm for deciding SL from the earlier algorithm of [Lin and Barceló 2016]. It combines
reasoning on the level NFAs and nondeterministic transducers, utilising classical automata theoretic
techniques, with a technique for eliminating concatenation by enumerative automata splitting. It
first turns and SL formula into a pure AC formula and then uses the AC decision procedure.
An obvious advantage of our decision procedure described in Section 5 is the use of succinct

AFA. As opposed to the worst case exponentially larger NFA, it produces an AFA of a linear size
(unless the original formula contains negated regular constraints represented as general AFA. See
Section 5 for a detailed discussion). Let us also emphasize the advantages of our algorithm in the
first phase, translation of SL to ACsp. Similarly as in the case of deciding AC, the main advantage
of our algorithm is that, while [Lin and Barceló 2016] only works with NFTs, we propose ways of
utilising the power of alternation and succinct transition encoding.
We will illustrate the difference on an example. The concatenation in the conjunction x =

y ◦ z ∧w = R (x) would in [Lin and Barceló 2016] be done by enumerative splitting. It replaces the
conjunction by the disjunction ∨

q∈Q w1 = Rq (y) ∧w2 = qR (z). The Q in the disjunction is the set
of states of the (nondeterministic) transducer R, Rq is the same as the NFT R up to that the final
state is q, and qR the same as R up to that the initial state is q. Intuitively, the run of R is explicitly
separated into the part in which y is read along the prefixw1 ofw , and the suffix in which z is red
along the suffixw2 ofw . The variablew would be replaced byw1 ◦w2 in the rest of the formula.
The disjunction enumerates all admissible intermediate states q ∈ Q a run of R can cross, and for
each of them, it constructs two copies of R . This makes the cost of the transformation quadratic in
the number of states of the NFT R . A straightforward generalisation to our setting in which R is an
AFT is possible: The disjunction would have to list, instead of possible intermediate states q ∈ Q ,
all possible intermediate configurations C ⊆ Q a run of the AFA R can cross, thus increasing the
quadratic blow-up of the nondeterministic case to an exponential (due to the enumerative nature
of splitting, the size is without any optimisation bounded by an exponential even from below).
Our splitting algorithm utilises succinctness of alternation to reduce the cost of enumerative

AFA splitting from exponential space (or quadratic in the case of NFAs) to linear. The smaller
size of the resulting representation is payed for by a more complex alternating structure of the
resulting rational constraints. The worst case complexity of the satisfiability procedure thus remains
essentially the same. However, deferring most of the complexity to the last phase of the decision
procedure, AFA emptiness checking, allows to circumvent the potential blow-up by means of
modern model checking algorithms and heuristics and achieve much better scalability in practice.

8 MODEL CHECKING FOR AFA LANGUAGE EMPTINESS
In order to check unsatisfiability of a string formula using our translation to AFTs, it is necessary to
show that the resulting AFT does not accept any word, i.e., that the recognised language is empty.
The constructed AFTs are succinct, but tend to be quite complex: a naïve algorithm that would
translate AFTs to NFAs using an explicit subset construction, followed by systematic state-space
exploration, is therefore unlikely to scale to realistic string problems. We discuss how the problem
of AFT emptiness can instead be reduced (in linear time and space) to reachability in a Boolean
transition system, in a way similar to [Cox and Leasure 2017; Gange et al. 2013; Wang et al. 2016].
Our translation is also inspired by the use of model checkers to determinise NFAs in [Tabakov and
Vardi 2005], by a translation to sequential circuits that corresponds to symbolic subset construction.
We use a similar implicit construction to map AFAs and AFTs to NFAs.

As an efficiency aspect of the construction for AFAs, we observe that it is enough to work with
minimal sets of states, thanks to the monotonicity properties of AFAs (the fact that initial formulae
and transition formulae are positive in the state variables, and final formulae are negative). This

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 4. Publication date: January 2018.

107

4:22 Lukáš Holík, Petr Janků, Anthony W. Lin, Philipp Rümmer, and Tomáš Vojnar

gives rise to three different versions: a direct translation that does not enforce minimality at all; an
intensionally-minimal translation that only considers minimal sets by virtue of additional Boolean
constraints; and a deterministic translation that resolves nondeterminism through additional system
inputs, but does not ensure fully-minimal state sets.

8.1 Direct Translation to Transition Systems
To simplify the presentation of our translation to a Boolean transition system, we focus on the
case of AFAs A = (Vn ,Q,∆, I , F) over a single track of bit-vectors of length n + 1. The translation
directly generalises to k-track AFTs, and to AFTs with epsilon characters, by simply choosing n
sufficiently large to cover the bits of all tracks.

We adopt a standard Boolean transition system view on the execution of the AFAA (e.g., [Clarke
et al. 1999]). If A has m = |Q | automaton states, then A can be interpreted as a (symbolically
described) transition system T di

A = (Bm , Initdi, Transdi). The transition system has state space Bm ,
i.e., a system state is a bit-vector q̄ = ⟨q0, . . . ,qm−1⟩ of lengthm identifying the active states in Q .
The initial states of the system are defined by Initdi[q̄] = I , the same positive Boolean formula as in
A. The transition relation Transdi of the system is a Boolean formula over two copies q̄, q̄′ of the
state variables, encoding that for each active pre-state qi in q̄ the formula ∆(qi) has to be satisfied
by the post-state q̄′. Input variables Vn = {x0, ...,xn } are existentially quantified in the transition
formula, expressing that all AFA transitions have to agree on the letter to be read:

Transdi[q̄, q̄′] = ∃v0, . . . ,vn :
m−1∧

i=0
qi → ∆(qi)[q̄/q̄′] (1)

To examine emptiness of A, it has to be checked whether T di
A can reach any state in the target

set Finaldi[q̄] = F , i.e., in the set described by the negative final formula F ofA. Since is well-known
that reachability in transition systems is a PSPACE-complete problem [Clarke et al. 1999], this
directly establishes that fragment AC is in PSPACE (Corollary 5.4).

Lemma 8.1. The language L(A) recognised by the AFA A is empty if and only if T di
A cannot reach

a configuration in Finaldi[q̄].

In practice, this means that emptiness of L(A) can be decided using a wide range of readily
available, highly optimised model checkers from the hardware verification field, utilising methods
such as k-induction [Sheeran et al. 2000], Craig interpolation [McMillan 2003], or IC3/PDR [Bradley
2012]. In our implementation, we represent T di

A in the AIGER format [Biere et al. 2017], and then
apply nuXmv [Cavada et al. 2014] and ABC [Brayton and Mishchenko 2010].

The encodingT di
A leaves room for optimisation, however, as it does not fully exploit the structure

of AFAs and introduces more transitions than strictly necessary. In (1), we can observe that if
Transdi[q̄, q̄′] is satisfied for some q̄, q̄′, then it will also be satisfied for every post-state q̄′′ ⪰ q̄′,
writing p̄ ⪯ q̄ for the point-wise order on bit-vectors p̄, q̄ ∈ Bm (i.e., p̄ ⪯ q̄ if pi implies qi for every
i ∈ {0, . . . ,m− 1}). This is due to the positiveness (ormonotonicity) of the transition formulae ∆(qi).
Similarly, since the initial formula I of an AFA is positive, initially more states than necessary might
be activated. Because the final formula F is negative, and since redundant active states can only
impose additional restrictions on the possible runs of an AFA, such redundant states can never lead
to more words being accepted.
More formally, we can observe that the transition system T di

A is well-structured [Finkel 1987],
which means that the state space Bm can be equipped with a well-quasi-order ≤ such that whenever
Transdi[q̄, q̄′] and q̄ ≤ p̄, then there is some state p̄ ′ with q̄′ ≤ p̄ ′ and Transdi[p̄, p̄ ′]. In our case, ≤ is

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 4. Publication date: January 2018.

108

String Constraints with Concatenation and Transducers Solved Efficiently 4:23

the inverse point-wise order ⪰ on bit-vectors;8 intuitively, deactivating AFA states can only enable
more transitions. Since the set Finaldi[q̄] is upward-closed with respect to ≤ (downward-closed with
respect to ⪯), the theory on well-structured transition systems tells us that it is enough to consider
transitions to ≤-maximal states (or ⪯-minimal states) of the transition system when checking
reachability of Finaldi[q̄]. In forward-exploration of the reachable states of T di

A , the non-redundant
states to be considered form an anti-chain. This can be exploited by defining tailor-made exploration
algorithms [Doyen and Raskin 2010; Kloos et al. 2013], or, as done in the next sections, by modifying
the transition system to only include non-redundant transitions.

8.2 Intensionally-Minimal Translation
We introduce several restricted versions of the transition system T di

A , by removing transitions to
non-minimal states. The strongest transition systemTmin

A = (Bm , Initmin, Transmin) obtained in this
way can abstractly be defined as:

Initmin[q̄] = Initdi[q̄] ∧ ∀p̄ ≺ q̄. ¬Initdi[p̄] (2)
Transmin[q̄, q̄′] = Transdi[q̄, q̄′] ∧ ∀p̄ ≺ q̄′. ¬Transdi[q̄, p̄] (3)

That means, Initmin and Transmin are defined to only retain the ⪯-minimal states. Computing Initmin

and Transmin corresponds to the logical problem of circumscription [McCarthy 1980], i.e., the com-
putation of the set of minimal models of a formula. Circumscription is in general computationally
hard, and its precise complexity still open in many cases; in (2) and (3), note that eliminating the
universal quantifiers (as well as the universal quantifiers introduced by negation of Transdi) might
lead to an exponential increase in formula size, so thatTmin

A does not directly appear useful as input
to a model checker.

We can derive amore practical, but weaker systemT im
A = (Bm , Initim, Transim) by onlyminimising

post-states in Transim with respect to the same input letter Vn :

Initim[q̄] = Initmin[q̄]

Transim[q̄, q̄′] = ∃Vn .
(
Trans[q̄, q̄′,Vn] ∧ ∀p̄ ≺ q̄′. ¬Trans[q̄, p̄,Vn]

)

with Trans[q̄, q̄′,Vn] =
m−1∧

i=0
qi → ∆(qi)[q̄/q̄′]

The formulae still contain universal quantifiers ∀p̄, but it turns out that the quantifiers can now
be eliminated with only polynomial effort, due to the fact that p̄ only occurs negatively in the
scope of the quantifier. Indeed, whenever φ[q̄] is a formula that is positive in q̄, and φ[q̄] holds
for assignments q̄1, q̄3 ∈ Bm with q̄1 ⪯ q̄3, then φ[q̄] will also hold for any assignment q̄2 ∈ Bm
with q̄1 ⪯ q̄2 ⪯ q̄3 due to monotonicity. This implies that a satisfying assignment q̄1 ∈ Bm
is ⪯-minimal if no single bit in q̄1 can be switched from 1 to 0 without violating φ[q̄]. More
formally, φ[q̄] ∧ ¬∃p̄ ≺ q̄. φ[p̄] is equivalent to φ[q̄] ∧ ∧m−1

i=0 qi → ¬φ[q̄][qi/false], where we
write φ[qi/false] for the result of substituting qi with false in φ.

8Since the state space Bm of T di
A is finite, the łwell-” part is trivial.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 4. Publication date: January 2018.

109

4:24 Lukáš Holík, Petr Janků, Anthony W. Lin, Philipp Rümmer, and Tomáš Vojnar

The corresponding, purely existential representation of Initim and Transim is:

Initim[q̄] ≡ Initdi[q̄] ∧
m−1∧

i=0
qi → ¬Initdi[q̄][qi/false] (4)

Transim[q̄, q̄′] ≡ ∃Vn .
(
Trans[q̄, q̄′,Vn] ∧

m−1∧

i=0
q′i → ¬Trans[q̄, q̄′,Vn][q′i/false]

)
(5)

The representation is quadratic in size of the original formulae Initdi, Transdi, but the formulae
can in practice be reduced drastically by sharing of common sub-formulae, since them copies of
Initdi[q̄][qi/false] and Trans[q̄, q̄′,Vn][q′i/false] tend to be almost identical.

Lemma 8.2. The following statements are equivalent:

(1) T di
A can reach a configuration in Finaldi[q̄];

(2) Tmin
A can reach a configuration in Finaldi[q̄];

(3) T im
A can reach a configuration in Finaldi[q̄].

Example 8.3. To illustrate the T im
A encoding, we consider an AFA A that accepts the language

{xwy | |xwy | = 2k,k ≥ 1,x ∈ {a,b},y ∈ {c,d }} using the encoding of the alphabet Σ = {a,b, c,d }
from Example 4.1. We letA = ({v0,v1}, {q0,q1,q2,q3,q4},∆, I , F) where I = q0, F = ¬q0∧¬q1∧¬q3
(i.e., the accepting states are q2 and q4), and ∆ is defined as ∆(q0) = ¬v1 ∧ q1 ∧ q3, ∆(q1) = q2,
∆(q2) = q1, ∆(q3) = q3 ∨ (v1 ∧ q4), and ∆(q4) = false.
The direct transition system representation is T di

A = (B5, Initdi, Transdi), defined by:

Initdi[q̄] = q0, Transdi[q̄, q̄′] = ∃v0,v1.
*......,

(q0 → ¬v1 ∧ q′1 ∧ q′3) ∧
(q1 → q′2) ∧
(q2 → q′1) ∧
(q3 → q′3 ∨ (v1 ∧ q′4)) ∧
(q4 → false)

+//////-︸ ︷︷ ︸
Trans[q̄,q̄′,Vn]

The intensionally-minimal translationT im
A can be derived fromT di

A by conjoining the restrictions in
(4) and (5) (Transim[q̄, q̄′] is shown in simplified form for sake of presentation):

Initim[q̄] = q0 ∧ (q0 → ¬false) ∧
4∧

i=1
(qi → ¬q0) ≡ q0 ∧ ¬q1 ∧ ¬q2 ∧ ¬q3 ∧ ¬q4

Transim[q̄, q̄′] ≡ ∃v0,v1.
(
Trans[q̄, q̄′,Vn] ∧ ¬q′0 ∧ (q′1 → q0 ∨ q2) ∧ (q′2 → q1) ∧
(q′3 → q0 ∨ (q3 ∧ ¬(v1 ∧ q′4))) ∧ (q′4 → q3 ∧ ¬q′3)

)

□

8.3 Deterministic Translation
We introduce a further encoding of A as a transition system that is more compact than (4), (5), but
does not always ensure fully-minimal state sets. The main idea of the encoding is that a conjunctive
transition formula ∆(q1) = q2 ∧ q3, assuming that q2,q3 do not occur in any other transition
formula ∆(qi), can be interpreted as a set of deterministic updates q′2 = q1;q′3 = q1. For state
variables that occur in multiple transition formulae, the right-hand side of the update turns into
a disjunction. Disjunctions in transition formulae represent nondeterministic updates that can
be resolved using additional Boolean flags. The resulting transition system is deterministic, as
transitions are uniquely determined by the pre-state and variables representing system inputs.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 4. Publication date: January 2018.

110

String Constraints with Concatenation and Transducers Solved Efficiently 4:25

Example 8.4. We illustrate the encoding T det
A = (Bm , Initdet , Transdet) using the AFA from Ex-

ample 8.3. While the initial states Initdet[q̄] coincide with Initim[q̄] in Example 8.3, the transition
relation Transdet[q̄, q̄′] now consists of two parts: a deterministic assignment of the post-state q̄′ in
terms of the pre-state q̄, together with an auxiliary variable h3 that determines which branch of
∆(q3) is taken; and a conjunct that ensures that value of h3 is consistent with the inputs Vn . The
resulting Transdet[q̄, q̄′] is (in this example) equivalent to Transim[q̄, q̄′]:

Initdet[q̄] = q0 ∧ ¬q1 ∧ ¬q2 ∧ ¬q3 ∧ ¬q4

Transdet[q̄, q̄′] ≡ ∃h3.
*......,

(q′0 ↔ false) ∧
(q′1 ↔ q0 ∨ q2) ∧
(q′2 ↔ q1) ∧
(q′3 ↔ q0 ∨ q3 ∧ h3) ∧
(q′4 ↔ q3 ∧ ¬h3)

+//////-
∧ ∃v0,v1. *.,

(q0 → ¬v1) ∧
(q3 ∧ ¬h3 → v1) ∧
(q4 → false)

+/-
□

To define the encoding formally, we make the simplifying assumption that there is a unique
initial state q0, i.e., I = q0, and that all transition formulae ∆(qi) are in negation normal form (i.e.,
in particular state variables in ∆(qi) do not occur underneath negation). Both assumption can be
established by simple transformation of A. The transition system T det

A = (Bm , Initdet , Transdet) is:

Initdet[q̄] = q0 ∧
m−1∧

i=1
¬qi

Transdet[q̄, q̄′] = ∃H . *,
(m−1∧

i=0
q′i ↔ NewState(qi)

)
∧ ∃Vn .

(m−1∧

i=0
qi → InputInv (∆(qi), i)

)+-
The transition relation Transdet consists of two main parts: the state updates, which assert

that every post-state variable q′i is set to an update formula NewState(qi); and an input invariant
asserting that the letters that are read are consistent with the transition taken. To determinise
disjunctions in transition formulae ∆(qi), a set H of additional Boolean variables hl (uniquely
indexed by a position sequence l ∈ Z∗) is introduced, and existentially quantified in Transdet.
The update formulae NewState(qi) are defined as a disjunction of assignments extracted from

the transition formulae ∆(qj),

NewState(qi) =
∨
{φ | there is j ∈ {0, . . . ,m − 1} such that ⟨qi ,φ⟩ ∈ StateAsgn(∆(qj), j,qj)}

where each StateAsgn(∆(qj), j,qj) represents the set of asserted state variables qi in ∆(qj), together
with guards φ for the case that qi occurs underneath disjunctions. The set is recursively defined
(on formulae in NNF) as follows:

StateAsgn(φ1 ∧ φ2, l ,д) = StateAsgn(φ1, l ,д) ∪ StateAsgn(φ2, l ,д)

StateAsgn(φ1 ∨ φ2, l ,д) = StateAsgn(φ1, l .1, д ∧ hl) ∪ StateAsgn(φ2, l .2, д ∧ ¬hl)
StateAsgn(qi , l ,д) = {⟨qi ,д⟩}
StateAsgn(ϕ, l ,д) = ∅ (for any other ϕ) .

In particular, the case for disjunctions φ1 ∨ φ2 introduces a fresh variable hl ∈ H (indexed by
the position l of the disjunction) that controls which branch is taken. Input variables vi ∈ Vn are
ignored in the updates.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 4. Publication date: January 2018.

111

4:26 Lukáš Holík, Petr Janků, Anthony W. Lin, Philipp Rümmer, and Tomáš Vojnar

The input invariants InputInv (∆(qi), i) are similarly defined recursively, and include the same
auxiliary variables hl ∈ H , but ensure input consistency:
InputInv (φ1 ∧ φ2, l) = InputInv (φ1, l) ∧ InputInv (φ2, l)

InputInv (φ1 ∨ φ2, l) =
(
hl → InputInv (φ1, l .1)

)
∧

(
¬hl → InputInv (φ2, l .2)

)

InputInv (vi , l) = vi , InputInv (¬vi , l) = ¬vi , InputInv (qi , l) = true, InputInv (ϕ, l) = ϕ .

9 IMPLEMENTATION AND EXPERIMENTS
We have implemented our method for deciding conjunctive AC and SL formulae as a solver called
Sloth (String LOgic THeory solver), extending the Princess SMT solver [Rümmer 2008]. The solver
Sloth can be obtained from https://github.com/uuverifiers/sloth/wiki. Hence, Princess provides us
with infrastructure such as an implementation of DPLL(T) or facilities for reading input formulae
in the SMT-LIBv2 format [Barrett et al. 2010]. Like Princess, Sloth was implemented in Scala. We
present results from several settings of our tool featuring different optimizations.
Sloth-1 The basic version of Sloth, denoted as Sloth-1 below, uses the direct translation of the

AFA emptiness problem to checking reachability in transition systems described in Section 8.1.
Then, it employs the nuXmvmodel checker [Cavada et al. 2014] to solve the reachability problem
via the IC3 algorithm [Bradley 2012], based on property-directed state space approximation.
Further, we have implemented five optimizations/variants of the basic solver: four of them are
described below, the last one at the end of the section.

Sloth-2 Our first optimization, implemented in Sloth-2, is rather simple: We assume working
with strings over an alphabet Σ and look for equations of the form x = a0 ◦y1 ◦ a1 . . . ◦yn ◦ an
where n ≥ 1, ∀0 ≤ i ≤ n : ai ∈ Σ∗ (i.e., ai are constant strings), and, for every 1 ≤ j ≤ n,
yj is a free string variable not used in any other constraint. The optimization replaces such
constraints by a regular constraint (a0 ◦ Σ∗ ◦ a1 . . . ◦ Σ∗ ◦ an) (x). This step allows us to avoid
many split operations. The optimization is motivated by a frequent appearance of constraints
of the given kind in some of the considered benchmarks. As shown by our experimental results
below, the optimization yields very significant savings in practice, despite of its simplicity.

Sloth-3 Our second optimization, implemented in Sloth-3, replaces the use of nuXmv and
IC3 in Sloth-2 by our own, rather simple model checker working directly on the generated
AFA. In particular, our model checker is used whenever no split operation is needed after the
preprocessing proposed in our first optimization. It works explicitly with sets of conjunctive state
formulae representing the configurations reached. The initial formula and transition formulae
are first converted to DNF using the Tseytin procedure. Then a SAT solverÐin particular, sat4j
[Berre and Parrain 2010]Ðis used to generate new reachable configurations and to check the
final condition. Our experimental results show that using this simple model checking approach
can win over the advanced IC3 algorithm on formulae without splitting.

Sloth-4 Our further optimization, Sloth-4, optimizes Sloth-3 by employing the intensionally
minimal successor computation of Section 8.2 within the IC3-based model checking of nuXmv.

Sloth-5 Finally, Sloth-5 modifies Sloth-4 by replacing the use of nuXmv with the property
directed reachability (i.e., IC3) implementation in the ABC tool [Brayton and Mishchenko 2010].

We present data on two benchmark groups (each consisting of two benchmark sets) that demon-
strate two points. First, the main strength of our tool is shown on solving complex combinations
of transducer and concatenation constraints (generated from program code similar to that of
Example 1.1) that are beyond capabilities of any other solver. Second, we show that our tool is
competitive also on simpler examples that can be handled by other tools (smaller constraints
with less intertwined and general combinations of rational and concatenation constraints). All the
benchmarks fall within the decidable straight-line fragment (possibly extended with the restricted

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 4. Publication date: January 2018.

112

String Constraints with Concatenation and Transducers Solved Efficiently 4:27

length constraints). All experiments were executed on a computer with Intel Xeon E5-2630v2 CPU
@ 2.60 GHz and 32 GiB RAM.

Complex combinations of concatenation and rational constraints. The first set of our benchmarks
consisted of 10 formulae (5 sat and 5 unsat) derived manually from the PHP programs available
from the web page of the Stranger tool [Yu et al. 2010]. The property checked was absence
of the vulnerability pattern .*<script.* in the output of the programs. The formulae contain
7ś42 variables (average 21) and 7ś38 atomic constraints (average 18). Apart from the Boolean
connectives ∧ and ∨, they use regular constraints, concatenation, the str.replaceall operation,
and several special-purpose transducers encoding various PHP functions used in the programs
(e.g., addslashes, trim, etc.).

Table 1. PHP benchmarks from the web of Stranger.
Program #sat (sec) #unsat (sec) #mo #win +/-
Sloth-1 4 (178) 5 (6,989) 1 1/0
Sloth-2 4 (83) 5 (5,478) 1 0/2
Sloth-3 4 (72) 5 (3,673) 1 1/2
Sloth-4 4 (93) 4 (6,168) 2 0/0
Sloth-5 4 (324) 4 (4,409) 2 2/1

Results of running the different ver-
sions of Sloth on the formulae are
shown in Table 1. Apart from the Sloth
version used, the different columns
show numbers of solved sat/unsat for-
mulae (together with the time used),
numbers of out-of-memory runs (łmo”),
as well as numbers of sat/unsat in-
stances for which the particular Sloth version provided the best result (łwin +/-”). We can see
that Sloth was able to solve 9 out of the 10 formulae, and that each of its versionsÐapart from
Sloth-4Ðprovided the best result in at least some case.
Our second benchmark consists of 8 challenging formulae taken from the paper [Kern 2014]

providing an overview of XSS vulnerabilities in JavaScript programs (including the motivating
example from the introduction).

Table 2. Benchmarks from [Kern 2014].
Solver #sat (sec) #unsat (sec) #win +/-
Sloth-1 4 (458) 4 (583) 0/2
Sloth-2 4 (483) 4 (585) 0/1
Sloth-3 4 (508) 4 (907) 2/1
Sloth-4 4 (445) 4 (1,024) 1/0
Sloth-5 4 (568) 4 (824) 1/0

The formulae contain 9ś12 variables (av-
erage 9.75) and 9ś13 atomic constraints
(average 10.5). Apart from conjunctions,
they use regular constraints, concatena-
tion, str.replaceall, and again several
special-purpose transducers encoding vari-
ous JavaScript functions (e.g., htmlescape,
escapeString, etc.). The results of our exper-
iments are shown in Table 2. The meaning of the columns is the same as in Table 1 except that we
drop the out-of-memory column since Sloth could handle all the formulaeÐwhich we consider to
be an excellent result.

These results are the highlight of our experiments, taking into account that we are not aware of
any other tool capable of handling the logic fragment used in the formulae.9

A Comparison with other tools on simpler benchmarks. Our next benchmark consisted of 3,392
formulae provided to us by the authors of the Stranger tool. These formulae were derived by
Stranger from real web applications analyzed for security; to enable other tools to handle the
benchmarks, in the benchmarks the str.replaceall operationwas approximated by str.replace.
9We tried to replace the special-purpose transducers by a sequence of str.replaceall operations in order to match the
syntactic fragment of the S3P solver [Trinh et al. 2016]. However, neither Sloth nor S3P could handle the modified formulae.
We have not experimented with other semi-decision procedures, such as those implemented within Stranger or SLOG
[Wang et al. 2016], since they are indeed a different kind of tool, and, moreover, often are not able to process input in the
SMT-LIBv2 format, which would complicate the experiments.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 4. Publication date: January 2018.

113

4:28 Lukáš Holík, Petr Janků, Anthony W. Lin, Philipp Rümmer, and Tomáš Vojnar

Apart from the ∧ and ∨ connectives, the formulae use regular constraints, concatenation, and the
str.replace operation. They contain 1ś211 string variables (on average 6.5) and 1ś182 atomic
formulae (on average 5.8). Importantly, the use of concatenation is much less intertwined with
str.replace than it is with rational constraints in benchmarks from Tables 1 and 2 (only about
120 from the 3,392 examples contain str.replace). Results of experiments on this benchmark are
shown in Table 3. In the table, we compare the different versions of our Sloth, the S3P solver,
and the CVC4 string solver [Liang et al. 2014].10 The meaning of the columns is the same as in
the previous tables, except that we now specify both the number of time-outs (for a time-out of 5
minutes) and out-of-memory runs (łto/mo”).

Table 3. Benchmarks from Stranger with str.replace.
Solver #sat (sec) #unsat (sec) #to/mo #win +/-
Sloth-1 1,200 (19,133) 2,079 (3,276) 105/8 30/43
Sloth-2 1,211 (13,120) 2,079 (3,338) 97/5 19/0
Sloth-3 1,290 (6,619) 2,082 (1,012) 14/6 263/592
Sloth-4 1,288 (6,240) 2,082 (1,030) 17/5 230/327
Sloth-5 1,291 (6,460) 2,082 (953) 14/5 768/1,120
CVC4 1,297 (857) 2,082 (265) 13/0 ś
S3P 1,291 (171) 2,078 (56) 13/0 ś

From the results, we can see
that CVC4 is winning, but (1) un-
like Sloth, it is a semi-decision
procedure only, and (2) the for-
mulae of this benchmark are
much simpler than in the previ-
ous benchmarks (from the point
of view of the operations used),
and hence the power of Sloth
cannot really manifest.
Despite that, our solver succeeds in almost the same number of examples as CVC4, and it is

reasonably efficient. Moreover, a closer analysis of the results reveals that our solver won in 16
sat and 3 unsat instances. Compared with S3P, Sloth won in 22 sat and 4 unsat instances (plus
S3P provided 8 unknown and 1 wrong answer and also crashed once). This shows that Sloth can
compete with semi-decision procedures at least in some cases even on a still quite simple fragment
of the logic it supports.

Table 4. Benchmarks from Stranger with str.replaceall.
Program #sat (sec) #unsat (sec) #to/mo #win +/-
Sloth-1 101 (1,404) 13 (18) 6/0 9/1
Sloth-2 104 (1,178) 13 (18) 3/0 8/5
Sloth-3 103 (772) 13 (19) 4/0 10/1
Sloth-4 101 (316) 13 (23) 6/0 24/2
Sloth-5 102 (520) 13 (20) 5/0 52/4
S3P 86 (11) 6 (26) 0/5 ś

Our final set of benchmarks is
obtained from the third one by fil-
tering out the 120 examples con-
taining str.replace and replac-
ing the str.replace operations by
str.replaceall, which reflects the
real semantics of the original pro-
grams. This makes the benchmarks
more challenging, although they are
still simple compared to those of Tables 1 and 2. The results are shown in Table 4. The meaning
of the columns is the same as in the previous tables. We compare the different versions of Sloth
against S3P only since CVC4 does not support str.replaceall. On the examples, S3P crashed
6 times and provided 6 times the unknown result and 13 times a wrong result. Overall, although
Sloth is still slower, it is more reliable than S3P (roughly 10 % of wrong and 10 % of inconclusive
results for S3P versus 0 % of wrong and 5% of inconclusive results for Sloth).

As a final remark, we note that, apart from experimenting with the Sloth-1ś5 versions, we also
tried a version obtained from Sloth-3 by replacing the intensionally minimal successor computation
of Section 8.2 by the deterministic successor computation of Section 8.3. On the given benchmark,
this version provided 3 times the best result. This underlines the fact that all of the described
optimizations can be useful in some cases.

10The S3P solver and CVC4 solvers are taken as two representatives of semi-decision procedures for the given fragment
with input from SMT-LIBv2.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 4. Publication date: January 2018.

114

String Constraints with Concatenation and Transducers Solved Efficiently 4:29

10 CONCLUSIONS
We have presented the first practical algorithm for solving string constraints with concatenation,
general transduction, and regular constraints; the algorithm is at the same time a decision procedure
for the acyclic fragment AC of intersection of rational relations of [Barceló et al. 2013] and the
straight-line fragment SL of [Lin and Barceló 2016]. The algorithm uses novel ideas including
alternating finite automata as symbolic representations and the use of fast model checkers like IC3
[Bradley 2012] for solving emptiness of alternating automata. In initial experiments, our solver
has shown to compare favourably with existing string solvers, both in terms of expressiveness
and performance. More importantly, our solver can solve benchmarking examples that cannot be
handled by existing solvers.

There are several avenues planned for future work, including more general integration of length
constraints and support for practically relevant operations like splitting at delimiters and indexOf.
Extending our approach to incorporate a more general class of length constraints (e.g. Presburger-
expressible constraints) seems to be rather challenging since this possibly would require us to
extend our notion of alternating finite automata with monotonic counters (see [Lin and Barceló
2016]), which (among others) introduces new problems on how to solve language emptiness.

ACKNOWLEDGMENTS
Holík and Janků were supported by the Czech Science Foundation (project 16-24707Y). Holík, Janků,
and Vojnar were supported by the internal BUT grant agency (project FIT-S-17-4014) and the IT4IXS:
IT4Innovations Excellence in Science (project LQ1602). Lin was supported by European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation programme
(Grant Agreement no 759969). Rümmer was supported by the Swedish Research Council under
grant 2014-5484.

REFERENCES
Parosh Aziz Abdulla, Mohamed Faouzi Atig, Yu-Fang Chen, Lukás Holík, Ahmed Rezine, Philipp Rümmer, and Jari Stenman.

2014. String Constraints for Verification. In CAV. 150ś166.
Davide Balzarotti, Marco Cova, Viktoria Felmetsger, Nenad Jovanovic, Engin Kirda, Christopher Kruegel, and Giovanni

Vigna. 2008. Saner: Composing Static and Dynamic Analysis to Validate Sanitization in Web Applications. In S&P.
387ś401.

Pablo Barceló, Diego Figueira, and Leonid Libkin. 2013. Graph Logics with Rational Relations. Logical Methods in Computer
Science 9, 3 (2013). DOI:http://dx.doi.org/10.2168/LMCS-9(3:1)2013

Pablo Barceló, Leonid Libkin, A. W. Lin, and Peter T. Wood. 2012. Expressive Languages for Path Queries over Graph-
Structured Data. ACM Trans. Database Syst. 37, 4 (2012), 31.

Clark Barrett, Aaron Stump, and Cesare Tinelli. 2010. The SMT-LIB Standard: Version 2.0. In Proc. of SMT’10.
Clark W. Barrett, Cesare Tinelli, Morgan Deters, Tianyi Liang, Andrew Reynolds, and Nestan Tsiskaridze. 2016. Efficient

solving of string constraints for security analysis. In Proceedings of the Symposium and Bootcamp on the Science of Security,
Pittsburgh, PA, USA, April 19-21, 2016. 4ś6. DOI:http://dx.doi.org/10.1145/2898375.2898393

Daniel Le Berre and Anne Parrain. 2010. The Sat4j library, release 2.2. JSAT 7, 2-3 (2010), 59ś6. http://jsat.ewi.tudelft.nl/
content/volume7/JSAT7_4_LeBerre.pdf

Jean Berstel. 1979. Transductions and Context-Free Languages. Teubner-Verlag.
Armin Biere, Keijo Heljanko, and Siert Wieringa. 2017. AIGER 1.9 and Beyond (Draft).

http://fmv.jku.at/hwmcc11/beyond1.pdf (cited in 2017). (2017).
Nikolaj Bjùrner, Nikolai Tillmann, and Andrei Voronkov. 2009. Path feasibility analysis for string-manipulating programs.

In TACAS. 307ś321.
Aaron R. Bradley. 2012. Understanding IC3. In Theory and Applications of Satisfiability Testing - SAT 2012 - 15th International

Conference, Trento, Italy, June 17-20, 2012. Proceedings. 1ś14. DOI:http://dx.doi.org/10.1007/978-3-642-31612-8_1
Robert Brayton and Alan Mishchenko. 2010. ABC: An Academic Industrial-Strength Verification Tool. In Computer Aided

Verification: 22nd International Conference, CAV 2010, Edinburgh, UK, July 15-19, 2010. Proceedings, Tayssir Touili, Byron
Cook, and Paul Jackson (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 24ś40. DOI:http://dx.doi.org/10.1007/
978-3-642-14295-6_5

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 4. Publication date: January 2018.

115

4:30 Lukáš Holík, Petr Janků, Anthony W. Lin, Philipp Rümmer, and Tomáš Vojnar

Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David L. Dill, and Dawson R. Engler. 2008. EXE: Automatically Generating
Inputs of Death. ACM Trans. Inf. Syst. Secur. 12, 2 (2008), 10:1ś10:38. DOI:http://dx.doi.org/10.1145/1455518.1455522

Cristian Cadar, Patrice Godefroid, Sarfraz Khurshid, Corina S. Pasareanu, Koushik Sen, Nikolai Tillmann, and Willem
Visser. 2011. Symbolic execution for software testing in practice: preliminary assessment. In Proceedings of the 33rd
International Conference on Software Engineering, ICSE 2011, Waikiki, Honolulu , HI, USA, May 21-28, 2011. 1066ś1071.
DOI:http://dx.doi.org/10.1145/1985793.1985995

Roberto Cavada, Alessandro Cimatti, Michele Dorigatti, Alberto Griggio, Alessandro Mariotti, Andrea Micheli, Sergio Mover,
Marco Roveri, and Stefano Tonetta. 2014. The nuXmv Symbolic Model Checker. In CAV’14 (Lecture Notes in Computer
Science), Vol. 8559. Springer, 334ś342.

Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. 1999. Model Checking. The MIT Press, Cambridge, Massachusetts.
Google co. 2015. Google Closure Library (referred in Nov 2015). https://developers.google.com/closure/library/. (2015).
Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. 2009. Introduction to Algorithms, Third Edition

(3rd ed.). The MIT Press.
Arlen Cox and Jason Leasure. 2017. Model Checking Regular Language Constraints. CoRR abs/1708.09073 (2017).

arXiv:1708.09073 http://arxiv.org/abs/1708.09073
Loris D’Antoni, Zachary Kincaid, and Fang Wang. 2016. A Symbolic Decision Procedure for Symbolic Alternating Finite

Automata. CoRR abs/1610.01722 (2016). http://arxiv.org/abs/1610.01722
Loris D’Antoni and Margus Veanes. 2013. Static Analysis of String Encoders and Decoders. In VMCAI. 209ś228.
Leonardo De Moura and Nikolaj Bjùrner. 2011. Satisfiability modulo theories: introduction and applications. Commun.

ACM 54, 9 (2011), 69ś77.
Volker Diekert. 2002. Makanin’s Algorithm. In Algebraic Combinatorics on Words, M. Lothaire (Ed.). Encyclopedia of

Mathematics and its Applications, Vol. 90. Cambridge University Press, Chapter 12, 387ś442.
Laurent Doyen and Jean-François Raskin. 2010. Antichain Algorithms for Finite Automata. In TACAS’10 (Lecture Notes in

Computer Science), Vol. 6015. Springer, 2ś22. DOI:http://dx.doi.org/10.1007/978-3-642-12002-2_2
Alain Finkel. 1987. A Generalization of the Procedure of Karp and Miller to Well Structured Transition Systems. In Automata,

Languages and Programming, 14th International Colloquium, ICALP87, Karlsruhe, Germany, July 13-17, 1987, Proceedings
(Lecture Notes in Computer Science), Thomas Ottmann (Ed.), Vol. 267. Springer, 499ś508. DOI:http://dx.doi.org/10.1007/
3-540-18088-5_43

Xiang Fu and Chung-Chih Li. 2010. Modeling Regular Replacement for String Constraint Solving. In NFM. 67ś76.
Xiang Fu, Michael C. Powell, Michael Bantegui, and Chung-Chih Li. 2013. Simple linear string constraints. Formal Asp.

Comput. 25, 6 (2013), 847ś891.
Vijay Ganesh, Mia Minnes, Armando Solar-Lezama, and Martin Rinard. 2013. Word equations with length constraints:

what’s decidable? In Hardware and Software: Verification and Testing. Springer, 209ś226.
Graeme Gange, Jorge A. Navas, Peter J. Stuckey, Harald Sùndergaard, and Peter Schachte. 2013. Unbounded Model-Checking

with Interpolation for Regular Language Constraints. In TACAS’2013 (Lecture Notes in Computer Science), Vol. 7795.
Springer, 277ś291.

Seymour Ginsburg and Edwin H. Spanier. 1966. Semigroups, Presburger formulas, and languages. Pacific J. Math. 16, 2
(1966), 285ś296. http://projecteuclid.org/euclid.pjm/1102994974

Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART: directed automated random testing. In Proceedings of the
ACM SIGPLAN 2005 Conference on Programming Language Design and Implementation, Chicago, IL, USA, June 12-15, 2005.
213ś223. DOI:http://dx.doi.org/10.1145/1065010.1065036

Claudio Gutiérrez. 1998. Solving Equations in Strings: On Makanin’s Algorithm. In LATIN. 358ś373.
Mario Heiderich, Jörg Schwenk, Tilman Frosch, Jonas Magazinius, and Edward Z. Yang. 2013. mXSS attacks: attacking

well-secured web-applications by using innerHTML mutations. In CCS. 777ś788.
Pieter Hooimeijer, Benjamin Livshits, David Molnar, Prateek Saxena, and Margus Veanes. 2011. Fast and Precise Sanitizer

Analysis with BEK. In USENIX Security Symposium. http://static.usenix.org/events/sec11/tech/full_papers/Hooimeijer.pdf
Pieter Hooimeijer and Westley Weimer. 2012. StrSolve: solving string constraints lazily. Autom. Softw. Eng. 19, 4 (2012),

531ś559.
Artur Jez. 2016. Recompression: A Simple and Powerful Technique for Word Equations. J. ACM 63, 1 (2016), 4:1ś4:51. DOI:

http://dx.doi.org/10.1145/2743014
Scott Kausler and Elena Sherman. 2014. Evaluation of String Constraint Solvers in the Context of Symbolic Execution. In

Proceedings of the 29th ACM/IEEE International Conference on Automated Software Engineering (ASE ’14). ACM, New York,
NY, USA, 259ś270. DOI:http://dx.doi.org/10.1145/2642937.2643003

Christoph Kern. 2014. Securing the Tangled Web. Commun. ACM 57, 9 (Sept. 2014), 38ś47.
Adam Kiezun and others. 2012. HAMPI: A solver for word equations over strings, regular expressions, and context-free

grammars. ACM Trans. Softw. Eng. Methodol. 21, 4 (2012), 25.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 4. Publication date: January 2018.

116

String Constraints with Concatenation and Transducers Solved Efficiently 4:31

Nils Klarlund, Anders Mùller, and Michael I. Schwartzbach. 2002. MONA Implementation Secrets. International Journal of
Foundations of Computer Science 13, 4 (2002), 571ś586.

Johannes Kloos, Rupak Majumdar, Filip Niksic, and Ruzica Piskac. 2013. Incremental, Inductive Coverability. In CAV’13
(Lecture Notes in Computer Science), Vol. 8044. Springer, 158ś173.

Daniel Kroening and Ofer Strichman. 2008. Decision Procedures. Springer.
Tianyi Liang, Andrew Reynolds, Cesare Tinelli, Clark Barrett, and Morgan Deters. 2014. A DPLL(T) Theory Solver for a

Theory of Strings and Regular Expressions. In CAV. 646ś662.
Tianyi Liang, Andrew Reynolds, Nestan Tsiskaridze, Cesare Tinelli, Clark Barrett, and Morgan Deters. 2016. An efficient

SMT solver for string constraints. Formal Methods in System Design 48, 3 (2016), 206ś234. DOI:http://dx.doi.org/10.1007/
s10703-016-0247-6

Tianyi Liang, Nestan Tsiskaridze, Andrew Reynolds, Cesare Tinelli, and Clark Barrett. 2015. A Decision Procedure for Regular
Membership and Length Constraints over Unbounded Strings. In Frontiers of Combining Systems - 10th International
Symposium, FroCoS 2015, Wroclaw, Poland, September 21-24, 2015. Proceedings. 135ś150. DOI:http://dx.doi.org/10.1007/
978-3-319-24246-0_9

Anthony Widjaja Lin and Pablo Barceló. 2016. String solving with word equations and transducers: towards a logic for
analysing mutation XSS. In POPL. 123ś136. DOI:http://dx.doi.org/10.1145/2837614.2837641

Blake Loring, Duncan Mitchell, and Johannes Kinder. 2017. ExpoSE: Practical Symbolic Execution of Standalone JavaScript.
In SPIN.

Gennady S Makanin. 1977. The problem of solvability of equations in a free semigroup. Sbornik: Mathematics 32, 2 (1977),
129ś198.

John McCarthy. 1980. Circumscription - A Form of Non-Monotonic Reasoning. Artif. Intell. 13, 1-2 (1980), 27ś39. DOI:
http://dx.doi.org/10.1016/0004-3702(80)90011-9

Kenneth L. McMillan. 2003. Interpolation and SAT-Based Model Checking. In Computer Aided Verification, 15th Inter-
national Conference, CAV 2003, Boulder, CO, USA, July 8-12, 2003, Proceedings. 1ś13. DOI:http://dx.doi.org/10.1007/
978-3-540-45069-6_1

Christophe Morvan. 2000. On Rational Graphs. In FoSSaCS. 252ś266.
Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. 2004. Abstract DPLL and Abstract DPLL Modulo Theories. In

LPAR’04 (LNCS), Vol. 3452. Springer, 36ś50.
OWASP. 2013. https://www.owasp.org/images/f/f8/OWASP_Top_10_-_2013.pdf. (2013).
Wojciech Plandowski. 2004. Satisfiability of word equations with constants is in PSPACE. J. ACM 51, 3 (2004), 483ś496.
Wojciech Plandowski. 2006. An efficient algorithm for solving word equations. In STOC. 467ś476.
Gideon Redelinghuys, Willem Visser, and Jaco Geldenhuys. 2012. Symbolic execution of programs with strings. In SAICSIT.

139ś148.
Philipp Rümmer. 2008. A Constraint Sequent Calculus for First-Order Logic with Linear Integer Arithmetic. In Proceedings,

15th International Conference on Logic for Programming, Artificial Intelligence and Reasoning (LNCS), Vol. 5330. Springer,
274ś289.

Jacques Sakarovitch. 2009. Elements of automata theory. Cambridge University Press.
Prateek Saxena, Devdatta Akhawe, Steve Hanna, Feng Mao, Stephen McCamant, and Dawn Song. 2010. A Symbolic

Execution Framework for JavaScript. In S&P. 513ś528.
Koushik Sen, Swaroop Kalasapur, Tasneem G. Brutch, and Simon Gibbs. 2013. Jalangi: a selective record-replay and dynamic

analysis framework for JavaScript. In Joint Meeting of the European Software Engineering Conference and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering, ESEC/FSE’13, Saint Petersburg, Russian Federation, August 18-26,
2013. 488ś498. DOI:http://dx.doi.org/10.1145/2491411.2491447

Mary Sheeran, Satnam Singh, and Gunnar Stålmarck. 2000. Checking Safety Properties Using Induction and a SAT-Solver.
In FMCAD (LNCS), Vol. 1954. Springer, 108ś125.

Deian Tabakov and Moshe Y. Vardi. 2005. Experimental Evaluation of Classical Automata Constructions. In Logic for
Programming, Artificial Intelligence, and Reasoning, 12th International Conference, LPAR 2005, Montego Bay, Jamaica,
December 2-6, 2005, Proceedings (Lecture Notes in Computer Science), Geoff Sutcliffe and Andrei Voronkov (Eds.), Vol. 3835.
Springer, 396ś411. DOI:http://dx.doi.org/10.1007/11591191_28

Minh-Thai Trinh, Duc-Hiep Chu, and Joxan Jaffar. 2014. S3: A Symbolic String Solver for Vulnerability Detection in Web
Applications. In CCS. 1232ś1243.

Minh-Thai Trinh, Duc-Hiep Chu, and Joxan Jaffar. 2016. Progressive Reasoning over Recursively-Defined Strings. In
Computer Aided Verification - 28th International Conference, CAV 2016, Toronto, ON, Canada, July 17-23, 2016, Proceedings,
Part I. 218ś240. DOI:http://dx.doi.org/10.1007/978-3-319-41528-4_12

Moshe Y. Vardi. 1995. An Automata-Theoretic Approach to Linear Temporal Logic. In Logics for Concurrency - Structure
versus Automata (8th Banff Higher Order Workshop, August 27 - September 3, 1995, Proceedings). 238ś266. DOI:http:
//dx.doi.org/10.1007/3-540-60915-6_6

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 4. Publication date: January 2018.

117

4:32 Lukáš Holík, Petr Janků, Anthony W. Lin, Philipp Rümmer, and Tomáš Vojnar

Margus Veanes, Pieter Hooimeijer, Benjamin Livshits, David Molnar, and Nikolaj Bjùrner. 2012. Symbolic finite state
transducers: algorithms and applications. In POPL. 137ś150.

Hung-En Wang, Tzung-Lin Tsai, Chun-Han Lin, Fang Yu, and Jie-Hong R. Jiang. 2016. String Analysis via Automata
Manipulation with Logic Circuit Representation. In Computer Aided Verification - 28th International Conference, CAV
2016, Toronto, ON, Canada, July 17-23, 2016, Proceedings, Part I (Lecture Notes in Computer Science), Vol. 9779. Springer,
241ś260. DOI:http://dx.doi.org/10.1007/978-3-319-41528-4

Gary Wassermann, Dachuan Yu, Ajay Chander, Dinakar Dhurjati, Hiroshi Inamura, and Zhendong Su. 2008. Dynamic test
input generation for web applications. In ISSTA. 249ś260.

Joel Weinberger, Prateek Saxena, Devdatta Akhawe, Matthew Finifter, Eui Chul Richard Shin, and Dawn Song. 2011. A
Systematic Analysis of XSS Sanitization in Web Application Frameworks. In ESORICS. 150ś171.

Fang Yu, Muath Alkhalaf, and Tevfik Bultan. 2010. Stranger: An Automata-Based String Analysis Tool for PHP. In TACAS.
154ś157. Benchmark can be found at http://www.cs.ucsb.edu/~vlab/stranger/.

Fang Yu, Muath Alkhalaf, Tevfik Bultan, and Oscar H. Ibarra. 2014. Automata-based symbolic string analysis for vulnerability
detection. Formal Methods in System Design 44, 1 (2014), 44ś70.

Fang Yu, Tevfik Bultan, and Oscar H. Ibarra. 2009. Symbolic String Verification: Combining String Analysis and Size Analysis.
In TACAS. 322ś336.

Fang Yu, Tevfik Bultan, and Oscar H. Ibarra. 2011. Relational String Verification Using Multi-Track Automata. Int. J. Found.
Comput. Sci. 22, 8 (2011), 1909ś1924.

Yunhui Zheng, Xiangyu Zhang, and Vijay Ganesh. 2013. Z3-str: a Z3-based string solver for web application analysis. In
ESEC/SIGSOFT FSE. 114ś124.

Proceedings of the ACM on Programming Languages, Vol. 2, No. POPL, Article 4. Publication date: January 2018.

118

218

Regex Matching with Counting-Set Automata

LENKA TUROŇOVÁ∗, Brno University of Technology, Czech Republic
LUKÁŠ HOLÍK, Brno University of Technology, Czech Republic
ONDŘEJ LENGÁL, Brno University of Technology, Czech Republic
OLLI SAARIKIVI,Microsoft, USA
MARGUS VEANES,Microsoft, USA
TOMÁŠ VOJNAR, Brno University of Technology, Czech Republic

We propose a solution to the problem of e�cient matching regular expressions (regexes) with bounded
repetition, such as (ab){1,100}, using deterministic automata. For this, we introduce novel counting-set
automata (CsAs), automata with registers that can hold sets of bounded integers and can be manipulated by
a limited portfolio of constant-time operations. We present an algorithm that compiles a large sub-class of
regexes to deterministic CsAs. This includes (1) a novel Antimirov-style translation of regexes with counting
to counting automata (CAs), nondeterministic automata with bounded counters, and (2) our main technical
contribution, a determinization of CAs that outputs CsAs. The main advantage of this work�ow is that the
size of the produced CsAs does not depend on the repetition bounds used in the regex (while the size of
the DFA is exponential to them). Our experimental results con�rm that deterministic CsAs produced from
practical regexes with repetition are indeed vastly smaller than the corresponding DFAs. More importantly,
our prototype matcher based on CsA simulation handles practical regexes with repetition regardless of sizes
of counter bounds. It easily copes with regexes with repetition where state-of-the-art matchers struggle.

CCS Concepts: • Theory of computation ! Regular languages; Quantitative automata; • Security and
privacy! Denial-of-service attacks; • Applied computing! Document searching.

Additional Key Words and Phrases: regular expression matching, bounded repetition, ReDos, determinization,
Antimirov’s derivatives, counting automata, counting-set automata

ACM Reference Format:
Lenka Turoňová, Lukáš Holík, Ondřej Lengál, Olli Saarikivi, Margus Veanes, and Tomáš Vojnar. 2020. Regex
Matching with Counting-Set Automata . Proc. ACM Program. Lang. 4, OOPSLA, Article 218 (November 2020),
30 pages. https://doi.org/10.1145/3428286

1 INTRODUCTION
Matching regexes (regular expressions) is a ubiquitous component of software, used, e.g., for
searching, data validation, parsing, �nding and replacing, data scraping, or syntax highlighting. It
∗The main part of the work was done when the �rst author was a summer intern at Microsoft Research in Redmond in 2019.

Authors’ addresses: Lenka Turoňová, Faculty of Information Technology, Brno University of Technology, Božetěchova 2,
Brno, 612 00, Czech Republic, ituronova@�t.vutbr.cz; Lukáš Holík, Faculty of Information Technology, Brno University
of Technology, Božetěchova 2, Brno, 612 00, Czech Republic, holik@�t.vutbr.cz; Ondřej Lengál, Faculty of Information
Technology, Brno University of Technology, Božetěchova 2, Brno, 612 00, Czech Republic, lengal@�t.vutbr.cz; Olli Saarikivi,
MSR, Microsoft, One Microsoft Way, Redmond, 98052, USA, Olli.Saarikivi@microsoft.com; Margus Veanes, MSR, Microsoft,
One Microsoft Way, Redmond, 98052, USA, margus@microsoft.com; Tomáš Vojnar, Faculty of Information Technology,
Brno University of Technology, Božetěchova 2, Brno, 612 00, Czech Republic, vojnar@�t.vutbr.cz.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for pro�t or commercial advantage and that copies bear this notice and
the full citation on the �rst page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2020 Copyright held by the owner/author(s).
2475-1421/2020/11-ART218
https://doi.org/10.1145/3428286

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 218. Publication date: November 2020.

This work is licensed under a Creative Commons Attribution 4.0 International License.

119

218:2 L. Turoňová, L. Holík, O. Lengál, O. Saarikivi, M. Veanes, and T. Vojnar

is commonly used and natively supported in most programming languages [contributors 2019]. For
instance, about 30–40 % of Java, JavaScript, and Python software use regex matching (as reported
in multiple studies, see, e.g., [Davis 2019]).
The e�ciency of regex matching engines has a signi�cant impact on the overall usability of

software applications. Unpredictability of a matcher’s performance may lead to catastrophic conse-
quences, witnessed by events such as the recent catastrophic outage of Cloud�are services [Graham-
Cumming 2019], caused by a single poorly written regex, and it is a doorway for the so-called ReDoS
attack, a denial of service attack based on overwhelming a regex matching engine by providing a
specially crafted regex or text. For instance, in 2016, ReDoS caused an outage of StackOver�ow [Ex-
change 2016] or rendered vulnerable websites that used the popular Express.js framework [Baldwin
2016]. Works such as [Davis 2019; Davis et al. 2018] give arguments that ReDoS is not just a niche
problem but rather a common and serious threat.

Failures of matching are mostly caused by the so-called “catastrophic backtracking”, a situation
when variants of Spencer’s simulation of a nondeterministic �nite automaton (NFA) by backtrack-
ing [Spencer 1994] exhibit a behaviour super-linear to the length of the text. Matching algorithms
based on backtracking are probably themost often implemented ones, their performance is, however,
at worst exponential to the text length. An alternative with a much lower worst-case complexity (wrt
the length of the text) is to use deterministic �nite automata (DFAs). In the ideal case, the DFA is pre-
computed; matching can then be linear to the text length, with each input symbol processed in con-
stant time. This is the so-called static DFA simulation [Sipser 2006]. Themajor drawback of static DFA
simulation is that the DFA construction may explode, rendering the method unusable in practice.

Variants of Thompson’s algorithm [Thompson 1968] (sometimes called NFA simulation or NFA-to-
DFA simulation) avoid the explosion by working directly with the NFA. They essentially run the de-
terminization by subset construction on the �y, always remembering only the current DFA state. On
reading a character, a successor DFA state is computed and used to replace the current state. The dis-
advantage of Thompson’s algorithm is that, for a highly nondeterministic NFA, the DFA states—sets
of the states of the NFA—may get large and computing a DFA-state successor over a symbol becomes
expensive, linear to the size of the NFA (compared to the constant time of static DFA simulation).
Modern matchers therefore use caching of already visited parts of the DFA. Making a step

within the cached part is then as fast as with the explicitly determinized automaton. Extremely
e�cient implementations of Thompson’s algorithm with caching are used in RE2 [Google [n.d.]]
and GNU grep [Haertel et al. [n.d.]]. Their close cousin, an on-the-�y Brzozowski’s derivative
construction, is implemented in the tool SRM [Saarikivi et al. 2019]. Highly nondeterministic
regexes1 that lead to exploding determinization are, however, problematic for all variants, explicit
determinization as well as NFA simulation, with or without caching.

In this paper, we focus on eliminating a frequent cause of a DFA explosion—a use of the counting
operator, also known as the operator of bounded repetition. It succinctly expresses repeated patterns
such as (ab){1,100}, representing 1 to 100 consecutive repetitions of ab. Such expressions are
very common (cf. [Björklund et al. 2015]), e.g., in the RegExLib library [RegExLib.com [n.d.]], which
collects expressions for recognizing URIs, markup code, pieces of Java code, or SQL queries; in
the Snort rules [M. Roesch et al. [n.d.]] used for detecting attacks in network tra�c; in real-life
XML schemas, with the counter bounds being as large as 10 million [Björklund et al. 2015]; or in
detecting information leakage from tra�c logs [Holík et al. 2019].

1Loosely speaking, a “highly nondeterministic regex” is one for which the determinization of the NFA created by some of
the usual algorithms explodes. Determinism of regexes closely corresponds to the notion of 1-unambiguity of the regex
[Brüggemann-Klein and Wood 1998; Hovland 2009]: when matching a text from left to right against the regex, it is always
clear which letter of the regex matches the text character.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 218. Publication date: November 2020.

120

Regex Matching with Counting-Set Automata 218:3

To illustrate the principal di�culty withmatching bounded repetitions, especially when combined
with a high degree of nondeterminism, consider the regex.*a.{k} where k 2 N (the regex denotes
strings where the symbol a appears k positions from the end of the word). Already the NFA will
have at least k states, which is exponential to the regex size because k is written in decimal. Due
to the inherent nondeterminism of this regex, determinization then adds a second level of the
exponential explosion. Indeed, the minimal DFA accepting the language has 2k+1 states because it
must remember all the positionswhere the symbol awas seen during the lastk+1 steps. This requires
a �nite memory of k + 1 bits and thus 2k+1 reachable DFA states. Determinizing the NFA explicitly
is thus out of question for even moderate values of k . The pure Thompson’s NFA simulation is
feasible but very slow, as reading each character may in the worst case require processing the entire
NFA. Moreover, caching of the DFA state space, used in industrial matchers like RE2 [Google [n.d.]]
or GNU grep [Haertel et al. [n.d.]], may also be ine�ective due to the size of the state space and
low cache utilization. At the same time, combinations of nondeterminism and counting are fairly
common. A high degree of nondeterminism is, for instance, usual when searching for a pattern
“anywhere on the line” (corresponding to pre�xing the pattern with.*), which is the standard
behaviour for GNU grep and similar programs when start/end of line anchors are not used.

To facilitate e�cient matching of such nondeterministic counting, we propose a translation from
regexes with repetition to deterministic machines that are succinct and can perform matching with
nearly constant character complexity. The novel succinct and fast deterministic machine, called
the counting-set automaton (CsA), is the key to the result. It is a deterministic �nite automaton
with a special type of registers that can hold values called counting sets—a set of bounded integer
values—and support a limited selection of simple set operations. Crucially for the e�ciency of our
approach, we show that, using a suitable data structure, all the set operations can be implemented
to run in constant time regardless of the size of the set.
Our compilation from regexes to CsAs proceeds in two steps. First, we compile the regexes

into nondeterministic counting automata (CAs), automata with counters whose values are a priori
bounded. Variants of CAs have been used in several other works under di�erent names, e.g., [Björk-
lund et al. 2015; Gelade et al. 2012; Holík et al. 2019; Hovland 2009; Kilpeläinen and Tuhkanen
2007; Smith et al. 2008b; Sperberg-McQueen [n.d.]]. The compilation from regexes is cheap and
produces automata whose size is independent of the counter bounds and linear in the size of the
regex. We present a novel translation of regexes to CAs that generalizes the Antimirov’s derivative
construction [Antimirov 1996]. Our translation has several advantages over the existing alternatives,
such as absence of �-transitions in the output CA and succinctness. The result of translating the
regex.*a.{k} into a CA is illustrated in Fig. 1a.

The main step forward we make in this paper is a solution of e�cient matching for a large class
of highly nondeterministic regexes with counting that are quite common in practice. The main
technical problem we have solved is a succinct transformation of a (nondeterministic) CA into
a deterministic CsA. Our algorithm produces a CsA in time independent of the counter bounds. We
note that this has been a known open problem (emphasized, e.g., in [Sperberg-McQueen [n.d.]]).
Works on matching of bounded repetition such as [Björklund et al. 2015; Gelade et al. 2012; Holík
et al. 2019; Hovland 2009; Kilpeläinen and Tuhkanen 2003; Kilpeläinen and Tuhkanen 2007; Smith
et al. 2008a] mostly focus on deterministic regexes and do not propose practical solutions for the
nondeterministic case. We have carried out an extensive experimental evaluation of our algorithm
on a large sample of regexes used for pattern matching in various applications. The experiments
show that our algorithm, although also limited to a sub-class of regexes, handles over 90 % of regexes
with counting we collected. The obtained data con�rm that our CsAs are indeed far smaller and can
be constructed faster than corresponding DFAs. Most importantly, we demonstrate the practical

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 218. Publication date: November 2020.

121

218:4 L. Turoňová, L. Holík, O. Lengál, O. Saarikivi, M. Veanes, and T. Vojnar

q :.*a.{100} s :.{100}
{c � 100}

c := 0

.
a

.^ c < 100/c := c + 1

(a) The CA for the regex.*a.{k}

{q} {q, s} {Max(c) � 100}c := {0}
[^a] a / c := {0} a/c := {0} [c + 1

[^a] ^Min(c) < 100/
c := c + 1

[^a] ^Min(c) � 100

(b) The CsA from determinization of (a)

Fig. 1. The nondeterministic CA and the deterministic CsA for.*a.{100}. The transitions are labeled by
their guard, which gives the character class (in the standard POSIX regex notation, where, e.g.,.stands for
“any character”) and possibly restricts counter values, delimited by “/” from the counter update. If a counter
does not have the update specified, then the transition does not change its value. In (b), the notation c + 1
stands for the set of values obtained by incrementing each value in c and then removing values larger than
the upper bound 100 of the counter. The edges denoting initial states are labelled with initial values of the
counters. Final states are labelled with an acceptance condition, e.g. {c � 100} in (a).
The formal counter operations ��c presented later in Section 4 are in (a) shown as follows: the guard of ��c is
shown in conjunction with the character guard � on the le� of the “/”, the update of ��c is shown on the
right of “/” in the form of an assignment to c , where ����c appears as the right value c + 1, ���� as 0, ����1
as 1, and ���� is omi�ed.

relevance of our algorithm for pattern matching. We have implemented a matching algorithm
based on CsA simulation2 and compared it with several state-of-the-art matchers, namely, grep
[Haertel et al. [n.d.]], RE2 [Google [n.d.]], SRM [Saarikivi et al. 2019], and .NET [Microsoft 2020].
Our results show that problematic highly nondeterministic regexes with counting indeed appear
in practice and can also be easily crafted as a ReDoS attack, and that CsAs can e�ciently solve
most of such problematic cases. For instance, the regex (_a){64999}_a from [Davis et al. 2019] can
cause state-of-the-art matchers exceed any reasonable time limit (when searching for the pattern
anywhere on the line, with the implicit.* in front). Already with the counter bounds lowered to
1,000, the matchers take from 6 to 34 seconds on 500KiB of text, but our algorithm needs only 1
second even with the original bound 64,999.

We summarize the technical contributions of this work as follows:
(1) A novel Antimirov style regex-to-CA translation.
(2) A novel notion of the counting-set automaton, a deterministic machine that allows for

succinct representation of counting constraints and fast matching.
(3) CA-to-CsA determinization that runs in time independent of counter bounds.
(4) A regex-matching algorithm interconnecting the above, e�cient regardless of counter bounds

especially on regexes that combine counting with nondeterminism.
(5) Implementation and extensive experimental evaluation of the above.

2 OVERVIEW
We give a brief overview of our conversion of a regex with counting into a deterministic CsA.We use
the example regex R =.*a.{100}, discussed already in the introduction and representing strings
where the symbol a appears 100 positions from the end, with the corresponding minimum DFA hav-
ing 2101 states. The conversion proceeds in two steps. First, R is translated into a nondeterministic
CA (Fig. 1a), denoted as CA(R); second, CA(R) is converted into a deterministic CsA (Fig. 1b). The
size of both is independent of the counter bounds (both of the automata will have 2 states only).
2We use a pre-computed deterministic CsA. While on-the-�y determinization is also possible, it was not needed in our
experimentation since we have not witnessed problems with CsA state space explosion.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 218. Publication date: November 2020.

122

Regex Matching with Counting-Set Automata 218:5

Counting-Set Data Structure. Before looking into the conversion from regular expressions to
CsAs it is useful to �rst understand why the resulting CsA can be used e�ciently for matching
in the �rst place. The main enabler behind this is the use of our counting-set data structure, say
c , representing sets Sc ✓ {0, . . . ,maxc } where the upper boundmaxc is a �xed positive integer.
A runtime value of c is a tuple (o, `) where o 2 N is called an o�set and ` is a queue of strictly
increasing natural numbers such that Sc = {o � n | n 2 `}.

The data structure supports constant-time implementations of the following operations, assuming
constant-time access to the �rst and the last element of the queue (the queue may be implemented
as a doubly-linked list).

• The minimum and the maximum of Sc are obtained as o � last(`) and o � �rst(`), respectively.
• Insert 0: if o � last(`) > 0, then append o at the end of ` (similarly for inserting 1).
• Increment all, up tomaxc : o := o + 1; if o � �rst(`) > maxc , then remove �rst(`).
• Reset to {0}: ` := 0; o := 0 (similarly for reset to {1}).

The independence of the running time of these operations ofmaxc enables our major achievement:
the independence of the running time of pattern matching of the counter bounds.

Let us now illustrate how this data structure works during matching.We run the CsA in Fig. 1b, as-
suming themeaning of the operations provided above, over the sample inputword aa0(10)aab(87)dfa.

pre�x state (o, `) Sc
� {q} (0, [0]) {0}
a {q, s} (0, [0]) {0}
aa {q, s} (1, [0, 1]) {1, 0}
aa0(10) {q, s} (11, [0, 1]) {11, 10}
aa0(10)aa {q, s} (13, [0, 1, 12, 13]) {13, 12, 1, 0}
aa0(10)aab(87) {q, s} (100, [0, 1, 12, 13]) {100, 99, 88, 87}
aa0(10)aab(87)d {q, s} (101, [1, 12, 13]) {100, 89, 88}
aa0(10)aab(87)df {q, s} (102, [12, 13]) {90, 89}
aa0(10)aab(87)dfa {q, s} (103, [12, 13, 103]) {91, 90, 0}

The con�gurations of the au-
tomaton after processing pre-
�xes of the word are shown in
the table: the control state, the
counting-set run-time con�gu-
ration (o, `), and the value Sc it
represents. The state {q, s} ful-
�lls the accepting condition after
processing the 6th and the 7th
pre�x since the maximum of Sc
at these points is indeed at least 100.

From a Nondeterministic CA to a Deterministic CsA. The idea of our CA-to-CsA determinization
is best explained by comparison with the naive determinization of a CA, which would create a DFA
by the explicit textbook-style subset construction. The states of the DFA would then be sets of
runtime con�gurations of the CA where each CA-con�guration would consist of a control state
and a counter valuation. Counter valuations would hence be “unfolded”—they would become an
explicit part of the DFA control states—and the succinctness provided by counters would be lost.
For instance, the run of the CA in Fig. 1a on the word aa0 . . . generates “powerstates”
{(q, c = 0)}, {(q, c = 0), (s, c = 0)}, {(q, c = 0), (s, c = 0), (s, c = 1)}, {(q, c = 0), (s, c = 1), (s, c = 2)}, . . .
which are essentially subsets of {q, s} ⇥ {0, . . . , 100}. In the worst case, the size of the DFA would
be exponential in counter bounds because s can be paired with any subset of {0, . . . , 100} recording
possible values of c . In contrast to this, as illustrated above, our CsA represents the counter
valuations implicitly: it computes them dynamically on the �y and stores them as counting sets—i.e.,
the valuation of a counter changes from an integer to a set of integers. The counter valuations are
hence not a part of control states, and their overall number in�uences neither the size of the CsA
nor the time needed to build them.

Fig. 1b shows the CsA obtained from determinization of the CA in Fig. 1a. The runtime con�gu-
rations of the CsA reached for the word aa0 are

({q}, c 2 {0}), ({q, s}, c 2 {0}), ({q, s}, c 2 {0, 1}), ({q, s}, c 2 {1, 2}).

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 218. Publication date: November 2020.

123

218:6 L. Turoňová, L. Holík, O. Lengál, O. Saarikivi, M. Veanes, and T. Vojnar

They encode the �rst three states reached by the sample DFA run above. Namely, the control states
are kept in the �rst component and the counter values are in the second component, i.e., the set Sc
given by the run-time values of the counting-set c . In this encoding, the value of the counting-set is
not relevant for the states where the counter is never active (state q in our example). The counter’s
value in these states is always implicitly 0. In the example, the value Sc of the counting-set therefore
only records the values of c at state s and is thus relevant only in the CsA state {q, s}. We note
that for simplicity, we initialise all counting-sets uniformly with {0}, even if their value is initially
irrelevant, as in the case of the CsA state {q} in the example.

We note that some DFA powerstates cannot be encoded as CsA con�gurations due to the involved
Cartesian abstraction: essentially, any state in the powerset is paired with any counter value from
the counting set. Hence, our approach does not handle the full class of regexes. Fortunately, as our
empirical evidence shows, regexes that fall out from the supported class are rare in practice.

From Regexes to Nondeterministic CAs. To translate a regex into a CA, we propose a generalization
of the Antimirov’s derivative construction [Antimirov 1996] to symbolic counting. In Antimirov’s
setting, a derivative of a regex R wrt a character class � is a set of regexes that together capture
all tails of words in L(R) whose head character is from � . In particular, according to [Saarikivi
et al. 2019], which generalizes [Antimirov 1996] to explicit counting, the derivatives of the regex
R =.*a.{100}wrt the classes a and [^a] are {R,.{100}} and {R}, respectively. Further, for 1 k
100, the derivative of.{k}wrt both a and [^a] is {.{k�1}}. The derivatives become the states of the
resulting NFA, with R being initial and.{0} �nal, and with �-transitions from each regex to all its
�-derivatives (for � being either a or [^a]). The obtained NFA is already large, it has 102 states.

In our new construction, the counting is kept implicit using symbolic counters. Instead of modify-
ing the counter bound of the derivative (by, e.g., deriving.{99} from.{100}), we keep the original
bound unchanged and use a counter c to keep track of the di�erence between the original value and
the current value. Our conditional derivative operator @α (·) then equips the produced derivatives
with conditional counter updates to keep the counters up-to-date. For instance, @a(.{100}) returns
the same regex.{100}, but it is paired with conditional counter updates for c , namely, “if c < 100,
then increment c ; and if c � 100, then exit the counting loop”. The CA we obtain this way is shown
in Fig. 1a, where the �rst conditional update translates to the self loop on the state.{100} and the
second to the acceptance condition. The size of the CA does not depend on the counter bounds.

3 PRELIMINARIES
We cast our de�nitions in the framework of symbolic automata [D’Antoni and Veanes 2020], a
natural succinct representations of �nite-state transition relations over large alphabets of labels.
Symbolic automata work over alphabets equipped with a so-called e�ective Boolean algebra, which
de�nes the needed interface for handling large sets of labels on automata transitions.

Before providing the formal de�nition of an e�ective Boolean algebra, we start with an intuitive
example, which is also going to be the alphabet algebra used throughout the paper, including the
experiments. Later on, we will further leverage the general de�nition to work with algebras over
counter and counting-set predicates.
Example 3.1. Regular expressions in practice use character classes as basic building blocks. To

simplify the discussion, let us restrict our attention to ASCII as the character universe D. In other
words, D is the set {n | 0 n < 27} of all 7-bit characters represented using their character
codes. Then, for example, the character classes [0-9] and [A-Z] denote, respectively, the set
[[[0-9]]] = {n | 48 n 57} of all digit codes, and the set [[[A-Z]]] = {n | 65 n 90} of
all upper-case letter codes. Character classes made up of individual symbols such as @ denote
singleton sets, e.g., [[@]] = {64}. Character classes can also be used to form unions, they can be
complemented, and even subtracted from each other, and are in general closed under Boolean

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 218. Publication date: November 2020.

124

Regex Matching with Counting-Set Automata 218:7

operations. There are therefore many di�erent ways how to represent the same character sets, e.g.,
[[[0-9]]] = [[[0-45-9]]] = [[[0-4]]] [[[[5-9]]]. To illustrate the complement, for example, [^0-9]
denotes the set of all non-digits, as does [\x00-\x2F\x3A-\x7F]. The set of all character classes is
then an example of the set Ψ of all predicates of a Boolean algebra, and checking satis�ability of a
predicate � 2 Ψ means to decide whether � denotes a nonempty set. For example, the predicate []
is unsatis�able because [[[]]] = ; and.denotes the true predicate because [[.]] = D. Further, note
that a character class can, without loss of generality, be represented as a Boolean combination of
intervals or even as a union of intervals if normalized. ⇤

3.1 E�ective Boolean Algebras
An e�ective Boolean algebra A has components (D,Ψ, [[_]],?,>,_,^,¬) where D is a universe of
underlying domain elements. Ψ is a set of unary predicates closed under the Boolean connectives
_,^ : Ψ ⇥ Ψ ! Ψ and ¬ : Ψ ! Ψ; and ?,> 2 Ψ are the false and true predicates. Values of
the algebra are sets of domain elements, and the denotation function [[_]] : Ψ ! 2D satis�es that
[[?]] = ;, [[>]] = D, and for all �,� 2 Ψ, [[� _ �]] = [[�]] [[[�]], [[� ^ �]] = [[�]] \ [[�]], and
[[¬�]] = D \ [[�]]. For � 2 Ψ, we write Sat(�) when [[�]] , ;, and we say that � is satis�able. We
require that Sat as well as _, ^, and ¬ are computable as a part of the de�nition of an e�ective
Boolean algebra. We write x |= � for x 2 [[�]] and we use A as a subscript of a component when it
is not clear from the context, e.g., [[_]]A : ΨA ! 2DA .

3.2 Words and Regexes
The basic building blocks of regexes are predicates from an e�ective Boolean algebra CharClass
of character classes, such as the class of digits, written as \d. Let D = DCharClass. A word over D
is a sequence of symbols a1 · · ·an 2 D⇤ and a language L over D is a subset of D⇤. We use � to
denote the empty word. The concatenation of words u and � is denoted as u · � (often abbreviated
to u�) and is lifted to sets as usual. We call a 2 D the head of the word a.w and w 2 D⇤ its tail.
Furthermore, we write Ln for the n-th power of L ✓ D⇤ with L0 def

= {�} and Ln+1 def
= Ln · L.

The syntax of regexes is the following, with � 2 ΨCharClass and n,m 2 N, 0 n, 0 < m, n m:
� � R1 · R2 R1 |R2 R{n,m} R⇤

where R1 · R2 is called a concat node and R1 |R2 is called a choice node. The semantics of a regex R is
de�ned as a subset ofD⇤ in the following way:L(�) def

= [[�]],L(�) def
= {�},L(R1R2) def

= L(R1) ·L(R2),
L(R1 |R2) def

= L(R1) [L(R2), L(R{n,m}) def
=

–m
i=n(L(R))i , and L(R⇤) def

= L(R)⇤. R is nullable if
� 2 L(R). We will also need to refer to the number of character-class leaf nodes of a regex R, denoted
by]Ψ(R) and de�ned as follows:]Ψ(�) = 0,]Ψ(�) = 1,]Ψ(R1 · R2) =]Ψ(R1 |R2) =]Ψ(R1) +]Ψ(R2),
]Ψ(R{n,m}) =]Ψ(R⇤) =]Ψ(R).
3.3 Minterms
Let Preds(R) be the set of all predicates that occur in a regex R, and let Minterms(R) denote the set
of minterms of Preds(R). Intuitively, Minterms(R) is a set of non-overlapping predicates that can be
treated as a concrete �nite alphabet. Each minterm is essentially a region in the Venn diagram of the
predicates in R: it is a satis�able conjunction

”
ψ 2Preds(R)� 0 where� 0 2 {� ,¬� }. For example, if R =

[0-z]{4}[0-8]{5}, then Preds(R) = {[0-8], [0-z]} and Minterms(R) = {[0-8], [9-z], [^0-z]}.
Formally, if � 2 Minterms(R), then Sat(�) and 8� 2 Preds(R): [[�]] \ [[�]] , ;) [[�]] ✓ [[�]].

Note that although the number of minterms of a general set X of predicates may be exponential
in |X |, it is only linear if X consists of intervals of symbols used in regexes, such as [a-zA-Z] or
[^a-zA-Z] (the former denotes two intervals while the latter their complement, which is equivalent
to the union of three intervals). Intervals of numbers generate only a linear number of minterms.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 218. Publication date: November 2020.

125

218:8 L. Turoňová, L. Holík, O. Lengál, O. Saarikivi, M. Veanes, and T. Vojnar

3.4 Symbolic Automata
We use symbolic �nite automata (FAs), whose alphabet is given by an e�ective Boolean algebra, as
a generalization of classical �nite automata. Formally, an FA is a tuple A = (I,Q,q0, F ,∆) where I is
an e�ective Boolean algebra called the input algebra, Q is a �nite set of states, q0 2 Q is the initial
state, F ✓ Q is the set of �nal states, and ∆ ✓ Q ⇥ ΨI ⇥Q is a �nite set of transitions. A transition
(q,�, r) 2 ∆ will be also written as q�(α)!r .

A run ofA from a state p0 over a word a1 · · ·an is a sequence of transitions (pi�1�(αi)!pi)ni=1 with
ai 2 [[�i]]; the run is accepting if pn 2 F . The language of a state q, denoted LA(q), is the set of words
over which A has an accepting run from q. The language of A, denoted L(A), is LA(q0). A classical
�nite automaton can be understood as an FAwhere the basic predicates have singleton set semantics,
i.e., when for each concrete letter a there is a predicate �a such that [[�a]] = {a}.A is deterministic i�
for all p 2 Q and all transitions p�(α)!q and p�(α 0)!r , it holds that if � ^ � 0 is satis�able, then q = r .

4 COUNTING AUTOMATA
Counting automata (CAs) are a natural and compact automata counterpart for regexes with counting.
They are essentially a limited sub-class of classical counter automata, in which counters are only
supposed to count the number of passes through some of its parts (corresponding to a counted
sub-expression of a regex) and guards on transitions enforce a speci�ed number of repetitions of
that part before the automaton is allowed to move on.

Counter algebra. A counter algebra is an e�ective Boolean algebra C associated with a �nite set
C of counters. The counters play the role of bounded loop variables associated with a lower bound
minc � 0 and an upper bound maxc > 0 such that minc maxc . DC is the set of interpretations
m : C ! N, called counter memories such that 0 m(c) maxc for all c 2 C . ΨC contains Boolean
combinations of basic predicates ���E���c and ���I���c , for c 2 C , whose semantics is given by

m |= ���E���c () m(c) � minc , m |= ���I���c () m(c) < maxc .

Counting automata. A counting automaton (CA) is a tuple A = (I,C,Q,q0, F ,∆) where I is an
e�ective Boolean algebra called the input algebra, C is a �nite set of counters with an associated
counter algebra C, Q is a �nite set of states, q0 2 Q is the initial state, F : Q ! ΨC is the
�nal-state condition, and ∆ ✓ Q ⇥ ΨI ⇥ (C ! O) ⇥ Q is the (�nite) transition relation, where
O = {����, ����, ����1,����} is the set of counter operations. The component f of a transition
p�(α ,f)!q 2 ∆ is its (counter) operator. We often view f as a set of indexed operations ��c to denote
the operation assigned to the counter c , f (c) = ��.

grd (����c) def
= >C upd (����) def

= λn.n

grd (����c) def
= ���I���c upd (����) def

= λn.n + 1

grd (����c) def
= ���E���c upd (����) def

= λn.0

grd (����1c) def
= ���E���c upd (����1) def

= λn.1

Semantics of CAs. The semantics of the CA
A is de�ned through its con�guration automa-
ton FA(A), an FA whose states areA’s con�gu-
rations, i.e., pairs (q,m) 2 Q⇥DC consisting of
a state q and a counter memory m. To de�ne
FA(A), we must �rst de�ne the semantics of counter operators f , which occur on transitions. For
this, we associate with each (indexed) operation ��c a counter guard grd (��c) and a counter update
upd (��) as shown on the right. Intuitively, the operation ���� does not modify the counter’s value
and is always enabled. The operation ���� increments the counter and is enabled if the counter has
not yet reached its upper bound. The operation ���� resets the counter to 0 on exit from the count-
ing loop and is enabled when the counter reaches its lower bound. The operation ����1 executes
���� followed by ����. The guard of a counter operator f : C ! O is then a predicate �f 2 ΨC over

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 218. Publication date: November 2020.

126

Regex Matching with Counting-Set Automata 218:9

counter memories, and its update f : DC [{?} ! DC [{?} is a counter-memory transformer:

�f
def
=

€
��c 2f

grd (��c) f(m) def
=

⇢
λc .upd (f (c))(m(c)) if m |= �f
? otherwise

Intuitively, f updates all counters in a counter memory m by their corresponding operations if m
satis�es the guard, otherwise the result is ?.

We now de�ne the con�guration automaton of A, denoted as FA(A), which de�nes the language
semantics of the CA A. The states of FA(A) are the con�gurations of A (there are �nitely many of
them), and the initial state of FA(A) is the initial con�guration (q0, {c 7! 0 | c 2 C}) of A. A state
(p,m) of FA(A) is �nal i� m |= F (p). The transition relation ∆FA(A) of FA(A) is de�ned as

∆FA(A) = {(p,m)�(α)! (q, f(m)) | p�(α ,f)!q 2 ∆,m |= �f }.
Deterministic and simple CAs. A is deterministic i� the following holds for every state p 2 Q and

every two transitions p�(α1,f1)!q1, p�(α2,f2)!q2 2 ∆: if both �1 ^ �2 and �f1 ^ �f2 are satis�able,
then f1 = f2 and q1 = q2. It follows from the de�nitions that, if A is deterministic, then FA(A) is
deterministic too. A is simple if for any two transitions q�(α ,f)!r and q0�(α 0,f 0)!r 0, either � = � 0 or
n�o \ n� 0o = ;. That is, di�erent character guards do not overlap and can be mostly treated as
plain symbols. We also require that all guards are satis�able. CAs constructed from regexes by the
algorithm in Section 5 will be simple.

Example 4.1. Fig. 1a shows a CA in an intuitive notation, with the initial state q and �nal
conditions F (q) = ?, F (s) = ����c , whereminc = maxc = 100. The same notation is used in Fig. 2.
Fig. 3a shows a CA in a notation following the formal development more closely. ⇤

5 FROM A REGEX TO A CA VIA CONDITIONAL PARTIAL DERIVATIVES
We introduce a generalization of the Antimirov’s partial derivative construction [Antimirov 1996]
to symbolic counting, which allows one to replace a verbose NFA by a succinct CA. The di�erence
between the older variant of [Antimirov 1996] with explicit counting [Saarikivi et al. 2019] and
our new version was already illustrated in Section 2. To recall it brie�y using the example of the
regex.{100}: from 100 partial derivatives @.(.{i}) =.{i-1}, 1 i 100, and an NFA with 100
states and transitions.{i}�(.)!.{i-1}, the new construction will take us to the single derivative
@.(.{100}) = {.{100}} associated with a conditional counter update which induce an NFA with a
single state and the transition.{100}�(α ,����c)!.{100}.

We apply the construction on regexes that are normalized using the below rules where X { Y
denotes that X is rewritten to Y :

• All nested concat nodes are rewritten to the �attened right-associative list form, which is
always maintained throughout the construction, using the rules: (X · Y) · Z { X · (Y · Z),
� · Z { Z , and Z · � { Z .

• If S is nullable, then S{`,k} { S{0,k}. Moreover, in the nullable context S{0,k}, S can be
considered as if it was not nullable.

Observe that the normalization does not increase the size of the regex (it may decrease the size).
Let R be a �xed normalized regex. A sub-expression of R that is of the form X = S{`,k} is called

a counting loop. We consider each counting loop to represent a counter whose name is the counting
loop itself and whose upper bound ismaxX = k and lower bound isminX = `. For example, (.{9})⇤
contains the counter X =.{9} with minX = maxX = 9. In the following, let C stand for the set of
all counters that occur in R, also denoted by Counters(R).
We use the convention that the juxtaposition XY of normalized regexes X and Y is again a

normalized regex of the equivalent concat node X · Y : e.g., if X = a · b and Y = (a · b)⇤, then

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 218. Publication date: November 2020.

127

218:10 L. Turoňová, L. Holík, O. Lengál, O. Saarikivi, M. Veanes, and T. Vojnar

XY = a · (b · (a · b)⇤). Observe in particular that X� = X . In other words, we treat concatenated
elements as sequences, and a singleton sequence equals to the element itself.

Our construction will work over the set Σ = Minterms(R) of minterms of R and produce simple
CA that use minterms of Σ on transitions.

5.1 Parametric Languages

Lm(�) def
= {�} (1)

Lm(�Z) def
= [[�]] · Lm(Z) (2)

Lm((W |Y)Z) def
= Lm(WZ) [Lm(YZ) (3)

Lm(S⇤Z) def
= Lm(S)⇤ · Lm(Z) (4)

Lm(S{`,k}Z) def
= Lm(S) · L����S {`,k }(m)(S{`,k}Z) [(5)

L����S {`,k }(m)(Z)
L?(X) def

= ; (for all X) (6)

We de�ne the language of a normalized
regex starting with a counting loop rel-
ative to a counter value. For that, we
lift the de�nition of languages to be
parametric in counter memories m, but
regexes other than the above are treated
as before with the memory m passed
through unchanged.
Recall that if f is a counter operator

and m a counter memory, then f(m) de-
notes the appropriately updated memory where f(m) = ? when f is not enabled in m. Below,
if there is a single counter c 2 C such that f (c) , ����, we sometimes identify f with ��c and
use ��c (m) to represent the updated memory f(m). Speci�cally, ����X (if enabled) increments
the counter value of X by 1, and ����X (if enabled) resets the counter value of X to 0. Let m be
a counter memory. Then Cases (1)–(6) de�ne the parametric languages of regexes. The intuition
behind Case (4) is that all counters that may be present in S are inactive on the level of S⇤. Note
also that Case (5) is well-de�ned since, for X = S{`,k} and m0 = ����X (m), k �m0(X) < k �m(X)
if m(X) < k , and m0 = ? if m(X) = k .

Let 0
def
= λc .0 denote the initial memory that maps all counters to 0. The below theorem, proven

in [Turoňová et al. 2020], relates Lm(R) with the non-parametric de�nition of regular languages.
T������ 5.1. Let R be a normalized regex. Then L0(R) = L(R).

5.2 Conditional Derivation
We will now introduce our conditional derivative construction formally.

A partial conditional derivative is a pair hf ,X i where f is a counter operator and X a normalized
regex. Given a counter memory m, we let hf ,X i de�ne the language Lm(hf ,X i) def

= Lf(m)(X). In
other words, f is �rst applied to the counter memory m and then the regex is evaluated in the
updated memory. If f is not enabled in m, then the denoted language is empty.

A conditional derivative is a �nite set of partial conditional derivatives. The language de�ned by
a conditional derivative D in a counter memory m is de�ned as the union of the languages of the
partial conditional derivatives in D: Lm(D) def

=
–

d 2D Lm(d).
To de�ne how conditional derivatives of a given regex looks like, we need a notion of a sequential

composition of conditional derivatives D ⌦ E
def
= {hf ;�,X ·Y i | hf ,X i 2 D, h�,Y i 2 E, f ;� , ?}

where f ;� , ? is the composed counter operator such that f; g(m) = g(f(m)). The case when
f ;� = ? is discussed later on.
Conditional derivatives of a normalized regex are de�ned as shown on the right assuming that

concatenations X ·Y are normalized to the list form explained above, � 2 Σ, �� denotes the identity
function λx .x , and X = S{`,k} is a counting loop. Observe that, in @α (S) ⌦ {h����X ,XZ i}, the
operation ����X gets composed with ����X , yielding ����X again, because S{`,k} cannot occur in
S . It is possible that in {h����X , �i}⌦@α (Z),X is in scope ofZ (e.g.,Z starts withX). The composition
can then contain the operation ����X ; ����X that corresponds to ����1X because ����X is trivially

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 218. Publication date: November 2020.

128

Regex Matching with Counting-Set Automata 218:11

@α (�) def
= ;

@α (�Z) def
=

⇢{h��,Z i} if � ^� is satis�able
; otherwise

@α ((W |Y)Z) def
= @α (WZ) [@α (YZ)

@α (S⇤Z) def
= @α (S) ⌦ {h��, S⇤Z i} [@α (Z)

@α (XZ) def
= @α (S) ⌦ {h����X ,XZ i} [

{h����X , �i} ⌦ @α (Z)

enabled when the counter value of X
is 0. The only other possible composi-
tion of individual operations that can
appear in this case is ����X ; ����X . If
minX = 0, ����X ; ����X = ����X , which
is well-de�ned because ����X is always
enabled for minX = 0. If minX >
0, then ����X ; ����X is unde�ned, and
����X ; ����X does not contribute any-
thing to the composition. However, this is
correct sinceX is not nullable, and the second ����X is not enabled after the counter value ofX is re-
set to 0. Intuitively, the second occurrence of X cannot be exited without iterating X at least once.

Example 5.2. Consider the regex R =.*a{1,3}a{1,3}a. Let X be the counting loop a{1,3}. R
has two minterms a and [^a]. We get the following conditional derivatives of R, starting with the
case for @α (S⇤Z) due to the normal form assumption:

@a(R) = @a(.) ⌦ {h��,Ri} [@a(XXa)
= {h��,Ri, h����X ,XXai, h����1X ,Xai}

@a(XXa) = @a(a) ⌦ {h����X ,XXai} [{h����X , �i} ⌦ @a(Xa)
= {h����X ,XXai} [{h����X , �i} ⌦ {h����X ,Xai, h����X , �i}
= {h����X ,XXai, h����1X ,Xai}

@a(Xa) = @a(a) ⌦ {h����X ,Xai} [{h����X , �i} ⌦ @a(a)
= {h����X ,Xai, h����X , �i}

@a(a) = @a(.) = @[^a](.) = {h��, �i}
@[^a](a) = ;

Above, the composition ����X ; ����X in @a(XXa) is unde�ned and thus removed. We also get that
@[^a](R) = {h��,Ri} where @[^a](a) = ; and consequently @[^a](XXa) = ; and @[^a](Xa) = ;.
If we now consider, for example, the language de�ned by @a(Xa) in a valid counter memory m,

it is the union of the languages L����X (m)(Xa) and L����X (m)(�). These correspond to the cases of
continuing to iterate the loop X (if the counter value of X is below 3) or exiting the loop (if the
counter value of X is at least 1) and accepting {�}. ⇤

c:=0

•c<9/c++,

•c≥9/c:=1

•/c:=1

(.{9})*

F: ꓔ

.{9}(.{9})*

F: c≥9

Fig. 2. CA((.{9})*)

Example 5.3. Consider the regex (.{9})*, whose CA is in
Fig. 2. Here,. is the only input predicate and denotes the set
of all characters. We explain the use of some of the counter
operations in the CA of Fig. 2 by showing how they arise
through the partial-derivative-based construction of CAs as dis-
cussed above. The initial state is the regex itself. The (only) par-
tial derivative of the state (.{9})* is.{9}(.{9})* where the
body of the counting loop is exited but also incremented once,
so ����1 is applied to c under the guard ���E���c (which is
shown as c � 9/c:=1 in the �gure). The state.{9}(.{9})* has
two cases of partial derivatives both leading back to.{9}(.{9})*.
The �rst case is when c < 9 (���I���c holds), in which case c is incremented (shown as

c < 9/c++ in the �gure). The second case is when the counting loop is conditionally nullable
and is exited under the condition ���E���c (i.e. c � 9), the value of c is reset to 0, and then c is

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 218. Publication date: November 2020.

129

218:12 L. Turoňová, L. Holík, O. Lengál, O. Saarikivi, M. Veanes, and T. Vojnar

incremented as a result of taking the partial derivative of (.{9})*. Thus, ����1 arises as a sequential
composition of exiting the loop, followed by resetting the counter to 0, and then incrementing it.
Therefore, ���E���c must hold, while the increment condition holds trivially after a reset to 0. The
initial state is unconditionally �nal in Fig. 2, while the other state is �nal only when ���E���c
holds as marked by “F :”. ⇤

We now state the correctness theorem of conditional derivatives. For that, we de�ne ���E���R
as the predicate shown above for a normalized regex R, assuming that X stands for a counting loop.

���E���R def
=

8>>>><
>>>>:

>C if R = � ,
���E���Z else if R = YZ and Y is nullable,
���E���X ^ ���E���Z else if R = XZ ,
?C otherwise.

Note that Y above may also be a counting loop. However, since it is nullable, minY must be 0, and
then ���E���Y is always true. (If minY > 0, then Y cannot be nullable as R is normalized.)

We further need the following additional notions too. A counter X is visible in R if either R = YZ
and X = Y , or else if X does not occur in Y and X is visible in Z . A counter memory m is valid
for R if m(X) = 0 for all invisible counters X that occur in R. Correctness of the construction of
conditional derivatives is stated in Theorem 5.4—see [Turoňová et al. 2020] for a detailed proof.

T������ 5.4. Let R be a normalized regex and let Σ = Minterms(Θ) where Θ is some �nite superset
of Preds(R). If m is valid for R, then Lm(R) = –

α 2Σ[[�]] · Lm(@α (R)) [{� | m |= ���E���R }.

5.3 Constructing CAs from Conditional Derivatives
We convert a normalized regex R to the counting automaton CA(R) whose set of states is the
smallest set containing R as the initial state and all those regexes that arise in conditional derivatives
constructed from R by repeated derivation wrt Σ. Given a state represented by a regex S , for each
� 2 Σ and each partial conditional derivative hf ,T i 2 @α (S), there is a transition S�(α ,f)!T in
CA(R). The �nal condition F (S) of a state S of CA(R) is ���E���S . Observe that F (S) = ?C when S
is not nullable and has no visible counters, which corresponds to the classical case.

As shown in [Turoňová et al. 2020] the following result can be proved using Theorem 5.4.

T������ 5.5. Let R be a normalized regex and A = FA(CA(R)). Then, for all hm, Si 2 QA,
LA(hm, Si) = Lm(S).
The construction of CA(R) terminates, and the number of states of CA(R) is linear in]Ψ(R).
T������ 5.6. Let R be a normalized regex. Then |QCA(R) |]Ψ(R) + 1.

A proof of Theorem 5.6 is in [Turoňová et al. 2020]. We get the following �nal correctness result
as a corollary of Theorem 5.5, Theorem 5.1, and Theorem 5.6.

C�������� 5.7. Let R be a normalized regex. Then L(R) = L(CA(R)).
P����. First, QCA(R) is �nite, and thus well-de�ned by using Theorem 5.6. Use Theorem 5.5

with hm, Si as the initial state h0,Ri of A. It follows that L(A) = L0(R). Then use Theorem 5.1 for
L0(R) = L(R) and L(CA(R)) = L(A) holds by de�nition. ⇤

A further important aspect of CA(R) is that, although the number of input minterms may poten-
tially be exponential in the number of predicates in R, in the case of predicates being represented
as a �nite union of intervals (as is done typically for character classes), the size of a single predicate
representation can be estimated to be proportional to the number of interval borders in the union.
In this case, the total size of all the minterms remains linear in the total size of all the predicates

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 218. Publication date: November 2020.

130

Regex Matching with Counting-Set Automata 218:13

because the total number of interval borders will remain the same in minterms as in the original
set of predicates. In other words, mintermization based on character classes does not blow up the
number of transition in CA(R). We have also validated this fact experimentally.

6 FROM COUNTING AUTOMATA TO COUNTING-SET AUTOMATA
CAs obtained through conditional derivatives as shown in the previous section are nondeterministic.
As one of the main contributions of this work, we now propose an approach for determinizing
them into a form that can be used e�ciently for regex matching. The approach from which we
start and to which we contrast our new method is the naive determinization of CAs to DFAs: The
given CA is �rst converted to its underlying NFA, by making the counter memories an explicit part
of control states. The NFA is in turn determinized by the textbook subset construction.
Already the �rst step, the construction of the NFA, oftentimes explodes since it sacri�ces the

succinctness of symbolic counters (it is linear to the counter bounds). This initial blow-up is then
much ampli�ed in the subset construction, which is exponential to the size of the NFA and hence
also to the counter bounds (as, e.g., in the case of the regex.*a.{k} with its CA in Fig. 1a).

Our answer to this problem is a direct determinization of the CA into a novel type of automata,
which we call counting-set automata (CsAs). Control states of counting-set automata produced
by our determinization are essentially the states of the corresponding DFA but with the counter
memories removed. In order to be able to simulate a run of the DFA, they are equipped with special
registers that can hold sets of integers, and they use them to compute the right counter memories
at runtime. This completely avoids the state space explosion of the naive construction caused
by wiring counter memories into control states. Moreover, the simulation is fast because all the
manipulations with a counting set can be done in constant time.

6.1 Counting-Set Automata
Wenow formalize the idea of counting-set automata outlined above.We use the notion of a combined
Boolean algebra I⇥S, which allows us to manipulate pairs of predicates from the input algebra I and
the counting-set algebra S. For the purposes of this paper, we assume that predicates inΨI⇥S have the
form � ^ � where � 2 ΨI and � 2 ΨS. The conjuction (� ^ �)^I⇥S (� 0^ � 0) has the usual meaning of
(�^I� 0)^(�^S� 0) and�^� is satis�able if both � and � are satis�able in their respective algebras.

Counting sets. We consider a set-based interpretation of counters where the value of a counter c
is a �nite set rather than a single value. A counter under such an interpretation is referred to as a
counting set. A (counting-)set memory for C is a function s : C ! P�n(N) such that, for all c 2 C ,
Max(s(c)) maxc .3 Observe that the set of all set memories forC is �nite. Counting-set predicates
over C form an e�ective Boolean algebra SC called the counting-set algebra over C , also denoted
just S when C is clear from the context, whose domain DS is the set of all set memories for C . The
set of predicates ΨS is the Boolean closure of the basic predicates ���I���c and ���E���c , hence
syntactically the same as in the counter algebra C, but with a di�erent semantics under S:

s |= ���E���c () Max(s(c)) � minc and s |= ���I���c () Min(s(c)) < maxc
whereMin(·) andMax(·) are the set minimum andmaximum, respectively. Intuitively, the conditions
test existence of a set element satisfying the same counter condition.

Counting-set automata. A counting-set automaton (CsA) is a tuple A = (I,C,Q,q0, F ,∆) where:
I is an e�ective Boolean algebra called the input algebra. C is a �nite set of counters associated
with the counting-set algebra S. Q is a �nite set of states with q0 2 Q being the initial state.

3We write P�n(X) for the powerset of X restricted to �nite nonempty sets.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 218. Publication date: November 2020.

131

218:14 L. Turoňová, L. Holík, O. Lengál, O. Saarikivi, M. Veanes, and T. Vojnar

F : Q ! ΨS is the �nal-state condition. ∆ ✓ Q ⇥ΨI⇥S ⇥ (C ! P(O))⇥Q is a �nite set of transitions.
The second component is its guard. The third component is the counting-set operator in which
O = {I���,N���, R��, R��1} is the set of counting-set operations. They are essentially counter
operations lifted to sets (note the use of the larger initial letters to distinguish them from the
counter operations). We also use the di�erent names R�� and R��1 for the lifting of ���� and ����1
to stress their di�erent usage (not only for exiting a loop but also for initialisation when entering
the loop as will become clear in Eq. (7)). Sets of counting-set operations assigned to every counter
by the counting-set operator are called combined (counting-set) operations.
The CsA A is deterministic i� the following holds for every two transitions p�(ψ1,f1)!q1 and

p�(ψ2,f2)!q2 in ∆: if�1 ^�2 is satis�able, then f1 = f2 and q1 = q2.

Semantics of CsAs. The semantics of an indexed counting-set operation ��c 2 O is the set
transformer upd (��c) de�ned as follows:

upd (I���c) = λS .{n + 1 | n 2 S ^ n < maxc } upd (R��c) = λS .{0}
upd (N���c) = λS .S upd (R��1c) = λS .{1}

Then, the counting-set operator f : C ! P(O) is assigned the counting-set-memory transformer
f : DS ! DS de�ned as follows:

f(s) def
= λc .

⇢ –
��2f (c) upd (��c)(s(c)) if f (c) , ;

{0} if f (c) = ;
That is, (1) if f (c) , ;, then the value s(c) of each counting set c is transformed into the union of the
counting sets that result from applying the operations from f (c) on s(c), and (2) if f (c) = ;, then c
is implicitly reset to {0} (an implicit R��). Our determinization procedure creates such transitions
when the value of c is irrelevant (when c is a dead variable).

Note that, unlike counter operators of a CA, a counting-set operator f does not induce any
guard. The guard is rather a separate component of the transition. This is because CsA transitions
produced in the CA-to-CsA determinization need guards that are partially independent of the
operations of f . In particular, we will we need to distinguish cases such as ¬���E���c ^ ���I���c ,
���E���c ^ ¬���I���c , or ���E���c ^ ���I���c . The guard hence cannot be induced by f alone.

Note also that, unlike in CAs, the updates are de�ned for indexed operations. The reason is that
the semantics of the I��� operation is restricted to never produce values greater than maxc .
Finally, the language of the CsA A is de�ned through its underlying con�guration FA, FA(A),

as L(A) := L(FA(A)). The states of FA(A) are con�gurations of A, namely, tuples of the form
(q, s) 2 Q ⇥ DS consisting of a state q and a counting-set memory s. There are �nitely many
such con�gurations. The initial state of FA(A) is the initial con�guration (q0, {c 7! {0}}c 2C) of A.
A transition � = p�(α^β ,f)!q 2 ∆ is enabled in a con�guration (p, s) i� � is satis�able and s 2 [[�]]S,
meaning that s satis�es the counter guard � . If � is enabled in (p, s), then FA(A) contains the
transition (p, s)�(α)!(q, f(s)). Finally, a state (q, s) of FA(A) is �nal i� s |= F (q).

Example 6.1. An example of a CsA is in Fig. 1b. It uses intuitive notations that were also introduced
in Section 2 as abbreviations for the operations of the counting-set data structure. Counting-set
operators are depicted as assignments to c , R�� is represented as {0} on the right of the assignment,
R��1 is represented by {1}, I��� by c + 1, and N��� by c . Multiple transitions between the same
states and with the same updates are merged into one with a simpli�ed guard. An example whose
notation closely follows the formal development is in Fig. 3. ⇤

Runtime e�ciency of counting sets. A major reason for choosing CsAs as the target kind of
machine for determinization of CAs is that pattern matching with CsAs is fast. Using the data
structure explained in Section 2, all the basic counting-set tests and updates, namely, ���I���c ,

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 218. Publication date: November 2020.

132

Regex Matching with Counting-Set Automata 218:15

���E���c , N���, I���, R��, and R��1, can be implemented to run in constant time regardless of
the size of the counting set and the value maxc (assuming constant-time complexity of integer
arithmetic operations). Moreover, almost all combined counting-set operations can be implemented
to run in constant time too. In particular, when at most one counting-set operation of a given
combined operation returns a set other than {0} or {1}, their union can be computed in constant
time. However, the union of two general sets, other than {0} and {1}, would take time linear to the
size of the sets (which is at most maxc). The only operations that may return sets other than {0}
or {1} are N��� and I���. We therefore call a transition slow if its counting-set operator f assigns
to some counter c the result of a combined operation f (c) that contains both N��� and I���. A
CsA that has slow transitions is called slow, and a CsA that does not have them is called fast. Slow
CsAs are fortunately rare in practice (cf. Section 7).
When a fast CsA is used in pattern matching, tests and updates of one counting set then take

O(1) time, which in turn gives O(|C |) for all counting sets and their unions. This is our major
achievement: the independence of the running time from the counter bounds.

6.2 Encoding DFA Powerstates as CsA Configurations
In order to build intuition needed for understanding our determinization algorithm, we will �rst
concretize how the con�gurations of a CsA can encode states of a DFA corresponding to the NFA
FA(A) underlying a given CAA = (I,C,Q,q0, F ,∆). First, recall that, sinceA is converted into FA(A)
by making the counter memories explicit parts of control states, the states of FA(A) are pairs (p,m)
consisting of a state p of A and a counter memory m. Second, assume that FA(A) is determinized
using the textbook subset construction.4 We denote the result as DFA(A) from now on. Then, the
states of DFA(A) are sets of states of FA(A), i.e., sets of pairs (p,m), which we will call powerstates.
The control states of the CsA A0 built by our CA-to-CsA determinization will be subsets of the set
Q of states of the CA A. The con�gurations of A0 will thus be pairs (R, s) where R ✓ Q is a CsA
control state, i.e., a set of states of A, and s : C ! P�n(N) is a counting-set memory. Let us now
consider how s can be interpreted in this context.

Naive encoding. A naive interpretation of a CsA con�guration (R, s) is a DFA state containing all
pairs (r ,m) such that r 2 R and, for all c 2 C ,m(c) can be any value from s(c). The set of the counter
memories m is then isomorphic to the Cartesian product

Œ
c 2C s(c) of the sets s(c) assigned to the

counters, and the entire powerstate is the Cartesian product R ⇥m of the set of states and the set
of counter memories. The naive interpretation, however, is too impractical as it cannot express any
dependence of a counter memory on the CA state (every state can be paired with each considered
memory) nor any mutual dependence of values of di�erent counters within a counter memory
(every possible value of a counter c can be paired with every possible value of any other counter
d). Most DFAs compiled from real-life regexes do not �t into this representation. For instance, the
DFA con�guration {(q, c = 0), (s, c = 0), (s, c = 1)} of the CA from Fig. 1 in Section 2 could not be
represented by a CsA con�guration because q and s appear with di�erent sets of counter values.

Encoding with counter scopes. Our key observation how to resolve the above problem (at least for
many real-life scenarios) is to take advantage of that not every counter is “used” at every CA state.
In fact, the value of a counter is usually implicitly 0 at most states except a few. If these states are
known, the implicit zeros do not have to be remembered explicitly in the counting sets, and the
encoding becomes much more �exible. To formalize this, we introduce the notion of the scope of a
4The DFA produced by the textbook subset construction from a simple FA A = (I,Q , q0, F , ∆) will have P(Q) as the set of
states, transitions S�(α)!{r 2 Q | s�(α)!r 2 ∆, s 2 S }, the initial state {q0 }, and as the �nal states all those intersecting
F . We note that to determinize a CA which is not simple, one could start from the more sophisticated version of the subset
construction for symbolic automata of [Veanes et al. 2010], which avoids explicit generation of all minterms.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 218. Publication date: November 2020.

133

218:16 L. Turoňová, L. Holík, O. Lengál, O. Saarikivi, M. Veanes, and T. Vojnar

counter that over-approximates the set of states where a counter c can have a non-zero value and
that is easy to compute.5 The scope is de�ned inductively as the smallest set of states � (c) such that
(1) q 2 � (c) if there is a transition to q with either ����c or ����1c , or
(2) there is a transition to q from a state in � (c) with the ����c operation.

In other words, the scope of c spreads from an increment of c along the transition relation until a
transition with ����c .
The DFA powerstate encoded by a CsA con�guration (R, s) can then be formally de�ned as the

set (R, s)DFA of con�gurations (r ,m) of the CA A such that r 2 R and, for all c 2 C , m(c) 2 s(c) if
c 2 � (r), elsem(c) = 0.We call the powerstates ofDFA(A) that can be encoded byCsA con�gurations
Cartesian, and call the entire DFA Cartesian if all its powerstates are Cartesian.

Example 6.2. The powerstates of the DFA(A) of the CA A from Fig. 1a are indeed Cartesian (as
discussed in Section 2) because q0 is not in the scope of c . The encoding of powerstates by CsA
con�gurations is also illustrated in Section 2 and later also in Example 6.4. ⇤

The Cartesian encoding still cannot express all kinds of DFA powerstates. In particular, it cannot
express more subtle dependencies of counter values on the state, and dependencies of counter
values of di�erent counters on each other, which mainly concerns CAs with nested counting
loops compiled from regexes with nested counting sub-expressions. Example 6.5 discusses a regex
that leads to a non-Cartesian CA. However, we later present a strong empirical evidence that a
signi�cant majority of real-life regexes lead to Cartesian CA.

6.3 Generalized Subset Construction
We will now describe the core of our CA-to-CsA determinization. It is built on top of the textbook
subset construction for NFAs. We use the CA from Fig. 3a as a running example through the section.
We make a simplifying assumption that the input CAs are simple (di�erent character classes on
their transitions do not overlap). This is satis�ed by CAs generated by the derivative construction
from Section 5 since their transitions are labeled by minterms of the original regex. The assumption
could be dropped and the construction could be relatively easily generalized in the style of symbolic
automata determinization of [Veanes et al. 2010].
Let A = (I,C,Q,q0, F ,∆) be a simple CA with the scope function � : Q ! P(C). The algorithm

produces the deterministic CsA A0 = (I,C,Q 0, S0, F
0,∆0) whose components are constructed as

described below. Namely, control states of A0, called powerstates, are subsets of Q , i.e., Q 0 ✓ P(Q).
The initial powerstate is S0 = {q0}. A powerstate S 2 Q 0 is �nal i� the �nal condition holds for
some of its elements, i.e., F 0(S) def

=
‘

q2S F (q). The sets ∆0 and Q 0 are constructed by a �xpoint
computation that explores the state space reachable from S0. During the construction, transitions
starting from previously reached powerstates are constructed and included together with their
target states into ∆0 and Q 0, respectively, until no new powerstates can be reached.
Transitions starting from a given control state R of the CsA A0 are constructed to update the

runtime values of counting sets such that they simulate transitions of the DFA corresponding
to the CA A. Assume a CsA con�guration (R, s) and a DFA transition (R, s)DFA�(α)!P from the
DFA powerstate encoded by (R, s) over an input minterm � . The simulating CsA transition must
transform (R, s) into (R0, s0) with (R0, s0)DFA = P . The simulated DFA transition was constructed
from �-transitions of the NFA FA(A) that are actually instantiations of the CA �-transitions enabled
5Computing the precise set of states where a counter c can have a non-zero value would require a reachability analysis in the
general case (since some of the transitions may never be executable—think of simultaneously counting with counters c and
d such that ���I���c < ���E���d , then the exit transition for d will never be taken). For CAs produced by our derivative
construction, the scope, however, corresponds to this set precisely—no transitions that are never executable are generated.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 218. Publication date: November 2020.

134

Regex Matching with Counting-Set Automata 218:17

in con�gurations (r ,m) 2 (R, s)DFA. The simulating CsA transition will be constructed from these
CA transitions. They can be identi�ed by (1) their source state, which must be in R, (2) an alphabet
minterm � 2 Σ where Σ is the set of minterms over all input predicates in the CA A, and (3) their
compatibility with a particular set of enabled/disabled counter guards. This set of guards belongs
to the set of minterms ΓR,α of the set of counter guards on the �-transitions originating in R:

ΓR,α
def
= Minterms({grd (��c) | r�(α ,f)! s 2 ∆, r 2 R ^ c 2 � (r), ��c 2 f }).

Hence, the CsA will have a transition leaving R for each � 2 Σ and � 2 ΓR,α , and the transition will
be built from the set of CA �-transitions originating in R and consistent with � :

∆R,α ,β
def
= {r�(α ,f)! s 2 ∆ | r2R, Sat(�f ^ �)}.

Its target is the set T of all target states of the transitions in ∆R,α ,β , and its guard is � ^ � .6
The remaining component is the counting-set operator f 0. It must summarize the updates of the

counter values on transitions of ∆R,α ,β as updates of the respective counting sets. The values of
counters that are out of scope, hence implicitly zero, will not be tracked in counting sets. Tracking
the value of a counter hence starts when A0 simulates a transition of A entering the scope of the
counter, and ends when no state from the scope is present in the target CsA state.

op(p�(α ,f)!q , c) def
=

def
=

8>>>>>>>><
>>>>>>>>:

N��� if f (c) = ���� ^ p 2 � (c)
I��� if f (c) = ���� ^ p 2 � (c)
R�� if f (c) = ���� ^ p < � (c)
R��1 if f (c) = ���� ^ p < � (c)
R�� if f (c) = ����
R��1 if f (c) = ����1

(7)

Let ∆R,α ,β (c) be the set of transitions in ∆R,α ,β
with the target state in the scope of c . The counting-
set operator f 0 is built in the form f 0(c) def

= {op(� , c) |
� 2 ∆R,α ,β (c)}. Here, op(� , c) denotes the counting-
set operation that, given a CA transition � =
p�(α ,f)!q, transforms the set of possible values of
the counter c at the state p to the set of values ob-
tained at q after taking the transition. It is de�ned
in Eq. (7) on the right. The set operation induced by the CA transition corresponds to the counter
operation on the transition. In the third and fourth case, when the CA transition comes from out
of the scope, it is certain that the counter can only have the value 0, which is the same value as
produced by ���� (or ����1 when the counter is immediately incremented). The resulting CsA
transition is therefore S�(α^β ,f 0)!T . Note that f 0(c) ends up empty when the target powerstate is
fully out of the scope of c , which semantically corresponds to the implicit reset to {0}.

Observe thatA0 is deterministic since, for any two distinct transitions S�(α1,f1)!S1 and S�(α2,f2)!S2,
the condition �1 ^ �2 is unsatis�able by virtue of minterms.

T������ 6.3. For the CA A and the CsA A0 above, we have L(A0) ◆ L(A) and |Q 0 | 2 |Q | .

P���� (����). The language inclusion is proved by showing that the con�guration automaton
FA(A0) of A0 simulates DFA(A), more concretely, that each con�guration (R, s) of A0, a state of
FA(A0), simulates the powerstate (R, s) of DFA(A). The bound on the size of the state space follows
from that states of the CsA are sets of states of the CA. ⇤

Example 6.4. Consider the CA in Fig. 3a that has states q0, q1, and q2. The state q0 is initial, the
�nal condition of q2 is >, and it is ? for q0 and q1. The set of counters is C = {c} with � (c) = {q1}
(i.e., c is not used and hence implicitly 0 inq0 andq2). Finally, Σ = {a, [^a]}. In Fig. 3a, we compactly
represent transitions over all minterms from Σ using.. The determinization starts exploring the
CsA from its initial state S0 = {q0}.

Let us focus on the transitions for the input minterm� = a. Two transitions are leavingq0, namely
�1 = q0�(a,����c)!q0 and �2 = q0�(a,����c)!q1, both with no guard on c , hence ΓS0,α = {>}. The
6Recall that the predicates in ΨC and ΨS are syntactically the same.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 218. Publication date: November 2020.

135

218:18 L. Turoňová, L. Holík, O. Lengál, O. Saarikivi, M. Veanes, and T. Vojnar

• /INCR(c)

a

•

c0

•

a/EXIT(c)

q₁

(c)

q₀

q₂

F: ꓔ

(a) The CA for.*a.{4,8}a

[^a]¬ξ(c)ι(c)/INCR(c),

[^a]ξ(c)ι(c)/INCR(c),

a¬ξ(c)ι(c)/INCR(c), RST(c)

c:={0}

[^a]¬ξ(c)ι(c)/INCR(c),

[^a]ξ(c)ι(c)/INCR(c),

a¬ξ(c)ι(c)/INCR(c), RST(c)

aξ(c)ι(c)/INCR(c), RST(c),

aξ(c)¬ι(c)/RST(c)

[^a]ξ(c)¬ι(c)

a/RST(c)[^a]ξ(c)¬ι(c)

[^a]

aξ(c)ι(c)/INCR(c), RST(c),

aξ(c)¬ι(c)/RST(c)

{q₀}

{q₀,q₁}

{q₀,q₁,q₂}

F: ꓔ

(b) Determinization of the CA into a CsA

Fig. 3. From a regex via a CA to a deterministic CsA. We are using a notation closely following the formal
development. We only use ��(c) instead of ��c and abbreviate ���E���c by � (c) and ���I���c by �(c).

guard > is thus the only choice for the counter minterm � . The set ∆R,α ,β of transitions consistent
with � and � then contains both a-transitions �1 and �2 originating from q0. Since �2 is entering the
scope of c , it generates the counting-set operation R��c according to the third case of Eq. (7). Since �1

stays out of the scope, it does not generate any counting-set operations. We obtain the counting-set
operator f 0 = {R��c } and generate the CsA transition �1 = {q0}�(a^β , {R��c })!{q0,q1}.
Next, let us focus on the a-transitions from S1 = {q0,q1}. Here, ΓS1,a has the following three

satis�able elements: ���E���c ^ ���I���c , ¬���E���c ^ ���I���c , and ���E���c ^ ¬���I���c
(the guard ¬���E���c ^ ¬���I���c is excluded as it is never satis�ed for non-empty sets of
positive integers). Let us generate a transition for the second case, � = ¬���E���c ^ ���I���c . We
obtain ∆S1,a,β = {q0�(a,����c)!q0, q0�(a,����c)!q1, q1�(a,����c)!q1}. As before, the �rst transition
does not contribute to f 0 as it stays out of the scope, and the second transition adds R��c . The
third transition adds I���c (the second case of Eq. (7)). The resulting CsA transition is thus �2 =
S1�(a^¬���E���c^���I���c , {I���c ,R��c })!S1. The rest of the construction is analogous.

Last, let us also illustrate the simulation of DFA(A) by the constructed CsA transitions. On the
word aa, the DFA would execute the run {(q0, c = 0)}�(a)!{(q0, c = 0), (q1, c = 0)}�(a)!{(q0, c =
0), (q1, c = 0), (q1, c = 1)}. The simulating run of our CsA would start in the initial con�guration
{{q0}, c 2 {0}}. The transition �1 would produce the con�guration {{q0,q1}, c 2 {0}} (since
R��({0}) = {0}) from where �2 would produce {{q0,q1}, c 2 {0, 1}} (since I���({0}) = {1} and
R��({0}) = {0}). The sequence of con�gurations precisely encodes the sequence of the DFA
powerstates, that is, the sequnce ({q0}, c 2 {0})DFA = {(q0, c = 0)}; ({q0,q1}, c 2 {0})DFA =

{(q0, c = 0), (q1, c = 0)}; and ({q0,q1}, c 2 {0, 1})DFA = {(q0, c = 0), (q1, c = 0), (q1, c = 1)} (recall
that q0 is not in the scope of c , hence c has implicitly the value 0 there). ⇤

6.4 Uniformity: A Su�icient Semantic Correctness Criterion
Given a CA A, we produce a CsA A0 that may overapproximate A in terms of the language. We
explain how this may happen and present conditions under which the language stays unchanged.
In particular, the overapproximation is caused by non-Cartesian powerstates of DFA(A). (Recall
that, in a Cartesian powerstate, states in the scope of a counter must appear with the same set
of values of that counter.) A con�guration of the CsA cannot encode a non-Cartesian powerstate
precisely, it can only overapproximate it. A larger powerstate may then accept a larger language.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 218. Publication date: November 2020.

136

Regex Matching with Counting-Set Automata 218:19

Example 6.5. Take R = (a|aa){5} and the CA(R) shown in Fig. 4.

Fig. 4. CA((a|aa){5}).

After reading the word aa, DFA(CA(R)) reaches the powerstate
{(q0, c = 1), (q0, c = 2), (q1, c = 2)}, which is not Cartesian be-
cause both states are in the scope of the counter c but are paired
with di�erent counter values. Our CsA would reach the con�gura-
tion ({q0,q1}, c 2 {0, 1, 2}), which encodes the larger powerstate
{(q0, c = 0), (q0, c = 1), (q0, c = 2), (q1, c = 0), (q1, c = 1), (q1, c =
2)} where both states appear with both counter values. ⇤

Uniformity. We now introduce the so-called uniformity of a CA as a property under which
determinization preserves the language. Uniformity prevents creation of non-Cartesian powerstates.
It includes two conditions.

The �rst condition prevents the kind of scenario from Example 6.5. For each DFA transition � 0, it
requires that every CA state q that is in the scope of some counter c within the DFA state to which
� 0 leads receives the same set of values of c . This requires testing whether the sets of transitions
covered by � 0 and incoming to every such CA state q induce the same CsA operations for c .

The second condition prohibits two counters from being active at once, a scenario which arises
from regexes with nested counting. Indeed, the relation between values of two simultaneously active
counters may easily become more intricate than what can be expressed by a Cartesian product of
two sets (consider, e.g., the regex a?(a{1}a){2} and the word aaa). The condition requires testing
that no state appears in the scope of two counters.
Formally, given a CsA transition � 0 = S�(α^β ,f 0)!T , a counter c , and a CA state q 2 � (c), we

de�ne the set f 0q (c) of incoming CsA operations for c induced by the incoming transitions of q from
which � 0 is built (�-transitions consistent with � originating in S) as follows:

f 0q (c) def
= {op(� , c) | � 2 ∆S ,α ,β (c) ^ the target of � is q} .

We call the transition � 0 uniform i�, for each counter c 2 C , any two states q, r 2 � (c) \T have the
same sets of incoming CsA operations, i.e., f 0q (c) = f 0r (c). The CAA is then uniform if all transitions
of A0 are uniform and if no state of A appears in the scope of two counters.

T������ 6.6. If a CA A is uniform, then L(A) = L(A0).
P���� (����). By showing bisimilarity between states q of FA(A0), i.e., con�gurations of the

CsA A0 and powerstates qDFA of DFA(A). ⇤

Uniformity can be checked on the �y, while constructing A0. It is also automatically implied
when the CA is constructed from certain classes of regexes, as discussed below.

6.5 Syntactic Correctness Criteria
Uniformity is only a semantic property. Below, we show examples of actual regexes that do and do
not lead to uniform CAs and discuss some simple syntactic classes of regexes that imply uniformity.
A detailed study of syntactic classes of regexes that guarantee uniformity is, however, beyond the
scope of this paper and a part of our future work.

The regexes that induce non-uniform CAs are often those where, intuitively, there is a position in
some input text that may either be matched against the �rst character of a counted sub-expression
or against some inner character of the same sub-expression. In such a situation, there may be two
runs of the induced CA: one that increments the associated counter (the increment happens) at
that position and moves to some state q, and the other that leaves the counter as it is, while in its
scope, and moves into a di�erent state r . The counter value then depends on the state: it is di�erent
in q and in r . The corresponding DFA state is then non-Cartesian and the CA is non-uniform.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 218. Publication date: November 2020.

137

218:20 L. Turoňová, L. Holík, O. Lengál, O. Saarikivi, M. Veanes, and T. Vojnar

Example 6.7. We present several commented examples of regexes with non-uniform CAs where
our determinization overapproximates the language of the obtained CsA.

• (a|ab|ba){5}— the string aba could be matched as “a” followed by “ba”, having incremented
the counter twice, or as “ab” that is followed by the pre�x “a” of “ab”, having incremented
the counter once only.

• a{1,3}a{3} — this case can be explained similarly as the previous one. Alternatively, note
that, assuming that our translation to a CA produces two counters, say c1 and c2, then after
reading n letters a, the CA needs to remember that c1 + c2 = n. Such non-trivial relations
between counter values are not Cartesian.

•.*(aa){6}— assuming a sequence of a’s on the input, the counter may be either incremented
on odd characters and left unchanged on even ones, or the other way around. As the counter
values depend on the position within the “aa” (and hence on the CA state), the CA cannot be
uniform. Note that the pre�x.* is quite usual as it corresponds to searching for the regex
(aa){6} anywhere in the input string.

•.*(a{2}){2} — after reading aa, if the value of the outer counter is 1, then the value of
the inner counter must be 0. This is a non-trivial relation between the values of the two
counters, which is not Cartesian. Nested counting is often problematic, however, many of
such examples may still be solved quite e�ciently by unfolding one of the counters. ⇤

Syntactic classes of regexes that guarantee uniformity. A simple class of regexes that guarantees uni-
formity is a generalization of the class ofmonadic regexes of [Holík et al. 2019] (where counting is al-
lowed over character classes only). Namely, it consists of regexes with counting loops of the form

(�1 . . . �n){`,k} s.t. n�1o is disjoint from every n�io, 1 < i n.
Intuitively, the disjointness with �1 ensures that the generated CA will only be able to process �1

through an increment transition at the beginning of a new iteration of the loop, with no possibility
of having a con�icting ���� transition that could read the same symbol inside the body of the loop
(which is exactly what happens with the second symbol a in Example 6.5). The CsA compiled form
this class are also guaranteed to be fast.

7 EXPERIMENTAL EVALUATION
We have implemented our approach in a C# prototype called CA available at [Turoňová et al.
[n.d.]] (see [Turoňová et al. 2020] for details how to e�ciently implement CsAs) and evalu-
ated its pattern matching capabilities against other state-of-the-art regex matchers on patterns
that use the counting operator. We focused on comparison against Google’s RE2 library [Google
[n.d.]]7, an automata-based matcher designed to be fast, predictable, and resilient against Re-
DoS attacks. We also include other three e�cient matchers into the comparison, namely the
standard GNU grep program [Haertel et al. [n.d.]] (version 3.3), the .NET standard library regex
matcher from System.Text.RegularExpressions [Microsoft 2020], and Symbolic Regex Matcher
(SRM) [Saarikivi et al. 2019].

Let us shortly summarize how the tools work. The main algorithms of RE2 and grep implement
optimized versions of the Thompson’s on-the-�y determinization where the constructed DFA states
are cached. The construction has a bound on the size of the DFA—if the bound is reached, the
so-far constructed DFA states are �ushed to avoid consuming too much memory. In some situations
when caching is found ine�ectual, RE2 turns the caching o�, and the performance can drop even
lower (see the description in [Cox 2010] for details). We note that RE2 rejects an input regex if it
contains a counting operator with a bound bigger than 1,000. SRM is based on symbolic derivatives
7We used the version 2019-01-01 of RE2 via the command line interface re2g from https://github.com/akamai/re2g.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 218. Publication date: November 2020.

138

Regex Matching with Counting-Set Automata 218:21

constructed on the �y, also in the spirit of the Thompson’s algorithm, and, likewise, bases its
e�ciency on caching (in fact, SRM is quite close to an implementation of the Thompson’s algorithm
over CAs with caching). The .NET matcher uses a backtracking algorithm over NFAs, while our
CA eagerly constructs a deterministic CsA for the input regex. The former four are mature tools,
and especially RE2 and grep contain many high- and low-level optimizations, such as using the
Boyer-Moore algorithm [Boyer and Moore 1977] to skip over many characters that are known
to not be a part of a match. RE2 and grep are compiled programs while CA, SRM, and .NET run
within the .NET Framework (therefore, they have some inherent overhead due to the just-in-time
compilation at start-up and its inability to use advanced code optimizations, as well as garbage
collection). Note that even though the tools based on the on-the-�y subset construction (RE2, grep,
and SRM) are linear to the lenght of the text, they still take space exponential to the counter bounds
in the worst case, by creating sets of the size linear to the counter bounds, exponential to their
decadic encoding used in the regex.
We run our benchmarks on a machine with the Intel(R) Xeon(R) CPU E3-1240 v3 @ 3.40GHz

running Debian GNU/Linux (we use the Mono platform [project [n.d.]] to run .NET tools). To avoid
issues with generating exact matches, which might di�er for di�erent tools, the tools were run in the
setting where they counted the number of lines matching8 the given regex (e.g. the -c �ag of grep).

7.1 ReDoS Resiliency
Our main experiment focuses on the resilience of the matching engines against ReDoS attacks. The
regexes used for this experiment were selected (1) from the database of over 500,000 real-world
regexes coming from an Internet-wide analysis of regexes collected from over 190,000 software
projects [Davis et al. 2019]; (2) from databases of regexes used by network intrusion detection systems
(NIDSes), in particular, Snort [M. Roesch et al. [n.d.]], Bro [Robin Sommer et al. [n.d.]], Sagan [The
Sagan team [n.d.]], and the academic papers [Češka et al. 2018; Yang et al. 2010]; (4) the RegExLib
database of regexes [RegExLib.com [n.d.]]; and (5) industrial regexes from [Holík et al. 2019], used
for security purposes. From these, we created our set of benchmarks by the following steps:
(1) We selected regexes that contained counting loops whose sum of upper bounds was larger

than 20. This let us focus on regexes where the use of counting makes sense (there are surpris-
ingly many regexes occurring in practice where the use of a counting loop is unnecessary, e.g.,
regexes containing sub-expressions similar to a{0,1} or even just a{1}). Moreover, we also
removed all except 26 regexes with counters bigger than 1,000, which cannot be handled by RE2.
We left the 26 regexes as representatives of “large” counters. This left us with 5,000 regexes.

(2) Then, we �ltered out regexes R such that either CA(R) was not uniform (i.e., the CsA produced
by our algorithm was not precise, cf. Section 6.4), or such that the CsA was not fast (i.e. not
all counting-set operators were constant-time, cf. Section 6.1). After this step, a vast majority,
4,429 of the regexes, remained.

(3) For the regexes that remained, we used a lightweight ReDoS generator designed to exploit
counting (cf. Section 7.3) to generate ⇠10MiB long input texts. In particular, we managed
to generate “adversarial” input texts for 1,789 regexes (for the rest of the regexes, either the
underlying state space was too small, so the generator could not construct the text, or the
generation hit the timeout of 600 s). Our benchmark data set is available at [Holík et al. 2020].

We ran all tools on the generated benchmarks (counting the number of lines of the input text
matching the regex) and give scatter plots comparing the running times of the tools in Fig. 5a

8We consider the standard semantics of “matching” used by grep, i.e., a line matches a regex R if it contains a string that is
in L(R), unless it contains start-of-line (ˆ) or end-of-line ($) anchors, in which case the matched string needs to occur at
the start and/or at the end of the line respectively.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 218. Publication date: November 2020.

139

218:22 L. Turoňová, L. Holík, O. Lengál, O. Saarikivi, M. Veanes, and T. Vojnar
0
.1

1
.0

1
0
.0

1
0
0
.0

0.1 1.0 10.0 100.0

RE2 [s]

C
A

 [
s
]

(a) The comparison of running times of CA and RE2
on our benchmark set (CA wins: 287/1,789)

0

10

20

30

250 500 750 1000

k
ti
m

e
 [

s
]

.NET

CA

grep

RE2

SRM

(b) Running times of the tools on the regex
“(_a){k}_a” where k is a parameter

0
.1

1
.0

1
0

.0
1

0
0

.0

0.1 1.0 10.0 100.0

grep [s]

C
A

 [
s
]

(CA wins: 862/1,425)

0
.1

1
.0

1
0

.0
1

0
0

.0

0.1 1.0 10.0 100.0

.NET [s]

C
A

 [
s
]

(CA wins: 708/1,789)

0
.1

1
.0

1
0

.0
1

0
0

.0

0.1 1.0 10.0 100.0

SRM [s]

C
A

 [
s
]

(CA wins: 345/1,789)

(c) The comparison of running times of CA with grep, .NET, and SRM on our benchmark set

Fig. 5. Graphs with results of our experiments. Note that, in (a) and (c), the axes are logarithmic, the dashed
lines denote the timeout (600 s), and the data points between the dashed lines and the edge of a plot represent
benchmarks where the tool did not run successfully. We also provide the number of times CA won.

and Fig. 5c (the timeout was 600 s). On the bottom and the left-hand side of every plot, there are
rug plots illustrating the distribution of the data points. Note that the axes are logarithmic, so the
di�erence between data points grows as these points are away from zero (in particular, di�erences
of values smaller than 1 s are negligible). The semantics of regexes supported by grep di�ers from
the one supported by other tools, so we only considered the cases when the number of matches
was the same when comparing with grep). In the plots, the data points between the dashed lines
and edges of the plots represent errors, e.g. due to the regex being rejected (for counters >1,000 for
RE2) or being interpreted using a di�erent semantics (in the case of grep).

In Fig. 5a, we compare CA with RE2. We wish to point out the following interesting observations.
Although RE2 wins more often on the whole benchmark set (our prototype does not include the
many advanced optimizations present in RE2), there is a number of benchmarks (287) where its
performance signi�cantly deteriorates, and CA is faster. In particular, there are 89 benchmarks

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 218. Publication date: November 2020.

140

Regex Matching with Counting-Set Automata 218:23

Table 1. Statistics for the graphs in Fig. 5 (times are given in seconds). For CA, we provide several times: “total”
is the total time, “CA” is the time for translating a regex into a (nondeterministic) CA, “CsA” is the time of
determinization of the CA into a CsA, and “match” is the time spent when matching the input text.

RE2 grep .NET SRM CA
total CA CsA match

mean 36.11 34.38 9.12 26.78 1.73 0.05 0.23 0.69

median 0.10 0.70 0.76 0.73 1.03 0.03 0.04 0.68
std. dev 157.05 147.17 52.10 106.16 7.27 0.29 2.73 0.29

timeouts 1 11 8 16 0

where the time of RE2 is bigger than 10 s, i.e., its speed drops below 1MiB/s (we consider this
speed of processing denotes a successful ReDoS attack, even though the limit may be signi�cantly
larger in practice9). For CA, the number of benchmarks that took over 10 s was only 22; in fact, all
except 3 benchmarks �nished within 100 s—the blow-up in these 3 benchmarks is not caused by
the counters but rather by many “|” and “?” operators, so over 70 % of the total time is spent by
constructing the CsA. If used, e.g., in an NIDS, the CsA would be created only once and then used
for matching giga-/terabytes of data, so the initial overhead could be neglected.
Comparing with the other tools (Fig. 5c) and also clearly visible in the corresponding rug plots

and the statistics in Table 1, we can observe that the performance of CA is much more robust than
the performance of the other tools; the mean time and standard deviation of CA is signi�cantly lower
than the rest of the tools. In particular, from the benchmarks where CAwas faster than RE2, the time
of CA on all except two benchmarks was almost the same (including them, the standard deviation
was 0.37). We provide four times for CA: “total”: the total user time of matching (measured using the
GNU time utility), “CA”: the time for translating the input regex into a CA, “CsA”: the time it took
to determinize the CA into a CsA, and “match”: the time of matching the input text with the CsA.
Note that, in the tables, there is a noticeable discrepancy between the sum “CA” + “CsA” + “match”
and “total”, which is due to the .NET Framework overhead, such as just-in-time compilation and
(in particular) the garbage collector.

In Table 2, we give a selection of interesting benchmarks. These contain benchmarks that are
di�cult for usually more than one tool. We emphasize the benchmarks coming from the NIDSes
Snort and Bro. Notice that, for most of them, matching using RE2 (and also other tools) gets
extremely slow. Slow matching over these regexes can have disastrous consequences for network
security, potentially completely eliminating a given NIDS.

The CsAs produced by CA were also much smaller than the corresponding DFAs. The CsAs have
on average 29 states (median: 7) and 306 transitions (median: 11). On the other hand, classical NFAs
constructed from the regexes have on average 112 states (median: 52), and when determinized,
the resulting DFAs have on average 2,802 states (median: 67) and 10,384 transitions (median: 107).
Using CsAs signi�cantly lowers the chance that determinization explodes.

7.1.1 The E�ect of Nondeterministic Counting. We say that a regex contains nondeterministic
counting if, when translated into a CA A using the algorithm in Section 5, there is a wordw such
that A can overw reach two con�gurations with di�erent values of some counter.
Regexes with nondeterministic counting are the main focus of our benchmark. Namely, they

constitute 67 % of the 1,789 regexes used. From the 1,284 regexes that were at least slightly prob-
lematic for some of the other tools except CA (it took some tool � 1 s), 73 % of them were with
9The required processing speed depends on the application. NIDSes performing deep packet inspection may require a
line-processing speed of units or tens of GiB/s [Češka et al. 2018], while application servers validating user inputs may
su�ce with units or tens of MiB/s.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 218. Publication date: November 2020.

141

218:24 L. Turoňová, L. Holík, O. Lengál, O. Saarikivi, M. Veanes, and T. Vojnar

Table 2. Selection of interesting benchmarks. “TO” denotes a timeout (600 s) and “—” denotes an error. Due
to space constraints, in the “Regex” column, “. . . ” denotes omi�ed parts of the regexes (we tried to preserve
the parts containing occurrences of the repetition operator) and “⇠” denotes breaking a regex into two lines.
In the column source, Sw denotes the regexes collected in [Davis et al. 2019] from so�ware projects.

Source Regex RE2 grep .NET SRM CA
total CA CsA match

Snort .*[aA][uU][tT][hH]. . .[iI][cC] ⇠
11.27 7.8 361.1 555.56 1.04 0.03 0.05 0.31⇠[^\x0A]{512}

Snort \x20[^\x21\x22]{500} 439.98 0.11 2.20 TO 1.08 0.03 0.04 0.83

Snort ^RCPT TO\x20\s*[\w\s@\.]{200,}⇠
340.7 — TO TO 1.68 0.03 0.07 0.89⇠\x20[\w\s@\.]{200,}. . .

Snort php.*\x20[^\n]{256} 176.75 0.10 1.22 TO 1.08 0.04 0.07 0.74

Snort ^(NT|CallBack|SID|TimeOut)\s*⇠ 164.11 0.12 14.59 229.41 1.07 0.03 0.07 0.72

⇠\x20\s*[^\n]{512}
Snort .*[nN][eE][wW]. . . [^\x20]{100} 0.13 1.26 39.92 0.74 0.81 0.03 0.04 0.65

Bro ^[nN][aA][mM][eE]=s*[^\r\n\x3b⇠
128.57 12.24 0.51 76.48 1.15 0.03 0.04 0.94⇠\x20\x09\x0b\x2c]{300}

Sw _.{39} 22.96 225.34 1.94 357.68 1.12 0.03 0.04 0.79

Sw (.{1,980}[,])\s+(\S) 260.59 TO 308.66 0.63 1.07 0.03 0.05 0.59
Sw (_a){64999}_a — — TO TO 0.96 0.03 0.04 0.51

Sw \[{50000}a\]{50000} — — 4.36 TO 5.13 0.02 0.02 0.41

Sw ^QS([NDR])(.{4})(.{6})(\d{8}). . .⇠
0.12 0.10 1.03 0.85 96.20 0.04 81.64 0.65⇠(.{4})(.{6})(.{8})(.{8})(.)$

nondeterministic counting. From the 454 regexes that were signi�cantly problematic for some of
the other tools (it took some tool � 10 s), 85 % of them had nondeterministic counting. From the 109
regexes that were problematic for all other tools (� 1 s), 100 % were with nondeterministic counting.
As shown in the results above, our approach can deal with nondeterministic counting quite well.

7.1.2 Adversarial Regexes. Another ReDoS scenario is when the attacker can control the regex
to be used for matching. Creating a counting regex causing e�ciency problems for a given text
is easier than generating adversarial texts. For instance, the regex [a-zA-Z().,’]*[a-zA-Z]
[a-zA-Z(),̇’]{250} was obtained as a modi�cation of the running example “.*a.{k}” (where
a appears k positions from the end). When run on a ⇠4MiB English text with su�ciently long
lines, RE2 took 86 s, grep took 26 s, while CA took only 1.1 s. Similar examples could be obtained
from regexes from Section 7.1 for which some speci�c di�cult text can be generated, namely by
widening their character classes.. Our approach solves a large class of the dangerous cases, allowing
one to signi�cantly alleviate restrictions put on the user for security/e�ciency reasons.

7.2 Robustness wrt Counter Values
This experiment measures the ability of the tools to cope with increasing counter bounds. For this,
we selected the regex “(_a){k}_a” where k is a parameter (the original regex (_a){64999}_a
comes from [Davis et al. 2019]) and measured the time the tools took on a ⇠500 KiB text created by
our generator for increasing values of k . We give the results in Fig. 5b (the timeout was 40 s).
With the increasing value of k , the time needed by CA stays constant, around 0.35 s, while the

time needed by other tools grows. In particular, .NET and SRM have cubic trends wrt the value of k ,
while RE2 and grep grow linearly. Notice that, for RE2 and grep, their matching time is low (around
0.01 s) until they reach a threshold from which they start behaving linearly. This corresponds to
the situation when the size of the cache for storing states of the NFA-to-DFA construction is not
enough to accommodate the DFA states exercised by the input adversarial text. This yields repeated
�ushing of the cache, making it ine�ectual.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 218. Publication date: November 2020.

142

Regex Matching with Counting-Set Automata 218:25

7.3 Adversarial Text Generation
RE2 and grep store powerstates of the NFA-to-DFA construction in a cache. In typical cases, the
amount of cache misses is low and almost the entire text is processed using the cache, which is
extremely fast. If the cache, however, exceeds a given size, it is �ushed. If the input text is such that
the DFA run sees many di�erent states, then cache misses are frequent, so large powerstates need
to be constructed often, and the performance of the matching drops.
Therefore, we focus on generating texts that force exploration of many new large powerstates.

In essence, we explore the con�guration space of the CsA with the goal of �nding as many large
con�gurations as possible, with the focus on generating large counting sets. We partially drive the
search towards loops in the CsA structure that have a potential to create large counting sets: the
loops use counters with large bounds, do not contain exits, and contain R�� or R��1 operations.
For space reasons, we omit the technical details here; perfecting this method for stress testing
automata-based matchers is, however, one of our future goals.

7.4 A Note on the Maturity of the Tools
The aim of our experiments is comparing algorithms rather than tools, and it should be noted that
CA is much less optimized than the rest. This holds especially for RE2 and grep, which have both
been actively developed for over 10 years and the amount of engineering e�ort invested into making
them fast is substantial. The optimizations are both high-level, such as using the Boyer-Moore
algorithm for skipping sections of the input text, and low-level, such as using C/C++, on-the-�y
determinization, or optimizing memory accesses [Cox 2010; Haertel [n.d.]]. On the other hand,
although there have been some optimizations done in CA (such as �nding a start of a match), their
nature is still quite simple. The three tools are, however, all based on the same principle of using
deterministic automata, and many of the optimizations and heuristics in RE2 and grep (at least
all of those mentioned above) could be directly re-applied in our setting. SRM builds on the .NET
framework and reuses the .NET regex parser while replacing the built-in backtracking back-end
matcher with a matching engine based on Brzozowski-style symbolic derivatives to create the DFA
on the �y. In fact, CA builds on the open-source codebase of SRM and extends it with counters.

8 RELATED WORK
Regexes and their derivatives. Brzozowski derivatives [Brzozowski 1964] provide a practical ap-

proach to incrementally creating a DFA from a regex and can be used for e�cient matching [Fischer
et al. 2010; Owens et al. 2009] and match generation [Saarikivi et al. 2019]. E�cient determinization
based on Brzozowski derivatives was �rst investigated in [Berry and Sethi 1986]. In the classical
setting, Antimirov derivatives [Antimirov 1996] are used to construct NFAs from regexes, and
may in some cases result in exponentially more succinct automata than the corresponding DFAs
constructed with Brzozowski derivatives. The precise connection between conditional derivatives
de�ned in Section 5 and Antimirov derivatives is that, without counting loops, {D | h��,Di 2 @a(S)}
is exactly the Antimirov derivative of R for a. The Antimirov construction has also been general-
ized to extended regexes [Caron et al. 2011] allowing Boolean operators such as complement and
intersection. Basic theoretical properties between various automata formalisms and derivatives are
discussed in [Allauzen and Mohri 2006].

Automata with counting. This work is a continuation of our recent work [Holík et al. 2019].
In [Holík et al. 2019], we propose a general determinization of CAs that can produce smaller
automata than the naive explicit determinization but has the same worst-case complexity, which
depends on the counters with the factor (K+1) |C | whereC is the set of counters andK the maximum
counter upper bound. It also proposes a more e�cient algorithm for the class of monadic regexes

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 218. Publication date: November 2020.

143

218:26 L. Turoňová, L. Holík, O. Lengál, O. Saarikivi, M. Veanes, and T. Vojnar

(single-state-scoped counters and counting on self-loops only), but it can still generate (K + 1) |Q |

states (e.g., it would generate K + 1 states for the regex from Fig. 1)—while the complexity of our
determinization does not depend onK . Thework [Holík et al. 2019] does also not present a derivative
construction for translating regexes into CAs nor an application of CAs in pattern matching.

The use of counters has also been investigated in [Björklund et al. 2015] for regexes with bounded
repetition, building on the formalism of counter automata called CNFAs [Gelade et al. 2012]. A CA
in the current paper is essentially a symbolic generalization of a CNFA with some small technical
di�erences, such as counters being 0-based as opposed to 1-based in a CNFA. The latter di�erence is
mainly due to our use of a generalized Antimirov construction of CAs, as opposed to a generalized
Glushkov construction used in [Gelade et al. 2012], which is algorithmically quite di�erent. The
work in [Björklund et al. 2015] focuses mostly on deterministic regexes and on a di�erent problem,
namely, the so-called incremental matching in the context of database queries (a query is repeatedly
evaluated on a gradually changing word). For standard matching, it uses a variant of the Thompson’s
algorithm applied directly on a CA instead of an NFA (hence the translation of the regex to an
automaton does not depend on the counter bounds, but each text character is processed with the
same cost as with the original Thompson’s algorithm, at worst linear to the size of the NFA and the
counter bounds). This algorithm is indeed fast on deterministic regexes from practice but can slow
down signi�cantly on nondeterministic ones (which we witnessed in several experiments with the
prototype implementation of [Björklund et al. 2015] on several of our regexes).
The work in [Kilpeläinen and Tuhkanen 2003] is a theoretical study of matching regexes with

counting. It proposes a matching algorithm based on dynamic programming that runs in time
at worst quadratic to the length of the text (while determinization and NFA-simulation-based
algorithms run in time linear to the text length). The experimental comparison of [Björklund
et al. 2015] with their variant of Thompson’s algorithm suggests that the matching algorithm of
[Kilpeläinen and Tuhkanen 2003] is indeed not competitive in practice.
Extended FAs (XFAs) augment classical automata with a scratch memory of bits [Smith et al.

2008a,b] that can represent counters. Regexes are compiled into deterministic XFAs by �rst using
an extended version of the Thompson’s algorithm, followed by an extended version of the classical
powerset construction and minimization. Although a small XFA may exist, the determinization
algorithm incurs an intermediate exponential blowup of the search space for inputs such as.*a.{k}.
R-automata [Abdulla et al. 2008] are also related to our CAs, but their counters need not have

upper bounds and cannot be tested or compared. Further, there are various notions of extended
�nite state machines whose expressive power goes beyond regular languages, e.g., [Bardin et al.
2008; Cheng and Krishnakumar 1993; Shiple et al. 1998; Smith et al. 2008b]. Such automata are,
however, not suitable for the problem of pattern matching considered here.

Regexes with counting. Regexes with counters are also discussed in [Gelade et al. 2007; Hovland
2009; Kilpeläinen and Tuhkanen 2007]. The automata with counters used in [Hovland 2009], called
FACs, are close to our CAs, but we allow symbolic character predicates and more kinds of counter
updates. The conversion from regexes to FACs proposed in [Hovland 2009] uses a variant of
Glushkov automata [Glushkov 1961] and the first-last-follow construction [Berstel and Pin
1996; Brüggemann-Klein and Wood 1998]. For us, the Antimirov-derivative-based construction
was easier to implement and provides bene�ts that are not available otherwise. Namely, it allows
subsumption checking between regexes, and it generates fewer counters (one per distinct counter
sub-expression rather than one per counter position in the regex abstract syntax tree). While all
these algorithms generate �-free automata, they di�er in complexity [Allauzen and Mohri 2006] and
are thus not merely di�erent disguises of the same technique. In particular, the Antimirov automaton
is in general smaller than the Glushkov automaton with up to n + 1 states and up to n2 transitions.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 218. Publication date: November 2020.

144

Regex Matching with Counting-Set Automata 218:27

The Antimirov automaton is in fact a quotient of the Glushkov automaton [Champarnaud and
Ziadi 2001; Ilie and Yu 2003]. Another generalization of Antimirov derivatives [Lombardy and
Sakarovitch 2005] introduces expressions kR where R is a rational expression and k a multiplicity
from a semiring such as Q; this generalization is unrelated to counters.
An open question is whether the generalized Antimirov construction can be extended to work

with Brzozowski derivatives [Brzozowski 1964]; we believe that such an extension, if it exists, is not
straightforward because it would give rise to a direct and incremental determinization algorithm.

There are also works on regexes with counting that translate deterministic regexes to CAs and
work with di�erent notions of determinism [Chen and Lu 2015; Gelade et al. 2012]. A central
result in [Hovland 2009] is that counter-1-unambiguous regexes can be compiled into deterministic
FACs and that checking determinism of FACs can be done in polynomial time. The related work
in [Hovland 2012] studies membership in regexes with counting. None of these papers addresses
the problem of determinizing nondeterministic CAs.
Pattern matching of regexes with counting. The counting operator often appears in regexes in

practice. In particular, our analysis of the 537k real-world regexes obtained in the study performed
by Davis et al. [Davis et al. 2019] showed that over 33k regexes contained the counting operator.
GNU grep [Haertel et al. [n.d.]] (written in C) and RE2 [Google [n.d.]] (written in C++) are

extremely optimized regex matchers. Both are based on translating the regex into an NFA and
performing an on-the-�y determinization during the matching, avoiding a costly a priori deter-
minization, while keeping a good performance by avoiding backtracking. (The translation into
FAs is only allowed when the regex does not include back-references, which allow one to express
some context-free properties). Both engines process the counting operator by �rst rewriting a
regex of the form <re>{n,m} into <re>. . . <re><re>{0,m � n}. The regex <re>{0,k} is then
transformed into (<re>(<re>(. . . <re>?)?)?)? (see [Cox 2010] for more details).

In the .NET ecosystem, we are aware of two regex matchers. The �rst one is the standard .NET
regex matcher provided in System.Text.RegularExpressions, which is based on a backtracking
search. The other one is Symbolic Regex Matcher (SRM) of [Saarikivi et al. 2019] based on the so-
called symbolic derivatives, which provide a backtracking-free search (without an explicit conversion
into a DFA) and can deal more e�ciently with the counting operator.

9 CONCLUSIONS AND FUTURE WORK
We have presented a framework for e�cient pattern matching of regexes with counting, which
includes a derivative construction to compile regexes to counting automata, their subsequent
determinization into novel counting-set automata, and a fast matching algorithm. The resources
needed to build the CsAs are independent of counter bounds. It handles a majority of regexes with
counting found in practice, with a much more stable performance than other matchers.
In the future, we intend to explore the limits of the idea of counting sets to enlarge and clearly

delimit the class of regexes and counting automata that can be succinctly determinized while
preserving fast matching.We also plan to explore possible usage of CsAs as a replacement of classical
automata in other applications where automata are used, for instance, as symbolic representations
of state spaces. For this, we intend to develop CsA counterparts of essential automata techniques,
such as Boolean operations and minimization/size-reduction techniques. We also wish to elaborate
on our method for generating texts for stress-testing matchers on regexes with counting.

ACKNOWLEDGMENTS
We thank the anonymous reviewers and also Juraj Síč for their valuable comments and suggestions.
This work is supported by the Czech Ministry of Education, Youth and Sports project LL1908 of the
ERC.CZ programme, and the FIT BUT internal project FIT-S-20-6427.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 218. Publication date: November 2020.

145

218:28 L. Turoňová, L. Holík, O. Lengál, O. Saarikivi, M. Veanes, and T. Vojnar

REFERENCES
Parosh Aziz Abdulla, Pavel Krčál, and Wang Yi. 2008. R-Automata. In CONCUR’08 (LNCS, Vol. 5201). Springer, 67–81.

https://doi.org/10.1007/978-3-540-85361-9_9
Cyril Allauzen and Mehryar Mohri. 2006. A Uni�ed Construction of the Glushkov, Follow, and Antimirov Automata. In

Mathematical Foundations of Computer Science 2006. Springer Berlin Heidelberg, Berlin, Heidelberg, 110–121. https:
//doi.org/10.1007/11821069_10

Valentin Antimirov. 1996. Partial derivatives of regular expressions and �nite automaton constructions. Theoretical Computer
Science 155, 2 (1996), 291 – 319. https://doi.org/10.1016/0304-3975(95)00182-4

Adam Baldwin. 2016. Regular Expression Denial of Service a�ecting Express.js. http://web.archive.org/web/20170116160113/
https://medium.com/node-security/regular-expression-denial-of-service-a�ecting-express-js-9c397c164c43

Sébastien Bardin, Alain Finkel, Jérôme Leroux, and Laure Petrucci. 2008. FAST: acceleration from theory to practice. STTT
10, 5 (2008), 401–424. https://doi.org/10.1007/s10009-008-0064-3

Gerard Berry and Ravi Sethi. 1986. From regular expressions to deterministic automata. Theoretical Computer Science 48, 3
(1986), 117–126. https://doi.org/10.1016/0304-3975(86)90088-5

Jean Berstel and Jean-Éric Pin. 1996. Local languages and the Berry-Sethi algorithm. Theoret. Comput. Sci. 155, 2 (1996),
439–446. https://doi.org/10.1016/0304-3975(95)00104-2

Henrik Björklund, Wim Martens, and Thomas Timm. 2015. E�cient Incremental Evaluation of Succinct Regular Expressions.
In CIKM’15 (ACM). https://doi.org/10.1145/2806416.2806434

Robert S. Boyer and J. Strother Moore. 1977. A Fast String Searching Algorithm. Commun. ACM 20, 10 (Oct. 1977), 762–772.
https://doi.org/10.1145/359842.359859

Anne Brüggemann-Klein and Derick Wood. 1998. One-unambiguous regular languages. Information and Computation 140,
2 (1998), 229–253. https://doi.org/10.1006/inco.1997.2695

Janusz A. Brzozowski. 1964. Derivatives of Regular Expressions. J. ACM 11, 4 (1964), 481–494. https://doi.org/10.1145/
321239.321249

Pascal Caron, Jean-Marc Champarnaud, and Ludovic Mignot. 2011. Partial Derivatives of an Extended Regular Expression.
In Language and Automata Theory and Applications. Springer Berlin Heidelberg, Berlin, Heidelberg, 179–191. https:
//doi.org/10.1007/978-3-642-21254-3_13

Jean-Marc Champarnaud and Djelloul Ziadi. 2001. Computing the equation automaton of a regular expression inO (s2) space
and time. In Proceedings of CPM 2001 (LNCS, Vol. 2089). Springer, 157–168. https://doi.org/10.1007/3-540-48194-X_15

Haiming Chen and Ping Lu. 2015. Checking determinism of regular expressions with counting. Information and Computation
241 (2015), 302 – 320. https://doi.org/10.1016/j.ic.2014.12.001

Kwang-Ting Cheng and A. S. Krishnakumar. 1993. Automatic Functional Test Generation Using the Extended Finite State
Machine Model. In Proceedings of the 30th Design Automation Conference. Dallas, Texas, USA, June 14-18, 1993. ACM Press,
86–91. https://doi.org/10.1145/157485.164585

Wikipedia contributors. 2019. Regular expression—Wikipedia. https://en.wikipedia.org/w/index.php?title=Regular_
expression&%20oldid=852858998

Russ Cox. 2010. Regular Expression Matching in the Wild. https://swtch.com/~rsc/regexp/regexp3.html.
Loris D’Antoni and Margus Veanes. 2020. Automata Modulo Theories. Commun. ACM (2020).
James C. Davis. 2019. Rethinking Regex Engines to Address ReDoS. In Proceedings of ESEC/FSE’19 (Tallinn, Estonia) (ESEC/FSE

2019). ACM, New York, NY, USA, 1256–1258. https://doi.org/10.1145/3338906.3342509
James C. Davis, Christy A. Coghlan, Francisco Servant, and Dongyoon Lee. 2018. The Impact of Regular Expression Denial

of Service (ReDoS) in Practice: An Empirical Study at the Ecosystem Scale. In Proceedings of ESEC/FSE’18 (Lake Buena
Vista, FL, USA) (ESEC/FSE 2018). ACM, New York, NY, USA, 246–256. https://doi.org/10.1145/3236024.3236027

James C. Davis, Louis G. Michael IV, Christy A. Coghlan, Francisco Servant, and Dongyoon Lee. 2019. Why Aren’t Regular
Expressions a Lingua Franca? An Empirical Study on the Re-use and Portability of Regular Expressions. In Proceedings of
ESEC/FSE’19 (Tallinn, Estonia) (ESEC/FSE 2019). ACM, New York, NY, USA, 1256–1258. https://doi.org/10.1145/3338906.
3338909

Stack Exchange. 2016. Outage Postmortem. http://stackstatus.net/post/147710624694/outage-postmortem-july-20-2016
Sebastian Fischer, Frank Huch, and Thomas Wilke. 2010. A Play on Regular Expressions: Functional Pearl. SIGPLAN Not. 45,

9 (2010), 357–368. https://doi.org/10.1145/1863543.1863594
Wouter Gelade, Marc Gyssens, and Wim Martens. 2012. Regular Expressions with Counting: Weak versus Strong De-

terminism. SIAM J. Comput. 41, 1 (2012), 160–190. https://doi.org/10.1137/100814196 Extended version of paper in
MFCS’09.

Wouter Gelade, Wim Martens, and Frank Neven. 2007. Optimizing schema languages for XML: Numerical constraints and
interleaving. In Proceedings of ICDT’07 (LNCS, Vol. 4353). Springer, 269–283. https://doi.org/10.1007/11965893_19

V. M. Glushkov. 1961. The abstract theory of automata. Russian Math. Surveys 16 (1961), 1–53. https://doi.org/10.1070/
RM1961v016n05ABEH004112

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 218. Publication date: November 2020.

146

Regex Matching with Counting-Set Automata 218:29

Google. [n.d.]. RE2. https://github.com/google/re2.
John Graham-Cumming. 2019. Details of the Cloud�are outage on July 2, 2019. https://blog.cloud�are.com/details-of-the-

cloud�are-outage-on-july-2-2019/
Mike Haertel. [n.d.]. why GNU grep is fast. https://lists.freebsd.org/pipermail/freebsd-current/2010-August/019310.html.
Mike Haertel et al. [n.d.]. GNU grep. https://www.gnu.org/software/grep/.
Lukáš Holík, Ondřej Lengál, Olli Saarikivi, Lenka Turoňová, Margus Veanes, and Tomáš Vojnar. 2019. Succinct Deter-

minisation of Counting Automata via Sphere Construction. In Proc. of APLAS’19 (LNCS, Vol. 11893). Springer, 468–489.
https://doi.org/10.1007/978-3-030-34175-6_24

Lukáš Holík, Ondřej Lengál, Olli Saarikivi, Lenka Turoňová, Margus Veanes, and Tomáš Vojnar. 2020. Dataset for the
OOPSLA’20 paper “Regex Matching with Counting-Set Automata”. https://doi.org/10.5281/zenodo.3974360

Dag Hovland. 2009. Regular Expressions with Numerical Constraints and Automata with Counters. In ICTAC (LNCS,
Vol. 5684). Springer, 231–245. https://doi.org/10.1007/978-3-642-03466-4_15

Dag Hovland. 2012. The Membership Problem for Regular Expressions with Unordered Concatenation and Numerical
Constraints. In Language and Automata Theory and Applications. Springer Berlin Heidelberg, Berlin, Heidelberg, 313–324.
https://doi.org/10.1007/978-3-642-28332-1_27

Lucian Ilie and Sheng Yu. 2003. Follow automata. Information and Computation 186, 1 (2003), 146–162. https://doi.org/10.
1016/S0890-5401(03)00090-7

Pekka Kilpeläinen and Rauno Tuhkanen. 2003. Regular Expressions with Numerical Occurrence Indicators - preliminary
results. In Proceedings of the Eighth Symposium on Programming Languages and Software Tools, SPLST’03, Kuopio, Finland,
June 17-18, 2003. University of Kuopio, Department of Computer Science, 163–173.

Pekka Kilpeläinen and Rauno Tuhkanen. 2007. One-unambiguity of regular expressions with numeric occurrence indicators.
Information and Computation 205, 6 (2007), 890–916. https://doi.org/10.1016/j.ic.2006.12.003

Sylvain Lombardy and Jacques Sakarovitch. 2005. Derivatives of rational expressions with multiplicity. Theoretical Computer
Science 332, 1 (2005), 141 – 177. https://doi.org/10.1016/j.tcs.2004.10.016

M. Roesch et al. [n.d.]. Snort: A Network Intrusion Detection and Prevention System,. http://www.snort.org.
Microsoft. 2020. . https://docs.microsoft.com/en-us/dotnet/api/system.text.regularexpressions.regex.match
Scott Owens, John Reppy, and Aaron Turon. 2009. Regular-expression Derivatives Re-examined. J. Funct. Program. 19, 2

(2009), 173–190. https://doi.org/10.1017/S0956796808007090
Mono project. [n.d.]. Mono. https://www.mono-project.com/.
RegExLib.com. [n.d.]. The Internet’s �rst Regular Expression Library, . http://regexlib.com/.
Robin Sommer et al. [n.d.]. The Bro Network Security Monitor. http://www.bro.org.
Olli Saarikivi, Margus Veanes, Tiki Wan, and Eric Xu. 2019. Symbolic Regex Matcher. In TACAS’2019 (LNCS, Vol. 11427),

Tomás Vojnar and Lijun Zhang (Eds.). Springer, 372–378. https://doi.org/10.1007/978-3-030-17462-0_24
Thomas R. Shiple, James H. Kukula, and Rajeev K. Ranjan. 1998. A Comparison of Presburger Engines for EFSM Reachability.

In Computer Aided Veri�cation, 10th International Conference, CAV ’98, Vancouver, BC, Canada, June 28 - July 2, 1998,
Proceedings (Lecture Notes in Computer Science, Vol. 1427). Springer, 280–292. https://doi.org/10.1007/BFb0028752

Michael Sipser. 2006. Introduction to Theory of Computation. Vol. 2. Thomson Course Technology Boston. https://doi.org/10.
1145/230514.571645

Randy Smith, Cristian Estan, and Somesh Jha. 2008a. XFA: Faster Signature Matching with Extended Automata. In IEEE
Symposium on Security and Privacy. IEEE. https://doi.org/10.1109/SP.2008.14

Randy Smith, Cristian Estan, Somesh Jha, and Ida Siahaan. 2008b. Fast Signature Matching Using Extended Finite Automaton
(XFA). In ICISS’08 (LNCS, Vol. 5352). Springer, 158–172. https://doi.org/10.1007/978-3-540-89862-7_15

Henry Spencer. 1994. Software Solutions in C. Academic Press Professional, Inc., San Diego, CA, USA, Chapter A Regular-
expression Matcher, 35–71. http://dl.acm.org/citation.cfm?id=156626.184689

Michael Sperberg-McQueen. [n.d.]. Notes on �nite state automata with counters. https://www.w3.org/XML/2004/05/msm-
cfa.html Accessed: 2018-08-08.

The Sagan team. [n.d.]. The Sagan Log Analysis Engine. https://quadrantsec.com/sagan_log_analysis_engine/.
Ken Thompson. 1968. Programming Techniques: Regular Expression Search Algorithm. Commun. ACM 11, 6 (June 1968),

419–422. https://doi.org/10.1145/363347.363387
Lenka Turoňová, Lukáš Holík, Ondřej Lengál, Olli Saarikivi, Margus Veanes, and Tomáš Vojnar. [n.d.]. Automata library.

https://pajda.�t.vutbr.cz/ituronova/countingautomata.
Lenka Turoňová, Lukáš Holík, Ondřej Lengál, Olli Saarikivi, Margus Veanes, and Tomáš Vojnar. 2020. Regex Matching with

Counting-Set Automata. Technical Report MSR-TR-2020-31. Microsoft. https://doi.org/10.5281/zenodo.3975566
Milan Češka, Vojtěch Havlena, Lukáš Holík, Ondřej Lengál, and Tomáš Vojnar. 2018. Approximate Reduction of Finite

Automata for High-Speed Network Intrusion Detection. In Proc. of TACAS’18 (LNCS, Vol. 10806). Springer. https:
//doi.org/10.1007/978-3-319-89963-3_9

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 218. Publication date: November 2020.

147

218:30 L. Turoňová, L. Holík, O. Lengál, O. Saarikivi, M. Veanes, and T. Vojnar

Margus Veanes, Peli de Halleux, and Nikolai Tillmann. 2010. Rex: Symbolic Regular Expression Explorer. In Third International
Conference on Software Testing, Veri�cation and Validation, ICST 2010, Paris, France, April 7-9, 2010. 498–507. https:
//doi.org/10.1109/ICST.2010.15

Liu Yang, Rezwana Karim, Vinod Ganapathy, and Randy Smith. 2010. Improving NFA-Based Signature Matching Using
Ordered Binary Decision Diagrams. In Recent Advances in Intrusion Detection. Springer Berlin Heidelberg, Berlin,
Heidelberg, 58–78. https://doi.org/10.1007/978-3-642-15512-3_4

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 218. Publication date: November 2020.

148

Form Methods Syst Des (2012) 41:83–106
DOI 10.1007/s10703-012-0150-8

Forest automata for verification of heap manipulation

Peter Habermehl · Lukáš Holík · Adam Rogalewicz ·
Jiří Šimáček · Tomáš Vojnar

Published online: 11 April 2012
© Springer Science+Business Media, LLC 2012

Abstract We consider verification of programs manipulating dynamic linked data struc-
tures such as various forms of singly and doubly-linked lists or trees. We consider important
properties for this kind of systems like no null-pointer dereferences, absence of garbage,
shape properties, etc. We develop a verification method based on a novel use of tree au-
tomata to represent heap configurations. A heap is split into several “separated” parts such
that each of them can be represented by a tree automaton. The automata can refer to each
other allowing the different parts of the heaps to mutually refer to their boundaries. More-
over, we allow for a hierarchical representation of heaps by allowing alphabets of the tree
automata to contain other, nested tree automata. Program instructions can be easily encoded
as operations on our representation structure. This allows verification of programs based
on symbolic state-space exploration together with refinable abstraction within the so-called
abstract regular tree model checking. A motivation for the approach is to combine advan-
tages of automata-based approaches (higher generality and flexibility of the abstraction) with
some advantages of separation-logic-based approaches (efficiency). We have implemented
our approach and tested it successfully on multiple non-trivial case studies.

This work was supported by the Czech Science Foundation (projects P103/10/0306, P201/09/P531, and
102/09/H042), the Czech Ministry of Education (projects COST OC10009 and MSM 0021630528), the
EU/Czech IT4Innovations Centre of Excellence CZ.1.05/1.1.00/02.0070, the internal BUT project
FIT-S-12-1, and the French ANR-09-SEGI project Veridyc.

P. Habermehl
LIAFA, CNRS, Université Paris Diderot, Sorbonne Paris Cité, France

L. Holík · A. Rogalewicz (�) · J. Šimáček · T. Vojnar
FIT, Brno University of Technology, Brno, Czech Republic
e-mail: rogalew@fit.vutbr.cz

T. Vojnar
e-mail: vojnar@fit.vutbr.cz

L. Holík
Uppsala University, Uppsala, Sweden

J. Šimáček
UJF/CNRS/INPG, VERIMAG, Gières, France

149

84 Form Methods Syst Des (2012) 41:83–106

Keywords Pointers · Shape analysis · Regular model checking · Tree automata

1 Introduction

We address verification of sequential programs with complex dynamic linked data structures
such as various forms of singly- and doubly-linked lists (SLL/DLL), possibly cyclic, shared,
hierarchical, and/or having different additional (head, tail, data, and the like) pointers, as
well as various forms of trees. We in particular consider C pointer manipulation, but our
approach can easily be applied to any other similar language. We concentrate on safety
properties of the considered programs which includes generic properties like absence of null
dereferences, double free operations, dealing with dangling pointers, or memory leakage.
Furthermore, to check various shape properties of the involved data structures one can use
testers, i.e., parts of code which, in case some desired property is broken, lead the control
flow to a designated error location.

For the above purpose, we propose a novel approach of representing sets of heaps via
tree automata (TA). In our representation, a heap is split in a canonical way into several tree
components whose roots are the so-called cut-points. Cut-points are nodes pointed to by
program variables or having several incoming edges. The tree components can refer to the
roots of each other, and hence they are “separated” much like heaps described by formulae
joined by the separating conjunction in separation logic [16]. Using this decomposition,
sets of heaps with a bounded number of cut-points are then represented by a new class of
automata called forest automata (FA) that are basically tuples of TA accepting tuples of trees
whose leaves can refer back to the roots of the trees. Moreover, we allow alphabets of FA
to contain nested FA, leading to a hierarchical encoding of heaps, allowing us to represent
even sets of heaps with an unbounded number of cut-points (e.g., sets of DLL). Intuitively,
a nested FA can describe a part of a heap with a bounded number of cut-points (e.g., a DLL
segment), and by using such an automaton as an alphabet symbol an unbounded number
of times, heaps with an unbounded number of cut-points are described. Finally, since FA
are not closed under union, we work with sets of forest automata, which are an analogy of
disjunctive separation logic formulae.

As a nice theoretical feature of our representation, we show that inclusion of sets of heaps
represented by finite sets of non-nested FA (i.e., having a bounded number of cut-points) is
decidable. This covers sets of complex structures like SLL with head/tail pointers. More-
over, we show how inclusion can be safely approximated for the case of nested FA. Further,
C program statements manipulating pointers can be easily encoded as operations modify-
ing FA. Consequently, the symbolic verification framework of abstract regular tree model
checking [6, 7], which comes with automatically refinable abstractions, can be applied.

The proposed approach brings the principle of local heap manipulation (i.e., dealing with
separated parts of heaps) from separation logic into the world of automata. The motivation
is to combine some advantages of using automata and separation logic. Automata provide
higher generality and flexibility of the abstraction (see also below) and allow us to leverage
the recent advances of efficient use of non-deterministic automata [2, 3]. As further dis-
cussed below, the use of separation allows for a further increase in efficiency compared to a
monolithic automata-based encoding proposed in [7].

We have implemented our approach in a prototype tool called Forester as a gcc plug-in.
In our current implementation, if nested FA are used, they are provided manually (similar to
the use of pre-defined inductive predicates common in works on separation logic). However,
we show that Forester can already successfully handle multiple interesting case studies,
proving the proposed approach to be very promising.

150

Form Methods Syst Des (2012) 41:83–106 85

Related work The area of verifying programs with dynamic linked data structures has
been a subject of intense research for quite some time. Many different approaches based
on logics, e.g., [4, 8, 11, 13–17, 19, 20], automata [5, 7, 9], upward closed sets [1], and
other formalisms have been proposed. These approaches differ in their generality, efficiency,
and degree of automation. Due to space restrictions, we cannot discuss all of them here.
Therefore, we concentrate on a comparison with the two closest lines of work, namely, the
use of automata as described in [7] and the use of separation logic in the works [4, 19]
linked with the Space Invader tool. In fact, as is clear from the above, the approach we
propose combines some features from these two lines of research.

Compared to [4, 19], our approach is more general in that it allows one to deal with tree-
like structures, too. We note that there are other works on separation logic, e.g., [15], that
consider tree manipulation, but these are usually semi-automated only. An exception is [11]
which automatically handles even tree structures, but its mechanism of synthesising induc-
tive predicates seems quite dependent on the fact that the dynamic linked data structures are
built in a “nice” way conforming to the structure of the predicate to be learned (meaning,
e.g., that lists are built by adding elements at the end only).1

Further, compared to [4, 19], our approach comes with a more flexible abstraction. We are
not building on just using some inductive predicates, but we combine a use of our nested FA
with an automatically refinable abstraction on the TA that appear in our representation. Thus
our analysis can more easily adjust to various cases arising in the programs being verified.
An example is dealing with lists of lists where the sublists are of length 0 or 1, which is a
quite practical situation [18]. In such cases, the abstraction used in [4, 19] can fail, leading to
an infinite computation (e.g., when, by chance, a list of regularly interleaved lists of length
0 or 1 appears) or generate false alarms (when modified to abstract even pointer links of
length 1 to a list segment). For us, such a situation is easy to handle without any need to
fine-tune the abstraction manually.

Finally, compared with [7], our newly proposed approach is a bit less general. We can-
not handle structures such as, e.g., trees with linked leaves. To handle these structures, we
would have to introduce into our approach FA nested not just strictly hierarchically but in
an arbitrary, possibly cyclic way, which is an interesting subject for future research. On the
other hand, our new approach is more scalable than that of [7]. This is due to the fact that
the heap representation in [7] is monolithic, i.e., the whole heap is represented by a single
tree skeleton over which additional pointer links are expressed using the so-called routing
expressions. The new encoding is much more structured, and so the different operations on
the heap, corresponding to a symbolic execution of the verified program, typically influ-
ence only small parts of the encoding and not all (or most) of it. The monolithic encoding
of [7] has also problems with deletion of elements inside data structures since the routing
expressions are built over a tree backbone that is assumed not to change (and hence deleted
elements inside data structures are always kept, just marked as deleted). Moreover, the en-
coding of [7] has troubles with detection of memory leakage, which is in theory possible,
but it is so complex that it has never been implemented.

Plan of the paper In Sect. 2, we provide an informal introduction to our proposal of hi-
erarchical forest automata and their use for encoding sets of heaps. In Sect. 3, the notion
of (non-hierarchical) forest automata is formalised, and we examine properties of forest au-
tomata from the point of view of inclusion checking. Subsequently, Sect. 4 generalises the

1We did not find an available implementation of [11], and so we could not try it out ourselves.

151

86 Form Methods Syst Des (2012) 41:83–106

notion of forest automata to hierarchical forest automata. In Sect. 5, we propose a verifica-
tion procedure based on hierarchical forest automata. Section 6 provides a brief description
of the Forester tool implementing the proposed approach as well as results obtained from
experiments with Forester. Finally, Sect. 7 concludes the paper.

2 From heaps to forests

In this section, we outline in an informal way our proposal of hierarchical forest automata
and the way how sets of heaps can be represented by them. For the purpose of the ex-
planation, heaps may be viewed as oriented graphs whose nodes correspond to allocated
memory cells and edges to pointer links between these cells. The nodes may be labelled by
non-pointer data stored in them (assumed to be from a finite data domain) and by program
variables pointing to the nodes. Edges may be labelled by the corresponding selectors.

In what follows, we restrict ourselves to garbage free heaps in which all memory cells are
reachable from pointer variables by following pointer links. However, this is not a restriction
in practice since the emergence of garbage can be checked for each executed program state-
ment. If some garbage arises, an error message can be issued and the symbolic computation
stopped. Alternatively, the garbage can be removed and the computation continued.

It is easy to see that each heap graph can be decomposed into a set of tree components
when the leaves of the tree components are allowed to reference back to the roots of these
components. Moreover, given a total ordering on program variables and selectors, each heap
graph may be decomposed into a tuple of tree components in a canonical way as illustrated
in Fig. 1(a) and (b). In particular, one can first identify the so-called cut-points, i.e., nodes
that are either pointed to by a program variable or that have several incoming edges. Next,
the cut-points can be canonically numbered using a depth-first traversal of the heap graph
starting from nodes pointed to by program variables in the order derived from the order of
the program variables and respecting the order of selectors. Subsequently, one can split the
heap graph into tree components rooted at particular cut-points. These components should

Fig. 1 (a) A heap graph with cut-points highlighted in red, (b) the canonical tree decomposition of the heap
with x ordered before y

152

Form Methods Syst Des (2012) 41:83–106 87

contain all the nodes reachable from their root while not passing through any cut-point, plus
a copy of each reachable cut-point, labelled by its number. Finally, the tree components can
then be canonically ordered according to the numbers of the cut-points representing their
roots.

Our proposal of forest automata builds upon the described decomposition of heaps into
tree components. In particular, a forest automaton (FA) is basically a tuple of tree automata
(TA). Each of the tree automata accepts trees whose leaves may refer back to the roots of
any of these trees. An FA then represents exactly the set of heaps that may be obtained by
taking a single tree from the language of each of the component TA and by gluing the roots
of the trees with the leaves referring to them.

Below, we will mostly concentrate on a subclass of FA that we call canonicity respecting
forest automata (CFA). CFA encode sets of heaps decomposed in a canonical way, i.e., such
that if we take any tuple of trees accepted by the given CFA, construct a heap from them,
and then canonically decompose it, we get the tuple of trees we started with. This means
that in the chosen tuple there is no tree with a root that does not correspond to a cut-point
and that the trees are ordered according to the depth-first traversal as described above. The
canonicity respecting form allows us to test inclusion on the sets of heaps represented by
CFA by testing inclusion component-wise on the languages of the TA constituting the given
CFA.

Note, however, that FA are not closed under union. Even for FA having the same number
of components, uniting the TA component-wise may yield an FA overapproximating the
union of the sets of heaps represented by the original FA (cf. Sect. 3). Thus, we represent
unions of FA explicitly as sets of FA (SFA), which is similar to dealing with disjunctions
of conjunctive separation logic formulae. However, as we will see, inclusion on the sets of
heaps represented by SFA is still easily decidable.

The described encoding allows one to represent sets of heaps with a bounded number
of cut-points. However, to handle many common dynamic data structures, one needs to
represent sets of heaps with an unbounded number of cut-points. Indeed, for instance, in
doubly-linked lists (DLLs), every node is a cut-point. We solve this problem by represent-
ing heaps in a hierarchical way. In particular, we collect sets of repeated subgraphs (called
components) containing cut-points in the so-called boxes. Every occurrence of such com-
ponents can then be replaced by a single edge labelled by the appropriate box. To specify
how a subgraph enclosed within a box is connected to the rest of the graph, the subgraph is
equipped with the so-called input and output ports. The source vertex of a box then matches
the input port of the subgraph, and the target vertex of the edge matches the output port.2 In
this way, a set of heap graphs with an unbounded number of cut-points can be transformed
into a set of hierarchical heap graphs with a bounded number of cut-points at each level of
the hierarchy. Figures 2(a) and (b) illustrate how this approach can basically reduce DLLs
into singly-linked lists (with a DLL segment used as a kind of meta-selector).

In general, we allow a box to have more than one output port. Boxes with multiple output
ports, however, reduce heap graphs not to graphs but hypergraphs with hyperedges having a
single source node, but multiple target nodes. This situation is illustrated on a simple exam-
ple shown in Fig. 3. The tree with linked brothers from Fig. 3(a) is turned into a hypergraph
with binary hyperedges shown in Fig. 3(c) using the box B from Fig. 3(b). The subgraph
encoded by the box B can be connected to its surroundings via its input port i and two output

2Later on, the term input port will be used to refer to the nodes pointed to by program variables too since
these nodes play a similar role as the inputs of components.

153

88 Form Methods Syst Des (2012) 41:83–106

Fig. 2 (a) A part of a DLL,
(b) a hierarchical encoding of the
DLL

Fig. 3 (a) A tree with linked brother nodes, (b) a pattern that repeats in the structure and that is linked in
such a way that all nodes in the structure are cut-points, (c) the tree with linked brother nodes represented
using hyperedges labelled by the box B

ports o1, o2. Therefore, the hypergraph from Fig. 3(c) encodes it by a hyperedge with one
source and two target nodes.

Sets of heap hypergraphs corresponding either to the top level of the representation or
to boxes of different levels can then be decomposed into (hyper)tree components and repre-
sented using hierarchical FA whose alphabet can contain nested FA.3 Intuitively, FA appear-
ing in the alphabet of some superior FA play a role similar to that of inductive predicates
in separation logic.4 We restrict ourselves to automata that form a finite and strict hierarchy
(i.e., there is no circular use of the automata in their alphabets).

The question of deciding inclusion on sets of heaps represented by hierarchical FA re-
mains open. However, we propose a canonical decomposition of hierarchical hypergraphs
allowing inclusion to be decided for sets of heap hypergraphs represented by FA provided
that the nested FA labelling hyperedges are taken as atomic alphabet symbols. Note that
this decomposition is by far not the same as for non-hierarchical heap graphs due to a need

3Since graphs are a special case of hypergraphs, in the following, we will work with hypergraphs only.
Moreover, to simplify the definitions, we will work with hyperedge-labelled hypergraphs only. Node labels
mentioned above will be put at specially introduced nullary hyperedges leaving from the nodes whose label
is to be represented.
4For instance, we use a nested FA to encode a DLL segment of length 1. In separation logic, the corresponding
induction predicate would represent segments of length 1 or more. In our approach, the repetition of the
segment is encoded in the structure of the top-level FA.

154

Form Methods Syst Des (2012) 41:83–106 89

to deal with nodes that are not reachable on the top level, but are reachable through edges
hidden in some boxes. This result allows us to safely approximate inclusion checking on
hierarchically represented heaps, which appears to work quite well in practice.

3 Hypergraphs and their representation

We now formalise the notion of hypergraphs and forest automata.

3.1 Hypergraphs

A ranked alphabet is a finite set Γ of symbols associated with a map # : Γ → N. The value
#(a) is called the rank of a ∈ Γ . We use #(Γ) to denote the maximum rank of a symbol
in Γ . A ranked alphabet Γ is a hypergraph alphabet if it is associated with a total ordering
�Γ on its symbols. For the rest of the section, we fix a hypergraph alphabet Γ .

An (oriented, Γ -labelled) hypergraph (with designated input/output ports) is a tuple G =
(V ,E,P) where:

– V is a finite set of vertices.
– E is a finite set of hyperedges such that every hyperedge e ∈ E is of the form

(v, a, (v1, . . . , vn)) where v ∈ V is the source of e, a ∈ Γ , n = #(a), and v1, . . . , vn ∈ V

are targets of e and a-successors of v.
– P is the so-called port specification that consists of a set of input ports IP ⊆ V , a set of

output ports OP ⊆ V , and a total ordering �P on IP ∪ OP .

We use v̄ to denote a sequence v1, . . . , vn and v̄.i to denote its ith vertex vi . For symbols
a ∈ Γ with #(a) = 0, we write (v, a) ∈ E to denote that (v, a, ()) ∈ E. Such hyperedges
may simulate labels assigned to vertices.

A path in a hypergraph G = (V ,E,P) is a sequence 〈v0, a1, v1, . . . , an, vn〉, n ≥ 0,
where for all 1 ≤ i ≤ n, vi is an ai -successor of vi−1. G is called deterministic iff
∀(v, a, v̄), (v, a′, v̄′) ∈ E: a = a′ =⇒ v̄ = v̄′. G is called well-connected iff each node
v ∈ V is reachable through some path from some input port of G.

As we have already mentioned in Sect. 2, in hypergraphs representing heaps, input ports
correspond to nodes pointed to by program variables or to input nodes of components, and
output ports correspond to output nodes of components. Figure 1(a) shows a hypergraph
with two input ports corresponding to the variables x and y. The hyperedges are labelled
by selectors data and next. All the hyperedges are of arity 1. A simple example of a
hypergraph with hyperedges of arity 2 is given in Fig. 3(c).

3.2 A forest representation of hypergraphs

We will now define the forest representation of hypergraphs. For that, we will first define a
notion of a tree as a basic building block of forests. We will define trees much like hyper-
graphs but with a restricted shape and without input/output ports. The reason for the latter
is that the ports of forests will be defined on the level of the forests themselves, not on the
level of the trees that they are composed of.

Formally, an (unordered, oriented, Γ -labelled) tree T = (V ,E) consists of a set of ver-
tices and hyperedges defined as in the case of hypergraphs with the following additional
requirements: (1) V contains a single node with no incoming hyperedge (called the root of
T and denoted root(T)). (2) All other nodes of T are reachable from root(T) via some path.

155

90 Form Methods Syst Des (2012) 41:83–106

(3) Each node has at most one incoming hyperedge. (4) Each node appears at most once
among the target nodes of its incoming hyperedge (if it has one). Given a tree, we call its
nodes with no successors leaves.

Let us assume that Γ ∩ N = ∅. An (ordered, Γ -labelled) forest (with designated in-
put/output ports) is a tuple F = (T1, . . . , Tn,R) such that:

– For every i ∈ {1, . . . , n}, Ti = (Vi,Ei) is a tree that is labelled by the alphabet (Γ ∪
{1, . . . , n}).

– R is a (forest) port specification consisting of a set of input ports IR ⊆ {1, . . . , n}, a set of
output ports OR ⊆ {1, . . . , n}, and a total ordering �R of IR ∪ OR .

– For all i, j ∈ {1, . . . , n}, (1) if i �= j , then Vi ∩ Vj = ∅, (2) #(i) = 0, and (3) a vertex v

with (v, i) ∈ Ej is not a source of any other edge (it is a leaf). We call such vertices root
references and denote by rr(Ti) the set of all root references in Ti , i.e., rr(Ti) = {v ∈ Vi |
(v, k) ∈ Ei, k ∈ {1, . . . , n}}.
A forest F = (T1, . . . , Tn,R) represents the hypergraph

⊗
F obtained by uniting the

trees T1, . . . , Tn and interconnecting their roots with the corresponding root references. In
particular, for every root reference v ∈ Vi , i ∈ {1, . . . , n}, hyperedges leading to v are redi-
rected to the root of Tj where (v, j) ∈ Ei , and v is removed. The sets IR and OR then contain
indices of the trees whose roots are to be input/output ports of

⊗
F , respectively. Finally,

their ordering �P is defined by the �R-ordering of the indices of the trees whose roots they
are. Formally,

⊗
F = (V ,E,P) where:

– V = ⋃n

i=1 Vi \ rr(Ti), E = ⋃n

i=1{(v, a, v̄′) | a ∈ Γ ∧ ∃(v, a, v̄) ∈ Ei ∀1 ≤ j ≤ #(a) :
if ∃(v̄.j, k) ∈ Ei with k ∈ {1, . . . , n}, then v̄′.j = root(Tk), else v̄′.j = v̄.j},

– IP = {root(Ti) | i ∈ IR}, OP = {root(Ti) | i ∈ OR},
– ∀u,v ∈ IP ∪ OP such that u = root(Ti) and v = root(Tj): u �P v ⇐⇒ i �R j .

3.3 Minimal and canonical forests

We now define the canonical form of a forest which will be important later for deciding
language inclusion on forest automata, acceptors of sets of hypergraphs.

We call a forest F = (T1, . . . , Tn,R) representing the well-connected hypergraph
⊗

F

minimal iff the roots of the trees T1, . . . , Tn correspond to the cut-points of
⊗

F , i.e., those
nodes that are either ports, have more than one incoming hyperedge in

⊗
F , or appear more

than once as a target of some hyperedge. A minimal forest representation of a hypergraph is
unique up to permutations of T1, . . . , Tn.

In order to get a truly unique canonical forest representation of a well-connected deter-
ministic hypergraph G = (V ,E,P), it remains to canonically order the trees in its minimal
forest representation. To do this, we use the total ordering �P on ports P and the total order-
ing �Γ on hyperedge labels Γ of G. We then order the trees according to the order in which
their roots are visited in a depth-first traversal (DFT) of G. If all nodes are not reachable
from a single port, a series of DFTs is used. The DFTs are started from the input ports in
IP in the order given by �P . During the DFTs, a priority is given to the hyperedges that are
smaller in �Γ . A canonical representation is obtained this way since we consider G to be
deterministic.

Figure 1(b) shows a forest decomposition of the heap graph of Fig. 1(a). The nodes
pointed to by variables are input ports of the heap graph. Assuming that the ports are ordered
such that the port pointed by x precedes the one pointed by y, then the forest of Fig. 1(b) is
a canonical representation of the heap graph of Fig. 1(a).

156

Form Methods Syst Des (2012) 41:83–106 91

3.4 Tree automata

Next, we will work towards defining forest automata as tuples of tree automata encoding sets
of forests and hence sets of hypergraphs. We start by classical definitions of tree automata
and their languages.

Ordered trees Let ε denote the empty sequence. An ordered tree t over a ranked alphabet
Σ is a partial mapping t : N∗ → Σ satisfying the following conditions: (1) dom(t) is a finite,
prefix-closed subset of N∗, and (2) for each p ∈ dom(t), if #(t (p)) = n ≥ 0, then {i | pi ∈
dom(t)} = {1, . . . , n}. Each sequence p ∈ dom(t) is called a node of t . For a node p, the ith
child of p is the node pi, and the ith subtree of p is the tree t ′ such that t ′(p′) = t (pip′) for
all p′ ∈ N∗. A leaf of t is a node p with no children, i.e., there is no i ∈ N with pi ∈ dom(t).
Let T(Σ) be the set of all ordered trees over Σ .

Tree automata A (finite, non-deterministic, bottom-up) tree automaton (abbreviated as TA
in the following) is a quadruple A = (Q,Σ,�,F) where Q is a finite set of states, F ⊆ Q is
a set of final states, Σ is a ranked alphabet, and � is a set of transition rules. Each transition
rule is a triple of the form ((q1, . . . , qn), f, q) where n ≥ 0, q1, . . . , qn, q ∈ Q, f ∈ Σ , and
#(f) = n. We use f (q1, . . . , qn) → q to denote that ((q1, . . . , qn), f, q) ∈ �. In the special
case where n = 0, we speak about the so-called leaf rules.

A run of A over a tree t ∈ T(Σ) is a mapping π : dom(t) → Q such that, for each node
p ∈ dom(t) where q = π(p), if qi = π(pi) for 1 ≤ i ≤ n, t (p)(q1, . . . , qn) → q . We write
t

π=⇒ q to denote that π is a run of A over t such that π(ε) = q . We use t =⇒ q to denote
that t

π=⇒ q for some run π . The language of a state q is defined by L(q) = {t | t =⇒ q},
and the language of A is defined by L(A) = ⋃

q∈F L(q).

3.5 Forest automata

We will now define forest automata as tuples of tree automata extended by a port specifica-
tion. Tree automata accept trees that are ordered and node-labelled. Therefore, in order to be
able to use forest automata to encode sets of forests, we must define a conversion between
ordered, node-labelled trees and our unordered, edge-labelled trees.

We convert a deterministic Γ -labelled unordered tree T into a node-labelled ordered
tree ot(T) by (1) transferring the information about labels of edges of a node into the symbol
associated with the node and by (2) ordering the successors of the node. More concretely, we
label each node of the ordered tree ot(T) by the set of labels of the hyperedges leading from
the corresponding node in the original tree T . Successors of the node in ot(T) correspond
to the successors of the original node in T , and are ordered w.r.t. the order �Γ of hyperedge
labels through which the corresponding successors are reachable in T (while always keeping
tuples of nodes reachable via the same hyperedge together, ordered in the same way as they
were ordered within the hyperedge). The rank of the new node label is given by the sum of
ranks of the original hyperedge labels embedded into it. Below, we use ΣΓ to denote the
ranked node alphabet obtained from Γ as described above.

The notion of forest automata A forest automaton over Γ (with designated input/output
ports) is a tuple F = (A1, . . . ,An,R) where:

– For all 1 ≤ i ≤ n, Ai = (Qi,Σ,�i,Fi) is a TA with Σ = ΣΓ ∪ {1, . . . , n} and #(i) = 0.
– R is defined as for forests, i.e., it consists of input and output ports IR,OR ⊆ {1, . . . , n}

and a total ordering �R on IR ∪ OR .

157

92 Form Methods Syst Des (2012) 41:83–106

The forest language of F is the set of forests LF (F) = {(T1, . . . , Tn,R) | ∀1 ≤ i ≤ n :
ot(Ti) ∈ L(Ai)}, i.e., the forest language is obtained by taking the Cartesian product of
the tree languages, unordering the trees that appear in its elements, and extending them by
the port specification. The forest language of F in turn defines the hypergraph language of
F which is the set of hypergraphs L(F) = {⊗F | F ∈ LF (F)}.

An FA F respects canonicity iff for each forest F ∈ LF (F), the hypergraph
⊗

F is well-
connected, and F is its canonical representation. We abbreviate canonicity respecting FA as
CFA. It is easy to see that comparing sets of hypergraphs represented by CFA can be done
component-wise as described in the below proposition.

Proposition 1 Let F = (A1, . . . ,An,R) and F ′ = (A′
1, . . . ,A′

m,R′) be two CFA. Then,
L(F) ⊆ L(F ′) iff n = m, R = R′, and ∀1 ≤ i ≤ n : L(Ai) ⊆ L(A′

i).

3.6 Transforming FA into canonicity respecting FA

In order to facilitate inclusion checking, each FA can be algorithmically transformed (split)
into a finite set of CFA such that the union of their languages equals the original language.
We describe the transformation in a more detailed way below.

First, we label the states of the component TA of the given FA by special labels. For
each state, these labels capture all possible orders in which root references appear in the
leaves of the trees accepted at this state when the left-most (i.e., the first) appearance of
each root-reference is considered only. Moreover, the labels capture which of the references
appear multiple times. Intuitively, following the first appearances of the root references in the
leaves of tree components is enough to see how a depth first traversal through the represented
hypergraph orders the roots of the tree components. The knowledge of multiple references
to the same root from a single tree is then useful for checking which nodes should really be
the roots.

The computed labels are subsequently used to possibly split the given FA into several FA
such that the accepting states of the component TA of each of the obtained FA are labelled in
a unique way. This guarantees that the obtained FA are canonicity respecting up to the fact
that the roots of some of the trees accepted by component TA need not be cut-points (and up
to the ordering of the component TA). Thus, subsequently, some of the TA may get merged.
Finally, we order the remaining component TA in a way consistent with the DFT ordering
on the cut-points of the represented hypergraphs (which after the splitting is the same for all
the hypergraphs represented by each obtained FA). To order the component TA, the labels
of the accepting states can be conveniently used.

More precisely, consider a forest automaton F = (A1, . . . ,An,R), n ≥ 1, and any of its
component tree automata Ai = (Qi,Σ,�i,Fi), 1 ≤ i ≤ n. We label each state q ∈ Qi by a
set of labels (w,Y), w ∈ {1, . . . , n}∗, Y ⊆ {1, . . . , n}, for which there is a tree t ∈ L(q) such
that

– w is the string that records the order in which root references appear for the first time
in the leaves of t (i.e., w is the concatenation of the labels of the leaves labelled by root
references, restricted to the first occurrence of each root reference), and

– Y is the set of root references that appear more than once in the leaves of t .

Such labelling can be obtained by first labelling states w.r.t. the leaf rules and then propa-
gating the so-far obtained labels bottom-up. If the final states of Ai get labelled by several
different labels, we make a copy of the automaton for each of these labels, and in each of
them, we preserve only the transitions that allow trees with the appropriate label of the root

158

Form Methods Syst Des (2012) 41:83–106 93

to be accepted.5 This way, all the component automata can be processed and then new forest
automata can be created by considering all possible combinations of the transformed TA.

Clearly, each of the FA created above represents a set of hypergraphs that have the same
number of cut-points (corresponding either to ports, nodes referenced at least twice from a
single component tree, or referenced from several component trees) that get ordered in the
same way in the depth first traversal of the hypergraphs. However, it may be the case that
some roots need not correspond to cut-points. This is easy to detect by looking for a root
reference that does not appear in the set part of any label of some final state and that does
not appear in the labels of two different component tree automata. A useless root can then
be eliminated by adding transition rules of the appropriate component tree automaton Ai to
those of the tree automaton Aj that refers to that root and by gluing final states of Ai with
the states of Aj accepting the root reference i.

It remains to order the component TA within each of the obtained FA in a way consistent
with the DFT ordering of the cut-points of the represented hypergraphs (which is now the
same for all the hypergraphs represented by a single FA due to the performed splitting). To
order the component TA of any of the obtained FA, one can use the w-part of the labels
of its accepting states. One can then perform a DFT on the component TA, considering the
TA as atomic objects. One starts with the TA that accept trees whose roots represent ports
and processes them wrt. the ordering of ports. When processing a TA A, one considers as
its successors the TA that correspond to the root references that appear in the w-part of the
labels of the accepting states of A. Moreover, the successor TA are processed in the order in
which they are referenced from the labels. When the DFT is over, the component TA may
get reordered according to the order in which they were visited.

Subsequently, the port specification R and root references in leaves must be updated to
reflect the reordering. If the original sets IR or OR contain a port i, and the ith tree was
moved to the j th position, then i must be substituted by j in IR , OR , and �R as well as in
all root references. This finally leads to a set of canonicity respecting FA.

Note that, in practice, it is not necessary to tightly follow the above described process.
Instead, one can arrange the symbolic execution of statements in such a way that when
starting with a CFA, one obtains an FA which already meets some requirements for CFA.
Most notably, the splitting of component TA—if needed—can be efficiently done already
during the symbolic execution of the particular statements. Therefore, transforming an FA
obtained this way into the corresponding CFA involves the elimination of redundant roots
and the root reordering only.

3.7 Sets of forest automata

The class of languages of FA (and even CFA) is not closed under union since a forest
language of a FA corresponds to the Cartesian product of the languages of all its compo-
nents, and not every union of Cartesian products may be expressed as a single Cartesian
product. For instance, consider two CFA F = (A,B,R) and F ′ = (A′,B′,R) such that
LF (F) = {(a, b,R)} and LF (F ′) = {(c, d,R)} where a, b, c, d are distinct trees. The forest
language of the FA (A ∪ A′,B ∪ B′,R) is {(x, y,R) | (x, y) ∈ {a, c} × {b, d}}), and there is
no FA with the hypergraph language equal to L(F) ∪ L(F ′).

5More technically, given a labelled TA, one can first make a separate copy of each state for each of its labels,
connect the states by transitions such that the obtained singleton labelling is respected, then make a copy of
the TA for each label of accepting states, and keep the accepting status for a single labelling of accepting
states in each of the copies only.

159

94 Form Methods Syst Des (2012) 41:83–106

Due to the above, we cannot transform a set of CFA obtained by canonising a given FA
into a single CFA. Likewise, when we obtain several CFA when symbolically executing
several program paths leading to the same program location, we cannot merge them into a
single CFA without risking a loss of information. Consequently, we will explicitly work with
finite sets of (canonicity-respecting) forest automata, S(C)FA for short, where the language
L(S) of a finite set S of FA is defined as the union of the languages of its elements. This,
however, means that we need to be able to decide language inclusion on SFA.

Testing inclusion on SFA The problem of checking inclusion on SFA, this is, checking
whether L(S) ⊆ L(S ′) where S,S ′ are SFA, can be reduced to a problem of checking in-
clusion on tree automata. We may w.l.o.g. assume that S and S ′ are SCFA.

We will transform every FA F in S and S ′ into a TA AF which accepts the language of
trees where:

– The root of each of these trees is labelled by a special fresh symbol (parameterised by n

and the port specification of F).
– The root has n children, one for each tree automaton of F .
– For each 1 ≤ i ≤ n, the ith child of the root is the root of a tree accepted by the ith tree

automaton of F .

Trees accepted by AF are therefore unique encodings of hypergraphs in L(F). We will then
test the inclusion L(S) ⊆ L(S ′) by testing the tree automata language inclusion between the
union of TA obtained from S and the union of TA obtained from S ′.

Formally, let F = (A1, . . . ,An,R) be an FA where Ai = (Σ,Qi,�i,Fi) for each 1 ≤
i ≤ n. Without a loss of generality, assume that Qi ∩ Qj = ∅ for each 1 ≤ i < j ≤ n. We
define the TA AF = (Σ ∪ {�R

n },Q,�, {q top}) where:

– �R
n �∈ Σ is a fresh symbol with #(�R

n) = n,
– q top �∈ ⋃n

i=1 Qi is a fresh accepting state,
– Q = ⋃n

i=1 Qi ∪ {q top}, and
– � = ⋃n

i=1 �i ∪ �top where �top contains the rule �R
n (q1, . . . , qn) → q top for each

(q1, . . . , qn) ∈ F1 × · · · × Fn.

It is now easy to see that the following proposition holds (in the proposition, “∪” stands for
the usual tree automata union).

Proposition 2 For SCFA S and S ′, L(S) ⊆ L(S ′) ⇐⇒ L(
⋃

F∈S AF) ⊆ L(
⋃

F ′∈S′ AF ′
).

4 Hierarchical hypergraphs

As discussed informally in Sect. 2, simple forest automata cannot express sets of data struc-
tures with unbounded numbers of cut-points like, e.g., the set of all doubly-linked lists or
the set of all trees with linked brothers (Figs. 2 and 3). To capture such data structures, we
will enrich the expressive power of forest automata by allowing them to be hierarchically
nested. For the rest of the section, we fix a hypergraph alphabet Γ .

160

Form Methods Syst Des (2012) 41:83–106 95

4.1 Hierarchical hypergraphs, components, and boxes

We first introduce hypergraphs with hyperedges labelled by the so-called boxes which are
sets of hypergraphs (defined up to isomorphism).6 A hypergraph G with hyperedges labelled
by boxes encodes a set of hypergraphs. The hypergraphs encoded by G can be obtained by
replacing every hyperedge of G labelled by a box by some hypergraph from the box. The
hypergraphs within the boxes may themselves have hyperedges labelled by boxes, which
gives rise to a hierarchical structure (which we require to be of a finite depth).

Let Υ be a hypergraph alphabet. First, we define an Υ -labelled component as an
Υ -labelled hypergraph C = (V ,E,P) which satisfies the requirement that |IP | = 1 and
IP ∩ OP = ∅. Then, an Υ -labelled box is a non-empty set B of Υ -labelled components
such that all of them have the same number of output ports. This number is called the rank
of the box B and denoted by #(B). Let B[Υ] be the ranked alphabet containing all Υ -
labelled boxes such that B[Υ]∩Υ = ∅. The operator B gives rise to a hierarchy of alphabets
Γ0,Γ1, . . . where:

– Γ0 = Γ is the set of plain symbols,
– for i ≥ 0, Γi+1 = Γi ∪ B[Γi] is the set of symbols of level i + 1.

A Γi -labelled hypergraph H is then called a Γ -labelled (hierarchical) hypergraph of level i,
and we refer to the Γi−1-labelled boxes appearing on edges of H as to nested boxes of H .
A Γ -labelled hypergraph is sometimes called a plain Γ -labelled hypergraph.

Semantics of hierarchical hypergraphs A Γ -labelled hierarchical hypergraph H encodes
a set [[H]] of plain hypergraphs, called the semantics of H . For a set S of hierarchical
hypergraphs, we use [[S]] to denote the union of semantics of its elements.

If H is plain, then [[H]] contains just H itself. If H is of level j > 0, then hypergraphs
from [[H]] are obtained in such a way that hyperedges labelled by boxes B ∈ Γj are substi-
tuted in all possible ways by plain components from [[B]]. The substitution is similar to an
ordinary hyperedge replacement used in graph grammars. When an edge e is substituted by
a component C, the input port of C is identified with the source node of e, and the output
ports of C are identified with the target nodes of e. The correspondence of the output ports
of C and the target nodes of e is defined using the order of the target nodes in e and the
ordering of ports of C. The edge e is finally removed from H .

Formally, given a Γ -labelled hierarchical hypergraph H = (V ,E,P), a hyperedge e =
(v, a, v̄) ∈ E, and a component C = (V ′,E′,P ′) where #(a) = |OP ′ | = k, the substitution
of e by C in H results in the hypergraph H [C/e] defined as follows. Let o1 �P . . . �P ok

be the ports of OP ordered by �P . W.l.o.g., assume V ∩ V ′ = ∅. C will be connected to
H by identifying its ports with their matching vertices of e. We define for every vertex
w ∈ V ′ its matching vertex match(w) such that (1) if w ∈ IP ′ , match(w) = v (the input
port of C matches the source of e), (2) if w = oi,1 ≤ i ≤ k, match(w) = v̄.i (the output
ports of C match the corresponding targets of e), and (3) match(w) = w otherwise (an inner
node of C is not matched with any node of H). Then H [C/e] = (V ′′,E′′,P) where V ′′ =
V ∪ (V ′ \ (IP ′ ∪ OP ′)) and E′′ = (E \ {e}) ∪ {(v′′, a′, v̄′′) | ∃(v′, a′, v̄′) ∈ E′ : match(v′) =
v′′ ∧ ∀1 ≤ i ≤ k : match(v̄′.i) = v̄′′.i}.

6Dealing with hypergraphs and later also automata defined up to isomorphism avoids a need to deal with
classes instead of sets. We will not repeat this fact later on.

161

96 Form Methods Syst Des (2012) 41:83–106

We can now give an inductive definition of [[H]]. Let e1 = (v1,B1, v̄1), . . . , en =
(vn,Bn, v̄n) be all edges of H labelled by Γ -labelled boxes. Then, G ∈ [[H]] iff it is ob-
tained from H by successively substituting every ei by a component Ci ∈ [[Bi]], i.e.,

[[H]] = {H [C1/e1] . . . [Cn/en] | C1 ∈ [[B1]], . . . ,Cn ∈ [[Bn]]}.

Figure 2(b) shows a hierarchical hypergraph of level 1 whose semantics is the (hy-
per)graph of Fig. 2(a). Similarly, Fig. 3(c) shows a hierarchical hypergraph of level 1 whose
semantics is the (hyper)-graph of Fig. 3(a).

4.2 Hierarchical forest automata

We now define hierarchical forest automata that represent sets of hierarchical hypergraphs.
The hierarchical FA are FA whose alphabet can contain symbols which encode boxes ap-
pearing on edges of hierarchical hypergraphs. The boxes are themselves represented using
hierarchical FA.

To define an alphabet of hierarchical FA, we will take an approach similar to the one
used for the definition of hierarchical hypergraphs. First, we define an operator A which for
a hypergraph alphabet Υ returns the ranked alphabet containing the set of all SFA S over (a
finite subset of) Υ such that L(S) is an Υ -labelled box and such that A[Υ] ∩ Υ = ∅. The
rank of S in the alphabet A[Υ] is the rank of the box L(S). The operator A gives rise to a
hierarchy of alphabets �0,�1, . . . where:

– �0 = Γ is the set of plain symbols,
– for i ≥ 0, �i+1 = �i ∪ A[�i] is the set of symbols of level i + 1.

A hierarchical FA F over �i is then called a Γ -labelled (hierarchical) FA of level i, and we
refer to the hierarchical SFA over �i−1 appearing within alphabet symbols of F as to nested
SFA of F .

Let F be a hierarchical FA. We now define an operator � that translates any �i -labelled
hypergraph G = (V ,E,P) ∈ L(F) to a Γ -labelled hierarchical hypergraph H of level i

(i.e., it translates G by transforming the SFA that appear on its edges to the boxes they
represent). Formally, G� is defined inductively as the Γ -labelled hierarchical hypergraph
H = (V ,E′,P) of level i that is obtained from the hypergraph G by replacing every edge
(v,S, v̄) ∈ E, labelled by a Γ -labelled hierarchical SFA S , by the edge (v,L(S)�, v̄), la-
belled by the box L(S)� where L(S)� denotes the set (box) {X� | X ∈ L(S)}. Then, we
define the semantics of a hierarchical FA F over Γ as the set of Γ -labelled (plain) hyper-
graphs [[]]F = [[L(F)�]].

Notice that a hierarchical SFA of any level has finitely many nested SFA of a lower level
only. Therefore, a hierarchical SFA is a finitely representable object. Notice also that even
though the maximum number of cut-points of hypergraphs from L(S)� is fixed (SFA always
accept hypergraphs with a fixed maximum number of cut-points), the number of cut-points
of hypergraphs in [[S]] may be unbounded. The reason is that hypergraphs from L(S)� may
contain an unbounded number of hyperedges labelled by boxes B such that hypergraphs
from [[B]] contain cut-points too. These cut-points then appear in hypergraphs from [[S]],
but they are not visible at the level of hypergraphs from L(S)�.

Hierarchical SFA are therefore finite representations of sets of hypergraphs with possibly
unbounded numbers of cut-points.

162

Form Methods Syst Des (2012) 41:83–106 97

4.3 Inclusion and well-connectedness on hierarchical SFA

In this section, we aim at checking well-connectedness and inclusion of sets of hypergraphs
represented by hierarchical FA. Since considering the full class of hierarchical hypergraphs
would unnecessarily complicate our task, we enforce a restricted form of hierarchical au-
tomata that rules out some rather artificial scenarios and that allows us to handle the au-
tomata hierarchically (i.e., using some pre-computed information for nested FA rather than
having to unfold the entire hierarchy all the time). In particular, the restricted form guaran-
tees that:

1. For a hierarchical hypergraph H , well-connectedness of hypergraphs in [[H]] is equiv-
alent to the so-called box-connectedness of H . Box-connectedness is a property intro-
duced below that can be easily checked and that basically considers paths from input
ports to output ports and vice versa, in the latter case through hyperedges hidden inside
nested boxes.

2. Determinism of hypergraphs from [[H]] implies determinism of H .

The two above properties simplify checking inclusion and well-connectedness consid-
erably since for a general hierarchical hypergraph H , well-connectedness of H is neither
implied nor it implies well-connectedness of hypergraphs from [[H]]. This holds also for
determinism. The reason is that a component C in a nested box of H may interconnect its
ports in an arbitrary way. It may contain paths from output ports to both input and output
ports (including paths from an output port to another output port not passing the input port),
but it may be missing paths from the input port to some of the output ports.

Using the above restriction, we will show below a safe approximation of inclusion check-
ing on hierarchical SFA, and we will also show that this approximation is precise in some
cases. Despite the introduced restriction, the description is quite technical, and it may be
skipped on the first reading. Indeed, it turns out that in practice, an even more aggressive
approximation of inclusion checking in which nested boxes are taken as atomic symbols is
often sufficient.

Properness and box-connectedness Given a Γ -labelled component C of level 0, we define
its backward reachability set br(C) as the set of indices i for which there is a path from the
i-th output port of C back to the input port of C. Given a box B over Γ , we inductively define
B to be proper iff all its nested boxes are proper, br(C1) = br(C2) for any C1,C2 ∈ [[B]],
and the following holds for all components C ∈ [[B]]:
1. C is well-connected.
2. If there is a path from the i-th to the j -th output port of C, i �= j , then i ∈ br(C).7

For a proper box B , we use br(B) to denote br(C) for C ∈ [[B]]. A hierarchical hyper-
graph H is called well-formed iff all its nested boxes are proper. In that case, the conditions
above imply that either all or no hypergraphs from [[H]] are well-connected and that well-
connectedness of hypergraphs in [[H]] may be judged based only on the knowledge of br(B)

for each nested box B of H , without a need to reason about the semantics of B (in particular,
Point 2 in the above definition of proper boxes guarantees that we do not have to take into
account paths that interconnect output ports of B). This is formalised below.

7Notice that this definition is correct since boxes of level 0 have no nested boxes, and the recursion stops at
them.

163

98 Form Methods Syst Des (2012) 41:83–106

Let H = (V ,E,P) be a well-formed Γ -labelled hierarchical hypergraph with a set X

of nested boxes. We define the backward reachability graph of H as the Γ ∪ X ∪ Xbr-
labelled hypergraph H br = (V ,E ∪ Ebr,P) where Xbr = {(B, i) | B ∈ X ∧ i ∈ br(B)} and
Ebr = {(vi, (B, i), (v)) | B ∈ X ∧ (v,B, (v1, . . . , vn)) ∈ E ∧ i ∈ br(B)}. We say that H is
box-connected iff H br is well-connected. The below proposition clearly holds.

Proposition 3 If H is a well-formed hierarchical hypergraph, then the hypergraphs from
[[H]] are well-connected iff H is box-connected. Moreover, if hypergraphs from [[H]] are
deterministic, then both H and H br are deterministic hypergraphs.

We straightforwardly extend the above notions to hypergraphs with hyperedges labelled
by hierarchical SFA, treating these SFA-labels as if they were the boxes they represent.
Particularly, we call a hierarchical SFA S proper iff it represents a proper box [[]]S, we
let br(S) = br([[S]]), and for a Γ ∪ Y -labelled hypergraph G where Y is a set of proper
SFA, its backward reachability hypergraph Gbr is defined based on br in the same way as
the backward reachability hypergraph of a hierarchical hypergraph above (just instead of
boxes, we deal with their SFA representations). We also say that G is box-connected iff Gbr

is well-connected.

Checking properness and well-connectedness We now outline algorithms for checking
properness of nested SFA and well-connectedness of SFA.

Properness of nested SFA can be checked relatively easily since we can take advantage of
the fact that nested SFA of a proper SFA must be proper as well. We start with nested SFA of
level 0 which contain no nested SFA, we check their properness and compute the values of
the backward reachability function br for them. To do this we can label TA states similarly
to Sect. 3.6. A unique label of each root in the SFA representing the box guarantees that the
br function will be equal for all hypergraphs hidden in the box. Then, we iteratively increase
the level j and for each j , we check properness of the nested SFA of level j and compute
the values of the function br. For this, we use the values of br that we have computed for the
nested SFA of level j − 1, and we can also take advantage of the fact that the nested SFA
of level j − 1 have been shown to be proper. We can again use the labels attached to all tree
automata states. The difference from level 0 is that we have to extend the labels in order to
capture also the backward reachability of the edges labelled by nested SFA.

Now, given an FA F over Γ with proper nested SFA, we can check well-connectedness
of hypergraphs from [[F]] as follows: (1) for each nested SFA S of F , we compute like
above (and cache for further use) the value br(S), and (2) using this value, we check box-
connectedness of hypergraphs in L(F) without a need of reasoning about the inner structure
of the nested SFA [12].

The problem of checking inclusion on hierarchical FA Checking inclusion on hierarchi-
cal automata over Γ with nested boxes from X, i.e., given two hierarchical FA F and F ′,
checking whether [[F]] ⊆ [[F ′]], is a hard problem, even under the assumption that nested
SFA of F and F ′ are proper. Its decidability is not known. In this paper, we choose a prag-
matic approach and give only a semi-algorithm that is efficient and works well in practical
cases. The idea is simple. Since the implications L(F) ⊆ L(F ′) =⇒ L(F)� ⊆ L(F ′)� =⇒
[[F]] ⊆ [[F ′]] obviously hold, we may safely approximate the solution of the inclusion prob-
lem by deciding whether L(F) ⊆ L(F ′) (i.e., we abstract away the semantics of nested SFA
of F and F ′ and treat them as ordinary labels).

164

Form Methods Syst Des (2012) 41:83–106 99

From now on, assume that our hierarchical FA represent only deterministic well-
connected hypergraphs, i.e., that [[F]] and [[F ′]] contain only well-connected deterministic
hypergraphs. Note that this assumption is in particular fulfilled for hierarchical FA repre-
senting garbage-free heaps.

We cannot directly use the results on inclusion checking of Sect. 3.5, based on a canonical
forest representation and canonicity respecting FA, since they rely on well-connectedness of
hypergraphs from L(F) and L(F ′), which is now not necessarily the case. The reason is
that hypergraphs represented by a not well-connected hierarchical hypergraph H can them-
selves still be well-connected via backward links hidden in boxes. However, by Proposi-
tion 3, every hypergraph G from L(F) or L(F ′) is box-connected, and both G and Gbr are
deterministic. As we show below, these properties are still sufficient to define a canonical
forest representation of G, which in turn yields a canonicity respecting form of hierarchical
FA.

Canonicity respecting hierarchical FA Let Y be a set of proper SFA over Γ . We aim at
a canonical forest representation F = (T1, . . . , Tn,R) of a Γ ∪ Y -labelled hypergraph G =⊗

F which is box-connected and such that both G and Gbr are deterministic. By extending
the approach used in Sect. 3.5, this will be achieved via an unambiguous definition of the
root-points of G, i.e., the nodes of G that correspond to the roots of the trees T1, . . . , Tn, and
their ordering.

The root-points of G are defined as follows. First, every cut-point (port or a node with
more than one incoming edge) is a root-point of Type 1. Then, every node with no incoming
edge is a root-point of Type 2. Root-points of Type 2 are entry points of parts of G that
are not reachable from root-points of Type 1 (they are only backward reachable). However,
not every such part of G has a unique entry point which is a root-point of Type 2. Instead,
there might be a simple loop such that there are no edges leading into the loop from outside.
To cover a part of G that is reachable from such a loop, we have to choose exactly one
node of the loop to be a root-point. To choose one of them unambiguously, we define a total
ordering �G on nodes of G and choose the smallest node wrt. this ordering to be a root-
point of Type 3. After unambiguously determining all root-points of G, we may order them
according to �G, and we are done.

A suitable total ordering �G on V can be defined taking advantage of the fact that Gbr

is well-connected and deterministic. Therefore, it is obviously possible to define �G as the
order in which the nodes are visited by a deterministic depth-first traversal that starts at
input ports. The details on how this may be algorithmically done on the structure of forest
automata may be found in [12].

We say that a hierarchical FA F over Γ with proper nested SFA and such that hyper-
graphs from [[F]] are deterministic and well-connected respects canonicity iff each forest
F ∈ LF (F) is a canonical representation of the hypergraph

⊗
F . We abbreviate canonic-

ity respecting hierarchical FA as hierarchical CFA. Analogically as for ordinary CFA, re-
specting canonicity allows us to compare languages of hierarchical CFA component-wise as
described in the below proposition.

Proposition 4 Let F = (A1, . . . ,An,R) and F ′ = (A′
1, . . . ,A′

m,R′) be hierarchical CFA.
Then, L(F) ⊆ L(F ′) iff n = m, R = R′, and ∀1 ≤ i ≤ n : L(Ai) ⊆ L(A′

i).

Proposition 4 allows us to safely approximate inclusion of the sets of hypergraphs en-
coded by hierarchical FA (i.e., to safely approximate the test [[F]] ⊆ [[F ′]] for hierarchical
FA F , F ′). This turns out to be sufficient for all our case studies (cf. Sect. 6). Moreover, the

165

100 Form Methods Syst Des (2012) 41:83–106

described inclusion checking is precise at least in some cases as discussed below. A gen-
eralisation of the result to sets of hierarchical CFA can be obtained as for ordinary SFA.
Hierarchical FA that do not respect canonicity may be algorithmically split into several hi-
erarchical CFA, similarly as ordinary CFA [12].

Precise inclusion on hierarchical FA In many practical cases, approximating the inclusion
[[F]] ⊆ [[F ′]] by deciding L(F) ⊆ L(F ′) is actually precise. A condition that guarantees this
is the following:

Condition 1 ∀H ∈ L(F)� ∀H ′ ∈ L(F ′)� : H �= H ′ =⇒ [[H]] ∩ [[H ′]] = ∅. Intuitively, this
means that one cannot have two distinct hierarchical hypergraphs representing the same
plain hypergraph.

Clearly, Condition 1 holds if the following two more concrete conditions hold:

Condition 2 Nested SFA of F and F ′ represent a set of boxes X that do not overlap.

Condition 3 Every H ∈ L(F)� ∪ L(F ′)� is maximally boxed by boxes from X.

The notions of maximally boxed hypergraphs and non-overlapping boxes are defined as
follows. A hierarchical hypergraph H is maximally boxed by boxes from a set X iff all its
nested boxes are from X, and no part of H can be “hidden” in a box from X, this is, there
is no hypergraph G and no component C ∈ B,B ∈ X such that G[C/e] = H for some edge
e of G. Boxes from a set of boxes X over Γ do not overlap iff for every hypergraph G

over Γ , there is only one hierarchical hypergraph H over Γ which is maximally boxed by
boxes from X and such that G ∈ [[H]].

We note that the boxes represented by the nested SFA that appear in the case studies
presented in this paper satisfy Conditions 2 and 3, and so Condition 1 is satisfied too. Hence,
inclusion tests performed within our case studies are precise.

5 The verification procedure based on forest automata

We now briefly describe our verification procedure. As already said, we consider sequential,
non-recursive C programs manipulating dynamic linked data structures via program state-
ments x= y, x= y->s, x= null, x->s= y, malloc(x), and free(x) together with
pointer and data equality tests and common control flow statements as discussed in more
details below.8 Each allocated cell may have several next pointer selectors and contain data
from some finite domain.9 We use Sel to denote the set of all selectors and Data to denote
the data domain. The cells may be pointed by program variables whose set is denoted as Var
below.

8Most C statements for pointer manipulation can be translated to these statements, including most type casts
and restricted pointer arithmetic.
9No abstraction for such data is considered.

166

Form Methods Syst Des (2012) 41:83–106 101

Heap representation As discussed in Sect. 2, we encode a single heap configuration as a
deterministic (Sel ∪ Data ∪ Var)-labelled hypergraph with the ranking function being such
that #(x) = 1 ⇔ x ∈ Sel and #(x) = 0 ⇔ x ∈ Data ∪ Var. In the hypergraph, the nodes rep-
resent allocated memory cells, unary hyperedges (labelled by symbols from Sel) represent
selectors, and the nullary hyperedges (labelled by symbols from Data ∪ Var) represent data
values and program variables.10 Input ports of the hypergraphs are nodes pointed to by pro-
gram variables. Null and undefined values are modelled as two special nodes null and
undef. We represent sets of heap configurations as hierarchical (Sel∪Data∪Var)-labelled
SCFA.

Symbolic execution The symbolic computation of reachable heap configurations is done
over a control flow graph (CFG) obtained from the source program. A control flow action
a applied to a hypergraph G (i.e., to a single configuration) returns a hypergraph a(G) that
is obtained from G as follows. Non-destructive actions x= y, x= y->s, or x= null
remove the x-label from its current position and label with it the node pointed by y, the
s-successor of that node, or the null node, respectively. The destructive action x->s= y
replaces the edge (vx,s, v) by the edge (vx,s, vy) where vx and vy are the nodes pointed
to by x and y, respectively. Further, malloc(x) moves the x-label to a newly created
node, free(x) removes the node pointed to by x (and links x and all aliased variables with
undef), and x->data= dnew replaces the edge (vx,dold) by the edge (vx,dnew). Evaluat-
ing a guard g applied on G amounts to a simple test of equality of nodes or equality of data
fields of nodes. Dereferences of null and undef are of course detected (as an attempt
to follow a non-existing hyperedge) and an error is announced. Emergence of garbage is
detected iff a(G) is not well-connected.11

We, however, compute not on single hypergraphs representing particular heaps but on
sets of them represented by hierarchical SCFA. For now, we assume the nested SCFA used
to be provided by the user. For a given control flow action (or guard) x and a hierarchical
SCFA S , we need to symbolically compute an SCFA x(S) s.t. [[x(S)]] equals {x(G) | G ∈
[[S]]} if x is an action and {G ∈ [[S]] | x(G)} if x is a guard.

Derivation of the SCFA x(S) from S involves several steps. The first phase is materi-
alisation where we unfold nested SFA representing boxes that hide data values or pointers
referred to by x. We note that we are unfolding only SFA in the closest neighbourhood of
the involved pointer variables; thus, on the level of TA, we touch only nested SFA adjacent
to root-points. In the next phase, we introduce additional root-points for every node referred
to by x to the forest representation. Third, we perform the actual update, which due to the
previous step amounts to manipulation with root-points only [12]. Last, we repeatedly fold
(apply) boxes and normalise (transform the obtained SFA into a canonicity respecting form)
until no further box can be applied, so that we end up with an SCFA. We note that like the
operation of unfolding, folding is also done only in the closest neighbourhood of root-points.

Unfolding is, loosely speaking, done by replacing a TA rule labelled by a nested SFA by
the nested SFA itself (plus the appropriate binding of states of the top-level SFA to ports
of the nested SFA). Folding is currently based on detecting isomorphism of a part of the
top-level SFA and a nested SFA. The part of the top-level SFA is then replaced by a single

10Below, to simplify the informal description, we say that a node is labelled by a variable instead of saying
that the variable labels a nullary hyperedge leaving from that node.
11Further, we note that we also handle a restricted pointer arithmetic. This is basically done by indexing
elements of Sel by integers to express that the target of a pointer is an address of a memory cell plus or minus
a certain offset. The formalism described in the paper may be easily adapted to support this feature.

167

102 Form Methods Syst Des (2012) 41:83–106

Fig. 4 A concrete (on the left) and symbolic execution (on the right) of statements y= x->next,
x->next= z, and z= x. For the sake of simplicity, the presented FA are not strictly in their canonical
form

rule labelled by the nested SFA. Note that this may be further improved by using language
inclusion instead of isomorphism of automata.

A simplified example of a symbolic execution is provided in Fig. 4. In the left part of
the figure, we provide concrete heaps (the dashed edges represent sequences of one or more
edges linked into a linked-list), and in the right part, we provide their forest automata repre-

168

Form Methods Syst Des (2012) 41:83–106 103

sentation (for a better readability, top-down tree automata are used). The initial configuration
is depicted in Figs. 4(a), and (b), (c), and (d) represent the sets of heaps obtained after suc-
cessively applying the statements x= y->next, x->next= z, and z= x.

The fixpoint computation The verification procedure performs a classical (forward)
control-flow fixpoint computation over the CFG where flow values are hierarchical SCFA
that represent sets of possible heap configurations at particular program locations. We start
from the input location with the SCFA representing an empty heap with all variables un-
defined. The join operator is the union of SCFA. With every edge from a source location l

labelled by x (an action or a guard), we associate the flow transfer function fx . The func-
tion fx takes the flow value (SCFA) S at l as its input and (1) computes the SCFA x(S),
(2) applies abstraction to x(S), and returns the result.

The abstraction may be implemented by applying the general techniques described in
the framework of abstract regular tree model checking [6] to the individual TA inside FA.
Particularly, the abstraction collapses states with similar languages (based on their languages
up-to certain tree depth or using predicate languages).

To detect spurious counterexamples and to refine abstraction, one can use a backward
run similarly as in [6]. This is possible since the steps of the symbolic execution may be
reversed, and it is also possible to safely approximate intersections of hierarchical SFA.
More precisely, given SCFA S1 and S2, one can compute an SCFA S such that [[S]] ⊆
[[S1]] ∩ [[S2]]. This under-approximation is safe since it can lead neither to false positives
nor to false negatives (it can only cause the computation not to terminate). Moreover, for the
SCFA that appear in the case studies in this paper, the intersection we compute is actually
precise. More details can be found in [12].

6 Implementation and experimental results

We have implemented the proposed approach in a prototype tool called Forester, having the
form of a gcc plug-in. The core of the tool is our own library of TA that uses the recent
technology for handling nondeterministic automata (particularly, methods for reducing the
size of TA and for testing language inclusion on them [2, 3]). The fixpoint computation is
accelerated by the so-called finite height abstraction that is based on collapsing states of TA
that have the same languages up to certain depth [6].

Although our implementation is a prototype, the results are very encouraging with regard
to the generality of structures the tool can handle, precision of the generated invariants as
well as the running times. We tested the tool on sample programs with various types of lists
(singly-linked, doubly-linked, cyclic, nested), trees, and their combinations. Basic memory
safety properties—in particular, absence of null and undefined pointer dereferences, double
free operations, and absence of garbage—were checked.

We have compared the performance of our tool with that of Space Invader [4], the first
fully automated tool based on separation logic, Predator [10], a new fully automated tool
based in principle on separation logic (although it represents sets of heaps using graphs),
and also with the ARTMC tool [7] based on abstract regular tree model checking.12 The
comparison with Space Invader and Predator was done on examples with lists only since
Invader and Predator do not handle trees. The higher flexibility of our automata abstraction

12Since it is quite difficult to encode the input for ARTMC, we have tried it on some interesting cases only.

169

104 Form Methods Syst Des (2012) 41:83–106

Table 1 Experimental results
Example Forester Invader Predator ARTMC

SLL (delete) 0.01 0.10 0.01 0.50

SLL (reverse) <0.01 0.03 <0.01

SLL (bubblesort) 0.02 Err 0.02

SLL (insertsort) 0.02 0.10 0.01

SLL (mergesort) 0.07 Err 0.13

SLL of CSLLs 0.07 T 0.12

SLL+head 0.01 0.06 0.01

SLL of 0/1 SLLs 0.02 T 0.03

SLLLinux <0.01 T <0.01

DLL (insert) 0.02 0.08 0.03 0.40

DLL (reverse) 0.01 0.09 0.01 1.40

DLL (insertsort1) 0.20 0.18 0.15 1.40

DLL (insertsort2) 0.06 Err 0.03

CDLL <0.01 0.09 <0.01

DLL of CDLLs 0.18 T 0.13

SLL of 2CDDLsLinux 0.03 T 0.19

tree 0.06 3.00

tree+stack 0.02

tree+parents 0.10

tree (DSW) 0.16 o.o.m

shows up, for example, in the test case with a list of sublists of lengths 0 or 1 (discussed
already in the introduction) for which Space Invader does not terminate. Our technique
handles this example smoothly (without any need to add special inductive predicates that
could decrease the performance or generate false alarms). Predator can also handle this test
case, but to achieve that, the algorithms implemented in it must have been manually extended
to use a new kind of list segment of length 0 or 1, together with an appropriate modification
of the implementation of Predator’s join and abstraction operations.13 On the other hand, the
ARTMC tool can, in principle, handle more general structures than we can currently handle
such as trees with linked leaves. However, the used representation of heap configurations is
much heavier which causes ARTMC not to scale that well.

Table 1 summarises running times (in seconds) of the four tools on our case studies. The
value T means that the running time exceeded 30 minutes, o.o.m. means that the tool ran
out of memory, and the value Err stands for a failure of symbolic execution. The names of
experiments in the table contain the name of the data structure handled by the program. In
particular, “SLL” stands for singly-linked lists, “DLL” for doubly linked lists (the prefix “C”
means cyclic), “tree” for binary trees, “tree+parents” for trees with parent pointers. Nested
variants of SLL are named as “SLL of” and the type of the nested list. In particular, “SLL
of 0/1 SLLs” stands for SLL of nested SLL of length 0 or 1. “SLL+head” stands for a list
where each element points to the head of the list, “SLL of 2CDLLs” stands for SLL whose
implementation of lists used in the Linux kernel with restricted pointer arithmetic [10] which

13The operations were carefully tuned not to easily generate false alarms, but the risk of generating them has
anyway been increased.

170

Form Methods Syst Des (2012) 41:83–106 105

we can also handle. All experiments start with a random creation and end with a disposal of
the specified structure. If some further operation is performed in between the creation phase
and the disposal phase, it is indicated in brackets. In the experiment “tree+stack”, a randomly
created tree is disposed using a stack in a top-down manner such that we always dispose a
root of a subtree and save its subtrees into the stack. “DSW” stands for the Deutsch-Schorr-
Waite tree traversal (the Lindstrom variant). We have run our tests on a machine with Intel
T9600 (2.8 GHz) CPU and 4 GB of RAM.

7 Conclusion

We have proposed hierarchically nested forest automata as a new means of encoding sets of
heap configurations when verifying programs with dynamic linked data structures. The pro-
posal brings the principle of separation from separation logic into automata, allowing us to
combine some advantages of automata (generality, less rigid abstraction) with a better scal-
ability stemming from local heap manipulation. We have shown some interesting properties
of our representation from the point of view of inclusion checking. We have implemented
and tested the approach on multiple non-trivial cases studies, demonstrating the approach to
be promising.

In the future, we plan to improve the implementation of our tool Forester, including a
support for predicate language abstraction within abstract regular tree model checking [6].
We also plan to implement the automatic learning of nested FA. From a more theoretical
perspective, it is interesting to show whether inclusion checking is or is not decidable for
the full class of nested FA. Another interesting direction is then a possibility of allowing
truly recursive nesting of FA, which would allow us to handle very general structures such
as trees with linked leaves.

References

1. Abdulla PA, Bouajjani A, Cederberg J, Haziza F, Rezine A (2008) Monotonic abstraction for programs
with dynamic memory heaps. In: Proc of CAV’08. LNCS, vol 5123. Springer, Berlin

2. Abdulla PA, Bouajjani A, Holík L, Kaati L, Vojnar T (2008) Computing simulations over tree automata:
efficient techniques for reducing TA. In: Proc of TACAS’08. LNCS, vol 4963

3. Abdulla PA, Chen Y-F, Holík L, Mayr R, Vojnar T (2010) When simulation meets antichains (on check-
ing language inclusion of NFAs). In: Proc of TACAS’10. LNCS, vol 6015. Springer, Berlin

4. Berdine J, Calcagno C, Cook B, Distefano D, O’Hearn PW, Wies T, Yang H (2007) Shape analysis for
composite data structures. In: Proc CAV’07. LNCS, vol 4590. Springer, Berlin

5. Bouajjani A, Bozga M, Habermehl P, Iosif R, Moro P, Vojnar T (2006) Programs with lists are counter
automata. In: Proc of CAV’06. LNCS, vol 4144. Springer, Berlin

6. Bouajjani A, Habermehl P, Rogalewicz A, Vojnar T (2006) Abstract regular tree model checking. Elec-
tron Notes Theor Comput Sci 149(1):37–48

7. Bouajjani A, Habermehl P, Rogalewicz A, Vojnar T (2006) Abstract regular tree model checking of
complex dynamic data structures. In: Proc of SAS’06. LNCS, vol 4134. Springer, Berlin

8. Calcagno C, Distefano D, O’Hearn PW, Yang H (2009) Compositional shape analysis by means of Bi-
abduction. In: Proc of POPL’09. ACM, New York

9. Deshmukh JV, Emerson EA, Gupta P (2006) Automatic verification of parameterized data structures. In:
Proc of TACAS’06. LNCS, vol 3920. Springer, Berlin

10. Dudka K, Peringer P, Vojnar T (2011) Predator: a practical tool for checking manipulation of dynamic
data structures using separation logic. In: Proc of CAV’11. LNCS, vol 6806. Springer, Berlin

11. Guo B, Vachharajani N, August DI (2007) Shape analysis with inductive recursion synthesis. In: Proc of
PLDI’07. ACM, New York

12. Habermehl P, Holík L, Rogalewicz A, Šimáček J, Vojnar T (2011) Forest automata for verification of
heap manipulation. Technical report FIT-TR-2011-01, FIT BUT, Czech Republic. http://www.fit.vutbr.
cz/~isimacek/pub/FIT-TR-2011-01.pdf

171

106 Form Methods Syst Des (2012) 41:83–106

13. Madhusudan P, Parlato G, Qiu X (2011) Decidable logics combining heap structures and data. In: Proc
of POPL’11. ACM, New York

14. Møller A, Schwartzbach M (2001) The pointer assertion logic engine. In: Proc of PLDI’01. ACM, New
York

15. Nguyen HH, David C, Qin S, Chin WN (2007) Automated verification of shape and size properties via
separation logic. In: Proc of VMCAI’07. LNCS, vol 4349. Springer, Berlin

16. Reynolds JC (2002) Separation logic: a logic for shared mutable data structures. In: Proc of LICS’02.
IEEE Comput Soc, Los Alamitos

17. Sagiv S, Reps TW, Wilhelm R (2002) Parametric shape analysis via 3-valued logic. ACM Trans Program
Lang Syst 24(3):217–298

18. Yang H, Lee O, Calcagno C, Distefano D, O’Hearn PW (2007) On scalable shape analysis. Technical
report RR-07-10, Queen Mary, University of London

19. Yang H, Lee O, Berdine J, Calcagno C, Cook B, Distefano D, O’Hearn PW (2008) Scalable shape
analysis for systems code. In: Proc of CAV’08. LNCS, vol 5123. Springer, Berlin

20. Zee K, Kuncak V, Rinard M (2008) Full functional verification of linked data structures. In: Proc of
PLDI’08. ACM, New York

172

String Constraints for Verification�

Parosh Aziz Abdulla1, Mohamed Faouzi Atig1, Yu-Fang Chen2, Lukáš Hoĺık3,
Ahmed Rezine4, Philipp Rümmer1, and Jari Stenman1

1 Department of Information Technology, Uppsala University, Sweden
2 Institute of Information Science, Academia Sinica, Taiwan

3 Faculty of Information Technology, Brno University of Technology, Czech Republic
4 Department of Computer and Information Science, Linköping University, Sweden

Abstract. We present a decision procedure for a logic that combines
(i) word equations over string variables denoting words of arbitrary
lengths, together with (ii) constraints on the length of words, and on
(iii) the regular languages to which words belong. Decidability of this
general logic is still open. Our procedure is sound for the general logic,
and a decision procedure for a particularly rich fragment that restricts
the form in which word equations are written. In contrast to many ex-
isting procedures, our method does not make assumptions about the
maximum length of words. We have developed a prototypical implemen-
tation of our decision procedure, and integrated it into a CEGAR-based
model checker for the analysis of programs encoded as Horn clauses. Our
tool is able to automatically establish the correctness of several programs
that are beyond the reach of existing methods.

1 Introduction

Software model checking is an active research area that has witnessed a remark-
able success in the past decades [15,8]. Model checking tools are already used in
industrial applications [2]. One reason for this success is recent developments in
SMT technology [5,7,3], which allow efficient symbolic representations of differ-
ent data types in programs. This dependence encompasses, however, that model
checking tools are inherently limited by the data types that can be handled by
the underlying SMT solver. A data type for which satisfying decision proce-
dures have been missing is that of strings. Our work proposes a rich string logic
together with a decision procedure targeting model checking applications.

String data types are present in programming and scripting languages. In fact,
it is impossible to capture the essence of many programs, for instance in database
and web applications, without the ability to precisely represent and reason about
string data types. The control flow of programs can depend on words denoted
by string variables, on the length of words, or on regular languages to which
they belong. For example, a program allowing users to choose a username and

� Supported by the Uppsala Programming for Multicore Architectures Research Cen-
ter (UPMARC), the Czech Science Foundation (13-37876P), Brno University of
Technology (FIT-S-12-1, FIT-S-14-2486), and the Linköping CENIIT Center (12.04).

A. Biere and R. Bloem (Eds.): CAV 2014, LNCS 8559, pp. 150–166, 2014.
c© Springer International Publishing Switzerland 2014

173

String Constraints for Verification 151

a password may require the password to be of a minimal length, to be different
from the username, and to be free from invalid characters. Reasoning about such
constraints is also crucial when verifying that database and web applications are
free from SQL injections and other security vulnerabilities.

Existing solvers for programs manipulating string variables and their length
are either unsound, not expressive enough, or lack the ability to provide coun-
terexamples. Many solvers [9,23,24] are unsound since they assume an a priori
fixed upper bound on the length of the possible words. Others [9,17,26] are not
expressive enough as they do not handle word equations, length constraints, or
membership predicates. Such solvers are mostly aimed at performing symbolic
executions, i.e., establishing feasibility of paths in a program. The solver in [25]
performs sound over-approximation, but without supplying counterexamples in
case the verification fails. In contrast, our decision procedure specifically targets
model checking applications. In fact, we use it in a prototype model checker in
order to automatically establish program correctness for several examples.

Our decision procedure establishes satisfiability of formulae written as Boolean
combinations of: (i) word (dis)equalities such as (a · u = v · b) or (a · u �= v · b),
where a, b are letters and u, v are string variables denoting words of arbitrary
lengths, (ii) length constraints such as (|u| = |v| + 1), where |u| refers to the
length of the word denoted by string variable u, and (iii) predicates representing
membership in regular expressions, e.g., u ∈ c · (a+ b)∗. Each of these predicates
can be crucial for capturing the behavior and establishing the correctness of
a string-manipulating program (cf. the program in Section 2). The analysis is
not trivial as it needs to capture subtle interactions between different types of
predicates. For instance, the formulae φ1 = (a · u = v · b) ∧ (|u| = |v| + 1) and
φ2 = (a · u = v · b) ∧ v ∈ c · (a + b)∗ are unsatisfiable, i.e., there is no possible
assignment of words to u and v that makes the conjunctions evaluate to true. The
analysis then needs to propagate facts from one type of predicates to another;
e.g., in φ1 the analysis deduces from (a · u = v · b) that |u| = |v|, which results
in an unsatisfiable formula (|u| = |v| ∧ |u| = |v| + 1)). The general decidability
problem is still open. We guarantee termination of our procedure for a fragment
of the logic including the three types of predicates. The fragment we consider is
rich enough to capture all the practical examples we have encountered.

We have integrated our decision procedure in a prototype model checker and
used it to verify properties of implementations of common string manipulating
functions such as the Hamming and Levenshtein distances. Predicates required
for verification can be provided by hand; to achieve automation, in addition we
propose a constraint-based interpolation procedure for regular word constraints.
In combination with our decision procedure for words, this enables us to auto-
matically analyze programs that are currently beyond the reach of state-of-the-
art software model checkers.

Related Work. The pioneering work by Makanin [18] proposed a decision pro-
cedure for word equations (i.e., Boolean combinations of (dis)equalities) where
the variables can denote words of arbitrary lengths. The decidability problem is
already open [4] when word equations are combined with length constraints of

174

152 P.A. Abdulla et al.

the form |u| = |v|. Our logic adds predicates representing membership in regular
languages to word equations and length constraints. This means that decidabil-
ity is still an open problem. A contribution of our work is the definition of a rich
sub-logic for which we guarantee the termination of our procedure.

In a work close to ours, the authors in [10] show decidability of a logic that is
strictly weaker than the one for which we guarantee termination. For instance,
in [10], membership predicates are allowed only under the assumption that no
string variables can appear in the right hand sides of the equality predicates. This
severely restricts the expressiveness of the logic. In [26], the authors augment
the Z3 [7] SMT solver in order to handle word equations with length constraints.
However, they do not support regular membership predicates. In our experience,
these are crucial during model checking based verification.

Finally, in addition to considering more general equations, our work comes
with an interpolation-based verification technique adapted for string programs.
Notice that neither of [10,26] can establish correctness of programs with loops.

Outline. In the next section, we use a simple program to illustrate our approach.
In Section 3 we introduce a logic for word equations with arithmetic and regular
constraints, and then describe in Section 4 a procedure for deciding satisfiability
of formulae in the logic. In Section 5 we define a class formulae for which we
guarantee the termination of our decision procedure. We describe the verification
procedure in Section 6 and the implementation effort in Section 7. Finally in
Section 8 we give some conclusions and directions for future work.

2 A Simple Example

In this section, we use the simple program listed in Fig. 1 to give a flavor of
our verification approach. The listing makes use of features that are common in
string manipulating programs. We will argue that establishing correctness for
such programs requires: (i) the ability to refer to string variables of arbitrary
lengths, (ii) the ability to express combinations of constraints, like that the
words denoted by the variables belong to regular expressions, that their lengths
obey arithmetic inequalities, or that the words themselves are solutions to word
equations, and (iii) the ability for a decision procedure to precisely capture the
subtle interaction between the different kinds of involved constraints.

In the program of Fig. 1, a string variable s is initialized with the empty word.
A loop is then executed an arbitrary number of times. At each iteration of the
loop, the instruction s= ’a’ + s + ’b’ appends the letter ’a’ at the beginning
of variable s and the letter ’b’ at its end. After the loop, the program asserts that
s does not have the word ’ba’ as a substring (denoted by !s.contains(’ba’),
and that its length (denoted by s.length()) is even.

Observe that the string variable s does not assume a maximal length. Any
verification procedure that requires an a priori fixed bound on the length of the
string variables is necessarily unsound and will fail to establish correctness.

Moreover, establishing correctness requires the ability to express and to reason
about predicates such as those mentioned in the comments of the code in Fig. 1.

175

String Constraints for Verification 153

// Pre = (true)
String s= ’’;

// P1 = (s ∈ ε)
while(*){

// P2 = (s = u · v ∧ u ∈ a∗ ∧ v ∈ b∗ ∧ |u| = |v|)
s= ’a’ + s + ’b’;

}

// P3 = P2

assert(!s.contains(’ba’) && (s.length() % 2) == 0);

// Post = P3

Fig. 1. A simple program manipulating a string variable s. Our logic allows to precisely
capture the word equations, membership predicates and length constraints that are
required for validating the assertion is never violated. Our decision procedure can then
automatically validate the required verification conditions described in Fig. 2.

vc1 : post(Pre,s = ””) =⇒ P1 vc2 : P1 =⇒ P2

vc3 : post(P2, s = ”a” · s · ”b”) =⇒ P2 vc4 : P2 =⇒ P3

vc5 : post(P3, assume(s.contains("ba") || !(s.length()%2 ==0))) =⇒ false
vc6 : post(P3, assume(!s.contains("ba") && (s.length()%2 ==0))) =⇒ Post

Fig. 2. Verification conditions for the simple program of Fig. 1

For instance, the loop invariant P2 states that: (i) the variable s denotes a finite
word ws of arbitrary length, (ii) that ws equals the concatenation of two words
wu and wv, (iii) that wu ∈ a∗ and wv ∈ b∗, and (iv) that the length |wu| of word
wu equals the length |wv| of word wv.

Using the predicates in Fig. 1, we can formulate program correctness in terms
of the validity of each of the implications listed in Fig. 2. For instance, validity
of the verification condition vc5 amounts to showing that ¬vc5 = (s = u ·v ∧u ∈
a∗ ∧ v ∈ b∗ ∧ |u| = |v|) ∧ (s = s1 · b · a · s2 ∨ ¬(|s| = 2n)) is unsatisfiable. To
establish this result, our decision procedure generates the two proof obligations
¬vc51 : (s = u · v ∧ u ∈ a∗ ∧ v ∈ b∗ ∧ |u| = |v| ∧ s = s1 · b · a · s2) and
¬vc52 : (s = u · v ∧ u ∈ a∗ ∧ v ∈ b∗ ∧ |u| = |v| ∧ ¬(|s| = 2n)).

In order to check vc51, the procedure symbolically matches all the possible
ways in which a word denoted by u · v can also be denoted by s1 · b · a · s2.
For instance, u = s1 · b ∧ v = a · s2 is one possible matching. In order to be
able to show unsatisfiability, the decision procedure has to also consider the
other possible matchings. For instance, the case where the word denoted by
u is a strict prefix of the one denoted by s1 has also to be considered. For this
reason, the matching process might trigger new matchings. In general, there is no
guarantee that the sequence of generated matchings will terminate. However, we
show that this sequence terminates for an expressive fragment of the logic. This
fragment includes the predicates of mentioned in this section and all predicates
we encountered in practical programs, The procedure then checks satisfiability
of each such a matching. For instance, the matching u = s1 · b ∧ v = a · s2

176

154 P.A. Abdulla et al.

is shown to be unsatisfiable due the the membership predicate v ∈ b∗. In fact
our procedure automatically proves that ¬v51 is not satisfiable after checking all
possible matchings.

So for ¬vc5 to be satisfiable, ¬vc52 needs to be satisfiable. Our procedure
deduces that this would imply that |u| = |v| ∧¬(|u|+ |v| = 2n) is satisfiable. We
leverage on existing standard decision procedures for linear arithmetic in order
to show that this is not the case. Hence ¬vc5 is unsatisfiable and vc5 is valid. For
this example, and those we report on in Section 6, our procedure can establish
correctness fully automatically given the required predicates.

Observe that establishing validity requires the ability to capture interactions
among the different types of predicates. For instance, establishing validity of vc5

involves the ability to combine the word equations (s = u · v ∧ s = s1 · b · a · s2)
with the membership predicates (u ∈ a∗ ∧ v ∈ b∗) for vc51, and with the length
constraints (|u| = |v| ∧ ¬(|s| = 2n)) for vc52. Capturing such interactions is
crucial for establishing correctness and for eliminating false positives.

3 Defining the String Logic Ee,r,l

In this section we introduce a logic, which we call Ee,r,l, for word equations,
regular constraints (short for membership constraints in regular languages) and
length and arithmetic inequalities. We assume a finite alphabet Σ and write Σ∗

to mean the set of finite words over Σ. We work with a set U of string variables
denoting words in Σ∗ and write Z for the set of integer numbers.

Syntax. We let variables u, v range over the set U . We write |u| to mean the
length of the word denoted by variable u, k to mean an integer in Z, c to mean
a letter in Σ and w to mean a word in Σ∗. The syntax of formulae in Ee,r,l is
defined as follows:

φ ::= φ ∧ φ || ¬φ || ϕe || ϕl || ϕr formulae

ϕe ::= tr = tr || tr �= tr (dis)equalities

ϕl ::= e ≤ e arithmetic inequalities
ϕr ::= tr ∈ R membership predicates

tr ::= ε || c || u || tr · tr terms

R ::= ∅ || ε || c || w || R · R || R + R || R ∩ R || RC || R∗ regular expressions

e ::= k || |tr| || k ∗ e || e + e integer expressions

Assume variables {ui}n
i=1, terms {tri}n

i=1 and integer expressions {ei}n
i=1. We

write φ[u1/tr1] . . . [un/trn] (resp. φ[|u1|/e1] . . . [|un|/en]) to mean the formula
obtained by syntactically substituting in φ each occurrence of ui by term tri

(resp. each occurrence of |ui| by expression ei). Such a substitution is said to be
well-defined if no variable ui (resp. |ui|) appears in any tri (resp. ei).

The set of word variables appearing in a term is defined as follows: Vars(ε) =
∅, Vars(c) = ∅, Vars(u) = {u} and Vars(tr1 · tr2) = Vars(tr1) ∪ Vars(tr2).

177

String Constraints for Verification 155

Semantics. The semantics of Ee,r,l is mostly standard. We describe it using a
mapping η (called interpretation) that assigns words in Σ∗ to string variables
in U . We extend η to terms as follows: η(ε) = ε, η(c) = c and η(tr1.tr2) =
η(tr1).η(tr2). Every regular expression R is evaluated to the language L(R)
it represents. Given an interpretation η, we define another mapping βη that
associates a number in Z to integer expressions as follows: βη(k) = k, βη(|u|) =
|η(u)|, βη(|tr|) = |η(tr)|, βη(k ∗ e) = k ∗ βη(e), and βη(e1 + e2) = βη(e1) + β(e2).
A formula in Ee,r,l is then evaluated to a value in {ff , tt} as follows:

valη(φ1 ∧ φ2) = tt iff valη(φ1) = tt and valη(φ2) = tt

valη(¬φ1) = tt iff valη(φ1) = ff

valη(tr ∈ R) = tt iff η(tr) ∈ L(R)

valη(tr1 = tr2) = tt iff η(tr1) = η(tr2)

valη(tr1 �= tr2) = tt iff ¬(η(tr1) = η(tr2))

valη(e1 ≤ e2) = tt iff βη(e1) ≤ βη(e2)

A formula φ is said to be satisfiable if there is an interpretation η such that
valη(φ) = tt . It is said to be unsatisfiable otherwise.

4 Inference Rules

In this section, we describe our set of inference rules for checking the satisfiability
of formulae in the logic Ee,r,l of Section 3. Given a formula φ, we build a proof
tree rooted at φ by repeatedly applying the inference rules introduced in this
Section. We can assume, without loss of generality, that the formula is given in
Disjunctive Normal Form. An inference rule is of the form:

Name :
B1 B2 ... Bn

A
cond

In this inference rule, Name is the name of the rule, cond is a side condition on
A for the application of the rule, B1 B2 ... Bn are called premises, and A is called
the conclusion of the rule. (We omit the side condition cond from Name when
it is tt .) The premises and conclusion are formulae in Ee,r,l. Each application
consumes a conclusion and produces the set of premises. The inference rule is
said to be sound if the satisfiability of the conclusion implies the satisfiability of
one of the premises. It is said to be locally complete if the satisfiability of one
of the premises implies the satisfiability of the conclusion. If all inference rules
are locally complete, and if φ or one of the produced premises turns out to be
satisfiable, then φ is also satisfiable. If all the inference rules are sound and none
of the produced premises is satisfiable, then φ is also unsatisfiable.

We organize the inference rules in four groups. We use the rules of the first
group to eliminate disequalities. The rules of the second group are used to sim-
plify equalities. The rules of the third group are used to eliminate membership
predicates. The rules of the last group are used to propagate length constraints.
In addition, we assume standard decision procedures [3] for integer arithmetic.

178

156 P.A. Abdulla et al.

Lemma 1. The inference rules of this section are sound and locally complete.

4.1 Removing Disequalities

We use rules Not-Eq and Diseq-Split in order to eliminate disequalities. In
rule Not-Eq, we establish that tr �= tr ∧ φ is not satisfiable and close this
branch of the proof. In the second rule Diseq-Split, we eliminate disequalities
involving arbitrary terms. For this, we make use of the fact that the alpha-
bet Σ is finite and replace any disequality with a finite set of equalities. More
precisely, assume a formula tr �= tr′ ∧ φ in Ee,r,l. We observe that the disequal-
ity tr �= tr′ holds iff the words wtr and wtr′ denoted by the terms tr and tr′

are different. This corresponds to one of three cases. Assume three fresh vari-
ables u, v and v′. In the first case, the words wtr and wtr′ contain different
letters c �= c′ after a common prefix wu. They are written as the concatena-
tions wu · c · wv and wu · c′ · wv′ respectively. We capture this case using the
set SplitDiseq-Split = {tr = u · c · v ∧ tr′ = u · c′ · v′ ∧ φ | c, c′ ∈ Σ and c �= c′}.
In the second case, the word wtr′ = wu is a strict prefix of wtr = wu · c · wv. We
capture this with Split′

Diseq-Split = {tr = u · c · v ∧ tr′ = u ∧ φ | c ∈ Σ}. In the
third case, the word wtr = wu is a strict prefix of wtr′ = wu·c′·w′

v, and we capture
this case using the set Split′′

Diseq-Split = {tr = u ∧ tr′ = u · c · v′ ∧ φ | c ∈ Σ}.
Not-Eq :

∗
tr �= tr ∧ φ

Eq :
φ

tr = tr ∧ φ

Diseq-Split :
SplitDiseq-Split ∪ Split′

Diseq-Split ∪ Split′′
Diseq-Split

tr �= tr′ ∧ φ

4.2 Simplifying Equalities

We introduce rules Eq, Eq-Var, and Eq-Word to manipulate equalities. Rule
applications take into account symmetry of the equality operator (i.e., if a rule
can apply to w · tr1 = tr2 ∧ φ then it can also apply to tr2 = w · tr1 ∧ φ). Rule
Eq eliminates trivial equalities of the form tr = tr.

Rule Eq-Var eliminates variable u from the equality u · tr1 = tr2 ∧ φ. Let
wu be some word denoted by u. For the equality to hold, wu must be a prefix
of the word denoted by tr2. There are two cases. The first case, represented by
SplitEq-Var in Eq-Var, captures situations where wu coincides with a word
denoted by a prefix tr3 of tr2. The second case, represented by Split′

Eq-Var,
captures situations where wu does not coincide with a word denoted by a prefix
of tr2. Instead, tr2 can be written as tr3 · v · tr4 and the word wu is written as
the concatenation of two words, one that is denoted by tr3 and another that is
prefix of the word denoted by v.

Eq-Var :
SplitEq-Var ∪ Split′

Eq-Var

u · tr1 = tr2 ∧ φ

The set SplitEq-Var captures the first case, when wu coincides with a word
denoted by a prefix tr3 of tr2. The premises for this case are partitioned into
two sets, namely SplitEq-Var-1 and SplitEq-Var-2:

179

String Constraints for Verification 157

SplitEq-Var-1 =

{
(tr1 = tr4 ∧ φ)[u/tr3] |
tr2 = tr3 · tr4 and u does not syntactically appear in tr3

}

SplitEq-Var-2 =

{
tr1 = tr4 ∧ tr5 · tr6 ∈ ε ∧ φ |
tr2 = tr3 · tr4 and tr3 = tr5 · u · tr6

}

Variable u is eliminated from the premises contained in the set SplitEq-Var-1.
The second set SplitEq-Var-2 captures cases where u does syntactically appear
in tr3. Variable u might still appear in some of the premises of SplitEq-Var-2.

The set Split′
Eq-Var in Eq-Var captures the second case, namely when wu

does not coincide with a word denoted by a prefix of tr2, written tr3 · v · tr4

for some variable v. The premises in Split′
Eq-Var are partitioned into two sets,

namely Split′
Eq-Var-1 and Split′

Eq-Var-2:

Split′
Eq-Var-1 =

{(
(tr1 = v2 · tr4 ∧ φ)[u/tr3 · v1]

)
[v/v1 · v2] |

tr2 = tr3 · v · tr4 and u appears neither in tr3 nor in v

}

Split′
Eq-Var-2 =

{(
tr1 = u2 · tr4 ∧ u1 · u2 = tr3 · u1 ∧ φ

)
[u/tr3 · u1] |

tr2 = tr3 · u · tr4 and u does not appear in tr3

}

The premises in Split′
Eq-Var-1 mention neither u nor v. The set Split′

Eq-Var-2

captures cases where u in the left-hand side overlaps with its occurrence on the
right-hand side. Cases where u appears in tr3 are captured in SplitEq-Var.

Rule Eq-Word eliminates the word w from the equality w · tr1 = tr2 ∧ φ:

Eq-Word :
SplitEq-Word ∪ Split′

Eq-Word

w · tr1 = tr2 ∧ φ

Again, we define two sets representing the premises of the rule:

SplitEq-Word =
{
tr3 ∈ w ∧ tr4 = tr1 ∧ φ | tr2 = tr3 · tr4

}

Split′
Eq-Word =

{(
tr3 · v1 ∈ w ∧ v2 · tr4 = tr1 ∧ φ

)
[v/v1 · v2] | tr2 = tr3 · v · tr4

}

To simplify the presentation, we do not present suffix versions for rules Eq-Var
and Eq-Word. Such rules match suffixes instead of prefixes and simply mirror
the rules described above.

4.3 Removing Membership Predicates

We use rules Reg-Neg, Memb, Not-Memb, Reg-Split and Reg-Len to sim-
plify and eliminate membership predicates. We describe them below.

Rule Reg-Neg replaces the negation of a membership predicate in a regular
expression R with a membership predicate in its complement RC .

Reg-Neg :
tr ∈ RC ∧ φ

¬(tr ∈ R) ∧ φ

Rule Memb eliminates the predicate w ∈ R in case the word w belongs to
the language L(R) of the regular expression R. If w does not belong to L(R)
then rule Not-Memb closes this branch of the proof.

180

158 P.A. Abdulla et al.

Memb :
φ

w ∈ R ∧ φ
w ∈ L(R) Not-Memb :

∗
w ∈ R ∧ φ

w �∈ L(R)

Rule Reg-Split simplifies membership predicates of the form tr · tr′ ∈ R.
Given such a predicate, the rule replaces it with a disjunction

∨n
i=1

(
tr ∈ Ri ∧

tr′ ∈ R′
i

)
where the set {(Ri, R′

i)}n
i=1 is finite and only depends on the regular

expression R. To define this set, represent L(R) using some arbitrary but fixed
finite automaton (S, s0, δ, F). Assume S = {s0, . . . , sn}. Choose the regular ex-
pressions Ri, R′

i such that : (1) Ri has the same language as the automaton
(S, s0, δ, {si}), and (2) R′

i has the same language as the automaton(S, si, δ, F).
For any word wtr · wtr′ denoted by tr · tr′ and accepted by R, there will be a
state si in S such that wtr is accepted by Ri and wtr′ is accepted by R′

i. Given
a regular expression R, we let F(R) denote the set {(Ri, R′

i)}n
i=1 above.

Reg-Split :
{tr ∈ R′ ∧ tr′ ∈ R′′ ∧ φ | (R′, R′′) ∈ F(R)}

tr · tr′ ∈ R ∧ φ

Rule Reg-Len can only be applied in certain cases. To identify these cases,
we define the condition Γ (φ, u) which states, given a formula φ and a variable
u, that u is not used in any membership predicate or in any (dis)equation in
φ. In other words, the condition states that if u occurs in φ then it occurs in a
length predicate. The rule Reg-Len replaces, in one step, all the membership
predicates {u ∈ Ri}n

i=1 with an arithmetic constraint Len(R1 ∩ . . . ∩ Rm, u).
This arithmetic constraint expresses that the length |u| of variable u belongs to
the semi-linear set corresponding to the Parikh image of the intersection of all
regular expressions {Ri}n

i=1 appearing in membership predicates of variable u. It
is possible to determine a representation of this semi linear set by starting from
a finite state automaton representing the intersection ∩iRi and replacing all
letters with a unique arbitrary letter. The obtained automaton is determinized
and the semi linear set is deduced from the length of the obtained lasso if any
(notice that since the automaton is deterministic and its alphabet is a singleton,
its form will be either a lasso or a simple path.) After this step, there will be no
membership predicates involving u.

Reg-Len :
Len(R1 ∩ . . . ∩ Rm, u) ∧ φ

u ∈ R1 ∧ . . . ∧ u ∈ Rm ∧ φ
Γ (φ, u)

4.4 Propagating Term Lengths

The rule Term-Leng is the only inference rule in the fourth group. It substitutes
the expression |tr| + |tr′| for every occurrence in φ of the expression |tr · tr′|.

Term-Leng :
φ[|tr · tr′|/|tr| + |tr′|]

φ
|tr · tr′| appears in φ

We can also add rules to systematically add the length predicate |tr| = |tr′|
each time an equality tr = tr′ appears in a formula; however, such rules are not
necessary for the completeness of our procedure, as shown in the next section.

181

String Constraints for Verification 159

5 Completeness of the Procedure

In this section, we define a class of formulae of acyclic form (we say a formula is
in acyclic form, or acyclic for short) for which the decision procedure in Section 4
is guaranteed to terminate. For simplicity, we assume w.l.o.g that the formula is
a conjunction of predicates and negated predicates.

Non-termination may be caused by an infinite chain of applications of rule
Eq-Var of Section 4.2 for removing equalities. Consider for instance the equal-
ity u · v = v · u. One of the cases generated within the disjunct Split′

Eq-Var-1

of Eq-Var is v1 · v2 = v2 · v1. This is the same as the original equality up to
renaming of variables. In this case, the process of removing equalities clearly
does not terminate. To prevent this, we will require that no variable can ap-
pear on both sides of an equality. We also need to prevent the repetition of a
variable inside one side of an equality. This is needed in cases like u · u = v · v
where Split′

Eq-Var-1 includes v1 = v2 · v1 · v2, with a variable v1 on both sides
of the equality, which is the situation which we wanted to prevent at the first
place. These restrictions must hold initially and must be preserved by applica-
tions of any of the rules presented in Sections 4. Attention must be given to
rules that modify equalities. Rules such as Eq-Var involve substitution of a
variable from one side of an equality by a term from the other side. We need
to prevent chains of such substitutions that cause variables to appear several
times in a (dis)equality. Acyclic formulae must also guarantee that the undesired
cases cannot appear after a use of Diseq-Split of Section 4.1 that transforms a
disequality to equalities. We respectively state preservation of these restriction
and termination of the procedure of Section 4 in theorems 1 and 2 at the end of
this Section. First, we need some definitions.

Linear formulae. A formula in Ee,r,l is said to be linear if it contains no equality
or disequality where a variable appears more than once.

Given a conjunction φ in Ee,r,l involving m (dis)equalities, we can build a
dependency graph Gφ = (N, E, label, map) in the following way. We order the
(dis)equalities from e1 to em, where each ej is of the form lhs(j) ≈ rhs(j) for
j : 1 ≤ j ≤ m and ≈∈ {=, �=}. For each j : 1 ≤ j ≤ m, a node n2j−1 is used to re-
fer to the left-hand side of the jth (dis)equality, and n2j to its right-hand side. For
example, two different nodes are used even in the case of the simple equality u = u,
one to refer to the left-hand side, and the other to refer the right-hand side. N is
then the set of 2×m nodes {ni|i : 1 ≤ i ≤ 2 × m}. The mapping label associates
the term lhs(j) (resp. rhs(j)) to each node n2j−1 (resp. n2j) for j : 1 ≤ j ≤ m.
label is not necessarily a one to one mapping. The mapping map : E → {rel, var}
labels edges as follows: map(n, n′) = rel for each (n, n′) = (n2j−1, n2j) for each
j : 1 ≤ j ≤ m, and map(n, n′) = var iff n �= n′, and label(n) and label(n′)
have some common variables. By construction, map is defined to be total, i.e., E
contains only edges that are labeled by map.

A dependency cycle in Gφ = (N, E, label, map) is a cycle where successive edges
have alternating labels. Formally, a dependency cycle is a sequence of distinct
nodes n0, n1, . . . , nk in N with k ≥ 1 such that 1) for every i : 0 ≤ i ≤ k,

182

160 P.A. Abdulla et al.

map(ni, ni+1%(k+1)) is defined, and 2) for each i : 0 ≤ i < k, map(ni, ni+1) �=
map(ni+1, ni+2%(k+1)).

Acyclic graph. A conjunction φ in Ee,r,l is said to be acyclic iff it is linear and
its dependency graph does not contain any dependency cycle.

Theorem 1. Application of rules of Section 4 preserves acyclicity.

An ordered procedure is any procedure that applies the rules of Section 4
on a formula in Ee,r,l in the four following phases. In the first phase, all dise-
qualities are eliminated using Diseq-Split and Not-Eq. In the second phase,
the procedure eliminates one equality at a time by repeatedly applying Eq-Var,
Eq-Word and Eq. In the third phase, membership predicates are eliminated by
repeatedly applying Reg-Neg, Memb, Not-Memb, Reg-Split and Reg-Len.
In the last phase, arithmetic predicates are solved using a standard decision
procedure [3].

Theorem 2. Ordered procedures terminate on acyclic formulae.

6 Complete Verification of String-Processing Programs

The analysis of string-processing programs has gained importance due to the in-
creased use of string-based APIs and protocols, for instance in the context of
databases and Web programming. Much of the existing work has focused on the
detection of bugs or the synthesis of attacks; in contrast, the work presented in
this paper primarily targets verification of functional correctness. The following
sections outline how we use our logic Ee,r,l for this purpose. On the one hand, our
solver is designed to handle the satisfiability checks needed when constructing fi-
nite abstractions of programs, with the help of predicate abstraction [11,13] or
Impact-style algorithms [19]; since Ee,r,l can express both length properties and
regular expressions, it covers predicates sufficient for a wide range of verification
applications. On the other hand, we propose a constraint-based Craig interpola-
tion algorithm for the automatic refinement of program abstractions (Section 6.2),
leading to a completeness result in the style of [16]. We represent programs in the
framework of Horn clauses [20,12], which make it easy to handle language features
like recursion; however, our work is in no way restricted to this setting.

6.1 Horn Constraints with Strings

In our context, a Horn clause is a formula H ← C ∧ B1 ∧ · · · ∧ Bn where C is a
formula (constraint) in Ee,r,l; each Bi is an application p(t1, . . . , tk) of a relation
symbol p ∈ R to first-order terms; H is either an application p(t1, . . . , tk) of
p ∈ R to first-order terms, or the constraint false. H is called the head of the
clause, C ∧ B1 ∧ · · · ∧ Bn the body. A set HC of Horn clauses is called solvable
if there is an assignment that maps every n-ary relation symbol p to a word
formula Cp[x1, . . . , xn] with n free variables, such that every clause in HC is valid.
Since Horn clauses can capture properties such as initiation and consecution of
invariants, programs can be encoded as sets of Horn clauses in such a way that
the clauses are solvable if and only if the program is correct.

183

String Constraints for Verification 161

Example 1. The example from Section 2 is represented by the following set of
Horn clauses, encoding constraints on the intermediate assertions Pre, P1, P2, P3.
Note that the clauses closely correspond to the verification conditions given in
Fig. 2. Any solution of the Horn clauses represents a set of mutually inductive
invariants, and witnesses correctness of the program.

Pre(s) ← true
P1(s

′) ← s′ = ε ∧ Pre(s)
P2(s) ← P1(s)

P2(”a” · s · ”b”) ← P2(s)

P3(s) ← P2(s)
false ← s ∈ (a|b)∗ · ba · (a|b)∗ ∧ P3(s)
false ← ∀k. 2k �= |s| ∧ P3(s)

Algorithms to construct solutions of Horn clauses with the help of predicate
abstraction have been proposed for instance in [12]; in this context, automatic
solving is split into two main steps: 1) the synthesis of predicates as building
blocks for solutions, and 2) the construction of solutions as Boolean combinations
of the predicates. The second step requires a solver to decide consistency of sets of
predicates, as well as implication between predicates (a set of predicates implies
some other predicate); our logic is designed for this purpose.

Ee,r,l covers a major part of the string operations commonly used in software
programs; further operations can be encoded elegantly, including:

– extraction of substring v of length len from a string u, starting at posi-
tion pos , which is defined by the formula:

u = p · v · s ∧ |v| = len ∧ |p| = pos

– replacement of the substring v (of length len , starting at position pos) by v′,
resulting in the new overall string u′:

u = p · v · s ∧ u′ = p · v′ · s ∧ |v| = len ∧ |p| = pos

– search for the first occurrence of a string, using either equations or regular
expression constraints.

6.2 Constraint-Based Craig Interpolation

In order to synthesize new predicates for verification, we propose a constraint-
based Craig interpolation algorithm [6]. We say that a formula I[s̄] is an inter-
polant of a conjunction A[s̄], B[s̄] over common variables s̄ = s1, . . . , sn (and
possibly including further local variables), if the conjunctions A[s̄] ∧ ¬I[s̄] and
B[s̄] ∧ I[s̄] are unsatisfiable. In other words, an interpolant I[s̄] is an over-
approximation of A[s̄] that is disjoint from B[s̄]. It is well-known that inter-
polants are suitable candidates for predicates in software model checking; for a
detailed account on the use of interpolants for solving Horn clauses, we refer the
reader to [22].

Our interpolation procedure is shown in Alg. 1, and generates interpolants
in the form of regular constraints separating A[s̄] and B[s̄]. This means that

184

162 P.A. Abdulla et al.

Algorithm 1. Constraint-based interpolation of string formulae

Input: Interpolation problem A[s̄] ∧ B[s̄] with common variables s̄; bound L.
Output: Interpolant s1|s2| · · · |sn ∈ R; or result Inseparable.

1 Aw ← ∅; Bw ← ∅;
2 while there is RE R of size ≤ L such that Aw ⊆ L(R) and Bw ∩ L(R) = ∅ do
3 if A[s̄] ∧ ¬(s1|s2| · · · |sn ∈ R) is satisfiable with assignment η then
4 Aw ← Aw ∪ {η(s1)| · · · |η(sn)};
5 else if B[s̄] ∧ (s1|s2| · · · |sn ∈ R) is satisfiable with assignment η then
6 Bw ← Bw ∪ {η(s1)| · · · |η(sn)};
7 else
8 return s1|s2| · · · |sn ∈ R;
9 end

10 end
11 return Inseparable;

interpolants are not arbitrary formulae in the logic Ee,r,l, but are restricted to
the form s1|s2| · · · |sn ∈ R, where ”|” ∈ Σ is a distinguished separating letter,
and R is a regular expression. In addition, only interpolants up to a bound L are
considered; L can limit, for instance, the length of the regular expression R, or
the number of states in a finite automaton representing R.

Alg. 1 maintains finite sets Aw and Bw of words representing solutions of A[s̄]
and B[s̄], respectively. In line 2, a candidate interpolant of the form s1|s2| · · · |sn ∈
R is constructed, in such a way that L(R) is a superset of Aw but disjoint from
Bw. The concrete construction of candidate interpolants of size ≤ L can be im-
plemented in a number of ways, for instance via an encoding as a SAT or SMT
problem (as done in our implementation), or with the help of learning algorithms
like L∗ [1]. It is then checked whether s1|s2| · · · |sn ∈ R satisfies the properties of
an interpolant (lines 3, 5), which can be done using the string solver developed in
this paper. If any of the properties is violated, the constructed satisfying assign-
ment η gives rise to a further word to be included in Aw or Bw.

Lemma 2 (Correctness). Suppose bound L is chosen such that it is only sat-
isfied by finitely many formulae s1|s2| · · · |sn ∈ R. Then Alg. 1 terminates and
either returns a correct interpolant s1|s2| · · · |sn ∈ R, or reports Inseparable.

By iteratively increasing bound L, eventually a regular interpolant for any
(unsatisfiable) conjunction A[s̄] ∧ B[s̄] can be found, provided that such an in-
terpolant exists at all. This scheme of bounded interpolation is suitable for inte-
gration in the complete model checking algorithm given in [16]: since only finitely
many predicates can be inferred for every value L, divergence of model checking
is impossible for any fixed L. By globally increasing L in an iterative manner,
eventually every predicate that can be expressed in the form s1|s2| · · · |sn ∈ R
will be found.

185

String Constraints for Verification 163

7 Implementation

We have implemented our algorithm in a tool called Norn1 The tool takes as
input a formula in the logic described in Section 3, and returns either Sat together
with a witness of satisfiability (i.e., concrete string values for all variables), or
Unsat. Norn first converts the given formula to DNF, after which each disjunct
goes through the following steps:

1. Recursively split equalities, backtracking if necessary, until no equality con-
straints are left.

2. Recursively split membership constraints, again backtracking if necessary,
and compute the language of each variable. From the language, we extract
length constraints which we add to the formula.

3. Solve the remaining length constraints using Princess [3].

We will now explain the second step in more detail. Assume that we have
a membership constraint tr ∈ A, where A is an automaton (Norn makes use
of dk.brics.automaton [21] for all automata operations). We can remove a
sequence of trailing constants a1a2 · · · ak in tr = tr′ ·a1a2 · · · an by replacing the
constraint with tr′ ∈ rev(δak···a2a1(rev(A))), where δs(A) denotes the derivative
of A w.r.t. the string s, and rev(A) denotes the reverse of A. We now have a
membership constraint s1 · · · sn ∈ A′ where the term consists of a number of
segments si, each of the form a1 · · · aniXi, i.e., a number of constants followed
by a variable. The procedure keeps, at each step, a mapping m that maps each
variable to an automaton representing the language it admits. For the constraint
to be satisfiable, the constraints s1 ∈ A′

1 and s2 · · · sn ∈ A′
2 must be satisfiable

for some pair (A1, A2) in the splitting of A′. This means that we can update
our mapping by m(Xi) = m(Xi) ∩ δa1···ani

(A1) and recurse on s2 · · · sn ∈ A′
2.

If at any point any automaton in the mapping becomes empty, the membership
constraint is unsatisfiable, and we backtrack.

If, in the third step, Princess tells that the given formula is satisfiable, it
gives concrete lengths for all variables. By restricting each variable to the solution
given by Princess and reversing the substitutions performed in step 1, we can
compute witnesses for the variables in the original formula.

Norn can be used both as a library and as a command line tool. In addition
to the logic in Section 3, Norn supports character ranges (e.g. [a − c]) and
the wildcard character (.) in regular expressions. It also supports the divisibility
predicate x div y, which says that x divides y. This translates to the arithmetic
constraint x = y ∗ n, where n is a free variable.

Model Checking. We have integrated Norn into the predicate abstraction-based
model checker Eldarica [14], on the basis of the algorithm and interpolation
procedure from Section 6. We use the regular interpolation procedure from Sec-
tion 6.2 in combination with an ordinary interpolation procedure for Presburger
arithmetic to infer predicates about word length. Table 1 gives an overview

1 Available at http://user.it.uu.se/~jarst116/norn/.

186

164 P.A. Abdulla et al.

Table 1. Verification runtime for a set of string-processing programs. Experiments
were done on an Intel Core i5 machine with 3.2GHz, running 64 bit Linux.

Program Property Time

anbn (Fig. 1) s �∈ (a + b)∗ · ba · (a + b)∗ ∧ ∃k. 2k = |s| 8.0s
StringReplace pre: s ∈ (a + b + c)∗; post: s ∈ (a + c)∗ 4.5s
ChunkSplit pre: s ∈ (a + b)∗; post: s ∈ (a + b + c)∗ 5.5s
Levenshtein dist ≤ |s| + |t| 5.3s
HammingDistance dist = |v| if u ∈ 0∗, v ∈ 1∗ 27.1s

of preliminary results obtained when analyzing a set of hand-written string-
processing programs. Although the programs are quite small, the presence of
string operations makes them intricate to analyze using automated model check-
ing techniques; most of the programs require invariants in form of regular ex-
pressions for verification to succeed. Our implementation is able to verify all
programs fully automatically within a few seconds; since performance has not
been the main focus of our implementation work so far, further optimization will
likely result in much reduced runtimes. To the best of our knowledge, all of the
programs are beyond the scope of other state-of-the-art software model checkers.

8 Conclusions and Future Work

In contrast to much of the existing work that has focused on the detection of
bugs or the synthesis of attacks for string-manipulating programs; the work pre-
sented in this paper primarily targets verification of functional correctness. To
achieve this goal, we have made several key contributions. First, we have pre-
sented a decision procedure for a rich logic of strings. Although the problem
in its generality remains open, we are able to identify an expressive fragment
for which our procedure is both sound and complete. We are not aware of any
decision procedure with a similar expressive power. Second, we leverage on the
fact that our logic is able to reason both about length properties and regular
expressions in order to capture and manipulate predicates sufficient for a wide
range of verification applications. Future works include experimenting with bet-
ter integrations of the different theories, exploring different Craig interpolation
techniques, and exploring the applicability of our framework to more general
classes of string processing applications.

References

1. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Com-
put. 75(2), 87–106 (1987)

2. Ball, T., Levin, V., Rajamani, S.K.: A decade of software model checking with
slam. Commun. ACM 54(7), 68–76 (2011)

3. Brillout, A., Kroening, D., Rümmer, P., Wahl, T.: An interpolating sequent calcu-
lus for quantifier-free Presburger arithmetic. Journal of Automated Reasoning 47,
341–367 (2011)

187

String Constraints for Verification 165

4. Büchi, J.R., Senger, S.: Definability in the existential theory of concatenation and
undecidable extensions of this theory. Z. Math. Logik Grundlagen Math. 34(4)
(1988)

5. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The mathSAT5 SMT
solver. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795,
pp. 93–107. Springer, Heidelberg (2013)

6. Craig, W.: Linear reasoning. A new form of the Herbrand-Gentzen theorem. The
Journal of Symbolic Logic 22(3) (1957)

7. de Moura, L., Bjørner, N.S.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008)

8. D’Silva, V., Kroening, D., Weissenbacher, G.: A survey of automated techniques
for formal software verification. IEEE Trans. on CAD of Integrated Circuits and
Systems 27(7), 1165–1178 (2008)

9. Ganesh, V., Dill, D.L.: A decision procedure for bit-vectors and arrays. In: Damm,
W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 519–531. Springer,
Heidelberg (2007)

10. Ganesh, V., Minnes, M., Solar-Lezama, A., Rinard, M.: Word equations with length
constraints: What’s decidable? In: Biere, A., Nahir, A., Vos, T. (eds.) HVC. LNCS,
vol. 7857, pp. 209–226. Springer, Heidelberg (2013)

11. Graf, S., Saidi, H.: Construction of abstract state graphs with PVS. In: Grumberg,
O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)

12. Grebenshchikov, S., Lopes, N.P., Popeea, C., Rybalchenko, A.: Synthesizing soft-
ware verifiers from proof rules. In: PLDI, pp. 405–416 (2012)

13. Henzinger, T.A., Jhala, R., Majumdar, R., McMillan, K.L.: Abstractions from
proofs. In: 31st POPL (2004)

14. Hojjat, H., Konečný, F., Garnier, F., Iosif, R., Kuncak, V., Rümmer, P.: A verifi-
cation toolkit for numerical transition systems. In: Giannakopoulou, D., Méry, D.
(eds.) FM 2012. LNCS, vol. 7436, pp. 247–251. Springer, Heidelberg (2012)

15. Jhala, R., Majumdar, R.: Software model checking. ACM Comput. Surv. 41(4)
(2009)

16. Jhala, R., McMillan, K.L.: A practical and complete approach to predicate re-
finement. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920,
pp. 459–473. Springer, Heidelberg (2006)

17. Kieżun, A., Ganesh, V., Artzi, S., Guo, P.J., Hooimeijer, P., Ernst, M.D.: HAMPI:
A solver for word equations over strings, regular expressions, and context-free gram-
mars. ACM Transactions on Software Engineering and Methodology 21(4) (2012)

18. Makanin, G.S.: The problem of solvability of equations in a free semigroup. Math-
ematics of the USSR-Sbornik 32(2), 129–198 (1977)

19. McMillan, K.L.: Lazy abstraction with interpolants. In: Ball, T., Jones, R.B. (eds.)
CAV 2006. LNCS, vol. 4144, pp. 123–136. Springer, Heidelberg (2006)

20. Méndez-Lojo, M., Navas, J., Hermenegildo, M.V.: A flexible (C)LP-based approach
to the analysis of object-oriented programs. In: King, A. (ed.) LOPSTR 2007.
LNCS, vol. 4915, pp. 154–168. Springer, Heidelberg (2008)

21. Møller, A.: dk.brics.automaton – finite-state automata and regular expressions for
Java (2010), http://www.brics.dk/automaton/

22. Rümmer, P., Hojjat, H., Kuncak, V.: Classifying and solving horn clauses for ver-
ification. In: Cohen, E., Rybalchenko, A. (eds.) VSTTE 2013. LNCS, vol. 8164,
pp. 1–21. Springer, Heidelberg (2014)

188

166 P.A. Abdulla et al.

23. Saxena, P., Akhawe, D., Hanna, S., Mao, F., McCamant, S., Song, D.: A Sym-
bolic Execution Framework for JavaScript. In: IEEE Symposium on Security and
Privacy, pp. 513–528. IEEE Computer Society (2010)

24. Saxena, P., Hanna, S., Poosankam, P., Song, D.: FLAX: Systematic discovery of
client-side validation vulnerabilities in rich web applications. In: NDSS. The Inter-
net Society (2010)

25. Yu, F., Alkhalaf, M., Bultan, T.: Stranger: An automata-based string analysis tool
for PHP. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015,
pp. 154–157. Springer, Heidelberg (2010)

26. Zheng, Y., Zhang, X., Ganesh, V.: Z3-str: A Z3-based string solver for web appli-
cation analysis. In: Proceedings of the 2013 9th Joint Meeting on Foundations of
Software Engineering, ESEC/FSE 2013, pp. 114–124. ACM, New York (2013)

189

All for the Price of Few
(Parameterized Verification through View Abstraction)

Parosh Aziz Abdulla1, Frédéric Haziza1, and Lukáš Holı́k1,2

1 Uppsala University, Sweden
2 Brno University of Technology, Czech Republic

Abstract. We present a simple and efficient framework for automatic verifica-
tion of systems with a parameteric number of communicating processes. The
processes may be organized in various topologies such as words, multisets, rings,
or trees. Our method needs to inspect only a small number of processes in order
to show correctness of the whole system. It relies on an abstraction function that
views the system from the perspective of a fixed number of processes. The ab-
straction is used during the verification procedure in order to dynamically detect
cut-off points beyond which the search of the state space need not continue. We
show that the method is complete for a large class of well quasi-ordered systems
including Petri nets. Our experimentation on a variety of benchmarks demon-
strate that the method is highly efficient and that it works well even for classes of
systems with undecidable verification problems.

1 Introduction

We address verification of safety properties for parameterized systems that consist of
arbitrary numbers of components (processes) organized according to a regular pattern.
The task is to perform parameterized verification, i.e., to verify correctness regard-
less of the number of processes. This amounts to the verification of an infinite family;
namely one for each possible size of the system. The term parameterized refers to the
fact that the size of the system is (implicitly) a parameter of the verification problem.
Parameterized systems arise naturally in the modeling of mutual exclusion algorithms,
bus protocols, distributed algorithms, telecommunication protocols, and cache coher-
ence protocols. For instance, the specification of a mutual exclusion protocol may be
parameterized by the number of processes that participate in a given session of the pro-
tocol. In such a case, it is interesting to verify correctness regardless of the number of
participants in a particular session. As usual, the verification of safety properties can be
reduced to the problem of checking the reachability of a set of bad configurations (the
set of configurations that violate the safety property).

Existing approaches. An important approach to parameterized verification has been
regular model checking [25,5,9] in which regular languages are used as symbolic repre-
sentations of infinite sets of system configurations, and automata-based techniques are
employed to implement the verification procedure. The main problem with such tech-
niques is that they are heavy since they usually rely on several layers of computation-
ally expensive automata-theoretic constructions, in many cases leading to a state space

R. Giacobazzi, J. Berdine, and I. Mastroeni (Eds.): VMCAI 2013, LNCS 7737, pp. 476–495, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

190

All for the Price of Few 477

explosion that severely limits their applicability. Another class of methods analyze ap-
proximated system behavior through the use of abstraction techniques. Such methods
include counter abstraction [22,30], invisible invariant generation [6,31], environment
abstraction [11], and monotonic abstraction [3] (see Section 7).

In a similar manner to [24], this work is inspired by a strong empirical evidence that
parameterized systems often enjoy a small model property. More precisely, analyzing
only a small number of processes (rather than the whole family) is sufficient to capture
the reachability of bad configurations. On the one hand, bad configurations can often be
characterized by minimal conditions that are possible to specify through a fixed number
of witness processes. For instance, in a mutual exclusion protocol, a bad configuration
contains two processes in their critical sections; and in a cache coherence protocol,
a bad configuration contains two cache lines in their exclusive states. In both cases,
having the two witnesses is sufficient to make the configuration bad (regardless of the
actual size of the configuration). On the other hand, it is usually the case that such bad
patterns (if existing) appear already in small instances of the system, as observed in our
experimental section.

Our approach. We introduce a method that exploits the small model property, and per-
forms parameterized verification by only inspecting a small set of fixed instances of
the system. Furthermore, the instances that need to be considered are often small in
size (typically three or four processes) which allows for a very efficient verification
procedure. The framework can be applied uniformly to generate fully automatic verifi-
cation algorithms for wide classes of parameterized systems including ones that operate
on linear, ring, or tree-like topologies, or systems that contain unbounded collections
of anonymous processes (the latter class is henceforth referred to as having a multi-
set topology).

At the heart of the method is an operation that allows to detect cut-off points beyond
which the verification procedure need not continue. Intuitively, reaching a cut-off point
means that we need not inspect larger instances of the system: the information collected
so far during the exploration of the state space allows us to conclude safely that no
bad configurations will occur in the larger instances. The cut-off analysis is executed
dynamically in the sense that it is performed on-the-fly during the verification procedure
itself. It is based on an abstraction function, called view abstraction, parameterized
by a constant k, and it approximates a configuration by the set of all its projections
containing at most k processes. We call the sub-configurations views. For instance, when
a configuration is a word of process states (represented as an array of processes), its
abstraction is the set of all its subwords of length at most k. Furthermore, for a given
set of views X , its concretization, denoted as γk(X), is the set of configurations (of any
size) for which all their views belong to X .

The verification method performs two search procedures in parallel. The first per-
forms a standard (explicit-state) forward reachability analysis trying to find a bad con-
figuration among system configurations of size k (for some natural number k). If a bad
configuration is encountered then the system is not safe. The second procedure per-
forms a symbolic forward reachability analysis in the abstract domain of sets of views
of size at most k. When the computation terminates, it will have collected an over-
approximation of all views of size up to k of all reachable configurations (of all sizes).

191

478 P.A. Abdulla, F. Haziza, and L. Holı́k

If there is no bad configuration in the concretization of this set, then a cut-off point has
been found and the system can be claimed safe. If neither of the parallel procedures
reaches a conclusion during iteration k, the value of k is increased by one (thus increas-
ing the precision of the abstraction). Notice that the abstract search requires computing
the abstract post-image of a set X of views of size at most k, which is the set X ′ of views
(of size at most k) of successors of γk(X). Obviously, this cannot be performed straight-
forwardly since the set of configurations γk(X) is infinite. A crucial contribution of the
paper is to show that, for all the classes of parameterized systems that we consider, it is
sufficient to only compute successors of configurations from γk(X) that are of the size
at most k + �, where � is a small constant, typically 1. Intuitively, the reason is that the
precondition for firing a transition is the presence of a bounded number of processes in
certain states. The views need only to encompass these processes in order to determine
the successor view. This property is satisfied by a wide class of concurrent systems in-
cluding the ones we consider in this paper. For instance, in rendez-vous communication
between a pair of processes, the transition is conditioned by the states of two processes;
in broadcast communication, one process initiates the transition (while the other pro-
cesses may be in any state); in existential global transitions (see below), we need two
processes, namely the witness and the process performing the transition; in Petri nets,
the number of required processes is bounded by the in-degree of the transitions (which
is fixed for a given Petri net), etc. We will show formally that this property is satisfied
by all the types of transitions we consider.

Applications. We have instantiated the method to obtain automatic verification proce-
dures for four classes of parameterized systems, namely systems where the processes
are organized as arrays, rings, trees, or multisets. Each instantiation is straightforward
and is achieved by defining the manner in which we define the views of a configura-
tion. More precisely, these views are (naturally) defined as subwords, cyclic subwords,
subtrees, resp. subsets for the above four classes. Once the views are fixed we obtain a
fully automatic procedure for all parameterized systems in the class. In the systems we
consider, we allow a rich set of features, in which processes may perform local transi-
tions, rendez-vous, broadcasts, and universally or existentially guarded transitions. In a
universally guarded transition, the process checks whether the states of all other pro-
cesses inside the system satisfy a given constraint before it performs the transition. In
an existentially quantified transition, the processes checks that there is at least one other
process satisfying the condition. Furthermore, we allow dynamic behaviors such as the
creation and deletion of processes during the execution of the system.

In the basic variant of our method, we assume that existential and universal global
conditions of transitions are checked atomically. The same assumption is made in many
landmark works on parameterized systems (e.g. [11,31,10,5,6,29,3]). However, actual
implementations of global checks are usually not atomic. They are typically imple-
mented as for-loops ranging over indices of processes. Iterations of such a loop may be
interleaved with transitions of other processes, therefore modeling the loop as an atomic
transition means under-approximating the behavior of the system. Verification of sys-
tems with non-atomic global checks is significantly harder. It requires to distinguish
intermediate states of a for-loop performed by a process. Their number is proportional
to the number of processes in the system. Moreover, any number of processes may be

192

All for the Price of Few 479

performing a for-loop at the same time. As we will show, our method can be easily
adapted to this setting, while retaining its simplicity and efficiency.

Implementation. We have implemented a prototype based on the method and run it
on a wide class of benchmarks, including mutual exclusion protocols on arrays (e.g.,
Burns’, Szymanski’s, and Dijkstra’s protocols), cache coherent protocols (e.g., MOSI
and German’s protocol), different protocols on tree-like architectures (e.g. percolate,
arbiter, and leader election), ring protocols (token passing), and different Petri nets.

The class of systems we consider have undecidable reachability properties, and hence
our method is necessarily incomplete (the verification procedure is not guaranteed to
terminate in case the safety property is satisfied). However, as shown by our experi-
mentation, the tool terminates efficiently on all the tested benchmarks.

Completeness. Although the method is not complete in general, we show that is com-
plete for a large class of systems, namely those that induce well quasi-ordered transition
systems [2,1] and satisfy certain additional technical requirements. This implies that our
method is complete for e.g., Petri nets. Notice that, as evident from our experiments,
the method can in practice handle even systems that are outside the class.

Outline. To simplify the presentation, we instantiate our framework in a step-wise man-
ner. In Section 2, we introduce our model for parameterized systems operating on linear
topologies and describe our verification method in Section 3. In Section 4, we describe
how the framework can be extended to incorporate other kinds of transitions such as
broadcast, rendez-vous, dynamic process deletion/creation, and non-atomic checks of
global conditions; and to cover other classes of topologies such as ring, multiset, and
tree-like structures. The completeness of our method for well quasi-ordered systems is
shown in Section 5. We report on our experimental results in Section 6, and describe
related work in Section 7. Finally, we give some conclusions and directions for future
research in Section 8.

2 Parameterized Systems

We introduce a standard notion of a parameterized system operating on a linear topol-
ogy, where processes may perform local transitions or universally/existentially guarded
transitions (this is the standard model used e.g. in [31,11,3,29]).

A parameterized system is a pair P = (Q,Δ) where Q is a finite set of local states
of a process and Δ is a set of transition rules over Q. A transition rule is either local or
global. A local rule is of the form s → s′, where the process changes its local state from
s to s′ independently of the local states of the other processes. A global rule is of the
form ifQ j ◦ i : S then s → s′, where Q ∈ {∃,∀}, ◦ ∈ {<,>, 	=} and S ⊆ Q. Here, the ith
process checks also the local states of the other processes when it makes the move. For
instance, the condition ∀ j < i : S means that “for every j such that j < i, the jth process
should be in a local state that belongs to the set S”; the condition ∀ j 	= i : S means that
“all processes except the ith one should be in local states that belong to the set S”; etc.

A parameterized system P = (Q,Δ) induces a transition system (TS) T = (C,→)
where C = Q∗ is the set of its configurations and → ⊆ C ×C is the transition relation.

193

480 P.A. Abdulla, F. Haziza, and L. Holı́k

We use c[i] to denote the state of the ith process within the configuration c. The transition
relation → contains a transition c → c′ with c[i] = s, c′[i] = s′, c[j] = c′[j] for all j : j 	= i
iff either (i) Δ contains a local rule s → s′, or (ii) Δ contains a global rule ifQ j ◦ i :
S then s → s′, and one of the following conditions is satisfied:

– Q = ∀ and for all j : 1 ≤ j ≤ |c| such that j ◦ i, it holds that c[j] ∈ S.
– Q = ∃ and there exists j : 1 ≤ j ≤ |c| such that j ◦ i and c[j] ∈ S.

An instance of the reachability problem is defined by a parameterized system P =
(Q,Δ), a regular set I ⊆ Q+ of initial configurations, and a set Bad ⊆ Q+ of bad con-
figurations. Let be the usual subword relation, i.e., u s1 . . . sn iff u = si1 . . .sik ,1 ≤
i1. . .ik ≤ n and i j < i j+1 for all j : 1 ≤ j < k. We assume that Bad is the upward closure
{c | ∃b ∈ B : b c} of a given finite set B ⊆ Q+ of minimal bad configurations. This
is a common way of specifying bad configurations which often appears in practice, see
e.g. the running example of Burn’s mutual exclusion protocol below. We say that c ∈ C
is reachable iff there are c0, . . . ,cl ∈ C such that c0 ∈ I, cl = c, and ci → ci+1 for all
0 ≤ i < l. We use R to denote the set of all reachable configurations. We say that the
system P is safe w.r.t. I and Bad if no bad configuration is reachable, i.e. R ∩Bad = /0.

We define the post-image of a set X ⊆C to be the set post(X) := {c′ | c → c′ ∧c ∈ X}.
For n ∈ N and a set of configurations S ⊆C, we use Sn to denote its subset {c ∈ S | |c|≤n}
of configurations of size up to n.

Running example. We illustrate the notion of a parameterized systems with the exam-
ple of Burns’ mutual exclusion protocol [26]. The protocol ensures exclusive access to
a shared resource in a system consisting of an unbounded number of processes orga-
nized in an array. The pseudocode of the process at the ith position of the array and
the transition rules of the parameterized system are given in Figure 1. A state of the ith
process consists of a program location and a value of the local variable flag[i]. Since the
value of flag[i] is invariant at each location, states correspond to locations.

A configuration of the induced transition system is a word over the alphabet {1, . . . ,6}
of local process states. The task is to check that the protocol guarantees exclusive access
to the shared resource (line 6) regardless of the number of processes. A configuration is
considered to be bad if it contains two occurrences of state 6 , i.e., the set of minimal
bad configurations B is { 6 6 }. Initially, all processes are in state 1 , i.e. I = 1

+.

Burns(i)

1 flag[i] := 0;
2 if ∃ j < i : flag[i] = 1 then goto 1;
3 flag[i] := 1;
4 if ∃ j < i : flag[i] = 1 then goto 1;
5 await ∀ j > i : flag[j] 	= 1;

6 flag[i] := 0; goto 1 CS

1 2 3

456

∃ j < i : {4,5,6}

∀ j < i : {1,2,3}

∀ j < i : {1,2,3}

∃ j < i : {4,5,6}

∀ j > i : {1,2,3}

Fig. 1. Pseudocode and transition rules of Burns’ protocol

194

All for the Price of Few 481

3 Verification Method

In this section, we describe our verification method instantiated to the case of parame-
terized systems described in Section 2. First, we describe the abstraction we use, then
we present the procedure.

3.1 View Abstraction

We abstract a configuration c by a set of views each of which is a subword of c. The
abstraction function αk : C → 2Ck maps a configuration c into the set αk(c) = {v ∈ Ck |
v c} of all its views (subwords) of size up to k. We lift αk to sets of configurations as
usual. For every k ∈ N, the concretization function γk : 2Ck → 2C inputs a set of views
V ⊆ Ck, and returns the set of configurations that can be reconstructed from the views
in V . In other words, γk(V) = {c ∈ C | αk(c) ⊆ V}.

Abstract post-image. As usual, the abstract post-image of a set of views V ⊆ Ck is de-
fined as Apostk(V) = αk(post(γk(V))). Computing Apostk(V) is a central component of
our verification procedure. It cannot be computed straightforwardly since the set γk(V)
is typically infinite. As a main contribution of the paper, we show that it is sufficient
to consider only those configurations in γk(V) whose sizes are up to k + 1. There are
finitely many such configurations, and hence their post-image can be computed. For-
mally, for � ≥ 0, we define γ�

k(V) := γk(V) ∩C� and show the following small model
lemma for the class of systems of Section 2. We will show similar lemmas for the other
classes of systems that we present in the later sections.

Lemma 1. For any k ∈ N and X ⊆Ck, αk(post(γk(X))) ∪ X = αk(post(γk+1
k (X))) ∪ X .

The property of the transition relation which allows us to prove the lemma is that,
loosely speaking, the transitions have small preconditions. That is, there is a transition
that can be fired from a configuration c and generate a view v ∈ Ck only if c contains a
certain view v′ of some limited size, here up to k + 1.

Running Example. Consider for instance the set V = {1,2,3,4,6,12,16,32,34,42}⊆
C2 of views of Burns’ protocol. We will illustrate that we need to reason only about
configurations of γ2(V), which are of size at most 3, to decide which views belong to
Apost2(V).

Take the existentially guarded transition 2 → 1. It can be fired only from configura-
tions that contain 2 together with a witness from {4,5,6} on the left. Apost2(V) contains
the view 31 since γ2+1

2 (V) contains 342 from where the existential transition 2 → 1 can
be fired. (342 belongs to γ2(V) because all its views 2, 3, 4, 32, 34, and 42 are in V). It
does not contain the view 22 since 12 cannot be completed by the needed witness (12
cannot be extended by, e.g., 6 since V does not contain 26 and 62).

Consider now the universally guarded transition 2 → 3. The transition can be fired
only from configurations that contain 2. Since 2 → 3 can be fired on 32 ∈ γ2(V),
Apost2(V) contains 33. But it does not contain the view 43 since the universal guard
prevents firing 2 → 3 on configurations containing 42.

195

482 P.A. Abdulla, F. Haziza, and L. Holı́k

Proof. We present the part of the proof of Lemma 1 which deals with existentially
guarded transitions. The parts dealing with local and universally guarded transitions are
simpler and are moved to the appendix. We will show that for any configuration c ∈
γk(V) of size m > k +1 such that there is a transition c → c′ induced by an existentially
guarded rule r ∈ Δ with v′ ∈ αk(c′), the following holds: Either v′ ∈ V or there is a
configuration d ∈ γk(V) of size at most k +1 with a transition d → d′ induced by r with
v′ ∈ αk(d′).

A subset of positions p = {i1, . . . , il} ⊆ {1, . . . ,n}, l ≤ k, with i1 < .. . < il of a
configuration c = s1 . . . sn defines the view view(c, p) = si1 . . . sil of c. By definition,
v′ equals view(c′, p) for some p ⊆ {1, . . . ,m}. Let v be view(c, p). Notice that since
c ∈ γk(V), any view of c of size at least k belongs to γk(V). Therefore also v ∈ γk(V).
Let 1 ≤ i ≤ m be the index of the position in which c′ differs from c. If i 	∈ p, then
v = view(c, p) = view(c′, p) = v′. In this case, we trivially have v′ ∈ V . We can take
d = v and d′ = v′.

Assume now that i ∈ p. Let r be the rule if∃ j ◦ i : S then s → t where ◦ ∈ {<,>, 	=}.
There are two cases: 1) there is a witness w from S at some position j ∈ p enabling the
transition c → c′. Then v still contains the witness on an appropriate position needed to
fire r. Therefore v → v′ is a transition of the system induced by r, and we can take d = v
and d′ = v′. 2) no witness enabling the transition c → c′ is at a position j ∈ p. Then there
is no guarantee that v → v′ is a transition of the system. However, the witness enabling
the transition c → c′ is at some position j ∈ {1, . . . ,m}. We will create a configuration
of size at most k+1 by including this position j to v, as illustrated in the figure. Let p′ =
p∪{ j}. Then view(c, p′) → view(c′, p′) is a transition of the system induced by r since
view(c, p′) contains both s and a witness from S at an appropriate position. We clearly
have that v′ ∈ αk(view(c′, p′)). We also have that view(c, p′) ∈ γk(V) since view(c, p′)
c and c ∈ γk(V). We may therefore take d = view(c, p′) and d′ = view(c′, p′). ��

ws

t

∃ w

i jv

v′

3.2 Procedure

Our verification procedure for solving an instance of the verification problem defined
in Section 2 is described in Algorithm 1. It performs two search procedures in parallel.
Specifically, it searches for a bad configuration reachable from initial configurations of
size k; and it searches for a cut-off point k where it derives a set of views V ⊆ Ck such
that

(i) V is an invariant for the instances of the system (that is, R ⊆ γk(V) and
Apostk(V) ⊆ V), and

(ii) which is sufficient to prove R safe (that is, γk(V)∩Bad = /0).

196

All for the Price of Few 483

Algorithm 1. Verification Procedure

1 for k := 1 to ∞ do
2 if Rk ∩Bad 	= /0 then return Unsafe
3 V := µX .αk(I)∪Apostk(X)
4 if γk(V)∩Bad = /0 then return Safe

For a given k, an invariant V is computed on line 3. Notice that V is well-defined
since γk,post,αk and hence also Apostk are monotonic functions for all k ∈ N (w.r.t. ⊆).
Lemma 2 guarantees that V is indeed an invariant:

Lemma 2. For any i ∈ N and X ⊆ Ci, αi(I) ⊆ X ∧ Aposti(X) ⊆ X =⇒ αi(R) ⊆ X.

If the system is unsafe, the search on line 2 will eventually discovers a bad configura-
tion. The cut-off condition is tested on line 4. If the test does not pass, then we do not
know whether the system is indeed unsafe or whether the analysis has hit a spurious
counterexample (due to a too liberal abstraction). Therefore, the algorithm increases
precision of the abstraction by increasing k and reiterating the loop. An effective imple-
mentation of the procedure requires carrying out the following steps:

1. Computing the abstraction αk(I) of initial configurations. This step is usually easy.
For instance, in the case of Burns’ protocol, all processes are initially in state 1,
hence αk(I) contains only the words 1l, l ≤ k. Generally, I is a (very simple) regular
set, and αk(I) is computed using a straightforward automata construction.

2. Computing the abstract post-image. Thanks to Lemma 1, the abstract post-image
can be computed by applying γk+1

k (which yields a finite set), post, and αk (in that
order).

3. Evaluating the test γk(V)∩Bad = /0. Since Bad is the upward closure of a finite set
B, the test can be carried out by testing whether there is b ∈ B such that αk(b) ⊆ V .

4. Exact reachability analysis. Line 2 requires the computation of Rk. Since Rk is
finite, this can be done using any procedure for exact state space exploration.

Since the problem is generally undecidable, existence of k for which the test on line 4
succeeds for a safe system cannot be guaranteed and the algorithm may not terminate.
However, as discussed in Section 5, such a guarantee can be given under the addi-
tional requirement of monotonicity of transition relation w.r.t. a well-quasi ordering.
The method terminates otherwise for all our examples discussed in Section 6, many of
which are not well quasi-ordered.

Running example. When run on Burns’ protocol, Algorithm 1 starts by computing R1 =
{1, . . . ,6}. Because R1 does not contain any bad configurations, the algorithm moves
onto computing the fixpoint V1 of line 3. The iteration starts with X = α1(I) = {1} and
continues until X = V1 = {1, . . . ,6}. The test on line 4 subsequently fails since γ1(V1)
contains 66. Since both tests fail, the first iteration does not allow us to conclude whether
the protocol is safe or not, so the algorithm increases the precision of the abstraction by
increasing k.

197

484 P.A. Abdulla, F. Haziza, and L. Holı́k

In the second iteration with k = 2, R2 is still safe. The fixpoint computation starts
with X = α2(I) = {1,11}. When Apost2 is applied on {1,11}, we first construct the
set γ2+1

2 ({1,11}) which contains the extension 111 of 11, 11 and 1. Their successors
are 2,12,21, and 112,121,211, which are abstracted into {1,2,11,12,21}. The fix-
point computation continues with X = {1,2,11,12,21} and constructs the concretiza-
tion γ3

2(X) = X ∪{112,121,211}. Their successors are 2,3,12,21,22,31,13, and 122,
212, 221, 113, 131, 311 which are abstracted into the views 1,2,3,11,12,21,22,31,13.
The next iteration will start with X = {1,2,3,11,12,21,22,13,31}. The computation
reaches, after 8 further iterations, the fixpoint X = V2 which contains all words from
{1, . . . ,6}∪{1, . . . ,6}2 except 65 and 66. This set satisfies the assumptions of Lemma 2,
and hence it is guaranteed to contain all views (of size at most 2) of all reachable con-
figurations of the system. Since the view 66 is not present (recall α2(Bad) = {6,66}),
no reachable configuration of the system is bad. The algorithm reached the cut-off point
k = 2 of Burns’ protocol, and the system is proved safe.

4 Extensions

In this section, we describe how to extend the class of parameterized systems that we
presented in Section 2. The extensions are obtained 1) by extending the types of tran-
sition rules that we allow, 2) by replacing transitions with atomically checked global
conditions by more realistic for-loops, and 3) by considering topologies other than the
linear ones. As we shall see below, the extensions can be handled by our method with
straightforward extensions of the method of Section 3.

4.1 More Communication Mechanisms

Broadcast. In a broadcast transition, an arbitrary number of processes change states
simultaneously. A broadcast rule is a pair (s → s′,{r1 → r′

1, . . . ,rm → r′
m}). It is deter-

ministic in the sense that ri 	= r j for i 	= j. The broadcast is initiated by a process, called
the initiator, which triggers the transition rule s → s′. Together with the initiator, an
arbitrary number of processes, called the receptors, change state simultaneously. More
precisely, if the local state of a process is ri, then the process changes its local state to
r′

i. Processes whose local states are different from s,r1, . . . rm remain passive during the
broadcast. Formally, the broadcast rule induces transitions c → c′ of T where for some
i : 1 ≤ i ≤ |c|, c[i] = s, c′[i] = s′, and for each j : 1 ≤ j 	= i ≤ |c|, if c[j] = rk (for some
k) then c′[j] = r′

k, otherwise c[j] = c′[j].
In a similar manner to globally guarded transitions, broadcast transitions have small

preconditions. Namely, to fire a transition, it is enough that an initiator is present in the
transition. More precisely, for parameterized systems with local, global, and broadcast
transitions, Lemma 1 still holds (in the proof of Lemma 1, the initiator is treated analo-
gously to a witness of an existential transition). Therefore, the verification method from
Section 3 can be used without any change.

Rendez-vous. In rendez-vous, multiple processes change their states simultaneously.
A simple rendez-vous transition rule is a tuple of local rules δ = (r1 → r′

1, . . . ,rm →

198

All for the Price of Few 485

r′
m),m > 1. Multiple occurrences of local rules with the same source state r in the tuple

does not mean non-determinism, but that the rendez-vous requires multiple occurrences
of r in the configuration to be triggered. Formally, the rule induces transitions c → c′ of
T such that there are i1, . . . , im with i j 	= ik for all j 	= k, such that c[i1] · · ·c[im] = r1 · · ·rm,
c′[i1] · · ·c′[im] = r′

1 · · · r′
m, and c′[�] = c[�] if � 	∈ {i1, . . . , im}.

Additionally, we define a generalized rendez-vous (or just rendez-vous) transition
rules in order to model creation and deletion of processes and also Petri net transitions
that change the number of tokens in the net. A generalized rendez-vous rule δ is as
a simple rendez-vous rule, but it can in addition to the local rules contain two types
of special rules: of the form • → r,• 	∈ Q (acting as a placeholder), which are used to
model creation of processes, and of the form r → •, which are used to model deletion
of processes. When a generalized rendez-vous rule is fired, the starting configuration
is first enriched with • symbols in order to facilitate creation of processes by the rule
• → r, then the rule is applied as if it was a simple rendez-vous rule, treating • as a
normal state (states of the processes that are to be deleted are rewritten to • by the rules
r → •). Finally, all occurrences of • are removed. Formally, a generalized rendez-vous
rule induces a transition c → c′ if there is c• ∈ {•}∗c[1]{•}∗ · · · {•}∗c[|c|]{•}∗ such that
c• → c′

• is a transition of the system with states Q ∪ {•} induced by δ (treated as a
simple rendez-vous rule), and c′ arises from c′

• by erasing all occurrences of •.
Rendez-vous transitions have small preconditions, but unlike existentially quantified

transitions, firing a transition may require presence of more than two (but still a fixed
number) processes in certain states (the number is the arity of the transition). It es-
sentially corresponds to requiring the presence of more than one witness. This is why
Lemma 1 holds here only in the weaker variant:

Lemma 3. Let Δ contain rules of any previously described type (i.e., local, global,
broadcast, rendez-vous), and let m + 1 is the largest arity of a rendez-vous rule in Δ.
Then, for any k and V ⊆ Ck, αk(post(γk(V))) ∪ V = αk(post(γk+m

k (V))) ∪ V.

Global variables. Communication via shared variables is modeled using a special pro-
cess, called controller. Its local state records the state of all shared variables in the sys-
tem. A configuration of a system with global variables is then a word s1 . . .snc where
s1, . . . ,sn are the states of individual processes and c is the state of the controller. An
individual process can read and update a shared variable. A read is modeled by a rendez-
vous rule of the form (s → s′,c → c) where c is a state of the controller and s,s′ are states
of the process. An update is modeled using a rendez-vous rule (s → s′,c → c′).

To verify systems with shared variables of finite domains, we use a variant of the
abstraction function which always keeps the state of the controller in the view. Formally,
for a configuration wc where w ⊆ Q+ and c is the state of the controller, αk returns the
set of words vc where v is a subword of w of length at most k. The concretization and
abstract-post image are then defined analogously as before, based on αk, Lemma 1 and
Lemma 2 still hold. The method of Section 3 can be thus used in the same way as
before.

Another type of global variable is a process pointer, i.e., a variable ranging over
process indices. This is used, e.g., in Dijkstra’s mutual exclusion protocol. A process
pointer is modeled by a local Boolean flag p for each process state. The value of p is

199

486 P.A. Abdulla, F. Haziza, and L. Holı́k

true iff the pointer points to the process (it is true for precisely one process in every
configuration). An update of the pointer is modeled by a rendez-vous transition rule
which sets to false the flag of the process currently pointed to by the pointer and sets to
true the flag of the process which is to become the target of the pointer.

4.2 Transitions That Do not Preserve Size

We now discuss the case when the transition relation does not preserve size of con-
figurations, which happens in the case of generalised rendez-vous. Rk then cannot be
computed straightforwardly since computations reaching configurations of the size up
to k may traverse configurations of larger sizes. Therefore, similarly as in [21], we only
consider runs of the system visiting configurations of the size up to k. That is, on line 2
of Algorithm 1, instead of computing Rk = µX . Ik ∪ post(X), we compute its under-
approximation µX .(I ∪ post(X))∩Ck. The computation terminates provided that Ck is
finite. The algorithm is still guaranteed to return Unsafe if a configuration in Bad is
reachable, since then there is k ∈ N such that the bad configuration is reachable by a
finite path traversing configurations of the size at most k.

4.3 Non-atomic Global Conditions

We extend our method to handle systems where global conditions are not checked atom-
ically. We replace both existentially and universally guarded transition rules by a simple
variant of a for-loop rule:

if foreach j ◦ i : S then q → r else q → s

where q,r,s ∈ Q is resp. a source state, a target state, and an escape state, ◦ ∈ {<,>, 	=},
and S ⊆ Q is a condition. For instance, line 2 of Burns’ protocol would be replaced by
if foreach j < i : {1,2,3} then 2 → 3 else 2 → 1.

The semantics of a system with for-loop rules is defined as an extension of the tran-
sition system from Section 2. Configurations are extended with a binary relation over
their positions, that is, a configuration is now a pair (c,�) where c is a word over Q and
� is a binary relation over its positions {1, . . . , |c|}. The relation � is used to encode
intermediate states of for-loops. Intuitively, a process at position i performing a for-loop
puts (i, j) into � to mark that it has processed the position j.

Formally, a parameterized system P = (Q,Δ) which includes for-loop rules induces
a transition system T =(C,→) whereC ⊆ Q+×(N×N). For technical convenience, we
assume that a source of a for-loop rule in Δ is not a source of any other rule in Δ.1Then
every for-loop rule if foreach j ◦ i : S then q → r else q → s induces transitions t =
(w,�) → (w′,�′) with w[i] = q for some i : 1 ≤ i ≤ |w| which may be of the following
three forms: (illustrated using the aforementioned example rule from Burn’s protocol).

1 Without this restriction, the state of a process would have to contain additional information
recording which for-loop is the process currently performing. Note that the restriction does
not limit the modeling power of the formalism. Any potential branching may be moved to
predecessors of the sources of the for-loop.

200

All for the Price of Few 487

Iteration: The ith process checks that the state of a next
unchecked process in the range is in S and marks it. That
is, there is j : 1 ≤ j ≤ |w| with j ◦ i, (i, j) 	∈ �, w[j] ∈ S, and
the resulting configuration has w′ = w and �′ = �∪{(i, j)}.

2→
2

Iteration

Escape: If the state of some process in the range which is still
to be checked violates the loop condition, then the ith process
may escape to the state s. That is, there is j : 1 ≤ j ≤ |w|
with j◦ i, (i, j) 	∈�, and w[j] 	∈ S. The resulting configuration
has w′[k] = w[k] for all k 	= i and w[i] = s. The execution of
the for-loop ends and the marks of process i are reset, i.e.,
�′ = �\ {(i,k) | k ∈ N}.

24 →

14

Escape

Terminal: When the states of all processes from the range
have been successfully checked, the for-loop ends and the ith
process moves to the terminal state r. That is, if there is no
j : 1 ≤ j ≤ |w| with j ◦ i and (i, j) 	∈ �, then w′[k] = w[k] for
all k 	= i, w′[i] = r, and �′ = �\ {(i,k) | k ∈ N}.

2→

3

Terminal

Other rules behave as before on the w part of configurations and they do not influence
the � part. That is, a local, broadcast, or rendez-vous rule induces transitions (w,�) →
(w′,�) where w → w′ is a transition induced by the rule as described in Section 2.

Verification. To verify systems with for-loop rules using our method, we define an
abstraction αk. Intuitively, we view a configuration c = (w,�) as a graph with vertices
being the positions of w and edges being defined by (i) the ordering of the positions and
(ii) the relation �. The vertices are labeled by the states of processes at the positions.
αk(c) then returns the set of subgraphs of c where every subgraph contains a subset of
at most k vertices of c (positions of w) and the maximal subset of edges of c adjacent
with the chosen vertices.

Formally, given a configuration c = (w,�), αk(c) is the set of views v = (w′,�′) ∈ C
of size at most k (i.e., |w′| = l ≤ k) such that there exists an injection ρ : {1, . . . l} →
{1, . . . , |w|}, l ≤ k where for all i, j : 1 ≤ i, j ≤ l:

– i < j iff ρ(i) < ρ(j),
– w′[i] = w[ρ(i)] (i.e., w′ w), and
– (i, j) ∈ �′ iff (ρ(i),ρ(j)) ∈ �.

The notions of concretization and abstract post-image are defined in the same manner as
in Section 3 based on based on α. Lemma 1 holds here in the same wording (as shown
in the appendix). Thus the verification method for systems with for-loops is analogous
to the method of Section 3.

4.4 Tree Topology

We extend our method to systems where configurations are trees. For simplicity, we
restrict ourselves to complete binary trees.

201

488 P.A. Abdulla, F. Haziza, and L. Holı́k

Trees. Let N be a prefix closed set of words over the alphabet {0,1} called nodes and
let Q be a finite set. A (binary) tree over Q is a mapping t : N → Q. The node ε is
called the root, nodes that are not prefixes of other nodes are called leaves. For a node
v = v′i, i ∈ {0,1}, v′ is the parent of v, the node v0 is the left child of v and v1 is its
right child. Every node v′ = vw,w ∈ {0,1}+ is a descendant of v. The depth of the tree
is the length of the longest leaf. A tree is complete if all its leaves have the same length
and every non-leaf node has both children. A tree t ′ : N′ → Q is a subtree of t, denoted
t ′ � t, iff there exists a injective map e : N′ → N which respects the descendant relation
and labeling. That is, t ′(v) = t(e(v)) and v is a descendant of v′ iff e(v) is a descendant
of e(v′).

Parameterized systems with tree topology. The definitions for parameterized systems
with a tree topology are analogous to the definitions for systems with a linear topology
(Section 2). A parameterized system P = (Q,Δ) induces a transition system T = (C,→)
where C is the set of complete trees over Q. The set Δ of transition rules is a set of local
and tree transition rules. The transitions of → are obtained from rules of Δ as follows.
A local rule is of the form s → s′ and it locally changes the label of a node from s to s′.
A tree rule is a triple s(s0,s1) → s′(s′

0,s
′
1). The rule can be applied to a node v and its

left and right children v0, v1 with labels s, s0, and s1, respectively, and it changes their
labels to s′, s′

0, and s′
1, respectively.

The reachability problem is defined in a similar manner to the case of linear systems.
The set B of minimal bad configurations is a finite set of trees over Q, I is a regular
tree-language, and Bad is the upward closure of B w.r.t. the subtree relation �. In the
notation Cn and Rn, n refers to the depth of trees rather than to the length of words.

Verification. The verification method of Section 3 is easily extended to the tree topol-
ogy. The text of Section 3 can be taken almost verbatim with the difference that instead
of words, we manipulate complete trees, subword relation is replaced by subtree re-
lation, and k now refers to the depth of trees rather than the length of words. That is,
a view of size k is a tree of depth k and the abstraction αk(t) returns all complete sub-
trees of depth at most k of the tree t. Concretization and abstract post-image are defined
analogously as in Section 3, based on αk. The set I may be given in the form of a tree
automaton. The computation of αk(I) may be then done over the structure of the tree
automaton. We can compute the abstract post-image since Lemma 1 holds here in the
same wording as in Section 3. The test γk(V)∩Bad = /0 is carried out in the same way
as in Section 3 since Bad is an upward closure of a set B w.r.t. �. The points 1-4 of
Section 3 are thus satisfied and Algorithm 1 can be used as a verification procedure for
systems with tree topology.

4.5 Ring Topology

The method can be extended also to systems with a ring topology. In a parameterized
system with ring topology, processes are organized in a circular array and they syn-
chronize by near-neighbor communication. We model system with a ring topology as
systems with linear topology of Section 2, where a configuration c ∈ Q+ is interpreted
as a circular word. The set Δ may contain local and near-neighbor transition rules.

202

All for the Price of Few 489

A near-neighbor rule is a pair (s1 → s′
1,s2 → s′

2). It induces the transition c → c′ of →
if either c = cL s1s2 cR and c′ = cL s′

1s′
2 cR (i.e. the 2 processes are adjacent in the config-

uration c) or c = s2 c̄ s1 and c′ = s′
2 c̄ s′

1 (i.e. the 2 processes are positioned at the end of
the configuration c). The latter case covers the communication between the extremities
since configurations encode circular words.

Verification. A word u is a circular subword of a word v, denoted u � v, iff there are
v1,v2 such that v = v1v2 and u v2 v1. The only difference compared to the method
for the systems with a linear topology is that the standard subword relation is in all
definitions replaced by the circular subword relation �. An equivalent of Lemma 1
holds here in unchanged wording, points 1-4 are satisfied, and Algorithm 1 is thus
a verification procedure for systems with ring topology.

4.6 Multiset Topology

Systems which we refer to as systems with multiset topology are a special case of the
systems with a linear topology of Section 2. Typical representatives of these systems are
Petri nets, which correspond precisely to systems of Section 4 with only (generalized)
rendez-vous transitions. Systems with multiset topology may contain all types of tran-
sitions including local, global, broadcast, and rendez-vous, with the exception of global
transitions with the scope of indices j > i and j < i (i.e., only j 	= i is permitted). Since
the processes have no way of distinguishing their respective positions within a configu-
ration, the notion of ordering of positions within a configuration is not meaningful and
configurations can be represented as multisets.

5 Completeness for Well Quasi-Ordered Systems

In this section, will show that the scheme desribed by Algorithm 1 is complete for a
wide class of well-quasi ordered systems. To state the result in general terms, we will
first give some definitions from the theory of well quasi-ordered systems (c.f. [1]).

A well quasi-ordering (WQO) is a preorder � over a set S such that for every infinite
sequence s1,s2, . . . of elements of S, there exists i and j such that i < j and si � s j. The
upward-closure ↑T of a set T ⊆ S w.r.t. � is the set {s ∈ S | ∃t ∈ T : t � s} and its
downward-closure is the set ↓T = {s ∈ S | ∃t ∈ T : s � t}. A set is upward-closed if it
equals its upward-closure and it is downward-closed if it equals its downward-closure.
If T is upward closed, its complement S \ T is downward closed and, conversely, if T
is downward closed, its complement is upward closed. For every upward closed set T ,
there exists a minimal (w.r.t ⊆) set Gen such that ↑Gen = T , called generator of T ,
which is finite. If moreover � is a partial order, then Gen is unique.

A relation R ⊆ S × S is monotonic w.r.t. � if whenever (s1,s2) ∈ R and s1 � s′
1, then

there is s′
2 with (s′

1,s
′
2) ∈ R and s2 � s′

2. Given a relation f ⊆ S × S monotonic w.r.t. �
and a set T ⊆ S, it holds that if f (T) ⊆ T , then f (↓T) ⊆ ↓T , where f (T) is the image
of T defined as {t ′ | ∃t ∈ T : (t, t ′) ∈ f}.

The reasoning in Section 3 is based on the natural notion of a size of a configuration.
Its generalization is the notion of a discrete measure over a set S, a function |.| : S → N

203

490 P.A. Abdulla, F. Haziza, and L. Holı́k

which fulfills the property that for every k ∈ N, {s ∈ S | |s| = k} is finite. A discrete mea-
sure is necessary to obtain the completeness result as it allows enumerating elements
of S of the same size. In particular, this property guarantees termination of the fixpoint
computation on Line 3 of Algorithm 1. We note that the existence of a discrete measure
is implied by a stronger restriction of [8] to the so called discrete transition systems.

We say that a transition system T = (C,→) is well-quasi ordered by a WQO � ⊆
C ×C if → is monotonic w.r.t. �. Given a well-quasi ordered transition system and
a measure |.| : C → N, we define an abstraction function αk,k ∈ N such that αk(c) =
{c′ ∈ C | c′ � c}. The corresponding concretization γk and abstract post-image Apostk
are then defined based on αk and |.| as in Section 3.1.

Lemma 2 holds here in the same wording as in Section 3. The main component of
the completeness result is the following theorem.

Theorem 1. Let T = (C,→) be a well-quasi ordered transition system with a measure
|.|. Let I be any subset of C and let Bad be upward-closed w.r.t. �. Then, if T is safe w.r.t.
I and Bad, then there is k ∈ N such that for V = µX .αk(I)∪Apostk(X), Bad∩γk(V) = /0.

Proof. Recall first that γk,post,Apostk,αk are monotonic functions w.r.t. ⊆ for all k ∈ N.
Let Gen be the minimal generator of the upward closed set C \ ↓R . We will prove that
k can be chosen as k = max{|c| | c ∈ Gen}. Such k exists because Gen is finite.

We first show an auxiliary claim that γk(αk(↓R)) ⊆ ↓R . Let s ∈ γk(αk(↓R)). For the
sake of contradiction, suppose that s 	∈ ↓R . We have that s ∈ C \ ↓R = ↑Gen and there
is a generator t ∈ Gen with t � s. By the definition of k, |t| ≤ k. Since t ∈ Gen, t 	∈ ↓R
and hence t 	∈ αk(↓R). But due to this and since t � s, we have that s 	∈ γk(αk(↓R)) (by
the definition of γk) which contradicts the initial assumption and the claim is proven.

Next, we argue that αk(↓R) is stable under abstract post, that is, Apostk(αk(↓R)) ⊆
αk(↓R). Since R is stable under post and post is monotonic w.r.t. �, we know that ↓R
is stable under post (that is, post(↓R) ⊆ ↓R). Then, by the definition of Apostk, and
by monotonicity of αk w.r.t. ⊆, we have Apostk(αk(↓R)) = αk(post(γk(αk(↓R)))) ⊆
αk(post(↓R)) ⊆ αk(↓R).

Since ↓R contains I, αk(I) ⊆ αk(↓R). αk(↓R) is thus a fixpoint of λX .αk(I) ∪
Apostk(X). Because V is the least fixpoint of λX .αk(I)∪Apostk(X), V ⊆ αk(↓R). From,
R ∩ Bad = /0 and since Bad is upward closed, we know that ↓R ∩ Bad = /0. Because
γk(V) ⊆ γk(αk(↓R)) ⊆ ↓R and ↓R ∩Bad = /0, γk(V)∩Bad = /0. ��

Theorem 1 guarantees that for a safe well quasi-ordered system, there exists k for which
the test on line 4 of Algorithm 1 succeeds. Conversely, Lemma 2, which, as mentioned
above, still holds for the general class of well-quasi ordered systems, then assures than
if the test on line 2 succeeds, the system is indeed safe.

Complete algorithm. The schema described by Algorithm 1 (or its variant from Sec-
tion 4.2 if the transition relation is not size-preserving) gives a complete verification
procedure for a well quasi-ordered system provided that all the four steps of its for-loop
can be effectively evaluated. This is guaranteed by the following requirements:

i. αk(I) can be computed,
ii. the measure |.| is discrete,

204

All for the Price of Few 491

iii. for a configuration c, post(c) and αk(c) can be computed,
iv. for a finite set of views V , γk+1

k (V) can be computed, and
v. a variant of Lemma 1 holds.

Point (i) is point 1 of Section 3. Points (ii)-(v) guarantee that we can compute abstract
post-image (point 2 of Section 3). We can test γk(V)∩ Bad = /0 (point 3 of Section 3)
since due to (ii), V is always finite. Exact reachability analysis of configurations of a
bounded size (point 4 of Section 3) can be carried out since we can iterate post due to
(iii) and the iteration terminates after a finite number of steps due to (ii). Point (ii) also
assures termination of the computation of the fixpoint on line 3 (V is always finite).

Overall, Algorithm 1 is a complete verification procedure for parameterized systems
of Section 2 with local and existential transitions rules, broadcast and rendez-vous. The
induced transition relation is indeed monotonic w.r.t. the preorder which is a WQO
and the length of a configuration is a discrete measure. An important subclass of such
systems are Petri nets, which, as mentioned in Section 4, correspond to systems with
multiset topology and generalized rendez-vous transition rules. Systems of Section 2
with universally guarded transition rules do not satisfy the assumptions: the induced
transition relation is not monotonic.

6 Experimental Results

Based on our method, we have implemented a prototype in OCaml to check safety prop-
erties for a number of parameterized systems with different topologies. The examples
cover cache coherence protocols, communication protocols through trees and rings and
mutual exclusion protocols.

Table 1. Experimental Results

Protocol Time k |V | γk+�
k (V)

Array

Demo (toy example) 0.01s 2 17 53
Burns 0.01s 2 34 186
Dijkstra 0.07s 2 93 695
Szymanski 0.02s 2 48 264

Multiset
MOSI Coherency 0.01s 1 10 23
German’s Coherency 15.3s 6 1890 15567

Petri Net

German (simplified) 0.03s 2 43 96
BH250 2.85s 2 503 503
MOESI Coherency 0.01s 1 13 20
Critical Section 0.01s 5 27 46
Kanban ? ≥ 20 ? ?

Tree
Percolate 0.05s 2 34 933
Tree Arbiter 0.7s 2 88 7680
Leader Election 0.1s 2 74 362

Ring Token Passing 0.01s 2 2 2

205

492 P.A. Abdulla, F. Haziza, and L. Holı́k

We report the results in Table 1, running on a 2.4 GHz laptop with 4GB memory.
We have categorized the experiments per topology. We display the running times (in
seconds), the value of k and the final number of views generated (|V |). In most cases,
the method terminates almost immediately illustrating the small model property: all
patterns occur for small instances of the system. Observe that the sizes of the views are
small as well, confirming the intuition that interactions between processes are of limited
scope.

The bulk of the algorithm lies in the computation of the set γk+�
k (V) and also the set

Rk. An example on which the algorithm fails is the Kanban system from [24]. This is
a typical case where the cut-off condition is satisfied at high values of k. [24] refers
to the computation of, at least, the set R20. R20 is large and so is the concretization of
its views.

7 Related Work

An extensive amount of work has been devoted to regular model checking, e.g. [25,12];
and in particular augmenting regular model checking with techniques such as widen-
ing [9,32], abstraction [10], and acceleration [5]. All these works rely on computing the
transitive closure of transducers or on iterating them on regular languages. Our method
is significantly simpler and more efficient.

A technique of particular interest for parameterized systems is that of counter ab-
straction. The idea is to keep track of the number of processes which satisfy a certain
property [22,17,13,14,30]. In general, counter abstraction is designed for systems with
unstructured or clique architectures. As mentioned, our method can cope with these
kinds of systems but also with more general classes of topologies. Several works re-
duce parameterized verification to the verification of finite-state models. Among these,
the invisible invariants method [6,31] and the work of [29] exploit cut-off properties to
check invariants for mutual exclusion protocols. The success of the method depends on
the heuristic used in the generation of the candidate invariant. This method sometimes
(e.g. for German’s protocol) requires insertion of auxiliary program variables for com-
pleting the proof. The nature of invariants generated by our method is similar to that
of the aforementioned works, since our invariant sets of views of size at most k can be
seen as universally quantified assertions over reachable k-tuples of processes.

In [7], finite-state abstractions for verification of systems specified in WS1S are com-
puted on-the-fly by using the weakest precondition operator. The method requires the
user to provide a set of predicates on which to compute the abstract model.

The idea of refining the view abstraction by increasing k is similar in spirit to the
work of [28] which discusses increasing precision of thread modular verification (Carte-
sian abstraction) by remembering some relationships between states of processes. Their
refinement mechanism is more local, targeting the source of undesirable imprecision;
however, it is not directly applicable to parameterized verification.

Environment abstraction [11] combines predicate abstraction with the counter ab-
straction. The technique is applied to Szymanski’s algorithm. The model of [11] con-
tains a more restricted form of global conditions than ours, and also does not include

206

All for the Price of Few 493

features such as broadcast communication, rendez-vous communication, and dynamic
creation and deletion of processes.

Recently, we have introduced the method of monotonic abstraction [3] that com-
bines regular model checking with abstraction in order to produce systems that have
monotonic behaviors w.r.t. a well quasi-ordering on the state space. In contrast to the
method of this paper, the abstract system still needs to be analyzed using full sym-
bolic reachability analysis on an infinite-state system. The only work we are aware of
which attempts to automatically verify systems with non-atomic global transitions is [4]
which applies monotonic abstraction. The abstraction in this case amounts to a verifi-
cation procedure that operates on unbounded graphs, and thus is a non-trivial extension
of the existing framework. As we saw, our method is easily extended to the case of
non-atomic transitions.

The method of [21,20] and its reformulated, generic version of [19] are in princi-
ple similar to ours. They come with a complete method for well-quasi ordered systems
which is an alternative to backward reachability analysis based on a forward explo-
ration. Unlike our method, they target well-quasi ordered systems only and have not
been instantiated for topologies other than multisets and lossy channel systems.

Constant-size cut-offs have been defined for ring networks in [16] where commu-
nication is only allowed through token passing. More general communication mecha-
nisms such as guards over local and shared variables are described in [15]. However,
the cut-offs are linear in the number of states of the components, which makes the ver-
ification task intractable on most of our examples.

The closest work to ours is the one in [24] that also relies on dynamic detection of
cut-off points. The class of systems considered in [24] corresponds essentially to Petri
nets. In particular, it cannot deal with systems with linear or tree-like topologies. The
method relies on the ability to perform backward reachability analysis on the underlying
transition system. This means that the algorithm of [24] cannot be applied on systems
with undecidable reachability problems (such as the ones we consider in this paper).
The method of [24] is yet complete.

8 Conclusion and Future Work

We have presented a uniform framework for automatic verification of different classes
of parameterized systems with topologies such as words, trees, rings, or multisets, with
an extension to handle non-atomic global conditions. The framework allows to per-
form parameterized verification by only considering a small set of instances of the sys-
tem. We have proved that the presented algorithm is complete for a wide class of well
quasi-ordered systems. Based on the method, we have implemented a prototype which
performs efficiently on a wide range of benchmarks.

We are currently working on extending the framework to the case of multi-threaded
programs operating on dynamic heap structures. These systems have notoriously com-
plicated behaviors. Showing that verification can be carried out through the analysis of
only a small number of threads would allow for more efficient algorithms for these sys-
tems. Furthermore, our algorithm relies on a very simple abstraction function, where a
configuration of the system is approximated by its sub-structures (subwords, subtrees,

207

494 P.A. Abdulla, F. Haziza, and L. Holı́k

etc.). We believe that our approach can be lifted to more general classes of abstractions.
This would allow for abstraction schemes that are more precise than existing ones, e.g.,
thread-modular abstraction [18] and Cartesian abstraction [27].

Obviously, the bottleneck in the application of the method is when the cut-off condi-
tion is only satisfied at high values of k (see e.g., the Kanban example in Section 6). We
plan therefore to integrate the method with advanced tools that can perform efficient
forward reachability analysis, like SPIN [23], and to use efficient symbolic encodings
for compact representations for the set of views.

Acknowledgements. This work was supported by the Uppsala Programming for Mul-
ticore Architectures Research Center (UpMarc) and the Czech Science Foundation
(project P103/10/0306).

References

1. Abdulla, P.A.: Well (and better) quasi-ordered transition systems. Bulletin of Symbolic
Logic 16(4), 457–515 (2010)

2. Abdulla, P.A., Čerāns, K., Jonsson, B., Tsay, Y.K.: General decidability theorems for infinite-
state systems. In: LICS 1996, pp. 313–321 (1996)

3. Abdulla, P.A., Delzanno, G., Ben Henda, N., Rezine, A.: Regular Model Checking Without
Transducers (On Efficient Verification of Parameterized Systems). In: Grumberg, O., Huth,
M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 721–736. Springer, Heidelberg (2007)

4. Abdulla, P.A., Ben Henda, N., Delzanno, G., Rezine, A.: Handling Parameterized Systems
with Non-atomic Global Conditions. In: Logozzo, F., Peled, D.A., Zuck, L.D. (eds.) VMCAI
2008. LNCS, vol. 4905, pp. 22–36. Springer, Heidelberg (2008)

5. Abdulla, P.A., Jonsson, B., Nilsson, M., d’Orso, J.: Regular Model Checking Made Simple
and Efficient. In: Brim, L., Jančar, P., Křetı́nský, M., Kučera, A. (eds.) CONCUR 2002.
LNCS, vol. 2421, pp. 116–130. Springer, Heidelberg (2002)

6. Arons, T., Pnueli, A., Ruah, S., Xu, J., Zuck, L.: Parameterized Verification with Automati-
cally Computed Inductive Assertions. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001.
LNCS, vol. 2102, pp. 221–234. Springer, Heidelberg (2001)

7. Baukus, K., Lakhnech, Y., Stahl, K.: Parameterized Verification of a Cache Coherence Proto-
col: Safety and Liveness. In: Cortesi, A. (ed.) VMCAI 2002. LNCS, vol. 2294, pp. 317–330.
Springer, Heidelberg (2002)

8. Bingham, J.D., Hu, A.J.: Empirically Efficient Verification for a Class of Infinite-State Sys-
tems. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 77–92.
Springer, Heidelberg (2005)

9. Boigelot, B., Legay, A., Wolper, P.: Iterating Transducers in the Large. In: Hunt Jr., W.A.,
Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 223–235. Springer, Heidelberg (2003)

10. Bouajjani, A., Habermehl, P., Vojnar, T.: Abstract Regular Model Checking. In: Alur, R.,
Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 372–386. Springer, Heidelberg (2004)

11. Clarke, E., Talupur, M., Veith, H.: Environment Abstraction for Parameterized Verification.
In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 126–141.
Springer, Heidelberg (2006)

12. Dams, D., Lakhnech, Y., Steffen, M.: Iterating Transducers. In: Berry, G., Comon, H., Finkel,
A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 286–297. Springer, Heidelberg (2001)

13. Delzanno, G.: Automatic Verification of Cache Coherence Protocols. In: Emerson, E.A.,
Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 53–68. Springer, Heidelberg (2000)

208

All for the Price of Few 495

14. Delzanno, G.: Verification of consistency protocols via infinite-state symbolic model check-
ing. In: FORTE 2000. IFIP Conference Proceedings, vol. 183, pp. 171–186. Kluwer (2000)

15. Emerson, E.A., Kahlon, V.: Reducing Model Checking of the Many to the Few. In:
McAllester, D. (ed.) CADE 2000. LNCS, vol. 1831, pp. 236–254. Springer, Heidelberg
(2000)

16. Emerson, E.A., Namjoshi, K.: Reasoning about rings. In: POPL 1995, pp. 85–94 (1995)
17. Esparza, J., Finkel, A., Mayr, R.: On the verification of broadcast protocols. In: LICS 1999.

IEEE Computer Society (1999)
18. Flanagan, C., Qadeer, S.: Thread-Modular Model Checking. In: Ball, T., Rajamani, S.K.

(eds.) SPIN 2003. LNCS, vol. 2648, pp. 213–224. Springer, Heidelberg (2003)
19. Ganty, P., Raskin, J.-F., Van Begin, L.: A Complete Abstract Interpretation Framework for

Coverability Properties of WSTS. In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006.
LNCS, vol. 3855, pp. 49–64. Springer, Heidelberg (2006)

20. Geeraerts, G., Raskin, J.-F., Van Begin, L.: Expand, Enlarge and Check.. Made Efficient. In:
Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 394–407. Springer,
Heidelberg (2005)

21. Geeraerts, G., Raskin, J.F., Begin, L.V.: Expand, Enlarge and Check: New algorithms for the
coverability problem of WSTS. J. Comput. Syst. Sci. 72(1), 180–203 (2006)

22. German, S.M., Sistla, A.P.: Reasoning about systems with many processes. J. ACM 39(3),
675–735 (1992)

23. Holzmann, G.J.: The model checker spin. IEEE Trans. Software Eng. 23(5), 279–295 (1997)
24. Kaiser, A., Kroening, D., Wahl, T.: Dynamic Cutoff Detection in Parameterized Concur-

rent Programs. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174,
pp. 645–659. Springer, Heidelberg (2010)

25. Kesten, Y., Maler, O., Marcus, M., Pnueli, A., Shahar, E.: Symbolic model checking with
rich assertional languages. Theor. Comput. Sci. 256, 93–112 (2001)

26. Lynch, N.A., Shamir, B.P.: Distributed algorithms, lecture notes for 6.852, fall 1992. Tech.
Rep. MIT/LCS/RSS-20, MIT (1993)

27. Malkis, A., Podelski, A., Rybalchenko, A.: Thread-Modular Verification Is Cartesian Ab-
stract Interpretation. In: Barkaoui, K., Cavalcanti, A., Cerone, A. (eds.) ICTAC 2006. LNCS,
vol. 4281, pp. 183–197. Springer, Heidelberg (2006)

28. Malkis, A., Podelski, A., Rybalchenko, A.: Precise Thread-Modular Verification. In: Riis
Nielson, H., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, pp. 218–232. Springer, Heidelberg
(2007)

29. Namjoshi, K.S.: Symmetry and Completeness in the Analysis of Parameterized Systems.
In: Cook, B., Podelski, A. (eds.) VMCAI 2007. LNCS, vol. 4349, pp. 299–313. Springer,
Heidelberg (2007)

30. Pnueli, A., Xu, J., Zuck, L.D.: Liveness with (0,1,∞)-Counter Abstraction. In: Brinksma, E.,
Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 107–122. Springer, Heidelberg (2002)

31. Pnueli, A., Ruah, S., Zuck, L.D.: Automatic Deductive Verification with Invisible Invariants.
In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 82–97. Springer, Heidel-
berg (2001)

32. Touili, T.: Regular Model Checking using Widening Techniques. Electronic Notes in Theo-
retical Computer Science 50(4) (2001); Proc. of VEPAS 2001

209

Int J Softw Tools Technol Transfer (2017) 19:549–563
DOI 10.1007/s10009-016-0415-4

TACAS 2013

An integrated specification and verification technique for highly
concurrent data structures for highly concurrent data structures

Parosh Aziz Abdulla1 · Frédéric Haziza1 · Lukáš Holík1,2 · Bengt Jonsson1 ·
Ahmed Rezine3

Published online: 16 March 2016
© Springer-Verlag Berlin Heidelberg 2016

Abstract We present a technique for automatically verify-
ing safety properties of concurrent programs, in particular
programs that rely on subtle dependencies of local states of
different threads, such as lock-free implementations of stacks
and queues in an environment without garbage collection.
Our technique addresses the joint challenges of infinite-
state specifications, an unbounded number of threads, and
an unbounded heap managed by explicit memory allocation.
Our technique builds on the automata-theoretic approach to
model checking, in which a specification is given by an
automaton that observes the execution of a program and
accepts executions that violate the intended specification.We
extend this approach by allowing specifications to be given
by a class of infinite-state automata. We show how such
automata can be used to specify queues, stacks, and other
data structures, by extending a data-independence argument.
For verification, we develop a shape analysis, which tracks
correlations between pairs of threads, and a novel abstrac-
tion to make the analysis practical. We have implemented
our method and used it to verify programs, some of which
have not been verified by any other automatic method before.

F. Haziza and L. Holik were in part supported by the Uppsala
Programming for Multicore Architectures Research Center
(UPMARC). L. Holik was in part supported by the Czech Science
Foundation (project 13-37876P), the internal projects of Brno
University of Technology FIT-S-12-1 and FIT-S-14-2486. A. Rezine
was in part supported by the CENIIT research organization at
Linköping (project 12.04).

B Ahmed Rezine
ahmed.rezine@liu.se

1 Uppsala University, Uppsala, Sweden

2 Brno University of Technology, Brno, Czech Republic

3 Linköping University, Linköping, Sweden

Keywords Verification · Pointer programs · Explicit
memory allocation · Queue · Stack · Unbounded ·
Concurrency · Specification · Linearizability

1 Introduction

We consider one of the most difficult current challenges in
software verification, namely to automate its application to
algorithms with an unbounded number of threads that con-
currently access a dynamically allocated shared state. Such
algorithms are of central importance in concurrent programs.
They are widely used in libraries, such as the Intel Thread-
ing Building Blocks or the java.util.concurrent package, to
provide efficient concurrent realizations of simple interface
abstractions. They are notoriously difficult to get correct
and verify, since they often employ fine-grained synchro-
nization and avoid locking wherever possible. A number of
bugs in published algorithms have been reported [11,20].
It is therefore important to develop efficient techniques for
verifying conformance to simple abstract specifications of
overall functionality, a concurrent implementation of a com-
mon data type abstraction, such as a queue, should be verified
to conform to a simple abstract specification of a (sequential)
queue.

We present an integrated technique for specifying and
automatically verifying whether a concurrent program con-
forms to an abstract specification of its functionality. Our
starting point is the automata-theoretic approach to model
checking [31], in which programs are specified by automata
that accept precisely those executions that violate the
intended specification, and verified by showing that these
automata never accept when they are composed with the pro-
gram. This approach is one of themost successful approaches
to automated verification of finite-state programs, but is still

123

210

550 P. A. Abdulla et al.

insufficiently developed for infinite-state programs. In order
to use this approach for our purposes, we must address a
number of challenges.

1. The abstract specification is infinite-state, because the
implemented data structure may contain an unbounded
number of data values from an infinite domain.

2. The program is infinite-state in several dimensions: it (i)
consists of an unbounded number of concurrent threads,
(ii) uses unbounded dynamically allocated memory, and
(iii) the domain of data values is unbounded.

3. The program does not rely on automatic garbage col-
lection, but manages memory explicitly. This requires
additional mechanisms to avoid the ABA problem, i.e.,
that a thread mistakenly confuses an outdated pointer
with a valid one. We assume a sequentially consistent
memory model.

Each of these challenges requires a significant advancement
over current specification and verification techniques.

We cope with challenge 1 by combining two ideas. First,
we present a novel technique for specifying programs by a
class of automata, called observers. They extend automata,
as used by [31], by being parameterized on a finite set of vari-
ables that assume values from an unbounded domain. This
allows to specify properties that should hold for an infinite
number of data values. In order to use our observers to specify
queues, stacks, etc., where one must “count” the number of
copies of a data value that have been inserted but not removed,
wemust extend the power of observers by a second idea. This
is a data independence argument, adapted fromWolper [35],
which implies that it is sufficient to consider executions in
which any data value is inserted at most once. This allows
us to succinctly specify data structures such as queues and
stacks, using observers with typically less than 3 variables.

To cope with challenge 2(i), we would like to adapt the
successful thread-modular approach [5], which verifies a
concurrent program by generating an invariant that corre-
lates the global statewith the local state of an arbitrary thread.
However, to cope with challenge 3, the generated invariant
must be able to express that at most one thread accesses some
cell on the global heap. Since this cannot be expressed in the
thread-modular approach, we therefore extend this approach
to generate invariants that correlate the global state with the
local states of an arbitrary pair of threads.

To copewith challenge 2(ii) we need to use shape analysis.
We adapt a variant of the transitive closure logic by Bingham
and Rakamarić [6] for reasoning about heaps with single
selectors, to our framework. This formalism tracks reacha-
bility properties between pairs of pointer variables, and we
adapt it to our analysis, in which pairs of threads are corre-
lated. On top of this, we have developed a novel optimization,
based on the observation that it suffices to track the possible

relations between each pair of pointer variables separately (in
other words, to use Cartesian abstraction over conjunctions
of relations between variables), analogously to the use of
DBMs used in reasoning about timed automata [10]. Finally,
we cope with challenge 2(iii) by first observing that data val-
ues are compared only by equalities or inequalities, and then
employing suitable standard abstractions on the concerned
data domains.

To handle challenge 3, we augment our abstract domain
to allow it to capture the ordering between the counters used
to track the relative ages of the pointers.

We have implemented our technique, and applied it to
specify and automatically verify that a number of concur-
rent programs are linearizable implementations of stacks and
queues [17]. This shows that our new contributions result
in an integrated technique that addresses the challenges 1–
3, and can fully automatically verify a range of concurrent
implementations of common data structures. In particular,
our approach advances the power of automated verification
in the following ways.

• We present a direct approach for verifying that a con-
current program is a linearizable implementation of,
e.g., a queue, which consists in checking a few small
properties of the algorithm, and is thus suitable for
automated verification. Previous approaches typically
verified linearizability separately from conformance to
a simple abstraction, most often using simulation-based
arguments, which are harder to automate than simple
property-checking.

• We can automatically verify concurrent programs that
use explicit memory management. This was previously
beyond the reach of automatic methods.

In addition, on examples that have been verified automati-
cally by previous approaches, our implementation is in many
cases significantly faster.
Overview We give an overview of how our technique can
be used to show that a concurrent program is a linearizable
implementation of a data structure. As described in Sect. 2,
we consider concurrent programs consisting of an arbi-
trary number of sequential threads that access shared global
variables and a shared heap using a finite set of methods. Lin-
earizability provides the illusion that eachmethod invocation
takes effect instantaneously at some point (called the lin-
earization point) between method invocation and return [17].
In Sect. 3, we show how to specify this correctness condition
by first instrumenting each method to generate a so-called
abstract event whenever a linearization point is passed. We
also introduce observers, and show how to use them for spec-
ifying properties of sequences of abstract events. In Sect. 4,
we introduce the data independence argument that allows
observers to specify queues, stacks, and other data struc-

123

211

An integrated specification and verification technique for highly concurrent data structures… 551

tures over unbounded data domains as presented in Sect. 5.
In Sect. 6, we describe our analysis for checking that the
cross-product of the program and the observer cannot reach
an accepting location of the observer. The analysis is based
on a shape analysis, which generates an invariant that cor-
relates the global state with the local states of an arbitrary
pair of threads. We also introduce an optimization that tracks
the possible relations between each pair of pointer variables
separately. We report on experimental results in Sect. 7. Sec-
tion 8 contains conclusions and directions for future work.
This article details the approach presented in [3] and includes
the correctness proofs of the stack and queue data-structures.
Related work Much previous work on verification of con-
current programs has concerned the desection of generic
concurrency problems, such as race conditions, atomicity
violations, or deadlocks [15,23,24]. Verification of confor-
mance to a simple abstract specification has been performed
using refinement techniques,which establish simulation rela-
tions between the implementation and specification, using
partly manual techniques [9,12,13,34].

Amit et al. [4] verify linearizability by verifying confor-
mance to an abstract specification, which is the same as the
implementation, but restricted to serialized executions. They
build a specialized abstract domain that correlates the state
(including the heap cells) of a concrete thread and the state of
the serialized version, and a sequential reference data struc-
ture. The approach can handle a bounded number of threads.
Berdine et al. [5] then generalize the approach of to an
unbounded number of threads by making the shape analysis
thread-modular. In our approach, we need not keep track of
heaps emanating from sequential reference executions, and
so we can use a simpler shape analysis. Plain thread-modular
analysis is also not powerful enough to analyze, e.g., algo-
rithms with explicit memory management. The technique in
[5] thus improves the precision by correlating local states of
different threads. This causes, however, a severe state-space
explosion, which limits the applicability of the method.

Vafeiadis [28] formulates the specification using an
unbounded sequence of data values that represent, e.g., a
queue or a stack. He verifies conformance using a specialized
abstraction to track values in the queue and correlate them
with values in the implementation. Like [26], our technique
for handling values in queues need only consider a small
number of data values (not an unbounded one), for which
it is sufficient to track equalities. The approach is extended
in [29] to automatically infer the position of linearization
points: these have to be supplied in our approach.

Our use of data variables in observers for specifying prop-
erties that hold for all data values in some domain is related
in spirit to the identification of arbitrary but fixed objects
or resources by Emmi et al. [14] and Kidd et al. [19].
In the framework of regular model checking, universally
quantified temporal logic properties can be compiled into

automata with data variables that are assigned arbitrary ini-
tial values [1].

Segalov et al. [25] continue the work of [5] by also con-
sidering an analysis that keeps track of correlations between
threads. They strive to counter the state-space explosion that
[5] suffers from, and propose optimizations that are based on
the assumption that inter-process relationships that need to be
recorded are relatively loose, allowing a rather crude abstrac-
tion over the state of one of the correlated threads. These
optimizations do not work well when thread correlations are
tight. Our experimental evaluation in Sect. 7 shows that our
optimizations of the thread correlation approach achieve sig-
nificantly better analysis times than [25].

There are several works that apply different verification
techniques to programs with a bounded number of threads,
including the use of TVLA [36]. Several approaches pro-
duce decidability results under limited conditions [8], or
techniques based on non-exhaustive testing [7] or state-space
exploration [33] for a bounded number of threads.

2 Programs

We consider systems consisting of an arbitrary number of
concurrently executing threads. Each thread may at any time
invoke one of a finite set of methods. Each method declares
local variables (including the input parameters of themethod)
and a method body. In this paper, we assume that vari-
ables are either pointer variables (to heap cells), or data
variables (assuming values from an unbounded or infinite
domain, which will be denoted by D). The body is built
in the standard way from atomic commands using standard
control flow constructs (sequential composition, and loop
constructs). Method execution is terminated by executing a
return command, which may return a value. The global
variables can be accessed by all threads, whereas local vari-
ables can be accessed only by the thread that is invoking
the corresponding method. We assume that the global vari-
ables and the heap are initialized by an initialization method,
which is executed once at the beginning of program execu-
tion.

Atomic commands include assignments between data
variables, pointer variables, or fields ofmemory cells pointed
to by a pointer variable. The command newnode() allo-
cates a new structure of type node on the heap, and returns a
reference to it. The cell is deallocated by the command free.
The compare-and-swap command CAS(&a,b,c) atomi-
cally compares the values of a and b. If equal, it assigns
the value of c to a and returns TRUE, otherwise, it leaves a
unchanged and returns FALSE.

As an example, Fig. 1 shows a version of the concurrent
queue by Michael and Scott [21]. The program represents
a queue as a linked list from the node pointed to by Head

123

212

552 P. A. Abdulla et al.

Fig. 1 Michael & Scott’s non-blocking queue [21]

to a node that is either pointed by Tail or by Tail’s suc-
cessor. The global variable Head always points to a dummy
cell whose successor, if any, stores the head of the queue. In
the absence of garbage collection, the program must handle
the ABA problem where a thread mistakenly assumes that
a globally accessible pointer has not been changed since it
previously accessed that pointer. Each pointer is therefore
equipped with an additional age field, which is incremented
whenever the pointer is assigned a new value.

The queue can be accessed by an arbitrary number
of threads, either by calling an enqueue method enq(d),
which inserts a cell containing the data value d at the tail,
or by calling a dequeue method deq(d), which returns
empty if the queue is empty, and otherwise advances
Head, deallocates the previous dummy cell and finally
returns the data value stored in the new dummy cell. The
algorithm uses the atomic compare-and-swap (CAS) oper-
ation. For example, the command CAS(&Head, head,
〈next.ptr,head.age+1〉) at line 29 of thedeqmethod
checks whether the extended pointer Head equals the
extendedpointerhead (meaning that bothfieldsmust agree).
If not, it returns FALSE. Otherwise it returns TRUE after
assigning 〈next.ptr,head.age+1〉 to Head.

3 Specification by observers

To specify a correctness property,we instrument eachmethod
to generate abstract events. An abstract event is a term of the
form l(d1, . . . , dn) where l is an event type, taken from a
finite set of event types, and d1, . . . , dn are data values in
D. To specify linearizability, the abstract event l(d1, . . . , dn)
generated by amethod should be such that l is the name of the
method, and d1, . . . , dn is the sequence of actual parameters
and return values in the current invocation of the method.
This can be established using standard sequential verification
techniques.

We illustrate how to instrument the program of Fig. 1 in
order to specify that it is a linearizable implementation of
a queue. The linearization points are at lines 9, 21 and
29. For instance, line 9 of the enq method called with data
valued is instrumented to generate the abstract eventenq(d)

when theCAS command succeeds; no abstract event is gener-
ated when the CAS fails. Generation of abstract events can be
conditional. For instance, line 21 of thedeqmethod is instru-
mented to generate deq(empty)when the value assigned to
next satisfies next.ptr = NULL (i.e., it will cause the
method to return empty at line 25).

Each execution of the instrumented programwill generate
a sequence of abstract events called a trace. A correctness
property (or simply a property) is a set of traces. We say that
an instrumented program satisfies a property if each trace of
the program is in the property. In contrast to the classical
(finite-state) automata-theoretic approach [31], we specify
properties by infinite-state automata, called observers. An
observer has a finite set of control locations, and a finite set of
data variables that range over potentially infinite domains. It
observes the trace and can reach an accepting control location
if the trace is not in the property.

Formally, let a parameterized event be a term of the form
l(p1, . . . , pn), where p1, . . . , pn are formal parameters. We
willwrite p for p1, . . . , pn , andd ford1, . . . , dn .Anobserver
consists of a finite set of observer locations, one of which
is initial and some of which are accepting, a finite set of
observer variables, and a finite set of transitions. Each tran-

sition is of form s
l(p);g−→ s′ where s, s′ are observer locations,

l(p) is a parameterized event, and the guard g is a Boolean
combination of equalities over formal parameters p, and
observer variables. Intuitively, it denotes that the observer
can move from location s to location s′ when an abstract
event of form l(d) is generated such that g[d/p] is true.
Note that the values of observer variables are not updated in
a transition. Note also that an observer need not be determin-

123

213

An integrated specification and verification technique for highly concurrent data structures… 553

istic. An observer configuration is a pair 〈s, ϑ〉, where s is
an observer location, and ϑ maps each observer variable to
a value in the data domain D. The configuration is initial if s
is initial; thus the variables can assume any initial values. An

observer step is a triple 〈s, ϑ〉 l(d)−→ 〈
s′, ϑ

〉
such that there is

a transition s
l(p);g−→ s′ for which g[d/p] is true. A run of the

observer on a trace σ = l1(d1)l2(d2) · · · ln(dn) is a sequence
of observer steps 〈s0, ϑ〉 l1

(
d1

)
−→ · · · ln

(
dn

)
−→ 〈sn, ϑ〉 where s0

is the initial observer location. The run is accepting if sn is
accepting. A trace σ is accepted by an observer A if A has
an accepting run on σ . The property specified by A is the set
of traces that are not accepted by A.

Since the data variables can assume arbitrary initial values,
observers can specify properties that are universally quanti-
fied over all data values. If a trace violates such a property
for some data values, the observer can non-deterministically
choose these as initial values of its variables, and thereafter
detect the violation when observing the trace. Several data
structures can be specified by a collection of properties, each
of which is represented by an observer. Note that an observer
is used to capture the behavior of a data structure by follow-
ing the sequence of encountered events, irrespective of the
actual implementation of the data structure.

Fig. 2 An observer for deleting a non-present data value

Fig. 3 An observer for inserting a data value that is already present

Fig. 4 An observer for observing a missing data value or for missing
a present data value

3.1 Application: sets specification

We use three observers to capture all the set traces over
the events in ∪d∈D{contains(d,true),contains(d,

false)} ∪ {insert(d),delete(d)} that violate the
expected behavior of a correct set implementation. The three
observers in Figs. 2, 3 and 4 have three states s0, s1 and s2. In
these observers, the initial state s0 corresponds to positions in
the runs where the non-deterministically tracked value stored
in the observer variable z is not present in the set (i.e. each
time it has been inserted it got deleted afterwards). The state
s1 corresponds to positions in the runs where the tracked
value is present in the set (i.e. it has not been deleted since
it was last inserted). The accepting state s2 corresponds to
positions in the runs where the bad behavior captured by
the respective observers has been observed. For the observer
depicted in Fig. 2, the captured bad behaviors are thosewhere
a data value is deleted although it is not present in the set. For
the observer of Fig. 3, the captured bad behaviors are those
where a data value is inserted although it is already present
in the set. For the observer of Fig. 4, the captured behaviors
are those where a value erroneously appears to be contained
or absent in the set. The three observers can be merged into
a single observer.

3.2 Observers alone cannot “count”

In the previous paragraph, we showed how observers can
specify behaviors of data structures such as sets. Registers
and similar data structures (such as caches) where there is an
a priori fixed bound on the number of equal data values that
have been inserted but not yet retrieved can also be specified
using appropriate observers. There are however data struc-
tures and properties where observers alone are not enough to
capture the specification. Queues and stacks are examples of
such data structures. Here, the difference between the num-
ber of times a data value may be inserted and the number of
times it is retrieved can be arbitrary. In other words, the num-
ber of copies of the same data value that are present in the
data structures can be arbitrary. As a result, one must be able

123

214

554 P. A. Abdulla et al.

Fig. 5 A trace observer for checking that a low priority data value cannot be dequeued if there is a high priority data value that was later inserted.
The variables z1, z2 are observer variables, and empty in an observer constant

to “count” the number of equal data values that have been
inserted but not yet removed. Such data structures require
therefore non-regular specifications in general. By restrict-
ing the allowed traces we can again use observers as defined
in this section.

For instance, assume a queue where data values are
assigned a low (respectively, high) priority each time they are
inserted with enqLow() (respectively, enqHigh()). A cor-
rect implementation of such a priority queue will not return
a data value with low priority if one with high priority was
later inserted. The observer of Fig. 5 captures all traces that
violate this property and where no data value d is enqueued
twice (whether with enqLow(d), enqHigh(d), or both).
In the following section, we build on the idea of specifying
restricted traces using observers and show, by leveraging on
a data independence argument, that this is sufficient to com-
pletely specify data structures such as stacks and queues.

4 Data independence

We adapt a data independence argument from Wolper [35].
The argument assumes that for each trace, there is a fixed
subset of all occurrences of data values in the trace, called
the set of input occurrences. Formally, this subset can be
arbitrary, but to make the argument work, input occurrences
should typically be the data values that are provided as actual
parameters of method invocations. Thus, in the program of
Fig. 1, the input occurrences are the parameters of enq(d)

events, whereas parameters of deq(d) events are not input
occurrences, since they are provided as return values.

Let us introduce some definitions. A trace is differentiated
if all its input occurrences are pairwise different. A renaming
is any function f : D �→ D on the domain of data values. A
renaming f can be applied to trace σ , resulting in the trace
f (σ), where each data value d in σ has been replaced by
f (d). A setΣ of traces is data independent if for every trace
σ ∈ Σ the following two conditions hold:

• f (σ) ∈ Σ for every renaming f , and
• there exists a differentiated traceσd ∈ Σ with f (σd) = σ

for some renaming f .

We say that a program is data independent if the set of its
traces is data independent. A program, like the one in Fig. 1,

can typically be shown to be data independent by a sim-
ple syntactic analysis that checks that data values are not
manipulated or tested, but only copied. In a similar manner,
a correctness property is data independent if the set of traces
that it specifies is data independent. The following theorem
states an important observation.

Theorem 1 For every data-independent sets of tracesΣ and
Σ ′, Σ ⊆ Σ ′ iff the differentiated traces of Σ are in Σ ′.

Proof If Σ ⊆ Σ ′ then the differentiated traces of Σ are
included in Σ ′. Let σ be an arbitrary trace in Σ . We show
σ ∈ Σ ′. By data independence of Σ , there is a differentiated
trace σd ∈ Σ and a renaming f such that f (σd) = σ . By
assumption, σd is also in Σ ′. By data independence of Σ ′,
f (σd) is also in Σ ′, and hence σ ∈ Σ ′.
�
Thus,when checking that a data-independent program sat-

isfies a data-independent property, it suffices to check that all
differentiated traces of the program belong to the property.
Hence, an observer for a data-independent property need
only accept the differentiated traces that violate the prop-
erty. This means that whenever a data value is input twice
in a trace, the observer can stop checking (i.e., move to a
non-accepting sink state), since the trace will anyway be
ignored.

Note that the set of traces of a set is not data independent,
e.g., since it contains a trace where two different data values
are inserted, but not its renaming which inserts the same data
value twice. This is not a problem, since the set of all traces
of a set can be specified by observers, without using a data
independence argument.

The key observation is now that the differentiated traces of
queues and stacks can be completely and succinctly specified
by observers with a small number of variables.We devote the
following section to formalize and prove this fact.

5 Specifying stacks and queues using observers

We show in this section how to completely specify, using
observers such as those introduced in Sect. 3, and using
the data independence argument introduced in Sect. 4, the
sequential behaviors of queues and stacks operating over the
arbitrary (and possibly infinite) data domainD. At the end of

123

215

An integrated specification and verification technique for highly concurrent data structures… 555

Fig. 6 A trace observer for checking that no data value can be extracted
if it has not been inserted. The variable z is an observer variable, and
empty is an observer constant

Fig. 7 A trace observer for checking that an inserted value has to be
extracted before the data structure is declared empty. The variable z is
an observer variable, and empty is an observer constant

Fig. 8 A trace observer for checking that no once-inserted data value
can be extracted twice. The variable z is an observer variable, and empty

is an observer constant

this section, wewill show that the three observers of Figs. 6, 7
and 8, in addition to the observer of Fig. 9 (respectively,
Fig. 10) are enough to specify a stack (respectively, a queue)
of arbitrary size1.We detail the approach for stacks andmen-
tion how to adapt it for the case of queues. First, we recall
the natural operational specification of a stack and explain
how we define its behavior using the set of traces it gen-
erates. Then, we propose, using the four simple observers
mentioned above an alternative observational definition of
a stack. The new definition abstracts away from the actual
states and only considers properties of the generated traces.
We write in the following D to mean D\ {empty}.

The functional specification of a sequential stack corre-
sponds to the set of allowed finite sequences (we consider
safety properties) of pushes and pops together with their
arguments and return values. We use in the following in(d)

(respectively,out(d) andout(empty)) tomean apush(d)

1 When the observers in Figs. 6, 7, 8, 10 and 9 are used to specify a stack
(respectively, a queue), each occurrence of in(.) should be replaced
by push(.) (respectively, enq(.)) and each occurrence of out(.)
should be replaced by pop(.) (respectively, deq(.))

Fig. 9 An observer for detecting violations of the first inserted last
extracted ordering. The initial state is s0 and {s3} is the set of final states.
The variables z1, z2 are observer variables, and empty is an observer
constant

(respectively, pop(d) and pop(empty)). The specification
of a sequential stack is a strict subset of (Σi/o)

∗, where
Σi/o = {in(d),out(d) | d ∈ D} ∪ {out(empty)}. We
give in the following an operational and an observational
characterization of the specification of a sequential stack and
show their equivalence.

5.1 Operational specification of a stack

A natural way to define the set of finite stack traces is to
use a transition system T where the set of states is the set of
possible stack contents, and where the transitions are labeled
with Σi/o. More formally, T is a tuple (Σi/o, (D)∗, {ε},→),
where the empty word ε ∈ (D)∗ is the initial state, and the
set of transitions → ⊆ (D)∗ ×Σi/o × (D)∗ only includes all
transitions of the form: 〈w,in(d), d ·w〉, 〈d ·w,out(d), w〉,
or 〈ε,out(empty), ε〉, where d ∈ D and w ∈ (D)∗. A run
of T is a finite sequence ρ = w0e1w1 · · · enwn with w0 = ε

and 〈wi , ei+1, wi+1〉 ∈ → for each i : 0 ≤ i < n. We say
that ρ is a stack run. A trace of T is any sequence e1 · · · en
such that there is a stack run w0e1w1 · · · enwn of T . The
operational specification of a stack, written φ

op
stack , is then

the set of all traces of T .
Observe that the renaming of any stack trace is also a stack

trace (just rename the states in the corresponding run). Also,
given a trace σ resulting from a stack run ρ, one can obtain
a differentiated trace whose renaming gives σ as follows.
Repeat the same run, but append a systematically incre-
mented counter to the values that are input to the stack. It
is easy to see that the same run as ρ, except for the appended
counter values to the data, is also a stack run on a differenti-
ated trace that can be renamed (by forgetting the counter) into
σ . The set of traces ϕ

op
stack therefore satisfies the definition of

data independence introduced in Sect. 4.
As a result, Theorem 1 implies that any data-independent

set of traces whose set of differentiated traces equals the set
of differentiated stack traces does coincide with the set of
stack traces. We write in the following ϕ

op
di f f,stack to mean

the set of differentiated traces in ϕ
op
stack .

123

216

556 P. A. Abdulla et al.

5.2 Observational specification of a stack

We propose another specification for differentiated stack
traces, written ϕobs

di f f,stack , which characterizes the set of dif-
ferentiated stack traces as exactly those differentiated traces
that are not accepted by any of four simple observers. Intu-
itively, such a differentiated trace satisfies the following four
properties for all data values d1 and d2:

No Creation (ObsCreat, Fig. 6): d1 must not be popped
before it is pushed, i.e., data cannot be created,

No Loss (ObsLoss, Fig. 7)): empty must not be returned
if d1 was pushed but not popped, i.e., data cannot be lost

No Duplication (ObsDupl, Fig. 8): d1 must not be popped
twice, i.e., data cannot be duplicated.

Lifo (ObsLifo, Fig. 9): d2 must not be popped if d1 was
pushed after d2 was pushed.

5.2.1 Differentiated operational and observational
specifications coincide

Lemma 1 states that the differentiated operational specifica-
tion of a stack equals the differentiated observational one.

Lemma 1 ϕ
op
di f f,stack = ϕobs

di f f,stack .

Proof Recall the claim only concerns differentiated traces.
We will make use of two properties that hold for every stack
run ρ = w0e1w1e2 · · · enwn .

• The counting property of a stack. We write (a)#w to mean
the number of occurrences of the letter a ∈ A in the
word w ∈ A∗, for a fixed alphabet A. Back to ρ, it is
easy to show by induction that for every d in D and i s.t.
0 ≤ i ≤ n, (d)#wi

= (in(d))#(e1···ei) − (out(d))#(e1···ei).• The ordering property of a stack. Using the counting
property and an induction on the length of ρ, one can
show the following. Assume di and d j are input before
position k in ρ. If di is input before d j , and if nei-
ther of them is output, then wk ∈ (D\ {

di , d j
}
)∗ · d j ·

(D\ {
di , d j

}
)∗ · di · (D\ {

di , d j
}
)∗.

We establish in the following inclusions in both directions in
order to show the equality ϕ

op
di f f,stack = ϕobs

di f f,stack :

• ϕ
op
di f f,stack ⊆ ϕobs

di f f,stack . This direction is simple. Let
ρ = w0e1 · · · enwn be a stack run giving a trace σ =
e1 . . . en in ϕ

op
di f f,stack . Suppose σ is accepted by one of

the observers Obscrea, Obsloss, Obsdupl, or Obslifo for
some data values.

1. σ cannot be accepted byObscrea. Suppose it was the
case and en is theout(d) that labels the last transition
in the observer. The fact that σ is accepted by the

observer implies the data value d appearing in en does
not participate in anyin(d)of the self-loopon s0. The
counting property implies d /∈ wn . Yet en = out(d)

requires wn to be of the form d · w.
2. σ cannot be accepted by Obsloss because the count-

ing property implieswn−1 contains a d, yetwn−1 = ε

since en = out(empty) appears at the end of the
stack run ρ .

3. σ cannot be accepted by Obsdupl because the count-
ing property requireswn−1 to contain no occurrences
of d. Yet en = out(d) requires wn−1 to be of the
form d · w.

4. σ cannot be accepted by Obslifo because that means
ρ contains two events ei , e j with 1 ≤ i < j < n
such that ei = in(di) and e j = in(d j). The
ordering property of a stack implies that wn−1 ∈
(D\{di , d j

}
)∗ ·d j ·(D\{di , d j

}
)∗ ·di ·(D\{di , d j

}
)∗.

Yet for en = out(di) to succeed, wn−1 needs to be
of the form di · w.

• ϕ
op
di f f,stack ⊇ ϕobs

di f f,stack . Suppose σ = e1 . . . en+1 in

ϕobs
di f f,stack is a shortest trace not in ϕ

op
di f f,stack . Hence,

there is a stack run ρ = w0e1 · · · enwn , but there is no
wn+1 such that ρ′ = w0e1 · · · en+1wn+1 becomes a stack
run.

1. en+1 cannot be in(d) for some d because then it
would be enough to choose wn+1 = d · wn to get σ

in ϕ
op
di f f,stack .

2. if en+1 = out(empty), then wn �= ε as otherwise
choose wn+1 = ε and σ would be in ϕ

op
di f f,stack . Let

d ∈ wn . Using the counting property of a stack on ρ,
we deduce that there is ei = in(d) for i : 1 ≤ i ≤ n,
but ∀ j : 1 ≤ j ≤ n. e j �= out(d). Hence σ should
have been accepted by Obsloss, and therefore not in
ϕobs
di f f,stack ,

3. if en+1 = out(d) for some data value d:
(a) If in(d) does not appear in ρ, then σ should

have been accepted by Obscrea and therefore it
cannot belong to ϕobs

di f f,stack
(b) If ei = in(d) and e j = out(d) appear inρ with

i, j : 1 ≤ i, j ≤ n, then the counting property
on the stack run ρ implies i < j . The trace σ

should have been accepted by Obsdupl
(c) If ei = in(d) appears in ρ for some i ≤ n but

without a e j = out(d) for i < j ≤ n, then
the following holds. By the counting property,
wn = w · d · w′ with w = dk · w′′. In addition,
d �= dk as otherwise ρ could be extended into
a stack run. Using the counting property again,
there must be a ek = in(dk) with k : 1 ≤ k ≤ n
and without any out(dk) in the run up to n. If
i < k, the trace should have been accepted by

123

217

An integrated specification and verification technique for highly concurrent data structures… 557

Fig. 10 An observer to check that Fifo ordering is respected. All
unmatched abstract events, for example 〈deq(p), p = z1〉, at location
s1, send the observer to a rejecting state

Obslifo. If k < i , we use the ordering prop-
erty to deduce that wn should be in the language
(D\{d, dk})∗ ·d ·(D\{d, dk})∗ ·dk ·(D\{d1, d2})∗
which contradicts that wn = dk · w′′ · d · w′.
�

5.3 Operational and observational specification of
queues

For a queue,in(d) (respectively,out(d) andout(empty))
stands forenq(d) (respectively,deq(d) anddeq(empty)).
The operational specification ϕ

op
queue is obtained by replacing

→ inSect. 5.1 by the smallest subset of
(
(D)∗ × Σi/o × (D)∗

)

that includes, for every d ∈ D and w ∈ (D)∗, all transi-
tions of the form: 〈w,in(d), w ·d〉, 〈d ·w,out(d), w〉, and
〈ε,out(empty), ε〉. ϕ

op
di f f,queue is the restriction of ϕ

op
queue

to the set of differentiated traces. The observational specifi-
cation ϕobs

di f f,queue contains exactly those differentiated traces
that are not accepted by any of the following four observers:
Obscrea,Obsloss,Obsdupl, orObsFifo (Fig. 10). Intuitively,
a differentiated trace that is not accepted by the observer
ObsFifo satisfies the following property for any data values
d1, d2:

Fifo (ObsFifo, Fig. 10): d2 must not be dequeued if d1
was not dequeued since it was enqueued before d2 was
enqueued.

Lemma 2 ϕ
op
di f f,queue = ϕobs

di f f,queue.

Proof Similar to the proof of lemma 1. We make use of the
same counting property as in the stack case. We modify the
ordering property to reflect the FIFO ordering (instead of the
LIFO one for a stack). The other modifications are straight-
forward.
�

6 Verification by shape analysis

To verify that no trace of the program is accepted by an
observer, we form, as in the automata-theoretic approach
[31], the cross-product of the program and the observer,

synchronizing on abstract events, and check that this cross-
product cannot reach a configuration where the observer is
in an accepting state.

The analysis needs to deal with the challenges of an
unbounded data domain, an unbounded number of concur-
rently executing threads, an unbounded heap, and an explicit
memory management. As indicated in Sect. 1, the explicit
memory management implies that the assertions generated
by our analysis must be able to track correlations between
pairs of threads.

For an illustration of the insufficient precision of pure
thread-modular reasoning, consider a state of the program
on Fig. 1 where one of the threads is about to execute line
4 of enq. It has allocated a new memory cell c pointed to
by n and has set its next to NULL. Since thread-modular
reasoning cannot relate states of local variables of different
threads, it cannot express that actually no other thread with
the control on line 4 of enq can have its variable n pointing
at c. Suppose that there is another such thread. Let the first
thread finish enq, going through lines 5–11 and 15, resulting
in c being connected at the end of the queue with the global
variable T pointing to it. The other thread, which still has its
n at c, then goes through the else branch of the test on line 7
and starts another iteration of the while-loop. After passing
through the tests on lines 7 and 8, the CAS on line 9 succeeds,
redirecting the next pointer of c (which is the last cell of
the queue) back to c. A configuration with a self-loop at the
end of the queue is corrupt and may lead to all sorts of errors,
all which would be false positives (consider, e.g., dequeuing
the last element of such corrupt queue). Other false positives
arises from that the pure thread-modular reasoning cannot
express that two threads are never simultaneously about to
free the same memory cell. This leads to reporting spurious
double-free errors.

The reason for why presence of garbage collection mat-
ters is that with it, thread-modular analysis can be fixed not to
report these false positives by means which cannot be used
without it. Namely, to circumvent the problem in the first
scenario, the analysis may keep within the state of a thread
an information about cells that were freshly allocated and
have not seen a global variable yet, such as the cell c. Due to
garbage collection, such cells may be accessible by the allo-
cating thread only. This information is sufficient to rule out
scenarios such as the first one described above. This approach
indeed works well in works such as [28]. The second type of
situation involving double free does not arise simply because
there are no frees under garbage collection. These fixes do
not work without garbage collection. In the first situation, the
exclusive access of the allocating thread to the cell c cannot
be guaranteed because c could be freed earlier and now re-
allocated, with variables of other threads still pointing to it.
Double free in the second situation is of course still an issue
too. Our remedy to this, keeping correlations of local states

123

218

558 P. A. Abdulla et al.

Fig. 11 Some concrete shape
(to the left) and a saturated
symbolic encoding (to the right)
that denotes it (among many
other concrete shapes). In this
example, H and T denote some
global variables, # denotes the
NULL constant, the small letters
correspond to local variables,
and the red and blue dots refer
to cells carrying data values to
be tracked (those equal to the
arbitrary values of some
observer variables)

of pairs of threads, allows to express properties such as that
certain memory cell is accessible by one thread only. It is
enough to avoid both kinds of discussed false positives.

We now present our shape analysis in two steps. We first
describe a symbolic encoding of the configurations of the
program and then present the verification procedure.

6.1 Symbolic encoding

The symbolic encoding is used for characterizing the set of
reachable configurations of the program from the point of
view of two distinct executing threads. Roughly, this is done
by recording the relationships of the local configurations of
the two threads with each other, the relationships of the local
variables of a thread with global variables, the observer con-
figuration, and assertions about the heap. It is a combination
of several layers of conjunctions and disjunctions.

Below, we will use Fig. 11 to explain the main concepts
in the symbolic encoding. The left part of the figure shows
a typical configuration of the heap that arises during an exe-
cution of the Michael & Scott algorithm, when run against
the observer of Fig. 10. The right part of the figure shows a
symbolic encoding that is satisfied by the shape. Note that
the symbolic encoding can represent arbitrary more shapes.
The concrete heap to the left consists of six cells operated
on by two active threads, Thread 1 (depicted in yellow) and
Thread 2 (depicted in pink). The threads are in control states
28 and 7, respectively, and the observer is in control state s1.
The topmost cell is pointed to by the global variable H and
the local variable h of Thread 1. Each cell has a data value
field and a next field, the latter being a pointer to the next cell
in the heap. In our example, there are three possible values
that can be stored in a cell, namely red which means that
the value is equal to the value of variable z1 of the observer,
blue which means that the value is equal to the value of vari-
able z2 of the observer, and white which means that it is an

arbitrary value different from the above two. The topmost
cell has a data value which is white. Finally, the figure shows
the counter values (i.e. ages) of all the pointers (those of the
pointer variables and those of the next fields of the cells).
For instance, the next pointer of the topmost cell has counter
value 9, and the global variable H has counter value 17.

The right part of Fig. 11 depicts a symbolic encoding that
is satisfied by the given configurations. More precisely, our
symbolic encoding consists of two parts, the first part, called
a joined shape constraint, given in matrix form, describes
the shape of the heap, while the second part, called control
formula, denoted byσ , gives the control states of the observer
and the active threads, together with the relations that hold
between the pointer counters. We now introduce the needed
concepts one by one, in a bottom-up manner. Let us fix two
thread identifiers i1 and i2.
Cell terms Let a cell term be one of the following: (i) a global
pointer variable y, which denotes the cell pointed to by the
global variable y, (ii) a term of the form x[i j] (where j = 1
or j = 2) for a local pointer variable x of thread i j , which
denotes the cell pointed to by the thread-i j -local-copy of x ,
(iii) a special term NULL, UNDEF, or FREE, or (iv) a cell
variable, which denotes a cell whose data value is equal to
the current value of an observer variable. (Note that the value
of an observer variable is fixed during a run of the observer).
The latter allows us to keep track of the data in the heap
cells, even in the case where a heap cell is not denoted by
any pointer variable (in order to verify, e.g., the fifo property
of a queue). We use CT(i1, i2) to denote the set of all cell
terms (of thread i1 and i2).

Each row or column of the matrix in Fig. 11 is labeled by
a cell term, e.g., T , n, #, etc. In particular, we use the red
and blue circles, to denote the variables z1 resp. z2 of the
observer.
Atomic heap constraint In order to obtain an efficient and
practical analysis, which does not lead to a severe explo-

123

219

An integrated specification and verification technique for highly concurrent data structures… 559

sion of formulas, we have developed a novel representation,
adapted from the transitive closure logic of [6]. The repre-
sentation is motivated by the observation that relationships
between pairs of pointer variables are typically independent.
The key aspect of the representation is that it is sufficient
to consider only pairs of variables rather than correlating all
variables. An atomic heap constraint is of one of the follow-
ing forms (where t1 and t2 are two cell terms):

• t1 = t2: the cell terms t1 and t2 denote the same cell,
• t1 �→ t2: the next field of the cell denoted by t1 denotes

the cell denoted by t2,
• t1 ��� t2: the cell denoted by t2 can be reached by fol-

lowing a chain of two or more next fields from the cell
denoted by t1,

• t1 �� t2: none of t1 = t2, t1 �→ t2, t2 �→ t1, t1 ��� t2, or
t2 ��� t1 is true.

We use Pred to denote the set {=, �→,← �, ���, ���, ��} of
all shape relational symbols.We let t = NULL denote that t is
null, t �→ UNDEF denote that t is undefined, and t �→ FREE
denote that t is unallocated.

Each cell in the matrix of Fig. 11 contains a cell term.
For instance, the cell pointed to by variable x of Thread 1
reaches in two or more steps the cell pointed to by variable t
of Thread 2.
Joined shape constraint A joined shape constraint for two
threads i1 and i2, denoted as M(i1, i2), is a (typically large)
conjunction

∧
t1,t2∈CT(i1,i2) π [t1, t2]where π [t1, t2] is a non-

empty disjunction of atomic heap constraints. Intuitively, it
is a matrix representing the heap parts accessible by the
two threads (along with the cell data). Such a represen-
tation can be (exponentially) more concise than using a
large disjunction of conjunctions of atomic heap constraints,
at the cost of some loss of precision. In Fig. 11, the cell
defined by the global variable T and the local variable h
of Thread 1, indicates that either the cell pointed to by
T is reachable from the cell pointed to by variable h of
Thread 1, or the other way round. We say that a joined
shape constraint M(i1, i2) is saturated if for any three vari-
ables x , y, and z, the disjunction π [x, z] does not contradict
π [x, x] ∧ π [x, y] ∧ π [y, y] ∧ π [y, z] ∧ π [z, z]. Any joined
shape constraint can be saturated by a straightforward fix-
point procedure, analogous to [6] or the one for DBMs
[10]. For instance, let π [x, y] be x �→ y, let π [y, z] be
y ← � z ∨ y ��� z, and let π [x, x], π [y, y], and π [z, z]
admit only equality (there is no loop involving x , y, or z).
Then π [x, z] can contain the disjuncts x = z and x �� z
because they are consistent with x �→ y ∧ y ← � z. It can
also contain x �→ z, x ��� z, and x �� z because they are
consistent with x �→ z ∧ y ��� z. The remaining predi-
cates x ��� z and x ← � z, which are not consistent with

π [x, x] ∧ π [x, y] ∧ π [y, y] ∧ π [y, z] ∧ π [z, z], would be
removed from π [x, y] by saturation.
Symbolic encoding We can now define formally a symbolic
encoding over two threads. A symbolic encoding is a disjunc-
tion Θ[i1, i2] of formulas of the form (σ [i1, i2] ∧ φ[i1, i2])
where σ [i1, i2] is a control formula and φ[i1, i2] is a shape
formula.

A control formula σ [i1, i2] contains (i) the current con-
trol location of threads i1 and i2, and the observer, and (ii)
a conjunction encompassing the relations between the age
fields of any pair of terms. For instance, when analyzing
the program in Fig. 1, this conjunction includes among oth-
ers, for a thread i , both relations head[i].age�Head.age
and tail[i].ptr→next.age�next[i].age, for � ∈
{<,=,>}.

A shape formula φ[i1, i2] is a joined shape constraint con-
joined with a formulaψ[v1, . . . , vm, z1, . . . , zn]which links
cell variables v1, . . . , vm with observer variables z1, . . . , zn
that are used to keep track of heap cells with values equal to
the observer variables. Formally, φ[i1, i2] is a formula of the
form

∃v1, . . . , vm . [ψ[v1, . . . , vm, z1, . . . , zn] ∧ M(i1, i2)]

6.2 Verification procedure

We compute a program invariant of the form ∀i1, i2. (i1 �=
i2 ⇒ Θ[i1, i2]) which characterizes the configurations of
the program from the point of view of two distinct executing
threads i1 and i2. We obtain the invariant by a standard fix-
point procedure, starting from a formula that characterizes
the set of initial configurations of the program. For two dis-
tinct threads i1 and i2, and for each control formula σ [i1, i2],
our analysis will generate one shape formula φ[i1, i2].

The fixpoint analysis performs a postcondition computa-
tion that results in a set of possible successor combinations
of control and shape formulas. The new shape formulas of
which the control formula already appears in the original
Θ[i1, i2]will be used to weaken the corresponding old shape
formula. Otherwise, if the control state is new, a new disjunct
is added to Θ[i1, i2].

For two threads i1 and i2, wemust consider two scenarios:
either i1 or i2 performs a step, or some other (interfering)
thread i3, (distinct from i1 and i2), performs a step.
Postcondition computation In the first scenario, where one
of the threads i1 or i2 performs a step, we can compute the
postcondition of (σ [i1, i2] ∧ φ[i1, i2]) as follows. σ [i1, i2] is
first updated to a new control state σ ′[i1, i2] in the standard
way (by updating the possible values of control locations
and observer state). φ[i1, i2] is then updated to φ′[i1, i2] by
updating each conjunct π [t1, t2] according to the particular
program statement that the thread is performing. In general,
we (i) remove all disjuncts that must be falsified by the step

123

220

560 P. A. Abdulla et al.

Fig. 12 Disambiguating the
shape formula of the symbolic
encoding in Fig. 11 when
computing the image of
x.next:=n by thread 2.
Observe that this results in only
two shape formulas, the left one
where h1 coincides with H and
the right one where it equals
NULL

Fig. 13 Left and right shape
formulas, respectively, obtained
from the left and right formulas
of Fig. 12 by removing all
predicates that depended on the
successor of the variable x2
belonging to thread 2

Fig. 14 Left and right shape
formulas, respectively, obtained
from the left and right formulas
of Fig. 13 by updating with the
predicate x2 �→ n2 together with
all the resulting predicates. The
obtained predicates are
identified with a dot for
presentation purposes. The
resulting shape formula is then
obtained by considering the
cartesian abstraction of the two
shape formulas

(this may require splitting the formula into several stronger
formulas whenever the falsification might be ambiguous),
(ii) add all disjuncts that may become true by the step, (iii)
saturate the result.

Consider for instance theprogramstatementx:=y.next.
Since only the value of x is changing, the transformer updates
only conjuncts π [t, x] and π [x, t] where t ∈ CT(i1, i2). All
assertions about x are reset by setting every conjunct π [x, t]
and π [t, x] to Pred , for all t ∈ CT(i1, i2). (The disjunction
over all elements of Pred is the assertion true). We then set

π [x, y] to x ← � y, π [y, x] to y �→ x and derive all pred-
icates that may follow by transitivity. Finally, we saturate
the formula. It prunes the (newly added) predicates that are
inconsistent with the rest of the shape formula.

For x.next:=y, it is important to know the reachabili-
ties that depend on the pointer x .next. The representation
might potentially contain imprecision (it might for instance
state that, for a term t , π [t, x] contains t ��� x and t ��� x ,
even if we know, via a simpler analysis, that no cycles are
generated). Hence, we first split the formula into stronger

123

221

An integrated specification and verification technique for highly concurrent data structures… 561

formulas in such a way that we disambiguate the part of
the reachability relation involving x (see Fig. 12). On each
resulting formula, we then remove reachability predicates
between cell terms that depend on x .next (e.g., in Fig. 13
we remove H ��� T because H ��� x2 and x2 ��� T).
We then set π [x, y] to x �→ y and derive all predicates that
may follow by transitivity (e.g., in Fig. 14, since x2 ��� n2
and n2 ��� x1, we add x2 ��� x1), and we saturate the
result.
Interference In the casewhereweneed to account for possible
interference on the formula (σ [i1, i2] ∧ φ[i1, i2]) by another
thread, (distinct from i1 or i2), we proceed as follows. We
(i) extend the formulawith the interfering thread, (ii) compute
a postcondition as described in the first scenario and (iii)
project away the interfering thread.

Step (i) combines a given formula (σ [i1, i2] ∧ φ[i1, i2])
with the information of an extra thread i3. Like in [2], the
resulting formula is of the form (σ [i1, i2, i3] ∧ φ[i1, i2, i3])
such that any projection to two threads is a formula compat-
ible with some disjunct of Θ[i1, i2]. Intuitively, we consider
an arbitrary third thread that is related to i1 and i2 using
two of the binary relations generated so far; one relating
i1 to i3 and another relating i2 to i3. In order to generate
all such formulas involving three threads, we must, besides
(σ [i1, i2] ∧ φ[i1, i2]) itself, consider all pairs of disjuncts
(σ•[i2, i3]∧φ•[i2, i3]) and (σ◦[i1, i3]∧φ◦[i1, i3]), such that
σ [i1, i2]∧σ•[i2, i3]∧σ◦[i1, i3] is consistent. Like (σ [i2, i3]∧
φ[i2, i3]), each of (σ•[i2, i3] ∧ φ•[i2, i3]) and (σ◦[i1, i3] ∧
φ◦[i1, i3]) is indeed some formula already generated by
some sequence of post-computations or interference steps. In
this case, we generate the formula σ [i1, i2, i3] ∧ φ[i1, i2, i3]
where σ [i1, i2, i3] ≡ σ [i1, i2] ∧ σ•[i2, i3] ∧ σ◦[i1, i3] and
φ[i1, i2, i3] ≡ φ[i1, i2] ∧ φ•[i2, i3] ∧ φ◦[i1, i3]. We then
saturate φ[i1, i2, i3] (in the same way as for joined shape
formulas over two threads). For each statement S of thread
i3 that can be executed when σ [i1, i2, i3] holds, we com-
pute its postcondition σ ′[i1, i2, i3] ∧ φ′[i1, i2, i3] in step ii.
Finally, σ ′[i1, i2, i3] ∧ φ′[i1, i2, i3] is projected back onto
σ ′[i1, i2] ∧ φ′[i1, i2] in step iii by removing all information
about the variables of thread i3.

Since the domain of control formulas and the domain of
shape formulas over afixednumber of cell terms arefinite, the
abstract domain of formulas ∀i1, i2. (i1 �= i2 ⇒ Θ[i1, i2])
is finite as well. The iteration of postcondition computation
is thus guaranteed to terminate.

7 Experimental results

We have implemented a prototype in OCaml and used it to
automatically establish the conformance of concurrent data
structures (including lock-free and lock-based stacks, queues
and priority queues) to their operational specification (imply-

ing their linearizability). Our analyser also checks for stan-
dard pointer-related errors such as null or undefined pointer
dereferencing (taking into account the knowndangling point-
ers’ dereferences [22]), double-free, or presence of cycles.

Some of the example programs are verified in the absence
of garbage collection, in particular, the lock-free versions
of Treiber’s [27] stack and Michael & Scott’s queue (see
Fig. 1). We hereafter refer to them as Treiber’s stack and
M&S’s queue, and garbage collection asGC. The verification
of these examples is extensively demanding as it requires to
correlate the possible states of the threadswith highprecision.
We are not aware of any other method capable of verifying
high level functionality of these benchmarks.

In addition to establishing correctness of the original ver-
sions of the benchmark programs, we also stressed our tool
with few examples in which we intentionally inserted bugs
(cf. Table 2). As expected, the tool did not establish cor-
rectness of these erroneous programs since the approach is
sound. For example, we tested whether stacks (resp. queues)
implementations can exhibit fifo (resp. lifo) traces, we tested
whether values can be lost (loss observer), or memory errors
can be triggered (memo observer accepts on memory errors
made visible), we moved linearization points to wrong posi-
tions, and we tested a program which stores wrong values
of inserted data. In all these cases, the analysis correctly
reported traces that violated the concerned safety property.
Finally, we ran the data structure implementations without
garbage collection discarding the age counters and our (pre-
cise) analysis produced as expected a trace involving the
ABA problem [18].

We ran the experiments on a 3.5 GHz processor with 8GB
memory.We report, in Table 1, the running times (in seconds)
and the final number of joined shape constraints generated
(|C |, reduced by symmetry).

We also include a succinct comparison with related work.
Although it is often unfair to compare approaches solely
based on running times of different tools, we believe that such
a comparison can give an idea of the efficiency of the involved
approaches. Our running times on the versions of Treiber’s
stack andM&S’s queue that assumeGC are comparable with
the results of [30]. However, the verification of versions that
do not assume GC is, to the best of our knowledge, beyond
the reach of [30] (since it does not correlate states of different
threads). The work in [25] verifies linearizability of concur-
rent implementations of sets, e.g., a lock-free CAS-based set
[32] (verified in2975s) of a comparable complexity toM&S’s
queue without GC (550s with our prototype). Basic memory
safety ofM&S’s queue and two-locks queue [21] without GC
was also verified in [36], but only for a scenario where all
threads are either dequeuing or enqueuing. The verification
took 727 and 309s for M&S’s queue and 6162 and 304s for
the two-locks queue. Our verification analysis produced the
same result significantly faster, even allowing every thread to

123

222

562 P. A. Abdulla et al.

Table 1 Experimental results
Data structure Conformance Safety only

Observers Time (s) |C | Time (s) |C |
Coarse Stack Stack+ 0.02 436 0.01 102

Coarse Stack, no GC 0.07 569 0.01 130

Coarse Queue Queue+ 0.04 673 0.01 196

Coarse Queue, no GC 0.48 1819 0.10 440

Two-Locks Queue [21] Queue+ 0.08 1830 0.02 488

Two-Locks Queue, no GC 0.73 3460 0.13 784

vs 47s in [5] vs 6162s/304s in [36]

Coarse Priority Queue (Buckets) Prio 0.24 1242 0.07 526

Coarse Priority Queue (List-based) 0.04 499 0.01 211

Bucket locks Priority Queue 0.22 1116 0.05 372

Treiber’s lock-free stack [27] Stack+ 0.23 714 0.01 78

vs 0.09 s in [30]

Treiber’s lock-free stack, no GC Stack+ 2.28 1535 0.10 190

vs 53s in [5]

M&S’s lock-free queue [21] Queue+ 3.31 3476 0.44 594

vs 3.36 s in [30]

M&S’s lock-free queue, no GC Queue+ 550 53,320 25 6410

vs o.o.m. in [5] vs 727s/309s in [36]

Stack+ (resp. queue+) is an observer encompassing the loss, creation, duplication and lifo (resp. fifo) observers

Table 2 Introducing intentional
bugs: the analysis is sound and
the programs are not verified

Data structure Modification Observer Output Time (s)

Treiber’s stack None Fifo Bad trace 0.07

Treiber’s stack, no GC None Fifo Bad trace 6.19

M&S’s queue None Lifo Bad trace 1.26

Two-locks queue Bad commit point Fifo Bad trace 0.02

M&S’s queue Bad commit point Loss Bad trace 0.51

Treiber’s stack Omitting data Lifo Bad trace 0.02

Treiber’s stack, no GC Discard ages Loss Bad trace 0.42

Treiber’s stack, no GC Discard ages Loss Cycle creation 0.01

M&S’s queue, no GC Discard ages Loss Bad trace 272

M&S’s queue, no GC Discard ages Loss Dereferencing null 0.01

M&S’s queue Swapped assignments Memo Dereferencing null 0.01

non-deterministically decide to either enqueue or dequeue.
In [5], linearizability of the Treibers’s stack (resp. two-locks
queue [21]) is verified in 53s (resp. 47 s). We achieve the
same result in less than 3s. Finally, a variant ofM&S’s queue
without GC could not be successfully verified in [5] due to
lack of memory.

8 Conclusions and future work

We have presented a technique for automated verification
of temporal properties of concurrent programs, which can

handle the challenges of infinite-state specifications, an
unbounded number of threads, and an unbounded heap man-
aged by explicit memory allocation. We showed how such a
technique can be based naturally on the automata-theoretic
approach to verification, by nontrivial combinations and
extensions that handle unbounded data domains, unbounded
number of threads, and heaps of arbitrary size. The result
is a simple and direct method for verifying correctness of
concurrent programs. The power of our specification for-
malism is enhanced by showing how the data-independence
argument byWolper [35] can be introduced into standard pro-
gram analysis. Ourmethod can be parameterized by different

123

223

An integrated specification and verification technique for highly concurrent data structures… 563

shape analyses. Although we concentrate on heaps with sin-
gle selectors in the current paper, we expect that our method
can be adapted to deal with multiple selectors, by integrating
recent approaches such as [16]. Moreover, our experimenta-
tion deals with the specification of stacks and queues. Other
data structures, such as deques, can be handled in an analo-
gous way.

References

1. Abdulla, P., Jonsson, B., Nilsson,M., d’Orso, J., Saksena,M.: Reg-
ular model checking for LTL(MSO). STTT 14(2), 223–241 (2012)

2. Abdulla, P.A., Haziza, F., Holík, L.: All for the price of few. In:
VMCAI, pp. 476–495. Springer, Berlin (2013)

3. Abdulla, P.A., Haziza, F., Holík, L., Jonsson, B., Rezine, A.: An
integrated specification and verification technique for highly con-
current data structures. In: TACAS, vol. 7795, LNCS, pp. 324–338.
Springer, Berlin (2013)

4. Amit, D., Rinetzky, N., Reps, T., Sagiv, M., Yahav, E.: Comparison
under abstraction for verifying linearizability. In: Proc. of CAV’07.
LNCS, vol. 4590, pp. 477–490. Springer, Berlin (2007)

5. Berdine, J., Lev-Ami, T.,Manevich, R., Ramalingam, G., Sagiv, S.:
Thread quantification for concurrent shape analysis. In: Proceed-
ings of CAV’08. LNCS, vol. 5123, pp. 399–413. Springer, Berlin
(2008)

6. Bingham, J., Rakamaric, Z.: A logic and decision procedure for
predicate abstraction of heap-manipulating programs. In: Proc.
of VMCAI’06. LNCS, vol. 3855, pp. 207–221. Springer, Berlin
(2006)

7. Burckhardt, S., Dern, C., Musuvathi, M., Tan, R.: Line-up: a com-
plete and automatic linearizability checker. In: Proceedings of
PLDI’10, pp. 330–340. ACM, New York (2010)

8. Cerný, P., Radhakrishna, A., Zufferey, D., Chaudhuri, S., Alur,
R.: Model checking of linearizability of concurrent list imple-
mentations. In: Proc. of CAV’10, LNCS, vol. 6174, pp. 465–479.
Springer, Berlin (2010)

9. Colvin, R., Groves, L., Luchangco, V., Moir, M.: Formal verifica-
tion of a lazy concurrent list-based set algorithm. In: Proceedings
of CAV’06. LNCS, vol. 4144, pp. 475–488. Springer, Berlin (2006)

10. Dill, D.: Timing assumptions and verification of finite-state concur-
rent systems. In: Sifakis, J. (ed.) Automatic Verification Methods
for Finite-State Systems, vol. 407. LNCS. Springer, Berlin (1989)

11. Doherty, S., Detlefs, D., Groves, L., Flood, C., Luchangco, V.,
Martin, P., Moir, M., Shavit, N., Jr. G.S.: Dcas is not a silver bullet
for nonblocking algorithm design. In: Proceedings of SPAA’04, pp.
216–224. ACM, New York (2004)

12. Doherty, S., Groves, L., Luchangco, V., Moir, M.: Formal verifi-
cation of a practical lock-free queue algorithm. In: Proceedings of
FORTE’04. LNCS, vol. 3235, pp. 97–114. Springer, Berlin (2004)

13. Elmas, T., Qadeer, S., Sezgin, A., Subasi, O., Tasiran, S.: Sim-
plifying linearizability proofs with reduction and abstraction.
In: Proceedings of TACAS’10, vol. 6015. LNCS, pp. 296–311.
Springer, Berlin (2010)

14. Emmi,M., Jhala, R., Kohler, E., Majumdar, R.: Verifying reference
counting implementations. In: Proceedings of TACAS’09. LNCS,
vol. 5505, pp. 352–367. Springer, Berlin (2009)

15. Flanagan, C., Freund, S.: Atomizer: a dynamic atomicity checker
for multithreaded programs. Sci. Comput. Program. 71(2), 89–109
(2008)

16. Habermehl, P., Holík, L., Rogalewicz, A., Šimáček, J., Vojnar, T.:
Forest automata for verification of heap manipulation. In: Formal
Methods in System Design, pp. 1–24 (2012)

17. Herlihy, M., Wing, J.M.: Linearizability: a correctness condition
for concurrent objects. ACM Trans. Program. Lang. Syst. 12(3),
463–492 (1990)

18. IBM. System/370 principles of operation (1983)
19. Kidd, N., Reps, T., Dolby, J., Vaziri, M.: Finding concurrency-

related bugs using random isolation. STTT 13(6), 495–518 (2011)
20. Michael, M., Scott, M.: Correction of a memory management

method for lock-free data structures. Technical Report TR599,Uni-
versity of Rochester, Rochester (1995)

21. Michael, M., Scott, M.: Simple, fast, and practical non-blocking
and blocking concurrent queue algorithms. In: Proceedings of 15th
ACM Symposium on Principles of Distributed Computing, pp.
267–275 (1996)

22. Michael, M.M.: Safe memory reclamation for dynamic lock-free
objects using atomic reads and writes. In: Proceedings of the
Twenty-First Annual Symposium on Principles of Distributed
Computing, PODC ’02, pp. 21–30. ACM, New York (2002)

23. Naik, M., Aiken, A., Whaley, J.: Effective static race detection for
java. In: Proceedings of PLDI’06, pp. 308–319. ACM, New York
(2006)

24. Naik, M., Park, C.-S., Sen, K., Gay, D.: Effective static deadlock
detection. In: Proceedings of ICSE, pp. 386–396. IEEE, New York
(2009)

25. Segalov, M., Lev-Ami, T., Manevich, R., Ramalingam, G., Sagiv,
M.: Abstract transformers for thread correlation analysis. In:
APLAS, LNCS, pp. 30–46. Springer, Berlin (2009)

26. Shacham, O.: Verifying atomicity of composed concurrent oper-
ations. PhD thesis, Department of Computer Science, Tel Aviv
University (2012)

27. Treiber, R.: Systems programming: coping with parallelism. Tech-
nical Report RJ5118, IBM Almaden Res. Ctr. (1986)

28. Vafeiadis, V.: Shape-value abstraction for verifying linearizabil-
ity. In: Proceedings of VMCAI, vol. 5403. LNCS, pp. 335–348.
Springer, Berlin (2009)

29. Vafeiadis, V.: Automatically proving linearizability. In: CAV, vol.
6174. Lecture Notes in Computer Science, pp. 450–464. Springer,
Berlin (2010)

30. Vafeiadis, V.: Rgsep action inference. In: Proceedings of
VMCAI’10, vol. 5944. LNCS, pp. 345–361. Springer, Berlin
(2010)

31. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to auto-
matic program verification. In: Proceedings of LICS’86, pp.
332–344 (1986)

32. Vechev, M., Yahav, E.: Deriving linearizable fine-grained concur-
rent objects. In: Proceedings of PLDI’08, pp. 125–135. ACM, New
York (2008)

33. Vechev, M., Yahav, E., Yorsh, G.: Experience with model checking
linearizability. In: Proceedings of SPIN’09, vol. 5578. LNCS, pp.
261–278. Springer, Berlin (2009)

34. Wang, L., Stoller, S.: Static analysis of atomicity for programs with
non-blocking synchronization. In: Proceedings of PPOPP’05, pp.
61–71. ACM, New York (2005)

35. Wolper, P.: Expressing interesting properties of programs in propo-
sitional temporal logic (extended abstract). In: Proceedings of
POPL’86, pp. 184–193 (1986)

36. Yahav, E., Sagiv, S.: Automatically verifying concurrent queue
algorithms. Electr. Notes Theor. Comput. Sci. 89(3) (2003)

123

224

