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Abstract
Computer-aided synthesis is an emerging paradigm in system design that automatically
transforms a formal specification into a system that is correct by construction. The synthe-
sis mitigates the cost of the classical design loop consisting of implementation, followed
by the verification phase. Recently, new challenges in system design have arisen from ap-
plications requiring quantitative reasoning, which include, e.g., synthesis of probabilistic
programs/models, approximate computing, or construction of biochemical models. The
existing synthesis methods do not, however, sufficiently support quantitative reasoning.

In this thesis, we summarise our contribution towards scalable methods for quantita-
tive synthesis including theoretical foundations, prototype tools and rigorous experimen-
tal evaluation using practically relevant application domains. We demonstrate that our
work considerably extend capabilities of existing synthesis methods and advance engi-
neering processes towards automated system design.
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students I had the chance to work with especially Sven Dražan, Luca Laurenti, Simos
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Chapter 1

Introduction

Computer-aided synthesis is a traditional paradigm in system design automation that has
recently gained a lot of traction, resulting in better applicability. It has been successfully
integrated into the development processes of hardware, software, or even biochemical
systems. The aim of the computer-aided synthesis is to alleviate the costly and time-
demanding classical system-design loop between implementation (which is usually per-
formed by a system designer or a programmer) and verification (which checks the correct-
ness of the produced system). In contrast, a synthesis procedure automatically transforms
a formal specification into a system that is correct by construction.

Recent advances in machine learning, evolutionary optimisation, and computational
reasoning, including powerful Boolean satisfiability (SAT) and satisfiability modulo the-
ories (SMT) solvers, have led to the development of scalable synthesis methods such
as game-based reactive synthesis [BJP+12], syntax-guided synthesis [ABD+15, HD18],
example-driven synthesis [OZ15], or inductive learning [JS17]. These methods mitigate
the high theoretical complexity of synthesis problems and provide a significant shift in
the system design paradigm. They have been successfully applied in several practically
relevant scenarios, e.g., design of bit-streaming programs [SLRBE05] and spreadsheet
macros [OZ15], or strategy synthesis for robot motion planning [ZL18]. These methods
have significantly pushed the horizon of feasible synthesis and provide opportunities to
attack new challenging problems in system design as well as to use the synthesis in new
application domains.

Recently new challenges have arisen from applications that require quantitative rea-
soning either due to quantitative semantics of the systems under study or due to quan-
titative requirements. Prominent examples of such applications include (i) synthesis of
probabilistic programs and models, which are more and more often used in hardware
and software engineering to quantify and minimise the probability of encountering an
anomaly or an unexpected behaviour, (ii) approximate computing, representing a modern
design paradigm that aims at reducing system resources by introducing a controlled in-
accuracy in the developed system, or (iii) synthesis of computational biological models,
which play an important role in system and synthetic biology.

In this thesis, we summarise our results in the area of quantitative synthesis. We have
proposed novel techniques that support efficient quantitative reasoning about many alter-
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4 CHAPTER 1. INTRODUCTION

native designs and system parameters and allow us to rigorously assess their quantitative
attributes (e.g., reliability, performance, cost, robustness, etc.). As such, the techniques
help designers make informed decisions during the engineering process and thus mitigate
its complexity and time-demands. The achieved results include theoretical foundations
underlying new scalable methods for quantitative synthesis as well as prototype tools and
their detailed experimental evaluations.

The following subsections summarise our results in the different areas of quantitative
synthesis and also provide a landscape of the most related work.

Synthesis Techniques for Probabilistic Systems
Randomisation is key to research fields such as dependability under uncertain system
components, symmetry breaking in distributed computing, planning under unpredictable
environments, and probabilistic programming. Families of alternative designs differing in
the structure and system parameters are ubiquitous. Software dependability has to cope
with configuration options, in distributed computing the available memory per process
is highly relevant, in planning the observability of the environment is pivotal, and pro-
gram synthesis is all about selecting correct program variants. The automated analysis of
such families has to face a formidable challenges – in addition to the state-space explo-
sion affecting each family member, the family size typically grows exponentially in the
number of features, options, or observations. This affects many application domains such
as quantitative analysis of software product lines [VtBLL18, CDKB18], strategy synthe-
sis in planning under partial observability [CCD16, NPZ17], and probabilistic program
synthesis [CP17, GCT18].

We focus on Markov chains (MCs) with parameters that are widely used to describe
configurable probabilistic systems. We distinguish two types of parameters: 1) param-
eters (typically with continuous domains) affecting transition probabilities or rates and
2) parameters (typically with finite but very large discrete domains) determining the sys-
tem topology. MCs including only the former type of parameters are known as parametric
MCs introduced in parameter synthesis [HKM08, HHZ11] and model repair [BGK+11]
problems. The parameters determining the topology go beyond the class of paramet-
ric MCs and are essential in many aforementioned applications.

The existing synthesis techniques for parametric probabilistic systems can be divided
into the following categories:

Parameter synthesis
Parameter synthesis techniques consider models with uncertain parameters associated to
transition probabilities or rates, and analyse how the system behaviour depends on the pa-
rameter values. In [BČDŠ13], we have proposed the first technique effectively comput-
ing safe probability bounds on the temporal system behaviour over the given parameter
space1. The technique has been further extended to a more general class of probabilistic

1We originally proposed this technique for a subclass of MCs describing stochastic biochemical systems.
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systems [ČPP+16, QDJ+16] and implemented in the state-of-the-art probabilistic model
checkers PRISM [KNP11] and STORM [DJKV17]. An alternative approach based on
building rational functions for the satisfaction probability [HHZ11, DJJ+15] supports
also different classes of probabilistic models and synthesis problems, e.g., the model re-
pair problem [CHH+13, PÁJ+15]. However, for the synthesis against time bounded prop-
erties, our technique provides a superior scalability and offers efficient data-parallelisation
leading to additional speed-up on modern many-core architectures [ČPP+16]. We em-
phasise that, the aforementioned synthesis techniques build on a numerical parametric
analysis allowing for a full exploration of the continuous parameter space (in contrast to
search-based techniques discuss below).

Topology synthesis
For parameters over finite domains, topology synthesis problems are NP-complete with
respect to the number of parameters [Cho17], and can naively be solved by analysing all
individual family members. An alternative is to model the family by a single Markov
decision process (MDP) and use standard MDP model-checking algorithms. This ap-
proach has been implemented in tools such as ProFeat [CDKB18] but is infeasible for
large systems as well as the naive solution.

In our recent work, we have proposed two alternative approaches that significantly
improves the scalability of the synthesis process: 1) abstraction-refinement scheme over
the MDP representation [ČJJK19], and 2) counter-example guided inductive synthesis
(CEGIS) for MCs [ČHJK19]. The key of the abstraction is to forget in which family
member the MDP operates. The resulting quotient MDP has a single representative for
every reachable state in a family member and typically provides a very compact repre-
sentation allowing an efficient analysis. The CEGIS approach adopts the idea used for
syntax-guided synthesis of deterministic programs [SLTB+06, ABD+15] to finite-state
probabilistic models and programs. It starts with a sketch, a program with holes, and it-
eratively searches for good—or even optimal—instantiations of these holes. Rather than
checking all instantiations, the design space is pruned by constructing counter-examples
of the rejected candidates and deriving their generalisations that potentially rule out many
instantiations at once.

An alternative problem, sketching for probabilistic programs that fit a given data, is
considered in [NORV15], together with a synthesis algorithm that builds on stochastic
search and approximate likelihood computation.

Searched-based synthesis
Searched-based techniques can be used for the general class of MC families (with both
types of parameters). However, they typically do not ensure an exhausted exploration
of the parameter space. In contrast, they leverage various evolutionary-based optimisa-
tion algorithms to drive the search towards feasible or (sub-)optimal solutions [HMZ12].
In [GCT18], the authors adopt searched-based synthesis to probabilistic models. They ap-
ply multi-objective optimisation and genetic algorithms to a design template that captures
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alternative system designs, and approximate Pareto-optimal set of Markov models asso-
ciated with the quality optimisation criteria of software systems. Likewise, the approach
from [MKBR10] employs evolutionary algorithms to search the configuration space of
Palladio Component Models.

We have recently extended the work of [GCT18] towards synthesis of robust sys-
tems [CČG+18] ensuring that perturbations in the system parameters cause only small
changes in the system behaviour. Apart from a novel approach for the synthesis of robust
designs, the proposed synthesis algorithm uniquely integrates searched-based techniques
with our parameter analysis [BČDŠ13] to effectively compute robustness over the pertur-
bation of the rate parameters.

Analyses and Synthesis of Chemical Reaction Networks

Chemical Reaction Networks (CRNs) are a versatile language widely used for modelling
and analysis of biochemical systems [CBHB09] as well as for high-level programming
of molecular devices [SSW10, Car13]. They provide a compact formalism equivalent to
Petri nets [Mur89], Vector Addition Systems (VAS) [KM69] and distributed population
protocols [AAER07]. Formal verification methods are now commonly embodied in the
design process of biological systems [BL16, GGG+15, HKN+08, LPC+12] in order to
reason about their correctness and performance. However, there is still a costly gap be-
tween the design and verification process, exacerbated in cases where stochasticity must
be considered – this is typically the case for molecular computation. The effective synthe-
sis of rate parameters (determining the speed of the reactions) such that the CRN satisfies a
given temporal behaviour is the first step narrowing the gap. We developed precise param-
eter synthesis algorithms for CRNs [ČDP+17], that combine a computation of probability
bounds over given parameter space [BČDŠ13] with a refinement and sampling of the pa-
rameter space. Our methods significantly improve on existing approximate techniques
that employ discretisation [HKM08]. For the synthesis against linear-time specifications,
statistical methods such as Gaussian Process regression have been used [JL11, BMS16].
In contrast to our approach, the statistical estimation cannot provide guaranteed results.

In our recent work, we have considered a more general synthesis problems where
also the topology of the CRN (i.e. particular reactions) ensuring the required temporal
behaviour is synthesised [CČF+17]. We have proposed a sketching language for CRNs
that concisely captures syntactic constraints on the network topology and allows its under-
specification. To ensure computational feasibility of the synthesis process, we employ
Linear Noise Approximation [VK92, EK09] of CRNs. This approximation allows us
to encode the synthesis problem as a SMT problem over a set of parametric ordinary
differential equations (ODEs). We have designed and implemented a novel algorithm
for the optimal synthesis of CRNs that employs almost complete refutation procedure
for SMT over reals and ODEs [EFH08, GAC12, GKC13] and exploits a meta-sketching
abstraction controlling the search strategy [BTGC16].

Syntax-guided synthesis has also been employed for data-constrained synthesis, as
in [KPS+13, PYH+14, DMY+14], where (deterministic) biological models are derived
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from gene expression data. Synthesis of CRNs from input-output functional specifications
is considered in [DMPY15, MPP+18], via a SMT-based generation of qualitative CRN
models and the consequent parameter estimation. As this approach requires solving an
optimisation problem for each qualitative model whose dimension is exponential in the
number of molecules, the synthesis is feasible only for small numbers of molecules.

In our work, we also focus on approximation techniques for CRNs. These techniques
simplify the underlying system dynamics (e.g. reduce the state space) while preserving the
important system behaviour. Therefore, they can improve the scalability of the synthesis
process by accelerating the candidate design evaluation as well as by reducing the number
of numerical components in the underlying SMT encoding. In [ABČK15], we proposed
an adaptive aggregation scheme for CRNs that significantly reduces the state space while
providing formal error bounds2. The main idea is to dynamically (re-)cluster states having
small probability. Comparing to state truncation techniques [MWDH10, MK06], our
approach provides better performance for systems with more complicated dynamics.

In some cases, formal bounds on the approximation error can be relaxed and thus a
simpler dynamics including hybrid models [HWKT14, CKL16] can be used. Very re-
cently, we have proposed a principally novel approach for scalable analysis of CRNs that
leverages a semiquantitative analysis [ČK19] aiming at quantitative precision only in or-
ders of magnitude. It first builds a compact understandable model, which is then crudely
analysed. As demonstrated on complex CRNs from literature, our approach reproduces
known results, but in contrast to the state-of-the-art methods, it runs with virtually no
computational cost and thus offers unprecedented scalability.

Design of Approximate Circuits and Automata

Approximate circuits are digital circuits that trade functional correctness (precision of
computation) for various other design objectives such as chip area, performance, or power
consumption. Methods allowing one to develop such circuits are currently in high de-
mand as many applications require low-power circuits, and approximate circuits offer a
viable solution. Prominent examples of such applications include image and video pro-
cessing [VM17, VMS17], or architectures for neural networks [MAFL10, MSS+16]. As
shown in [YC16, CSGD16a], many applications favour provable error bounds on result-
ing approximate circuits, which makes automated design of such circuits a very challeng-
ing and computationally-demanding task. Simulating the circuit on all possible inputs
does not scale beyond circuits with more than 12-bit operands even when exploiting mod-
ern computing architectures [MSS+16]. To solve this problem, various formal verification
methods have been used in the circuit optimisation [VS11, CYB+15, SAGK+16] as well
as in the circuit approximation including binary decision diagrams (BDDs) [VMS17],
boolean satisfiability (SAT) solving [VARR11], model checking [CS+16], or symbolic
computer algebra [FGD18]. However, these approaches did still not scale beyond ap-
proximation of multipliers with 12-bit operands and adders with 16-bit operands.

2This work is not included in the thesis.
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In our work, we have proposed a new approximation technique that integrates formal
methods, namely SAT solving, into evolutionary-based approximation [ČMM+17]. The
key distinguishing idea of our approach is simple, but it makes our approach dramati-
cally more scalable comparing to previous approaches. Namely, we restrict the resources
(running time) available to the SAT solver when evaluating a candidate solution. If no
decision is made within the limit, a minimal score is assigned to the candidate circuit.
This approach leads to a verifiability-driven search strategy that drives the search to-
wards promptly verifiable approximate circuits. Experimental evaluation demonstrates
that, comparing to existing approximation techniques, our approach is able to discover
circuits that have much better trade-offs between the precision and energy savings. We
have implemented this approach in ADAC [ČMM+18], our tool for automated design
of approximate circuits, that is now able to effectively approximate complex arithmetic
circuits such as 32-bit multipliers, multiply-and-accumulate circuits, and dividers.

Apart from circuit approximation, we have also developed techniques for quantitative
automata reductions. In particular, we focused on nondeterministic finite automata used
for regex matching in hardware-accelerated network intrusion detection systems. For a
given probability distribution of packets in network traffic, our goal is to design approx-
imate automata having the best tradeoffs between the probability that a packet is mis-
classified and the automaton size. In [ČHH+18, ČHH+19a], we proposed approximate
reduction techniques that employ a novel error state labelling. The labelling provides
safe bounds on the error introduced by removing a given state. The technique achieves
a great size reduction (much beyond the state-of-the-art language-preserving techniques)
with a controlled and small error. Their practical usefulness is, however, limited by the
size of the automaton to be reduced, i.e. by the complexity of regular expression the
automaton represents. Therefore, we have recently proposed lightweight reduction tech-
niques providing only statistical guarantees on the reduction error. The resulting automata
have been integrated into a novel FPGA architecture for regex matching [ČHH+19b] that
is able to process network traffic beyond 100 Gbps for complex sets of regular expres-
sion from SNORT database [Sno]. Our approach significantly improves on the perfor-
mance of the state-of-the-art hardware-accelerated network intrusion detection systems
such as [ARS15, MKP16a, YJB+18].

Related Activities
In 2019, the author of this thesis obtained a Czech Research Foundation grant CAQtuS:
Computer-Aided Quantitative Synthesis on the research topics presented in this thesis. He
was invited to present the achieved results on several seminars including Dagstuhl semi-
nar and faculty seminars at Oxford University, University of Tokyo, TU Muchen, RWTH
Aachen University. The proposed synthesis techniques were implemented in several pub-
licly available tools including a tool for automated design of approximate circuits that has
received Bronze Human Competitive Awards in Genetic and Evolutionary Computation
(Humies) in 2018.

The author has been very active in the research community. He was co-chairing the
16th International Conference on Computational Methods in Systems Biology (CMSB)
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in 2018 and the 6th International Workshop on Hybrid Systems and Biology (HSB) in
2019. He was also a co-chair of ETAPS (The European Joint Conferences on Theory and
Practice of Software) workshops in 2019. He regularly serves in program committees in-
cluding conferences and workshops such as CMSB, HSB, QEST, FORMATS, or CIBCB.
He was also a guest editor of a special issue in IEEE/ACM Transactions on Computational
Biology and Bioinformatics in 2019.

Note on the Author’s Contribution
We would like to emphasise that the papers underlying this thesis (see Sections 2.5, 3.5
and 4.4) use the alphabetical ordering of the authors that does not reflect authors’ contribu-
tion. The exception are the papers [ČŠDB14] and [ČDP+17] where the authors’ ordering
emphasises the major contribution of the first and second author. In Table 1.1, the author
of this thesis tries to describe his contribution to the papers. As there is no agreement on
a metric allowing an qualitative evaluation, he focuses on the contribution to commonly
accepted parts of the process of creating a paper in computer science.

topic approach proofs implementation experiments writing
[BČDŠ13]
[ČŠDB14]
[ČDKP14]
[ABČK15]
[ČPP+16]
[ČDP+17]

[ČMM+17]
[CČG+17a]
[CČG+17b]
[CČF+17]
[ČMM+18]
[CČG+18]
[ČHH+18]

[ČHH+19a]
[ČHH+19b]

[ČK19]
[ČJJK19]
[ČHJK19]
[ČMM+20]

Table 1.1: The contributions of the author of this thesis to the selected papers related to
the thesis. Black denotes an essential contribution, grey denotes an important contribu-
tion, white denotes minor or no contribution, and crosses denote non-applicability. The
highlighted papers are attached to this thesis.
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Focus and Structure of the Thesis
In the following chapters, we will discuss into more details some of the key ideas un-
derlying the aforementioned results3. In particular, we motivate and formalise the prob-
lems under study, present the key steps of the solution, and demonstrate its performance
and applicability on selected case studies. Chapter 2 presents our results in the area of
synthesis techniques for probabilisitic systems and focuses on the parameter synthesis,
inductive methods for the topology synthesis, and on the synthesis of robust systems.
Chapter 3 presents parameter synthesis techniques for CRNs and optimal syntax-guided
synthesis of CRNs under linear noise approximation. We also discus our novel results on
semi-quantitave abstraction for CRNs that open new directions for the synthesis of CRNs.
Chapter 5 presents our results in the area of automated design of approximate circuits and
automata. In particular, it focuses on verifiability-driven search strategy and on automata
reduction for regex matching in deep network packet inspection.

The second part of this thesis lists selected papers on which the discussed results are
based on.

3The results have been achieved since mid-2012, when the author of this thesis obtained the Ph.D.



Chapter 2

Synthesis of Probabilistic Systems

This chapter presents our three most important results in the area of probabilistic system
synthesis: 1) parameter synthesis for probabilistic systems [BČDŠ13, ČPP+16, ČDP+17],
2) topology synthesis for probabilistic systems [ČJJK19, ČHJK19] and 3) synthesis of
robust stochastic systems [CČG+17a, CČG+18].

2.1 Parameter synthesis for probabilistic systems

Traditionally, probabilisitic model checking techniques assume that model parameters
– namely, the transition probability and rate constants – are known a priori. This is
often not the case and one has to consider ranges of parameter values instead, for ex-
ample, when the parameters result from imprecise measurements, or when designers
are interested in finding parameter values such that the model fulfils a given specifica-
tion. Such problems can be effectively formulated in the framework of parameter syn-
thesis for Markov models [HKM08, HHZ11]: given a formula in a suitable (probabilis-
tic) logic [ASSB96, HJ94, ASB+95] and a model whose transition rates/probabilities are
functions of the parameters, find parameter values such that the satisfaction probability of
the formula meets a given threshold, is maximised, or minimised.

In this section, we present our results [BČDŠ13, ČPP+16, ČDP+17] including syn-
thesis algorithms for parametric continuous-time Markov chains (pCTMCs) and time-
bounded continuous stochastic logic (CSL). Note that we originally introduced the syn-
thesis algorithms for stochastic biochemical systems, in particular for parametric chemical
reaction networks (discussed in Section 3.1.1). Our approach can be, however, straight-
forwardly applied for general parametric stochastic system with the pCTMC semantics
as we shown e.g. in [ČPP+16]. Our results were further generalised for discrete-time
models and time unbounded properties using the notation of parameter lifting [QDJ+16].

pCTMCs allow transition rates to depend on model parameters. We assume a setK of
model parameters. The domain of each parameter k ∈ K is given by a closed real interval
of possible values, i.e, [k⊥, k>] ⊆ R. The parameter space P induced by K is defined as
the Cartesian product of the individual intervals, P =×k∈K [k⊥, k>]. The key concept of
pCTMCs is the parametric rate matrix R : S × S → R[K] where S is the set of states
and R[K] denotes the set of polynomials over the reals R with variables k ∈ K.

11
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Figure 2.1: Left: Example of a satisfaction function. Centre: Threshold synthesis for
P≥0.4[φ] and with volume tolerance ε = 5%. Right: Max-synthesis with probability
tolerance ε = 2%.

Given a pCTMC and a parameter space P , we denote with CP the set {Cp | p ∈ P}
where Cp = (S, π,Rp, L) is the instantiated CTMC obtained by replacing the parameters
in R with their valuation in p. The definition restricts the rates to be polynomials, which
are sufficient to describe a wide class of stochastic systems.

Problem formulation To introduce the synthesis problems, we introduce a satisfaction
function to capture how the satisfaction probability of a given property relates the param-
eters and the initial state1.

Definition 1 (Satisfaction function) Let φ be a CSL path formula, CP be a pCTMC over
a space P and s ∈ S. We denote with Λφ : P −→S−→ [0, 1] the satisfaction function such
that Λφ(p)(s) = Pr(ω ∈ Path(s) | ω � φ) in Cp, i.e. the probability of the set of paths
starting in s and satisfying φ.

Figure 2.1 illustrates two synthesis problems, i.e. decomposition of the parameter
space P . Given a threshold ∼ r, where ∼ ∈ {<,≤, >,≥}, and a CSL path formula
φ, the threshold synthesis problem asks for the parameter regions where the probability of
φ meets ∼ r and the regions that violate ∼ r. The max synthesis problem determines the
parameter region where the probability of the input formula attains its maximum, together
with probability bounds approximating that maximum. Solutions to the threshold synthe-
sis problem admit parameter points left undecided, while, in the max synthesis problem,
the actual set of maximising parameters is contained in the synthesised region. The min
synthesis problem is defined and solved in a symmetric way to the max case. Formal
definition can be found in [ČDP+17]. Note that φ allows nested probabilistic operators,
and thus the satisfaction function is, in general, not continuous.

2.1.1 Synthesis algorithms
The core part of the synthesis algorithm an efficient parameter exploration procedure we
introduced in [BČDŠ13] and extended in [ČDP+17]. The procedure takes a pCTMC CP

1For simplicity, we define the function and further describe parameter synthesis only for the probabilistic
operator. Our approach can also handle various time-bounded rewards operators (see [ČDP+17]).
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Figure 2.2: Left: Refinement in threshold synthesis with ≥ r. Parameter values are on
the x-axis, probabilities on the y-axis. Each box describes a parameter region (width),
and its probability bounds (height). The refinement of R yields regions in T and in U .
Right: Refinement in max synthesis. The two outermost regions (in red) cannot contain
the maximum, as their upper bound is below the maximum lower bound (M ) found at
region R. The maximum lower bound is improved by sampling several points p ∈ R
and taking the highest value (M ) of the satisfaction function Λ̂φ(p)(s0). The yellow area
highlights the improvement.

and CSL path formula φ, and provides safe under- and over-approximations for the mini-
mal and maximal probability that CP satisfies φ, that is, lower and upper bounds satisfying,
for all s ∈ S,

Λφ,min(s) ≤ inf
p∈P

Λφ(p)(s) and Λφ,max(s) ≥ sup
p∈P

Λφ(p)(s). (2.1)

The accuracy of these approximations is improved by partitioning the parameter space
P into subspaces and re-computing the corresponding bounds, which forms the basis of
the synthesis algorithms.

The key idea of parameter exploration is to replace the parametric choice at each state
and at each time step by a fresh variable with the same domains as the original parameters.
This replacement allows us to safely approximate the computationally intractable global
optimisation over P by a chain of simple optimisations. The local optimisation boils
down to an optimisation of multivariate polynomial function, where the degree of the
polynomial depends solely on the degree of the rate functions fτ . Moreover, for multi-
affine rate functions, the values Λφ,min(s) and Λφ,max(s) can be obtained by considering
only the extremal values of the variables.

Iterative refinement Having the procedure returning the bounds on the probability for
a given parameter space P , the synthesises algorithms are obtained as iterative refinement
of P . The key idea of the refinement for the threshold synthesis is illustrated in Fig-
ure 2.2 (left). For the max synthesis we employ a bit more involved refinement strategy
illustrated in Figure 2.2 (right). When analysing a subspace R, the refinement algorithm
additionally samples a set of parameters {p1, p2, . . .} (the dots) and computes the high-
est value M over Λφ(pi)(s0) using the standard verification procedure. M improves the
under-approximation to the maximum of the satisfaction function. As a result, the bound
rules out more regions, and fewer refinements are required in the next iteration (compare
the bounds M and M in the figure).
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2.1.2 Data-parallelisation

The complexity of the proposed synthesis algorithms depends mainly on the size of the
underlying model and on the number of parameter regions to analyse in order to achieve
the desired precision. However, existing parameter synthesis techniques usually do not
sufficiently scale with the model size and the dimensionality of the parameter space. For
instance, as reported in our earlier work [ČDKP14], the synthesis of two parameters for a
model with 5.1K states requires the analysis of 5K parameter regions and takes 3.6 hours.

In the last decade, many-core graphical processing units (GPUs) have been utilised
as general purpose, high-performance processing resources in computationally-intensive
scientific applications. Relevant applications include data-parallel algorithms for matrix-
vector multiplication [BG08] and probabilistic model checking [WB12, BESW10]. In
the light of this development, we have redesigned the synthesis algorithms using matrix-
vector operations [ČPP+16] to enable an efficient data-parallel processing and accelera-
tion of the synthesis procedures on many-core architectures.

The novelty of our approach is a two-level parallelisation scheme that distributes the
workload for the processing of the state space and the parameter space, in order to opti-
mally utilise the computational power of the GPU. The state space parallelisation builds
on a sparse-matrix encoding of the underlying parametric CTMC. The parameter space
parallelisation exploits the fact that our synthesis algorithms require the analysis of a large
number of parameter regions during the parameter space refinement.

The proposed data-parallel synthesis algorithms as well as a number of optimisations
of the sequential algorithms have been implemented in our tool PRISM-PSY2 [ČPP+16]
that employs the front-end of the probabilistic model-checker PRISM [KNP11]. Our ex-
periments on several case studies show that the data-parallel synthesis achieves on a single
GPU up to a 31-fold speedup with respect to the optimised sequential implementation and
that our algorithms provide good scalability with respect to the size of the model and the
number of parameter regions to analyse. As a result, PRISM-PSY enables the application
of precise parameter synthesis methods to more complex problems, i.e. larger models and
higher-dimensional parameter spaces.

2.2 Complete Methods for Topology Synthesis

In this section, we present two orthogonal approaches for topology synthesis for discrete-
time MCs over finite design spaces3. In contrast to search-based techniques [GCT18],
we aim at complete algorithms that explore the entire design space without enumerating
and verifying every candidate design individually. The completeness is indeed essential
if the optimality or non-existence of the candidate has to be proved as well as if all valid
candidates have to be found. Using a straightforward adaption of existing results (e.g. re-
sults for augmented interval Markov chains [Cho17, Theorem 3]), it can be shown that
the synthesis problem is NP-complete with respect to the number of parameters.

2http://www.prismmodelchecker.org/psy/
3Extension of towards continuous-time MCs is under current investigation.
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To mitigate this complexity, we propose techniques that, in many cases, allow efficient
quantitative reasoning about a set alternative designs. This is essential in many application
domains such as software product lines [CDKB18], strategy synthesis in planning under
partial observability [GDF14], or probabilistic program synthesis [GCT18], where a very
large set of system topologies has to be explore. Reasoning about alternative topologies
poses a significantly harder problem comparing to the parameter synthesis. This is due
to the shape of the satisfaction function describing how the probability of a given system
behaviour depends on the parameters. In the case of the transition parameters (discussed
in the previous section), the function is (piece-wise) continuous typically with a small
number of local extrema and thus safe and useful bounds on the function can be com-
puted [ČDP+17]. In the case of parameters affecting the system topology, the function is
usually very discontinuous and chaotic and thus alternative techniques are required.

We first define families of Markov chains that compactly represent a set of system
topologies. We then introduce a MDP-based abstraction of a given family and iterative
refinement scheme leading to a novel synthesis algorithm [ČJJK19]. Afterwards, we
present a counter-example driven synthesis [ČHJK19]. Finally, we briefly discuss how
the synthesis methods can be lifted to the syntax-guided synthesis that operates at the
language level rather at the state level.

2.2.1 Families of Markov chains

We present our approaches on the basis of an explicit representation of a family of MCs
using a parametric transition probability function.

Definition 2 (Family of MCs) A family of MCs is defined as a tuple D = (S, s0, K,P)
where S is a finite set of states, s0 ∈ S is an initial state, K is a finite set of discrete
parameters such that the domain of each parameter k ∈ K is Tk ⊆ S, and P : S →
Distr(K) is a family of transition probability matrices.

Note that the transition probability function of standard MCs maps states to distributions
over successor states. For families of MCs, this function maps states to distributions over
parameters. Instantiating each of these parameters with a value from its domain yields a
“concrete” MC, called a realisation. LetRD denote the set of all realisations for D.

Recall that the parametric MCs, defined in the prevision section, use a parametric
transition probability function that maps states to parametric distributions over successor
states. The parameters affect the transition rate/probability, not the target states. Different
system topology is expressed in the the parametric MCs using discrete parameters whose
valuation leads to different transition probability functions. The notation of the family
allows us a more compact description of the alternative system topologies.

As a family D of MCs is defined over finite parameter domains, the number of family
members (i.e. realisations from RD) of D is finite, i.e., |D| := |RD| =

∏
k∈K |Tk|, but

exponential in |K|. Subsets of RD induce so-called subfamilies of D. While all these
MCs share the same state space, their reachable states may differ, as demonstrated by the
following example.
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(a) Dr1 with r1(k1) = 0, r1(k2) = 2
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(b) Dr2 with r2(k1) = 1, r2(k2) = 2

Figure 2.3: The two different realisations of D.

Example 1 (Family of MCs) Consider a family of MCs D = (S, s0, K,P) where S =
{0, 1, 2, 3}, s0 = 0, and K = {k0, k1, k2} with domains Tk0 = {0}, Tk1 = {0, 1}, and
Tk2 = {2, 3}. The parametric transition function P is defined by:

P(0) = 0.5: k0 + 0.5: k1 P(1) = 0.5: k1 + 0.5: k2

P(2) = 1: k2 P(3) = 0.5: k1 + 0.5: k2

D induces four realisation. Fig. 2.3 shows the two MCs that result from the realisations
{r1, r2} = RD. States that are unreachable from the initial state are greyed out.

Specifications. To simplify the presentation, we consider only unbounded reachability
and expected reward specifications, however, our approaches may be extended to richer
logics like arbitrary PCTL [HJ94], PCTL* [ASB+95], or ω-regular properties.

Synthesis problems. We consider the following formulations of synthesis problems for
families of MCs: 1) feasibility synthesis: Does some member in D satisfy the specifica-
tion? 2) threshold synthesis: Which members of D satisfy the specification? 3) optimal
synthesis: Which family members satisfy ϕ optimally, e.g., with the highest probability?

Example 2 (Synthesis problems) Recall the family of MCs D from Example 1. For the
specification ϕ = P≥0.1(♦{1}), the solution to the threshold synthesis problem is T =
{r2, r3} and F = {r1, r4}, as the goal state 1 is not reachable for Dr1 and Dr4 . For
ϕ = ♦{1}, the solution to the max synthesis problem on D is r2 or r3, as Dr2 and Dr3

have probability one to reach state 1.

2.2.2 Synthesis via refinement of MDP-based abstraction
Our first synthesis approach builds on an abstraction of the family D in the form of
Markov Decision Process (MDP). The abstraction is iteratively refined until it provides
sufficient precision to solve the required synthesis problem over D. To build the ab-
straction, we first consider a single MDP (so-called all-in-one MDP [GS13, RAN+15,
CDKB18]) that subsumes all individual MCs of a family D, and is equipped with an
appropriate action and state labelling to identify the underlying realisations fromRD.
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Figure 2.4: Left: Reachable fragment of the all-in-one MDP MD for realisations r1

and r2. Right: The quotient MDP MD
∼ for realisations r1 and r2.

Definition 3 The all-in-one MDP of a family D = (S, s0, K,P) of MCs is given asMD =
(SD, sD0 ,Act

D,PD) where SD = S × RD ∪ {sD0 }, ActD = {ar | r ∈ RD}, and PD is
defined as follows:

PD(sD0 , a
r)((s0, r)) = 1 and PD((s, r), ar)((s′, r)) = P(r)(s)(s′).

Example 3 (All-in-one MDP) Fig. 2.4 (left) shows the all-in-one MDP MD for the fam-
ily D of MCs from Example 1 – for the sake of readability, we only include the transitions
and states that correspond to realisations r1 and r2. Again, states that are not reachable
from the initial state sD0 are marked grey.

Model checking the all-in-one MDP determines max or min probability (or expected
reward) for all states, and thereby for all realisations, and thus provides a solution to both
synthesis problems. Clearly, the MDP may be too large for realistic problems. Therefore,
we define a predicate abstraction that at each state of the MDP forgets in which realisation
we are, i.e., abstracts the second component of a state (s, r).

Definition 4 (Forgetting) Let MD = (SD, sD0 ,Act
D,PD) be an all-in-one MDP. Forget-

ting is an equivalence relation ∼f ⊆ SD × SD satisfying

(s, r) ∼f (s′, r′) ⇐⇒ s = s′ and sD0 ∼f (sD0 , r) ∀r ∈ RD.

Let [s]∼ denote the equivalence class wrt. ∼f containing state s ∈ SD.
Forgetting induces the quotient MDP MD

∼ = (SD
∼ , [s

D
0 ]∼,Act

D,PD
∼ ), where

PD
∼ ([s]∼, ar)([s

′]∼) = P(r)(s)(s′).

Fig. 2.4 (right) illustrates the quotient MDP under forgetting for our example. Recall
that in the quotient MDP the available actions allow to switch realisations and thereby
create induced MCs different from any MC in D. We can naturally formalise the no-
tion of a consistent scheduler with respect to the parameters, i.e., a scheduler does not
allow to switch realisations. Therefore, enumerating all consistent schedulers forMD

∼ and
analysing the induced MC provides a solution to both synthesis problems. However, our
experiments demonstrate that this is also very inefficient.
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Refinement Loop. The key observation leading to the refinement-based synthesis is that
model checking of MD

∼ still provides useful information for the analysis of the family D.
Consider a feasibility synthesis problem for ϕ = P≤λ(ϕ). If Probmax(MD

∼ , ϕ) ≤ λ, then
all realisations of D satisfy ϕ. On the other hand, Probmin(MD

∼ , ϕ) > λ implies that
there is no realisation satisfying ϕ. If λ lies between the min and max probability, and
the scheduler inducing the min probability is not consistent, we cannot conclude anything
yet, i.e., the abstraction is too coarse. A natural countermeasure is to refine the abstraction
MD
∼ , in particular, split the set of realisations leading to two synthesis sub-problems.

The splitting operation is the core of the proposed abstraction-refinement algorithms
for all synthesis problems. Note that, we avoid rebuilding the quotient MDP in each iter-
ation, which is crucial for the overall performance. Instead, we only restrict the actions
of the MDP to the particular subfamily. The particular refinement algorithms leverage
the similar ideas as the refinement strategies for parameter synthesis described in Sec-
tion 2.1.1. More details can be found in synthesis [ČJJK19] including heuristics for find-
ing effective splitting strategy that reduces the number of model-checking calls.

2.2.3 Counter-example driven synthesis

Synth Verifier

instance

reject +
CE

sketch properties

unsatisfiable

no instance

synthesised program

accept

Figure 2.5: CEGIS for synthesis.

In this section, we present an alternative approach
for topology synthesis that adopts counter-example
driven synthesis [SLTB+06, ABD+15, SLRBE05,
ADK+18] to probabilistic domains. We follow the
typical separation of concerns as in oracle-guided
inductive synthesis [ASFS18, GCT18, GPS17]: a
synthesiser selects single realisations r that have not
been considered before, and a verifier checks whether the MC Dr satisfies the specifica-
tion ϕ (cf. Fig. 2.5). If Dr violates the specification, the verifier derives a counterexample
(CE) in the form of a conflict representing the core part of Dr causing the violation.
Rather than checking all instantiations, the conflict is used to potentially rule out many
instantiations (dashed area) at once and thus to prune the design space.

Definition 5 (Conflict) Let r ∈ RD be a realisation with Dr 6|= ϕ. A partial realisation
r̄ϕ ⊆ r is a conflict for the property ϕ iff Dr′ 6|= ϕ for each realisation r′ ⊇ r̄ϕ. A set of
conflicts is called a conflict set.

To explore all realisations for the feasibility synthesis, the synthesiser starts with Q
representing all realisationsRD. It picks some realisation r ∈ Q. It then calls a verifier to
decide whether Dr |= ϕ. If do so, r retuned as feasible realisation. Otherwise, the verifier
computes a counter-example in the form a conflict. Then the conflict is generalised to a
set of realisations that violate ϕ andQ is pruned by removing all these realisations. IfQ is
empty, we are done: each realisation violates ϕ. Note that the more complicate synthesis
algorithms use the conflicts for different properties: The threshold synthesis algorithm
uses both ϕ and ¬ϕ to effectively identify all realisations satisfying and violating ϕ, re-
spectively. The optimal synthesis algorithm iteratively updates ϕ based on the current
optimal value achieved for ϕ.
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Figure 2.6: Fragment and corresponding sub-MC that suffices to refute ϕ

The verifier typically uses an off-the-shelf probabilistic model-checking procedure to
determine if ϕ is violated and to computes a critical set of states C of Dr that induce
sub-MCs (denoted as Dr ↓ C) violating ϕ. The critical sets for safety properties can be
obtained via standard methods [ÁBD+14], and support for liveness properties is discussed
in [ČHJK19]. The essential property [WJÁ+12] of the sub-MCs is:

If a sub-MC of a MC D refutes a safety property ϕ, then D refutes ϕ too.

Finally, the verifier translates the obtained critical set C for realisation r to a conflict
Conflict(C, r) ⊆ r and stores it in the conflict set that is used to prune the design space.
The following examples illustrate the key idea behind our approach.

Example 4 Consider the family of MCs D = (S, s0, K,P) where S = {0, . . . , 4}, s0 =
0, and K = {k0, . . . , k5} with Tk0 = {0}, Tk1 = {1}, Tk2 = {2, 3}, Tk3 = {2, 4},
Tk4 = {3} and Tk5 = {4}, and P given by:

P(0) = 0.5: k1 + 0.5: k2 P(1) = 0.1: k0 + 0.8: k3 + 0.1: k5 P(2) = 1: k3

P(3) = 1: k4 P(4) = 1: k5

and property ϕ := P≤2/5(♦{2}). Assume the synthesiser picks realisation r1 with r1(k2) =
2, r1(k3) = 2. The verifier builds Dr1 , depicted in Fig. 2.6(a), and determines Dr1 6|= ϕ.
Observe that the verifier does not need the full realisation Dr1 to refute ϕ. In fact, the
paths in the fragment of Dr1 in Fig. 2.6(c) (ignoring the outgoing transitions of states 1
and 2) suffice to show that the probability to reach state 2 exceeds 2/5.

Consider realisation r2 with r2(k2) = 2, r2(k3) = 4. Observe that Dr1 ↓C is part of
Dr2 too. Formally, the sub-MC of Dr2 ↓ C is isomorphic to Dr1 ↓ C and therefore also
violates ϕ – it can be pruned without constructing and verifying Dr2 .

2.2.4 Syntax-guided synthesis
Probabilistic models are typically specified by means of a program-level modelling lan-
guage, such as PRISM [KNP11], JANI [BDH+17], or MODEST [BDHK06]. We propose
a sketching language based on the PRISM modelling language. A sketch, a syntactic tem-
plate, defines a high-level structure of the model and represents a-priori knowledge about
the system under development. It effectively restricts the size of the design space and
also allows to concisely add constraints and costs to its members. The proposed lan-
guage is easily supported by model checkers and in particular by methods for generating
CEs [DJW+14, WJV+15].
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hole X either { XA is 1 cost 3, 2}
hole Y either { YA is 1, 3 }
hole Z either { 1, 2 }
constraint !(XA && YA);
module rex
s : [0..3] init 0;
s = 0 -> 0.5: s’=X + 0.5: s’=Y;
s = 1 -> s’=s+Z;
s >= 2 -> s’=s;
endmodule

(a) Program sketch SH

module rex
s : [0..3] init 0;
s = 0 -> 0.5: s’=1 + 0.5: s’=3;
s = 1 -> s’=3;
s >= 2 -> s’=s;
endmodule

(b) Realisation R ({X 7→1, Z 7→2, Y 7→3})

Figure 2.7: Running example

In this section, we describe the sketching language and briefly discuss how to adapt
the aforementioned synthesis techniques from state level to program level.

A program sketching language Recall that the PRISM program consists of one or
more reactive modules that may interact with each other4. A program has a set of bounded
variables spanning its state space. Transitions between states are described by guarded
commands of the form:

guard → p1 : update1 + . . . . . .+ pn : updaten

The guard is a Boolean expression over the module’s variables of the model. If the
guard evaluates to true, the module can evolve into a successor state by updating its vari-
ables. An update is chosen according to the probability distribution given by expressions
p1, . . . , pn. In every state enabling the guard, the evaluation of p1, . . . , pn must sum up to
one. Overlapping guards yield non-determinism and are disallowed here.

Roughly, a program P thus is a tuple (Var, E) of variables and commands. For a pro-
gram P, the underlying MC [[P ]] are P’s semantics. We lift specifications: Program P
satisfies a specification Φ, iff [[P ]] |= Φ, etc.

A sketch SH is a program that contains holes h ∈ H . Holes are the program’s open
parts and can be replaced by one of finitely many options. Each option can optionally be
named and associated with a cost. They are declared as:

hole h either {x1 is expr1 cost c1, . . . , xk is exprk cost ck }

where h is the hole identifier, xi is the option name, expri is an expression over the
program variables describing the option, and ci is the cost, given as expressions over
natural numbers. A hole h can be used in commands in a similar way as a constant, and
may occur multiple times within multiple commands, in both guards and updates. The
option names can be used to describe constraints on realisations. These propositional
formulae over option names restrict realisations.

The sketch realisation R is a function that satisfies all constraints and that yields a
program (without holes) in which each hole h ∈ H i is replaced by R(h).

4To simply the presentation, we consider only single module programs – this is not a restriction, every
PRISM program can be flattened into this form.
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const int X = 1, Y = 3;
...
module rex
s : [0..3] init 0;
s=0 -> 0.5: s’=X + 0.5: s’=Y;
endmodule

(a) CE for upper bound

...
module rex
s : [0..3] init 0;
s=0 -> 0.5:s’=X + 0.5:s’=Y;
s=3 -> s’=3
endmodule

(b) CE for lower bound

Figure 2.8: CEs for (a) P≤0.4[F s=3] and (b) P>0.6[F s=2].

Example 5 We consider a small running example to illustrate the main concepts of the
sketching language. Fig. 2.7(a) depicts the program sketch SH with holes H = {X,Y,Z}.
For X, the options are {1, 2}. The constraint forbids XA and YA both being one; it
ensures a non-trivial random choice in state s=0. Fig. 2.7(b) shows realisation R =
{X 7→1, Z 7→2, Y 7→3}.

Program-level MDP-based synthesis Using the sketching language for the MDP-based
synthesis is quite straightforward as the key concepts in the families of MC and sketches
are analogous. In particular: holes and parameters are similar, parameter domains are
options, and family realisations and sketch realisations both yield concrete instances from
a family/sketch. In this case, the main benefit of the sketching language is a high-level
and compact representation of the design space.

Program-level CEGIS To properly benefit from the program-level CEGIS, we need
to first introduce program-level counter-examples and introduce adequate encoding and
pruning of the program-level design space.

Definition 6 For program P = (Var, E) and specification ϕ with P 6|= ϕ, a program-
level CE E ′ ⊆ E is a set of commands, such that for all (non-overlapping) programs
P′ = (Var, E ′′) with E ′′ ⊇ E ′ (i.e, extending P′), P′ 6|= ϕ.

Example 6 Reconsider ϕ = {P≤0.4[♦ s=3]}. Figure 2.8(a) shows a CE for realisation
R from Fig. 2.7(b). The probability to reach s=3 in the underlying MC is 0.5 > 0.4.
Fig. 2.8(b) shows a CE for the lower bound property P>0.6[F s=2].

For safety properties, program-level CEs coincide with the notation of high-level CEs
proposed in [WJV+15], their extension to liveness properties are discussed in [ČHJK19].
The program-level CEs are computed using the MaxSat approach from [DJW+14].

Program level synthesiser As before, the synthesiser stores and queries the set of re-
alisations not yet pruned. These remaining realisations are represented by (the satisfying
assignments of) the first-order formula Ψ over hole-assignments. The synthesiser first
constructs Ψ such that it represents all sketch realisations that satisfy the constraints in
the sketch SH . Then it iteratively extendes Ψ with conjunctions representing the conflicts
and thus prunes the remaining design space. The synthesiser exploits an SMT-solver for
linear (bounded) integer arithmetic to obtain a realisation R consistent with Ψ, or Unsat



22 CHAPTER 2. SYNTHESIS OF PROBABILISTIC SYSTEMS

if no such realisation exists. As long as a new realisations is found, the verifier analyses it
and returns a conflict set C, if ϕ is violated, that is used to extend Ψ. More details as well
as the concrete encoding schemes can be found in [ČHJK19].

2.2.5 Experimental evaluation for the topology synthesis
A detailed experimental evaluation of the proposed approaches for the topology synthesis
can be found in the original papers [ČJJK19, ČHJK19]. Below, we try to summarise the
key observations assessing both the weakness and the strengths of the approaches.

Benchmarks description. We consider the following case studies: Maze is a plan-
ning problem typically considered as POMDP, e.g. in [NPZ17]. Grid is another classical
benchmark for solving partially observable POMDPs [KLC98]. Pole considers balancing
a pole in a noisy and unknown environment (motivated by [ABC+18, CCM+12]). Her-
man is an asynchronous encoding of the distributed Herman protocol for self-stabilising
rings [Her90, KNP12]. DPM considers a partial information scheduler for a disk power
manager motivated by [BBPM00, GCT18]. BSN (Body sensor network, [RAN+15]) de-
scribes a network of connected sensors that identify health-critical situations – the largest
software product line benchmark used in [CDKB18]. Intrusion describes a network
(adapted from [KNPV09]), in which the controller tries to infect a target node via in-
termediate nodes. The benchmarks adequately cover various synthesis problems ranging
from design spaces including few hundreds realisations (e.g. Herman or BSN ) to several
millions (e.g. Intrusion). Also the complexity of the realisations varies significantly: the
size of the underlying MCs ranges from few hundred states (e.g. Intrusion or Maze) to
hundred thousands states (e.g. Grid ).

We primarily compare the performance of the proposed approaches with respect to the
enumerative approach that linearly depends on the number of realisations, and the under-
lying MCs’ size. We also consider synthesis via verification of all-in-one MDPs [GS13,
RAN+15, CDKB18] (recall Def. 3), however, in many cases building the MDP is not fea-
sible due to it prohibited size. We focus on synthesis problems where all realisations are
explored, as relevant for the threshold and optimal synthesis, since enumerative methods
perform mostly independent of the order of enumerating realisations.

General observations. Sketching. Families are simpler objects than sketches, but their
explicit usage of states make them inadequate for modelling. Moreover, additional fea-
tures like program-level conflicts significantly ease the modelling process. Consider in-
trusion: Without constraints, the number of realisations grows to 6·1011. Put differently,
the constraint allows to discard over 99.99% of the realisations up front. Moreover, con-
straints can exclude realisations that would yield unsupported programs, e.g, programs
with infinite state spaces. While modelling concise sketches with small underlying MCs,
it may be hard to avoid such invalid realisations without the use of constraints.
Specification. The performance of both proposed approaches significantly depends on
the specification, namely, on the thresholds appearing in the properties. The abstraction-
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refinement synthesis benefits from thresholds being closer to the optima as the abstrac-
tion requires a smaller number of iterations, which directly improves the performance.
Contrary, for CEGIS we observe the strong dependency between performance and “un-
satisfiability” – this is not surprising as more unsatisfiable the property is, the smaller the
conflicts exist (as in [DJW+14]) which prune more realisations and also they are typically
found faster than large ones. Note that CEGIS generally performs better with specifica-
tions that have multiple (conflicting) properties: Different realisations can be effectively
pruned by conflicts for different properties.

Structure of the design space significantly affects other important aspects of the synthesis
process. For the abstraction-refinement synthesis, these aspects include: the number of
iterations in the refinement loop, the size of the abstraction compared to the average size
of the realisation, and optimality of the refinement strategy. For CEGIS, the locality of
the holes are essential: it performs significantly better on sketches with holes that lie in
local regions of the MC. Holes relating to states all-over the MC are harder to prune.

The size of the underlying MCs has similar effects on all considered synthesis algorithms
and thus it does not effect their relative performance.

problem speedup
Maze [46, 26K]
Grid [2, 3]
Pole [77, 2.2K]
Herman [0.2, 0.3]
DPM [3-100]
BSN [1-3]
Intrusion [5, 2.2K]

Speedup with respect to the enumerative approach.
As explain above, the performance of the proposed two
approaches significantly depends on the thresholds ap-
pearing in the specification. This dependency is orthog-
onal with respect to the abstraction-refinement synthe-
sis and CEGIS. The following table presents ranges of
speedups we achieved using both approaches for differ-
ent thresholds. We can see that, in some cases, we
achieved enormous speedup over 1000 which fundamen-
tally pushes forward the frontiers of practically feasible synthesis. In other cases, the
speedup is more modest. For Grid, the MCs’ topology and the few commands make
pruning hard. Moreover, the speedup is mostly independent of the threshold and thus
abstraction-refinement also performs poorly. The run time for BSN, with a small |D| is
actually significantly affected by the initialisation of various data structures; thus only
a small speedup is achieved. The slowdown for Herman is caused by mainly by sub-
optimality of the refinement strategy and non-local holes.

2.3 Synthesis of Robust Systems via Parametric Analysis

Robustness is a key characteristic of both natural [Kit04] and human-made [Pha95] sys-
tems. Despite significant advances in software performance and reliability engineering
(see e.g. [Bon14]), the quality attributes of software systems are typically analysed for
point estimates of stochastic system parameters such as component service rates or fail-
ure probabilities. Even the techniques that assess the sensitivity of quality attributes to
parameter changes (e.g. [FTG16]) focus on the analysis of a given design at a time in-
stead of systematically designing robustness into the system under development (SUD).
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To address these limitations, we propose a tool-supported method for the efficient
synthesis of parametric continuous-time Markov chains (pCTMCs) that correspond to
robust system under designs (SUDs). Our RObust DEsign Synthesis (RODES) method
generates sets of pCTMCs that: i) are resilient to pre-specified tolerances in the SUD
parameters, i.e., to changes in the SUD’s operational profile, ii) satisfy strict performance,
reliability and other quality constraints, and iii) are nearly Pareto optimal with respect to
a set of quality optimisation criteria.

To the best of our knowledge, our tool RODES [CČG+17b]5 provides the first end-to-
end, tool-supported design method for the generation of sensitivity-aware Pareto fronts.
It integrates search-based multi-objective synthesis and GPU-accelerated precise pCTMC
parameter synthesis described in Section 2.1.1.

Sensitivity analysis has long been used to assess the impact that changes in the pa-
rameters of the system under development have on the system performance, reliability
and other quality attributes, e.g. in [GT02, HL05, LHC+05]. However, these approaches
work by repeatedly sampling the parameter space of the system and evaluating the system
behaviour for the sampled values. Accordingly, their results are not guaranteed to cap-
ture the entire range of quality-attribute values for the parameter region of interest. Our
method overcomes this limitation by generating safe and close over-approximations of
the quality-attribute regions associated with robust designs.

The sensitivity of software operational profiles has been analysed using the perturba-
tion theory for Markov processes [KGP03], to quantify the effect of variations in model
transition probabilities. However, this approach does not synthesise the solutions, and
does not work with the wide range of parameters supported by our method.

Techniques for the

2.3.1 Design space modelling and specification
We use a parametric continuous-time Markov chain (pCTMC) to define the design space
of a SUD. To this end, we extend pCTMCs defined in Section 2.1, where only real-valued
parameters k ∈ K determining the transition rates of the Markov chain are considered,
and assume that a pCTMC also includes discrete parameters d ∈ D affecting its state
space. Our definition captures the need for both discrete parameters encoding architec-
tural structural information (e.g. by selecting between alternative implementations of a
software component) and continuous parameters encoding configurable aspects of the
system (e.g. network latency or throughput). A design space is thus model as a pCTMC
C(P ,Q) over a continuous parameter space P =×k∈K [k⊥, k>] and a discrete parameter
space Q. As such, a candidate system design C(P ′, q) is a pCTMC corresponding to a
fixed discrete parameter valuation q and to continuous parameter values from a (small)
region P ′ ⊂ P .

In our approach, we operate with pCTMCs expressed in a high-level modelling lan-
guage extending the PRISM language [KNP11] and adopting constructs from [GCT18]
for specifying the discrete and continuous parameters (see [CČG+18] for more details).

5Available preinstalled on an easy-to-use VirtualBox instance from our project website https://
github.com/gerasimou/RODES/wiki.
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This modelling language can be seen as a very simple sketching language, describing a
space of candidate designs, for probabilistic systems. and can be easily extended towards
a more flexible sketching language we described in Section 2.2.4.

Quality requirements. The quality requirements of a SUD with design space given by a
pCTMC C(P ,Q) are defined using bounded-time CSL formulas as follows:

1) A finite set of objective functions {fi}i∈I corresponding to quality attributes of the sys-
tem and defined in terms of a set of CSL path formulas {ϕi}i∈I and the corresponding
satisfaction functions Λϕi

.
2) A finite set of Boolean constraints {cj}j∈J corresponding to the set of CSL path for-

mulas {ψj}j∈J and thresholds {∼j rj}j∈J on the functions Λψj
.

Due to the continuous parameter space, a single candidate design induces an infinite
number of objective function values, from which the designer must choose a representa-
tive value. For a candidate design C(P ′, q) and objective fi, this is typically identified as
one of the minimum, maximum and mid-range value of fi over all p ∈ P . On the other
hand, constraints have a unique interpretation because they must be met for any parameter
value of a candidate design6.

2.3.2 Sensitivity-aware synthesis

Quantifying the sensitivity of candidate designs is a crucial step in our robust synthesis
method. Intuitively, the sensitivity of a design C(P ′, q) captures how the objective func-
tions {fi}i∈I change in response to variations in the continuous parameters k ∈ K. The
variation of each objective fi is measured by the length of the interval describing the
range of admissible values for fi and C(P ′, q). The degree of variation for multiple ob-
jectives is given by the product of interval lengths, i.e., the volume of the corresponding
quality-attribute region. The sensitivity takes also into account the size of the underlying
parameter region, in order to account for designs with different tolerance values γk for
k ∈ K. For instance, a design with a large quality-attribute volume and high tolerance
(large parameter region volume) must be considered more robust (less sensitive) than an-
other design with comparable quality-attribute volume but lower tolerance. We illustrate
the sensitivity in the following example (for the formal definition, see [CČG+18]).

Example 7 (Sensitivity) Consider the candidate designs d1, d2, d3 with tolerance γ =
0.005 and the objective functions f1 and f2.

6Without loss of generality, we will further assume that all objective functions {fi}i∈I are minimised
and that all thresholds {∼j rj}j∈J are upper bounds of the form of ≤ rj .
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The three designs can be visualised in
the quality-attribute space (i.e. the ob-
jective space), as shown in the figure,
providing a direct and intuitive way to
assess robustness via the volume of the
boxes. The figure indicates that d2 is
the most robust design (with the small-
est sensitivity value).

Consider a system with design space C(P ,Q), quality requirements given by objective
functions {fi}i∈I and constraints {cj}j∈J , and designer-specified tolerances {γk}k∈K for
the continuous parameters of the system. Also, let F be the set of feasible designs for
the system, i.e., of candidate designs that meet the tolerances {γk}k∈K and satisfy the
constraints {cj}j∈J .

Definition 7 A sensitivity-aware Pareto dominance relation over a feasible design set F
and a set of minimisation objective functions {fi}i∈I is a relation ≺⊂ F × F such that
for any feasible designs d, d′ ∈ F

d ≺ d′ ⇐⇒(
∀i∈I.fi(d)≤fi(d′) ∧ ∃i∈I.(1+εi)fi(d)<fi(d

′)
)
∨(

∀i∈I.fi(d)≤fi(d′) ∧ ∃i∈I.fi(d) < fi(d
′) ∧

sens(d)≤sens(d′)
)
.

(2.2)

where εi ≥ 0 are sensitivity-awareness parameters. Note that, the sensitivity-aware Pareto
dominance relation is a strict order.

The classical Pareto dominance definition can be obtained by setting εi=0 for all i∈I
in (2.2). When εi>0 for some i∈I , dominance with respect to quality attribute i holds in
our generalised definition in two scenarios:

1) when the quality attribute has a much lower value for the dominating design

2) when in addition to a (slightly) lower quality attribute value, the sensitivity of the
dominating design is no worse than that of the dominated design.

These scenarios are better aligned with the needs of designers than those obtained by using
sensitivity as an additional optimisation criterion, which induces Pareto fronts comprising
many designs with low sensitivity but unsuitably poor quality attributes. Importantly, for
εi > 0 our generalised definition induces Pareto fronts comprising designs with non-
optimal (in the classical sense) objective function values, but with low sensitivity. We
call such designs sub-optimal robust. Thus, εi can be finely tuned to sacrifice objective
function optimality (slightly) for better robustness.

The parametric Markov chain synthesis problem consists of finding the Pareto-optimal
set PS of candidate designs (i.e. pCTMCs) with tolerances {γk}k∈K that satisfy the con-
straints {cj}j∈J and are non-dominated with respect to the objective functions {fi}i∈I and
the sensitivity-aware dominance relation ‘≺’:

PS=
{
C(P ′, q)∈F

∣∣ @C(P ′′, q′)∈F . C(P ′′, q′)≺C(P ′, q)} , (2.3)
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Metod overview. Computing the Pareto-optimal design set (2.3) is a very complex and
time-demanding process as the design space C(P ,Q) is extremely large, in fact, it is
uncountable due to its real-valued parameters. Also, every candidate design C(P ′, q)
consists of an infinite set of CTMCs that cannot all be analysed to establish its quality and
sensitivity. To address these challenges, our pCTMC synthesis method combines search-
based software engineering (SBSE) techniques [HMZ12, GCT18] with our techniques
for effective pCTMCs analysis presented in Section 2.1. Using these techniques, our
approach is able to produce a close approximation of the Pareto-optimal design set that is
stored in PS.

In each iteration of the synthesis loop, the method uses an SBSE metaheuristic to get a
new set of candidate designs and then updates the approximate Pareto-optimal design set
PS. The metaheuristic is implemented as multiobjective optimisation genetic algorithm
such as NSGA-II [DPAM02] or MOCell [NDL+09] that are specifically tailored for the
synthesis of close Pareto-optimal set approximations that are spread uniformly across
the search space. This update involves analysing each candidate design d = C(P ′, q)
to establish its associated objective function and constraint values. The update function
employs the GPU-accelerated parameter analysis techniques to compute safe enclosures
of the satisfaction probability of CSL formulae over pCTMCs.

2.3.3 Case study: Google file system
We consider the design of Google File System (GFS), the replicated file system used
by Google’s search engine [GGL03, BHH+13]. GFS partitions files into chunks of equal
size, and stores copies of each chunk on multiple chunk servers. A master server monitors
the locations of these copies and the chunk servers, replicating the chunks as needed.
During normal operation, GFS stores CMAX copies of each chunk. However, as servers
fail and are repaired, the number c of copies for a chunk may vary from 0 to CMAX.

We assume that GFS designers must select the hardware failure and repair rates cHard-
Fail and cHardRepair of the chunk servers, and the maximum number of chunks NC
stored on a chunk server. These parameters reflect the fact that designers can choose from
a range of physical servers, can select different levels of service offered by a hardware
repair workshop, and can decide a maximum workload for chunk servers. We consider
an initial system state modelling a severe hardware disaster with all servers down due to
hardware failures and all chunk copies lost, and we formulate a pCTMC synthesis prob-
lem for quality requirements given by two maximising objectives and one constraint.
Objective f1 maximises the probability that the system recovers service level 1 (master
up and at least one chunk copy available) in the time interval [10, 60] hours. Objective f2

maximises the expected time the system stays in (optimal) states with at least 0.5M chunk
servers up in the first 60 hours of operation. Finally, constraint c1 restricts the number of
expected chunk replications over 60 hours of operations.

Figure 2.9 shows the Pareto fronts obtained using the “lower bound” for the objective
functions. The design-space representation is given in Figure 2.10. We observe that the
Pareto front for ε = 0 and γ = 0.005 contains several large (yellow) boxes that corre-
spond to highly sensitive designs. For ε ∈ {0.05, 0.1}, these poor designs are “replaced”
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Figure 2.9: Sensitivity-aware Pareto fronts for the GFS model. Boxes represent quality-
attribute regions, coloured by sensitivity (yellow: sensitive, blue: robust). Red-bordered
boxes indicate sub-optimal robust designs. Designs are compared based on the worst-case
quality attribute value (i.e. lower-left corner of each box). Statistics are: sens, average
sensitivity of the front; suboptSols, number of suboptimal solutions.
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Figure 2.10: Synthesised Pareto-optimal designs for the GFS model. Rectangles in x-y
plane correspond to the continuous parameter regions.

by robust designs – surrounded by red borders – with very similar quality attributes but
slightly sub-optimal.

The design-space view of Figure 2.10 evidences a trade-off between cHardFail and
cHardRepair, i.e., optimal designs tend to have either high failure rates and high repair
rates, or low failure and repair rates. Results reveal that there is actually an ideal ratio be-
tween the two parameters as the corresponding optimal design appear to keep a relatively
constant proportion between cHardFail and cHardRepair. This result was unexpected,
yet very useful, since it indicates that designs not satisfying this trade-off yield excessively
fast or slow recovery times, and thus are far from the optimal f1 values.

Further, we observe that the maximum number of chunks per server, NC, has a ma-
jor influence on the design robustness, with high NC values leading to highly sensitive
designs. These designs should be avoided in favour of the designs with low NC values.



2.4 Future Research Directions
Our results have significantly extended capabilities of automated methods for designing
probabilistic systems, but also opened new promising research directions including: i)
combined strategies for the topology synthesis that would efficiently integrate the MDP
abstraction, counter-example pruning and evolutionary search strategies, ii) complete syn-
thesis methods that would effectively handle both types of parameters (i.e. parameters ef-
fecting transition probability/rate and parameters affecting the system topology), and iii)
complete topology synthesis for infinite families and sketches – this problem is in general
undecidable, but can be feasible for certain classes of families and sketches.

Further, we will focus on more flexible sketching languages allowing us to deploy our
synthesis methods and tools into a broader class of application domains.
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Brim. PRISM-PSY: Precise GPU-accelerated parameter synthesis for stochastic
systems. In TACAS’16, volume 9636 of LNCS, pages 367–384. Springer, 2016.
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Chapter 3

Analysis and Synthesis of Chemical
Reaction Networks

This chapter presents our results in the area of analysis and synthesis of stochastic bio-
chemical systems. We focus on systems described as a chemical reaction network(CRN).
CRNs represent a convenient formalism for modelling a multitude of biological sys-
tems, including molecular signalling pathways, gene regulation, and logic gates built from
DNA. For low molecule counts, and assuming a well-mixed and fixed reaction volume,
the prevailing approach is to model such networks using continuous-time Markov chains
(CTMCs) [Gil77a]. Stochastic model checking [KNP07] allows the analysis of the model
behaviour against temporal logic properties. We envision biochemical devices that imple-
ment biosensors and medical diagnostic systems, and hence ensuring appropriate levels
of reliability is important.

Our results targets at two fundamental challenges in modelling and analysing CRNs:
uncertainty of the model parameters affecting both reaction rates and network topology,
and scalability of existing techniques limiting the class of systems that can be effectively
analysed. In this thesis, we briefly present the following three results. 1) precise synthesis
of reaction rate parameters for CRNs [ČDKP14, ČDP+17], 2) optimal syntax-guided syn-
thesis of CRN topology and parameters [CČF+17], and 3) semi-quantitative abstraction
and scalable analysis of complex CRNs [ČK19].

3.1 Parameter Synthesis for Stochastic CRNs

Stochastic analysis of CRNs assumes that the model is fully specified, including reaction
rate constants. However, the reaction rates can be unknown or given as estimates that
typically include some measurement error. In spite of this uncertainty, one might want
to still demonstrate robustness and reliability of a synthetic molecular device. Or, one
might be interested in the identification of parameter values that reproduce experimentally
observed behaviour. The parameter synthesis problem for stochastic CRNs assumes a
specification given by a temporal formula and a CRN whose rates are given as functions
of parameters. The goal is to compute the parameter valuations guaranteeing that the
CRN satisfies the formula. The problem can be formalised using the pCTMCs and the
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corresponding satisfaction function (recall Section 2.1). Hence, our precise synthesis
algorithms [ČDKP14, ČDP+17] (described in Section 2.1.1) can be naturally employed.
In the following sections, we first introduce parametric CRNs and their semantics given by
pCTMCs, and then briefly present two biological case studies demonstrating the synthesis
algorithm in action.

A principally different approach can be used when a linear-time specification and cer-
tain restrictions on the rate function are assumed. In that case, the satisfaction function
can be approximated using statistical methods such as Gaussian Process regression, which
leverage smoothness [JL11, BMS16]. Inference of parameter values in probabilistic mod-
els from time-series measurements is a well studied area of research [AMSW11, BL13,
KPS+13, PYH+14], but different from the problem we consider.

3.1.1 Parametric CRNs
A chemical reaction network (CRN) N = (Λ,R) is a pair of finite sets, where Λ is a set
of species, |Λ| denotes its size, andR is a set of reactions. Species in Λ interact according
to the reactions in R. A reaction τ ∈ R is a triple τ = (rτ , pτ , kτ ), where rτ ∈ N|Λ| is
the reactant complex, pτ ∈ N|Λ| is the product complex and kτ ∈ R>0 is the parameter
associated with the rate of the reaction. rτ and pτ represent the stoichiometry of reactants
and products1. Under the usual assumption of mass action kinetics, the stochastic seman-
tics of a CRNN is generally given in terms of a discrete-state, continuous-time stochastic
process X(t) = (X1(t), X2(t), . . . , X|Λ|(t), t ≥ 0) [EK09].

The behaviour of the parametric stochastic system X(t) can be described by the (pos-
sibly infinite) parametric continuous-time Markov chain (CTMC) C = (S, s0,R) where
the parametric transition matrix R(i, j) gives the probability of a transition from the state
si to the state to sj . Formally, R(i, j) =

∑
τ∈reac(si,sj) fτ (si) where reac(si, sj) denotes

all the reactions changing state si into sj and fτ is the parametric rate function of reac-
tion τ . We focus on mass-action kinetics [Gil77a], according to which the rate depends
on the parameter kτ and is proportional to the concentrations of its reactants. Therefore,
we assume that fτ is a polynomial function over the rate parameters.

3.1.2 Case Study: Epidemic model
We consider the very famous SIR model [KM32] describing the epidemic dynamics in
a well-mixed and closed population of susceptible (S), infected (I) and recovered (R)
individuals. In the model, a susceptible individual is infected after a contact with an
infected individual with rate ki. Infected individuals recover with rate kr, after which
they are immune to the infection. We can describe this process with the following CRN
with mass action kinetics (i.e. the rate functions are linear with respect to the parameters):

Infection: S + I
ki−→ I + I Recovery: I

kr−→R
where parameters ki ∈ [0.005, 0.3] and kr ∈ [0.005, 0.2] are typically affected by a drug
treatment. We consider parameters initial populations S = 95, I = 5, R = 0, and the

1Given a reaction τ1 = ([1, 1, 0], [0, 0, 2], k1), we often refer to it as τ1 : λ1 + λ2
k1−→ 2λ3.
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Figure 3.1: Solution of the synthesis problems for the SIR model and the property φ. For
threshold synthesis, r = 10% and the volume tolerance is ε = 10%. For max synthesis,
the probability tolerance is ε = 1%. Colour code is as in Fig. 2.1.

time-bounded CSL path formula φ = (I > 0)U[100,120](I = 0), specifying behaviour
where the infection lasts for at least 100 time units, and dies out before 120 time units.
Property and parameters are taken from [BMS16], where the authors estimate the satis-
faction function for φ following a Bayesian approach.

First, we perform threshold synthesis to find infection and recovery rates for which φ
is satisfied with probability at least r = 10%. Figure 3.1 (a) illustrates the solution. Re-
sults evidence that a significantly higher number of refinement steps (around 1.3K) is
required for parameter subspaces where the satisfaction function Λ is close to the prob-
ability threshold r. Second, we perform max synthesis experiments for the same prop-
erty φ. Results are summarised in Figure 3.1 (b). We observe that, in order to meet the
desired probability tolerance, a high number of refinement steps (almost 6K) is required
due to a bell-shaped Λ with the maximising region at the top.

Our results significantly improve on the estimation of the satisfaction function Λ ob-
tained by the Bayesian approach [BMS16] . On the other hand, our approach typically has
a higher computation cost. In particular, the threshold synthesis for the SIR model took
around 29 minutes using a sequential implementation in PRISM-PSY and the max synthe-
sis took 3.6 hours. As described in Section 2.1.2, we have designed and implemented also
data-parallel versions of the synthesis algorithms that are able to efficiently utilise mod-
ern GPUs. For the SIR model, the parallel implementation in PRISM-PSY achieves up to
10-fold speedup and thus significantly reduce the runtime of synthesis process [ČPP+16].

3.1.3 Case Study: Robustness of Signalling Systems Response

Signalling pathways make the main interface between cells and their environment. Their
main role is to monitor biochemical conditions outside the cell and to transfer this infor-
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mation into the internal logical circuits (gene regulation) of the cell. Since signal process-
ing is carried out by several dedicated protein complexes (signalling components), it is
naturally amenable to intrinsic noise in these protein populations caused by stochasticity
of transcription/translation processes. Robust input-output signal mapping is crucial for
cell functionality. Many models and experimental studies have been conducted attempting
to explain mechanisms of robust signal processing in procaryotic cells, e.g., [SMMA07].

In order to construct robust signalling circuits in synthetically modified procaryotic
cells, Steuer et al. [SWSK11] has suggested and analysed a modification of a well-studied
two-component signalling pathway that is insensitive to signalling components concen-
tration fluctuations. The study was conducted using a simplified model consisting of the
two signalling components each considered in both phosphorylated and unphosphory-
lated forms. The authors considered two variants of the topology (the difference is in the
addition of catalytic activation) and evaluated their robustness considering the average
steady-state populations.

Figure 3.2: The CRN specifying the biochem-
ical model of the two considered topologies of
the two-component signalling pathway.

In our work, we reformulated the
model in the stochastic setting and em-
ployed our method for the robustness
analysis [ČŠDB14], extending the pa-
rameter analysis for CRNs, to provide
a detailed analysis of the input-output
signal response under fluctuations in
population of both signalling compo-
nents. The biochemical model of both
topology variants is given in Figure 3.2.
The input signal S is considered to be
fixed and therefore it makes a constant
parameter of the model. The signalling
components in both phosphorylated and unphosphorylated forms make the model vari-
ables H, Hp, R, and Rp. More details about the model construction can be found
in [ČŠDB14].

The key question we want to answer is “Is there a difference in the way the two
models handle noise (fluctuations) for low molecular numbers of signalling components?”
We formalise our question in terms of the expected reward property at time t where the
reward is defined as the mean quadratic deviation of the distribution of Rp.

We preset here only the main results – for more details see [ČŠDB14]. Fig. 3.3 com-
pers the two variants of model by Rp noise robustness. Robustness Rp noise in both
models has been computed with respect to perturbations of signal S over five selected
intervals of the input signal S ∈ [2, 3] ∪ [6, 7] ∪ [10, 11] ∪ [14, 15] ∪ [19, 20] and for three
distinct levels of the intrinsic noise in signalling component dynamics represented by sig-
moid coefficient n ∈ {0.1, 4.0, 10.0}. Perturbations were not computed over the whole
interval (S, n) ∈ [2, 20]× [0.1, 10.0] due to high computational demands. From the com-
puted values of individual refined subspaces as well as from the aggregated robustness
values for each input signal interval, we can see that for lower values of signal S (up-to
10), Model 2 embodies lower output response noise than Model 1 (spontaneous dephos-
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Figure 3.3: Comparison of the two variants of the model by Rp noise robustness.

phorylation). While the output response noise in Model 1 tends to converge to values
between 8 and 10, Model 2 exhibits a permanent (almost linear) increase in the output
response noise over most of the studied portion of the perturbation space. A super-linear
increase of the noise is observed for strong input signals. Another interesting aspect is
that, with increasing levels of gene regulation given by sigmoid coefficient n, the overall
noise in Rp decreases over the whole interval of signal values for Model 1 and most of the
interval for Model 2. However, there is an anomaly in Model 2 in the high signal region
[19.0, 20.0], where with decreasing noise in R and H the noise in Rp increases.

Our study shown that both pathway topologies result in fluctuations of the output
response, but robustness of input-output mapping varies in both models with increasing
the level of the input signal. For low input signals the synthetic topology gives response
with smaller variance in the output, whereas for high input signals the output variance
rapidly increases. Therefore the basic topology seems to be more suitable for processing
strong signals while the synthetic topology is more appropriate for low level signals. Our
study has also shown that both topologies are quite robust with respect to scaling the noise
in signalling components dynamics.

Robustness of stochastic biochemical models with respect to the required temporal
behaviour has been also studied in [BBNS15]. In contrast to our approach, the authors
provide a simulation-based method to define a notion of robust satisfiability in stochastic
models. They exploit the average robustness to address the system design problem, where
the goal is to optimise (few) control parameters of a stochastic model in order to maximise
its robustness.
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3.2 Optimal Syntax-Guided Synthesis of CRNs

To further reduce the gap between the design and verification process of CRNs, we
considered the problem of automatic construction of CRNs from high-level specifica-
tions [CČF+17]. In contrast to the parameters synthesis methods presented in the previ-
ous section, we want to synthesise both the CRN topology (i.e. the set of reaction) and the
reaction rates. We work again in the setting of program sketching [SLRBE05], where the
template is a partial program with holes (incomplete information) that are automatically
resolved using a constraint solver. We define a sketching language for CRNs that allows
designers to not only capture the high-level topology of the network and known depen-
dencies among particular species and reactions, but also to compactly describe parts of the
CRN where only limited knowledge is available or left unspecified (partially specified) in
order to examine alternative topologies. A CRN sketch is therefore a parametric CRN,
where the parameters can be unknown species, (real-valued) rates or (integer) stoichio-
metric constants. Our sketching language is well-suited for biological systems, where
partial knowledge and uncertainties due to noisy or imprecise measurements are very
common. We associate to a sketch a cost function that captures the structural complexity
of the CRNs and reflects the cost of physically implementing it using DNA [Car13]. Our
goal is thus to find a CRN that simultaneously meets the constraints given the sketch,
satisfies the formal specification and minimises the cost function.

To ensure computational feasibility of the synthesis process and still capture the stochas-
ticity intrinsic in CRN, we employ the Linear Noise Approximation [VK92, EK09] allow-
ing us to encode the synthesis problem as a satisfiability modulo theories problem over
a set of parametric Ordinary Differential Equations (ODEs) [EFH08]. We have designed
and implemented a novel algorithm for the optimal synthesis of CRNs that employs an al-
most complete refutation procedure for SMT over ODEs [EFH08, GAC12, GKC13] and
a meta-sketching abstraction for controlling the search strategy [BTGC16].

Synthesis of CRNs from input-output functional specifications was also considered
in [DMPY15], via a SMT-based generation of qualitative CRN models and consequent
optimisation of the rate parameters. In [MPP+18], the authors have improved this ap-
proach and synthesised CRNs (including some novel topologies) solving important prob-
lems such as majority, maximum and division. Our approach principally offers a better
scalability due to the Linear Noise Approximation and thus it is not limited to small num-
bers of molecules.

Recently, several different approaches have been proposed to automate the design of
population protocols, chemical reaction networks and molecular devices. In [VSK18], the
authors have developed a new language for programming deterministic chemical kinetics
to perform computation. It includes a compiler translating the program into chemical re-
actions. A design method based on artificial evolution has been used to build a CRN that
approximates a real function given on finite sets of input values [DHF19]. The proposed
search algorithm evolves the structure of the CRN and optimises the kinetic parameters
at each generation. Comparing to our approach, the algorithm cannot guarantee the com-
pleteness of the search, however, it was able to find interesting solutions for switches and
oscillators. A tool for a parametric analysis of population protocols has been introduce



3.2. OPTIMAL SYNTAX-GUIDED SYNTHESIS OF CRNS 37

in [BEJ18]. For a certain class of population protocols, the tool is able to perform analysis
over all of the infinitely many initial configurations and thus to provide important insights
into the protocol behaviour.

3.2.1 Sketching for CRNs
CRN sketches are defined in a similar fashion to concrete CRNs, with the main difference
being that species, stoichiometric constants and reaction rates are specified as unknown
variables. The use of variables considerably increases the expressiveness of the language,
allowing the modeller to specify additional constraints over them. Constraints facilitate
the representation of key background knowledge of the underlying network, e.g. that a
reaction is faster than another, or that it consumes more molecules than it produces.

Another important feature is that reactants and products of a reaction are lifted to
choices of species (and corresponding stoichiometry). In this way, the modeller can ex-
plicitly incorporate in the reaction a set of admissible alternatives, letting the synthesiser
resolve the choice.

Further, a sketch distinguishes between optional and mandatory reactions and species.
These are used to express that some elements of the network might be present and that, on
the other hand, other elements must be present. Our sketching language is well suited for
synthesis of biological networks: it allows expressing key domain knowledge about the
network, and, at the same time, it allows for network under-specification (holes, choices
and variables). This is crucial for biological systems, where, due to inherent stochasticity
or noisy measurements, the knowledge of the molecular interactions is often partial.

The following example illustrates the proposed sketching language and the optimal
solution obtained using our synthesis algorithm.

Example 1 (Bell shape generator) For a given species K, our goal is to synthesize a
CRN such that the evolution of K, namely the expected number of molecules of K, has a
bell-shaped profile during a given time interval, i.e. during an initial interval the popula-
tion K increases, then reaches the maximum, and finally decreases, eventually dropping
to 0. Table 3.1 (left) defines a sketch for the bell-shape generator inspired by the solution
presented in [Car09].

This sketch reflects our prior knowledge about the control mechanism of the produc-
tion/degradation of K. It captures that the solution has to have a reaction generating K
(τ1) and a reaction where K is consumed (τ2). We also know that τ1 requires a species,
represented by variable λ1, that is consumed by τ1, and thus τ1 will be blocked after the
initial population of the species is consumed. An additional species, λ2, different from
λ1, may be required. However, the sketch does not specify its role exactly: reaction τ2

consumes either none or one molecule of λ2 and produces an unknown number of λ2

molecules, as indicated by the hole ?. There is also an optional reaction, τ3, that does not
have any reactants and produces either 1 molecule of λ2 or between 1 and 2 molecules
of K. The sketch further defines the mandatory and optional sets of species, the domains
of the variables, and the initial populations of species.

Table 3.1 (right) shows the optimal CRN computed by our algorithm with respect to a
given cost function and the bell-shape profile produced by the CRN.
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Λm = {K},Λo = {A,B},Rm = {τ1, τ2},
Ro = {τ3}, Dec = {c1, . . . , c4 : [0, 2],

k1, k2, k3 : [0, 0.1], λ1, λ2 : {A,B}},
Con = {λ1 6= λ2, c1 < c2, c3 > c4},
Ini = {K0 = 1 ∧A0 ∈ [0, 100] ∧B0 ∈ [0, 100]}
τ1 = λ1 + c1K

k1−→ c2K

τ2 = {0, 1}λ2 + c3K
k2−→?λ2 + c4K

τ3 = ∅ k3−→ {λ2, [1, 2]K}

A+K →56 2K; K +B →43 2B
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Table 3.1: Left: The sketch for bell-shape generator. Right: CRN producing the bell-
shape profile (species K) synthesized by our algorithm

To specify the required behaviour (e.g., the bell-shape profile from the previous ex-
ample), we use formulas describing a dynamical profile composed as a finite sequence of
phases. Each phase is characterised by an arithmetic predicate, describing the system state
at its start and end points (including arithmetic relations between these two), as well as by
flow invariants pertaining to the trajectory observed during the phase. This allows us to
reason over complex temporal specifications including, for instance, a relevant fragment
of bounded metric temporal logic [OW08].

3.2.2 Optimal synthesis algorithm
Further, we denote with L(S) the set of valid CRNs given by a sketch S.

Problem formulation. Given a sketch S, syntactically defined cost function GS (i.e.
defined over the structure of the concrete instantiation rather than its dynamics), property
ϕ, volume N , and precision δ, the optimal synthesis problem is to find CRS C∗ ∈ L(S), if
it exists, such that [[C∗]]N �δ ϕ and, for each CRS C ∈ L(S) such that GS(C) < GS(C∗),
it holds that [[C]]N 2δ ϕ.

Without going into technical details, �δ denotes a “δ-satisfiability” in the framework
of satisfiability modulo ODEs [EFH08, ERNF15, GKC13], which provides solving pro-
cedures for this theory that are sound and complete up to a user-specified precision δ (also
know as “δ-decidability” used by Gao et al. in [GAC12]). In this sense, the solvers pro-
vide reliable verdicts on either unsatisfiability of the original problem or satisfiability of a
δ-relaxation [GKC13, TVKO17].

An important characteristic of the sketching language and the cost function is that for
each sketch S the set {GS(C) | C ∈ L(S)} is finite. This follows from the fact that S
restricts the maximal number of species and reactions as well as the maximal number of
reactants and products for each reaction. Therefore, we can define for each sketch S the
minimal cost µS and the maximal cost νS .
We further defined a meta-sketch abstraction for our sketching language that allows us to
formulate an efficient optimal synthesis algorithm.
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Definition 8 (Meta-sketch for CRNs) Given a sketch S and a cost function GS , we de-
fine the meta-sketch MS = {S(i) | µS ≤ i ≤ νS}, where S(i) is a sketch whose
instantiations have cost smaller than i, i.e. L(S(i)) = {C ∈ L(S) | GS(C) < i}.

A meta-sketchMS establishes a hierarchy over the sketch S in the form of an ordered set
of sketches S(i). The ordering reflects the size of the search space for each S(i) as well
as the cost of implementing the CRNs described by S(i). In contrast to the abstraction
defined in [BTGC16], the ordering is given by the cost function and thus it can be directly
used to guide the search towards the optimum.

In [CČF+17], we shown the dynamics of L(S) can be described symbolically by a set
of parametric ODEs, plus additional constraints. These equations depend on the sketch
variables and on the choice functions of each reaction, and describe the time evolution of
mean and variance of the species.

The meta-sketch abstraction, enabling effective pruning of the search space through
cost constraints, and the encoding allows us to formulate an algorithm scheme for solving
the optimal synthesis problem for CRNs. This scheme repeatedly invokes the SMT solver
(δ-Solver) on the sketch encoding, and at each call the cost constraints are updated towards
the optimal cost. We consider three approaches: 1) top-down: starting from the maximal
cost νS , it solves meta-sketches with decreasing cost until no solution exists (UNSAT);
2) bottom-up: from the minimal cost µS , it increases the cost until a solution is found
(SAT); 3) binary search: it bounds the upper estimate on the optimal solution using a
SAT witness and the lower estimate with an UNSAT witness.

We further improve the algorithm by exploiting the fact that UNSAT witnesses can
also be obtained at a lower precision δinit (δinit � δ), which consistently improves per-
formance. Indeed, UNSAT outcomes are precise and thus valid for any precision. Note
that the top-down strategy does not benefit from this speed-up since it only generates SAT
witnesses.

3.2.3 Experimental evaluation
We evaluate the usefulness and performance of our optimal synthesis method on three
case studies, representative of important problems studied in biology: (1) the bell-shape
generator, a component occurring in signalling cascades; (2) Super Poisson, where we
synthesize CRN implementations of stochastic processes with prescribed levels of pro-
cess noise; and (3) Phosphorelay network [CNCS11], where we synthesize CRNs ex-
hibiting switch-like sigmoidal profiles, which is the biochemical mechanism underlying
cellular decision-making, driving in turn development and differentiation.We employ the
iSAT(ODE) solver [EFH08, ERNF15], but our algorithm supports any δ-solver.

Bell-Shape Generator. We use the example described in Examples 1, resulting in 8
parametric ODEs, to demonstrate the performance of our approach – see [CČF+17] for
the complete experimental evaluation. The synthesised CRN is shown in Figure 3.1. We
evaluate the scalability of the solver with respect to precision δ and the size of the discrete
search space, altered by changing the domains of species and coefficient variables of the
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bottom-up 7/1 2671/1732
top-down 1/6 4863/5612
binary-search 2/4 3440/3121

Table 3.2: Performance of bell-shape generator model. Left: runtimes for different pre-
cisions δ and discrete search space size. Right: optimal synthesis for the fixed discrete
search space size (1536) using different variants of the synthesis algorithm and δ = 10−3.

sketch. We exclude cost constraints as they reduce the size of the search space. Runtimes,
reported in Table 3.2 (left), correspond to a single call to iSAT with different δ values,
leading to SAT outcomes in all cases. Our experiments (not reported here) show that the
size of the continuous state space, given by the domains of rate variables, does not impose
such a performance degradation.

In the second experiment, we analyse how cost constraints and different variants of
the synthesis algorithm affect the performance of optimal synthesis. Table 3.2 (right)
shows the number of iSAT calls with UNSAT/SAT outcomes (2nd column) and total run-
times without/with the improvement that attempts to obtain UNSAT witnesses at lower
precision (δinit = 10−1). Importantly, the average runtime for a single call to iSAT is sig-
nificantly improved when we use cost constraints, since these reduce the discrete search
space (between 216s and 802s with cost constraints, 1267s without). Moreover, results
clearly indicate that UNSAT cases are considerably faster to solve, because inconsistent
cost constraints typically lead to trivial UNSAT instances. This favours the bottom-up
approach over the top-down. In this example, the bottom-up approach also outperforms
binary-search, but we expect the opposite situation for synthesis problems with wider
spectra of costs. As expected, we observe a speed-up when using a lower precision for
UNSAT witnesses, except for the top-down approach.

The experimental results show that the proposed approach is able to synthesise chal-
lenging systems with up to 37 ODEs and around 10K admissible network topologies. It
thus significantly improves the performance and scalability of the existing synthesis meth-
ods and paves the way for design automation for provably-correct molecular devices.

3.3 Semi-Quantitative Abstraction of CRNs

Many important biochemical systems lead to complex dynamics that includes state space
explosion, stochasticity, stiffness, and multimodality of the population distributions [VK92,
Gou05], and that fundamentally limits the class of systems the existing verification and
synthesis techniques can effectively handle. In order to cope with the computational com-
plexity of the CNR analysis, several approximation techniques have been studied.
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For CRNs including only large populations of species, fluid (mean-field) approxima-
tion techniques based on ordinary differential equations (ODEs) can be applied [BH12]
and extended to approximate higher-order moments [Eng06], Linear Noise Approxima-
tion [VK92, EK09] or aggregation scheme over ODEs [CTTV17]. To handle stochas-
ticity of CRNs various hybrid approximation schemes have been proposed [HMMW10,
HWKT14, CKL16]. Their common idea is as follows: the dynamics of low population
species is described by the discrete stochastic process and the dynamics of large popula-
tion species is approximated by a continuous process. All hybrid schemes have to deal
with interactions between low and large population species leading to a computationally
demanding numerical analysis that typically limits their scalability.

Alternative approximation techniques for stochastic CRNs employ truncation of in-
significant states [MK06, HMW09, MWDH10] or state aggregation/lumping based on
exact/approximate probabilistic bisimulation [LS91, DLT08]. Several approximate aggre-
gation schemes leveraging structural properties of CRNs have been proposes [MMR+12,
ZWC09, FL09]. In our work [ABČK15]2, we proposed an adaptive aggregation that
gives, in contrast to the previous methods, formal guarantees on the approximation error,
but typically provide lower state space reductions.

Transient analysis of stochastic CRNs can be performed using the Stochastic Sim-
ulation Algorithm (SSA) [Gil77b]. Various partitioning schemes for species and reac-
tions have been proposed for the purpose of speeding up the SSA in multi-scale sys-
tems [RA03, SK05, CGP05, GAK15, HGK15]. Although simulation-based analysis is
generally faster than direct solution of the stochastic process underlying the given CRN,
in many cases. obtaining good accuracy requires large numbers of simulations and can be
very time consuming.

In our recent work [ČK19], we have proposed a different approach, so-called semi-
quantitative approach, that shifts the focus from quantitatively precise results to a more
qualitative analysis, closer to how a human would behold the system. It provides scalable
and accurate techniques for the CRN analysis as well as the explanation of the system
behaviour in the form of tiny models allowing for a synoptic observation. We explain the
key ideas behind our approach on a simple gene expression model:

Example 2 (Gene expression) The simple expression model includes the following reac-
tions protein production (p), protein degradation (d) and blocking (b) the DNA, over three
species: protein (P), active DNA (DNAon), and blocked DNA (DNAoff):

p: Don
10−→ Don + P d: P 0.1−→ ∅ b: Don + P 0.001−−−→ Doff

Using mass-action kinetics (the higher the population of reactants, the fastrer the reac-
tion), the CRN induces a infinite population Markov chain in Fig. 3.4.

[Don, 0]

 

[Don, 1] [Don, 2]

[Doff, 0] [Doff, 1] [Doff, 2]

<p,10> <p,10>

<d,0.1> <d,0.2>

 

<d,0.1> <d,0.2>

<b,0.001> <b,0.002>

[Don, 50] [Don, 51]

[Doff, 50] [Doff, 51]

<p,10>

<d,5.1>

<d,5.1>

<b,0.05> <b,0.051>

 

Figure 3.4: The Markov chain for Gene expression, displaying the population of P.
2Not part of this habilitation thesis.
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[Don, 0] [Don, 1-20]

[Doff, 0] [Doff, 1-20]

<p,10> <Ap,0.36>

<d/Ad,0.1> 
<b,0.01>

[Don, 51-1000]

[Doff, 51-1000]

<b,0.53>
<Ad,0.087>

<d/Ad,0.1> <Ad,0.11>

[Don, 21-50]

[Doff, 21-50]

<b,0.035>

<Ap,0.0019>

<Ad,0.14>

<Ad,0.13>
<b,0.001>

[Don, 0] [Don, 1-20]

[Doff, 0] [Doff, 1-20]

<p,10> <p,10>

<d,0.1>

<d,0.1> <d,5.1>

<b,[0.001-0.02]>

[Don, 51-1000]

[Doff, 51-1000]

<p,10><d,[0.2,2]>

<d,[0.2,2]>

<d,[5.2,100]> <p,10>

<d,[5.2,100]>

<b,[0.051-1]>

<d,5.1>

[Don, 21-50]
<p,10>

<d,2.1>

<p,10><d,[2.2,5]>

[Doff, 21-50]

<d,[2.2,5]>

<d,2.1>

<b,[0.021-0.05]>

Figure 3.5: The abstract Markov chain for Gene expression with population discretiza-
tion thresholds 20, 50 and upper bound 1000. Left: Classic may transition function.
Right: Semi-quantitative version with accelerated transitions.

Semiquantitative abstraction. The abstraction of the state space is simply given by a
discretization of the population for each species into finitely many intervals, see Fig. 3.5.
The classic may abstraction of the transition function results in non-deterministic self-
loops as in Fig. 3.5 (left) in red, which make impossible to conclude anything useful (ex-
cept for some safety properties) on the behaviour once we reach such a state, even whether
it is ever left at all. Instead, we consider sequences of transitions: in this case, sequences
of prevalently growing transitions (those increasing the population) are significantly more
probable then the prevalently decreasing ones. Consequently, the self-looping transitions
are accelerated (taken multiple times) to get a “combined” transition that brings a typical
representative of this population interval into a higher interval, see Fig. 3.5 (right) also in
red. Hence the new rate reflects (i) the mass-action kinetics with the typical population in
the interval and (ii) the typical number of the transition repetitions before another interval
is reached. These accelerated transitions (further denoted by a prefix A) are the key idea
of the semi-quantitative abstraction.

Semi-quantitative analysis. The aim is to prune the abstraction so that only reason-
ably probable behaviour is reflected, see the thick transitions in the abstraction in Fig. 3.5
(right). To this end, we preserve in each state only the transitions with the highest rate h
or almost highest rates, i.e. with h′ > h/envelope where envelope > 1 is a parameter.
Parameter values in [1, 10] ensure we can only look at rates of the same order of magni-
tude, thus the most probable events and those with e.g. only 20% chance of happening.
Higher values then allow for inspection of even less probable behaviours.

Consequently, the method can naturally handle uncertainty in the reaction rates since
typically only the relative magnitudes of the rates are important, actually, only their orders
of magnitude. This robustness w.r.t. the input is very beneficial for biologists as the
precise rates are often not known.

Technically, the analysis relies on repeated alternation of transient and steady-state
analysis. First, starting from the initial state, we follow in each state only the transitions
with highest rates (most probable ones), until the set of explored state reaches a fixpoint.
A part of the created graph is recurrent and forms a bottom strongly connected component
(BSCC) or a collection thereof. The system temporarily settles in the steady state of this
BSCC. After some time has passed, also a less probable transition happens almost surely
and the “BSCC” is exited. These exit points are identified by a steady-state analysis of
the BSCC, taking the magnitudes of exiting and non-exiting transition rates into account.
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The exit points trigger a new iteration of the transient and then the steady-state analysis.

[Don, 0] [Don, 1-20]

[Doff, 0] [Doff, 1-20]

<p, 10> <Ap,0.36>

[Don

[Doff,

<Ad,0.07>

<d/Ad,0.1> <Ad,0.22>

[Don, 21-50]

[Doff, 21-50]

<b,0.065>

<Ap,0.22>

<Ad,0.14>

, 51-80]

51-80]

Iteration 1

Iteration 2

BSCC

Figure 3.6: The pruned abstraction for the simple
expression model using a more refined discretisa-
tion 20, 50, 80, 150 and envelope = 1

Fig. 3.6 illustrates a situation
with two iterations using a more
refined abstraction of the simple
gene expression model. Decreasing
envelope to 1 caused that the block-
ing reaction is explored in the second
iteration – as an exit of the BSCC
found in the first iteration. Before
that exit happens, the “BSCC” rep-
resents a “temporary” steady state of the system.

3.3.1 Case Study: Gene expression
We consider a stochastic gene expression model [GPZC05] described in Table 3.3. As dis-
cussed in [HWKT14, GZLS11], the system oscillates between two phases characterised
by the Don state and the Doff state, respectively. Biologists are interested in how the distri-
bution of the Don and Doff states is aligned with the distribution of RNA and protein P.

Table 3.3: Gene expression. The rates are in h−1.
Doff

0.05−−→ Don Don
0.05−−→ Doff Don

10−→ Don + RNA RNA 1−→ ∅
RNA 4−→ RNA + P P 1−→ ∅ P + Doff

0.0015−−−→ P + Don

In order to demonstrate the refinement step and its effect on the accuracy of the model,
we start with a very coarse abstraction. It distinguishes only the zero population and the
non-zero populations. The pruned abstract model obtained using our approach is depicted
in Fig. 3.7 (left).

The proposed analysis of the model identifies the key trends in the system dynamic.
The red transitions, representing iterations 1-3 of the semi-quantitative analysis, capture
the most probable paths in the system. The green component includes states with DNA
on where the system oscillates. The component is reached via the blue state with Doff

and no RNAs/P. The blue state is promptly reached from the initial state and then the
system waits for the next DNA activation. The component is left via a deactivation in
the iteration 4 (the blue dotted transition). The deactivation is then followed by fast red
transitions leading to the blue state, where the system waits for the next activation. We
obtain an oscillation between the blue state and the green component, representing the
expected oscillation between the Don and Doff states.

As expected, this abstraction does not clearly predict the bimodal distribution on the
RNA/P populations – the green component includes states with both the zero and the non-
zero population of the mRNA and the protein. In order to obtain a more accurate analysis
of the system, we refine the population discretisation using a single level threshold for P
and DNA, that is equal to 100 and 10, respectively (the rates in the CRN indicate that the
population of P reaches higher values).
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Figure 3.7: Pruned abstraction for the gene expression model using the coarse discretisa-
tion (left) and after the refinement (right). The state vector is [P, RNA, Doff, Don]. Only
order of magnitudes of the transition rates are shown.

Fig 3.7 (right) depicts the pruned abstract model with the new discretisation. We
again obtain the oscillation between the green component representing DNAon states and
the blue DNAoff state. The states in the green component more accurately predicts that
in the DNAon states the populations of RNA and P are high and drop to zero only for
short time periods. The figure also shows orange transitions within the iteration 2 that
extend the green component by two states. Note that the system promptly returns from
these states back to the green component. After the deactivation in the iteration 4, the
system takes (within the same iteration) the fast transitions (solid blue) leading to the
blue component where system waits for another activation and where the mRNA/protein
populations decrease. The expected time spent in states on blue solid transitions is small
and thus we can reliably predict the bimodal distribution of the mRNA/P populations and
its correlation with the DNA state. These predications are in accordance with the results
obtained in [HWKT14].

To conclude this case study, we observe a very aligned agreement between the re-
sults obtained using our approach with virtually no computational cost and the results
in [HWKT14] obtained via advanced and time consuming numerical methods.

3.4 Future Research Directions

Our results have significantly extended capabilities of computational methods for the anal-
ysis and design of CRNs, but also opened new research avenues including: i) synthesis of
robust biochemical systems that would leverage both the topology synthesis and param-
eter analysis for CRNs and ii) scalable synthesis of complex biochemical systems using
the semiquantitative abstraction.

Further, we will focus on the tool development allowing users to apply the proposed
methods on a broader class of biochemical systems. In particular, we will develop a tool



support for the semiquantitative abstraction and analysis allowing a suitable visualisation
and result interpretation as well as an automated refinement and robustness analysis.
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Chapter 4

Design of Approximate Circuits and
Automata

Approximate systems that relax requirements on functional correctness play an impor-
tant role in the development of resource-efficient HW and SW systems. Designing ap-
proximate systems is a very complex and time-demanding process trying to find optimal
trade-offs between the approximation error and resource savings. In our recent work, we
have focused on automated approximation techniques for digital circuits and automata
that form essential building blocks for many systems.

In this thesis, we briefly present the following two results. 1) scalable approxima-
tion of arithmetic circuits [ČMM+17, ČMM+18, ČMM+20] and 2) automata reduction
for HW-accelerated deep packet inspection and regular expression matching [ČHH+18,
ČHH+19a, ČHH+19b].

4.1 Approximation of Arithmetic Circuits

Approximate circuits are circuits that trade the precision of computation for the circuit
chip area or power consumption. Approximate circuits are important in many prominent
applications such as image and video processing [GMRR13] or architectures for neural
networks [MAFL10, MSS+16]. Automated methods allowing one to develop such cir-
cuits are thus in high demand.

There exists a vast body of literature (see e.g. [RS19, VS15b, NHT+16, MHVS17,
LRY+16]) demonstrating that evolutionary-based algorithms are able to automatically de-
sign innovative implementations of approximate circuits providing high-quality trade-offs
among the different design objectives. As shown in [YC16, CSGD16a], many applica-
tions favour provable error bounds on resulting approximate circuits, which makes auto-
mated design of such circuits a very challenging task. Note that circuit simulation does
not scale beyond circuits with more than 12-bit operands even when exploiting modern
computing architectures [MSS+16].

There exist several approaches employing different formal verification methods to
check the correctness of circuits [VS11, CYB+15, SAGK+16] or to evaluate their approx-

47



48 CHAPTER 4. DESIGN OF APPROXIMATE CIRCUITS AND AUTOMATA

imation error. The most promising methods for the error evaluation include binary deci-
sion diagrams (BDDs) [VMS17], boolean satisfiability (SAT) solving [VARR11], model
checking [CS+16], or symbolic computer algebra employing Gröbner bases [FGD18].
The resulting approximation techniques, however, do not scale beyond approximation of
multipliers with 12-bit operands and adders with 16-bit operands.

In our recent work [ČMM+17, ČMM+20], we proposed a new approximation tech-
nique that integrates SAT solving into evolutionary approximation, in particular into
Cartesian genetic programming (CGP). We focus on the worst case absolute error (WCAE)
metric, which is one of the most commonly used error metrics. The key distinguishing
idea of our approach is simple, but it makes our approach dramatically more scalable com-
paring to previous approaches. Namely, we restrict the resources (running time) available
to the SAT solver when evaluating a candidate solution. If no decision is made within
the limit, a minimal score is assigned to the candidate circuit. This approach leads to
a verifiability-driven search strategy that drives the search towards promptly verifiable
approximate circuits. The technique is implemented within ADAC—Automatic Design
of Approximate Circuits [ČMM+18] – our framework for automated design of approxi-
mate arithmetic circuits that integrates efficient circuit simulation and formal methods for
approximate equivalence checking into a search-based circuit optimisation.

As we shown in [ČMM+20], our verifiability-driven approximation strategy is now
able to discover complex arithmetic circuits such as 32-bit approximate multipliers, 32-
bit approximate multiply-and-accumulate (MAC) circuits, and 24-bit dividers providing
high quality trade-offs between the approximation error and energy savings. These results
clearly demonstrate the superior performance and scalability of our approach comparing
to other existing approximation techniques.

4.1.1 Verifiability-Driven approximation
The problem of finding the best trade-offs between the circuit size and the WCAE, can be
naturally seen as a multi-objective optimisation problem. In our approach, we, however,
treat it as a series of single-objective problems where we fix the required values of the
WCAE. This approach is motivated by the fact that the WCAE is usually given by the
concrete application where the approximate circuits are deployed. Moreover, as shown in
several studies [VS15a], optimising the chip size for a fixed error allows one to achieve
significantly better performance compared to more general multi-objective optimisation
producing Pareto fronts. The optimisation problem is formalised as follows:

Problem formulation. For a given golden circuit G and a threshold T , our goal is to
find a circuit C∗ with the minimal size such that the error WCAE(G,C∗) ≤ T , where

WCAE(G,C) = max
x∈{0,1}n

|int(fG(x))− int(fC(x))|
2m − 1

.

Before presenting our approach, we emphasise that our aim is not to provide a com-
plete algorithm that guarantees the optimality of C∗: such an algorithm clearly exists
as the number of circuits with a given size is finite, and one can, in theory, enumerate
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them one by one. We rather design an effective search strategy that is able to provide
high-quality approximations for complex arithmetic circuits having thousands of gates.

Our novel optimisation scheme employing four key components: (1) a generator of
candidate circuits that builds on CGP, (2) an evaluator that evaluates the error of the can-
didates by leveraging SAT-based verification methods, (3) a verifiability-driven search
integrating the cost of the circuit evaluation into the fitness function, and (4) an adap-
tive strategy adjusting the allowed cost of evaluation of candidate solutions during the
approximation process.

Generating candidate circuits using CGP. CGP is a form of genetic programming
where candidate solutions are represented as a string of integers of a fixed length that
is mapped to a directed acyclic graph [MT00]. This integer representation is called a
chromosome. The chromosome can efficiently represent common computational struc-
tures including mathematical equations, computer programs, neural networks, and digital
circuits. We use a standard CGP that employs the (1+λ) search method where a single
generation of candidates consists of the parent and λ offspring candidates. The fitness of
each of the solutions is evaluated and the best solution is preserved as the parent for the
next generation. Other candidates from the generation are discarded.

In circuit approximation, the evolution loop typically starts with a parent representing
a correctly working circuit. New candidate circuits are obtained from the parent using
a mutation operator which performs random changes in the candidate’s chromosome in
order to obtain a new, possibly better candidate solution. The mutations can either modify
the node interconnection or functionality. The number of the nodes of candidate circuits is
reduced by making some nodes inactive, i.e. disconnected from the outputs of the circuit.
However, since such nodes are not removed, they can still be mutated and eventually
become active again. The whole evolution loop is repeated until a termination criterion
(in our case, a time limit fixed for the evolution process) is met.

Candidate circuit evaluation. The evaluation takes into consideration two attributes
of the circuit, namely, whether the approximation error represented by WCAE is smaller
than the given threshold and the size of the circuit. The procedure deciding whether
WCAE(G,C) ≤ T represents the most time consuming part of the design loop.

To decide whether WCAE(G,C) ≤ T , we adopt the concept of an approximation
miter introduced in [VARR11, CSGD16b]. The miter is an auxiliary circuit that consists
of the inspected approximate circuit C and the golden circuit G which serves as the spec-
ification. C and G are connected to identical inputs. A subtractor and a comparator then
check whether the error introduced by the approximation is greater than a given thresh-
old T . The output of the miter is a single bit which evaluates to logical 1 if and only if
the constraint on the WCAE is violated for the given input x.

Once the miter is built, it is translated to a Boolean formula that is satisfiable if and
only if WCAE(G,C) > T . This approach allows one to reduce the decision problem
to a SAT problem and use existing powerful SAT solvers. We optimize the miter con-
struction by using a novel circuit implementation of the subtractor, absolute value, and
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comparator nodes as described in [ČMM+17]. In particular, it avoids long XOR chains,
which are a known cause of poor performance of the state-of-the-art SAT solvers [HJ12].

Verifiability-driven search strategy. The strategy uses an additional criterion for the
evaluation of the circuit C. The criterion reflects the ability of the decision procedure,
in our case a SAT solver, to prove that WCAE(G,C) ≤ T with a given limit L on the
resources available. It leverages the observation that a long sequence of candidate cir-
cuits Bi improving the size and having an acceptable error has to be typically explored
to obtain a solution that is sufficiently close to an optimal approximation C∗. Therefore,
both the SAT and the UNSAT queries to the SAT solver have to be short. If the procedure
fails to prove WCAE(G,C) ≤ T within the limit L, we generate a new candidate.

The interpretation of the resource limit L on checking that WCAE(G,C) ≤ T de-
pends on the implementation of the underlying satisfiability checking procedure. Note
that a time limit is not suitable since it does not reflect how the structural complexity of
candidate circuits affects the performance of the procedure. Therefore, we employ the
limit on the maximal number of backtracks in which a single variable can be involved
during the backtracking process (also called the maximal number of conflicts on a vari-
able). As the backtracking represents the key and computationally demanding part of
modern SAT solvers [LMS05], it allows one to effectively control the time needed for
particular evaluation queries. Moreover, it takes into account the structural complexity of
the underlying boolean formula capturing the complexity of the circuit.

Adaptive resource limit strategy. We further proposed a novel adaptive strategy that
alters the resource limit within the evolutionary run and tries to set it to the most suitable
value with regards to the recently achieved progress [ČMM+20]. We designed the strategy
scheme based on our previous observations that the limit should be kept low in the early
stages of the evolution so that the clearly redundant logic can be quickly eliminated. Later
in the evolutionary process, the algorithm converges to a locally optimal solution and
improvements in the fitness cease to occur. When such a stage is reached, the limit needs
to be increased in order to widen the space of feasible candidate solutions at the expense
of slower candidate evaluation. Moreover, once some more significantly changed solution
is found, it may again be possible to shorten the time limit needed for the evaluation, and
the process of extending and shrinking the time limit may repeat.

4.1.2 Experimental evaluation
In this section, we demonstrate that our approach generates approximate circuits that sig-
nificantly outperform circuits obtained using state-of-the-art approximation techniques.
In particular, we show that our circuits provide significantly better trade-offs between the
precision and energy consumption. We focus on multipliers since their approximation
represents a challenging and widely studied problem—see, e.g., the comparative study
of [JHL15]. On the other hand, the existing literature does not offer a sufficient number
of high-quality approximate MACs or dividers to carry out a fair comparison: our work
is the first one that automatically handles such circuits.
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Figure 4.1: A comparison of 16-bit approximate multipliers obtained using the proposed
approach and the state-of-the-art approximation techniques. The filled marks represent
solutions providing the best PDP for the given precision.

In the comparison, we consider two approximate architectures for multipliers that are
known to provide the best results, namely truncated multipliers (TMs) that ignore the
values of least significant bits and broken-array multipliers (BAMs) [FAF13]. TMs and
BAMs can be parameterised to produce approximate circuits for the given bit-width and
the required error. In contrast to our search-based approach, these circuits are constructed
using a deterministic procedure simplifying accurate multipliers. Note that the method
is applicable for design of approximate multipliers only. To demonstrate the practical
impact of the proposed adaptive strategy, we also consider circuits presented in our previ-
ous work [ČMM+17] obtained using verifiability-driven approximation with a fixed limit
strategy.

Fig. 4.1 shows the parameters of resulting circuits belonging to Pareto front. For
each circuit, the figure illustrates the trade-off between the precision and the power-delay-
product (PDP) that adequately captures both the circuit’s energy consumption and its
delay. The top plot of the figure illustrates the WCAE–PDP trade-offs. We also evaluated
the mean absolute error (MAE) of the solutions since MAE represents another important
circuit error metric. The results are presented in the bottom plot of the figure.

The figure clearly demonstrates that our general approximation approach is able to
significantly outperform both TMs and BAMs representing the dedicated state-of-the-art
approximation methods for multipliers . The figure also shows that the proposed adaptive
strategy improves our previously obtained results even further.
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4.2 Automata Reduction for Regex Matching in HW
Deep packet inspection via regular expression (RE) matching is a crucial task of net-
work intrusion detection systems (IDSes), such as SNORT [Sno], SURICATA [Mat], or
BRO [Ver18], which secure Internet connection against attacks and suspicious network
traffic. Monitoring high-speed computer networks (100 Gbps and faster) in a single-box
solution demands that the RE matching, traditionally based on finite automata (FAs), is
accelerated in hardware.

A well-suited technology for accelerating IDSes is that of field-programmable gate ar-
rays (FPGAs). They provide high computing power and flexibility for network traffic pro-
cessing, and they are increasingly being used in data centers [CCP+16] for this purpose.
The flexibility of FPGAs allows them to match REs at speeds over 100 Gbps [MKP16b].
Such high speeds, however, put excessive demands on the resources of FPGAs. The sets
of the matched REs are complex, large, and still growing, and matching on the speeds
of tens and hundreds of Gbps requires massive parallelization. For instance, in the HW
architecture that we propose in [ČHH+19b], processing 100 Gbps input network traffic re-
quires 64 concurrently functioning RE matching units 200 MHz) and processing 400 Gbps
requires even 256 units. Despite the fact that FPGAs provide an efficient way of imple-
menting nondeterministic finite automata (NFAs), see e.g. [CS03], the required number
of RE matching units (NFAs) easily exceed the size of any available FPGA chip, namely
the number of available look-up tables (LUTs). Reducing the consumed resources, in
particular the size of the NFAs, is thus of paramount importance.

Approximate reduction via probabilistic distance. Various language-preserving au-
tomata reduction approaches exist, mainly based on computing (bi)simulation relations
on automata states [BG00, CM13]. The reductions they offer, however, do not satisfy
the needs of high-speed hardware-accelerated NIDSes. To attack this problem, we have
recently proposed approximate reduction of NFAs, allowing for a trade-off between the
achieved reduction and the precision of the regex matching [ČHH+18, ČHH+19a].

To formalise the intuitive notion of precision, we proposed a novel probabilistic dis-
tance of automata. It captures the probability that a packet of the input network traf-
fic is incorrectly accepted or rejected by the approximated NFA. The distance assumes
a probabilistic model of the network traffic. Intuitively, the model concisely captures the
significant network traffic and drives the reduction towards automata that incorrectly ac-
cept or reject only insignificant packets. We considered two variants of an optimization
problem: 1) minimizing the NFA size given the maximum allowed error (distance from
the original), or 2) minimizing the error given the maximum allowed NFA size. Finding
such optimal approximations is, however, computationally hard (PSPACE -complete, the
same as precise NFA minimization).

Sub-optimal solutions. To overcome the complexity, we sacrifice the optimality and,
motivated by the typical structure of NFAs that emerge from a set of regexes used by
NIDSes (a union of many long “tentacles” with occasional small strongly-connected com-
ponents), we limit the space of possible reductions by restricting the set of operations
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they can apply to the original automaton. Namely, we consider two reduction operations:
1) collapsing the future of a state into a self-loop (this reduction over-approximates the
language) and 2) removing states (such a reduction is under-approximating).

The problem of identifying the optimal sets of states on which these operations should
be applied is still PSPACE -complete. The restricted problem is, however, more amenable
to an approximation by a greedy algorithm. The algorithm applies the reductions state-by-
state in an order determined by a precomputed error labelling of the states. The process
is stoppped once the given optimization goal in terms of the size or error is reached. The
labelling is based on the probability of packets that may be accepted through a given state
and hence over-approximates the error that may be caused by applying the reduction at a
given state. As our experiments show, this approach can give us high-quality reductions
while ensuring formal error bounds.

Finally, it turns out that even the pre-computation of the error labelling of the states is
costly (again PSPACE -complete). Therefore, we propose several ways to cheaply over-
approximate it such that the strong error bound guarantees are still preserved. Particularly,
we are able to exploit the typical structure of the “union of tentacles” of the NFAs in an
algorithm that is exponential in the size of the largest “tentacle” only, which is indeed
much faster in practice.

Experimental evaluation. The complete experimental evaluation of the proposed re-
duction techniques can be found in [ČHH+19a]. We present here only the key experi-
mental observations and conclusions. Note that after the approximate reduction, we use
the tool REDUCE [M+], implementing the state-of-the-art language-preserving reduction,
to further simplify the obtained NFAs

First, we observed that the error bounds obtained by the approximate error labelling
(driving the reduction) provide a very good approximation of the real probabilistic dis-
tance. On the other hand, the difference between the probabilistic distance (using the
traffic model) and the real traffic error (corresponding to an HTTP traffic sample) can
vary significantly for different REs (different NFAs). Since all experiments use the same
probabilistic automaton and the same traffic, this discrepancy is accounted to the different
set of packets that are incorrectly accepted by the reduced automata. If the probability
of these packets is adequately captured in the traffic model, the difference between the
distance and the traffic error is small and vice versa. We emphasise that there are no guar-
antees on the relationship between the probabilistic distance and the traffic error. These
observations demonstrate that a suitable traffic model is essential and that our approach
for building the model has certain limitations (see [ČHH+19a] for more details).

Second, the results clearly demonstrate that we can often achieve a very significant re-
duction for a negligible loss of precision. For example, for the backdoor RE, represent-
ing a very challenging reduction problem (the original NFA has more than 1300 states),
our approach still provides significant reductions while keeping the traffic error small:
about a 5-fold reduction is obtained for the traffic error 0.03 % and a 10-fold reduction is
obtained for the traffic error 6.3 %. The practical impact of such reductions are discussed
in the next section.

Finally, we observed that the most time-consuming step of the reduction process is the
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computation of state labellings (it takes at least 90 % of the total time). The crucial ob-
servation is that the structure of the NFAs fundamentally affects the performance of this
step. The key reason behind this slowdown is the determinisation (or alternatively dis-
ambiguation) process required by the product construction underlying the state labelling
computation. The size of the product directly determines the time and space complexity of
solving the linear equation system required for computing the state labelling. Therefore,
it is essential to employ the cheap over-approximation of the state-labelling that allows
us to obtain the reduced automata for complex REs in a reasonable time: for example,
for the http-backdoor RE, the labelling took around 20 minutes and the consequent
optimisation and language preserving reduction around 6 minutes in the worst case.

Efficient lightweight labelling. In order to effectively handle significantly more com-
plex REs corresponding to NFAs with more then 10K states, we have also proposed a
lightweight state labelling [ČHH+19b]. In contrast to the previous state-labelling tech-
niques using the probabilistic automaton, the lightweight approach directly uses a sample
of the network traffic to estimate the error for the states and to determine the states to be
removed. This method has two advantages: 1) it avoids the semi-automated construction
of the model that requires a network expert, and 2) it can scale to NFAs that are an order of
magnitude larger. Indeed, the disadvantage is that it does not provide any formal bounds
on the approximation error.

The lightweight approach also takes an advantage of particularities of standard net-
work traffic. Namely, given an NFA constructed from the REs of interest, we label its
states with their significance—the likelihood that they will be used during processing a
packet—, and then simplify the least significant parts of the automaton. The automata
reduction is implemented by two operations: 1) pruning that removes from the automaton
a set R of states considered as the most insignificant and 2) merging of states forming a
chain and having a similar significance. The significance of a state is determined using
a finite sample of the network traffic from the network node where the IDS is to be de-
ployed. The time complexity of the most expensive step, computing the state labelling,
is O(n2k) where n is the number of states of the NFA and k is the size of the training
traffic. Using 1M packets, the labelling took around 15 min for the NFA with 12K states.

4.2.1 Multi-stage regex matching architecture

A1

A1

A1

A1

A1

A2

A2

A3

stage 1

stage 2
stage 3

Figure 4.2: An example of the
multi-stage architecture with
3 stages.

In [ČHH+19b], we have proposed a concept of a multi-
stage RE matching unit that uses aggressive approximate
reductions, which do not preserve the language of the
NFA, to utilise FPGA resources efficiently. The archi-
tecture of the RE matching unit is composed of several
stages (see Fig. 4.2 for an example of a 3-stage architec-
ture). Every stage in the architecture contains an instan-
tiation of the RE matching engine described, i.e. a set
approximate NFAs working in parallel.
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The idea is that each of the stages will use different NFAs—starting with a bigger
number of smaller and imprecise NFAs and proceeding to smaller numbers of larger but
more precise NFAs—to decrease, in a resource-efficient way, the number of packets en-
tering the subsequent stage. Consider an NFA A that recognises the language L defined
by the REs in a given SNORT module. The first stage of the architecture contains many
copies of a small NFA A1, which over-approximates L, i.e., apart from all packets in L, it
also matches some packets not in L. All matched packets are then sent to Stage 2, which
contains less copies of a larger NFA A2, which over-approximates L, but more precisely
than A1 (which is the reason it is larger—less precise approximations of L obtained by
our reduction are usually smaller than more precise ones).

The number of copies of A2 can be smaller due to the fact that the traffic entering it
is just a fraction of the input traffic since Stage 1 has removed a significant number of
packets from further processing. Each subsequent stage contains an even smaller number
of even more precise (and, therefore, larger) NFAs. The final stage contains either copies
of A, in which case the output of the RE matching unit is exactly the packets from L
(precise matching), or as precise over-approximation of L as possible given the available
resources, in which case the last remaining false positives need to be removed in software.

Consider a set of approximate automata A = {A1, . . . , Ak} obtained using the reduc-
tion techniques from the input NFA A. Each NFA Ai comes with two parameters: 1) its
size given as the number of LUTs obtained from its HW synthesis and (2) the probability
that it accepts an input packet – the probability is obtained from the evaluation using the
considered network traffic. Note that lower is better for both parameters. Given the set A,
we aim at obtaining a configuration of the multi-stage architecture that is as small and pre-
cise as possible. This gives rise to the following two optimisation problems: 1) minimise
the amount of resources used by the RE matching unit given a maximum speed of traffic
on its output and 2) minimise the speed of the traffic on the output of the last n-th stage
of the RE matching unit given a fixed amount of resources. These optimisation problems
lead to a mixed integer quadratically constrained program and can be easily solved by
existing solvers such as Gurobi [Gur18].

Experimental evaluation. Having relevant network traffic data is essential to evaluate
the performance and practical usefulness of the lightweight approximation and the pro-
posed RE matching architecture. We used data obtained from two measuring points of a
nation-wide Internet provider connected to a 100 Gbps backbone link. The testing data
was sampled over the time of 105 hours and contains around 210M packets. The training
data used for labelling the automata contained around 1M packets sampled at a differ-
ent time. The complete experimental evaluation can be found in [ČHH+19b]. Here we
present only selected results.

First, we focus on the precision of the lightweight approximation, in particular, we
consider two important metrics: 1) acceptance precision AP expresses the ratio of cor-
rectly accepted packets to all accepted packets and hence characterises the error caused
by the over-approximation and 2) acceptance probability Prob captures what fraction of
the input traffic is accepted by the reduced NFA and passed to the next stage – this is
important for building efficient multi-stage architectures.
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Figure 4.3: AP (left) and Prob (right) for l7-all.

Fig. 4.3 shows results for the NFA the describing l7-all RE, the most challenging
RE where the corresponding NFA has over 7K and 2.6M transitions. We observe that
the particular reduction techniques provide a very different quality of the trade-offs. In
particular, bfs (a simple breadth-first-search-based reduction used as the baseline), is not
capable to produce any useful approximation. Further, we can observe that merge-prune
dominates for reduction ratios lower than 0.3, but it is significantly outperformed by prune
for higher reduction ratios. The figures show that these trends are preserved for both of
our metrics. Note that, in this case, the original NFA accepts around 17 % of the traffic,
and using the prune technique, we obtain a reduced NFA having only a half of the states
with almost the same acceptance probability Prob.

Second, we explored whether the reduced NFAs can be compiled into a multi-stage
architecture with throughput of 100 Gbps and beyond. We synthesise the proposed archi-
tectures for a card with the Xilinx Virtex UltraScale+ VU9P FPGA chip, which contains
1,182k LUTs where 737k LUTs can be used for the RE matching. The remaining LUTs
are used for other necessary logic as routing the packets.

The table below presents results of precise architectures for the backdoor RE.

Precise
speed 1 stg 2 stg 3 stg 4 stg
100 236k 56k 50k 50k
200 473k 113k 99k 96k
400 946k 223k 194k 186k

The table shows how the number of required LUTs
decreases with the increasing number of stages. In
this case, using more than 4 stages does not bring
any further reduction and contrarily introduces an
overhead (not reported here). The single stage archi-
tecture (i.e., the “1 stg” column), can process traf-
fic up to 200 Gbps only (the precise NFA consumes 3,695 LUTs). In order to process
400 Gbps, it is necessary to use the multi-stage architecture, in which case the one with
four stages gives the best results.

The table below presents results of precise architectures for the l7-all RE, our most

Precise
speed 1 stg 2 stg 3 stg 4 stg
100 1.8M 894k 880k 880k

17 % of traffic
speed 1 stg 2 stg 3 stg 4 stg
100 1.1M 597k 648k 701k

challenging example. The precise NFA consumes
27,650 LUTs, but more importantly, it is less
amenable for approximate reduction because, in
contrast to REs from SNORT, the RE is matched
by many packets. Our best solution reduces the
input traffic from 100 Gbps to 17 Gbps and uses
597k LUTs in two stages. Note that, the reduced



NFA in the final stage has almost 100 % precision and thus only a small fraction of pack-
ets are misclassified.

Our experiments clearly demonstrate the practical potential of our approach. The key
observation is that the resource reductions provided by the particular multi-stage archi-
tectures directly depend on the characteristics of the underlying NFAs (both the precise
NFA and the reduced variants) and the typical traffic. Apart from the size of the precise
NFA, there are two crucial characteristics: (1) whether the number of packets accepted
by the precise NFA is low and (2) whether the reduction can compress the NFA while not
increasing the number of accepted packets too much. If both these conditions are met (as
for backdoor and other REs from SNORT), we observe drastic resource savings allow-
ing us to achieve throughput of the resulting IDSes going beyond 100 Gbps. Comparing
to the existing state-of-the-art solutions using GPUs and FPGAs for the HW-accelerated
deep packet inspection [ARS15, MKP16a, YJB+18], this throughput is unprecedented for
REs of such size and complexity.

On the other hand, if the original NFA is large, accepts many packets, and highly
precise reductions achieve only moderate reductions (as for l7-all), the resulting multi-
stage architecture provides only moderate savings and ensuring 100 Gbps remains at the
edge of what we can achieve.

4.3 Future Research Directions
Our results have significantly improved the scalability of automated techniques for de-
signing approximate circuits with formal guarantees on the worst-case error. It is still
an open problem whether a similar scalability can be achieved also for more compli-
cated metrics such mean error or error rate (these metrics require counting), and for
non-arithmetic circuits having a more complex specification. Efficient approximation
of sequential circuits is also an open challenge with important practical applications. In
the area of HW-accelerated RE matching, it is essential to reconsider the existing encod-
ing schemes for NFAs to achieve efficient utilisation of the resources with respect to the
structure of over-approximate NFAs.

Further, we will focus on applying approximate circuits and automata in practically
relevant domains such as image and video processing or architectures for neural networks.
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[ČPP+16] Milan Češka, Petr Pilař, Nicola Paoletti, Marta Kwiatkowska, and Luboš
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[MKP16a] Denis Matoušek, Jan Kořenek, and Viktor Puš. High-speed regular expres-
sion matching with pipelined automata. In FPT’16, pages 93–100. IEEE,
2016.

[MKP16b] Denis Matousek, Jan Korenek, and Viktor Pus. High-speed Regular Expres-
sion Matching with Pipelined Automata. In FPT’16, pages 93–100. IEEE,
2016.

[MMR+12] Curtis Madsen, Chris J. Myers, Nicholas Roehner, Chris Winstead, and
Zhen Zhang. Utilizing stochastic model checking to analyze genetic cir-
cuits. In CIBCB’12, pages 379–386. IEEE, 2012.

[MPP+18] Niall Murphy, Rasmus Petersen, Andrew Phillips, Boyan Yordanov, and
Neil Dalchau. Synthesizing and tuning stochastic chemical reaction net-
works with specified behaviours. Journal of The Royal Society Interface,
15(145):20180283, 2018.
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[ČDP+17] Milan Češka, Frits Dannenberg, Nicola Paoletti, Marta Kwiatkowska,
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Vašı́ček, and Tomáš Vojnar. Approximating complex arithmetic circuits with
formal error guarantees: 32-bit multipliers accomplished. In ICCAD’17, pages
416–423. IEEE, 2017.
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Abstract. We propose an automated method for exploring kinetic parameters of
stochastic biochemical systems. The main question addressed is how the valid-
ity of an a priori given hypothesis expressed as a temporal logic property de-
pends on kinetic parameters. Our aim is to compute a landscape function that,
for each parameter point from the inspected parameter space, returns the quan-
titative model checking result for the respective continuous time Markov chain.
Since the parameter space is in principle dense, it is infeasible to compute the
landscape function directly. Hence, we design an effective method that iteratively
approximates the lower and upper bounds of the landscape function with respect
to a given accuracy. To this end, we modify the standard uniformization technique
and introduce an iterative parameter space decomposition. We also demonstrate
our approach on two biologically motivated case studies.

1 Introduction

The importance of stochasticity in biochemical processes having low numbers of mole-
cules has resulted in the development of stochastic models [12]. Stochastic biochemical
processes can be faithfully modeled as continuous time Markov chains (CTMCs) [9].
Knowledge of stochastic rate constants (model parameters) is important for the analysis
of system dynamics. Moreover, knowledge about how change in parameters influences
system dynamics (parameter exploration) is of great importance in tuning the stochastic
model. Prior knowledge of kinetic parameters is usually limited. The model identifica-
tion routine thus typically includes parameter estimation based on experimental data.
While parameter exploration and estimation is well-established for deterministic mod-
els, it has not yet been adequately addressed and sufficiently developed for stochastic
models. The purpose of this work is to develop practical and effective methods for exact
exploration of model parameters in stochastic biochemical models.

The main question addressed is how the validity of an a priori given hypothesis
expressed as a temporal property depends on model parameters. Parameter estimation
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gives a single point in the parameter space where the values of model parameters maxi-
mize the agreement of model behaviour with experimental data. On the contrary, we of-
ten do not want to have a single objective but rather explore the property over the entire
parameter space. Our main goal is to compute a landscape function that for each param-
eter point from the inspected parameter space returns the quantitative model checking
result for the respective CTMC determined by the parameter point and the given prop-
erty. Since the inspected parameter space is in principle dense the set of parametrized
CTMCs to be explored is infinite. It is thus not possible to compute the model checking
result for each CTMC individually.

As a temporal logic we use the bounded time fragment of Continuous Stochastic
Logic (CSL) [2] further extended with rewards [19]. For most cases of biochemical
stochastic systems the bounded time restriction is adequate since a typical behaviour is
recognizable in finite time intervals.

In this paper we consider the parameter exploration problem for stochastic biochem-
ical systems in terms of a landscape function that returns for each parameter point the
probability or the expected reward of the inspected CSL formula. We propose a method,
called min-max approximation, that computes the lower and upper approximations of
the landscape function. To compute the approximation for an arbitrary nested CSL for-
mula, we introduce the largest and smallest set of states satisfying the formula and
show how to compute such sets effectively using a new method called parametrized
uniformization. To compute the landscape function approximation with given accuracy
we employ iterative parameter space decomposition that divides the parameter space
into subspaces and allows to compute the proposed approximation independently for
each subspace. This decomposition refines the approximation and enables to reach the
required accuracy bound. We demonstrate our approach on two biologically motivated
case studies. In the first one, we demonstrate that parametrized uniformization allows
to approximate the transient probabilities of Schloegel’s model [24] for the inspected
parameter space. In the second case, our method is applied to parameter exploration of
bi-stability in mammalian cell cycle gene regulatory control [25]. Several techniques
have been employed [26,10] to analyze models of this kind, especially, it has been
shown that asymptotic solutions may disagree with the exact solution imposing thus a
challenge for more accurate computational techniques. Since in low molecular numbers
stochasticity can produce behaviour that significantly differs from asymptotic and de-
terministic dynamics, the parameter exploration method reflecting this phenomenon is
very important for computational systems biology.

In contrast to methods mentioned in the related work section, the accuracy of results
can be fully controlled and adjusted by the user. Similarly to these methods our method
is computationally intensive. However, it can be easily parallelized since the compu-
tation for each subspace is independent. Moreover, it can be also combined with fast
adaptive uniformization [9] and sliding window abstraction [16].

Related Work. To the best of our knowledge there is no other work on stochastic mod-
els employing CSL model checking to systematic parameter exploration. The closest
work is [22] where a CTMC is explored with respect to a property formalized as a
deterministic timed automaton (DTA). It extends [1] to parameter estimation with re-
spect to acceptance of the DTA. Approaches to parameter estimation [23,1,7] rely on
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approximating the maximum likelihood. Their advantage is the possibility to analyse
infinite state spaces [1] (employing dynamic state space truncation with numerically
computed likelihood) or even models with no prior knowledge of parameter ranges [7]
(using Monte-Carlo optimization for computing the likelihood). All these methods are
not suitable for computing the landscape function since they focus on optimizing a sin-
gle objective and not on global exploration of the entire requested parameter space.

Approaches based on Markov Chain Monte-Carlo sampling and Bayesian infer-
ence [13,17,18] can be extended to sample-based approximation of the landscape func-
tion, but at the price of undesired inaccuracy and high computational demands [6,4].
Compared to these methods, our method provides an exact result without neglecting
any singularities caused by possible discontinuities in the landscape function.

In [15], for a given parametrized discrete time Markov chain (DTMC) the problem
of synthesis for a probabilistic temporal logic is considered. The problem is reduced to
constructing a regular expression representing the property validity while addressing the
problem of expression explosion. Construction of the expression and also the proposed
reduction techniques rely on the discrete nature of DTMC. These techniques cannot
be successfully applied to CTMC since the complexity of the expression is given by
maximal number of events that can occur within the inspected time horizon. In a typical
biochemical system where time scales of individual reactions differ in several orders the
number of reactions that can occur is enormous.

Barbuti et al. [5] treat stochastic biochemical models with parameter uncertainty in
terms of interval discrete time Markov chains. They reduce quantitative reachability
analysis of uncertain models to reachability analysis of a Markov Decision Process.
However, no analogy to landscape function and automatized parameter decomposition
is considered. Moreover, our method deals with continuous time semantics.

2 Background

Stochastic Biochemical Systems. A finite state stochastic biochemical system S is
defined by a set of N chemical species in a well stirred volume with fixed size and fixed
temperature participating in M chemical reactions. The number Xi of molecules of each
species Si has a specific bound and each reaction is of the form u1S1 + . . .+ uNSN −→
v1S1 + . . .+ vNSN where ui,vi ∈ N0 represent stoichiometric coefficients.

A state of a system in time t is the vector X(t) = (X1(t),X2(t), . . . ,XN(t)). When
a single reaction with index r ∈ {1, . . . ,M} with vectors of stoichiometric coefficients
Ur and Vr occurs the state changes from X to X′ = X −Ur +Vr, which we denote as
X r→ X′. For such reaction to happen in a state X all reactants have to be in sufficient
numbers and the state X′ must reflect all species bounds. The reachable state space
of S , denoted as S, is the set of all states reachable by a finite sequence of reactions
from an initial state X0. For each state Xi we denote pred(Xi) = {( j,r) | X j

r−→ Xi} and
succ(Xi) = {( j,r) | Xi

r−→ X j} the sets of all predecessors and successors, respectively,
together with indices of corresponding reactions. The set of indices of all reactions
changing the state Xi to the state X j is denoted as reac(Xi,X j) = {r | Xi

r−→ X j}.
Henceforward the reactions will be referred directly by their indices.
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According to Gillespie [12] the behaviour of a stochastic system S can be described
by the continuous time Markov chain (CTMC) C = (S,X0,R) where the transition ma-
trix R(i, j) gives the probability of a transition from Xi to X j. Formally, R(i, j) =

∑r∈reac(Xi,X j) kr ·Cr,i such that kr is a stochastic rate constant of the reaction r and

Cr,i
de f
= ∏N

l=1

(Xi,l
ul

)
corresponds to the population dependent term of the propensity func-

tion where Xi,l is lth component of the state Xi and ul is the stoichiometric coefficient
of the reactant Sl in reaction r.

Parameter Space. Let each stochastic rate constant ki have a value interval [k⊥
i ,k�

i ]
with minimal and maximal bounds expressing uncertainty range of its value. A param-
eter space P induced by a set of stochastic rate constants ki is defined as the Cartesian
product of the individual value intervals P = ∏M

i=1[k
⊥
i ,k�

i ]. A single parameter point
p ∈ P is an M-tuple holding a single value of each rate constant p = (k1p , . . . ,kMp).
We consider only independent parameters, however, if correlated parameters can be
expressed as linear functions then our method can be still applied.

A stochastic system Sp with its stochastic rate constants set to the point p ∈ P is
represented by a CTMC Cp = (S,X0,Rp) where transition matrix Rp is defined as
Rp(i, j) = ∑r∈reac(Xi ,X j) krp ·Cr,i. A set of parametrized CTMCs induced by the param-
eter space P is defined as C = {Cp | p ∈ P}. Henceforward, the states Xi ∈ S will be
denoted as si.

Uniformization. Uniformization is a standard technique that for a given CTMC C =
(S,s0,R) computes the transient probability in time t. For an initial state s0 it returns a
vector πC ,s0,t such that πC ,s0,t(s′) = Prs0{ω ∈ PathC(s0) | ω@t = s′} for all states s′ ∈ S,
where Prs0 is a unique probability measure on all paths ω starting in state s0 (denoted
as PathC(s0)) defined, e.g., in [21] and ω@t is the state on path ω occupied at time t.

The transient probability in time t is obtained as a sum of expressions giving the
state distributions after i discrete reaction steps weighted by the ith Poisson probability

γi,q·t = e−q·t · (q·t)i

i! , the probability of i such steps occurring up to t, given the delay is ex-
ponentially distributed with rate q. Formally, πC ,s0,t = ∑∞

i=0 γi,q·t ·πC ,s0,0 · (Qunif(C ))i ≈
∑Rε

i=Lε
γi,q·t ·πC ,s0,0 · (Qunif(C ))i where Qunif(C ) is an uniformized infinitesimal generator

matrix defined as follows: Qunif(C )(s,s′) = R(s,s′)
q , if s 	= s′, and 1 − ∑s′′ 	=s

R(s,s′′)
q , oth-

erwise, where q ≥ max{EC (s) | s ∈ S} such that EC (s) = ∑s′∈S R(s,s′) is an exit rate
of the state s in CTMC C . Although the sum is in general infinite, for a given precision
ε the upper and lower bounds Lε,Rε can be estimated by using techniques such as of
Fox and Glynn [11] which also allow for efficient computation of Poisson probabili-
ties γi,q·t . In order to make the computation feasible the matrix-matrix multiplication is
reduced to a vector-matrix multiplication by pre-multiplying, i.e., πC ,s0,0 · (Qunif(C ))i =
(πC ,s0,0 · (Qunif(C ))i−1) ·Qunif(C ).

Property Specification. We consider the bounded time fragment of CSL with rewards,
see [19] for definition of CSL with rewards. The fragment syntax is defined as follows.
A state formula Φ is given as Φ ::= true | a | ¬Φ | Φ∧Φ | P∼p[φ] | R∼r[C

≤t ] | R∼r[I
=t ]
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where φ is a path formula given as φ ::= X Φ | Φ UI Φ, a is an atomic proposition,
∼∈ {<,≤,≥,>}, p ∈ [0,1] is a probability, r ∈ R≥0 is an expected reward and I = [a,b]
is a bounded time interval such that a,b ∈ R≥0 ∧a ≤ b. Operators G and F can be derived
in the standard way. In order to specify the reward properties, CTMCs are enhanced
with reward (cost) structures. Two types of reward structure are used. A state reward
ρ(s) defines the rate with which a reward is acquired in state s ∈ S. A reward of t ·ρ(s)
is acquired if a CTMC remains in state s for t time units. A transition reward ι(si,s j)
defines the reward acquired each time the transition (si,s j) occurs.

Let C = (S,s0,R,L) be a labelled CTMC such that L is a labelling function which
assigns to each state s ∈ S the set L(s) of atomic propositions that are valid in state s.

A state s satisfies P∼p[φ] (denoted as s � P∼p[φ]) iff ProbC (s,φ)
de f
= Prs{ω ∈ PathC(s) |

ω � φ} satisfies ∼ p. A path ω satisfies X Φ iff ω(1) � Φ where ω(1) is the second state
on ω. A path ω satisfies Φ UI Ψ iff ∃t ∈ I.(ω@t � Ψ∧∀t ′ ∈ [0, t).(ω@t ′ � Φ)).

Intuitively, a state s � R∼p[C
≤t ] iff the sum of expected rewards over PathC (s) cu-

mulated until t time units (denoted as ExpC (s,XC≤t )) satisfies ∼ p. Similarly, a state
s � R∼p[I

=t ] iff the sum of expected rewards over all paths ω ∈ PathC(s) at time t (de-
noted as ExpC (s,XI=t )) satisfies ∼ p. A set SatC (Φ) = {s ∈ S | s � Φ} denotes the set
of states that satisfy Φ.

The formal semantics of this fragment is defined similarly as the semantics of full
CSL and thus we refer the readers to original papers. In the following text all references
to CSL address this fragment. Model checking of CSL can be easily reduce to the
computation of transient probability, see [3,21] for more details.

3 Parameter Exploration

In this paper we propose an effective method for systematic and fully automatic pa-
rameter exploration of a given stochastic system with respect to a specified temporal
property and a parameter space. Let C be a set of parametrized CTMCs describing the
dynamics of the stochastic system S induced by the inspected parameter space P and
a CSL formula Φ expressing the required behaviour. The problem of parameter explo-
ration is as follows: for each state s ∈ S compute the landscape function λΦ,P

s : P → R≥0

that for each parameter point p ∈ P returns the numerical value of the probability or the
expected reward for the formula Φ. It means that we consider “quantitative” formulae in
the form Φ ::= P=?[φ] | R=?[C

≤t ] | R=?[I
=t ], i.e., the topmost operator of the formula Φ

returns a quantitative result, as used, e.g., in PRISM [20]. Note that the formula Φ can
contain nested probabilistic and reward operators whose evaluations define discrete sets
of states further used in the computation of the resulting numerical value. Therefore, the
corresponding landscape function is not in general continuous but only piecewise con-
tinuous. Also note that the landscape function is inherently bounded.

To solve the parameter exploration problem we extend global quantitative model
checking techniques enabling to compute for all states of a CTMC the numerical value
of the probability or the expected reward for formula Φ. The most crucial part of the
problem is given by the fact that the parameter space P is continuous and thus the set C
is infinite. Therefore, it is not possible to employ the global quantitative model checking
techniques for each CTMC Cp ∈ C individually.
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Our approach to this problem is based on a new technique which we call min-max ap-
proximation. The key idea is to approximate the landscape function λΦ,P

s using a lower
bound min

Φ,P
s = min{λΦ,P

s (p) | p ∈ P} and an upper bound maxΦ,P
s = max{λΦ,P

s (p) | p ∈
P}. Since the computation of the exact bounds is computationally infeasible, we further
approximate these bounds, i.e., we compute approximations minΦ,P

s and maxΦ,P
s such

that minΦ,P
s ≤ min

Φ,P
s and maxΦ,P

s ≥ maxΦ,P
s . Although the proposed min-max approx-

imation provides the lower and upper bounds of the landscape function, it introduces
an inaccuracy with respect to parameter exploration, i.e., such approximation can be
insufficient for the inspected parameter space P and the given formula Φ. Formally, the
inaccuracy for a state s is given as the difference maxΦ,P

s − minΦ,P
s .

A significant advantage of the min-max approximation is that it allows us to itera-
tively decrease the inaccuracy to a required bound. The key idea is based on iterative
parameter space decomposition where the parameter space P is divided into subspaces
that are processed independently. The result of such computation is an approximation
of the lower bound minΦ,Pi

s and the upper bound maxΦ,Pi
s for each subspace Pi. Such de-

composition provides more precise approximation of the landscape function λΦ,P
s and

enables to reach the required accuracy bound.
In order to effectively compute the min-max approximation for the given formula we

design a new method called parametrized uniformization allowing to efficiently approx-
imate the transient probabilities for the set C of parametrized CTMCs. The key idea is to
modify standard uniformization [14] in such a way that an approximation of the mini-
mal and maximal transient probability with respect to the set C can be computed. More-
over, the proposed modification preserves the asymptotic time complexity of standard
uniformization. Following the model checking method for non-parametrized CTMC
presented in [3,21], the result of parametrized uniformization is further used to obtain
the min-max approximation of the landscape function λΦ,P

s .
We are aware that the landscape function could be computed by using standard uni-

formization to obtain precise values in grid points which could be afterwards interpo-
lated linearly or polynomially. Using adaptive grid refinement such an approach could
also provide an arbitrary degree of precision with computation complexity of the same
asymptotic class as our method. However, the obtained result would be a general ap-
proximation not providing the strict minimal and maximal upper bounds. On the con-
trary, our min-max approximation guarantees upper and lower estimates without ne-
glecting any singularities caused by possible discontinuities in the landscape function
that we consider to be an important feature.

4 Min-Max Approximation

To effectively compute the proposed min-max approximation for an arbitrary nested
CSL formula we introduce the largest and smallest set of states satisfying property Φ.
Let C be a set of labelled parametrized CTMCs over the parameter space P such that
C = {Cp | p ∈ P} where each Cp = (S,s0,Rp,L). The maximal set of states satisfying Φ,

denoted by Sat
�
C(Φ), is defined as Sat

�
C(Φ)

de f
=

⋃
Cp∈C SatCp(Φ). The minimal set of

states satisfying Φ, denoted by Sat
⊥
C(Φ), is defined as Sat

⊥
C(φ)

de f
=

⋂
Cp∈C SatCp(Φ).
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Since the set C is not finite, this definition is not constructive and does not allow to
obtain the sets Sat

�
C(Φ) and Sat

⊥
C(Φ). Therefore, we define satisfaction relations ��

and �⊥ that give an alternative characterization of these sets and allow us to effectively
compute their approximations.

For any state s ∈ S relations s �� Φ and s �⊥ Φ are defined inductively by:

s �� true ∧ s �⊥ true, for all s ∈ S s �� a ⇔ s �⊥ a ⇔ a ∈ L(s)
s �� ¬Φ ⇔ s �⊥ Φ s �⊥ ¬Φ ⇔ s �� Φ
s �� Φ∧Ψ ⇔ s �� Φ∧ s �� Ψ s �⊥ Φ∧Ψ ⇔ s �⊥ Φ∧ s �⊥ Ψ
s �� P≤p[φ] ⇔ Prob

C
⊥(s,φ) ≤ p s �⊥ P≤p[φ] ⇔ Prob

C
�(s,φ) ≤ p

s �� P≥p[φ] ⇔ Prob
C
�(s,φ) ≥ p s �⊥ P≥p[φ] ⇔ Prob

C
⊥(s,φ) ≥ p

s �� R≤p[I
=t ] ⇔ Exp

C
⊥(s,XI=t ) ≤ p s �⊥ R≤p[I

=t ] ⇔ Exp
C
�(s,XI=t ) ≤ p

s �� R≥p[I
=t ] ⇔ Exp

C
�(s,XI=t ) ≥ p s �⊥ R≥p[I

=t ] ⇔ Exp
C
⊥(s,XI=t ) ≥ p

s �� R≤p[C
≤t ] ⇔ Exp

C
⊥(s,XC≤t ) ≤ p s �⊥ R≤p[C

≤t ] ⇔ Exp
C
�(s,XC≤t ) ≤ p

s �� R≥p[C
≤t ] ⇔ Exp

C
�(s,XC≤t ) ≥ p s �⊥ R≥p[C

≤t ] ⇔ Exp
C
⊥(s,XC≤t ) ≥ p

where

Prob
C
�(s,φ)

de f
= max{ProbCp(s,φ) | Cp ∈ C}

Prob
C
⊥(s,φ)

de f
= min{ProbCp(s,φ) | Cp ∈ C}

Exp
C
�(s,X)

de f
= max{ExpCp(s,X) | Cp ∈ C} for X ∈ {XI=t ,XC≤t }

Exp
C
⊥(s,X)

de f
= min{ExpCp(s,X) | Cp ∈ C} for X ∈ {XI=t ,XC≤t }

By structural induction it can be proved that ∀s ∈ S : s ∈ Sat
�
C(Φ) ⇒ s �� Φ and

s �⊥ Φ ⇒ s ∈ Sat
⊥
C(Φ). This characterization allows us to define an approximation

Sat�C(Φ) and Sat⊥C(Φ) in the following way. For all s ∈ S : s ∈ Sat�C (Φ)
de f⇔ s �∗

� Φ

and s ∈ Sat⊥C (Φ)
de f⇔ s �∗

⊥ Φ where the definition of �∗
� and �∗

⊥ differs from the defini-

tion of �� and �⊥ such that the exact values Prob
C
�(s,φ), Prob

C
⊥(s,φ), Exp

C
�(s,X) and

Exp
C
⊥(s,X) are replaced by approximate values ProbC

�(s,φ), ProbC
⊥(s,φ), ExpC

�(s,X)

and ExpC
⊥(s,X), respectively, that satisfy the following:

ProbC
�(s,φ) ≥ Prob

C
�(s,φ)∧ ProbC

⊥(s,φ) ≤ Prob
C
⊥(s,φ)

ExpC
�(s,X) ≥ Exp

C
�(s,X)∧ ExpC

⊥(s,X) ≤ Exp
C
⊥(s,X) for X ∈ {XI=t ,XC≤t }.

Since we get that ∀s ∈ S : s ∈ Sat⊥C (Φ) ⇒ s �∗
⊥ Φ ⇒ s �⊥ Φ ⇒ s ∈ Sat

⊥
C(Φ) and also

s ∈ Sat
�
C(Φ) ⇒ s�� Φ ⇒ s�∗

� Φ ⇒ s ∈ Sat�C (Φ), the sets Sat�C(Φ) and Sat⊥C(Φ) give us

the correct approximations of the sets Sat
�
C(Φ) and Sat

⊥
C(Φ), i.e., Sat

�
C(Φ) ⊆ Sat�C(Φ)

and Sat⊥C(Φ) ⊆ Sat
⊥
C(Φ).

In contrast to the exact values their approximations can be efficiently computed us-
ing the parametrized uniformization. Therefore, we can also effectively obtain the ap-
proximated sets Sat�C(Φ) and Sat⊥C(Φ) that are further used in the computation of the
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min-max approximation. Formally minΦ,P
s = ProbC

⊥(s,φ) and maxΦ,P
s = ProbC

�(s,φ) if

the topmost operator of the formula Φ is P=?[φ]. Similarly, minΦ,P
s = ExpC

⊥(s,X) and

maxΦ,P
s = ExpC

�(s,X) for X = XC≤t and X = XI=t if the topmost operator of the formula
Φ is R=?[C

≤t ] and R=?[I
=t ], respectively.

5 Parametrized Uniformization

The most important step of the proposed min-max approximation is for each state s to
compute the values ProbC

�(s,φ), ProbC
⊥(s,φ), ExpC

�(s,X) and ExpC
⊥(s,X) where C is an

infinite set of parametrized CTMCs, φ is an arbitrary path formula and X ∈ {XC≤t ,XI=t }.
In order to efficiently obtain these values we employ parametrized uniformization. It is
a technique that for the given set C, state s ∈ S and time t ∈ R≥0 computes vectors πC,s,t

�
and πC,s,t

⊥ such that for each state s′ ∈ S the following holds:

πC,s,t
� (s′) ≥ max{πCp,s,t(s′) | Cp ∈ C} ∧ πC,s,t

⊥ (s′) ≤ min{πCp,s,t(s′) | Cp ∈ C} (1)

The key idea of parametrized uniformization is to modify standard uniformization in
such a way that for each state s′ and in each iteration i of the computation we locally
minimize (maximize) the value πC,s,t(s′) with respect to each Cp ∈ C. It means that in
the ith iteration of the computation for a state s′ we consider only the minimal (maximal)
values of the relevant states in the iteration i− 1, i.e., the states that affect the value of
state s′. We show that the local minimum and maximum can be efficiently computed
and that it gives us values satisfying Equation 1.

Let Qunif(C) be an uniformized infinitesimal generator matrix for a set C of parametr-
ized CTMCs defined as follows:

Qunif(C)(i, j) =

{
∑r∈reac(Xi,X j) kr · Cr,i

qmax
if i 	= j

1 − ∑l 	=i ∑r∈reac(Xi ,Xl ) kr · Cr,i
qmax

otherwise.
(2)

where qmax ≥ Emax = max{ECp(s) | Cp ∈ C,s ∈ S} and kr is a variable from [k⊥
r ,k�

r ].
For sake of simplicity, we present only the method allowing to efficiently compute

the vector πC,s,t
� , since the computation of πC,s,t

⊥ is symmetric. We start with the trivial
observation that vectors πCp,s,0 (initial probability distributions, e.g., πCp,s,0(s′) = 1, if
s = s′, and 0, otherwise) are equal for all Cp ∈ C. Therefore πC,s,0 = πC,s,0

� = πCp,s,0 for
all Cp ∈ C. In order to present parametrized uniformization, we introduce an operator
�� such that for each s′ ∈ S the following holds:

(
πC,s,0

� ��
(

Qunif(C)
)i
)

(s′) ≥ max

{(
πCp,s,0 ·

(
Qunif(Cp)

)i
)

(s′) | Cp ∈ C
}

.

Moreover, we further require that vectors from the previous iteration can be used, in par-

ticular, πC,s,0
� �� (Qunif(C))i =

(
πC,s,0

� �� (Qunif(C))i−1
)

�� Qunif(C). The operator ��

returns a vector π′
� ∈ R|S|

≥0 containing for each state si ∈ S the maximal possible proba-
bility after a single discrete step of a DTMC obtained by uniformization of any CTMC
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Cp, i.e.,
(

π �� Qunif(C)
)

(s)
de f
= max

{(
π ·Qunif(Cp)

)
(s) | p ∈ P

}
= π′

�(s) where π is a

general vector. Since ∑π′
�(i) ≥ 1, the vector π′

� is no longer a state distribution.
To show how the operator �� is computed let σ(si) be an algebraic expression de-

fined as the part of the vector-matrix multiplication for state si. For each si ∈ S we get

σ(si) =
(

π ·Qunif(C)
)

(si) = ∑|S|−1
j=0 π( j) · Qunif(C)( j, i). Rewriting σ(si) by Equation 2

and using the sets pred(si) and succ(si) we obtain the following:

σ(si) = ∑
( j,r)∈pred(si)

π( j) · kr · Cr, j

qmax
+ π(i)

(
1 − ∑

( j,r)∈succ(si)

kr · Cr,i

qmax

)
(3)

The first summand in Equation 3, indexed over predecessors of si, corresponds to the
probability mass inflowing into state si through all reactions. The second summand cor-
responds to the portion of probability mass remaining in si from the previous iteration.

The operator �� locally maximizes expression σ(s) for all s ∈ S with respect to P,

i.e.,
(

π �� Qunif(C)
)

(s) = max{σp(s) | p ∈ P} where σp(s) is the evaluation of σ(s)

in the parameter point p = (k1p , . . .kMp). First, we show that to compute expression

πC,s,0
� �� (Qunif(C))i it is sufficient to consider only maximal values from the previous

iteration, i.e., vector πC,s,0
� �� (Qunif(C))i−1. Note that ∀si ∈ S. π(i) ≥ 0 and ∀( j,r) ∈

pred(si)∪ succ(si). kr ≥ 0 ∧ Cr, j ≥ 0. Moreover, since qmax ≥ Emax ≥ 0, we get that

(1 − ∑( j,r)∈succ(si) kr · Cr,i
qmax

) ≥ (1 − Emax
qmax

) ≥ 0. Now, we can see from Equation 3 that in
order to maximize σ(si) maximal values of π(i) for each 0 ≤ i < |S| have to be taken.

Second, we show how to determine p = {k1, . . . ,kM} ∈ P such that σ(si) is evaluated
as a maximum. Equation 3 can be rewritten in the following way:

σ(si) = ∑
( j,r)∈in

kr · π( j) ·Cr, j

qmax
+ ∑

( j,r)∈inout

kr · π( j) ·Cr, j − π(i) ·Cr,i

qmax
− ∑

( j,r)∈out

kr · π(i) ·Cr,i

qmax

where in = pred(si)\ succ(si), inout = pred(si)∩ succ(si) and out = succ(si)\pred(si).
The three sums range over disjoint sets of reactions. The first sum represents all incom-
ing reactions that do not have an outgoing counterpart, for these kr = k�

r , since they only
increase σ(si). The second sum represents reactions flowing into si as well as flowing
out of si. In this case, expression π( j) ·Cr, j − π(i) ·Cr,i has to be evaluated. If it is posi-
tive, kr = k�

r , otherwise, kr = k⊥
r . The last sum represents only reactions flowing out of

si and hence kr = k⊥
r . The operator �� is now computed as

(
π �� Qunif(C)

)
(si) = σ(si)

where each kr inside σ(si) is chosen according to the aforementioned rules.
The computation of πC,s,t

⊥ is symmetric to the case of πC,s,t
� . It means that we define

the operator �⊥ which locally minimize expression σ(s) for all s ∈ S with respect to P.
In order to minimize σ(si) it is sufficient to inverse the aforementioned rules.

Vectors πC,s,t
� and πC,s,t

⊥ are now computed similarly as in the case of standard uni-

formization, i.e., πC,s,t
� = ∑Rε

i=Lε
γi,q·t ·πC,s,0 �� (Qunif(C))i where � ∈ {⊥,�}. To obtain

the required values ProbC
�(s,φ), ProbC

⊥(s,φ), ExpC
�(s,X) and ExpC

⊥(s,X), we employ
the standard model checking technique [3,21] where transient probability πC ,s,t for a
non-parametrized CTMC C is replaced by vectors πC,s,t

� and πC,s,t
⊥ .
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Compared to standard uniformization, only a constant amount of additional work has
to be performed in order to determine parameter values. Therefore, asymptotic com-
plexity of parametrized uniformization remains the same as standard uniformization.

6 Parameter Space Decomposition

Before we describe parameter space decomposition – a method allowing to reduce the
inaccuracy of the proposed min-max approximation – we briefly discuss the key char-
acteristics of parametrized uniformization. The most important fact is that parametrized
uniformization for the set C in general does not correspond to standard uniformization
for any CTMC Cp ∈ C. The reason is that we consider a behaviour of a parametrized
CTMC that has no equivalent counterpart in any particular Cp. First, the parameter kr

in Equation 3 is determined individually for each state. Therefore, in a single iteration
kr = k�

r for one state and kr = k⊥
r for another state. Second, the parameter is determined

individually for each iteration and thus for a state si the parameter kr can be chosen
differently in individual iterations.

Inaccuracy of the proposed min-max approximation related to the computation of
parametrized uniformization, called unification error, is given as (maxΦ,P

s − maxΦ,P
s )

+(min
Φ,P
s − minΦ,P

s ). Apart from the unification error our approach introduces an inac-
curacy related to approximation of the landscape function λΦ,Pi

s , called approximation
error, given as maxΦ,P

s − min
Φ,P
s . Finally, the overall error of the min-max approxi-

mation, denoted as ErrΦ,P
s , is defined as a sum of both errors, i.e., ErrΦ,P

s = maxΦ,P
s −

minΦ,P
s . Fig. 1 illustrates both types of errors. The approximation error is depicted as

blue rectangles and the unification error is depicted as the red rectangles.
We are not able to effectively distinguish the proportion of the approximation error

and the unification error nor to reduce the unification error as such. Therefore, we design
a method based on the parameter space decomposition that allows us to effectively
reduce the overall error of the min-max approximation to a user specified absolute error
bound, denoted as ERR.

In order to ensure that the min-max approximation meets the given absolute error
bound ERR, we iteratively decompose the parameter space P into finitely many sub-
spaces such that P = P1 ∪. . .∪Pn and each partial result satisfies the overall error bound,
i.e., ∀s ∈ S : maxΦ,Pi

s − minΦ,Pi
s ≤ ERR. Therefore, the overall error for each state s ∈ S

equals to ErrΦ,P
s = ∑n

i=1
|Pi|
|P|

(
maxΦ,Pi

s − minΦ,Pi
s

)
≤ ∑n

i=1
|Pi|
|P| ERR = ERR. Fig. 1 illus-

trates such a decomposition and demonstrates convergence of ErrΦ,Pi
s to 0 provided that

the function λΦ,Pi
s is continuous.

For sake of simplicity, we present parametric decomposition on the computation of
πC,s,t

� since it can be easily extended to the computation of ProbC
�(s,φ), ProbC

⊥(s,φ),
ExpC

�(s,X) and ExpC
⊥(s,X). If during the computation in an iteration i for a state s′ ∈ S

holds that
(

πC,s,0
� �� (Qunif(C))i

)
(s′) −

(
πC,s,0

⊥ �⊥ (Qunif(C))i
)

(s′) > ERR we cancel

the current computation and decompose the parameter space P to n subspaces such
that P = P1 ∪ . . . ∪ Pn. Each subspace P j defines a new set of CTMCs C j = {C j | j ∈
P j} that is independently processed in a new computation branch. Note that we could
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Fig. 1. Illustration of the min-max approximation computation of the landscape function λΦ,P
s for

an initial state s, property Φ and parameter space P = [0,0.4]. Left graph shows the decomposition
of P into 5 subspaces for absolute error bound ERR = 0.32. Right graph shows a more refined
decomposition for ERR = 0.16 resulting in 10 subspaces. This decomposition reduces both types
of errors in each refined subspaces. The exact shape of λΦ,P

s is visualized as the black curve.

reuse the previous computation and continue from the iteration i−1. However, the most
significant part of the error is usually cumulated during the the previous iterations and
thus the decomposition would have only a negligible impact on error reduction.

A minimal decomposition with respect to the parameter space P defines a minimal
number of subspaces m such that P = P1 ∪ . . . ∪ Pm and for each subspace P j where

1 ≤ j ≤ m holds that Err
Φ,Pj
s ≤ ERR. Note that the existence of such decomposition is

guaranteed only if the landscape function λΦ,P
s is continuous. If the landscape function

is continuous there can exist more than one minimal decomposition. However, it can
not be straightforwardly found. To overcome this problem we have considered and im-
plemented several heuristics allowing to iteratively compute a decomposition satisfying
the following: (1) it ensures the required error bound whenever λΦ,P

s is continuous, (2)
it guarantees the refinement termination in the situation where λΦ,P

s is not continuous
and the discontinuity causes that ERR can not be achieved. To ensure the termination an
additional parameter has to be introduced as a lower bound on the subspace size. Hence
this parameter provides a supplementary termination criterion.

7 Case Studies

We implemented our method on top of the tool PRISM 4.0 [20]. We run all experiments
on a Linux workstation with an AMD Phenom

TM
II X4 940 Processor @ 3GHz, 8 GB

DDR2 @ 1066 MHz RAM. We used PRISM version 4.0.3. running with sparse engine,
since this engine is typically faster than its symbolic counterparts due to efficient matrix
vector multiplication.

Schloegl’s Model. We use Schlogel’s model [24] to demonstrate the practicability of
our method for parameter exploration with respect to basic transient analysis. It is the
simplest biochemical reaction model for which stochasticity is crucial due to bi-stability
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Fig. 2. Species X distribution at 20 time units for k1 ∈ [0.029,0.031] (in s−1). The two presented
cases differ in absolute error bound: (left) ERR = 0.01, (right) ERR = 0.001.

– existence of two different steady states to which the species population can (nonde-

terministically) converge. The model is defined by the following reactions [8]: 2X
k1→

3X , 3X
k2→ 2X , /0 k3→ X , X

k4→ /0; k1 = 0.03s−1,k2 = 10−4s−1,k3 = 200s−1,k4 = 3.5s−1.
Deterministic formulation of the model by means of ordinary differential equations
(ODE) predicts for k1 ∈ [0.0285,0.035] two steady states to which the population con-
verges in the horizon of 20 time units. We will focus on the range k1 ∈ [0.029,0.031].
Under the deterministic setting, from any initial state the dynamics evolves to a single
steady state. In the noisy setting [26], the population of molecules distributes around
both steady states (in short time perspective, here 20 time units). In long time perspec-
tive, the population oscillates around both steady states.

We focus on the short time-scale – to analyze the population of X at time 20 start-
ing from the initial state where the number of X is 250. According to the respective
ODE model, the population always converges to an asymptotic steady state Xst ≤ 1000.
Considering this as an assumption it allows us to bound the state space. The correspond-
ing CTMC has 1001 states and 2000 transitions. The goal of the analysis is to explore
how the observed distribution is affected when perturbing k1 in the range [0.029,0.031].
By executing our method for the absolute error bound ERR = 0.01 we got the result vi-
sualized in Fig. 2 (left). It can be directly seen that for each parameter point there is
a non-zero probability that some individuals reside near the higher steady state while
some reside near the lower steady state at time 20. The jumps that are mostly observable
in distributions around the higher steady state are caused by the approximation error.
Computation with a one order lower error gives a smooth result, see Fig. 2 (right).

The computation required 7.36 · 105 iterations of the parametrized uniformization.
The parameter decomposition resulted in 76 subspaces for ERR = 0.01 and 639 sub-
spaces for ERR = 0.001. The overall computation took 2 and 16.5 hours, respectively.

Gene Regulation of Mammalian Cell Cycle. We have applied the min-max approxi-
mation to the gene regulation model published in [25], the regulatory network is shown
in Fig. 3a. The model explains regulation of a transition between early phases of the
mammalian cell cycle. In particular, it targets the transition from the control G1-phase
to S-phase (the synthesis phase). G1-phase makes an important checkpoint controlled
by a bistable regulatory circuit based on an interplay of the retinoblastoma protein
pRB, denoted by A (the so-called tumour suppressor, HumanCyc:HS06650) and the
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pRB E2F1
(A) (B)

Gene a interactions Gene b interactions

a → a+A 1 b → b+B 0.05
aB → aB +A 1 bB → bB +B 1
A +a ↔ aA 100;10 A +b ↔ bA 100;10
B +a ↔ aB 100;10 B +b ↔ bB 100;10

Protein degradation
A → γA B → γB

Property # iter. # subsp. time[h]

(1a) 1.2·106 153 9
(2a) 2.0·106 69 5.5
(3a) 2.0·106 66 4.5
(1b) 4.0·106 159 10.5
(2b) 4.0·106 132 8
(3b) 4.0·106 80 5

(a) (b) (c)

Fig. 3. (a) Two-gene regulatory circuit controlling G1/S transition in mammalian cell cy-
cle. (b) Stochastic mass action model of the G1/S regulatory circuit – a,b represent genes,
aA,aB,bA,bB represent transcription factor-gene promoter complexes (c) Computation results.

retinoblastoma-binding transcription factor E2F1, denoted by B (a central regulator of a
large set of human genes, HumanCyc:HS02261). In high concentration levels, the E2F1

protein activates the G1/S transition mechanism. On the other hand, a low concentration
of E2F1 prevents committing to S-phase.

Positive autoregulation of B causes bi-stability of its concentration depending on the
parameters. Especially, of specific interest is the degradation rate of A, γA. In [25] it is
shown that for increasing γA the low stable mode of B switches to the high stable mode.
When mitogenic stimulation increases under conditions of active growth, rapid phos-
phorylation of A starts and makes the degradation of unphosphorylated A stronger (the
degradation rate γA increases). This causes B to lock in the high stable mode implying
the cell cycle commits to S-phase. Since mitogenic stimulation influences the degrada-
tion rate of A, our goal is to study the population distribution around the low and high
steady state and to explore the effect of γA by means of the landscape function.

We have translated the original ODE model into the framework of stochastic mass
action kinetics [12]. The resulting reactions are shown in Fig. 3b. Since the detailed
knowledge of elementary chemical reactions occurring in the process of transcription
and translation is incomplete, we use the simplified form as suggested in [10]. In the
minimalistic setting, the reformulation requires addition of rate parameters describing
the transcription factor–gene promoter interaction while neglecting cooperativeness of
transcription factors activity. Our parametrization is based on time-scale orders known
for the individual processes [27] (parameters considered in s−1). Moreover, we assume
the numbers of A and B are bounded by 10 molecules. Upper bounds for A and B are
set with respect to behaviour of an ensemble of stochastic simulations. We consider
minimal population number distinguishing the two stable modes. All other species are
bounded by the initial number of DNA molecules (genes a and b) which is conserved
and set to 1. The corresponding CTMC has 1078 states and 5919 transitions.

We consider three hypotheses: (1) stabilization in the low mode where B < 3, (2) sta-
bilization in the high mode where B > 5, (3) stabilization in the high mode where B > 7
((3) is more focused than (2)). All the hypotheses are expressed within time horizon
1000 seconds reflecting the time scale of gene regulation response. We employ two al-
ternative CSL formulations to express each of the three hypothesis. According to [25],
we consider the parameter space γA ∈ [0.005,0.5].

First, we express the property of being inside the given bound during the time inter-
val I = [500,1000] using globally operator: (1a) P∼?[G

I (B < 3)], (2a) P∼?[G
I (B > 5)]

and (3a) P∼?[G
I (B > 7)]. The interval starts from 500 seconds in order to bridge the
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Fig. 4. Landscape functions of properties (1a,1b,2b,3b) for γA ∈ [0.005,0.5] (in s−1) and initial
states #0, #997 and #1004. The left Y-axis scale corresponds to (1a), the right to (1b,2b,3b).

initial fluctuation region and let the system stabilize. Since the stochastic noise causes
molecules to repeatedly escape the requested bound, the resulting probability is signif-
icantly lower than expected. Namely, in cases (2a) and (3a) the resulting probability is
close to 0 for the whole parameter space. Moreover, the selection of an initial state has
only a negligible impact on the result. Therefore, in Fig. 4 only the resulting probability
for case (1a) and a single selected initial state is visualized.

Second, we use a cumulative reward property to capture the fraction of the time
the system has the required number of molecules within the time interval [0,1000]:
(1b) R∼?[C

≤t ](B < 3), (2b) R∼?[C
≤t ](B > 5), (3b) R∼?[C

≤t ](B > 7) where t = 1000
and R∼?[C

≤t ](B ∼ X) denotes that state reward ρ is defined such that ∀s ∈ S.ρ(s) = 1
iff B ∼ X in s. The result is visualized for three selected initial states in Fig. 4.

Fig. 4 also illustrates inaccuracy of our approach with respect to the absolute error
bound ERR = 0.01 by means of small rectangles depicting approximations of the re-
sulting probabilities and expected rewards. The analyses predict that the distribution of
the low steady mode interferes with the distribution of the high steady mode. It con-
firms bi-stability predicted in [25] but in contrast to ODE analysis our method shows
how the population of cells distributes around the two stable states. Results of computa-
tions including the number of iterations performed during parametrized uniformization,
numbers of resulting subspaces and execution times in hours, are presented in Fig. 3c.

Finally, to see how degradation rates of A and B cooperate in affecting property (3b),
we explore two-dimensional parameter space (γA,γB) ∈ [0.005,0.1]× [0.05,0.1]. The
computation also required 4.0 · 106 iterations of the parametrized uniformization, the
parameter decomposition resulted in 143 subspaces for ERR = 0.1 and the overall ex-
ecution took 14 hours. Fig. 5 illustrates the computed upper bound of the landscape
function for initial state #0 and the absolute error. The result predicts antagonistic rela-
tion between the degradation rates which is in agreement with the ODE model [25].
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Fig. 5. Landscape function for property (3b), initial state #0 (A = 0,B = 0,a = 0,b = 0,aA =
0,aB = 1,bA = 0,bB = 1) and two-dimensional parameter space (γA,γB) ∈ [0.005,0.1] ×
[0.05,0.1] (represented in s−1 by X and Y axes, respectively). On the left, the upper bound of
the landscape function is illustrated. On the right, the absolute error given as difference between
computed upper and lower bounds is depicted. In both cases the color scale is used.

8 Conclusions

We have introduced the parameter exploration problem for stochastic biochemical sys-
tems as the computation of a landscape function for a given temporal logic formula.
The key idea of our approach is to approximate the lower and upper bounds of the land-
scape function. To obtain such approximation for an arbitrary nested CSL formula, we
compute the largest and smallest set of states satisfying the formula using parametrized
uniformization. This allows to approximate the minimal and maximal transient proba-
bility with respect to the parameter space. In order to reach a required error bound of the
proposed approximation, we iteratively decompose the parameter space and compute
the approximation for each subspace individually. We have demonstrated our approach
to the parameter exploration problem on two biologically motivated case studies.

The experiments show that our method can be extremely time demanding and thus in
our future work we will focus on its acceleration. We plan to apply techniques allowing
to accelerate the underlying transient analysis [9,16] and more efficient heuristics for
the parameter space decomposition. Moreover, our method can be easily parallelized
and thus a significant acceleration can be obtained.
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Abstract We consider the problem of synthesising rate parameters for stochastic biochem-
ical networks so that a given time-bounded CSL property is guaranteed to hold, or, in the
case of quantitative properties, the probability of satisfying the property is maximised or
minimised. Our method is based on extending CSL model checking and standard uniformi-
sation to parametric models, in order to compute safe bounds on the satisfaction probability
of the property. We develop synthesis algorithms that yield answers that are precise to within
an arbitrarily small tolerance value. The algorithms combine the computation of probability
bounds with the refinement and sampling of the parameter space. Our methods are precise
and efficient, and improve on existing approximate techniques that employ discretisation
and refinement. We evaluate the usefulness of the methods by synthesising rates for three
biologically motivated case studies: infection control for a SIR epidemic model; reliability
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analysis of molecular computation by a DNA walker; and bistability in the gene regulation
of the mammalian cell cycle.

1 Introduction

Biochemical reaction networks are a convenient formalism for modelling a multitude of
biological systems, including molecular signalling pathways, logic gates built from DNA
and DNA walker circuits. For low molecule counts, and assuming a well-mixed and fixed
reaction volume, the prevailing approach is to model such networks using continuous-time
Markov chains (CTMCs) [20]. Stochastic model checking [31], implemented in programs
such as PRISM [32], allows the analysis of the model behaviour against temporal logic
properties expressed in continuous stochastic logic (CSL) [3]. For instance, the reliability
and performance of DNA walker circuits are evaluated using properties such as “what is the
probability that the walker reaches the correct final anchorage within 10 min?”. We envision
biochemical devices that implement biosensors and medical diagnostic systems, and hence
ensuring appropriate levels of reliability is important.

Stochastic model checking assumes that the model is fully specified, including reaction
rate constants. However, the reaction rates can be unknown or given as estimates that typically
include some measurement error. In spite of this uncertainty, one might want to still demon-
strate robustness and reliability of a synthetic molecular device. Or, one might be interested
in the identification of parameter values that reproduce experimentally observed behaviour.
The parameter synthesis problem, studied for CTMCs in [13,23], assumes a formula and a
model whose rates are given as functions of parameters, and aims to compute the parameter
valuations that guarantee the satisfaction of the formula. Previously the parameter synthe-
sis problem was solved for CTMCs approximately, and only for probabilistic time-bounded
reachability [23]. In this paper, we address the parameter synthesis problem for stochastic
biochemical reaction networks for the full time-bounded fragment of the (branching-time)
logic CSL [3]. We formulate two variants: threshold synthesis, which inputs a CSL formula
and a probability threshold and identifies the parameter valuations which meet the thresh-
old, and max synthesis, where the maximum probability of satisfying the property and the
maximizing set of parameter valuations are returned.

We develop efficient synthesis algorithms that yield answers with arbitrary precision.
The algorithms exploit a recently published technique that computes safe approximations
to the lower and upper bounds for the probability to satisfy a CSL property over a fixed
parameter space [11]. Our algorithms automatically derive the satisfying parameter regions
through iterative decomposition of the parameter space up to a given tolerance value. We
also demonstrate a significant speed-up of the max synthesis algorithm through the use of
a sampling-based heuristic. The method is demonstrated using three case studies: the SIR
epidemic model [27], where we synthesize infection and recovery rates that maximize the
probability of disease extinction; the DNAwalker circuit [17], where we derive stepping rates
that ensure a predefined level of reliability; and a gene regulation model of the mammalian
cell cycle [11], where we investigate degradation rates that lead to bi-stability.

This work is an extended version of [13], where we first introduced parameter synthesis
problems and algorithms for CTMCs. In this version, we provide a rigorous treatment of the
method to compute safe probability bounds and extend the approach to reward operators. We
also include an additional case study on the gene regulation of the mammalian cell cycle.
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1.1 Structure of the paper

In Sect. 2 preliminary definitions are given. In Sect. 3, we introduce the threshold problem and
the max synthesis problem. In Sect. 4, we describe the methods to bound the probability of a
formula for a fixed parameter region. Thesemethods are then used in the synthesis algorithms
that are described in Sect. 5. In Sect. 6, case studies and results of synthesis experiments are
discussed. Related work is discussed in Sect. 7. Concluding remarks are given in Sect. 8.

2 Background

This section introduces the main concepts relevant for model checking of (parametric)
continuous-time Markov chains and stochastic modelling of biochemical reactions.

2.1 Parametric CTMCs

Before we introduce parametric CTMCs, we recall the standard definition of CTMCs and
describe the uniformisation procedure that is employed for their model checking based on
[31].

Definition 1 [Continuous-timeMarkov chain (CTMC)]ACTMCis a tupleC = (S, π0, R, L)

where:

– S is a finite set of states;
– π0 : S → [0, 1] is the initial state distribution where∑s∈S π0(s) = 1;
– R : S × S → R≥0 is the rate matrix; and
– L : S → 2AP is a labelling function mapping each state s ∈ S to the set L(s) ⊆ AP of

atomic propositions that hold true in s.

A transition between states s, s′ ∈ S can occur only ifR(s, s′) > 0 and, in that case, the proba-
bility of triggering the transitionwithin time t is 1−e−tR(s,s′). The time spent in state s, before
a transition is triggered, is exponentially distributed with exit rate E(s) = ∑

s′∈S R(s, s′),
and when the transition occurs the probability of moving to state s′ is given by R(s,s′)

E(s) .
A CTMC C = (S, π0, R, L) can be extended with a reward structure (ρ, ι). ρ : S → R≥0

is called state reward and defines the rate with which a reward is acquired in state s ∈ S, e.g. a
reward of tρ(s) is acquired if C remains in state s for t time units. The function ι: S×S → R≥0

defines the transition reward, such that ι(si , s j ) describes the reward acquired each time the
transition (si , s j ) occurs.

We now describe the computation of transient probabilities for CTMCs, based on standard
uniformisation (also called Jensen’s method or randomisation). Let E be a S × S diagonal
matrix such that E(si , si ) = E(si ), and define the generator matrix by setting Q = R − E.
Then, the vector πt : S → R≥0 of transient probabilities at time t is given by πt = π0eQt ,
such that πt (s) is the probability of being in state s at time instant t . Below we describe the
uniformisation method.

Definition 2 (Uniformised matrix) Let C = (S, π0, R, L) be a CTMC and Q the associated
generator matrix. Then, the uniformised matrix P of C is defined by P = I + 1

q Q, where
q ≥ maxs{E(s) − R(s, s)} is called the uniformisation rate.

Definition 3 (Path of a CTMC) Let C = (S, π0, R, L) be a CTMC. A path ω of C is a
sequence ω = s0t0s1t1 . . ., where for all i , si ∈ S and ti ∈ R≥0 is the time spent in state si .
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592 M. Češka et al.

ω is infinite when R(si , si+1) > 0 for all i , and finite of length n when R(si , si+1) > 0 for
all i < n − 1 and E(sn−1) = 0.

The set of paths starting in state s is denoted as Path(s) and a unique probability measure,
Pr , exists on Path(s) [31]. Function ω(i) = si maps a position i of ω to its i-th state. The
state at time t in ω is denoted as ω@t , and is equal to ω(i) for the smallest i such that∑i

n=0 tn ≥ t .

The transient state-probabilities by time t are obtained by standard uniformisation as a sum of
state distributions after i discrete-stochastic steps, weighted by the probability of observing
i jumps in a Poisson process.

Definition 4 (Transient probabilities with standard uniformisation) Let C = (S, π0, R, L)

be aCTMC.Let q andP be the associated uniformisation rate and uniformisedmatrix, respec-
tively. The vector of transient probabilities at time t , πt , is given by standard uniformisation
as follows [21,24,38]:

πt =
∞∑

i=0

γi,qtτi (1)

where τi = π0Pi is the vector of probabilities in the discretized process at the i-th step; and

γi,qt = e−qt (qt)i

i ! denotes the i-th Poisson probability for a process with parameter qt . An
approximate value is given by finite summation

π̂t =
kε∑

i=0

γi,qtτi (2)

when kε satisfies the convergence bound
∑kε

0 γi,qt ≥ 1 − ε for some ε > 0. The Poisson
terms and the summation bound kε are computed efficiently using an algorithm due to Fox
and Glynn [19].

Parametric continuous-time Markov chains (pCTMCs) [23] extend the notion of CTMCs
by allowing transition rates to depend on model parameters. We assume a set K of model
parameters. The domain of each parameter k ∈ K is given by a closed real interval describing
the range of possible values, i.e, [k⊥, k	] ⊆ R. The parameter space P induced by K is
defined as the Cartesian product of the individual intervals, P = ×k∈K [k⊥, k	], so that P
is a hyper-rectangular space. Subsets of the parameter space P are referred to as parameter
regions or subspaces.

Definition 5 [Parametric CTMC (pCTMC)] Let K be a set of parameters. A pCTMC over
K is a tuple (S, π0, R, L), where:

– S, π0 and L are as in Definition 1; and
– R: S× S → R[K ] is the parametric rate matrix, where R[K ] denotes the set of polyno-

mials over the reals R with variables k ∈ K .

Given a pCTMC and a parameter space P , we denote with CP the set {Cp | p ∈ P} where
Cp = (S, π, Rp, L) is the instantiated CTMC obtained by replacing the parameters in R with
their valuation in p. The definition restricts the rates to be polynomials, which are sufficient
to describe a wide class of biological systems.
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2.2 CSL for parametric CTMCs

To specify properties over pCTMCs, we employ the time-bounded fragment of continuous
stochastic logic (CSL) [3].

Definition 6 (Time-bounded CSL) The syntax of time-bounded CSL consists of state for-
mulas (Φ) and path formulas (φ) given as

Φ : := true | a | ¬Φ | Φ ∧ Φ | P∼r [φ]
φ : := X Φ | Φ UIΦ

where a ∈ AP is an atomic proposition, ∼ ∈ {<,≤,≥,>}, r ∈ [0, 1] is a probability
threshold and I is an interval of R≥0.

P∼r [φ] holds if the probability of the path formula φ being satisfied from a given state meets
∼r . Path formulas are defined by combining state formulas through temporal operators: X Φ

is true if Φ holds in the next state, Φ1 UIΦ2 is true if Φ2 holds at some time point t ∈ I ,
and Φ1 holds for all time points t ′ < t . The future operator, F, and globally operator, G, are
derived from U as follows:

P∼r

[
FIΦ

]
≡ P∼r

[
true UI Φ

]

P∼r

[
GIΦ

]
≡ P∼̄1−r

[
FI ¬Φ

]

where <̄ ≡>, ≤̄ ≡≥, ≥̄ ≡≤ and >̄ ≡<. Informally, FIΦ is true if Φ holds at some time
instant in the interval I , while GIΦ is true if Φ holds for all t ∈ I . The logic can be extended
with the following time-bounded reward operators [31]:

R∼r [C≤t ] | R∼r [I=t ] (3)

where t, r ∈ R≥0. R∼r [C≤t ] holds if the expected reward cumulated up to time t meets the
bound∼r , while R∼r [I=t ] holds if the expected reward at time t meets∼r . We now provide
the formal semantics of time-bounded CSLwith rewards for parametric CTMCs. To this end,
we introduce two satisfaction relations, �⊥ and �	, to describe if a CSL property holds for
all and some instantiations, respectively, of a pCTMC.

Definition 7 (Semantics of time-bounded CSL for pCTMCs) Let CP = (S, π0, R, L) be a
pCTMC over a parameter space P with reward structure (ρ, ι). For each state s ∈ S the
satisfaction relations s �⊥ Φ and s �	 Φ are defined inductively by:

s �	true for all s ∈ S s �⊥true for all s ∈ S

s �	a ⇔ a ∈ L(s) s �⊥a ⇔ a ∈ L(s)

s �	¬Φ ⇔ s �⊥ Φ s �⊥¬Φ ⇔ s �	 Φ

s �	Φ ∧ Ψ ⇔ s �	 Φ ∧ s �	 Ψ s �⊥Φ ∧ Ψ ⇔ s �⊥ Φ ∧ s �⊥ Ψ

s �	P∼r [φ] ⇔ ∃p ∈ P. Pr(ω ∈ Path(s) | ω � φ) ∼ r in Cp

s �⊥P∼r [φ] ⇔ ∀p ∈ P. Pr(ω ∈ Path(s) | ω � φ) ∼ r in Cp

s �	R∼r [C≤t ] ⇔ ∃p ∈ P. Exp(s, XC≤t ) ∼ r in Cp

s �⊥R∼r [C≤t ] ⇔ ∀p ∈ P. Exp(s, XC≤t ) ∼ r in Cp

s �	R∼r [I=t ] ⇔ ∃p ∈ P. Exp(s, XI=t ) ∼ r in Cp

s �⊥R∼r [I=t ] ⇔ ∀p ∈ P. Exp(s, XI=t ) ∼ r in Cp

123

99
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where the path formula φ is expanded as

ω � XΦ ⇔ ω(1) exists and ω(1) � Φ

ω � Φ1U
I Φ2 ⇔ ∃t ∈ I. such that [ω@t � Φ2 ∧ (∀r ∈ [0, t). ω(r) � Φ1)]

and Exp(s, X) for X ∈ {XC≤t , XI=t } denotes the expectation of the random variable X
with respect to the probability measure Pr over paths starting in s, defined for any ω =
s0t0s1t1 . . . ∈ Path(s) by

XC≤t =
jt−1∑

i=0

(ti · ρ(si ) + ι(si , si+1)) +
⎛
⎝t −

jt−1∑

i=0

ti

⎞
⎠ · ρ(s jt )

XI=t = ρ(ω@t)

where jt = min{ j |∑ j
i=0 ti ≤ t}.

Note that, for formula P∼r [φ], �⊥ and �	 are defined by quantifying over p ∈ P and
evaluating the satisfaction probability of φ on the instantiation Cp . This probability can thus
be obtained using regular CSL satisfaction relation �. Therefore, relations �⊥ and �	 reduce
to � when the parameter space contains only a single valuation, i.e. P = {p}.

We further define the minimal satisfaction set Sat⊥(Φ) and the maximal satisfaction set
Sat	(Φ) as follows:

Sat⊥(Φ) = {s ∈ S | s �⊥ Φ} and Sat	(Φ) = {s ∈ S | s �	 Φ} . (4)

We now describe the satisfaction function to capture how the satisfaction probability of
a given property relates the parameters and the initial state. For simplicity we define the
function and further describe parameter synthesis only for the P operator: the method also
allows a definition based on reward operators, which we describe in Sect. 4.3.

Definition 8 (Satisfaction function) Let φ be a CSL path formula, CP be a pCTMC over a
space P and s ∈ S. We denote with Λφ : P −→ S−→[0, 1] the satisfaction function such that
Λφ(p)(s) = Pr(ω ∈ Path(s) | ω � φ) in Cp .

Since φ allows nested probabilistic operators, the satisfaction function is, in general, not
continuous.

2.3 Stochastic models of biochemical reaction networks

Biochemical reaction networks provide a convenient formalism for describing various bio-
logical processes as a system of well-mixed reactive species in a volume of fixed size. A
CTMC semantics can be derived where states describe the number of molecules of each
species, and transitions correspond to reactions that consume and produce molecules. The
rate matrix is defined as

R(si , s j ) =
∑

r∈reac(si ,s j )
fr (si ) (5)

where reac(si , s j ) denotes all the reactions changing state si into s j and fr is the rate function
of reaction r . Recalling that the rates of a pCTMC are polynomials over the parameters, fr
can be used to describe, among others,mass-action kinetics [20], according to which the rate
of a reaction is proportional to the concentrations of its reactants. For instance, a bimolecular
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chemical reaction of the form r : A + B → · · · has rate fr (si ) = kr
A(si )
V

B(si )
V , where

A(si ), B(si ) are the numbers of molecules for species A, B in state si , kr is the rate constant
of reaction r and V is the size of the reaction volume.

3 Problem definition

We consider the problem of synthesizing parameters for pCTMC models of biochemical
reaction networks, so that a given specification, expressed in time-bounded CSL, is satisfied.
We allow models that are parametric in the rate constants and in the initial state. In contrast
to previous approaches that support only specific kinds of properties (e.g. reachability as in
[23]), we support the full time-bounded fragment of CSLwith rewards, thus enabling generic
and more expressive synthesis requirements.

We introduce two parameter synthesis problems: the threshold synthesis problem that,
given a threshold∼r and a CSL path formula φ, aims to find the parameter region where the
probability of φ meets∼r ; and the max synthesis problem that asks for the parameter region
where the probability of the input formula attains its maximum, together with an interval
bounding that maximum. In the latter case, all the synthesised parameters yield probabilities
within this interval, but not all of them are maximising. On the other hand, solutions to the
threshold synthesis problem admit parameter points left undecided. Our approach supports
precise solutions through an input tolerance that limits the volume of the undecided region for
the threshold synthesis problem. For max synthesis, the tolerance determines the precision of
the probability interval and in turn, of the returned region. To the best of our knowledge, no
other parameter synthesis methods for CTMCs exist that provide guaranteed error bounds.
In the remainder of the paper, we omit the min synthesis problem that is defined and solved
in a symmetric way to the max case. In addition, we assume there is a single initial state s0,
i.e. ∀s ∈ S π0[s] = 1 if s = s0, and 0 otherwise.

Problem 1 (Threshold synthesis) Let CP be a pCTMCover a parameter spaceP , s0 an initial
state, φ a CSL path formula, ∼r a threshold where r ∈ [0, 1], ∼∈ {≤,<,>,≥} and ε > 0
be a volume tolerance. The threshold synthesis problem is finding a partition {T , U, F} of
P , such that:

1. ∀p ∈ T . Λφ(p)(s0) ∼ r ; and
2. ∀p ∈ F . Λφ(p)(s0) � r ; and
3. vol(U)/vol(P) ≤ ε

where vol(A) = ∫
A
1dμ is the volume of A.

Observe that a Boolean combination of state formulas results in a partition of the parameter
space in a natural fashion, by following a three-valued logic interpretation. For example,
consider the state formula Φ = P∼r1 [φ1] ∧ P∼r2 [φ2]. Let {T1, U1, F1} and {T2, U2, F2} be
a partition of P that satisfies the threshold synthesis problem for φ1 and φ2, respectively, and
ε > 0 be a tolerance value. The partition {T , U, F} of P for Φ is given as follows:

F = F1 ∪ F2, T = T1 ∩ T2, U = P\(F ∪ T ) (6)

The new partition satisfies vol(U)/vol(P) < 2ε.

Problem 2 (Max synthesis) Let CP be a pCTMC over a parameter space P , s0 an initial
state, φ a CSL path formula, and ε > 0 a probability tolerance. The max synthesis problem
is finding a partition {T , F} of P and probability bounds Λ⊥

φ , Λ
	
φ such that:
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1. Λ⊥
φ − Λ	

φ ≤ ε;

2. ∀p ∈ T . Λ⊥
φ ≤ Λφ(p)(s0) ≤ Λ	

φ ; and
3. ∃p ∈ T . ∀p′ ∈ F . Λφ(p)(s0) > Λφ(p′)(s0).

The above formulation implies two important properties of the set T : (i) T con-
tains all the maximising parameters and (ii) all the parameters in T are ε-optimal, i.e.
∀p ∈ T . |Λφ(p)(s0) − Λ∗| ≤ ε, where Λ∗ is the optimal value of the satisfaction function.
Note that some parameters in F can be also ε-optimal, but the third condition ensures they
are not maximising.

Example 1 Figure 1 illustrates a simple birth-death process with an uncertain parameter k1
representing the birth rate. It depicts the corresponding pCTMC and the satisfaction function
Λ for a reachability property. Figure 2 illustrates the results of threshold synthesis (left) and
max synthesis (right) for this model.

401 2 3 40

0.5

0.4

0.3

0.2

0.1

0.0
0.10 0.15 0.20 0.25 0.30

Fig. 1 Left the example model contains one species X (bounded by 40) and two reactions: production of X
(∅ → X with parametric rate k1) and degradation of X (X → ∅ with rate k2 · [X ] and k2 = 0.01). [X ]i
denotes the number of X molecules in state si . The initial state s0 is given by the population X = 15. The
corresponding pCTMC has 41 states. Property φ indicates that the population of X is between 15 and 20 at
time 1000. The parameter spaceP is given by the interval of the stochastic rate constant k1 ∈ [0.1, 0.3]. Right
the satisfaction function Λφ

probability bounds
0.5
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Fig. 2 Synthesis for the birth-death process of Fig. 1. Left threshold synthesis for P≥0.4[φ] and with volume
tolerance ε = 5 %. Right max-synthesis with probability tolerance ε = 2 %
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4 Computing lower and upper probability bounds

This section presents a generalization of the parameter exploration procedure originally intro-
duced in [11]. The procedure takes a pCTMC CP and CSL path formula φ, and provides safe
under- and over-approximations for the minimal and maximal probability that CP satisfies φ,
that is, lower and upper bounds satisfying, for all s ∈ S,

Λφ,min(s) ≤ inf
p∈P

Λφ(p)(s) and

Λφ,max(s) ≥ sup
p∈P

Λφ(p)(s). (7)

The accuracy of these approximations is improved by partitioning the parameter space P
into subspaces and re-computing the corresponding bounds, which forms the basis of the
synthesis algorithms that we discuss in the next section. We first show how to compute
bounds Λφ,min(s),Λφ,max(s) for unnested path formulas. Then, we extend the method to
nested path formulas, by providing under- and over-approximations of the satisfaction sets
Sat⊥ and Sat	 (see Eq. 4), and to reward operators. Finally, we analyse the accuracy and
consistency of themethod, and show that in case of nested properties, the satisfaction function
is characterized as a piecewise polynomial function.

4.1 Computing bounds for unnested path formulas

Regular time-bounded CSL model checking for an unnested path formula φ reduces to
the computation of transient probabilities [4]. A similar reduction is also applicable to the
computation of lower and upper bounds Λφ,min and Λφ,max. In the following, we extend
standard uniformisation to obtain safe bounds for a class of parametric rate functions.

Definition 9 (Parametric transient probabilities) Let CP = (S, π0, R, L) be a pCTMC over
a parameter spaceP . The vector of transient probabilities at time t and for parameter valuation
p ∈ P is approximated as follows

π̂t,p = π0

kε∑

i=0

γi,qtPi
p =

kε∑

i=0

γi,qtτi,p (8)

where π0, γi,qt and kε are as in Definition 4, τi,p = π0Pi
p is the probability evolution in the

discretized process, and Pp is the uniformised matrix obtained from Rp .

We now show how to obtain safe approximations, π̂min
t and π̂max

t , of π̂t,p , such that for all
s ∈ S:

π̂min
t (s) ≤ min

p∈P
π̂t,p(s) and

π̂max
t (s) ≥ max

p∈P
π̂t,p(s). (9)

The function π̂t (s), which maps each parameter p to π̂t,p(s), is a polynomial of degree
kεd , where d is the maximum degree of the elements of the parametric rate matrix R. Thus,
bounding the polynomial expression of π̂t (s) is infeasible due to the large number of uni-
formisation steps, kε , and previous approaches have provided only an approximate solution
by sampling the value of π̂t over a grid in P [23].
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We overcome this problem through a stepwise and statewise approximation. Specifically,
for each uniformisation step i , we derive bounds τmin

i and τmax
i , such that for all s ∈ S:

τmin
i (s) ≤ min

p∈P
τi,p(s) and τmax

i (s) ≥ max
p∈P

τi,p(s). (10)

This allows robust approximations to the transient probabilities given by

π̂min
t =

kε∑

i=0

γi,qtτ
min
i and (11)

π̂max
t =

kε∑

i=0

γi,qtτ
max
i (12)

which satisfy Eq. 9. For fixed p ∈ P and step i , the vector τi,p is given by

τi,p(s) =
{

τi−1,p(s) + 1
q · flux (τi−1,p, s

)
(p) if i > 0

π0(s) if i = 0
(13)

where q is the uniformisation constant and flux(τ, s)(p) is the net probability inflow of s in
one step, starting from distribution τ . This is defined as:

flux(τ, s)(p) =
∑

s′∈S
Rp(s

′, s) · τ(s′) −
∑

s′∈S
Rp(s, s

′) · τ(s). (14)

In the stepwise approximation, τmin
i and τmax

i are computed from τmin
i−1 and τmax

i−1 , respectively,
in such a way that:

τmin
i (s) ≤ τmin

i−1 (s) +
1

q
· min
p∈P

flux
(
τmin
i−1 , s

)
(p) and (15)

τmax
i (s) ≥ τmax

i−1 (s) + 1

q
·max
p∈P

flux
(
τmax
i−1 , s

)
(p). (16)

The above inequalities imply Eq. 10, since they establish coarser under- and over-
approximations where the parameter valuation p is optimised locally, i.e. at each step and at
each state.

It can be shown that the computation of τmin
i (s) and τmax

i (s) reduces to bounding the
range of a polynomial of degree d over the parameters, where d is the maximum degree in R.
Henceforth, we restrict the class of allowed rate functions in order to compute τmin

i (s) and
τmax
i (s). Specifically, we considermodelswhere the entries ofR aremulti-affine polynomials,
i.e. multivariate polynomials where each variable has degree at most 1. We remark that this
class of models includes biochemical reaction networks with mass-action kinetics. Due to
the following proposition, we can optimise the flux terms in a precise and efficient way, thus
providing an effective method to compute τmin

i and τmax
i .

Proposition 1 Let CR be a pCTMC over a rectangular space R, with state space S and
parametric rate matrix R. If the entries of R are multi-affine functions, then for any vector
τ : S → [0, 1] and state s ∈ S,

min
p∈R

flux(τ, s)(p) = min
p∈VR

flux(τ, s)(p) and max
p∈R

flux(τ, s)(p) = max
p∈VR

flux(τ, s)(p)

(17)

where VR is the set of vertices of R and flux is as in Eq. 14.
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Proof The expression flux(τ, s) is a linear combination of the entries of R, and thus is, in
turn, a multi-affine function. By [7,40], the extrema of a multi-affine function defined over a
rectangular domain R are found in the vertices of R. ��
Therefore, the bounds are computed as

τmin
i (s) = τmin

i−1 (s) +
1

q
· min
p∈VR

flux
(
τmin
i−1 , s

)
(p) and (18)

τmax
i (s) = τmax

i−1 (s) + 1

q
· max
p∈VR

flux
(
τmax
i−1 , s

)
(p) (19)

which requires evaluating the flux terms only at the corner points of R.
The above derivation describes forward computation of the probability bounds, i.e. the

computation starts with an initial distribution at time 0 and the probability mass is propagated
forward in time. Then, the bounds on the satisfaction function Λφ,min(s) and Λφ,max(s) are
computed from π̂min

t and π̂max
t , respectively, by setting π0(s) = 1. When model checking a

CSL formula, the computation of transient probabilities actually proceeds backwards [31].
For a target set A ⊆ S, parametric backward analysis computes a series of vectors σmin

i and
σmax
i such that for all s ∈ S:

σmin
i (s) ≤ min

p∈P
σi,p(s) and σmax

i (s) ≥ max
p∈P

σi,p(s) (20)

where σi,p(s) is the probability that, starting from the state s, a state in A is reached after
i steps in the discretised process corresponding to Cp . The computation of σmin

i and σmax
i

exploits Proposition 1 and is analogous to that of the forward method. In this way, the vectors
Λφ,min,Λφ,max are obtained as:

Λφ,min(s) =
kε∑

i=0

γi,qtσ
min
i (s) (21)

Λφ,max(s) =
kε∑

i=0

γi,qtσ
max
i (s) + ef-g (22)

for all s ∈ S, where the ef-g error is due to the truncation of the infinite summation in the
discretised process, and can be controlled using the Fox and Glynn algorithm [19]. The set
of target states A and time-horizon considered in the uniformisation procedure depend on
the CSL formula. Note that the uniformised matrix Pp is modified according to the formula
in a similar way to standard non-parametric CSL model checking [31].

4.2 Computing bounds for nested path formulas

To obtain Λφ,min and Λφ,max for an arbitrary path formula φ that contains nested state
formulas, we have to correctly approximate the sets Sat⊥(Φ) and Sat	(Φ) for each sub-
formulaΦ = P∼r [φ]. The approximated sets, denoted as Sat⊥(Φ) andSat	(Φ) are defined as

Sat⊥(Φ) = {
s ∈ S | s �⊥ Φ

}
and Sat	(Φ) = {

s ∈ S | s �	 Φ
}

(23)

where �⊥ and �	 approximate the satisfaction relations �⊥ and �	 (see Definition 7),
respectively. For a pCTMC CP , their semantics is defined as follows:

s �	 P∼r [φ] ⇔ ∃p ∈ P. Pr
(
ω ∈ Path(s) | ω �	 φ

) ∼ r in CP

s �⊥ P∼r [φ] ⇔ ∀p ∈ P. Pr
(
ω ∈ Path(s) | ω �⊥ φ

) ∼ r in CP

123

105



600 M. Češka et al.

where the path formula φ is expanded for + ∈ {	,⊥} as
ω �+ XΦ ⇔ ω(1) exists and ω(1) �+ Φ

ω �+ Φ1U
I Φ2 ⇔ ∃t ∈ I. such that

[
ω@t �+ Φ2 ∧ (∀r ∈ [0, t). ω(r) �+ Φ1

)]
.

The semantics of the other state formulas is the same as in Definition 7.
The CSL model checking for pCTMCs proceeds through a bottom-up procedure that

computes the sets Sat⊥(Φ) and Sat	(Φ) by iteratively replacing the innermost P∼r [φ] oper-
ators with the corresponding sets of satisfying states. When φ is non-nested, these sets are
obtained from the safe bounds of the corresponding satisfaction function Λφ (computed as
per Sect. 4.1) as follows:

s �⊥ P∼r [φ] ⇔
{

Λφ,min(s) ∼ r if ∼∈ {≥,>}
Λφ,max(s) ∼ r if ∼∈ {≤,<} (24)

s �	 P∼r [φ] ⇔
{

Λφ,max(s) ∼ r if ∼∈ {≥,>}
Λφ,min(s) ∼ r if ∼∈ {≤,<}. (25)

The approximations �⊥ and �	 propagate the bounds on the satisfaction function induc-
tively on the structure of the CSL formula, such that:

Sat⊥(Φ) ⊆ Sat⊥(Φ) and Sat	(Φ) ⊇ Sat	(Φ). (26)

Correctness follows from the expansion of the satisfaction relations, which we demonstrate
for the P≥r operator only. The left-hand side of Eq. 26 follows for Φ = P≥r [φ] through:

s �⊥ P≥r [φ] ⇒ Λφ,min(s) ≥ r ⇒ ∀p ∈ P. Λφ(p)(s) ≥ r

⇒ ∀p ∈ P. Pr
(
ω ∈ Path(s) in Cp | ω � φ

) ≥ r ⇒ s �⊥ P≥r [φ].
The right-hand side follows from:

s �	 P≥r [φ] ⇒ ∃p ∈ P. Λφ(p)(s) ≥ r ⇒ Λφ,max(s) ≥ r ⇒ s �	 P≥r [φ].
An example of synthesis for nested formulas is illustrated in Sect. 6.1.1.

4.2.1 Complexity

For CR = (S, π0, R, L), time-bounded path formula φ and fixed n-dimensional rectangular
space R, the time complexity of the procedure for computing the probability bounds is
O(tCSL · tpCSL). The factor tCSL = |φ| · M · q · tmax is the worst-case time complexity of
time-bounded CSL model checking (see [4]), where |φ| is the number of time-bounded path
sub-formulas in φ, M is the number of non-zero elements in the rate matrix, tmax is the
highest time bound occurring in φ and q is the uniformisation rate. The factor tpCSL is due
to the parametric analysis. Following Proposition 1 and Eq. 18, for general multi-affine rate
functions the bounds τmin

i and τmax
i are obtained by performing 2·2n evaluations of the vector

τi,p (there are 2n corner points in R), at each uniformisation step i . Thus, tpCSL = 2n+1. On
the other hand, for linear rate functions tpCSL = O(n), as shown in [11].

4.3 Computing bounds for reward operators

The standard model checking algorithm for reward operators is based on the uniformisation
procedure [31]. To obtain the sets Sat	(Φ) and Sat⊥(Φ) for the reward operators, we have
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to compute for X ∈ {XC≤t , XI=t } bounds Expmin(s, X) and Expmax(s, X) on the expected
rewards such that:

Expmin(s, X) ≤ inf
p∈P

Exp(s, X) in Cp (27)

Expmax(s, X) ≥ sup
p∈P

Exp(s, X) in Cp. (28)

The quantities can be obtained using the forward computation where the initial distribution is
defined as π0(s) = 1. For a reward structure (ρ, ι), the instantaneous reward is computed as:

Exp(s, XI=t ) =
∑

s′∈S
ρ(s′)πt (s

′). (29)

Tofind the cumulative reward, the state-transition rewards ι are additionally taken into account
as follows [30]:

Exp(s, XC≤t ) =
∑

s′∈S

∫ t

0

(
ρ(s′)πu(s

′) +
∑

s′′∈S
R(s′, s′′)ι(s′, s′′)πu(s

′)
)
du (30)

=
∑

s′∈S

∫ t

0

(
ρ(s′) +

∑

s′′∈S
R(s′, s′′)ι(s′, s′′)

)
πu(s

′)du (31)

=
∑

s′∈S

(
ρ(s′) +

∑

s′′∈S
R(s′, s′′)ι(s′, s′′)

)∫ t

0
πu(s

′)du. (32)

where
∫ t
0 πu(s′)du is the expected amount of time the Markov process spends in state s′ up

until time t . Following the parametric uniformisation of Sect. 4.1, safe bounds for the reward
operators are found as:

Expmin(s, XI=t ) =
∑

s′∈S
ρ(s′)π̂min

t (s′) (33)

Expmax(s, XI=t ) =
∑

s′∈S
ρ(s′)

(
π̂max
t (s′) + ef-g

)
(34)

Expmin(s, XC≤t ) =
∑

s′∈S

(
rew(ρ, ι, s′) 1

q

∞∑

i=0

γ i,qt · τmin
i (s′)

)
(35)

Expmax(s, XC≤t ) =
∑

s′∈S

(
rew(ρ, ι, s′) 1

q

∞∑

i=0

γ i,qt · τmax
i (s′)

)
(36)

where the mixed Poisson probabilities and the combined rewards are

γ i,qt = 1−
∞∑

j=i

γ j,qt (37)

rew(ρ, ι, s) = ρ(s) +
∑

s′∈S
R(s, s′)ι(s, s′). (38)

The bounds for the cumulative rewards (Eqs. 35 and 36) are understood as follows: γ i,qt is
the probability to see at least i jumps in the discretised process, which is multiplied by the
under- or over-approximation of the probability to be in state s. So

∑∞
i=0 γ i,qt · τmin

i (s) is
an under-approximation of the number of epochs the discretised process spends in state s.
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Observe that 1q is the expected time until a jump occurs and rew(ρ, ι, s) is the expected reward
obtained per time unit spent in s. As discussed in [31], the infinite sums can be approximated
using methods based on Fox and Glynn [19].

Note that, also for rewards, backward computation allows obtaining safe bounds for all
states s ∈ S, using the vectors σmin

i and σmax
i .

4.4 Analysis of satisfaction function and approximation error

When computing bounds τmin
i and τmax

i on the transient probabilities, an approximation
error occurs because the values are obtained by optimizing τi,p locally, i.e. at each step and
at each state, and this error accumulates at each uniformisation step. We examine this error
for the multi-affine case where Proposition 1 applies. For a fixed state s, let the maximizing
argument of the transient probability be (cf. Eq. 8):

p∗ = argmaxp∈R πt (s) (39)

Then, the optimal probabilities at step i , τ ∗
i , are defined by

τ ∗
i = π0Pi

p∗ . (40)

For state s, the global error after i uniformisation steps corresponds to the difference
between the maximum probability in s and its over-approximation:

gi (s) = ∣∣τ ∗
i (s) − τmax

i (s)
∣∣ . (41)

This error depends linearly on the size of the parameter space and exponentially on the
number of uniformisation steps, which we summarize as follows.

Proposition 2 Let CR = (S, π0, R, L) be a pCTMC with multi-affine rates on an n-
dimensional rectangular space R, φ be an unnested time-bounded CSL path formula and
gi (s) be the global approximation error for the maximum probability of being in state s after
i uniformisation steps. Then, there exist M1, M2 < ∞ such that, for any s ∈ S and step
i > 0, an upper bound to the error, gi ≥ maxs∈S gi (s), is given as

gi =
{
0 if i = 0

gi−1 ·
(
1+ M2

q

)
+ M1

q wR if i > 0,
(42)

where wR = max j=1,...,n(x	j − x⊥j ) is the width of R.

Proof See Proposition 2 in “Appendix”. ��
Let Λ̂φ(.)(s0) be the approximation of the satisfaction function Λφ(.)(s0) for initial state

s0 obtained using standard transient analysis and uniformisation [31]. We now provide an
important characterization of Λ̂φ(.)(s0), which holds for pCTMCs with general polynomial
rates.

Theorem 1 For a pCTMC CP on a bounded parameter space P , an initial state s0 and a
finitely-nested and time-bounded CSL path formula φ, the approximate satisfaction func-
tion Λ̂φ(.)(s0) is piecewise polynomial in P over a finite number of subdomains.

Proof See Theorem 1 in “Appendix”. ��
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5 Refinement-based parameter synthesis

We present algorithms to solve Problems 1 and 2, utilising the approximation of probability
bounds introduced in Sect. 4. The algorithms iteratively refine the parameter space P and
compute the probability bounds on the satisfaction function for each subspace until a required
accuracy is obtained.

5.1 Threshold synthesis

Algorithm1 describes themethod to solve the threshold synthesis problemwith input formula
φ and threshold≥ r . The idea, also illustrated in Fig. 3a, is to iteratively refine the undecided
parameter subspace U (line 3) until the termination condition is met (line 14). At each step,
we obtain a partition D ofU . For each subspaceR ∈ D, the algorithm computes boundsΛR

min
and ΛR

max on the minimal and maximal probability that CR with the initial state s0 satisfies
φ (line 5). We then evaluate if ΛR

min is above the threshold r , in which case the satisfaction
of the threshold is guaranteed for the whole region R, which is then added to T . Otherwise,
the algorithm tests whether R can be added to the set F by checking if ΛR

max is below the
threshold r . If R is neither in T nor in F , it forms an undecided subspace that is added to the

Algorithm 1 Threshold Synthesis
Require: pCTMC CP over parameter spaceP , initial state s0, CSL path formula φ, threshold≥ r and volume

tolerance ε > 0
Ensure: T , U and F as in Problem 1
1: T ← ∅, F ← ∅, U ← P
2: repeat
3: D ← decompose(U), U ← ∅
4: for all R ∈ D do
5: (ΛR

min, Λ
R
max) ← computeBounds(CR, s0, φ)

6: if ΛR
min ≥ r then

7: T ← T ∪ R
8: else if ΛR

max < r then
9: F ← F ∪ R
10: else
11: U ← U ∪ R
12: until vol(U)/vol(P) > ε � where vol(A) = ∫

A
1dμ

(a) (b)

Fig. 3 a Refinement in threshold synthesis with ≥r . Parameter values are on the x-axis, probabilities on the
y-axis. Each box describes a parameter region (width), and its probability bounds (height). The refinement
of R yields regions in T and in U . b Initial sampling-guided refinement of P . Sampled probabilities and a
tolerance Δ are used to identify regions that are likely to be in T (green area, samples ≥ r + Δ), in F (red,
≤ r − Δ), or close to the threshold r (orange and lime green, ∈ (r − Δ, r + Δ))
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set U . The algorithm terminates when the volume of the undecided subspace is negligible
with respect to the volume of the entire parameter space, i.e. vol(U)/vol(P) ≤ ε, where ε

is the input tolerance. Otherwise, the algorithm continues to the next iteration, where U is
further refined.

5.1.1 Correctness and termination

Correctness of the algorithm follows from the construction of the regions T (lines 6, 7) andF
(lines 8, 9). The termination condition guarantees the required bound of the relative volume
of U (line 12). Termination of the algorithm for (possibly nested) CSL properties is stated
below.

Proposition 3 For a pCTMCCP over a parameter spaceP , initial state s0, CSLpath formula
φ and volume tolerance ε, Algorithm 1 terminates.

Proof See Proposition 3 in “Appendix”. ��

5.1.2 Initial decomposition

Optionally, a heuristic based on an initial decomposition precedes the refinement procedure.
The initial decomposition can speed up the refinement, since it decomposes the parameter
space P in advance. It is guided by a priori uniform sampling of probability values. In
particular, we sample points p1, p2, . . . , pn ∈ P and compute Λ̂φ(pi )(s0) for i = 1, . . . , n
using standard CSL model checking. Then, we partition P into subspaces that set apart
samples where Λ̂φ(pi )(s0) ≥ r from those where Λ̂φ(pi )(s0) < r . As depicted in Fig. 3b,
we also use a tolerance Δ > 0 to identify regions close to the threshold that are more likely
to be further decomposed. In this case the initial decomposition returns four regions. Our
experiments demonstrates that, in some cases, depending on the shape of the satisfaction
function and the threshold r , the initial decomposition accelerates the synthesis.

5.2 Max synthesis

Algorithm 2 is used to solve the max synthesis problem, which returns the set T containing
the parameter valuations that maximize the probability of the path formula φ and the set F
not yielding the maximum value. Starting from T = P , the algorithm iteratively refines T
until the probability tolerance condition at Problem 2 is met (line 14).

Let D be a partition of T . For each subspaceR ∈ D, the algorithm computes boundsΛR
min

and ΛR
max on the minimal and maximal probability that CR with the initial state s0 satisfies

φ (line 5). The algorithm then rules out subspaces that are guaranteed to be included in F ,
by deriving an under-approximation (M) to the maximum satisfaction probability (line 7).
If ΛR

max is below the under-approximation, the subspace R can be safely added to the set F
(line 9). Otherwise, it is kept in T .

We consider two approaches for deriving the bound M , namely a naive approach and a
sampling-based approach. In the naive method, we set M to the maximum over the least
bounds in the partition of T , that is, M = max{ΛR′

min | R′ ∈ D}. Let R be the region with
highest lower bound. The sampling-based method, illustrated in Algorithm 3, improves on
this by sampling a set of parameters {p1, p2, . . .} ⊆ R (line 2) and taking the highest value

of Λ̂φ(p)(s0), that is, M = max
{
Λ̂φ(pi )(s0) | pi ∈ {p1, p2, . . .}

}
(line 3). Each Λ̂φ(p)(s0)

is computed through regular CSLmodel checking, and is equally expensive as computing the
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Algorithm 2 Max Synthesis
Require: pCTMC CP over parameter space P , initial state s0, CSL path formula φ and probability tolerance

ε > 0
Ensure: Λ⊥

φ , Λ	
φ , T and F as in Problem 2

1: F ← ∅, T ← P
2: repeat
3: D ← decompose(T ), T ← ∅, Λ⊥

φ ← +∞, Λ	
φ ← −∞

4: for all R ∈ D do
5: (ΛR

min, Λ
R
max) ← computeBounds(CR, s0, φ)

6: M ← getMaximalLowerBound(D)

7: for all R ∈ D do
8: if ΛR

max < M then
9: F ← F ∪ R
10: else
11: T ← T ∪ R
12: Λ⊥

φ ← min{Λ⊥
φ , ΛR

min}
13: Λ	

φ ← max{Λ	
φ , ΛR

max}
14: until Λ	

φ − Λ⊥
φ > ε

Algorithm 3 Sampling-guided computation of a maximal lower bound
Require: Parameter decomposition D and number of samples n
Ensure: M , an improved lower bound for max probability in D

1: R = argmaxR′∈D ΛR′
min

2: (p1, . . . , pn) ← Uniform(R, n)

3: M ← maxpi Λ̂(pi )(s0)

Fig. 4 Refinement in max synthesis. The two outermost regions (in red) cannot contain the maximum, as
their upper bound is below the maximum lower bound (M) found at region R. The maximum lower bound
is improved by sampling several points p ∈ R and taking the highest value (M) of the satisfaction function
Λ̂φ(p)(s0). The yellow area highlights the improvement

bounds on afixed pCTMC.The samplingmethod results in an improvedunder-approximation
to the maximum of the satisfaction function. As a result, the bound rules out more regions,
and fewer refinements are required in the next iteration (see Fig. 4).

5.2.1 Correctness and termination

The correctness of the algorithm derives from the construction of the sets T (lines 12, 13)
and F (lines 8, 9), and from the termination condition (line 14).

We remark that, for nested properties, the satisfaction function is in general discontinu-
ous, which allows ΛR

max − ΛR
min > ε when T contains a jump discontinuity. This prevents

123

111
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the algorithm from terminating. For this reason a volume-based stopping criterion, such as
vol(T ) ≤ ε for ε > 0,which replaces the condition on line 14, should be usedwhen analysing
nested properties. Indeed, the volume of any region containing such a discontinuity can be
made arbitrarily small in a finite number of refinement steps, as discussed in the proof of
Proposition 3. With unnested properties, the following proposition ensures termination.

Proposition 4 For a pCTMC CP over a parameter space P , initial state s0, non-nested CSL
path formula φ and tolerance ε, Algorithm 2 terminates.

Proof See Proposition 4 in “Appendix”. ��
5.3 Complexity

The time complexity of the procedure computing the probability bounds for a fixed region
has been discussed in Sect. 4.2. The overall runtime of both algorithms further depends on
the number of subspaces that are required to obtain the desired precision. This number scales
exponentially in the number of parameters and linearly in the volume of the parameter space.
However, in practice, the number of required subspaces also depends on the shape of the
satisfaction function and the type of synthesis.

6 Results

We implemented the synthesis algorithms on top of the tool PRISM 4.0 [32]. Currently, a
prototype command-line version is available at https://github.com/Palmik/prism-pse/. Mod-
els and properties are specified using the native specification languages of PRISM. Note that
the online version of the tool only supports linear rate functions and non-nested formulas.

We demonstrate the applicability and efficiency of the developed algorithms on three case
studies. We run all experiments on a Linux workstation with an AMD Phenom™ II X4 940
Processor @ 3 GHz, 8 GB DDR2 @ 1066 MHz RAM.

6.1 Epidemic model

The SIR model [27] describes the epidemic dynamics in a well-mixed and closed population
of susceptible (S), infected (I ) and recovered (R) individuals. In the model, a susceptible
individual is infected after a contact with an infected individual with rate ki . Infected indi-
viduals recover with rate kr , after which they are immune to the infection. We can describe
this process with the following biochemical reaction model with mass action kinetics (i.e.
the rate functions are linear with respect to the parameters):

S + I
ki−→I + I (Infection)

I
kr−→R (Recovery)

We represent themodel as a pCTMCwith parameters ki ∈ [0.005, 0.3] and kr ∈ [0.005, 0.2],
and initial populations S = 95, I = 5, R = 0.

We consider the time-bounded CSL path formula φ = (I > 0)U[100,120](I = 0), spec-
ifying behaviour where the infection lasts for at least 100 time units, and dies out before
120 time units. Property and parameters are taken from [9], where the authors estimate the
satisfaction function for φ following a Bayesian approach.1

1 In [9], a linear-time specification equivalent to φ is given.
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(d)ki × kr Runtime Subspaces
a) [0.005, 0.3] × 0.05 42.2 s 23
b) 0.12 × [0.005, 0.2] 26.7 s 15
c,d) [0.005, 0.3] × [0.005, 0.2] 29.3 min 1320

Fig. 5 Solution to threshold synthesis problems for the SIR model and the property P≥0.1[(I >

0)U[100,120](I = 0)]. Plots c and d depict the same result with two different angles. Runtime and num-
ber of subspaces in the final partition of P are listed. Volume tolerance is ε = 10 %. Colour code is as in
Fig. 3a

First, we perform threshold synthesis experiments to find infection and recovery rates for
which φ is satisfied with probability at least r = 10 %. Figure 5 illustrates the solutions for
one-dimensional parameter spaces (plots a, b) obtained by fixing ki = 0.12 and kr = 0.05,
respectively; and for the two-dimensional parameter space (plots c, d). Results evidence that
a significantly higher number of refinement steps is required for parameter subspaces where
the satisfaction function Λ is close to the probability threshold r .

Second, we perform max and min synthesis experiments for property φ over one-
dimensional and two-dimensional parameter spaces. Results are summarized in Fig. 6. For
the experiments in Fig. 6b, c we observe that, in order to meet the desired probability tol-
erance, a high number of refinement steps is required due to two local extrema close to the
minimizing region and a bell-shaped Λ with the maximizing region at the top, respectively.

Our precise results for the problem in Fig. 6a improve on the estimation in [9], where in a
similar experiment themaximal satisfaction probability is imprecisely registered at ki = 0.25.
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(f)
ki × kr Runtime Subspaces Λ⊥

φ Λ�
φ T

a) [0.005, 0.3] × 0.05 16.5 s 9 33.94% 34.85% [0.267, 0.3] × 0.05
b) [0.005, 0.3] × 0.05 49.5 s 21 2.83% 2.91% [0.005, 0.0054] × 0.05
c) 0.12 × [0.005, 0.2] 99.7 s 57 19.94% 20.42% 0.12 × [0.071, 0.076]
d) 0.12 × [0.005, 0.2] 10.4 s 5 † 0.005% 0.12 × [0.005, 0.026]
e) [0.005, 0.3] × [0.005, 0.2] 3.6 h 5817 35.01% 35.72% [0.217, 0.272]×[0.053, 0.059]
f) [0.005, 0.3] × [0.005, 0.2] 6.2 h 10249 34.77% 35.72% [0.209, 0.29]×[0.051, 0.061]

Fig. 6 Solution to max (a, c, e, f) and min (b, d) synthesis for the SIR model and the formula φ = (I >

0)U[100,120](I = 0). Sampling-based refinement is used for all experiments but e. Colour code is as in Fig. 4.
In the table, we report runtime, number of subspaces, approximation (Λ⊥

φ and Λ	
φ ) of min or max probability,

and bounding box of T . Probability tolerance is ε = 1 % for max synthesis and ε = 0.1 % for min synthesis.
† The found value, 3.05×10−10, is of the same order ofmagnitude as the precision used during uniformisation.
a Max, kr fixed. b Min, kr fixed. c Max, ki fixed. d Min, ki fixed. e Max, sampling-based. f Max, no-sampling

We also compare the solutions to the max synthesis problem over the two-dimensional
parameter space obtained by applying Algorithm 2 with sampling (Fig. 6e) and without
(Fig. 6f). In the former case, a more precise T region is obtained (with volume 2.04 times
smaller than in the approach without sampling), hence giving a more accurate approximation
of the max probability. Sampling also allows us to rule out earlier those parameter regions
that are outside the final solution, thus avoiding unnecessary decompositions and improving
the runtime (1.72 times faster than in the approach without sampling). This is visible by the
coarser approximations of probabilities in the F region.

6.1.1 Parameter synthesis for nested CSL formulas

Weuse the SIRmodel to illustrate parameter synthesis for a nested CSL formula.We consider
initial populations of S = 3, I = 1 and R = 0 to obtain a small model with only 14 reachable
states, which allows us visualise the main steps of the synthesis algorithm. We modify the
original path formula φ to specify behaviour where the infection lasts at least 100 time units
and, before 200 time units, the system reaches a state where the infection becomes extinct
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Fig. 7 Visualisation of four steps of the threshold synthesis algorithm for a small variant of the SIR model,
nested CSL formula P>0.1[(I > 0)U[100,120](Ψ )] (Ψ = P>0.9[F [0,100](I = 0)]) and parameter space
ki × kr = 0.12×[0.02, 0.04]. The two-dimensional grids represent the state space. Since the total population
is preserved by the model dynamics, each state is unambiguously given by the population of S (popS) and
population of I (popI ). For a given parameter region, the satisfaction sets Sat⊥(Ψ ) and Sat	(Ψ ) for Ψ are
depicted using different colouring of the grid cells. For each step, the vertical coloured bar illustrates the
current partitioning of the parameter space into regions T , U and F

before time 100 with probability higher than 90 %. Such a property can be formalised as the
nested CSL path formula φ′ = (I > 0)U[100,120](Ψ ), where Ψ = P>0.9[F [0,100](I = 0)].

We show threshold synthesis for property P>0.1[φ′] and parameter space ki × kr =
0.12 × [0.02, 0.04]. Recall that the probability bounds Λφ′,min and Λφ′,max for a nested
formula φ′ are computed as:

Λφ′,min(s) = Λφ⊥,min(s) where φ⊥ = (I > 0)U[100,120](Sat⊥(Ψ ))

Λφ′,max(s) = Λφ	,min(s) where φ	 = (I > 0)U[100,120](Sat	(Ψ ))

Figure 7 depicts four steps of the refinement algorithm. In the first step, Sat⊥(Ψ ) con-
tains only states where the population of I is 0 and Sat	(Ψ ) contains all reachable states.
The threshold synthesis algorithm for P>0.1[φ′] partitions the parameter space into a single
undecided region. In the second step, the parameter space refinement yields a refinement
of the satisfaction sets. In particular, for kr = [0.02, 0.03], we observe that some states no
longer appear in Sat	(Ψ ) (shown red-coloured), while, for kr = [0.03, 0.04], some states
are added to Sat⊥(Ψ ) (shown green-coloured). Note that, although Sat⊥(Ψ ) �= Sat	(Ψ ),
the approximation is precise enough to decide that the latter parameter subspace is false,
since Λφ′,max(s) < 0.1. In the third refinement step, we manage to refine only Sat	(Ψ )

for region kr = [0.02, 0.025]. The region remains still undecided as well as region
kr = [0.025, 0.03]. Finally, in the fourth step, the satisfaction sets for kr = [0.02, 0.0225]
collapse, i.e. Sat⊥(Ψ ) = Sat	(Ψ ), which allows us to conclude that the region is true. Region
kr = [0.0275, 0.03] can also be decided, despite the fact that Sat⊥(Ψ ) �= Sat	(Ψ ) here.
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Fig. 8 Single-junction DNA
walker circuit. In orange: the
walker starts on the Initial
anchorage and moves right at the
junction, eventually quenching
the fluorophore at the Final2
anchorage

This example demonstrates the key aspects of the parameter synthesis method for nested
CSL formulas. In particular, it shows that the refinement of the parameter space yields the
refinement of the satisfaction sets and can result in parameter subspaces where, for a given
state formula Φ, Sat⊥(Φ) = Sat	(Φ). Note that, if additional refinements are needed for
such subspaces, the corresponding probability bounds can be computed in the same way as
non-nested formulas. This example also demonstrates that a region can be decided even when
Sat⊥(Φ) �= Sat	(Φ). This considerably reduces the number of required refinements for the
subformulaΦ. In general, the synthesis algorithms for the nested formulas have a higher com-
plexity, since the nesting of probabilistic operators increases the number of regions to analyse.

6.2 DNA walkers

We revisit models of a DNA walker, a man-made molecular motor that traverses a track of
anchorages and can take directions at junctions in the track [43], which can be used to create
circuits that evaluate Boolean functions. PRISM models of the walker stepping behaviour
were developed previously [17] based on rate estimates in the experimental work. The walker
model is modified here to allow uncertainty in the stepping rate, andwe consider its behaviour
over a single-junction circuit, see Fig. 8. Following [17], the stepping rate k is parameterised
by d , the distance between the walker-anchorage complex and an uncut anchorage, and da ,
the distance between consecutive anchorages, and is defined as:

k =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

ks when d ≤ 1.5da
c · ks/50 when 1.5da < d ≤ 2.5da
c · ks/100 when 2.5da < d ≤ 24nm

0 otherwise.

(43)

where the base stepping rate ks ∈ [0.005, 0.020] is now defined as an interval, as opposed to
the original value of 0.009. We have also added factor c for steps between anchorages that
are not directly adjacent, but we will assume c = 1 for now. The base stepping rate may
depend on buffer conditions and temperature, and we want to verify the robustness of the
walker with respect to the uncertainty in the value of ks .

We compute the minimal probability of the walker making it onto the correct final anchor-
age by time T (min synthesis for the formula φ = F[T,T ] finish-correct) and the maximum
probability of the walker making it onto the incorrect anchorage by time T (max syn-
thesis for the formula φ = F[T,T ] finish-incorrect). In Fig. 9, we list the probabilities at
T = 15, 30, 45, 200 min and depict the solutions and the parameter space decompositions
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(b) (c) (d)
Runtime Subspaces

Time bound Min. correct Max. incorrect ∅ Sampling ∅ Sampling
T = 15 1.68% 5.94% 0.55 s 0.51 s 22 11
T = 30 14.86% 10.15% 1.43 s 1.35 s 35 15
T = 45 33.10% 12.25% 3.53 s 2.14 s 61 21
T = 200 79.21% 16.47% 213.57s 88.97 s 909 329

Fig. 9 Experiments for the DNA walker model: min-synthesis for φ = F[T,T ] finish-correct and max-
synthesis for φ = F[T,T ] finish-incorrect using ks ∈ [0.005, 0.020], c = 1 and probability tolerance ε = 1 %.
Plots show the solutions and the decompositions for the min (a, b) and max (c, d) synthesis and T = 15,200
min. Colour code is as in Fig. 4. In the table, results are reported also for T = 30, 45. The runtime and
subspaces are listed only for min-synthesis (the results for max-synthesis are similar). a Min, T = 15. b Min,
T = 200. c Max, T = 15. d Max, T = 200
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Fig. 10 The computation and results of the threshold synthesis for the DNA walker model, ks ×
c ∈ [0.005, 0.020] × [0.25, 4] and different formulas, using volume tolerance ε = 10 %.
a P≥0.4[F[30,30] finish-correct] ∧ P≤0.08[F[30,30] finish-incorrect], runtime 282.5 s, 3489 subspaces∗.
b P≥0.8[F[200,200] finish-correct] ∧ P≤0.16[F[200,200] finish-incorrect], runtime 8.2 h, 47229 subspaces∗.
Results are obtained by solving the synthesis problem for each sub-formula and by combining the output
regions as in Eq. 6. ∗: derived as the sum of runtimes and subspaces for each sub-formula

for both experiments at T = 15, 200 min. For time T = 30, 45, 200, we note that the walker
is robust, as the minimal guaranteed probability for the correct outcome is greater than the
maximumpossible probability for the incorrect outcome. For time T = 15 this is not the case.
From plots (a–d), we observe that minimum and maximum probability values are obtained
for minimum and maximum values of ks , respectively.

We also consider a property that provides bounds on the ratio between the walker finishing
on the correct versus the incorrect anchorage. The rates c · ks/50 and c · ks/100 correspond
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pRB E2F1
(A) (B)

(a)

A < MA ∧ B > 0 → k1
B

(Km1+B)
J11

J11+A
: A = A + 1

B < MB → k2
a2+B2

(K2
m2+B2)

J12
J12+A

: B = B + 1

B < MB → kp : B = B + 1

A > 0 → γA · A : A = A − 1

B > 0 → γB · B : B = B − 1

(b)

Fig. 11 a Two-gene regulatory circuit controlling G1/S transition in mammalian cell cycle (� indicates
inhibition,→ activation). b Stochastic Michaelis–Menten model of the G1/S regulatory circuit adapted from
[42] in the guarded command notation (guard → rate : update). A and B are the number of proteins
pRB and E2F1, respectively. Rates are expressed in s−1. Production rate parameters are as in [42]: k1 = 1,
k2 = 1.6, kp = 0.05, Km1 = 0.5, Km2 = 4, a = 0.04, J11 = 0.5 and J12 = 5. MA = MB = 30 are the
bounds on A and B, estimated through stochastic simulations. Synthesis parameters are: γA ∈ [0.005, 0.5]
(degradation rate of pRB), and γB ∈ [0.005, 0.5] (degradation rate of E2F1)

to the walker stepping onto anchorages that are not directly adjacent, which affects the prob-
ability for the walker to end up on the unintended final anchorage. For higher values of c, the
walker is more likely to reach the unintended final anchorage more often. Nowwe add uncer-
tainty on the value of c, so that c ∈ [0.25, 4], and define the performance related property by
P≥0.4[F[30,30] finish-correct] ∧P≤0.08[F[30,30] finish-incorrect], that is, the probability of the
walker to make it onto the correct anchorage is at least 40 % by time T = 30 min, while the
probability for it tomake it onto the incorrect anchorage is no greater than 8%. In otherwords,
we require a correct signal of at least 40% and a correct-to-incorrect ratio of at least 5 by time
T = 30 min. We define a similar property at time T = 200 min, this time requiring a signal
of at least 80%:P≥0.8[F[200,200] finish-correct]∧P≤0.16[F[200,200] finish-incorrect]. The syn-
thesized ranges of ks and c where the properties hold are shown in Fig. 10. Note that in this
case the rate function is amulti-affine polynomial and for fixed c (Fig. 9) the function is linear.

6.3 Gene regulation of mammalian cell cycle

We consider the gene regulation model published in [42]. The model is shown in Fig. 11a and
explains the regulation of a transition between the early phases of themammalian cell cycle. In
particular, it targets the transition from the controlG1-phase to S-phase (the synthesis phase).
The G1-phase makes an important checkpoint controlled by a bistable regulatory circuit,
based on an interplay of the retinoblastoma protein pRB, denoted by A (the so-called tumour
suppressor, HumanCyc:HS06650) and the retinoblastoma-binding transcription factor E2F1,
denoted by B (a central regulator of a large set of human genes, HumanCyc:HS02261). At
high concentration levels (high mode), B activates the G1/S transition mechanism. On the
other hand, a low concentration of B (low mode) prevents committing to S-phase. Depending
on the parameters, the positive autoregulation of B causes bistability of its concentration,
i.e. the existence of two stable states. Of specific interest are the degradation rates of A (γA)
and B (γB ). When mitogenic stimulation increases under conditions of active growth, rapid
phosphorylation of A starts and makes the degradation of unphosphorylated A stronger (i.e.
the rate γA increases). This causes B to lock in the high stable mode implying the cell cycle
commits to the S-phase. Since mitogenic stimulation influences the degradation rate of A,
our goal is to study the population distribution around the low and high steady states and to
explore the effect of γA and γB .
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The ODE model in [42] describes this system using Michaelis–Menten (MM) kinetics
[35], which provides a deterministic approximation for enzyme-catalysed reactions. In this
work, we derive a discrete stochastic translation of the ODEmodel by directly using the MM
rates. The model is illustrated in Fig. 11b. The corresponding CTMC has 961 states and 3690
transitions. For details on the adequacy of the MM approximation in the stochastic settings,
we refer the reader to [37,39].

We apply threshold synthesis to find the degradation rates that lead to bistability. In
particular, synthesis parameters are γA ∈ [0.005, 0.5] and γB ∈ [0.005, 0.5] and thus the
rate functions are linear with respect to the parameters. We formalize stability using time-
bounded properties with time horizon 1000 s, which reflects the time scale of the gene
regulation response. The stabilization of the model’s dynamics within this time horizon was
also confirmed by a steady-state analysis for different values of the parameters.We use atomic
propositions H and L to denote the high and low mode of B, respectively. In the following
experiments, we assume L is true if B < 2 and H is true if B > 4.

Bistability is commonly expressed as the property of reaching and staying in either one of
two different regions of the state space. In time-bounded CSL, this can be expressed using the
formula P≥rL [GI L] ∧P≥rH [GI H ], where I spans the final time window and the probability
of resting in the two modes is at least rL and rH , respectively. However, threshold synthesis
for this property, I = [900, 1000] and different combinations of rL and rH resulted in empty
T regions and negligible U regions, indicating that no parameters can be found that meet
this formulation of bistability. Note that this result agrees with the analysis performed in
[11] using a different stochastic translation of the ODE model and parameter exploration
techniques.

Therefore, we analyse whether there is at least a weaker type of bistability in the form
of a bi-modal distribution at time t = 1000. The existence of the bi-modal distribution is
formalized using the future operator F as:

P≥rL [Ft L] ∧ P≥rH [Ft H ].
Results for rL = rH = 0.4 are summarised in Fig. 12. In plot (a), we observe that most of the
degradation rates violate the formula, with the exception of an undecided region that spans
the domain of γA and γB ∈ [0.05, 0.15]. Although this result is consistent with input volume
tolerance ε, it does not provide a precise answer to whether satisfiable parameters exist or
not.

In order to resolve the undecided region, we perform the same experiment by restricting
the parameter space to the area of interest (plot b). Indeed, note that, by the volume tolerance
criterion, a lower volume of P implies a lower volume of U . An alternative (less efficient)
solution would be keeping P unchanged and decreasing ε. The results demonstrate that a
bi-modal distribution is reached for a relevant set of parameters. In particular, we show that,
for any value of γA approximately ranging in [0.08, 0.5], there exists a value of γB that satisfy
the property.

To complement the above analysis, we further analyse how long the system remains in
the low and high mode. To this purpose, we synthesise parameters such that the following
cumulative reward property is satisfied:

R≥400
[
C≤1000] (B < 2) ∧ R≥400

[
C≤1000] (B > 4)

where, for subformulaR≥400[C≤1000](B ∼ X), the state rewardρ is such that:∀s ∈ S. ρ(s) =
1 ⇔ B ∼ X in s. Figure 12c illustrates the results of parameter synthesis restricted to the
parameter space as in the previous experiment. The parameters that satisfy the reward property
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(a) (b) (c)

γA × γB Runtime∗ Subspaces∗
a) [0.005, 0.5] × [0.005, 0.5] 618 s 809
b) [0.005, 0.5] × [0.05, 0.15] 1256 s 1817
c) [0.005, 0.5] × [0.05, 0.15] 1882 s 1742

Fig. 12 Bistability analysis in the G1/S regulatory circuit model: threshold synthesis for property
P≥0.4[Ft L] ∧ P≥0.4[Ft H ] (a, b) and R≥400[C≤1000](B < 2) ∧ R≥400[C≤1000](B > 4) (c) with vol-
ume tolerance ε = 1 %. In b and c we improve precision by restricting the range of γB . Colour code is as
in Fig. 3a. Results are obtained by solving the synthesis problem for each sub-formula and by combining the
output regions as in Eq. 6. Asterisks derived as the sum of runtimes and subspaces for each sub-formula

are aligned with the parameters leading to the bimodal distribution. This experiment confirms
the existence of a certain form of the bistability in the stochastic version of the model.
Moreover, our results are comparable with those obtained using numerical simulations of
the ODE model and bifurcation analysis in [42], where bistability is registered2 for γA ∈
[0.007, 0.03] and fixed γB = 0.1.

7 Related work

The work by Brim et al. [11] first introduced extensions of CSL model checking and of
the uniformisation method for computing safe probability bounds in parametric models of
stochastic reaction networks. The methods are applied to the problem of parameter explo-
ration, i.e. finding bounds that approximate the satisfaction function arbitrarily well. Our
work extends [11] with the following five main contributions. (1) Definition of the threshold
and max synthesis problems. (2) Synthesis algorithms that combine iterative refinement of
the parameter space with sampling of probability values. In contrast to [11], where every
parameter region needs to be analyzed, our algorithms focus only on the regions relevant
to solve the synthesis problem, so avoiding unnecessary computation. (3) More general
class of supported rate functions. Specifically, we allow multi-affine dependency of the rate
functions in the parameters, while the method in [11] supports only rate functions linear
in the parameters. (4) Convergence analysis of the approximation error (see Proposition 2).
(5) Theorem 1, which provides a precise mathematical characterization for the satisfaction
function of generic time-bounded and finitely-nested CSL formulas. Furthermore, the gene
regulation model in Sect. 6.3 is also studied by Brim et al. [11]. They translate the original
ODE model [42] into the framework of stochastic mass action kinetics, while we consider
a stochastic Michaelis–Menten approximation. In [11], no parameters are found that meet

2 In [42], we believe that there is a typo in the figure illustrating bistability (Figure 2B). The range of φpRB
(corresponding to γA) should read 0.005–0.035.
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the bistability requirement, expressed using ‘globally’ and cumulative reward formulas. Our
analyses confirm that the model does not exhibit bistability if defined with ‘globally’ for-
mulas, but that bistability occurs if formulated as a bounded reachability or a cumulative
reward formula. This is explained by the different stochastic encodings of the original ODE
model.

Parameter synthesis for CTMCs and bounded reachability specifications is considered
in [23]. The authors show that the problem can be reduced to the analysis of the polyno-
mial function describing the reachability probability of a given target state. As illustrated
in Sect. 4.1, the main limitation is the high degree of the polynomials, which is determined
by the number of uniformisation steps. Thus, in contrast to our work, only an approximate
solution can be obtained using discretization of the parameter space and the experimental
evaluation is limited to one simple case study (a CTMC with 19 states and 54 transi-
tions).

When considering linear-time specifications, specific restrictions can be placed on the
rate function to result in a smooth satisfaction function (i.e. having derivatives of all
orders). In that case the function can be approximated using statistical methods such as
Gaussian Process regression, which leverage smoothness [9]. Such restrictions require
the rate function to be smooth in the parameters and polynomial in the state vector.
Instead, the synthesis method we presented imposes limitations only on the parame-
ter dependency. In contrast to our approach, the statistical estimation of the satisfaction
function cannot provide guaranteed results. Moreover, the precision of the estimation
strongly depends on a number of experimental design choices, e.g. how many and
which parameter values to sample, while our algorithms provide results with arbitrary
precision and do not require any information except the inputs to the synthesis prob-
lem.

A concept similar to smoothness, uniform continuity, can be used to obtain an unbiased
statistical estimator for the satisfaction function [25]. Inference of parameter values in prob-
abilistic models from time-series measurements is a well studied area of research [2,10], but
different from the problem we consider.

Parameter synthesis problems have been studied for discrete-time Markovian models
in [14,22]. These approaches apply to unbounded temporal properties and are based on
constructing a rational function by performing state elimination [22].

Interval CTMCs, where transition rates are given as intervals, have been employed to
obtain a three-valued abstraction for CTMCs [26]. In contrast to the parametric models
we work with, the transition rates in interval CTMCs are chosen nondeterministically and
schedulers are introduced to compute lower and upper probability bounds. Along the same
lines, [41] introduce models and model checking algorithms for interval DTMCs and MDPs.

Synthesis approaches for non-stochastic biological models include the work by Batt et al.
[6], where parameters of ODE-based gene regulatory network (GRN)models are synthesized
using discrete abstractions and LTL model checking. In [5], the method of [18] based on
sensitivity analysis is applied to the automated design of synthetic biological devices from
basic ODE modules. In [28], parameter synthesis for discrete GRNs is reduced to coloured
LTLmodel checking and solved through a distributed algorithm. Methods based on SMT are
presented in [29,36] to synthesize Boolean networkmodels from time-series and perturbation
experiments data.
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8 Conclusion and discussion

We have developed efficient algorithms for synthesising rate parameters for biochemical net-
works so that a given requirement, expressed as a time-bounded CSL formula, is guaranteed
to be satisfied. The techniques are based on the computation of lower and upper probabil-
ity bounds of [11], in conjunction with iterative refinement and sampling of parameters. In
this work we focus on biological systems that, being characterised by complex and non-
linear dynamics, are typically hard to analyse. However, our synthesis algorithms can be
equivalently applied also to the performance and reliability analysis of computer systems.

We remark that improved performance can be easily achieved through parallel processing
of individual subspaces and, within each subspace, of the parametric uniformisation method.
Other techniques can also be integrated to speed up the synthesis process, including fast
adaptive uniformisation [16,34], state aggregation [1,44], and abstraction [33]. Finally, we
plan to include the synthesis algorithms in the parammodule of the PRISMmodel checker
[14,32], and to extend the method to general non-linear rate functions.
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Appendix: Proofs

Proposition 2

Consider a parameter region R = [x⊥1 , x	1 ] × · · · × [x⊥n , x	n ] ⊆ P . Fix an arbitrary state s
and let the maximizing argument of the transient probability in s be (cf. Eq. 8):

p∗ = argmaxp∈R πt (s) (44)

and let τ ∗
i = π0Pi

p∗ . The local error introduced during a single discrete time step for state s,
in the multi-affine case, is given by

ei (s) = 1

q

∣∣∣∣flux
(
τ ∗
i−1, s

)
(p∗) − max

p∈VR
flux

(
τ ∗
i−1, s

)
(p)

∣∣∣∣ . (45)

Note that in this analysis the local error is expressed for the discrete distribution τmax
i , from

which the solution πmax
i is derived as a linear combination. We now analyse the global error,

which for i > 1 is given as:

gi (s) = ∣∣τ ∗
i (s) − τmax

i (s)
∣∣ (46)

=
∣∣∣∣τ

∗
i−1(s) +

1

q
flux

(
τ ∗
i−1, s

)
(p∗) − τmax

i−1 (s) − 1

q
max
p∈VR

flux
(
τmax
i−1 , s

)
(p)

∣∣∣∣ (47)

where we now use the definition of gi (s) and employ triangle inequality:

≤ gi−1(s) + 1

q

∣∣∣∣flux
(
τ ∗
i−1, s

)
(p∗) − max

p∈VR
flux

(
τmax
i−1 , s

)
(p)

∣∣∣∣ (48)

≤ gi−1(s) + 1

q

∣∣∣∣flux
(
τ ∗
i−1, s

)
(p∗) − max

p∈VR
flux

(
τ ∗
i−1 + gi−1, s

)
(p)

∣∣∣∣ (49)
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where the overall global error gi is the vector-wise equivalent of gi (s) and we continue

gi (s) ≤ gi−1(s) + 1

q
max
p∈VR

flux(gi−1, s)(p) (50)

+ 1

q

∣∣∣∣flux
(
τ ∗
i−1, s

)
(p∗) − max

p∈VR
flux

(
τ ∗
i−1, s

)
(p)

∣∣∣∣ (51)

≤ gi−1(s) + 1

q
max
p∈VR

flux(gi−1, s)(p) + ei (s) (52)

The form of gi (s) is understood as follows. The error in the current step is less than the error
in the previous step plus the maximal local error plus the worst-case additional flux resulting
from the approximation error in the previous step. Let the width of the parameter space R
be given as wR = max j (x	j − x⊥j ).

We now show how to derive bounds M1, M2 < ∞ such that

ei ≤ M1

q
wR (53)

max
p∈VR

flux(gi , s)(p) ≤ M2 ·max
s∈S gi−1(s) (54)

Observe that, if the two inequalities above hold, we get the same over-approximation as in
Eq. 42, which would prove the proposition true. For the local error we find

ei (s) ≤ 1

q
max
p∈VR

|flux (τ ∗
i−1, s

)
(p∗) − flux

(
τ ∗
i−1, s

)
(p)| (55)

and in this case a Lipschitz constant M1,s exists such that

ei (s) ≤ M1,s

q
wR (56)

Thus, M1 = maxs∈S M1,s is such that Eq. 53 holds. The maximum flux that propagates due
to the approximation error in the previous step is given as

max
p∈VR

flux(gi−1, s)(p). (57)

Now regard flux(gi−1, s)(p) as a function of gi−1, with p, s fixed. Note that the domain of
the function is given by R′ = ×s∈S[0, gi−1(s)], and thus wR′ = maxs∈S gi−1(s). Also,
flux(0, s)(p) = 0 for 0 : S → 0. Thus, another Lipschitz constant M2,p,s exists such that

flux(gi−1, s)(p) = flux(gi−1, s)(p) − flux(0, s)(p) ≤ M2,p,s ·max
s∈S gi−1(s) (58)

By takingM2 = maxp∈R,s∈S M2,p,s , Eq. 54 holds. Summarizing, the global error on τmax
i (s)

is bounded by gi , under the assumption of multi-affine rate functions, as

gi =
{
0 if i = 0

gi−1 ·
(
1+ M2

q

)
+ M1

q wR if i > 0,
(59)

Theorem 1

The probability of satisfying an unnested and time-bounded CSL property given a CTMC
Cp = (S, s0, Rp, L) reduces to the computation of transient-state probabilities over a CTMC
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C′
p for which the transition relation R′

p is easily derived from the original CTMC [4,31].
Recalling Definition 4, the transient-state probability is given by standard uniformisation:

π̂t,p = π0

kε∑

i=0

γi,qtPi
p. (60)

Provided the entries in P are polynomials of finite degree, the expression π̂t (s) is also a
finite-degree polynomial over domain P . We now prove that the approximate satisfaction
function Λ̂φ of any time-boundedfinitely-nested path formula can be expressed as a piecewise
polynomial function with a finite number of subdomains, using the above as the base case
in our induction. Note that only the path operators until (U) and next (X) allow nesting. We
prove the induction step only for the until operator, since the proof for the next operator can
be obtained in a similar way.

Let φ1, φ2 be time-bounded CSL path formulas such that P=?[φ1], P=?[φ2] are piecewise
polynomial with a finite number of subdomains. Consider the nested formula:

P=?

[
P∼1r1 [φ1] UI P∼2r2 [φ2]

]
(61)

for a subdomain I ∈ R≥0, bounds r1, r2 and ∼i ∈ {<,≤,≥,>}.
Observe that, if the satisfaction sets vi = {s ∈ S | s |� P∼i ri [φi ]} for i = 1, 2 are constant

over a subspace R ⊆ P , then the expression in Eq. 61 is given by a polynomial function over
R, cf. Eq. 60. We will demonstrate that Λ̂P∼1r1 [φ1] UI P∼2r2 [φ2] is piecewise polynomial over
finitely many subdomains by constructing a partition of P that is conditioned on the truth
assignment of each state. Given a state s, allow the partition T1(s) ∪ F1(s) = P where

∀p ∈ T1(s) : s |� P∼1r1 [φ1] (62)

∀p ∈ F1(s) : s �|� P∼1r1 [φ1]. (63)

By the induction hypothesisP=?[φ1]−r1 is piecewise polynomial over finitemany subspaces,
so that T1(s), F1(s) are unions of finitely many subspaces of P . Assume a similar partition
T2(s) ∪ F2(s) = P . We now wish to construct a partition

⋃
v1,v2∈2S R(v1, v2) = P that is

conditioned on the truth assignment of all states, so that ∀p ∈ R(v1, v2):

s ∈ v1 ⇔ s |� P∼1r1 [φ1] ∧ s ∈ v2 ⇔ s |� P∼2r2 [φ2] (64)

in which case the expression of Eq. 61 is a polynomial function over R(v1, v2) because the
truth-assignment of the nested formulas is fixed. We provide a constructive definition for
R(v1, v2) by finite intersection of the sets Ti (s) and Fi (s), that is:

R(v1, v2) = [∩s∈v1T1(s)
] ∩ [∩s /∈v1F1(s)

] ∩ [∩s∈v2T2(s)
] ∩ [∩s /∈v2F2(s)

]
. (65)

Then R(v1, v2) is a union of a finite number of subdomains of P .

Proposition 3

We first show termination of the algorithm for an unnested property P≥r [φ]. Define
f = Λ̂φ(·)(s0) − r

and let the zero-set of f be given as Z( f ) = {p ∈ P | f (p) = 0}. In other words, Z( f ) is
the set of parameters p yielding satisfaction probability equal to r , i.e. Λ̂φ(p)(s0) = r . Now
note that, at a generic step of the algorithm, the undecided space is composed by those regions
Ri such that Λ

Ri
min < r and Λ

Ri
max ≥ r . Assuming infinite precision, ΛRi

min and Λ
Ri
max can be
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made arbitrarily tight, i.e. the approximation error made arbitrarily small (cf Proposition 2).
Therefore, any such Ri intersects the zero-set of f and the undecided space covers the
zero-set. Formally, given a decomposition ∪iRi = P , the undecided region is given as:

U = ∪iRi s.t. Ri ∩ Z( f ) �= ∅. (66)

Excluding the trivial case that f is identically zero (Z( f ) = P), we prove termination in two
steps. First, we show that Z( f ) can be covered by finitely many rectangular regions whose
total volume can be made arbitrarily small. Call such cover C . Second, we show that our
algorithm can reach in a finite number of steps a decomposition where U covers C and has
volume no larger than the tolerance ε. Finally, we extend the termination proof to nested CSL
properties.

1. We state now two useful properties of zero-sets: (i) the zero-set of a multi-variate polyno-
mial is negligible, i.e. it has Lebesgue measure (volume) 0 (a proof is available in [12]).
(ii) the zero-set Z( f ′) of any continuous function f ′ is closed. This follows from the
fact that Z( f ′) is the pre-image of f ′ on the closed set {0}. Now note that the parameter
space P is compact (bounded and closed). It follows that Z( f ) ⊂ P is compact too.
Z( f ) meeting condition i) corresponds to saying that for each ε′ > 0 there exists a finite
or countable collection R1, R2, . . . of (possibly overlapping) open rectangles such that

Z( f ) ⊆
⋃

k∈K
Rk and

∑

k∈K
vol(Rk) < ε′ (see e.g. [8], Section 1).

Finally, by compactness every open cover of Z( f ) has finite a subcover, i.e. there exists
a finite index set K ′ ⊆ K such that:

Z( f ) ⊆
⋃

k′∈K ′
Rk′ ⊆

⋃

k∈K
Rk .

It follows that:

vol

( ⋃

k′∈K ′
Rk′

)
≤
∑

k′∈K ′
vol(Rk′) ≤

∑

k∈K
vol(Rk) < ε′.

Thefirst inequality holds since rectangles in the cover can overlap. Thus,C
def= ⋃

k′∈K ′ Rk′
is the required finite rectangular cover of Z( f ) with arbitrarily small volume. Note that
these properties hold also if we replace in C each rectangle Rk′ with its closure.

2. Since any finite union of overlapping rectangles can be rewritten as a finite union of
almost disjoint rectangles (i.e. intersecting only at their extrema) [15], we rewrite the
cover C as

C =
⋃

j∈J
R j , such that ∀i, j ∈ J. int(Ri ) ∩ int(R j ) = ∅

where int(R) is the interior of rectangle R. In particular, this transformation can be done
in a such way that each R j is a box of width δ, for some δ > 0. We can hence derive the
following:

|J | · δn =
∑

j∈J
vol(R j ) = vol(C) < ε′ (67)

where n is the number of dimensions/parameters.
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Without loss of generality assume that the parameter space P is the unit cube, meaning
that the algorithm terminates for vol(U) ≤ ε. Assume also that at each step undecided
parameter regions are decomposed by bisection. Consider a number of refinement steps
i such that each undecided region at the i-th step has width w ∈ [δ, 2δ], yielding i =
 − log2 δ". From Eq. 66 and C being a cover of Z( f ), we derive that:

U ⊆ ∪iRi s.t. Ri ∩ C �= ∅.

Observe that each rectangle in the coverC is intersected by at most 2n undecided regions
of width w. Let N = |J | be the number of boxes in the cover C . Then,

vol(U) ≤ 2n · N · wn ≤ 2n · N · (2δ)n < ε′ · 4n (68)

where the last inequality holds by Eq. 67.
Since the bound ε′ on the volume ofC is arbitrary, termination follows. Indeed, to satisfy
the termination condition (vol(U) ≤ ε), we can chose ε′ = ε · 4−n which implies the
existence of a suitable δ and, in turn, of a finite number of steps i =  − log2 δ".

3. By Theorem 1, we know that the satisfaction function of a nested CSL property is
piecewise polynomial, with a finite number of (bounded) subdomains. We proceed by
borrowing from steps (1) and (2) of this proof. Let D be an index set identifying the
subdomains and fd be the satisfaction function at the d-th subdomain. Then, there exist
δ > 0, arbitrary positive constants {ε′d}d∈D and a set of finite covers {Cd}d∈D such that
for all d ∈ D, vol(Cd) < ε′d and Cd is composed of pairwise-disjoint boxes of width δ.
We can now prove termination by showing that Eq. 68 holds also for the nested case if
we set N =∑

d∈D |Cd | to the total number of boxes and ε′ =∑
d∈D ε′d .

However, there is an important caveat to discuss. In this case, the satisfaction function
might exhibit jump discontinuities characterized by coarse probability bounds that cannot be
“mitigated” by the iterative refinement procedure. It follows that we need to take into account
all the additional undecided regions that contain jump discontinuity points. Fortunately,
since piecewise continuous functions are continuous almost everywhere, the set of such
discontinuities has measure 0, and hence, by a similar argument to the above proof, the total
volume of the undecided regions containing discontinuities can be made arbitrarily small in
a finite number of steps. ��
Proposition 4

We prove the proposition by first showing that the safe bounds can be made arbitrarily small
in a finite number of steps. Second, we derive the number of steps for which the termination
condition is met.

1. Define f = Λ̂φ(·)(s0) and let Dk be the set of regions at the k-th decomposition step.
Fix a region Rk

j ∈ Dk . Let [ f (Rk
j )] be the interval describing the range of f over

Rk
j . Since f is a polynomial function over a bounded domain, then it is also Lipschitz

continuous, implying that there exists a constant mk
j s.t. w([ f (Rk

j )]) ≤ mk
j · w(Rk

j ),
where w denotes the width of the rectangle. The safe approximation we compute is such

that [ f (Rk
j )] ⊂ [ΛRk

j
min,Λ

Rk
j

max] and, in particular,ΛRk
j

max−Λ
Rk

j
min = w([ f (Rk

j )])+e	+e⊥,
where e	 and e⊥ are the global approximation errors for the upper and lower bound of
Λ̂φ .
We now derive a closed-form expression for e	, based on Proposition 2. Let e	 = gkε

,
where kε is the number of uniformisation steps and, by Eq. 42, there exist positive

123

126



Precise parameter synthesis for stochastic biochemical systems 621

constants M1 and M2 such that

gkε
= gkε−1 ·

(
1+ M2

q

)
+ M1

q

(
w
(
Rk

j

))
. (69)

Let c2 = 1 + M2
q and c1 = M1

q . Solving the recurrence at Eq. 69, we get the following
expression:

gkε
= ck,	j · w(Rk

j )) (70)

where ck,	j =
c1 ·

(
ckε

2 − 1
)

c2 − 1
. Following the same derivation for e⊥, we conclude that

there exist positive constants ck,	j and ck,⊥j such that e	 = ck,	j · w(Rk
j ) and e⊥ =

ck,⊥j · w(Rk
j ). Then, for all Rk

j ∈ Dk :

Λ
Rk

j
max − Λ

Rk
j

min ≤
(
m + c	 + c⊥

)
· w

(
Rk

j

)
(71)

where m = max{mk
j | Rk

j ∈ Dk}, c	 = max{ck,	j | Rk
j ∈ Dk} and c⊥ = max{ck,⊥j |

Rk
j ∈ Dk}. Since regions are decomposed by sectioning at the mid-point of each para-

meter interval, the width of a region is halved at every step, so the equation is expressed
as:

Λ
Rk

j
max − Λ

Rk
j

min ≤
(
m + c	 + c⊥

)
· w(P)

2k
. (72)

Then, for an arbitrary precision ε′, there exists a finite number of decomposition steps k

such that Λ
Rk

j
max − Λ

Rk
j

min ≤ ε′ for all Rk
j ∈ Dk .

2. Now we show how to determine ε′ s.t. the termination condition Λ	
φ − Λ⊥

φ ≤ ε is met.

LetRk	 be one of the regions with the highest upper probability bound, thusΛ	
φ = Λ

Rk	
max.

Note that the highest lower bound M is at least Λ
Rk	
min , and thus every region Rk

j in T is
such that

Λ
Rk

j
max ≥ M ≥ Λ

Rk	
min ≥ Λ

Rk	
max − ε′ = Λ	

φ − ε′.

Then, the smallest lower bound in the true region, Λ⊥
φ , is at least M − ε′ and so, Λ⊥

φ ≥
Λ	

φ − 2 · ε′. This implies that termination is achieved with ε′ = ε
2 and, according to

Eq. 72, in a number of steps equal to:

k =
⌈
log2

(
2 · (m + c	 + c⊥) · w(P)

ε

)⌉
.
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Abstract—We present a novel method allowing one to approx-
imate complex arithmetic circuits with formal guarantees on the
approximation error. The method integrates in a unique way
formal techniques for approximate equivalence checking into
a search-based circuit optimisation algorithm. The key idea of
our approach is to employ a novel search strategy that drives
the search towards promptly verifiable approximate circuits. The
method was implemented within the ABC tool and extensively
evaluated on functional approximation of multipliers (with up
to 32-bit operands) and adders (with up to 128-bit operands).
Within a few hours, we constructed a high-quality Pareto set
of 32-bit multipliers providing trade-offs between the circuit
error and size. This is for the first time when such complex
approximate circuits with formal error guarantees have been
derived, which demonstrates an outstanding performance and
scalability of our approach compared with existing methods that
have either been applied to the approximation of multipliers
limited to 8-bit operands or statistical testing has been used
only. Our approach thus significantly improves capabilities of
the existing methods and paves a way towards an automated
design process of provably-correct circuit approximations.

Index Terms—approximate computing, logical synthesis, ge-
netic programming, formal methods

I. INTRODUCTION

As many important applications are inherently error re-
silient, precision of the involved computations can be traded
for improved energy efficiency, performance, and/or chip area.
Various approaches exploiting this fact have been developed in
recent years and presented under the umbrella of the so-called
approximate computing [1]. These approximations can be
conducted at different system levels with circuit approximation
being one of the most popular.

Circuit approximation techniques can be classified into
two main groups: (1) Frequency/voltage over-scaling where
timing-induced errors can appear as the circuit is operated
on a higher frequency or lower voltage than the nominal
value. (2) Functional approximation where the original circuit
is replaced by a less complex one which exhibits some
errors but improves non-functional circuit parameters such
as power consumption or chip area. We only deal with the
latter approach in this paper. Circuit approximation can be
formulated as a multi-objective optimization problem where
the error and non-functional circuit parameters are conflicting
design objectives. Since the resulting approximate circuits are
common circuits, they can be implemented using the standard
circuit design flow.

We focus on approximate arithmetic circuits (AACs) be-
cause they are frequently used in key applications relevant
for approximate computing. Prominent examples are signal,

image, and video processing circuits (such as filters, discrete
transforms, and motion estimation blocks [2]), or the multiply-
accumulate-transform structures of artificial neurons in neural
networks (consuming about 50% of the total power in neural
network accelerators [3]).

Various error metrics, such as the worst-case relative error
or the mean absolute error, for evaluating approximate circuits
have been proposed (cf. Sect. III). A crucial question is then
how the error of a given approximation is derived. For that,
as discussed in more details in the related work section,
methods based on simulating the circuit on given inputs
are often used. However, such approaches suffer from low
scalability (exhaustive simulation), lack of strong guarantees
(when simulating the circuit for a random subset of the
possible inputs only), and/or specialization to certain circuits
only (statistical models). Alternatively, as in our case, the error
can be derived using formal verification. The main advantages
of this approach lie in that (1) formal error bounds can be given
as a part of the input and (2) the approach is more scalable
than exhaustive circuit simulation.

While formal methods of (exact) equivalence checking have
been studied for decades, only a few formal approximate
checking methods have been used in circuit approximation
tools. Depending on the particular error metric, the error
calculation is transformed to a decision problem and solved by
means of SAT solving or binary decision diagrams (BDDs).
Despite of enormous progress in the area of SAT solvers
and BDD libraries, approximation of arithmetic circuits with
formal error guarantees was so far limited to circuits no more
complex than 16-bit adders and 8-bit multipliers [4], [5], [6].

In this paper, we present a new method for designing
complex approximate arithmetic circuits with formal bounds
on the approximation error. The method uniquely integrates
new formal techniques for approximate equivalence checking
into search-based circuit optimization by means of Cartesian
genetic programming (CGP). The key idea is to employ
a novel search strategy driving the search towards promptly
verifiable approximate circuits. We have implemented the
strategy within the ABC tool and extended the underlying
equivalence checking algorithm to support queries on the
worst-case error. This extension builds on a new effective
construction of miters, i.e. auxiliary circuits interconnecting
the original correct circuit and its approximation such that
their approximate equivalence can be checked.

We decided to optimize for the worst-case error since its
exact value can be important in time-critical and dependable
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systems (e.g., inverse kinematics in robot control [7]) or when
complex approximate arithmetic circuits are constructed using
less complex approximate building (circuit) blocks. The final
error then depends on how the worst case error is propagated
from low-level blocks to the result. Moreover, even in not so
critical applications such as image processing, low average
error but excessive worst-case error can produce unacceptable
results [8]. Finally, our results suggest that there is also a high
correlation between the worst-case error and the mean absolute
error (Sect. V).

While our primary motivation is to automatically approxi-
mate complex multipliers, our method is directly applicable
to other arithmetic circuits too. The method is capable of
providing Pareto fronts showing high-quality compromises
between the circuit error and non-functional circuit parameters.
Results are presented for approximate multipliers (with up to
32-bit operands) and adders (with up to 128-bit operands)
and compared with several approximate circuits available
in literature. This is for the first time when such complex
approximate arithmetic circuits with formally guaranteed error
bounds have been presented.

Contributions: We propose a new miter construction al-
lowing for efficient approximate equivalence checking tailored
to search-based approximation of complex arithmetic circuits.
We design a novel search strategy for synthesis of approximate
circuits with formal error guarantees that integrates Cartesian
genetic programming and the proposed approximate equiva-
lence checking. Using a resource-limited verifier, the strategy
drives the search towards promptly verifiable candidates and
thus provides scalable approximation of complex circuits. We
develop an implementation of the miter construction and the
search strategy within the ABC tool and perform extensive
experimental evaluation of our approach on large circuits
including approximation of 128-bit adders and 32-bit multi-
pliers. Within several hours, we are able to construct high-
quality Pareto sets of 128-bit adders and 32-bit multipliers
that represent the trade-offs between the circuit error and non-
functional circuit parameters.

II. RELATED WORK

This section presents a brief survey of the most important
approaches developed for functional approximation of mul-
tipliers and adders. We restrict our attention to these two
arithmetic operations because they represent the key compo-
nents of more complex circuits and thus their approximation
has been intensively studied. Moreover, multipliers—due to
their complex structure—represent one of the most difficult
arithmetic circuits from the perspective of both approximation
as well as verification.

A. Approximation Methods

The approximation process usually starts with a fully func-
tional circuit and a target error. Circuit-dependent approx-
imation methods then take the structure of the arithmetic
circuit at the input and (manually or algorithmically) introduce
modifications to carefully preselected parts of the circuit. In

the case of adders, it is possible to approximate elementary
1-bit adders, modify the carry propagation chain, or introduce
segments of adders and generate the carry using different
methods [9]. In the case of multipliers, generation of partial
products, the summation tree, counters, or compressors are
approximated [10]. In addition to that, the simple bit-width
reduction belongs to this category of methods too.

More complex approximate circuits can be constructed by
a smart composition of approximate elementary blocks. For
example, a 2-bit multiplier was approximated in [11] and then
used as a building block of more complex multipliers. This
strategy can be improved, e.g., by configurable lossy compres-
sion of the partial product rows based on their progressive bit
significance [12].

The concept of quality configurable circuits uses elementary
circuits composed in such a way that their error can be
modified online using several configuration bits in order to
dynamically reduce the power consumption. The configuration
bits can (dis)connect some preselected parts of the circuit.
As the source codes of quality configurable adders [13] and
multipliers [2] are available online, we compare them with
approximate circuits obtained using our approach.

General-purpose methods, such as SALSA [14] or
SASIMI [15], aim at automatically approximating circuits in-
dependently of their structure. These methods operate with dif-
ferent circuit representations and employ various heuristics to
identify circuit parts suitable for approximation. Evolutionary
algorithms have been recently applied to accomplish desired
approximations in a holistic scenario [16], [17]. A compre-
hensive library of 8-bit adders and multipliers was built using
multi-objective CGP [18].

B. Simulation-Based Error Computation

Conceptually, the simplest approach to obtain precise error
bounds of an AAC is to simulate its function on all possible in-
puts. However, even on state-of-the-art computer architectures,
this approach has principal scalability limitations causing that
it cannot be used to synthesize approximate circuits with more
than 12-bit operands [19].

Due to that, the error is commonly estimated using a subset
of input vectors only, e.g. 108 inputs were used to evaluate
16-bit adders in [9]. Of course, the main drawback of this
approach is that no formal guarantees on the error bound can
be provided. Alternatively, the circuit error can be calculated
using a statistical model constructed for elementary circuit
components and their compositions [20], [21]. However, re-
liable and general statistical models can only be constructed
in some specific situations.

C. Formal Error Computation

Recently, various applications of formal methods have been
intensively studied in order to improve the scalability of
the design process of correct as well as approximate cir-
cuits. For designing correct circuits (where one insists on
preserving the original functionality but tries to optimize
non-functional parameters), one can consider combinational
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equivalence checking based on modern SAT solvers, efficient
BDD representations of circuits, or algebraic computation
techniques combining polynomial representation of circuits
with logic reductions [22], [23]. For designing AACs, a more
challenging notion of relaxed or approximate equivalence
checking is needed. This notion requires to quantify the
approximation error or, alternatively, prove whether the error
is below a certain threshold.

To quantify the approximation error using formal verifi-
cation techniques, a use of auxiliary circuits, called miters,
combining the original circuit and the approximate circuit was
proposed in [24]. In order to check whether a predefined worst-
case error is violated by the candidate approximate circuit,
a pseudo-Boolean SAT solver combining a SAT solver with
integer linear programming was then employed.

The number of inputs for which an approximate circuit
returns an incorrect result can be quantified using SAT counting
methods (so-called #SAT solvers). However, despite the recent
progress in the area of #SAT solvers (see, e.g., [25]), our pre-
liminary experiments indicate that #SAT problems encoding
the error quantification are currently beyond the capabilities
of state-of-the-art #SAT tools even for 12-bit multipliers.

An efficient BDD-based approach allowing one to guarantee
the worst-case and the average-case arithmetic error of approx-
imate adders up to 16-bit operands was proposed in [5]. An
alternative approach that uses BDDs representing characteris-
tic functions was employed in [4]. Compared to our approach,
this approximation method lags behind in scalability, which
is demonstrated by the fact that it has been applied to the
approximation of multipliers limited to 8-bit operands and
adders limited to 16-bit operands only.

III. ERROR METRICS FOR AACS

Various metrics describing the error of AACs have been
proposed and shown suitable for different application domains.
The most popular error metrics relevant especially to arith-
metic circuits are the worst-case absolute error (WCAE) and
the mean absolute error (MAE). For a correct circuit G, fur-
ther denoted as the golden circuit, which computes a function
fG, and its approximation C, computing a function fC , where
fG, fC : {0, 1}n → {0, 1}m, these metrics, relativized by the
range of the output, are defined as follows:

WCAE(G, C) =
maxx∈{0,1}n |int(fG(x)) − int(fC(x))|

2m
,

MAE(G, C) =

∑
x∈{0,1}n |int(fG(x)) − int(fC(x))|

2m
,

where int(x) denotes the integer representation of a bit vec-
tor x and |i| denotes the absolute value of an integer i.

A. Checking Worst Case Errors

To compute whether the WCAE is violated, we can adopt
the concept of approximation miter introduced in [24]. The
general configuration of the approximation miter is shown
in Fig. 1. The miter consists of the inspected approximate

Fig. 1. Approximation miter for the worst-case error analysis, typically
e(x) = |fG(x)− fC(x)|.

circuit C, the golden circuit G which serves as the specifica-
tion, a subtractor, and a comparator which checks whether
the error introduced by the approximation is greater than
a given threshold T . The output of the miter is a single bit
which evaluates to 1 if and only if the error is violated, i.e.
WCAE(G, C) > T .

For a given input vector x, the subtractor calculates the
difference between the output of the golden circuit, i.e. fG(x),
and the output of the approximate circuit, i.e. fC(x). Let
d = int(fG(x))− int(fC(x)) be the error magnitude. A direct
computation of the WCAE according to its definition leads to
evaluating the expression e = |d|, i.e. the absolute difference
of the error magnitude. The absolute difference is typically
calculated by means of a common two’s complement subtrac-
tor (implemented using m full-adders with the first carry-in
set to 1 and inverting each bit of the subtrahend) followed by
a circuit determining the absolute value (computed using m
half-adders and m XOR gates).

B. The Proposed Miter Construction

Miters used in the literature compute the absolute value of
the difference between fG and fC . The computation is usually
performed in two steps. Firstly, a subtractor with a signed
output evaluates fG − fC . Secondly, the absolute value has
to be computed. The circuit performing such a task contains
XOR chains which are a known cause of poor performance
of the state-of-the-art SAT solvers [26]. The main reasons are
that unlike AND/OR gates, the Boolean constraint propagation
over XOR gates is limited, and the XOR operations cause the
CNF form of the formulae to grow rapidly.

In order to avoid long XOR chains at the output of the miter
which slowdown the decision process, we propose to employ
a different approach. The key idea is to compare the result
of the subtractor with both the positive and negative value
of the threshold and thus avoid the expensive evaluation of
the absolute value. For a given threshold T on the worst-case
absolute error WCAE, it holds that e > T is satisfied iff d
is positive and d > T , or d is negative and −d > T . As
we typically deal with numbers in the two’s complement, the
second condition is equal to ¬d > (T −1). Hence, we can use
the two’s complement representation and examine the positive
and negative values separately to avoid usage of the absolute
difference of the output.

Since the threshold T is fixed during the design process, we
can easily avoid the standard comparator consisting of a long
chain of XOR gates. This helps us to further simplify the
miter and improve the performance of the decision procedure.
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Fig. 2. The proposed approximation miter for the worst-case error analysis:
an example for T = 5, N = 6.

In particular, we replace the sequential comparison of the
particular bits of the operands implemented as

A > B ≡
∨

0≤i≤N−1

⎛
⎝Ai ∧ ¬Bi

∧

i<j≤N−1

Aj ⊕ Bj

⎞
⎠ ,

for B being a constant bit vector representing the threshold
T , by a simpler procedure implemented as

A > B ≡
∨

0≤i≤N−1 ∧ Bi=0

⎛
⎝Ai

∧

i<j≤N−1 ∧ Bj=1

Aj

⎞
⎠ .

As is evident, the resulting formula does not contain any
XOR gate. Note that d is represented as an m+1 bit number in
the two’s complement—hence, A corresponds to the N least
significant bits of d where N = m. The (m + 1)-th bit is
reserved for the sign and employed for determining whether d
encodes a positive or negative number. The miter for T = 5,
fC and fG with 6-bit outputs is illustrated in Fig. 2.

The proposed construction, compared to the construction us-
ing the absolute value and full comparators, allows us to obtain
smaller and structurally less complex miters. Such miters can
be efficiently used in the SAT-based CEC procedures, resulting
in a significant acceleration of the candidate circuit evaluation.
Our experiments show that, in the case of arithmetic circuits
having 64 output bits (e.g. 32-bit multipliers), the proposed
construction improves the size of the miters (in terms of the
number of And-Inverter Graph (AIG) nodes representing the
circuit) by about 25–35% depending on the value of T , where
T ranged from 0.0001% to 0.5% of the maximal value at the
output (i.e. 264) in our experiment.

IV. SEARCH-BASED DESIGN OF AACS

In this section, we present our novel approach to the search-
based design of AACs combining principles of CGP with
a verifiability-driven search strategy that employs a fitness
function based on the approximate equivalence checking.

A. Cartesian Genetic Programming

CGP is a form of genetic programming where the candidate
solutions are represented as a string of integers of a fixed
length that is mapped to a directed acyclic graph [27]. This
integer representation is called a chromosome. CGP can effi-
ciently represent common computational structures including

Fig. 3. Full adder represented by CGP. Chromosome: (0, 2, 2) (0, 1, 0)
(1, 3, 2) (3, 2, 0) (5, 6, 3) (4, 6, 1) (5, 8), node functions: AND (0), OR (1),
XOR (2), NOT (3).

mathematical equations, computer programs, neural networks,
and digital circuits. The candidate circuits are typically repre-
sented in a two-dimensional array of programmable two-input
nodes. Every node is encoded by three integers in the chromo-
some representation where the first two numbers denote the
node’s inputs, the third represents the node’s function (see the
illustration in Fig. 3).

In circuit approximation, the evolution loop starts with
a parent representing a correctly working circuit. New can-
didate circuits are obtained from the parent using a mutation
operator which performs random changes in the candidate’s
chromosome in order to obtain a new, possibly better candidate
solution. In the next step, the algorithm evaluates the quality of
each solution using a specified metric, called the fitness func-
tion. This function assesses important correctness and perfor-
mance aspects of circuits. The candidate with the best fitness
value is chosen as the parent of the next generation, the other
solutions are removed and the evolution continues with gener-
ating new candidate circuits. The whole loop is repeated until
a termination criterion is met. For details of CGP, see [27].

The most critical and time consuming part of the CGP loop
is the fitness evaluation, which principally limits the scalability
of the search-based design. To alleviate this problem, we
propose below a novel search strategy.

B. Verifiability-Driven Search Strategy

The verifiability-driven search strategy can be seen as a gen-
eral concept improving the scalability of evolutionary design
methods. We demonstrate its key idea on the below problem.

Problem: For a given golden circuit G and a threshold T ,
our goal is to find a circuit C∗ with the minimal size such
that the error WCAE(G, C∗) ≤ T .

This problem formulation allows us to define the fitness
function f in the following way:

f(C) =

{
size(C) if WCAE(G, C) ≤ T ,

∞ otherwise
where size(C) denotes the size of the circuit C. Since the
procedure deciding whether WCAE(G, C) ≤ T (further
denoted as SAT solver) represents the most time consuming
part of the design loop, we avoid calling the procedure as
much as possible. Therefore, we only call SAT solver for
circuits C satisfying size(C) < size(B) where B is the best
solution with an acceptable error (i.e., WCAE(G, B) ≤ T )
that we have found so far. Our experiments show that, during
the evolution process, a significant set of candidate designs C
does not satisfy the condition size(C) < size(B) and thus
their fitness can be easily assessed without SAT solver.
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Fig. 4. The main steps of the proposed verifiability-driven search scheme.

Our experiments further indicate that a long sequence of
candidate circuits Bi improving the size and having an ac-
ceptable error has to be typically explored to obtain a solution
that is sufficiently close to C∗. Therefore, both the SAT and
the UNSAT queries to SAT solver have to be short. To this
end, we use an additional criterion for the evaluation of the
circuit C, namely, the ability of SAT solver to prove that
WCAE(G, C) ≤ T with a given limit L on the resources
available to the underlying decision procedure. If the proce-
dure fails to prove WCAE(G, C) ≤ T within the limit L, we
set f(C) = ∞ and generate a new candidate. The design loop
using the verifiability-driven search is illustrated in Fig. 4.

The inputs of the design process include: (1) the golden
model G, (2) the threshold on the worst case absolute error T ,
(3) the initial circuit B having an acceptable error (it can
be either the golden model or a suitable approximation we
want to start with), and (4) the time limit on the overall
design process. The loop exploits the CGP principles; namely,
it uses mutations to generate new candidate circuits C from
the candidate circuit B representing the best approximation
of the circuit C∗ that we have found so far. The circuit C
is then evaluated using the fitness function f as described
above. If the candidate C belongs to the improving sequence
(i.e., size(C) < size(B) and WCAE(G, C) ≤ T ), we replace
B by C. The design loop terminates if the time limit is reached
and B is returned as the output of the design process.

In our verifiability-driven search scheme, we use the re-
source limit L (as a parameter of the design loop) to drive the
search towards candidates that can be promptly evaluated. We
intentionally throw away improving candidates Bi that require
greater resources and thus longer, but still feasible, verification
time. The reason for this is the fact that by mutating these
candidates we would most likely obtain solutions that would
require the same or even longer verification times and thus
finding the whole improving sequence would become time-
infeasible. Instead, we require that every improving candidate
Bi has to be verifiable using the resource limit L and thus
drive the search towards candidates Bi that, for a given time
limit on the overall design process, lead to longer improving
sequences. Our experiments indicate that these sequences lead
to candidate circuits that are closer to C∗. Since we are able
to evaluate a much larger set of candidate circuits, we have
a better chance to find a long improving sequence within the
given time provided that it exists for the limit L.

The obvious disadvantage is that we possibly cut improving
sequences that would lead to good solutions within the given
design time. It can also happen that, for the limit L, no
improving sequence exists, while it exists for a slightly greater
resource limit. Despite of this limitation, our results clearly
show that the proposed verifiability-driven search strategy
allows us to utilise the given design time in a more efficient
way compared to the standard evolution schemes.

C. Integration to the ABC Tool

The proposed approach performs the approximation at the
level of the CGP problem representation (i.e., on acyclic
oriented graphs with arbitrary two-input logic functions in the
nodes). The green part of Fig. 4 shows the position of ABC in
our methodology. ABC is primarily used to construct the miter
and decide whether the maximal arithmetic error of the candi-
date circuit is not above T . The proposed miter construction
allows us to reduce the problem of approximate equivalence
checking to the Boolean satisfiability (SAT) problem. In order
to evaluate a candidate circuit, (1) a candidate chromosome
is used to construct a corresponding AIG, (2) another AIG,
representing the golden circuit, is constructed (just once at the
beginning of the evolution), and (3) the miter is built. The
state-of-the-art techniques used for CEC in the ABC tool—
the iprove engine—are then applied to decide the equiv-
alence. An important feature of the mix of techniques used
in iprove is that one can control the time needed for one
query, which is the key feature we exploit in our verifiability-
driven search strategy. In particular, the satisfiability checking
can be controlled by fine-tuning various resource limits for the
different techniques used, such as the number of simulations
performed to prove non-equivalence, the number of conflicts in
structural hashing, or the number of logic-reduction steps. We
so far used solely a limit on the maximal number of conflicts
in which a single variable (representing an AIG node) can
be involved during the backtracking process. Our experiments
show that this resource limit allows us to effectively control
the time needed for particular iprove queries and thus to
drive the search towards promptly verifiable circuits.

A similar approach has recently been used in circuit ap-
proximation exploiting the approximate-aware rewriting of an
AIG representation of circuits [4]. Principally, our approach
differs in the candidate circuit representation (the gate-level
CGP encoding), its evaluation, and in using the verifiability-
driven evolution instead of a simple greedy algorithm for AIG
pruning. The gate-level representation is an important feature
of our approach which allows us to efficiently capture XOR-
intensive structures existing in arithmetic circuits.

V. RESULTS

To evaluate the proposed method, we primarily focused on
complex approximate multipliers as they are the most chal-
lenging benchmark problems. Since only 8-bit multipliers with
guaranteed error bounds were presented in the literature so
far, there are no solutions available for a direct comparison in
the case of 16-bit and more complex approximate multipliers.
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Hence, (1) we compare the 16-bit approximate multipliers
that we generated using our method with 16-bit multipliers
(available in the literature) whose error was determined using
simulation, and then (2) we present Pareto fronts (the error and
key circuit parameters) for 20-bit, 24-bit, 28-bit, and 32-bit
approximate multipliers and up to 128-bit approximate adders
to demonstrate the scalability of the proposed method.

A. Experimental Setup

We implemented our approach, including the miter con-
struction and verifiability-driven evolution, within the ABC
tool [28]. Array multipliers and ripple carry adders composed
of 2-input gates were employed as the initial (golden) circuits
for CGP. The number of nodes in the CGP’s grid is equal to
the number of gates of the initial circuit. The set of functions
consists of the common two-input logic gates, the buffer, and
the inverter. We used 2 circuits in the population and 5 integers
were modified by the mutation operator.

For each target WCAE, we performed 30 independent runs
of CGP to obtain statistically significant results. Each CGP
was executed for 2 hours on an Intel Xeon X5670 2.4 GHz
processor using a single core. The individual CGP runs are
independent and thus we executed them in parallel using
a cluster of these processors to accelerate the design process.

For purposes of the fitness evaluation, the circuit size is
estimated as the sum of the relative area of the two-input
gates used, where the sizes of each gate are taken from the
technology library. At the end of the evolution, the 5 most
fitting circuits for each WCAE were synthetized using the
Synopsys Design Compiler (high-effort compiling for a better
quality of the results) for a 45 nm technology library in
order to obtain non-functional parameters like the area and
power-delay product (PDP). The accurate implementations
were created by means of Verilog ∗ and + operators and
synthesized in the same way as approximate circuits.

B. 16-bit Approximate Multipliers

An evaluation of the verifiability-driven search: In the
first experiment, we approximated the golden 16-bit multiplier
for 9 target values of WCAE from the set {0.1, 0.2, 0.5, 1, 2,
5, 10, 15 and 20%} and evaluated the proposed method with
three different settings of the resource limit L controlling the
maximal number of conflicts for one AIG node: (1) no limits,
i.e., L=∞, (2) L=160K, and (3) L=20K. The limits L=160K
and L=20K roughly correspond to the time limit of 120 sec.
and 3 sec., respectively, on 16-bit multipliers.

Fig. 5 shows that, for WCAE ≥ 2%, the resource limit L has
a marginal impact on the PDP and area. However, with a de-
creasing target WCAE, the limit L=20K provides significantly
better results. For example, if WCAE = 0.1% and L=20K,
22,050 SAT calls were produced and 11% of them were
terminated on average because of the termination condition.
In the case of L=160K, 856 SAT calls were produced only
(15% terminated). The average number of SAT calls (across
all target errors) that were forced to terminate is 6.28%
(for L=160K) and 8.84% (for L=20K). If L=∞, 170 SAT
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Fig. 5. PDP and area of approximate 16-bit multipliers for 9 target errors
obtained using 3 different resource limits L on the SAT solver. The red line
shows the PDP and area of the accurate multiplier.

calls were evaluated for WCAE = 0.1% only. Despite the
fact that some potentially good candidate circuits are quickly
rejected, the aggressive resource limits allowed us to generate
and evaluate significantly more candidate circuits and thus to
substantially improve the quality of results. Box plots in Fig. 5
also show that independent runs with L=20K lead to circuits
having very similar parameters (low inter-quartile distances)
and thus this limit is be used in the following experiments.

Note that the parameters of some approximate multipliers
shown in Fig. 5 are worse than for the accurate multiplier.
The reason is that the relative area is the only non-functional
circuit parameter optimized by CGP while the PDP and area
are computed at the end of the optimization using the Synopsys
Design Compiler. We have never observed this discrepancy for
the limit L=20K.

A comparison with other multipliers: Next, we generated
16-bit approximate multipliers using the setup described in
the previous section and compared them with approximate
multipliers available in the literature. In order to perform
a fair comparison (the error of the published multipliers
was originally estimated using simulation), we modified our
method and applied a binary search strategy to determine the
WCAE exactly. In addition to WCAE, we also provide MAE
obtained using simulation (109 vectors).

We considered the following 16-bit approximate multipliers:
M1 Approximate configurable multipliers from the lpACLib

library [13], where the multiplication is recursively sim-
plified using two different variants (denoted as Lit and
V1) of an elementary block representing a 2-bit multiplier.
The partial results are summed using accurate adders. We
implemented 32 different architectures consisting of four
8-bit multipliers where each of these multipliers is config-
urable as exact/approximate (24 configurations) and can
be built using either Lit (M1Lit) or V1 (M1V1) blocks.
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Fig. 6. Parameters of 16-bit approximate multipliers considered in our study.

M2 The approximate multiplier employing the bit-significan-
ce-driven logic compression as introduced in [12].

M3 Approximate multipliers obtained from exact multipliers
using the bit-width reduction. The reduction replaces 16-
bit multipliers by accurate x-bit multipliers (for x < 16).
It ignores the LSBs of the operands and leaves the LSBs
of the result zero.

M4 The approximate multiplier composed of approximate
2-bit multipliers as proposed in [11].

M5 Approximate multipliers composed of 8-bit multipliers
that are available in the EvoApproxLib library [18]. The
construction principle is taken from [11].

For all considered multipliers, the value of PDP is plotted
against WCAE and MAE in Fig. 6 (only Pareto fronts are
visualized). While the bit-width reduction provides the same
quality of results as our method for large target errors (up to
20% WCAE), it is significantly outperformed by our approach
for small target errors. Despite that the existing approximate
multipliers typically exhibit good tradeoffs between the error
and PDP in specific applications (as demonstrated in the
relevant literature), Fig. 6 clearly shows that these multipliers
are considerably Pareto-dominated by the multipliers obtained
using our approach. These results were, in fact, expected as
the proposed method is based on a global holistic optimiza-
tion approach while the other approximate multipliers were
composed of smaller ones and the composition procedure
always introduces some overhead. Finally, it is an interesting
observation that MAE follows the trend of WCAE. It seems
that WCAE can be used as a good indicator of MAE.
C. Complex Multipliers

The aim of our further experiments is to show that the pro-
posed method is scalable and can approximate complex multi-
pliers. We present the results of the approximation process on

12-bit, 16-bit, 20-bit, 24-bit, 28-bit, and 32-bit multipliers. The
target WCAEs were adapted accordingly to respect the range
of values in the different considered bit widths. We used the
same setup as in the previous sections but increased the time of
optimization to 4 hours for the 24-bit multiplier and 6 hours for
larger multipliers. The reason is that the search space becomes
much bigger. While the exact 12-bit multiplier contains 850
two-input gates, the 32-bit exact multiplier requires over 6,300
gates. We obtained (as the result of evolution) over 1190
unique multipliers. Because of this huge number and for
the sake of clarity, Fig. 7 shows parameters of approximate
multipliers occupying the Pareto fronts only.

In the experiments, we observed that, in the case of 12-
bit multipliers, 2.4% of SAT calls were terminated on av-
erage due to the resource limit L=20K only. However, this
number increased to 36.9% in the case of approximate 32-bit
multipliers. For all bit widths, the MAE is around 30% of
the worst-case error, which again demonstrates that WCAE is
a good indicator of MAE. Fig. 7 also shows that the obtained
approximations cover the whole range (up to 100%) of the
Area axis. However, this is not the case for PDP. The reason
is that we optimize the relative area and PDP is computed
after the synthesis.

Since Pareto fronts shown in Fig. 7 follow the trend of the
highly competitive fronts for the 16-bit multipliers presented
before, we believe that the tradeoffs between the circuit error
and size obtained for more complex multipliers are also very
good and thus the corresponding circuits represent the cutting
edge of approximate multipliers and can serve as a new
benchmark set for approximate computing.

D. Approximate Adders

In order to demonstrate that the proposed method is appli-
cable for other complex arithmetic circuits, we constructed
Pareto fronts for approximate adders with 20-bit to 128-
bit operands. Approximation of adders is much easier than
approximation of multipliers since adders are structurally less
complicated and the number of outputs is lower. For example,
the exact 20-bit adder requires 140 two-input gates and the
128-bit adder consists of 1,000 gates.

The approximate adders were constructed using the same
setup as in the previous section. A single CGP run took 2 hours
(for all bit widths). Fig. 8 shows parameters of approximate
adders occupying the corresponding Pareto fronts. We report
16 to 18 non-dominated implementations of 24-bit, 28-bit, and
32-bit adders in terms of PDP and WCAE. For 64-bit and 128-
bit adders, 12 tradeoffs are reported only because we have
restricted the number of target error levels. Similarly to the
evolved multipliers, the proposed approximate adders are also
good candidates for including into a new benchmark suite.

VI. CONCLUSION

Automated design of approximate circuits with formal error
guarantees is a landmark of provably-correct construction of
energy-efficient systems. We present a solution to this prob-
lem, introducing a novel verifiability-driven search strategy
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that uniquely integrates approximate equivalence checking into
a search-based circuit optimisation algorithm. Able to con-
struct high-quality Pareto sets of 32-bit multipliers and 128-bit
adders, our method shows excellent scalability and paves the
way for design automation of complex approximate circuits.

In the future, we will thoroughly explore relationships be-
tween resource limits on the underlying SAT solvers and the
structure of the resulting circuits. This will allow us to further
improve the performance of our method and thus to go beyond
the approximation of 32-bit multipliers. We will also integrate
the constructed circuits into real-world energy-aware systems
to demonstrate practical impacts of our work.
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Abstract. We study the problem of optimal syntax-guided synthesis of
stochastic Chemical Reaction Networks (CRNs) that plays a fundamen-
tal role in design automation of molecular devices and in the construc-
tion of predictive biochemical models. We propose a sketching language
for CRNs that concisely captures syntactic constraints on the network
topology and allows its under-specification. Given a sketch, a correctness
specification, and a cost function defined over the CRN syntax, our goal
is to find a CRN that simultaneously meets the constraints, satisfies the
specification and minimizes the cost function. To ensure computational
feasibility of the synthesis process, we employ the Linear Noise Approx-
imation allowing us to encode the synthesis problem as a satisfiability
modulo theories problem over a set of parametric Ordinary Differen-
tial Equations (ODEs). We design and implement a novel algorithm for
the optimal synthesis of CRNs that employs almost complete refutation
procedure for SMT over reals and ODEs, and exploits a meta-sketching
abstraction controlling the search strategy. Through relevant case studies
we demonstrate that our approach significantly improves the capability
of existing methods for synthesis of biochemical systems and paves the
way towards their automated and provably-correct design.

1 Introduction

Chemical Reaction Networks (CRNs) are a versatile language widely used for
modelling and analysis of biochemical systems. The power of CRNs derives from
the fact that they provide a compact formalism equivalent to Petri nets [42],
Vector Addition Systems (VAS) [36] and distributed population protocols [4].
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17538S (M. Češka), Royal Society professorship, and EPSRC Programme on Mobile
Autonomy (EP/M019918/1).

c© Springer International Publishing AG 2017
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CRNs also serve as a high-level programming language for molecular
devices [14,49] in systems and synthetic biology. Motivated by numerous poten-
tial applications ranging from smart therapeutics to biosensors, the construction
of CRNs that exhibit prescribed dynamics is a major goal of synthetic biol-
ogy [17,21,52]. Formal verification methods are now commonly embodied in the
design process of biological systems [32,34,40] in order to reason about their
correctness and performance. However, there is still a costly gap between the
design and verification process, exacerbated in cases where stochasticity must
be considered, which is typically the case for molecular computation. Indeed,
automated synthesis of stochastic CRNs is generally limited to the estimation or
synthesis of rate parameters [20,53], which neglect the network structure, and
suffers from scalability issues [23].

Current research efforts in design automation aim to eliminate this gap and
address the problem of program synthesis – automatic construction of programs
from high-level specifications. The field of syntax-guided program synthesis [1]
has made tremendous progress in recent years, based on the idea of supplement-
ing the specification with a syntactic template that describes a high-level struc-
ture of the program and constrains the space of allowed programs. Applications
range from bit-streaming programming [47] and concurrent data structures [46],
to computational biology [37]. Often not only the correctness of synthesized
programs is important, but also their optimality with respect to a given cost [8].

In this paper we consider the problem of optimal syntax-guided synthesis of
CRNs. We work in the setting of program sketching [47], where the template is
a partial program with holes (incomplete information) that are automatically
resolved using a constraint solver. We define a sketching language for CRNs
that allows designers to not only capture the high-level topology of the network
and known dependencies among particular species and reactions, but also to
compactly describe parts of the CRN where only limited knowledge is available
or left unspecified (partially specified) in order to examine alternative topologies.
A CRN sketch is therefore a parametric CRN, where the parameters can be
unknown species, (real-valued) rates or (integer) stoichiometric constants. Our
sketching language is well-suited for biological systems, where partial knowledge
and uncertainties due to noisy or imprecise measurements are very common. We
associate to a sketch a cost function that captures the structural complexity of
the CRNs and reflects the cost of physically implementing it using DNA [14].

Traditionally, the dynamical behaviour of a CRN is represented as a deter-
ministic time evolution of average species concentrations, described by a set of
Ordinary Differential Equations (ODEs), or as a discrete-state stochastic process
solved through the Chemical Master Equation (CME) [51]. Given the importance
of faithfully modelling stochastic noise in biochemical systems [5,27], we focus
on the (continuous) Linear Noise Approximation (LNA) of the CME [28,51]. It
describes the time evolution of expectation and variance of the species in terms
of ODEs, thus capturing the stochasticity intrinsic in CRNs, but, in contrast to
solving the CME, scales well with respect to the molecular counts.
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We can therefore represent the stochastic behaviour of a sketch as a set of
parametric ODEs, which can be adequately solved as a satisfiability modulo
theories (SMT) problem over the reals with ODEs. For this purpose, we employ
the SMT solver iSAT(ODE) [26] that circumvents the well-known undecidability
of this theory by a procedure generating either a certificate of unsatisfiability, or
a solution that is precise up to an arbitrary user-defined precision.

To specify the desired temporal behaviour of the network, we support con-
straints about the expected number and variance of molecules, and, crucially,
their derivatives over time. This allows us, for instance, to formalise that a
given species shows a specific number of oscillations or has higher variability
than another species, thus providing greater expressiveness compared to simple
reachability specifications or temporal logic.

We therefore formulate and provide a solution to the following problem. For
a given CRN sketch, a formal specification of the required temporal behaviour
and a cost function, we seek a sketch instantiation (a concrete CRN) that sat-
isfies the specification and minimizes the cost. The optimal solution for a given
sketch is computed using the meta-sketch abstraction for CRNs inspired by [8].
It combines a representation of the syntactic search space with the cost func-
tion and defines an ordered set of sketches. This cost-based ordering allows us
to effectively prune the search space during the synthesis process and guide the
search towards the minimal cost.

In summary, this paper makes the following contributions:

• We propose the first sketching language for CRNs that supports partial spec-
ifications of the topology of the network and structural dependencies among
species and reactions.

• We formulate a novel optimal synthesis problem that, thanks to the LNA
interpretation of stochastic dynamics, can be solved as an almost complete
decision/refutation problem over the reals involving parametric ODEs. In this
way, our approach offers superior scalability with respect to the size of the
system and the number of parameters and, crucially, supports the synthesis
of the CRN structure and not just of rate parameters.

• We design a new synthesis algorithm that builds on the meta-sketch abstrac-
tion, ensuring the optimality of the solution, and the SMT solver iSAT.

• We develop a prototype implementation of the algorithm and evaluate the
usefulness and performance of our approach on three case studies, demon-
strating the feasibility of synthesising networks with complex dynamics in a
matter of minutes.

We stress that CRNs provide not just a programming language for bio-systems,
but a more general computational framework. In fact, CRNs are formally equiv-
alent to population protocols and Petri nets. As a consequence, our methods
enable effective program synthesis also in other non-biological domains [3].

Related Work. In the context of syntax-guided program synthesis (SyGuS)
and program sketching, SMT-based approaches such as counter-example guided
inductive synthesis [48] were shown to support the synthesis of deterministic
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programs for a variety of challenging problems [8,46]. Sketching for probabilistic
programs is presented in [43], together with a synthesis algorithm that builds on
stochastic search and approximate likelihood computation. A similar approach
appears in [11,31], where genetic algorithms and probabilistic model checking
are used to synthesise probabilistic models from model templates (an extension
of the PRISM language [38]) and multi-objective specifications. SyGuS has also
been used for data-constrained synthesis, as in [24,37,45], where (deterministic)
biological models are derived from gene expression data.

A variety of methods exist for estimating and synthesising rate parameters
of CRNs, based on either the deterministic or stochastic semantics [2,6,10,20,
35,41,53]. In contrast, our approach supports the synthesis of network structure
and (uniquely) employs LNA.

Synthesis of CRNs from input-output functional specifications is considered
in [23], via a method comprising two separate stages: (1) SMT-based generation
of qualitative CRN models (candidates), and (2) for each candidate, parameter
estimation of a parametric continuous time Markov chain (pCTMC). In contrast
to our work, [23] do not consider solution optimality and require solving an
optimisation problem for each concrete candidate on a pCTMC whose dimension
is exponential in the number of molecules, making synthesis feasible only for very
small numbers of molecules. On the other hand, our approach has complexity
independent of the initial molecular population.

In [18], authors consider the problem of comparing CRNs of different size.
They develop notions of bisimulations for CRNs in order to map a complex CRN
into a simpler one, but with similar dynamical behaviour. Our optimal synthesis
algorithm automatically guarantees that the synthesized CRN has the minimal
size among all the CRNs consistent with the specification and the sketch.

2 Sketching Language for Chemical Reaction Networks

In this section, we introduce CRNs and the sketching language for their design.

2.1 Chemical Reaction Networks

CRN Syntax. A chemical reaction network (CRN) C = (Λ,R) is a pair of finite
sets, where Λ is a set of species, |Λ| denotes its size, and R is a set of reactions.
Species in Λ interact according to the reactions in R. A reaction τ ∈ R is a
triple τ = (rτ , pτ , kτ ), where rτ ∈ N|Λ| is the reactant complex, pτ ∈ N|Λ| is the
product complex and kτ ∈ R>0 is the coefficient associated with the rate of the
reaction. rτ and pτ represent the stoichiometry of reactants and products. Given

a reaction τ1 = ([1, 1, 0], [0, 0, 2], k1), we often refer to it as τ1 : λ1 + λ2
k1−→ 2λ3.

The state change associated to τ is defined by υτ = pτ − rτ . For example, for
τ1 as above, we have υτ1

= [−1,−1, 2]. The initial condition of a CRN is given
by a vector of initial populations x0 ∈ N|Λ|. A chemical reaction system (CRS)
C = (Λ,R, x0) is a tuple where (Λ,R) is a CRN and x0 ∈ N|Λ| represents its
initial condition.
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CRN Semantics. Under the usual assumption of mass action kinetics, the sto-
chastic semantics of a CRN is generally given in terms of a discrete-state,
continuous-time Markov process (CTMC) (X(t), t ≥ 0) [28], where the states,
x ∈ N|Λ|, are vectors of molecular counts. Such a representation is accurate, but
not scalable in practice because of the state space explosion problem [34,39]. An
alternative deterministic model describes the evolution of the concentrations of
the species as the solution Φ : R≥0 → R|Λ| of the following ODEs (the so called
rate equations) [13]:

dΦ(t)

dt
= F (Φ(t)) =

∑

τ∈R
υτ · (kτ

∏

S∈Λ

Φ
rS,τ

S (t)) (1)

where ΦS and rS,τ are the components of vectors Φ and rτ relative to species S.
However, such a model does not take into account the stochasticity intrinsic in
molecular interactions. In this paper, we work with the Linear Noise Approxi-
mation (LNA) [16,28,51], which describes the stochastic behaviour of a CRN in
terms of a Gaussian process Y converging in distribution to X [9,28]. For a CRS
C = (Λ,R, x0) contained in a system of volume N , we define Y = N ·Φ+

√
N ·Z,

where Φ is the solution of the rate equations (Eq. 1) with initial condition
Φ(0) = x0

N . Z is a zero-mean Gaussian process with variance C[Z(t)] described
by

dC[Z(t)]

dt
= JF (Φ(t))C[Z(t)] + C[Z(t)]JT

F (Φ(t)) + W (Φ(t)) (2)

where JF (Φ(t)) is the Jacobian of F (Φ(t)), JT
F (Φ(t)) its transpose version,

and W (Φ(t)) =
∑

τ∈R υτυτ
T kτ

∏
S∈Λ(ΦS)rS,τ (t). Y is a Gaussian process with

expectation E[Y (t)] = NΦ(t) and covariance matrix C[Y (t)] = NC[Z(t)]. As a
consequence, for any t ∈ R≥0, the distribution of Y (t) is fully determined by its
expectation and covariance. These are computed by solving the ODEs in Eq. 1–2,
and thus avoiding the state space exploration. We denote by [[C]]N = (E[Y ], C[Y ])
the solution of these equations for CRS C in a system of size N , henceforth called
the LNA model. By using the LNA we can consider stochastic properties of CRNs
whilst maintaining scalability comparable to that of the deterministic model [16].
In fact, the number of ODEs required for LNA is quadratic in the number of
species and independent of the molecular counts.

2.2 CRN Sketching Language

CRN sketches are defined in a similar fashion to concrete CRNs, with the main
difference being that species, stoichiometric constants and reaction rates are
specified as unknown variables. The use of variables considerably increases the
expressiveness of the language, allowing the modeller to specify additional con-
straints over them. Constraints facilitate the representation of key background
knowledge of the underlying network, e.g. that a reaction is faster than another,
or that it consumes more molecules than it produces.
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Another important feature is that reactants and products of a reaction are
lifted to choices of species (and corresponding stoichiometry). In this way, the
modeller can explicitly incorporate in the reaction a set of admissible alterna-
tives, letting the synthesiser resolve the choice.

Further, a sketch distinguishes between optional and mandatory reactions
and species. These are used to express that some elements of the network might
be present and that, on the other hand, other elements must be present. Our
sketching language is well suited for synthesis of biological networks: it allows
expressing key domain knowledge about the network, and, at the same time,
it allows for network under-specification (holes, choices and variables). This is
crucial for biological systems, where, due to inherent stochasticity or noisy mea-
surements, the knowledge of the molecular interactions is often partial.

Definition 1 (Sketching language for CRNs). A CRN sketch is a tuple S =
(Λ,R,Var,Dec, Ini,Con), where:

– Λ = Λm∪Λo is a finite set of species, where Λm and Λo are sets of mandatory
and optional species, respectively.

– Var = VarΛ ∪ Varc ∪ Varr is a finite set of variable names, where VarΛ, Varc
and Varr are sets of species, coefficient and rate variables, respectively.

– Dec is a finite set of variable declarations. Declarations bind variable names
to their respective domains of evaluation and are of the form x : D, where
x ∈ Var and D is the domain of x. Three types of declaration are supported:

• Species, where x ∈ VarΛ and D ⊆ Λ is a finite non-empty set of species.
• Stoichiometric coefficients, where x ∈ Varc and D ⊆ N is a finite non-

empty set of non-negative integers.
• Rate parameters, where x ∈ Varr and D ⊆ R≥0 is a bounded set of non-

negative reals.
– Ini is the set of initial states, that is, a predicate on variables {λ0}λ∈Λ describ-

ing the initial number of molecules for each species.
– Con is a finite set of additional constraints, specified as quantifier-free formu-

las over Var.
– R = Rm∪Ro is a finite set of reactions, where Rm and Ro are sets of manda-

tory and optional reactions, respectively. As for a concrete CRNs, each τ ∈ R
is a triple τ = (rτ , pτ , kτ ), where in this case kτ ∈ Varr is a rate variable;
the reaction complex rτ and the product complex pτ are sets of reactants and
products, respectively. A reactant R ∈ rτ (product P ∈ pτ ) is a finite choice
of species and coefficients, specified as a (non-empty) set R = {ciλi}i=1,...,|R|,
where ci ∈ Varc and λi ∈ VarΛ. We denote with frτ

the uninterpreted choice
function for the reactants of τ , that is, a function frτ

: rτ −→ Varc × VarΛ
such that frτ

(R) ∈ R for each R ∈ rτ . The choice function for products, fpτ
,

is defined equivalently.

As an example, reaction τ = ({{c1λ1, c2λ2}, {c3λ3}}, {{c4λ4, c5λ5}}, k) is prefer-

ably written as {c1λ1, c2λ2} + c3λ3
k−→ {c4λ4, c5λ5}, using the shortcut c3λ3 to

indicate the single-option choice {c3λ3}. A possible concrete choice function for
the reactants of τ is the function frτ

= {{c1λ1, c2λ2} �→ c1λ1, {c3λ3} �→ c3λ3}
that chooses option c1λ1 as first reactant.
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Holes and Syntactic Sugar. Unknown information about the network can be
also expressed using holes, i.e. portions of the model left “unfilled” and resolved
by the synthesiser. Holes, denoted with ?, are implicitly encoded through sketch
variables. To correctly interpret holes, we assume default domains, Dr ⊆ R
bounded and Dc ⊆ N finite, for rate and coefficient variables, respectively. We
also support the implicit declaration of variables, as shown in Example 1.

The following example illustrates the proposed sketching language and the
optimal solution obtained using our synthesis algorithm introduced in Sect. 4.

Example 1 (Bell shape generator). For a given species K, our goal is to syn-
thesize a CRN such that the evolution of K, namely the expected number of
molecules of K, has a bell-shaped profile during a given time interval, i.e. during
an initial interval the population K increases, then reaches the maximum, and
finally decreases, eventually dropping to 0. Table 1 (left) defines a sketch for the
bell-shape generator inspired by the solution presented in [12].

Table 1. Left: the sketch for bell-shape generator, with volume N = 100. Right: CRN
producing the bell-shape profile (species K) synthesized by our algorithm

Λm = {K}, Λo = {A, B}, Rm = {τ1, τ2},

Ro = {τ3}, Dec = {c1, . . . , c4 : [0, 2],

k1, k2, k3 : [0, 0.1], λ1, λ2 : {A, B}},

Con = {λ1 �= λ2, c1 < c2, c3 > c4},

Ini = {K0 = 1 ∧ A0 ∈ [0, 100] ∧ B0 ∈ [0, 100]}
τ1 = λ1 + c1K

k1−→ c2K

τ2 = {0, 1}λ2 + c3K
k2−→?λ2 + c4K

τ3 = ∅ k3−→ {λ2, [1, 2]K}

A + K →56 2K; K + B →43 2B
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This sketch reflects our prior knowledge about the control mechanism of the
production/degradation of K. It captures that the solution has to have a reaction
generating K (τ1) and a reaction where K is consumed (τ2). We also know that
τ1 requires a species, represented by variable λ1, that is consumed by τ1, and
thus τ1 will be blocked after the initial population of the species is consumed. An
additional species, λ2, different from λ1, may be required. However, the sketch
does not specify its role exactly: reaction τ2 consumes either none or one molecule
of λ2 and produces an unknown number of λ2 molecules, as indicated by the
hole ?. There is also an optional reaction, τ3, that does not have any reactants
and produces either 1 molecule of λ2 or between 1 and 2 molecules of K. The
sketch further defines the mandatory and optional sets of species, the domains
of the variables, and the initial populations of species. We assume the default
domain Dc = [0, 2], meaning that the hole ? can take values from 0 to 2. Note
that many sketch variables are implicitly declared, e.g. term [1, 2]K corresponds
to c′λ′ with fresh variables c′ : [1, 2] and λ′ : {K}.
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Table 1 (right) shows the optimal CRN computed by our algorithm for the cost
function given in Definition 3 and the bell-shape profile produced by the CRN.

We now characterise when a concrete network is a valid instantiation of a sketch.

Definition 2 (Sketch instantiation). A CRS C = (ΛC ,RC , x0) is a valid instan-
tiation of a sketch S = (Λ,R,Var,Dec, Ini,Con) if: Ini(x0) holds; there exists an
interpretation I of the variables in Var and choice functions such that:

1. all additional constraints are satisfied: I |= ∧
φ∈Con φ,

2. for each τ ∈ Rm there is τ ′ ∈ RC that realises τ , i.e., τ ′ is obtained from τ
by replacing variables and choice functions with their interpretation1, and

3. for each τ ′ ∈ RC there is τ ∈ R such that τ ′ realises τ ;

and the following conditions hold:

4. for each τ ′ = (rτ ′ , pτ ′ , kτ ′) ∈ RC: kτ ′ > 0 and rτ ′ + pτ ′ > 0
5. Λm ⊆ ΛC and ΛC ⊆ Λm ∪ Λo and
6. for each species A ∈ ΛC there is r ∈ RC such that A appears in r as reactant

or product.

Such an interpretation is called consistent for S. For sketch S and consistent
interpretation I, we denote with I(S) the instantiation of S through I. We
denote with L(S) the set of valid instantiations of S.

Condition 4. states that there are no void reactions, i.e. having null rate (kτ ′ = 0),
or having no reactants and products (rτ ′ +pτ ′ = 0). Further, condition 6. ensures
that the concrete network contains only species occurring in some reactions.

Example 2. A CRS C1 = {{A,B,K}, {τ ′
1, τ

′
2, τ

′
3}, x0} where

τ ′
1 = A + K

0.01−−→ 2K τ ′
2 = B + K

0.1−−→ 2B τ ′
3 =∅ 0.001−−−→ K,

with x0 = (A0 = 100, B0 = K0 = 1) is a valid instantiation of the bell
shape sketch S from Example 1. Reactions τ ′

1, τ ′
2 and τ ′

3 realise respectively
reaction sketches τ1, τ2 and τ3. The corresponding consistent interpretation is
I = {λ1 �→ A, c1 �→ 1, k1 �→ 0.01, c2 �→ 2, c′

1 �→ 1, λ2 �→ B, c3 �→ 1, k2 �→ 0.1,
H �→ 2, c4 �→ 0, k3 �→ 0.001, fpτ3

�→ {{λ2, [1, 2]K} �→ [1, 2]K}, c′
2 �→ 1}, where c′

i

is the i-th implicit stoichiometric variable and H is the only hole. The interpre-
tation of fpτ3

indicates that the choice {λ2, [1, 2]K} is resolved as [1, 2]K.

Since a sketch instantiation corresponds to a CRS, we remark that its behaviour
is given by the LNA model. Similarly, as we will show in Sect. 4, the SMT
encoding of a sketch builds on a symbolic encoding of the LNA equations.

1 When τ ′ realises sketch reaction τ , its reactants rτ ′ is a set of the form {cRλR}R∈rτ ,
i.e. containing a concrete reactant for each choice R. Then, this is readily encoded
in the reactant vector form rτ ′ ∈ N|Λ| as per CRN definition (see Sect. 2.1). Similar
reasoning applies for products pτ ′ .
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3 Specification Language

We are interested in checking whether a CRN exhibits a given temporal pro-
file. For this purpose, our specification language supports constraints about the
expected number and variance of molecules, and, importantly, about their deriv-
atives over time. This allows us, for instance, to synthesise a network where a
given species shows a bell-shape profile (as in Example 1), or has variance greater
than its expectation (considered in Sect. 5). Before explaining the specification
language, we introduce the logical framework over which properties, together
with CRN sketches, will be interpreted and evaluated.

3.1 Satisfiability Modulo ODEs

In syntax-guided synthesis, the synthesis problem typically reduces to an SMT
problem [1]. Since we employ LNA, which generally involves non-linear ODEs, we
resort to the framework of satisfiability modulo ODEs [25,26,30], which provides
solving procedures for this theory that are sound and complete up to a user-
specified precision. We stress that this framework allows for continuous encoding
of the LNA equations, thus avoiding discrete approximations of its dynamics.
Crucially, we can express arbitrary-order derivatives of the LNA variables, as
these are smooth functions, and hence admit derivatives of all orders.

We employ the SMT solver iSAT(ODE) [25] that supports arithmetic con-
straint systems involving non-linear arithmetic and ODEs. The constraints
solved are quantifier-free Boolean combinations of Boolean variables, arithmetic
constraints over real- and integer-valued variables with bounded domains, and
ODE constraints over real variables plus flow invariants. Arithmetic constraints
are of the form e1 ∼ e2, where ∼∈ {<,≤,=,≥, >} and e1,2 are expressions
built from real- and integer-valued variables and constants using functions from
{+,−, ·, sin, cos,powN, exp,min,max}. ODE constraints are time-invariant and
given by dx

dt = e, where e is an expression as above2 containing variables them-
selves defined by ODE constraints. Flow invariant constraints are of the form
x ≤ c or x ≥ c, with x being an ODE-defined variable and c being a constant.
ODE constraints have to occur under positive polarity and are interpreted as
first-order constraints on pre-values x and post-values x′ of their variables, i.e.,
they relate those pairs (x, x′) being connected by a trajectory satisfying dx

dt = e
and, if present, the flow invariant throughout.

Due to undecidability of the fragment of arithmetic addressed, iSAT(ODE)
implements a sound, yet quantifiably incomplete, unsatisfiability check based
on a combination of interval constraint propagation (ICP) for arithmetic con-
straints, safe numeric integration of ODEs, and conflict-driven clause learning
(CDCL) for manipulating the Boolean structure of the formula. This procedure
investigates “boxes”, i.e. Cartesian products of intervals, in the solution space
until it either finds a proof of unsatisfiability based on a set of boxes cover-
ing the original domain or finds some hull-consistent box [7], called a candidate

2 Where we can additionally use non-total functions /,
√

and ln.
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solution box, with edges smaller than a user-specified width δ > 0. While the
interval-based unsatisfiability proof implies unsatisfiability over the reals, thus
rendering the procedure sound, the report of a candidate solution box only guar-
antees that a slight relaxation of the original problem is satisfiable. Within this
relaxation, all original constraints are first rewritten to equi-satisfiable inequa-
tional form t ∼ 0, with ∼∈ {>,≥}, and then relaxed to the strictly weaker
constraint t ∼ −δ. In that sense, iSAT and related algorithms [30,50] provide
reliable verdicts on either unsatisfiability of the original problem or satisfiability
of its aforementioned δ-relaxation, and do in principle3 always terminate with
one of these two verdicts. Hence the name “δ-decidability” used by Gao et al.
in [29].

3.2 Specification for CRNs

The class of properties we support are formulas describing a dynamical profile
composed as a finite sequence of phases. Each phase i is characterised by an
arithmetic predicate pre − posti, describing the system state at its start and end
points (including arithmetic relations between these two), as well as by flow
invariants (formula invi) pertaining to the trajectory observed during the phase.
Formally, a specification ϕ comprising M ≥ 1 phases is defined by

ϕ =
M∧

i=1

invi ∧ pre − posti (3)

Note that entry as well as target conditions of phases can be expressed within
pre − posti. Initial conditions are not part of the specification but, as explained
in Sect. 4, the sketch definition.

CRS Correctness. For a CRS C, Volume N , and property ϕ, we are interested in
checking whether C is correct with respect to ϕ, written [[C]]N |= ϕ, i.e., whether
C at Volume N exhibits the dynamic behavior required by ϕ. Since [[C]]N is a set
of ODEs, this corresponds to checking whether ϕ̂ ∧ ϕ[[C]]N is satisfiable, where
ϕ[[C]]N is an SMT formula encoding the set of ODEs given by [[C]]N and their
higher-order derivatives4 by means of the corresponding ODE constraints, and
ϕ̂ is the usual bounded model checking (BMC) unwinding of the step relation∧M

i=1(phase = i ⇒ invi ∧ pre − posti) ∧ phase ′ = phase + 1 encoding the phase
sequencing and the pertinent phase constraints, together with the BMC target
phase = M enforcing all phases to be traversed. As this satisfiability problem is
undecidable in general, we relax it to checking whether ϕ̂ ∧ ϕ[[C]]N is δ-satisfiable
in the sense of admitting a candidate solution box of width δ. In that case, we
write [[C]]N |=δ ϕ.

3 i.e., when considering the abstract algorithms using unbounded precision rather than
the safe rounding employed in their floating-point based actual implementations.

4 Only the derivatives appearing in ϕ are included. These are encoded using the Faà
di Bruno’s formula [33].
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Example 3 (Specification for the bell-shape generator). The required bell-
shaped profile for Example 1 can be formalized using a 2-phase specification as
follows:

inv1 ≡ E(1)[K] ≥ 0, pre-post1 ≡ E(1)[K]′ = 0 ∧ E[K]′ > 30,

inv2 ≡ E(1)[K] ≤ 0, pre-post2 ≡ E[K]′ ≤ 1 ∧ T ′ = 1

where E[K] is the expected value of species K and E(1)[K] its first derivative. T is the
global time. Primed notation (E[K]′, E(1)[K]′, T ′) indicates the variable value at the
end of the respective phase. Constraints inv1 and inv2 require, respectively, that E[K]
is not decreasing in the first phase, and not increasing in the second (and last) phase.
pre-post1 states that, at the end of phase 1, E[K] is a local optimum (E(1)[K]′ = 0),
and has an expected number of molecules greater than 30. pre-post2 states that, at the
final phase, the expected number of molecules of K is at most 1 and that the final time
is 1.

This example demonstrates that we can reason over complex temporal specifi-
cations including, for instance, a relevant fragment of bounded metric temporal
logic [44].

4 Optimal Synthesis of Chemical Reaction Networks

In this section we formulate the optimal synthesis problem where we seek to find
a concrete instantiation of the sketch (i.e. a CRN) that satisfies a given property
and has a minimal cost. We further show the encoding of the problem using
satisfiability modulo ODEs and present an algorithm scheme for its solution.

4.1 Problem Formulation

Before explaining our optimal synthesis problem, we first need to introduce the
class of cost functions considered. A cost function G for a sketch S has signature
G : L(S) → N and maps valid instantiations of S to a natural cost. A variety of
interesting cost functions fit this description, and, depending on the particular
application, the modeller can choose the most appropriate one. A special case
is, for instance, the overall number of species and reactions, a measure of CRN
complexity used in e.g. CRN comparison and reduction [18,19]. Importantly,
cost functions are defined over the structure of the concrete instantiation, rather
than its dynamics. As we shall see, this considerably simplifies the optimisation
task, since it leads to a finite set of admissible costs. In the rest of the paper, we
consider the following cost function, which captures the structural complexity of
the CRN and the cost of physically implementing it using DNA [14,49].

Definition 3 (Cost function). For a sketch S = (Λ,R,Var,Dec, Ini,Con), we
consider the cost function GS : L(S) → N that, for any CRS instantiation
C = (Λ,R) ∈ L(S), is defined as:

GS(C) = 3 · (|Λ ∩ Λo|) +
∑

τ∈RC

∑

S∈Λ

6 · rS,τ + 5 · pS,τ

where rS,τ (pS,τ ) is the stoichiometry of species S as reactant (product) of τ .
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This cost function penalizes the presence of optional species (Λo) and the num-
ber of reactants and products in each reaction. It does not explicitly include a
penalty for optional reactions, but this is accounted for through an increased
total number of reactants and products. We stress that different cost functions
can be used, possibly conditioned also on the values of reaction rates.

Problem 1 (Optimal synthesis of CRNs). Given a sketch S, cost function GS ,
property ϕ, Volume N and precision δ, the optimal synthesis problem is to find
CRS C∗ ∈ L(S), if it exists, such that [[C∗]]N �δ ϕ and, for each CRS C ∈ L(S)
such that GS(C) < GS(C∗), it holds that [[C]]N �δ ϕ.

An important characteristic of the sketching language and the cost function is
that for each sketch S the set {GS(C) | C ∈ L(S)} is finite. This follows from
the fact that S restricts the maximal number of species and reactions as well as
the maximal number of reactants and products for each reaction. Therefore, we
can define for each sketch S the minimal cost μS and the maximal cost νS .

Example 4. It is easy to verify that the cost of the CRS C of Example 2, a valid
instantiation of the bell-shape generator sketch S, is GS(C) = 3 · 2 + 6 · 4 +
5 · 5 = 55, and that minimal and maximal costs of sketch S are, respectively,
μS = 3 · 1 + 6 · 2 + 5 · 2 = 25 and νS = 3 · 2 + 6 · 5 + 5 · 7 = 71.

We now define a meta-sketch abstraction for our sketching language that allows
us to formulate an efficient optimal synthesis algorithm.

Definition 4 (Meta-sketch for CRNs). Given a sketch S and a cost function
GS , we define the meta-sketch MS = {S(i) | μS ≤ i ≤ νS}, where S(i) is a
sketch whose instantiations have cost smaller than i, i.e. L(S(i)) = {C ∈ L(S) |
GS(C) < i}.

A meta-sketch MS establishes a hierarchy over the sketch S in the form of an
ordered set of sketches S(i). The ordering reflects the size of the search space for
each S(i) as well as the cost of implementing the CRNs described by S(i). In con-
trast to the abstraction defined in [8], the ordering is given by the cost function
and thus it can be directly used to guide the search towards the optimum.

4.2 Symbolic Encoding

Given a sketch of CRN S = (Λ,R,Var,Dec, Ini,Con), we show that the dynamics
of L(S), set of possible instantiations of S, can be described symbolically by a
set of parametric ODEs, plus additional constraints. These equations depend on
the sketch variables and on the choice functions of each reaction, and describe
the time evolution of mean and variance of the species.

For S ∈ Λ, λ ∈ Var, we define the indicator function IS(λ) = 1 if λ = S,
and 0 otherwise. For S ∈ Λ and τ ∈ R, we define the following constants:

rS,τ =
∑

R∈rτ

(c,λ)=frτ (R)

c·IS(λ), pS,τ =
∑

P∈pτ

(c,λ)=fpτ (P )

c·IS(λ), υS,τ = pS,τ −rS,τ
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Note that these are equivalent to the corresponding coefficients for concrete
CRNs, but now are parametric as they depend on the sketch variables. As for the
LNA model of Sect. 2.1, symbolic expectation and variance together characterise
the symbolic behaviour of sketch S, given as the set of parametric ODEs [[S]]N =
(N · Φ,N · C[Z]), for some Volume N .

The functions Φ(t) and C[Z(t)] describe symbolically the time evolution of
expected values and covariance of all instantiations of S, not just of valid instan-
tiations. We restrict to valid instantiations by imposing the following formula:

consist ≡ Ini(x0) ∧
∧

φ∈Con

φ ∧
∧

τ∈Rm

¬void(τ) ∧
∧

S∈Λm

used(S)

which, based on Definition 2, states that initial state and additional constraints
have to be met, all mandatory reactions must not be void, and all mandatory
species must be “used”, i.e. must appear in some (non-void) reactions. Note that
we allow optional reactions to be void, in which case they are not included in
the concrete network. Formally, void(τ) ≡ (kτ = 0) ∨ ∑

S∈Λ(rS,τ + pS,τ ) = 0
and used(S) ≡ ∨

τ∈R ¬void(τ) ∧ (rS,τ + pS,τ ) > 0.

Sketch Correctness. Given an interpretation I consistent for S, call ΦI and
C[Z]I , the concrete functions obtained from Φ and C[Z] by substituting variables
and functions with their assignments in I. The symbolic encoding ensures that
the LNA model [[I(S)]]N of CRS I(S) (i.e. the instantiation of S through I, see
Definition 2) is equivalent to (ΦI , C[Z]I).

With reference to our synthesis problem, this implies that the synthesis of a
CRS C∗ that satisfies a correctness specification ϕ from a sketch S corresponds to
finding a consistent interpretation for S that satisfies ϕ. Similarly to the case for
concrete CRSs, this corresponds to checking if ϕ̂∧ consist∧ϕ[[S]]N is δ-satisfiable
for some precision δ, where ϕ̂ is the BMC encoding of φ (see Sect. 3.2) and ϕ[[S]]N

is the SMT encoding of the symbolic ODEs given by [[S]]N and the corresponding
derivatives.

Cost Constraints. For a sketch S and cost i ∈ N, the following predicate encodes
the cost function of Definition 3 in order to restrict S into S(i), i.e. the sketch
whose instantiations have cost smaller than i:

ConG(i) ≡
(

3 ·
∑

S∈Λo

I(used(S)) +
∑

τ∈R
I(¬void(τ)) ·

∑

S∈Λ

(6 · rS,τ + 5 · pS,τ )

)
< i

where I is the indicator function, and used and void are predicates defined above.

4.3 Algorithm Scheme for Optimal Synthesis

In Algorithm1, we present an algorithm scheme for solving the optimal syn-
thesis problem for CRNs. It builds on the meta-sketch abstraction described in
Definition 4, which enables effective pruning of the search space through cost
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Algorithm 1. Generalised synthesis scheme

Require: Meta-sketch MS , property ϕ, precision δ and initial precision δinit

Ensure: C∗ is a solution of Problem 1 if ∃ C ∈ L(Mω
S) : C �δ ϕ, otherwise C∗ = null

1: i� ← νS ; i⊥ ← μS ; i ← g(i⊥, i�); C∗ ← null
2: repeat
3: SAT1 ← δ-Solver(S(i), ϕ, δinit); SAT2 ← false
4: if SAT1 then
5: (M, SAT2) ← δ-Solver(S(i), ϕ, δ)
6: if SAT2 then C∗ = getSoln(S(i), M)
7: else δinit = (δinit − δ)/2

8: (i⊥, i�) ← f(i, i⊥, i�, SAT2, GS(C∗)); i ← g(i⊥, i�)
9: until i⊥ ≤ i�

10: return C∗

constraints, and the SMT-based encoding of Sect. 4.2, which allows for the auto-
mated derivation of meta-sketch instantiations (i.e. CRNs) that satisfy the spec-
ification and the cost constraints.

This scheme repeatedly invokes the SMT solver (δ-Solver) on the sketch
encoding, and at each call the cost constraints are updated towards the optimal
cost. We consider three approaches: (1) top-down: starting from the maximal cost
νS , it solves meta-sketches with decreasing cost until no solution exists (UNSAT);
(2) bottom-up: from the minimal cost μS , it increases the cost until a solution
is found (SAT); (3) binary search: it bounds the upper estimate on the optimal
solution using a SAT witness and the lower estimate with an UNSAT witness.

We further improve the algorithm by exploiting the fact that UNSAT wit-
nesses can also be obtained at a lower precision δinit (δinit � δ), which con-
sistently improves performance. Indeed, UNSAT outcomes are precise and thus
valid for any precision. Note that the top-down strategy does not benefit from
this speed-up since it only generates SAT witnesses.

At every iteration, variable i maintains the current cost. The solver is firstly
called using the rough precision δinit (line 3). If the solver returns SAT (potential
false positive), we refine our query using the required precision δ (line 5). If this
query is in turn satisfiable, then the solver also returns a candidate solution box
M , where all discrete variables are instantiated to a single value and an interval
smaller than δ is assigned to each real-valued variable. Function getSoln computes
the actual sketch instantiation C∗ as the centre point of M that δ-satisfies ϕ.
The cost of C∗ provides the upper bound on the optimal solution. If either query
returns UNSAT, the current cost i provides the lower bound on the optimal
solution. The second query being UNSAT implies that the rough precision δinit

produced a false positive, and thus it is refined for the next iteration (line 7).
The actual search strategy used in Algorithm 1 is given by the functions

f controlling how the upper (i�) and lower (i⊥) bounds on the cost are updated
and by g determining the next cost to explore. Note that such bounds ensure the
termination of the algorithm (line 9). In the bottom-up approach, f “terminates”
the search (i.e. causes i⊥ > i�) if SAT2 is true (i.e. when the first SAT witness

151



Syntax-Guided Optimal Synthesis for Chemical Reaction Networks 389

is obtained), otherwise f sets (i⊥, i�) ← (i + 1, i�) and g sets i ← i⊥. In the
top-down case, f terminates the search if SAT2 is false (i.e. at the first UNSAT
witness), otherwise it sets (i⊥, i�) ← (i⊥,GS(C∗)−1) and i ← i�, where GS(C∗)
is the cost of CRN C∗. Binary search is obtained with f that updates (i⊥, i�)
to (i⊥,GS(C∗) − 1) if SAT2 = true, to (i + 1, i�) otherwise, and with g that
updates i to i⊥ + �(i� − i⊥)/2�.

5 Experimental Evaluation

We evaluate the usefulness and performance of our optimal synthesis method
on three case studies, representative of important problems studied in biology:
(1) the bell-shape generator, a component occurring in signaling cascades;
(2) Super Poisson, where we synthesize CRN implementations of stochastic
processes with prescribed levels of process noise; and (3) Phosphorelay net-
work, where we synthesize CRNs exhibiting switch-like sigmoidal profiles, which
is the biochemical mechanism underlying cellular decision-making, driving in
turn development and differentiation.

We employ the solver iSAT(ODE) [25,26]5, even if our algorithm supports
any δ-solver. We ran preliminary experiments using the tool dReal [30], finding
that iSAT performs significantly better on our instances. All experiments were
run on a server with a Intel Xeon CPU E5645 @2.40 GHz processor (using a single
core) and 24GB @1333 MHz RAM.

Bell-Shape Generator. We use the example described in Examples 1 and 3,
resulting in 8 parametric ODEs, as the main benchmark. The synthesised CRN is
shown in Fig. 1. In the first experiment, we evaluate the scalability of the solver
with respect to precision δ and the size of the discrete search space, altered
by changing the domains of species and coefficient variables of the sketch. We
exclude cost constraints as they reduce the size of the search space. Runtimes,
reported in Table 2 (left), correspond to a single call to iSAT with different δ
values, leading to SAT outcomes in all cases. Note that the size of the continuous
state space, given by the domains of rate variables, does not impose such a
performance degradation, as shown in Table 3 (right) for a different model.

In the second experiment, we analyse how cost constraints and different vari-
ants of Algorithm 1 affect the performance of optimal synthesis. Table 2 (right)
shows the number of iSAT calls with UNSAT/SAT outcomes (2nd column) and
total runtimes without/with the improvement that attempts to obtain UNSAT
witnesses at lower precision (δinit = 10−1). Importantly, the average runtime for
a single call to iSAT is significantly improved when we use cost constraints, since
these reduce the discrete search space (between 216 s and 802 s with cost con-
straints, 1267 s without). Moreover, results clearly indicate that UNSAT cases
are considerably faster to solve, because inconsistent cost constraints typically

5 Version r2806. Parameters: --maxdepth=k (k is the BMC unrolling depth) and
--ode-opts=--continue-after-not-reaching-horizon.
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Table 2. Performance of bell-shape generator model. Left: runtimes for different pre-
cisions δ and discrete search space size. Right: optimal synthesis with different variants
of Algorithm 1, fixed discrete search space size (1536) and δ = 10−3.
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bottom-up 7/1 2671/1732
top-down 1/6 4863/5612
binary-search 2/4 3440/3121

lead to trivial UNSAT instances. This favours the bottom-up approach over the
top-down. In this example, the bottom-up approach also outperforms binary-
search, but we expect the opposite situation for synthesis problems with wider
spectra of costs. As expected, we observe a speed-up when using a lower precision
for UNSAT witnesses, except for the top-down approach.

Super Poisson. We demonstrate that our approach is able to synthesise a CRN
that behaves as a stochastic process, namely, a super Poisson process having
variance greater than its expectation. We formalise the behaviour on the interval
[0, 1] using a 1-phase specification as shown in Table 3 (left). For N = 100 we
consider the sketch listed in Table 3 (center) where both reactions are mandatory,
reflecting the knowledge that A is both produced and degraded.

Table 3. Left: the 1-phase specification of the super poisson process. Centre: the sketch.
Right: runtimes for different precisions.

inv1 ≡ C[A] > E[A]

pre-post1 ≡ T ′ = 1

Λ = {A, B}, Λo = {B}, λ1, λ2 : Λ,
Rm = {τ1, τ2}, A0 = B0 = 0,
k1, k2 : [0, 100], c1, c2, c3 : [0, 2]

τ1 :→k1 c1A + c2λ1; τ2 : A →k2 c3λ2;

Rate interval Time (s)

[0, 1] 4
[0, 10] 18
[0, 100] 31

Using precision δ = 10−3, we obtained the optimal solution { 23−→ 2A,A
94−→}

(cost 16) in 4 s. Notably, the synthesis without the cost constraints took 19 s.
Moreover, the ability to reason over the variance allows the solver to discard
solution {→ A,A →} (implementation of a Poisson process [15]), which would
have led to a variance equal to expectation. Table 3 (right) demonstrates the
scalability of our approach with respect to the size of the continuous parameter
space. Despite its non-trivial size (10 ODEs and discrete search space of size
288), we obtain remarkable performance, with runtimes in the order of seconds.
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Phosphorelay Network. In the last case study we present a rate synthesis
problem (i.e. all discrete parameters are instantiated) for a three-layer phospho-
relay network [22]. In this network, each layer Li (i = 1, 2, 3) can be found in
phosphorylated form, Lip, and there is the ligand B, acting as an input for the
network. The authors of [22] were interested in finding rates such that the time
dynamics of L3p shows ultra-sensitivity – a sigmoid shape of the time evolution
of L3p – which they obtained by manually varying the parameters until the right
profile was discovered. We show that our approach can automatically find these
parameters, thus overcoming such a tedious and time-consuming task.

k1 = 15, k2 = 53, k3 = 90, k4 = 3

0 0.2 0.4 0.6 0.8 1
Time

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

P
op

ul
at

io
n

L1 L1p L2 L2p L3 L3p

x 1000

Fig. 1. The synthesised rates and the
corresponding profile (without variance
constraints).

We formalise the required behaviour
using the 2-phase specification as shown
in Table 4 (left). In particular, we con-
sider a time interval [0, 1] during which
L3p never decreases (E(1)[L3p] ≥ 0),
and we require that an inflection point
in the second derivative occurs in the
transition between the two phases. At
the final time we require that the pop-
ulation of L3p is above 100, to rule out
trivial solutions. For N = 1000 we con-
sider the sketch listed in Table 4 (center),
inspired by [22]. Figure 1 lists the rates
synthesised for δ = 10−3 and illustrates
the obtained sigmoid profile.

We further consider a more complex variant of the problem, where we extend
the specification to require that the variance of L3p on its inflection point (the
point where the variance is known to reach its maximum [22]) is limited by a
threshold. This extension led to an encoding with 37 symbolic ODEs, compared
to the 9 ODEs (7 species plus two ODEs for the derivatives of L3p) needed for the
previous specification. Table 4 (right) shows the runtimes of the synthesis process
for both variants of the model and different precisions δ. The results demonstrate
that neither increasing the number of ODEs nor improving the precision leads
to exponential slowdown of the synthesis process, indicating good scalability
of our approach.

Table 4. Left: the 2-phase specification of the sigmoid profile (no variance constraints).
Centre: the sketch. Right: runtimes for different precisions and the two variants (with-
out and with covariances).

inv1 ≡ E(1)[L3p] ≥ 0 ∧ E(2)[L3p] ≥ 0

pre-post1 ≡ E(2)[L3p]′ = 0

inv2 ≡ E(1)[L3p] ≥ 0 ∧ E(2)[L3p] ≤ 0

pre-post2 ≡ E[L3p]′ > 100 ∧ T ′ = 1

L1 + B
k1−→ B + L1p

L2 + L1p
k2−→ L1 + L2p

L2p + L3
k3−→ L2 + L3p

L3p
k4−→ L3; ∅ 1−→ B

k1, . . . , k4 : (0, 100],
Li0 = 330, Lip0 = B0 = 0

ODEs δ Time (s)

9 10−1 53
9 10−3 370
9 10−5 719
37 10−1 1052
37 10−3 11276
37 10−5 39047
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6 Conclusion

Automated synthesis of biochemical systems that exhibit prescribed behaviour is
a landmark of synthetic and system biology. We presented a solution to this prob-
lem, introducing a novel method for SMT-based optimal synthesis of stochastic
CRNs from rich temporal specifications and sketches (syntactic templates). By
means of the LNA, we define the semantics of a sketch in terms of a set of
parametric ODEs quadratic in the number of species, which allows us to reason
about stochastic aspects not possible with the deterministic ODE-based seman-
tics. Able to synthesize challenging systems with up to 37 ODEs and ∼10 K
admissible network topologies, our method shows unprecedented scalability and
paves the way for design automation for provably-correct molecular devices.

In future work we will explore alternative notions of optimality and encod-
ings, and develop a software tool based on parallel search strategies.
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A B S T R A C T

We describe a tool-supported method for the efficient synthesis of parametric continuous-time Markov chains
(pCTMC) that correspond to robust designs of a system under development. The pCTMCs generated by our RObust
DEsign Synthesis (RODES) method are resilient to changes in the system’s operational profile, satisfy strict
reliability, performance and other quality constraints, and are Pareto-optimal or nearly Pareto-optimal with
respect to a set of quality optimisation criteria. By integrating sensitivity analysis at designer-specified tolerance
levels and Pareto optimality, RODES produces designs that are potentially slightly suboptimal in return for less
sensitivity—an acceptable trade-off in engineering practice. We demonstrate the effectiveness of our method and
the efficiency of its GPU-accelerated tool support across multiple application domains by using RODES to design
a producer-consumer system, a replicated file system and a workstation cluster system.

1. Introduction

Robustness is a key characteristic of both natural (Kitano, 2004) and
human-made (Phadke, 1995) systems. Systems that cannot tolerate
change are prone to frequent failures and require regular maintenance.
As such, engineering disciplines like mechanical and electrical en-
gineering treat robustness as a first-class citizen by designing their
systems based on established tolerance standards (e.g. International
Organization for Standardization, 2010; International Organization for
Standardization, 2013). By comparison, software engineering is lagging
far behind. Despite significant advances in software performance and
reliability engineering (Balsamo et al., 2004; Bondy, 2014; Becker et al.,
2009; Fiondella and Puliafito, 2016; Stewart, 2009; Woodside et al.,
2014), the quality attributes of software systems are typically analysed
for point estimates of stochastic system parameters such as component
service rates or failure probabilities. Even the techniques that assess the
sensitivity of quality attributes to parameter changes (e.g. Gokhale and
Trivedi, 2002; Lo et al., 2005; Huang and Lyu, 2005; Kamavaram and
Goseva-Popstojanova, 2003; Filieri et al., 2016) focus on the analysis of
a given design at a time instead of systematically designing robustness
into the system under development (SUD).

To address these limitations, we propose a tool-supported method
for the efficient synthesis of parametric continuous-time Markov chains
(pCTMCs) that correspond to robust SUD designs. Our RObust DEsign
Synthesis (RODES) method generates sets of pCTMCs that:

(i) are resilient to pre-specified tolerances in the SUD parameters, i.e.,
to changes in the SUD’s operational profile;

(ii) satisfy strict performance, reliability and other quality constraints;
(iii) are Pareto-optimal or nearly Pareto optimal with respect to a set of

quality optimisation criteria.

RODES comprises two steps. In the first step, the SUD design space
is modelled as a pCTMC with discrete and continuous parameters cor-
responding to alternative system architectures and to ranges of possible
values for the SUD parameters, respectively. In the second step, a multi-
objective optimisation technique is used to obtain a set of low-sensi-
tivity, Pareto-optimal or nearly Pareto-optimal SUD designs by fixing
the discrete parameters (thus selecting specific architectures) and re-
stricting the continuous parameters to bounded intervals that reflect the
pre-specified tolerances. The designs that are slightly suboptimal have
the advantage of a lower sensitivity than the optimal designs with si-
milar quality attributes, achieving a beneficial compromise between
optimality and sensitivity. A sensitivity-aware Pareto dominance relation
is introduced in the paper to formally capture this trade-off.

Fig. 1 shows the differences between a traditional Pareto front,
which corresponds to a fixed SUD operational profile, and a sensitivity-
aware Pareto front generated by RODES, which corresponds to a SUD
operational profile that can change within pre-specified bounds. Ac-
cordingly, the designs from the RODES sensitivity-aware Pareto front
are bounded regions of quality-attribute values for the system. The size
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and shape of these regions convey the sensitivity of the synthesised
designs to parameter changes within the pre-specified tolerances. Small
quality-attribute regions correspond to particularly robust designs that
cope with variations in the system parameters without exposing users to
significant changes in quality attributes. These designs require reduced
maintenance, and can be implemented using high-variability compo-
nents that are cheaper to develop or obtain off-the-shelf than low-
variability components. Large quality-attribute regions from a RODES
Pareto front—while still the most robust for the quality attribute trade-
offs they correspond to—are associated with designs that are sensitive
to SUD parameters variations. These designs may involve high main-
tenance and/or development costs, so they should only be used if jus-
tified by their other characteristics (e.g. desirable quality attribute
trade-offs).

To the best of our knowledge, RODES is the first solution that in-
tegrates multi-objective stochastic model synthesis and sensitivity
analysis into an end-to-end, tool-supported design method. As we show
in detail in Section 7, the existing research addresses the challenges
associated with design synthesis (e.g. Gerasimou et al., 2015; Martens
et al., 2010) and sensitivity analysis (e.g. Gokhale and Trivedi, 2002; Lo
et al., 2005; Huang and Lyu, 2005; Kamavaram and Goseva-
Popstojanova, 2003; Filieri et al., 2016) separately. The main con-
tributions of our paper are:

1. The extension of the notion of parameter tolerance from other en-
gineering disciplines for application to software architecture.

2. The definitions of the parametric Markov chain synthesis problem
and of the sensitivity-aware Pareto dominance relation for the
synthesis of robust models for stochastic systems.

3. The RODES method for the generation of sensitivity-aware Pareto
fronts by integrating multi-objective probabilistic model synthesis
and precise pCTMC parameter synthesis.

4. A GPU-accelerated tool that implements the RODES method and is
available preinstalled on an easy-to-use VirtualBox instance from
our project website https://www.github.com/gerasimou/RODES/
wiki.

5. A repository of case studies demonstrating the successful application
of RODES to a replicated file system used by Google’s search engine,
a cluster availability management system, and a producer-consumer
system.

These contributions significantly extend our conference paper on
robust model synthesis (Calinescu et al., 2017a) and the prototype
probabilistic model synthesis tool (Calinescu et al., 2017b) in several
ways. First, we provide a more detailed description of our solution,
including a running example and new experimental results. Second, we

greatly improve the scalability of RODES by integrating the GPU-ac-
celerated analysis of candidate designs into our prototype tool
(Calinescu et al., 2017b). Third, we extend the experimental evaluation
to demonstrate the impact of the GPU acceleration. Finally, we present
an additional case study in which we apply RODES to a producer-
consumer system, and we use the systems and models from our ex-
periments to assemble a repository of case studies available on our
project website.

The remainder of the paper is organised as follows. Section 2 in-
troduces the RODES design-space modelling language and the form-
alism to specify quality constraints and optimisation criteria. Section 3
defines the sensitivity-aware dominance relation and introduces the
parametric Markov chain synthesis problem. We then present our
method for synthesising robust designs in the form of a sensitivity-
aware Pareto set, and the GPU-accelerated tool RODES implementing
the method in Sections 4 and 5, respectively. Finally, we evaluate our
method within three case studies in Section 6, discuss related work in
Section 7, and conclude the paper with a summary and future work in
Section 8.

2. Modelling and specification language for probabilistic systems

This section formalises three key elements underpinning the for-
mulation of the robust design problem: 1) the modelling of the design
space of a SUD, 2) the specification of quality attributes and require-
ments, and 3) the sensitivity of a design.

2.1. Design space modelling

We use a parametric continuous-time Markov chain (pCTMC) to define
the design space of a SUD. To this end, we extend the original pCTMC
definition (Han et al., 2008), where only real-valued parameters de-
termining the transition rates of the Markov chain are considered, and
assume that a pCTMC also includes discrete parameters affecting its
state space. Our definition captures the need for both discrete para-
meters encoding architectural structural information (e.g. by selecting
between alternative implementations of a software component) and
continuous parameters encoding configurable aspects of the system
(e.g. network latency or throughput). As such, a candidate system de-
sign corresponds to a fixed discrete parameter valuation and to con-
tinuous parameter values from a (small) region.

Definition 1 ((pCTMC)). Let K be a finite set of real-valued parameters
such that the domain of each parameter k∈ K is a closed interval

�⊂⊥ ⊤k k[ , ] , and D a finite set of discrete parameters such that the
domain of each parameter d∈D is a set �⊂Td . Let also
P= × ∈

⊥ ⊤k k[ , ]k K and Q= × ∈ Td D
d be the continuous and the discrete

parameter spaces induced by K and D, respectively. A pCTMC over K and
D is a tuple

C P Q D D D= L( , ) ( , , , ),S init R (1)

where, for any discrete parameter valuation Q∈q :

• D =q S( )S is a finite set of states, andD ∈q S( )init is the initial state;

• D �× →q S S K( ): [ ]R is a parametric rate matrix, where � K[ ] de-
notes the set of polynomials over the reals with variables in K;

• L(q): S→ 2AP is a labelling function mapping each state s∈ S to the
set L(q)(s)⊆AP of atomic propositions that hold true in s.

A pCTMC P QC ( , ) describes the uncountable set of continuous-time
Markov chains (CTMCs) C P Q∈ ∧ ∈p q p q{ ( , ) }, where each
C D D=p q q q( , ) ( ( ), ( ),S init R(p, q), L(q)) is the instantiated CTMC with
transition matrix R(p, q) obtained by replacing the real-valued para-
meters in D q( )R with their valuation in p.

In our approach we operate with pCTMCs expressed in a high-level
modelling language extending the PRISM language (Kwiatkowska et al.,
2011) which models a system as the parallel composition of a set of

Fig. 1. Traditional Pareto front (a) versus sensitivity-aware Pareto front (b) for
two quality attributes that require minimisation (e.g., response time and
probability of failure).
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modules. The state of a module is encoded by a set of finite-range local
variables, and its state transitions are defined by probabilistic guarded
commands that change these variables, and have the general form:

action guard → +⋯+e update e update[ ] : :n n1 1 (2)

In this command, guard is a Boolean expression over all model
variables. If the guard evaluates to true, the arithmetic expression ei,
1≤ i≤ n, gives the rate with which the updatei change of the module
variables occurs. When action is present, all modules comprising com-
mands with this action have to synchronise (i.e., to carry out one of
these commands simultaneously) and the resulting rate of such syn-
chronised commands is equal to the multiplication of the individual
command rates. Atomic propositions are encoded with label expres-
sions of the form:

label id = b‵‵ "" (3)

where id is a string that identifies the atomic proposition and b is a
Boolean expression over the state variables.

We extend the PRISM language with the following constructs
(adopted from Gerasimou et al., 2015) for specifying the parameters
k∈ K and d∈D from Definition 1:

evolvedouble

evolveint

evolvemodule

k min max
d min max

ComponentName

[ . ]
[ . ]

(4)

where N>1 instances of the last construct (with the same component
name) define N alternative architectures for a component, introducing
the index (between 1 and N) of the selected architecture as an implicit
discrete parameter.

As per Definition 1, continuous parameters can only appear in the
transition rates (expressions …e e, , n1 above).

Explicit discrete variables (declared using evolve int) can instead
appear in any type-consistent expression.

The translation of models expressed in the extended PRISM lan-
guage into the corresponding pCTMC is fully automatic and follows the
probabilistic guarded command semantics described above. The dis-
crete state space Q results from all possible valuations of explicit dis-
crete variables and implicit discrete variables (different implementa-
tions of a module). For a fixed valuation Q∈q , the parametric PRISM
model describes a fixed set of modules with a fixed set of finite-range
variables, and thus the state space D q( )S is given by the Cartesian
product of the value ranges for these variables. In contrast, q determines
also the parametric rate matrix D q( )R and atomic propositions L(q), as
q can affect guards and updates of PRISM commands, as well as label
expressions.

Example 1 (Producer-consumer model). As a running example, we
consider a simple producer-consumer system with a two-way
buffering, illustrated in Fig. 2. The pCTMC PRISM model, extended
with the evolvable constructs from Definition 4 is shown in Fig. 3. The
system comprises a producer generating requests with rate p_rate. Each
request is being transferred to a consumer either via a slow buffer or via
a fast buffer with probabilities 0.6 and 0.4, respectively (lines 14 and 15

in Fig. 3). The fast buffer transmits requests to the consumer faster than
the slow buffer, but it has smaller capacity and is less reliable, as it loses
packets with a 5% probability (line 20).We consider two alternative
designs of the producer-consumer model that differ in the way that the
two buffers manage the pending requests. More specifically we consider

1. a no-redirection design in which once a request is sent to either
buffer, the packet is transmitted by that buffer to the consumer
(lines 9–22);

2. a redirection design that enables the slow buffer to transmit requests
to the fast buffer with a probability proportional to its occupancy
(lines 23–27). In particular, redirection is disabled when the slow
buffer is empty and has maximum rate when it is full and is equal to
s_rate/10, where s_rate is the request transmission rate without
redirection.In addition to these two alternative designs, the model

has two continuous parameters, the packet transmission rate for the
Fig. 2. Two-way producer-consumer system.

Fig. 3. PRISM-RODES encoding of pCTMC model of a producer-consumer
system with two-way buffering and redirection. In the second module only the
commands that differ from the first module are reported.
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slow buffer, r_slow_rate, and delta_rate, i.e. the transmission rate dif-
ference between fast and slow buffers. Notably, the rate of packet loss
by the fast buffer is proportional to its transmission rate, meaning that
the buffer becomes less reliable as its rate increases.We formally cap-
ture the above system model with its continuous parameters and al-
ternative designs by a pCTMC C P Q( , ),PC where P = ×[5, 30] [0, 30]
defines the domains for the continuous parameters r_slow_rate, and
delta_rate, respectively, and Q = {1, 2} defines the domain for the dis-
crete parameter corresponding to the two alternative designs (i.e.
modules).

Definition 2 (Candidate design). A candidate design of the pCTMC
C P Q( , ) from (1) is a pCTMC

C P D D D′ = ′ ′ ′ ′q L( , { }) ( , , , )S init R (5)

where P P′ ′′ = × ⊆∈
⊥ ⊤k k[ , ] ,k K Q∈q , D D′ =q q( ) ( ),S S D D′ =q q( ) ( ),R R

D D′ =q q( ) ( )init init and ′ =L q L q( ) ( ). The tolerance of the candidate
design with respect to the real-valued parameter k∈ K is defined as

=
′ − ′

−

⊤ ⊥

⊤ ⊥
γ k k

k k2( )
,k (6)

in line with the fact that the design restricts the value domain

of k to the interval − − + −⊤ ⊥ ⊤ ⊥k γ k k k γ k k[ ( ), ( )],k k = ′ ′+⊥ ⊤

k k k
2 .1

For convenience, we will use the shorthand notation
C P C P′ ≡ ′q q( , ) ( , { }) in the rest of the paper.

Example 2 (Candidate design). Consider the pCTMC P QC ( , )PC from
Example 1 and a single tolerance value =γ 0.005 for both continuous
parameters r_slow_rate and delta_rate. By (6), candidate designs have
continuous parameter ranges of size − =⊤ ⊥γ k k2 ( ) 0.25 for r_slow_rate
and of size 0.3 for delta_rate. Two examples of valid candidate designs
for the second module (redirection), obtained using our RODES
synthesis method (see also results in Fig. 7), are pCTMCs

C P= ′d ( , 2)PC1 and C P= ″d ( , 2)PC2 where P ′ = ×[15.02, 15.27] [1.93, 2.23],
P″ = ×[13.2, 13.45] [3.51, 3.81]. The pCTMCs C P= ″′d ( , 1)PC3 with is
instead a valid candidate design for the first module (no redirection).

2.2. Quality attribute specification and requirements

We specify quality attributes over pCTMCs-defined design spaces
using continuous stochastic logic (CSL) extended with reward operators
(Kwiatkowska et al., 2007). Our focus is on timed properties of pCTMCs
expressed by the time-bounded fragment of CSL with rewards com-
prising state formulae (Φ) and path formulae (ϕ) with the syntax:

true= ¬ ∧

=

∼ ∼
≤a P ϕ R C

ϕ X U
Φ: : Φ Φ Φ [ ] [ ]

: : Φ Φ Φ
,r r

t

I (7)

where a is an atomic proposition evaluated over states, ∼ ∈ {< , ≤ ,
≥ , > } is a relational operator, r is a probability (r∈ [0, 1]) or reward
( �∈ ≥r 0) threshold2, �∈ ≥t 0 is a time bound, and �⊆ ≥I 0 is a bounded
time interval. The ‘future’ operator, F, and ‘globally’ operator, G, are
derived from U in the standard way3. As briefly discussed in Section 4.2,
our approach can be extended to unbounded CSL.

Traditionally, the CSL semantics is defined for CTMCs using a sa-
tisfaction relation ⊨. Intuitively, a state s⊨P∼ r[ϕ] iff the probability of
the set of paths starting in s and satisfying ϕ meets ∼ r. A path

= …ω s t s t0 0 1 1 satisfies the formula ΦUIΨ iff there exists a time t∈ I such
that (ω@t⊨Ψ∧∀t′∈ [0, t).ω@t′⊨Φ), where ω@t denotes the state in ω at
time t. A state s⊨R∼ r[C≤ t] iff the expected rewards over the path
starting in s and cumulated within t time units satisfies ∼ r, where the

rates with which reward is acquired in each state and the reward ac-
quired at each transition are defined by a reward structure.

In line with our previous work (Češka et al., 2017), we introduce a
satisfaction function P Q× →Λ : [0, 1]ϕ that quantifies how the sa-
tisfaction probability associated with a path CSL formula ϕ relates to
the parameters of a pCTMC C P Q( , ), where, for any P Q∈ ×p q( , ) ,
Λϕ(p, q) is the probability that ϕ is satisfied by the set of paths from the
initial state D q( )init of the instantiated CTMC C p q( , ). The satisfaction
function for reward CSL formulae is defined analogously.

Quality requirements. We assume that the quality requirements of
a SUD with design space given by a pCTMC C P Q( , ) are defined in
terms of:

1) A finite set of objective functions {fi}i∈ I corresponding to quality
attributes of the system and defined in terms of a set of CSL path
formulas {ϕi}i∈ I, such that for any i∈ I and P Q∈ ×p q( , ) ,

C =f p q p q( ( , )) Λ ( , );i ϕi (8)

2) A finite set of Boolean constraints {cj}j∈ J corresponding to the set of
CSL path formulas {ψj}j∈ J and thresholds {∼ jrj}j∈ J, such that for
any j∈ J and P Q∈ ×p q( , ) ,

C ⇔ ∼c p q p q r( ( , )) Λ ( , ) .j ψ j jj (9)

Note that quality requirements (8) and (9) are defined over (non-
parametric) CTMCs, but, in order to compare candidate designs with
respect to some objective function, we need to interpret quality re-
quirements over pCTMCs. Indeed, due to the continuous parameter
space, a single candidate design induces an infinite number of objective
function values, from which the designer must choose a representative
value. For a candidate designC P′ q( , ) and objective fi, this is typically
identified as one of the minimum, maximum and mid-range value of

Cf p q( ( , ))i over all P∈ ′p , as illustrated in Table 1.
On the other hand, constraints have a unique interpretation because

they must be met for any parameter value of a candidate design.
Formally, for candidate design C P′ q( , ) and constraint cj, we define

C P P C′ ⇔ ∀ ∈ ′c q p c p q( ( , )) . ( ( , )).j j

Without loss of generality, we will assume that all objective func-
tions {fi}i∈ I in Sections 3 and 4 should be minimised and that all
thresholds {∼ jrj}j∈ J are upper bounds of the form of ≤ rj.

Example 3 (Quality requirements). Below we define quality
requirements for the producer-consumer model of Example 1. We
consider two maximisation objectives and one constraint:

f1: =
<=R consume C{‵‵ ""} [ ],?

25 a cumulative transition reward de-
scribing the number of requests transferred to the consumer within
25 time units (line 21 in Fig. 3);
f2: buffers slowmax bufferf fastmax≥ ≥=P G[ [20, 25](( /2)&( /2))],?
which calculates the probability that the utilisation of both buffers is
at least 50% of their respective capacities;
c1: ≤

<=R lost C{‵‵ "" } [ ],10
25 a cumulative transition reward that limits

the number of packets lost within 25 time units (line 20 in
Fig. 3).With these quality requirements, we seek to maximise the

system throughput (objective f1), expressed as the number of requests
transferred to the consumer, and also to maximize the probability that
both buffers are sufficiently utilised after an initial period (objective f2).
Finally, constraint c1 imposes a reliability requirement by restricting
the number of packets lost to be less than 10 within 25 time units of
operation.

1 In other words, the tolerance of parameter k, γk, measures the extent to which k can
be perturbed from its reference (midpoint) value.

2 For simplicity, we use ∼ r to denote the threshold for both probability and reward
quality attributes.

3 true=∼ ∼P F P U[ Φ] [ Φ]r I r I and = ¬∼ ∼ −P G P F[ Φ] [ Φ].r I r I1
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2.3. Sensitivity of candidate designs

Quantifying the sensitivity of candidate designs is a crucial step in
our robust synthesis method. Intuitively, the sensitivity of a design
C P′ q( , ) captures how the objective functions {fi}i∈ I change in re-
sponse to variations in the continuous parameters k∈ K. The variation
of each objective fi is measured by the length of the interval

C P′⊥f q[ ( ( , )),i C P′⊤f q( ( , )],i describing the range of admissible values
for fi and C P′ q( , ) (cf. Table 1). The degree of variation for multiple
objectives is given by the product of interval lengths, i.e., the volume of
the corresponding quality-attribute region. The sensitivity takes also
into account the size of the underlying parameter region, in order to
account for designs with different tolerance values. For instance, a
design with a large quality-attribute volume and high tolerance (large
parameter region volume) must be considered more robust (less sensi-
tive) than another design with comparable quality-attribute volume but
lower tolerance.

Definition 3 (Sensitivity). For a set of objective functions {fi}i∈ I and
tolerances {γk}k∈ K, the sensitivity of a feasible design C P′ q( , ) is
defined as the volume of its quality-attribute region over the volume
of P′:

C P
C P C P

′ =
∏ ′ − ′

∏ −
∈

⊤ ⊥

∈
⊤ ⊥

sens q
f q f q

γ k k
( ( , ))

( ( ( , )) ( ( , )))
2 ( )

.i I i i

k K k (10)

Example 4 (Sensitivity). Consider the candidate designs d1, d2, d3 with
tolerance =γ 0.005 from Example 2, and the objective functions f1
(number of “consumed” packets) and f2 (probability of buffers being
sufficiently used) introduced in Example 3. Assume the following
ranges for f1 and f2:

=

=

=

=

=

=

⊥ ⊤

⊥ ⊤

⊥ ⊤

⊥ ⊤

⊥ ⊤

⊥ ⊤

f d f d

f d f d

f d f d

f d f d

f d f d

f d f d

[ ( ), ( )] [416.94, 439.65]

[ ( ), ( )] [0.8977, 0.9809]

[ ( ), ( )] [407.11, 423.10]

[ ( ), ( )] [0.891, 0.9621]

[ ( ), ( )] [384.81, 413.09]

[ ( ), ( )] [0.7501, 0.8225].

1 1 1 1

2 1 2 1

1 2 1 2

2 2 2 2

1 3 1 3

2 3 2 3

Recall that the three designs have the same tolerance, thus yielding the
same parameter region volume

∏ − = =
∈

⊤ ⊥γ k k2 ( ) 0.25·0.3 0.075
k K

k

The resulting sensitivities are:

= − − =

= − − =

= − − =

sens d
sens d
sens d

( ) (439.65 416.94)(0.9809 0.8977)/0.075 25.19
( ) (423.10 407.11)(0.9621 0.891)/0.075 15.16
( ) (413.09 384.81)(0.8225 0.7501)/0.075 27.3

1

2

3

indicating that d2 is the most robust design (with the smallest sensitivity
value). The three designs can be visualised in the quality-attribute space
(i.e. the objective space), as shown in Fig. 4, providing a direct and
intuitive way to assess robustness.

3. Sensitivity-aware Pareto dominance relation

In this section, we introduce a novel dominance relation that ade-
quately captures tradeoffs between the sensitivity and optimality of
candidate designs with respect to given quality requirements, and that
enables to formulate the robust design problem as an optimisation
problem.

Consider a system with design spaceC P Q( , ), quality requirements
given by objective functions {fi}i∈ I and constraints {cj}j∈ J, and de-
signer-specified tolerances {γk}k∈ K for the continuous parameters of
the system. Also, letF be the set of feasible designs for the system (i.e.,
of candidate designs that meet the tolerances {γk}k∈ K and satisfy the
constraints {cj}j∈ J):

F C P P P Q

C P

X= ′ ′ = ′ ′ ⊂ ∧ ∈ ∧

∀ ∈ ′ − ′ = − ∧ ∀ ∈ ′

∈
⊥ ⊤

⊤ ⊥ ⊤ ⊥

q k k q
k K k k γ k k j J c q

{ ( , ) [ , ]
. 2 ( ) . ( ( , ))}.

k K

k j (11)

Definition 4. A sensitivity-aware Pareto dominance relation over a
feasible design set F and a set of minimisation objective functions
{fi}i∈ I is a relation F F≺ ⊂ × such that for any feasible designs

F′ ∈d d,

≺ ′⇔
∀ ∈ ≤ ′ ∧ ∃ ∈ + < ′ ∨

∀ ∈ ≤ ′ ∧ ∃ ∈ < ′ ∧

≤ ′

d d
i I f d f d i I f d f d
i I f d f d i I f d f d

sens d sens d

( . ( ) ( ) . (1 ϵ ) ( ) ( ))
( . ( ) ( ) . ( ) ( )

( ) ( )).

i i i i i

i i i i

(12)

where the objective functions {fi}i∈ I are calculated using one of the
alternative definitions from Table 1 and ϵi≥ 0 are sensitivity-awareness
parameters.

The parametric Markov chain synthesis problem consists of finding
the Pareto-optimal set PS of candidate designs (5) (i.e. pCTMCs) with
tolerances {γk}k∈ K that satisfy the constraints {cj}j∈ J and are non-
dominated with respect to the objective functions {fi}i∈ I and the sen-
sitivity-aware dominance relation ‘≺’:

C P F C P F C P C P= ′ ∈ ∄ ″ ′ ∈ ″ ′ ≺ ′PS q q q q{ ( , ) ( , ) . ( , ) ( , )}, (13)

Before discussing the rationale for this definition, we show that the
sensitivity-aware Pareto dominance relation is a strict order like the
classical Pareto dominance.

Theorem 1. The sensitivity-aware Pareto dominance relation is a strict
order.

Proof. See Appendix A □

The classical Pareto dominance definition can be obtained by setting

Table 1
Alternative definitions for objective functions {fi}i∈ I over candidate designs.

Type Notation Definition

Lower bound C P′⊥f q( ( , ))i P∈ ′ p qinf Λ ( , )p ϕi

Upper bound C P′⊤f q( ( , ))i P∈ ′ p qsup Λ ( , )p ϕi

Mid-range C P′f q( ( , ))i
•

C P C P′ + ′⊥ ⊤f q f q( ( ( , )) ( ( , )))/2i i

Fig. 4. Candidate designs of Example 4 represented in the quality-attribute
space and coloured by sensitivity. Designs d1 and d2 were synthesised using
RODES (full results are reported in Fig. 7 on a different scale).
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=ϵ 0i for all i∈ I in (12). When ϵi>0 for some i∈ I, dominance with
respect to quality attribute i holds in our generalised definition in two
scenarios:

1) when the quality attribute has a much lower value for the dom-
inating design, i.e. + < ′f d f d(1 ϵ ) ( ) ( )i i i ;

2) when in addition to a (slightly) lower quality attribute value, i.e.
fi(d)< fi(d′), the sensitivity of the dominating design is no worse
than that of the dominated design, i.e. sens(d)≤ sens(d′).

These scenarios are better aligned with the needs of designers than
those obtained by using sensitivity as an additional optimisation cri-
terion, which induces Pareto fronts comprising many designs with low
sensitivity but unsuitably poor quality attributes. Similarly, each ob-
jective function definition from Table 1 captures specific needs of real-
world systems. Thus, using the “upper bound” definition ( ⊤fi ) in (12)
supports the synthesis of conservative designs by comparing competing
designs based on the worst-case values of their quality attributes. This is
suitable when the worst-case performance, reliability, etc. must be
specified for a system, e.g. in its service-level agreement. In contrast,
the “lower bound” definition from Table 1 ( ⊥fi ) can be used when de-
sign selection must be based on the best expected quality values of a
system. Finally, the “mid-range” definition ( fi

•) may be useful—in
conjunction with the actual sensitivity (10)—to compare and select
designs based on their reference midpoint quality values.

Importantly, for ϵi>0 our generalised definition induces Pareto
fronts comprising designs with non-optimal (in the classical sense)
objective function values, but with low sensitivity. We call such designs
sub-optimal robust. Thus, ϵi can be finely tuned to sacrifice objective
function optimality (slightly) for better robustness. Below we formally
characterize the set of robust sub-optimal designs and provide an ex-
ample of the sensitivity-aware dominance relation.

Definition 5 (Sub-optimal robust design). Let PS be a Pareto-optimal set
defined as per (13). A design d′∈ PS is called robust sub-optimal if
∃d∈ PS s.t.:

∀ ∈ ≤ ′ ∧ ∃ ∈ < ′i I f d f d i I f d f d( . ( ) ( ) . ( ) ( ))i i i i

Example 5 (Sensitivity-aware Pareto dominance relation). Consider the
quality-attribute regions of Fig. 4 induced by designs d1, d2, d3 of the
producer-consumer model introduced in Examples 1–4, and the
objective functions defined as = ⊥f fi i for i∈ 1, 2. Visually, ⊥fi
corresponds to the lower-left corners of the regions in Fig. 4. Since
we maximize both objectives, for clarity, we report below the
dominance relation for maximisation:

≻ ′⇔
∀ ∈ ≥ ′ ∧ ∃ ∈ > + ′ ∨

∀ ∈ ≥ ′ ∧ ∃ ∈ > ′ ∧

≤ ′

d d
i I f d f d i I f d f d
i I f d f d i I f d f d

sens d sens d

( . ( ) ( ) . ( ) (1 ϵ ) ( ))
( . ( ) ( ) . ( ) ( )

( ) ( )).

i i i i i

i i i i

The designs d1, d2, d3 have identical parameter tolerances and thus, same
parameter space volume V. We have that d1≻d2≻d3 when = =ϵ ϵ 01 2
(classical dominance) because for =i 1, 2, >⊥ ⊥ ⊥f d f d f d( ) ( ), ( )i i i1 2 3 .
Further, we have that ¬ ≺d d1 2 when = =ϵ ϵ 0.05,1 2 implying that d2 is
robust sub-optimal, i.e., is retained in the sensitivity-aware Pareto-optimal
set, because ¬ >⊥ ⊤f d f d( ) 1.05· ( ),1 1 1 2 ¬ >⊥ ⊥f d f d( ) 1.05· ( ),2 1 2 2 and sens

¬ ≤d sens d( ) ( )1 2 . Design d3 is not included in the front (d1, d2≻d3)
because >⊥ ⊥ ⊥f d f d f d( ), ( ) 1.05· ( )i i i1 2 3 for =i 1, 2.

4. Synthesis of sensitivity-aware Pareto sets

In this section, we describe our method for computing sensitivity-
aware Pareto sets. The method employs genetic multi-objective opti-
misation algorithms for generating candidate designs and a precise
parameter analysis of pCTMCs for evaluating the candidate designs. We

start with a method overview, then we describe the two components the
method builds on.

4.1. Method overview

Computing the Pareto-optimal design set (13) using exhaustive
analysis is very expensive and requires a significant amount of com-
putational resources as the design spaceC P Q( , ) is extremely large due
to its real-valued parameters. Also, every candidate design C P′ q( , )
consists of an infinite set of CTMCs that cannot all be analysed to es-
tablish its quality and sensitivity. To address these challenges, our
pCTMC synthesis method combines search-based software engineering
(SBSE) techniques (Harman et al., 2012a) with techniques for effective
pCTMCs analysis (Češka et al., 2017; 2016), producing a close ap-
proximation of the Pareto-optimal design set.

Algorithm 1 presents the high-level steps of our pCTMC synthesis
method. The approximate Pareto-optimal design set PS returned by this
algorithm starts empty (line 2) and is assembled iteratively by the while
loop in lines 5–15 until a termination criterion TERMINATE C P Q PS( ( , ), )
is satisfied. Each iteration of this while loop uses an SBSE metaheuristic
to get a new set of candidate designs (line 4) and then updates the
approximate Pareto-optimal design set PS in the for loop from lines
5–15. This update involves analysing each candidate design

C P= ′d q( , ) to establish its associated objective function and con-
straint values in line 6, where we use the shorthand notation

C P≡ ′⊤ ⊤f f q( ( , )),i d i, C P≡ ′⊥ ⊥f f q( ( , ))i d i, and ≡cj d, P C∀ ∈ ′p c p q. ( ( , ))j
for all i∈ I, j∈ J. If the design satisfies all constraints (line 7), the for
loop in lines 9–12 finds out if the new design d is dominated by, or
dominates, any designs already in PS. Existing designs dominated by d
are removed from PS (line 11), and d is added to the Pareto-optimal
design set if it is not dominated by any existing designs (line 13).

The elements below must be concretised in the synthesis algorithm,
and are described in the next two sections:

1) The ANALYSEDESIGN function for establishing the quality attributes and
constraint compliance of a candidate design;

2) The CANDIDATEDESIGNS SBSE metaheuristic and the associated TERMINATE

criterion.

The time complexity of Algorithm 1 is linear with respect to the
overall number of optimisation objectives and constraints and the time
required to analyse one quality attribute of a candidate design. The

1: function Synthesis(C(P,Q),{fi}i∈I ,{c j} j∈J ,{γk}k∈K)
2: PS ← ∅
3: while ¬Terminate(C(P,Q), PS ) do
4: CD←CandidateDesigns(C(P,Q),{γk}k∈K ,PS )
5: for all d ∈ CD do
6: ({ f �i,d}i∈I , { f ⊥i,d}i∈I , {c j,d} j∈J)←

AnalyseDesign(d, { fi}i∈I , {c j} j∈J)
7: if

∧
j∈J c j,d then

8: dominated = false
9: for all d′ ∈ PS do

10: if d′ ≺ d then dominated = true; break
11: if d ≺ d′ then PS = PS \ {d′}
12: end for
13: if ¬dominated then PS = PS ∪ {d}
14: end if
15: end for
16: end while
17: return PS
18: end function

Algorithm 1. Parametric Markov chain synthesis.
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complexity is further affected by the SBSE metaheuristic setting,
namely by the number of generations k (i.e. the number of iterations of
the while loop) and the size of the candidate design population

=N CD . Increasing the total number of design evaluations (i.e. k ·N)
typically improves the Pareto optimality of the generated design set,
but also slows down the synthesis process. We provide a detailed
complexity analysis of the synthesis process in Appendix B.

4.2. Computing safe property bounds for pCTMCs

To establish the quality attributes and sensitivity of candidate de-
signs, ANALYSEDESIGN uses precise parameter synthesis techniques
(Češka et al., 2017) to compute safe enclosures of the satisfaction
probability of CSL formulae over pCTMCs. Given a pCTMCC P′ q( , ) and
a CSL path formula ϕ, these techniques provide a safe under-approx-
imation Λq

min and a safe over-approximation Λq
max of the minimal and

maximal probability that C P′ q( , ) satisfies ϕ:

P P

≤ ≥
∈ ′ ∈ ′

p q p qΛ inf Λ ( , ) and Λ sup Λ ( , ).q

p
ϕ

q

p
ϕmin max

This supports the safe approximation of the bounds
∈

⊥ ⊤f f{ , }i i i I of the
objective functions and of the constraints {cj}j∈ J. As shown in
Češka et al. (2017), the over-approximation quality improves as the size
of P′ decreases. Therefore, the precision of the approximation can be
effectively controlled via parameter space decomposition, where P′ is
decomposed into subspaces P′,1 P P′… ′n2 and Λq

min (Λq
max ) is taken as the

minimum (maximum) of the bounds computed for these n subspaces.
Although this refinement step improves the precision of bounds, it also
increases the complexity of ANALYSEDESIGN n-fold (Češka et al., 2017).

The satisfaction function Λϕ is typically non-monotonic (and, for
nested properties, non-continuous), so safe bounds cannot be obtained
by simply evaluating Λϕ at the extrema of parameter region P′.
Accordingly, our technique builds on a parametric backward transient
analysis that computes safe bounds for the parametric transient prob-
abilities in the discrete-time process derived from the pCTMC. This
discretisation is obtained through standard uniformisation, and through
using the Fox and Glynn algorithm (Kwiatkowska et al., 2007) to derive
the required number of discrete steps for a given time bound. Once the
parametric discrete-time process is obtained, the computation of the
bounds reduces to a local and stepwise minimisation/maximisation of
state probabilities in a time non-homogenous Markov process. Pre-
senting the technique in detail as well as the analysis of the approx-
imation error is outside the scope of our paper, but the interested reader
can find a complete description in Češka et al. (2017).

Our approach can be easily extended to also support time-un-
bounded properties by using the method of Quatmann et al. (2016) for
parameter synthesis of discrete-time Markov models and properties
expressed by time-unbounded formulae of probabilistic computation
tree logic.

4.3. Metaheuristic for parametric CTMC synthesis

To ensure that CANDIDATEDESIGNS selects suitable candidate designs,
Algorithm 1 is implemented as a multiobjective optimisation genetic al-
gorithm (MOGA) such as NSGA-II (Deb et al., 2002) or MOCell
(Nebro et al., 2009). MOGAs are genetic algorithms specifically tailored
for the synthesis of close Pareto-optimal set approximations that are
spread uniformly across the search space. As with any genetic algorithm
(Koza, 1992), possible solutions—candidate designs in our case—are
encoded as tuples of genes, i.e. values for the problem variables. In
particular, any candidate design C P′ q( , ) that satisfies a fixed set of
tolerances {γk}k∈ K is uniquely encoded by the gene tuple (p, q), where

P∈p is the centre point of the continuous parameter region P′. The
structure of the gene tuple (p, q) for any pCTMC C P Q( , ) is auto-
matically extracted through parsing the evolvable constructs (4). This
feature enables to conveniently encode the pCTMC parameters into a

representation suitable for the MOGAs.

Example 6 (Candidate design encoding). Consider the candidate designs
d1, d2, d3 with tolerance value =γ 0.005 from Example 2. The gene
tuple (p, q) of a candidate designC P′ q( , ) has the structure rslowrate( ,
deltarate, moduleidx), where moduleidx ∈ {1, 2} is the index of the
Buffer module used by the candidate design. Thus, the designs d1, d2, d3
have gene tuples given by (15.145, 2.08, 2), (13.325, 3.66, 2) and
(17.365, 2.93, 1), respectively.

The first execution of CANDIDATEDESIGNS from Algorithm 1 returns a
randomly generated population (i.e. set) of feasible designs (11). This
population is then iteratively evolved by subsequent CANDIDATEDESIGNS

executions into populations of “fitter” designs through MOGA selection,
crossover and mutation. Selection chooses the population for the next
iteration and a mating pool of designs for the current iteration by using
the objective functions {fi}i∈ I, the sensitivity-aware dominance rela-
tion (12) and the distance in the parameter spaceP between designs to
evaluate each design. Crossover randomly selects two designs from the
mating pool, and generates a new design by combining their genes, and
mutation yields a new design by randomly modifying some of the genes
of a design from the pool.

The evolution of the design population terminates (i.e. the predicate
C P QTerminate PS( ( , ), ) returns true) after a fixed number of design

evaluations or when a predetermined number of successive iterations
generate populations with no significantly fitter designs.

The implementation of the selection, crossover and mutation op-
erations is specific to each MOGA. For instance, Deb et al. (2002)
presents these features for the NSGA-II MOGA used in our experimental
evaluation from Section 6.

5. RODES: a robust-design synthesis tool

Our GPU-accelerated RODES tool synthesises sensitivity-aware
Pareto sets by implementing the process described in Algorithm 1. In
this section, we first present the architecture of RODES, and then de-
scribe how we achieved significant performance and scalability im-
provements through the use of a two-level parallelisation for the
synthesis process.

5.1. RODES architecture

As shown in Fig. 5, the operation of RODES is managed by a Robust-
design synthesis engine. First, a Model parser (built using the Antlr parser
generator, www.antlr.org) preprocesses the design-space pCTMC
model. Next, a Sensitivity-aware synthesiser uses the jMetal Java frame-
work for multi-objective optimisation with metaheuristics (jme-
tal.github.io/jMetal) to evolve an initially random population of can-
didate designs, generating a close approximation of the sensitivity-aware
Pareto front. This involves using a Candidate design analyser, which
invokes the probabilistic model checker PRISM-PSY (Češka et al., 2016)
to obtain the ranges of values for the relevant quality attributes of
candidate designs through precise parameter synthesis. The Pareto
front and corresponding Pareto-optimal set of designs are then plotted
using MATLAB/Octave scripts, as shown in Fig. 7.

A key feature of RODES is its modular architecture. The Sensitivity-
aware synthesiser supports several metaheuristics algorithms, including
variants of genetic algorithms and swarm optimisers. Furthermore, the
sensitivity-aware Pareto dominance relation can be adapted to match
better the needs of the system under development (e.g., by comparing
designs based on the worst, best or average quality attribute values).
Finally, different solvers could be used for the probabilistic model
checker component, including the parameter synthesis solvers for dis-
crete-time Markov chains and time unbounded properties
(Quatmann et al., 2016) implemented in the tools PROPhESY
(Dehnert et al., 2015) and STORM (Dehnert et al., 2017).

The open-source code of RODES is available on our project website
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https://www.github.com/gerasimou/RODES.

5.2. Two-level parallelisation

Synthesising sensitivity-aware Pareto sets is a computationally ex-
pensive process. To mitigate the performance issues that could arise due
to the increased total number of evaluations (k ·N) or the complexity of
evaluating candidate designs (t), we employ a two-level parallelisation.

At the first level, we exploit the fact that the evaluations of parti-
cular candidates within a single population are independent and thus
they can run in parallel (line 6 in Algorithm 1). A synchronisation is
required only after all candidates are evaluated to update the approx-
imate Pareto-optimal set PS and to generate new candidates. This
granularity of parallelism allows us to efficiently utilise both multi-core
and multi-processor architectures. In particular, we can span in parallel
a number of tasks that is equal to the population size N and thus sig-
nificantly alleviate the complexity corresponding to the total number of
design evaluations per MOGA generation. We can further increase the
parallelisation at this level given that the evaluation of quality attri-
butes for each design is independent. Thus, we can span up to

+N I J·( ) tasks to evaluate these attributes in parallel and reduce the
computation time. The current RODES implementation supports par-
allelisation at the population level but not at the level of quality attri-
butes, which we plan to add in future tool releases.

The second level of parallelisation aims at accelerating the evalua-
tion of a single candidate over a single quality attribute. The key factor
affecting the time t required to analyse a quality attribute of a candidate
design is the size of the candidate, namely, the number of non-zero
elements M in the rate matrix of the underlying pCTMC. This number is
proportional to the number of states in the pCTMC, and reflects the
complexity of the candidate designs. To ensure that RODES supports
robust design synthesis for complex systems comprising up to tens
thousands of states, our second-level parallelisation improves scal-
ability with respect to the number of states. In particular, we build on
our previous work (Češka et al., 2016) to integrate a GPU acceleration
of the pCTMC analysis into RODES.

This parallelisation is much more involved, since the computation
for individual states is not independent. As such, the pCTMC analysis is
formulated in terms of matrix-vector operations, making it suitable for
effective data-parallel processing. Accordingly, RODES implements a
state space parallelisation, where a single row of the parametric rate
matrix (corresponding to the processing of a single state) is mapped to a
single computational element. As the underlying pCTMCs typically have

a balanced distribution of the state successors, this mapping yields a
balanced distribution of non-zero elements in the rows of the matrix.
The outcome is a good load balancing within the computation elements,
leading to significant acceleration. In contrast to the parallelisation
proposed in Češka et al. (2016), RODES is designed to leverage the
computational power of modern GPUs, which provide hundreds of
computational elements and can schedule thousands of active threads
in a different way. In particular, RODES can evaluate on a single GPU
several candidate designs (that can differ both in their discrete and in
their continuous parameters) in parallel, provided that the underlying
pCTMCs can fit in the GPU memory. This enables an efficient and
flexible utilisation of the available computation power for complex
robust design synthesis problems (see performance evaluation results in
Section 6.4).

6. Evaluation

We evaluate the effectiveness of RODES using three systems from
different application domains. Also, we assess the performance and
scalability of RODES including the impact of the two-level parallelisa-
tion. We conclude our evaluation with a discussion of threats to va-
lidity.

6.1. Research questions

The aim of our experimental evaluation was to answer the following
research questions.

RQ1 (Decision support): Can RODES support decision making
by identifying effective tradeoffs between the QoS optimality and
the sensitivity of alternative designs? To support decision making,
RODES must provide useful insights into the robustness of alternative
system designs. Therefore, we assessed the optimality-sensitivity tra-
deoffs suggested by RODES for the software systems used in our eva-
luation.

RQ2 (Performance): Does the two-level paralellisation improve
the efficiency of RODES? Since the synthesis of robust models is a
computationally expensive process, we examined the change in per-
formance thanks to the two-level parallelisation architecture described
in Section 5.2.

RQ3 (Metaheuristic effectiveness): How does our RODES ap-
proach perform compared to random search? Following
the standard practice in search-based software engineering
Harman et al. (2012b), we assessed if the stochastic models synthesised

Fig. 5. High-level RODES architecture.
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by RODES “comfortably outperform” those synthesised by a random
search approach.

6.2. Analysed software systems

We performed a wide range of experiments to evaluate our RODES
approach and tool using three software systems from different appli-
cation domains:

• a producer-consumer (PC) software system described in
Examples 1–5;

• a replicated file system used by Google’s search engine
Baier et al. (2013);

• a cluster availability management system Haverkort et al. (2000).

We have already presented the PC system in Examples 1–5. In the
following paragraphs, we introduce the other systems, provide a de-
scription of their stochastic models and present the objectives and
constraints used to synthesise robust Pareto optimal designs. Further
information about these systems are available on our project website at
https://www.github.com/gerasimou/RODES/wiki.

Google file system (GFS). GFS partitions files into chunks of equal size,
and stores copies of each chunk on multiple chunk servers. A master
server monitors the locations of these copies and the chunk servers,
replicating the chunks as needed. During normal operation, GFS stores
CMAX copies of each chunk. However, as servers fail and are repaired,
the number c of copies for a chunk may vary from 0 to CMAX.

Previous work modelled GFS as a CTMC with fixed parameters and
focused on the analysis of its ability to recover from disturbances (e.g.
c<CMAX) or disasters (e.g. master server down) (Baier et al., 2013). In
our work, we adapt the CTMC of the lifecycle of a GFS chunk from
Baier et al. (2013) by considering several continuous and discrete
parameters that a designer of the system has to decide. Fig. 6 shows the
resulting model, encoded in the PRISM modelling language extended
with the evolve constructs from (4). As in Baier et al. (2013), we model
separately the software and hardware failures and repairs, for both the
master server (lines 22–25) and the chunk servers (lines 26–31), and
assume that loss of chunk copies due to chunk server failures leads to
further chunk replications, which is an order of magnitude slower if

=c 0 and a backup of the chunk must be used (line 32).
To evaluate RODES, we assume that GFS designers must select the

hardware failure and repair rates cHardFail and cHardRepair of the
chunk servers, and the maximum number of chunks NC stored on a
chunk server within the ranges indicated in Fig. 6. These parameters
reflect the fact that designers can choose from a range of physical ser-
vers, can select different levels of service offered by a hardware repair
workshop, and can decide a maximum workload for chunk servers. We
consider an initial system state modelling a severe hardware disaster
with all servers down due to hardware failures and all chunk copies
lost, and we formulate a pCTMC synthesis problem for quality re-
quirements given by two maximising objective functions and one con-
straint:

f1: SL1 SL1¬=P U[ ],?
[10,60] where SL1 Mup c 0= ∧ > holds in

states where service level 1 (master up and at least one chunk copy
available) is provided;
f2: =

<=R active C{‵‵ "" } [ ],?
60 where a reward of 1 is assigned to the

states with a number of running chunk servers of at least 0.5M (i.e.,
half of the total number of chunk servers);
c1: ≤

<=R replicates C{‵‵ "" } [ ],5
60 where a transition reward of 1 is as-

signed to each chunk replication transition.

Objective f1 maximises the probability that the system recovers
service level 1 in the time interval [10,60] hours. Objective f2

maximises the expected time the system stays in (optimal) states with at
least 0.5M chunk servers up in the first 60 hours of operation. Finally,
constraint c1 restricts the number of expected chunk replications over
60 h of operations.

Workstation cluster (WC). We extend the CTMC of a cluster
availability management system from Haverkort et al. (2000). This
CTMC models a system comprising two sub-clusters, each with N
workstations and a switch that connects the workstations to a central
backbone. For each component, we consider failure, inspection and
repair rates (where repairs are initiated only after an inspection detects
failures), and we assume that designers must decide these rates for
workstations—i.e., the real-valued parameters wsFail, wsCheck and
wsRepair for our pCTMC, respectively. Additionally, we assume that
designers must select the sub-cluster size N, and must choose between
an expensive repair implementation (i.e., pCTMC module) with a 100%
success probability and a cheaper repair module with 50% success
probability—i.e., two discrete parameters for the pCTMC. We made this
model available on our repository of case studies.

For an initial system state with 5 workstations active in each sub-
cluster and switches and backbone working, we formulate a pCTMC
synthesis problem for quality requirements given by two maximising
objective functions and one constraint:

f1: premium premium¬=P U[ [20, 100] ],? where premium denotes a
system service where at least 1.25N workstations are connected and
operating;
f2: =

≤R operational C{‵‵ "" } [ ],?
100 where a reward of 1 is assigned to

Fig. 6. pCTMC model of the Google file system.
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states with a number of operating clusters between 1.2N and 1.6N;
c1: R{“repair”}≤ 80 [C≤ 100], where transition rewards are asso-
ciated with repair actions of the workstations, backbone and
switches.

Objective f1 maximises the probability that the system recovers the
premium service in the time interval [20,100] hours. Objective f2
maximises the expected time the system spends in cost-optimal states
during the first 100 hours of operation. Constraint c1 restricts the cost of
repair actions during this time (the definition of the cost is provided on
our project website).

6.3. Evaluation methodology

We used the following configuration to evaluate RODES: NSGA-II
MOGA, 10,000 evaluations, initial population of 20 individuals, and
default values for single-point crossover probability =p 0.9c and single-
point mutation probability = +p K D1/( ),m with +K D the number
of (continuous and discrete) design-space parameters. We examine the
behaviour of the sensitivity-aware Pareto dominance relation using
different combinations of tolerance values γ∈ {0.005, 0.01, 0.025} and
sensitivity-awareness coefficients ϵi∈ {0.00, 0.05, 0.10}.

For each experiment, we report the sensitivity-aware Pareto fronts
(Figs. 7, 9, 12 and 14). The Pareto-optimal designs are depicted as
boxes in the quality-attribute space and coloured by sensitivity, using
the same representation as in Figs. 1 and 4. We also show the synthe-
sised designs in the design space, given by the continuous and discrete

parameters of the system. In this case, designs are represented as boxes
in the continuous parameter space, representing the extent of the
parameter variation under the given tolerance. The third dimension
(vertical axis) in Figs. 10 and 13 gives the value of the discrete para-
meter.

6.4. Results and discussion

RQ1 (Decision support). We analysed the designs synthesised by
RODES in order to identify actionable insights regarding the tradeoffs
between the QoS attributes and sensitivity of alternative architecture
designs. For each system, we present our findings independently.

Producer-consumer system (PC). First, we present the results for the
producer consumer system introduced in Examples 1–5, obtained by
running our RODES tool with tolerances γ∈ {0.005, 0.01, 0.025} for
both continuous parameters (r_slow_rate and delta_rate). The resulting
Pareto fronts are shown in Fig. 7, for objectives f1 (number of requests
transferred to the consumer within 25 minutes) and f2 (probability of
adequate buffer utilization) and sensitivity-awareness parameters

= = ∈ϵ ϵ ϵ {0, 0.05, 0.1}1 2 . The corresponding synthesised designs are
presented in Fig. 8.

These Pareto fronts provide a wealth of information supporting the
evaluation of the optimality and robustness of alternative designs. In
particular, the Pareto front for =ϵ 0 and =γ 0.005 contains several
large (yellow) boxes that correspond to highly sensitive designs.

Fig. 7. Sensitivity-aware Pareto fronts for the producer-consumer model. Boxes represent quality-attribute regions, coloured by sensitivity (yellow: sensitive, blue:
robust). Red-bordered boxes indicate sub-optimal robust designs. Designs are compared based on the worst-case quality attribute value (i.e. lower-left corner of each
box). Statistics are: sens, average sensitivity of the front; suboptSols, number of suboptimal solutions; vol, average volume of the front. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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Increasing ϵ produces a number of robust sub-optimal designs (red-
bordered) with slightly sub-optimal quality attributes but improved
robustness. Such designs represent valuable alternatives to the highly
sensitive solutions obtained using the classical, sensitivity-agnostic,
dominance relation. This ability to identify poor (i.e. highly sensitive)
designs and then alternative robust designs with similar quality attri-
butes is a key and unique benefit of our design synthesis method.
Consider for instance the results for =ϵ 0.05 and =γ 0.005. There are
several sensitive designs at high f1 values (see Fig. 7), which correspond
to designs with rslowrate above 15 and low values deltarate (below
2.5), see Fig. 8. Through our method, we found that there exist alter-
native sub-optimal designs with improved robustness (highlighted
green boxes), corresponding to higher deltarate and lower rslowrate
values, i.e, to designs with a slower slow buffer and a faster fast buffer.

Furthermore, we observe that the overall sensitivity improves as the
tolerance γ increases, meaning that the uncertainty (volume) of the
quality attribute regions grows proportionally smaller than the un-
certainty of the corresponding parameter regions, see (10). This ex-
plains why we observe fewer sub-optimal robust designs for higher
tolerances ( =γ 0.01, 0.025). Increasing parameter tolerances also affects
the quality attribute profiles as it leads to larger ranges for objective f1
(i.e., more sensitive) and to smaller ranges for f2 (i.e., more robust). As a
consequence, RODES tends to favour Pareto-optimal solutions with
better f2 and worse f1 values as the tolerance increases. In particular, for

=γ 0.025 all designs with ≥⊥f 3001 are excluded (corresponding to the
most sensitive designs for =γ 0.005, 0.01), which yields regions with
average volume comparable to those for =γ 0.025.

The synthesised parameter regions (Fig. 8) indicate that redirection
(second module – ‘mod2’) is always preferred to non-redirection. Also,
the generated designs select values for the continuous parameters from
the lower-end of their respective range, with rslowrate ∈ [5.00, 15.650]
and deltarate ∈ [0.242, 4.489]. In other words, our algorithm found
Pareto-optimal designs where both buffers have slow transmission rates

(with the fast buffer being slightly faster), while solutions where the
fast buffer has a sensibly higher transmission rate, but a proportional
packet loss rate, are excluded. In particular, configurations with slow
transmission rates have associated good robustness, with very little
ranges for objective f2.

We also observe an interesting relationship between the Pareto-
optimal fronts and the Pareto-optimal designs for different values of the
sensitivity-awareness parameter ϵ∈ {0, 0.05, 0.1}. The average values
for both objectives f1 and f2 experience only little variation as ϵ in-
creases for a fixed tolerance value. For instance, when =γ 0.01, on
average f1∈ [369.37, 372.40] and f2∈ [0.974, 0.98], and when

=γ 0.05, f1∈ [284.94, 285.48] and f2∈ [0.995, 0.996]. Conversely, the
average values for the continuous parameters rslowrate and deltarate
experience more significant variation and present an interesting nega-
tive relationship. More specifically, for any γ value and as the ϵ para-
meter becomes larger, rslowrate shows a decreasing trend while
deltarate shows an increasing trend. We used the Pearson correlation
test to analyse this observation and received a strong negative corre-
lation with the coefficient ∈ − −R [ 0.992, 0.988]4. This result indicates
that as ϵ increases, the sensitivity-aware Pareto-optimal set includes
designs in which the transmission rate difference between the slow and
fast buffers grows. Although unexpected, this observation is very useful.

Producer-consumer variant. We further analyze a variant of the
producer-consumer model, illustrated in Fig. 11. In this version, we
assume a different redirection strategy (lines 10 and 11) that yields a
100% probability of redirection when the slow buffer is full, while in
the original variant the maximum redirection probability is limited to
0.1. We also consider different continuous parameters: the request

Fig. 8. Synthesised Pareto-optimal designs for the producer-consumer model and experiments from Fig. 7. Rectangles in x-y plane correspond to the continuous
parameter regions. The discrete parameter (module - ‘mod’) is omitted since RODES synthesised solutions using only the redirection module (‘mod2’). Boxes are
coloured by sensitivity.

4 This result should not be confused with the correlation between the continuous
parameters rslowrate and deltarate for fixed γ and ϵ values which ranges from zero to
weak, i.e., R∈ [0, 0.3].
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production rate (p_rate) and the packet transmission rate for the fast
buffer (r_fast_rate). The synthesized Pareto fronts and designs are
reported in Figs. 9 and 10, respectively.

We observe that the obtained Pareto-optimal set is substantially
different from the one obtained in the first variant of the model (Fig. 7).
Solutions in this variant are generally more robust, demonstrated by the
fact that at most one suboptimal solution is synthesised for each con-
figuration. A common trait is that favouring objective f2 leads to robust
designs, while robustness is penalized for high f1 values. Comparing the
two PC variants, whose pCTMC models are shown Figs. 3 and 11, we
observe that most of the solutions of the second variant are dominated
by the Pareto front of the first variant for γ∈ {0.005, 0.01} and all ϵ
values, which therefore provides the best performance.

The synthesized parameter regions (Fig. 10) confirm the results of
the first variant: redirection is always preferred (for all but one design),
and the fast buffer rate is not too far from that of the slow buffer
(rfastrate = 13.03). Similarly, all synthesized values for parameter
p_rate are very close to the fixed value (40) used for the same parameter
in the first variant of the model. In the Pareto front, we can observe an
outlier yielding the highest system throughput (f1). This design is ob-
tained when redirection is disabled (see Fig. 10). Notably, no other
designs with no redirection are present in the Pareto front which pro-
vides evidence that redirection is essential to achieve a well-balanced
utilisation of the buffers.

Google file system (GFS). Given the pCTMC model, the two
maximisation objectives and one constraint of the GFS system, we
used RODES to generate Pareto-optimal design sets with tolerances

γ∈ {0.005, 0.01, 0.025} for both continuous parameters (cHardFail and
cHardRepair) of our pCTMC. Fig. 12 shows the Pareto fronts obtained
using the “lower bound” definition from Table 1 for the objective
functions f1 and f2 over candidate designs, and parameters

= = ∈ϵ ϵ ϵ {0, 0.05, 0.1}1 2 for the sensitivity-aware Pareto dominance
relation (12). The design-space representation is given in Fig. 13. We
observe that the Pareto front for =ϵ 0 and =γ 0.005 contains several
large (yellow) boxes that correspond to highly sensitive designs. For
ϵ∈ {0.05, 0.1} and =γ 0.005, these poor designs are “replaced” by
robust designs – surrounded by red borders – with very similar quality
attributes but slightly sub-optimal. The same pattern occurs for =γ 0.01
and (to a lesser extent because of the overall lower sensitivity) for

=γ 0.025. For instance, consider the sensitive design obtained for
=ϵ 0.1 and =γ 0.005 characterized by low hardware fail and repair

rates and high number of chunks (yellow bar on Fig. 13). Our method
found that a more robust solution is possible (highlighted green region),
with lower NC and higher cHardFail and cHardRepair .

We also observe that favouring objective f1 over f2 generally yields
more robust designs (i.e., smaller quality-attribute regions towards the
right end of the Pareto fronts) for all combinations of ϵ and γ.

The design-space view of Fig. 13 evidences a trade-off between
cHardFail and cHardRepair, i.e., optimal designs tend to have either
high failure rates and high repair rates, or low failure and repair rates.
Results for =γ 0.025 reveal that there is actually an ideal ratio between
the two parameters as the corresponding optimal design appear to keep
a relatively constant proportion between cHardFail and cHardRepair.
This result was unexpected, yet very useful, since it indicates that de-
signs not satisfying this trade-off yield excessively fast or slow recovery

Fig. 9. Sensitivity-aware Pareto fronts for the second variant of the producer-consumer model. Legend and colour code are as in Fig. 7. Designs are compared based
on the worst-case quality attribute value (i.e. lower-left corner of each box).
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times, and thus are far from the optimal f1 values.
Further, we observe that the maximum number of chunks per

server, NC, has a major influence on the design robustness, with high
NC values leading to highly sensitive designs. These designs should be
avoided in favour of the alternative designs with low NC values de-
picted in Fig. 13 (for ϵ>0).

Workstation cluster (WC). Fig. 14 depicts the Pareto fronts obtained for
all γ, ϵ combinations of the WC pCTMC model. These Pareto fronts show
again how the large quality-attribute regions (corresponding to high-
sensitivity designs) obtained for =ϵ 0 are “replaced” by much smaller
quality-attribute regions on the Pareto fronts obtained for both ϵ>0
values. For instance, the fronts produced for =γ 0.005 and ϵ∈ {0.05,
0.10}, include sub-optimal robust designs in the objective space [0.6,
0.8]× [40, 50] that do not exist for =ϵ 0. Further, the Pareto front for

= =γ 0.005, ϵ 0.10 includes a sub-optimal robust design in the objective
space [0.3, 0.5]× [45, 70] to support the Pareto-optimal but volatile
(i.e., highly sensitive) designs within that space. Similar observations
can be made for other γ values.

With respect to the system dynamics, our sensitivity-aware synthesis
method reveals that the most robust solutions correspond to the ob-
jective-function “extrema” from the Pareto front, i.e., to quality-attri-
bute regions in which either f1 is very high and f2 is very low, or vice
versa. In particular, solutions in the middle of quality-attribute regions
are highly sensitive as indicated by the yellow-green boxes for =γ 0.005
and ϵ∈ {0.00, 0.05, 0.10}. The equivalent solutions are absent from the
Pareto fronts for =γ 0.01 indicating that they are replaced by more
robust solutions whose quality attributes are close to the low- and high-
end of their respective ranges. Thus, if designers seek robust solutions
they need to select designs that favour one of the quality attributes,
since solutions with balanced trade-off between the quality attributes
lead to either sensitive or sub-optimal robust designs.

We also identified an interesting property of the synthesized de-
signs. Although they cover the entire design space for the real-valued
parameters wsFail, wsCheck and wsRepair, the synthesized designs
select very few values for the sub-cluster size N. In particular, in more

Fig. 10. Synthesised Pareto-optimal designs for the second variant of the producer-consumer model and experiments from Fig. 9. Rectangles in x-y plane correspond
to the continuous parameter regions Boxes are coloured by sensitivity.

Fig. 11. Variant of the producer-consumer model introduced in Section 2.
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than 95% of the experiments N∈ {10, 15} and in the remaining N∈ {9,
12}. We analysed further this observation and ran another experiment
by setting the possible range for sub-cluster size N∈ {11, .., 14}. Table 2
compares the average sensitivity between these two experiments for all
γ, ϵ combinations. Our results validate that the ‘ideal’ values of the
parameter N for the synthesised robust designs are 10 or 15. This
finding demonstrates an unexpected and interesting relationship be-
tween the size of the cluster and robustness, impossible to derive
through existing analysis methods.

RQ2 (Performance). Since the synthesis process is computationally
demanding (see Appendix B), we evaluated the performance of RODES
to analyse multiple candidate designs in parallel using the two-level
parallelisation architecture described in Section 5.2. By employing the
two-level parallelisation, we are able to partially alleviate the CPU
overheads incurred not only due to the complexity of evaluating a
candidate design but also due to the high number of evaluations. All
experiments were run on a CentOS Linux 6.5 64bit server with two
2.6GHz Intel Xeon E5-2670 processors and 64GB memory. For the ex-
periments involving GPU parallelisation, we used two nodes using ei-
ther an nVidia K40 GPGPU card or an nVidia K80 GPGPU card.

The key results of our performance evaluation are described in
Tables 3 and 4. The tables show the design synthesis run-times for

=k 500 and =N 20 (i.e. for =kN 10, 000 design evaluations), for our
three case studies. Run-time statistics are computed over more than 30
independent runs, obtained using all combinations of ϵ∈ {0, 0.05, 0.1}
and γ∈ {0.005, 0.01, 0.025}. Note that 10,000 evaluations, for which
we obtained high quality sensitivity-aware Pareto fronts, are still

negligible with respect to the size of the design space that an exhaustive
search would need to explore (theoretically the design space is un-
countable). To demonstrate this difference, we list the number of can-
didate designs required to “cover” the design space for a given tolerance
value γ (this number is indeed much smaller than the total number of
candidate designs). For PC model ( =γ 0.005) it is around 20,000 de-
signs, but for WC and GFS ( =γ 0.01) it is more than 3 millions designs.

Results in Table 3 confirm that performance of the synthesis process
is affected mainly by the size of the underlying pCTMC and by the
average number of the discretisation steps required to evaluate parti-
cular quantitative attributes (around 4000 steps are required for WC
and PC, 160,000 for GFS v1, and 46,000 for GFS v2). Note that this
number depends on the highest time bound appearing in the properties
and on the highest rate appearing in the transition matrix. This ob-
servation also explains the significant slowdown of the synthesis pro-
cess when switching from v1 to v2 of GFS.

First, we evaluate the performance of CPU-only paralellisation at
different numbers of cores. The results clearly confirm the scalability
with respect to the number of cores. We can also observe that a better
scalability is obtained for more complicated synthesis problems (i.e.
5.5-times speed for 10 cores on GFS v1 versus 7.9-times speed up for 10
core on GFS v2).

Second, we evaluate the performance of the two-level parallelisa-
tion. Table 4 compares the run-times for different number of CPU cores
and GPU devices. In this configuration, we obtain a significant reduc-
tion of runtimes, e.g. for GFS v2 we obtain 8.4-times speedup with one
GPU and one CPU core, and 7.6-times speedup with two GPUs and two

Fig. 12. Sensitivity-aware Pareto fronts for the GFS model. Legend and colour code are as in Fig. 7. Designs are compared based on the worst-case quality attribute
value (i.e. lower-left corner of each box).
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CPU cores. The slightly worse speedup observed in the latter case is due
to the increased CPU-GPU communication overhead when more devices
are employed.

Finally, we see that evaluating more that one candidate solutions
(generated using several CPU cores) on a single GPU further improves
the performance until the GPU is fully utilised (i.e. the maximal number
of active threads that can be dispatched is reached and thus some
parallel evaluations has to be serialised). The performance is also af-
fected by the memory access pattern that depends on the concrete
candidate solutions evaluated in parallel. In particular, the performance
degrades when the memory access locality is decreased. Note that the
maximal number of candidate solutions that can be evaluated in par-
allel on a single GPU is also limited by the GPU memory that has to
accommodate the underlying pCTMC.

RQ3 (Metaheuristic effectiveness). To answer this research
question, we analysed the goodness of the Pareto-optimal designs of the
GFS model obtained with our NSGA-II-based RODES against a variant
that uses random search (RS). For each variant and combination of
ϵ∈ {0, 0.05, 0.10} and γ∈ {0.005, 0.01} we carried out 30 independent
runs, in line with standard SBSE practice (Harman et al., 2012b). As
building the actual Pareto front for large design spaces is challenging
and computationally expensive (GFS has P Q× > E24 10 assuming a
three-decimal precision for continuous parameters), we again followed
the standard practice and combined the sensitivity-aware Pareto fronts
from all 60 RODES and RS runs for each ϵ, γ combination into a re-
ference Pareto front (Zitzler et al., 2003). We then compared the Pareto
fronts achieved by each variant against this reference front by using the
metrics

= + −M wI w sens(1 ) norm1 ϵnorm

and

= + −M wI w sens(1 )IGD norm2 norm

which use a weight w∈ [0, 1] to combine normalised versions of the
established (but sensitivity-agnostic) Pareto-front quality metrics Iϵ and
IIGD (Zitzler et al., 2003) with the normalised design sensitivity. The

unary additive epsilon (Iϵ) gives the minimum additive term by which
the objectives of a particular design from a Pareto front must be altered
to dominate the respective objectives from the reference front. The
inverted generational distance (IIGD) measures the shortest Euclidean
distance from each design in the Pareto front to the closest design in the
reference front. These indicators show convergence and diversity to the
reference front (smaller is better).

Fig. 15 compares RODES and RS across our ϵ, γ combinations using
metrics M1 and M2 with =w 0.5. The RODES median is consistently
lower than that of RS for all ϵ, γ combinations with the exception of

= =γϵ 0, 0.01 (which ignores design sensitivity) for M2. For a given γ,
RODES results improve as ϵ increases, unlike the corresponding RS
results. Thus, the difference between RODES and RS increases with
larger ϵ for both metrics. This shows that RODES drives the search using
sensitivity (10), and thus it can identify more robust designs. We con-
firmed these visual inspection findings using the non-parametric Man-
n–Whitney test with 95% confidence level =α( 0.05). We obtained sta-
tistical significance (p-value <0.05) for all ϵ, γ combinations except for

= =γϵ 0, 0.005, with p-value in the range [1.71E-06, 0.0026] and
[1.086E-10, 0.00061] for M1 and M2, respectively.

Considering these results, we have sufficient empirical evidence that
RODES synthesises significantly more robust designs than RS. These
results are also in line with our previous work which demonstrated
through extensive evaluation that probabilistic model synthesis using
MOGAs achieves significantly better results that RS (Gerasimou et al.,
2015). Hence, the problem of synthesising sensitivity-aware Pareto
optimal sets (13) is challenging, as expected for any well-defined SBSE
problem.

6.5. Threats to validity

Construct validity threats may arise due to assumptions made when
modelling the three systems. To mitigate these threats, we used models
and quality requirements based on established case studies from the
literature (Ghemawat et al., 2003; Haverkort et al., 2000).

Internal validity threats may correspond to bias in establishing cause-

Fig. 13. Synthesised Pareto-optimal designs for the GFS model and experiments from Fig. 12. Rectangles in x-y plane correspond to the continuous parameter
regions.
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effect relationships in our experiments. We limit them by examining
instantiations of the sensitivity-aware Pareto dominance relation (12)
for multiple values of the sensitivity-awareness ϵi and tolerance level γk.
To alleviate further the risk of biased results due to the MOGAs being
stuck at local optimum and not synthesising a global optimum Pareto

front, we performed multiple independent runs. Although this scenario
never occurred in our experiments, when detected, it can be solved by
re-initialising the sub-population outside the Pareto front. Also,
Algorithm 1 ensures that the Pareto front monotonically improves at
each iteration. Finally, we enable replication by making all

Fig. 14. Sensitivity-aware Pareto fronts for the workstation cluster model. Legend and colour code are as in Fig. 7. Designs are compared based on the worst-case
quality attribute value (i.e. lower-left corner of each box).

Table 2
Average design sensitivity for two variants of the workstation cluster synthesis problem, given by different ranges for parameter N. Sensitivity-aware designs (i.e.
where ϵ>0) for N∈ {10..15} have lower sensitivity than for N∈ {11..14}.

Average sensitivity

=γ 0.005, =γ 0.005, =γ 0.005, =γ 0.01, =γ 0.01, =γ 0.01, =γ 0.025, =γ 0.025, s =γ 0.025,
N =ϵ 0.00 =ϵ 0.05 =ϵ 0.10 =ϵ 0.00 =ϵ 0.05 =ϵ 0.10 =ϵ 0.00 =ϵ 0.05 =ϵ 0.10

{10.15} 1.6E6 7.86E5 6.58E5 2.1E5 2.49E5 2.19E5 6.45E4 6.68E4 7.56E4
{11.14} 1.33E6 1.3E6 1.22E6 5.2E5 5.28E5 4.77E5 2E5 1.93E5 1.87E5

Table 3
Time (mean ± SD) in minutes for the synthesis using 10,000 evaluations for one-level CPU parallelisation. #states (#trans.): number of states (transitions) of the
underlying pCTMC. |K|: number of continuous parameters.

Model #states #trans. CPU (#cores)

1 2 5 10

WC (|K| = 3) 3440–8960 18,656–49424 394 ± 25 217 ± 29 118 ± 14 68 ± 8
PC (|K| = 2) 5632 21,968–24572 251 ± 46 131 ± 33 50 ± 2 31 ± 5
GFS v1 (|K| = 2) 1323–2406 7825–15545 390 ± 27 267 ± 49 125 ± 19 71 ± 10
GFS v2 (|K| = 2) 21,606 145,335–148245 19,011 ± 400 8207 ± 361 4562 ± 36 2399 ± 9
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experimental results publicly available on the project webpage.
External validity threats might exist if the search for robust designs

for other systems cannot be expressed as a pCTMC synthesis problem
using objective functions (8) and constraints (9). We limit these threats
by specifying pCTMCs in an extended variant of the widely used mod-
elling language of PRISM (Kwiatkowska et al., 2011), with objective
functions and constraints specified in the established temporal logic
CSL. PRISM parametric Markov models are increasingly used to model
software architectures, e.g. in the emerging field of self-adaptive soft-
ware (Calinescu and Kwiatkowska, 2009; Calinescu et al., 2015;
Moreno et al., 2015; Gerasimou et al., 2014). Another threat might
occur if our method generated a Pareto front that approached the actual
Pareto front insufficiently, producing only low quality designs or de-
signs that did not satisfy the required quality constraints. We mitigated
this threat by using established Pareto-front performance indices to
confirm the quality of the Pareto fronts from our case studies. Never-
theless, additional experiments are needed to establish the applicability
and feasibility of the method in domains with characteristics different
from those used in our evaluation.

7. Related work

RODES builds on the significant body of software performance and
reliability engineering research that employs formal models to analyse
the quality attributes of alternative software designs (e.g. Balsamo
et al., 2004; Bondy, 2014; Becker et al., 2009; Fiondella and Puliafito,
2016; Stewart, 2009; Woodside et al., 2014). Approaches based on
formal models such as queueing networks (Balsamo et al., 2003), Petri
nets (Lindemann, 1998), stochastic models (Calinescu et al., 2016;
Sharma and Trivedi, 2007) and timed automata (Hessel et al., 2008;
Larsen, 2014), and tools for their simulation (e.g. Palladio
(Becker et al., 2009)) and verification (e.g. PRISM (Kwiatkowska et al.,
2011) and UPPAAL (Hessel et al., 2008)) have long been used for this
analysis. However, unlike RODES, these approaches can only analyse
alternative models through a tedious iterative process carried out
manually by experts.

Performance antipatterns can be used to speed up this process by
avoiding the analysis of poor designs (Arcelli et al., 2012; Smith and
Williams, 2000; Cortellessa et al., 2010), but approaches that automate
the search for correct or optimal designs have only been proposed re-
cently. Three types of such approaches are related to RODES. Given a
Markov model that violates a quality requirement, the first ap-
proach—called probabilistic model repair (Bartocci et al., 2011; Chen
et al., 2013)—automatically adjusts its transition probabilities to

produce a “repaired” model that meets the requirement. The second
approach is called precise parameter synthesis (Češka et al., 2017), and
works by identifying transition rates that enable continuous-time
Markov models to satisfy a quality requirement or to optimise a quality
attribute of the system under development. Finally, our previous work
on probabilistic model synthesis (Gerasimou et al., 2015) applies multi-
objective optimisation and genetic algorithms to a design template that
captures alternative system designs, and generates the Pareto-optimal
set of Markov models associated with the quality optimisation criteria
of the system. While these approaches represent a significant advance
over the previously manual methods of alternative design analysis, they
do not take into account the robustness of their repaired or synthesised
models. Likewise, the approach from Martens et al. (2010) employs
evolutionary algorithms to search the configuration space of Palladio
Component Models, but the synthesis process does not reflect the sen-
sitivity of the candidate models.

Syntax-guided synthesis has been used to find probabilistic programs
that best match the available data (Nori et al., 2015), including
synthesis from “sketches”, i.e. partial programs with incomplete details
(Solar-Lezama et al., 2005). In Solar-Lezama et al. (2006), counter-ex-
ample guided inductive synthesis (CEGIS) has been introduced as an
SMT-based synthesiser for sketches and, due to the enormous im-
provement of SMT solvers in the last decade, CEGIS is currently able to
find deterministic programs for a variety of challenging problems
(Solar-Lezama et al., 2005; 2008). Very recently, the concept of meta-
sketches introducing the “optimal synthesis problem” has been pro-
posed (Bornholt et al., 2016) and adapted for synthesis of stochastic
reaction networks (Cardelli et al., 2017). These solutions are com-
plementary to RODES, as they explore other aspects of design alter-
natives, and do not take robustness into account.

Methods that rigorously evaluate how the transition probabilities
affect the satisfiability of temporal properties (expressed as probabil-
istic temporal logic formulae) have been studied in the context of
parameter synthesis. The methods either construct symbolic expres-
sions describing the satisfaction probability as a function of the model
parameters (Dehnert et al., 2015; Hahn et al., 2011), or compute—for
given intervals of parameter values—safe bounds on the satisfaction
probability (Quatmann et al., 2016). In contrast to this work, our robust
design synthesis directly integrates sensitivity analysis into the auto-
mated design process.

Another research area related to RODES is sensitivity analysis, which
analyses the impact of parameter changes on the performance, relia-
bility, cost and other quality attributes of the system under develop-
ment (e.g. Gokhale and Trivedi, 2002; Lo et al., 2005; Huang and Lyu,
2005). However, sensitivity analysis typically operates by sampling the
parameter space and evaluating the system quality attributes for the
sampled values. As such, the result is not guaranteed to reflect the
whole range of quality-attribute values for the parameter region of in-
terest. RODES does not have this drawback, as it operates with close
over-approximations of the quality-attribute regions for the synthesised
robust designs. The perturbation theory for Markov processes has been
applied to analysing the sensitivity of software operational profiles
(Kamavaram and Goseva-Popstojanova, 2003). However, this approach
quantifies the effect of variations in model transition probabilities
without synthesising the analysed solutions. Furthermore, RODES
supports a wide range of continuous and discrete parameters that
cannot be used with the approach from Kamavaram and Goseva-
Popstojanova (2003). Stochastic analysis of architectural models was

Table 4
Time (mean ± SD) in minutes for the synthesis using 10,000 evaluations for two-level CPU+GPU parallelisation.

CPU (#cores) CPU (#cores)/GPU (#devices)

Model 1 2 5 1/1 2/1 5/1 2/2 5/2
GFS v2 19,011 ± 400 8207 ± 361 4562 ± 36 2264 ± 33 1736 ± 8 1625 ± 16 1082 ± 3 1043 ± 22

Fig. 15. RODES vs. random search (RS) comparison for combinations of
γ∈ {0.005, 0.01} and ϵ∈ {0, 0.05, 0.10}, over 30 independent GFS runs. For
both metrics – Iϵ indicator and sensitivity (left) and IIGD indicator and sensitivity
(right) – smaller is better.

R. Calinescu et al. The Journal of Systems & Software 143 (2018) 140–158

156

175



used for early predictions of system component reliability and sensi-
tivity with respect to different operational profiles (Cheung et al.,
2008). Unlike RODES, the research from Cheung et al. (2008) focuses
on exploiting different architectural models and associated analysis
techniques, and is therefore complementary to the work presented in
our paper.

The smoothed model checking technique from Bortolussi
et al. (2016a) computes an analytical approximation of the satisfaction
probability of a formula over a parametric CTMC. While not providing
the same guarantees as the safe over-approximation method from
RODES, the technique was experimentally shown to be highly accurate,
so it can be used to estimate the sensitivity of a probabilistic temporal
logic property to variations in the CTMC parameters.

Finally, the problem of parameter synthesis of stochastic reaction
networks with respect to multi-objective specification has been recently
considered in Bortolussi et al. (2016b). The authors employ statistical
methods to estimate how kinetic parameters affect the satisfaction
probability and average robustness of Signal Temporal Logic
properties. In contrast to our approach, a candidate solution from
Bortolussi et al. (2016b) has all parameters fixed and the robustness
captures how far the candidate is from violating the particular prop-
erties.

8. Conclusion

Robustness is a key and yet insufficiently explored characteristic of

software designs, as it can mitigate the unavoidable discrepancies be-
tween real systems and their models. We presented RODES, a tool-
supported method for the automated synthesis of Pareto-optimal
probabilistic models corresponding to robust software designs.

RODES integrates for the first time search-based synthesis and
parameter analysis for parametric Markov chains. Our RODES tool
automates the application of the method, and provides multi-core as
well as GPU-based parallelisation that significantly speeds up the design
synthesis process. We performed an extensive experimental evaluation
of RODES on three case studies from different application domains.
These experiments showed that the sensitivity-aware Pareto-optimal
design sets synthesised by RODES enable the selection of robust designs
with a wide range of quality-attribute values and provide insights into
the system dynamics. The experiments also demonstrate that the par-
allelisation ensures scalability with respect to the complexity of the
systems under development.

In our future work, we will assess the effectiveness of Pareto-dom-
inance relations defined over intervals, and we will augment RODES
with alternative multiobjective optimisation techniques such as particle
swarm optimisation Reyes-Sierra and Coello (2006). In addition, we are
planning to extend the RODES modelling language (and the under-
pinning search method) with support for syntax-based synthesis
Alur et al. (2013) of robust designs from partial pCTMC specifications,
including sketches of chemical reaction networks Cardelli et al. (2017).

Appendix A. Proof of theorem 1

We show that the sensitivity-aware Pareto dominance relation defined in Definition 4 is a strict order.

Proof. We need to show that relation ≺ from (12) is irreflexive and transitive. For any F∈d , d≺d would require that < +f d f d( ) (1 ϵ ) ( )i i i or
fi(d)< fi(d) for some i∈ I, which is impossible. Thus, ≺ is irreflexive. To show that ≺ is transitive, consider three designs F′ ″ ∈d d d, , such that d≺d′
and d′≺d′′. According to (12), we have ∀i∈ I.fi(d)≤ fi(d′) and ∀i∈ I.fi(d′)≤ fi(d′′), so ∀i∈ I.fi(d)≤ fi(d′′) due to the transitivity of ≤ . Furthermore, at
least one half of the disjunction from definition (12) must hold for each of d′≺d′′ and d′≺d′′. We have three cases. Assume first that the left half holds
for d≺d′, i.e. that + < ′f d f d(1 ϵ ) ( ) ( )i i i1 1 1 for some i1∈ I; as ′ ≤ ″f d f d( ) ( ),i i1 1 we also have + < ″f d f d(1 ϵ ) ( ) ( ),i i i1 1 1 so d≺d′′ in this case. Assume now that
left half of disjunction (12) holds for d′≺d′′, i.e., that + ′ < ″f d f d(1 ϵ ) ( ) ( )i i i1 1 1 for some i1∈ I; as ≤ ′f d f d( ) ( ),i i1 1 we again have + < ″f d f d(1 ϵ ) ( ) ( )i i i1 1 1 and
d≺d′′. Finally, consider that only the right half of disjunction (12) holds for both d≺d′ and d≺d′. In this last case, sens(d)≤ sens(d′)≤ sens(d′′) and
there is an i1∈ I such that < ′ ≤ ″f d f d f d( ) ( ) ( ),i i i1 1 1 so also d≺d′′, and therefore ≺ is transitive. □

Appendix B. Complexity analysis

The time complexity of Algorithm 1 representing the synthesis process is

O + +k N I J t k I N( · ·( )· · · ),2

where k is the number of iterations of the (MOGA) while loop (i.e. the number of generations); =N CD is the size of the candidate design
population; +I J is the overall number of objective functions and constraints; and t is the time required to analyse a quality attribute of a candidate
design. The term +k N I J t· ·( )· quantifies the overall complexity of evaluating candidate designs, while k · |I| ·N2 corresponds to comparing designs
and building the front in lines 7–14 of Algorithm 1.

The factor t depends on the size of the underlying state space and on the number of discrete-time steps required to evaluate the particular quality
attributes. As shown in Češka et al. (2017), O=t t t( · )CSL pCSL . The factor =t ϕ M q t· · ·CSL max is the worst-case time complexity of time-bounded CSL
model checking Kwiatkowska et al. (2007), where |ϕ| is the length of the input CSL formula ϕ, tmax is the highest time bound occurring in it, M is the
number of non-zero elements in the rate matrix and q is the highest rate in the matrix. The factor tpCSL is due to the parametric analysis of the design
and depends on the form of polynomials appearing in the parametric rate matrix D ′R . Models of software systems typically include only linear
polynomials, for which O=t n( ),pCSL where n is the number of continuous parameters.
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Abstract
Weconsider the problemof approximate reduction of non-deterministic automata that appear in hardware-accelerated network
intrusion detection systems (NIDSes). We define an error distance of a reduced automaton from the original one as the
probability of packets being incorrectly classified by the reduced automaton (wrt the probabilistic distribution of packets in
the network traffic). We use this notion to design an approximate reduction procedure that achieves a great size reduction
(much beyond the state-of-the-art language-preserving techniques) with a controlled and small error. We have implemented
our approach and evaluated it on use cases from Snort, a popular NIDS. Our results provide experimental evidence that the
method can be highly efficient in practice, allowing NIDSes to follow the rapid growth in the speed of networks.

Keywords Reduction · Nondeterministic finite automata · Deep packet inspection · High-speed network monitoring

1 Introduction

The recent years have seen a boom in the number of secu-
rity incidents in computer networks. In order to alleviate the
impact of network attacks and intrusions, Internet service
providers want to detect malicious traffic at their network’s
entry points and on the backbones between sub-networks.
Software-based network intrusion detection systems (NID-
Ses), such as the popular open-source system Snort [50],
are capable of detecting suspicious network traffic by testing
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(among others) whether a packet payload matches a regular
expression (regex) describing known patterns of malicious
traffic. NIDSes collect and maintain vast databases of such
regexes that are typically divided into groups according to
types of the attacks and target protocols.

Regex matching is the most computationally demanding
task of a NIDS as its cost grows with the speed of the net-
work traffic as well as with the number and complexity
of the regexes being matched. The current software-based
NIDSes cannot perform the regex matching on networks
beyond1Gbps [5,28], so they cannot handle the current speed
of backbone networks ranging between tens and hundreds
of Gbps. A promising approach to speed up NIDSes is to
(partially) offload regex matching into hardware [27,28,36].
The hardware then serves as a pre-filter of the network traffic,
discarding the majority of the packets from further process-
ing. Such pre-filtering can easily reduce the traffic the NIDS
needs to handle by two or three orders of magnitude [28].

Field-programmable gate arrays (FPGAs) are the lead-
ing technology in high-throughput regex matching. Due to
their inherent parallelism, FPGAs provide an efficient way
of implementing non-deterministic finite automata (NFAs),
which naturally arise from the input regexes. Although
the amount of available resources in FPGAs is continually
increasing, the speed of networks grows even faster. Work-
ing with multi-gigabit networks requires the hardware to
use many parallel packet processing branches in a single
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FPGA [36]; each of them implementing a separate copy of
the concerned NFA, and so reducing the size of the NFAs
is of the utmost importance. Various language-preserving
automata reduction approaches exist, mainly based on com-
puting (bi)simulation relations on automata states (cf. the
related work). The reductions they offer, however, do not sat-
isfy the needs of high-speed hardware-accelerated NIDSes.

Our answer to the problem is approximate reduction of
NFAs, allowing for a trade-off between the achieved reduc-
tion and the precision of the regex matching. To formalize
the intuitive notion of precision, we propose a novel proba-
bilistic distance of automata. It captures the probability that
a packet of the input network traffic is incorrectly accepted
or rejected by the approximated NFA. The distance assumes
a probabilistic model of the network traffic. (We show later
how such a model can be obtained.)

Having formalized the notion of precision, we specify the
target of our reductions as two variants of an optimization
problem: (1) minimizing the NFA size given the maximum
allowed error (distance from the original), or (2) minimiz-
ing the error given the maximum allowed NFA size. Finding
such optimal approximations is, however, computationally
hard (PSPACE-complete, the same as precise NFA mini-
mization).

Consequently, we sacrifice the optimality and, motivated
by the typical structure of NFAs that emerge from a set
of regexes used by NIDSes (a union of many long “tenta-
cles”with occasional small strongly connected components),
we limit the space of possible reductions by restricting the
set of operations they can apply to the original automaton.
Namely, we consider two reduction operations: (i) collapsing
the future of a state into a self-loop (this reduction over-
approximates the language), or (ii) removing states (such
a reduction is under-approximating).

The problem of identifying the optimal sets of states on
which these operations should be applied is still PSPACE-
complete.The restrictedproblem is, however,more amenable
to an approximation by a greedy algorithm. The algorithm
applies the reductions state-by-state in an order determined
by a pre-computed error labelling of the states. The process
is stopped once the given optimization goal in terms of the
size or error is reached. The labelling is based on the proba-
bility of packets that may be accepted through a given state
and hence over-approximates the error that may be caused by
applying the reduction at a given state. As our experiments
show, this approach can give us high-quality reductionswhile
ensuring formal error bounds.

Finally, it turns out that even the pre-computation of
the error labelling of the states is costly (again PSPACE-
complete). Therefore, we propose several ways to cheaply
over-approximate it such that the strong error bound guaran-
tees are still preserved. In particular, we are able to exploit
the typical structure of the “union of tentacles” of the hard-

ware NFA in an algorithm that is exponential in the size of
the largest “tentacle” only, which gives us a method that is
indeed much faster in practice.

We have implemented our approach and evaluated it on
regexes used to classifymalicious traffic in Snort.We obtain
quite encouraging experimental results demonstrating that
our approach provides a much better reduction than lan-
guage-preserving techniques with an almost negligible error.
In particular, our experiments, going down to the level of an
actual implementation of NFAs in FPGAs, confirm that we
can squeeze into an up-to-date FPGA chip real-life regexes
encoding malicious traffic, allowing them to be used with a
negligible error for filtering at speeds of 100Gbps (and even
400Gbps). This is far beyond what one can achieve with
current exact reduction approaches.

This paper is an extended version of the paper that
appeared in the proceedings of TACAS’18 [12], containing
complete proofs of the presented lemmas and theorems.
Related Work Hardware acceleration for regex matching
at the line rate is an intensively studied technology that
uses general-purpose hardware [3,4,29–33,49,53] as well
as FPGAs [8,14,25,27,28,36,39,45,47]. Most of the works
focus on DFA implementation and optimization techniques.
NFAs can be exponentially smaller than DFAs but need,
in the worst case, O(n) memory accesses to process each
byte of the payload where n is the number of states. In
most cases, this incurs an unacceptable slowdown. Several
works alleviate this disadvantage of NFAs by exploiting
reconfigurability and fine-grained parallelism of FPGAs,
allowing one to process one character per clock cycle (e.g.
[8,27,28,36,39,45,47]).

In [33], which is probably the closest work to ours,
the authors consider a set of regexes describing network
attacks. They replace a potentially prohibitively large DFA
by a tree of smaller DFAs, an alternative to using NFAs
that minimizes the latency occurring in a non-FPGA-based
implementation. The language of every DFA-node in the tree
over-approximates the languages of its children. Packets are
filtered through the tree from the root downwards until they
belong to the language of the encountered nodes, and may
be finally accepted at the leaves, or are rejected otherwise.
The over-approximating DFAs are constructed using a simi-
lar notion of probability of an occurrence of a state as in our
approach. Themain differences fromourwork are that (1) the
approach targets approximation of DFAs (not NFAs), (2) the
over-approximation is based on a given traffic sample only (it
cannot benefit from a probabilistic model), and (3) no prob-
abilistic guarantees on the approximation error are provided.

Approximation of DFAs was considered in various other
contexts. Hyper-minimization is an approach that is allowed
to alter language membership of a finite set of words [21,35].
ADFAwith agivenmaximumnumber of states is constructed
in [20], minimizing the error defined either by (i) counting
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prefixes ofmisjudgedwords up to some length, or (ii) the sum
of the probabilities of the misjudged words wrt the Poisson
distribution over Σ∗. Neither of these approaches considers
reduction of NFAs nor allows to control the expected error
with respect to the real traffic.

In addition to the metrics mentioned above when dis-
cussing the works [20,21,35], the following metrics should
also be mentioned. The Cesaro–Jaccard distance studied in
[44] is, in spirit, similar to [20] and does also not reflect
the probability of individual words. The edit distance of
weighted automata from [41] depends on the minimum edit
distance between pairs of words from the two compared
languages, again regardless of their statistical significance.
One might also consider using the error metric on a pair of
automata introduced by Angluin in the setting of PAC (prob-
ably approximately correct) learning of DFAs [1], where
n words are sampled from a given distribution and their (non-
)acceptance tested in the two automata. If the outputs of both
automata agree on all n words, one can say that with confi-
dence δ the distance between the two automata is at most ε,
where δ and ε can be determined from n. None of these
notions is suitable for our needs.

Language-preserving minimization of a given NFA is
a PSPACE-complete problem [26,34]. More feasible (poly-
nomial time) is language-preserving size reduction of NFAs
based on (bi)simulations [9,13,24,42],which does not aim for
a truly minimal NFA. A number of advanced variants exist,
based onmulti-pebble or look-ahead simulations, or on com-
binations of forward and backward simulations [15,18,37].
The practical efficiency of these techniques is, however, often
insufficient to allow them to handle the large NFAs that occur
in practice and/or they do not manage to reduce the NFAs
enough. Finally, even a minimal NFA for the given set of
regexes is often too big to be implemented in the given FPGA
operating on the required speed (as shown even in our exper-
iments). Our approach is capable of a much better reduction
for the price of a small change of the accepted language.

2 Preliminaries

We use 〈a, b〉 to denote the set {x ∈ R | a ≤ x ≤ b} and N
to denote the set {0, 1, 2, . . . }. Given a pair of sets X1 and
X2, we use X1 � X2 to denote their symmetric difference,
i.e. the set {x | ∃!i ∈ {1, 2} : x ∈ Xi }. We use the notation
[v1, . . . , vn] to denote a vector of n elements, 1 to denote
the all 1’s vector [1, . . . , 1] (the dimension of 1 is always
clear from the context), A to denote a matrix, and A
 for its
transpose, and I for the identity matrix.

In the following, we fix a finite non-empty alphabet Σ .
A non-deterministic finite automaton (NFA) is a quadru-
ple A = (Q, δ, I , F) where Q is a finite set of states,
δ : Q × Σ → 2Q is a transition function, I ⊆ Q is a set

of initial states, and F ⊆ Q is a set of accepting states. We
use Q[A], δ[A], I [A], and F[A] to denote Q, δ, I , and F ,
respectively, and q

a−→ q ′ to denote that q ′ ∈ δ(q, a). Often,
we abuse notation and treat δ as a subset of Q × Σ × 2Q .
A sequence of states ρ = q0 · · · qn is a run of A over
a word w = a1 · · · an ∈ Σ∗ from a state q to a state q ′,
denoted as q

w,ρ� q ′, if ∀1 ≤ i ≤ n : qi−1
ai−→ qi , q0 = q,

and qn = q ′. Sometimes, we use ρ in set operations where it
behaves as the set of states it contains. We also use q

w� q ′
to denote that ∃ρ ∈ Q∗ : q w,ρ� q ′ and q � q ′ to denote
that ∃w : q w� q ′. The language of a state q is defined as
LA(q) = {w | ∃qF ∈ F : q w� qF } and its banguage (back-
language) is defined as L�

A(q) = {w | ∃qI ∈ I : qI w� q}.
Both notions can be naturally extended to a set S ⊆ Q:
LA(S) = ⋃

q∈S LA(q) and L�

A(S) = ⋃
q∈S L

�

A(q). We
drop the subscript A when the context is obvious. A accepts
the language L(A) defined as L(A) = LA(I ). A is called
deterministic (DFA) if |I | = 1 and ∀q ∈ Q and ∀a ∈ Σ :
|δ(q, a)| ≤ 1, and unambiguous (UFA) if ∀w ∈ L(A) :
∃!qI ∈ I , ρ ∈ Q∗, qF ∈ F : qI w,ρ� qF .

The restriction of A to S ⊆ Q is an NFA A|S given
as A|S = (S, δ ∩ (S × Σ × 2S), I ∩ S, F ∩ S). We define
the trim operation as trim(A) = A|C where C = {q | ∃qI ∈
I , qF ∈ F : qI � q � qF }. For a set of states R ⊆ Q, we
use reach(R) to denote the set of states reachable from R,
reach(R) = {r ′ | ∃r ∈ R : r � r ′}. We use the number of
states of A as a measure of its size, i.e. |A| = |Q|.

A (discrete probability) distribution over a countable set X
is a mapping Pr : X → 〈0, 1〉 such that

∑
x∈X Pr(x) = 1.

An n-state probabilistic automaton (PA) over Σ is a triple
P = (α, γ , {Δa}a∈Σ)where α ∈ 〈0, 1〉n is a vector of initial
weights, γ ∈ 〈0, 1〉n is a vector of final weights, and for every
a ∈ Σ , Δa ∈ 〈0, 1〉n×n is a transition matrix for symbol a.
We abuse notation and use Q[P] to denote the set of states
Q[P] = {1, . . . , n}. Moreover, the following two properties
need to hold: (i)

∑{α[i] | i ∈ Q[P]} = 1 (the initial prob-
ability is 1) and (ii) for every state i ∈ Q[P] it holds that∑{Δa[i, j] | j ∈ Q[P], a ∈ Σ} + γ [i] = 1. (The probabil-
ity of accepting or leaving a state is 1.) We define the support
of P as the NFA supp(P) = (Q[P], δ[P], I [P], F[P]) s.t.
δ[P] = {(i, a, j) | Δa[i, j] > 0},
I [P] = {i | α[i] > 0},
F[P] = {i | γ [i] > 0}.
Let us assume that every PA P is such that supp(P) =
trim(supp(P)). For a word w = a1 . . . ak ∈ Σ∗, we use
Δw to denote the matrix Δa1 · · · Δak . For the empty word
ε, we define Δε = I . It can be easily shown that P
represents a distribution over words w ∈ Σ∗ defined as
PrP (w) = α
 ·Δw · γ . We call PrP (w) the probability of w

in P . Given a language L ⊆ Σ∗, we define the probability
of L in P as PrP (L) = ∑

w∈L PrP (w).
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In some of the proofs later, we use the PA PExp defined as
PExp = (

1, [μ], {[μ]a}a∈Σ

)
where μ = 1

|Σ |+1 . PExp models
a distribution over the words from Σ∗ using a combination
of an exponential distribution (for selecting the length l of
a word) and the uniform distribution (for selecting symbols
in a word of the length l). In particular, the purpose of PExp

is to assign every word w ∈ Σ∗ the (nonzero) probability
PrPExp(w) = μ|w|+1; any other PA assigning nonzero prob-
abilities to all words would work as well.

If Conditions (i) and (ii) from the definition of PAs are
dropped, we speak about a pseudo-probabilistic automaton
(PPA), which may assign a word from its support a quantity
that is not necessarily in the range 〈0, 1〉, denoted as the sig-
nificance of the word below. PPAs may arise during some of
our operations performed on PAs. Note that PPAs can be seen
as instantiations of multiplicity or weighted automata [46].

3 Approximate reduction of NFAs

In this section, we first introduce the key notion of our
approach: a probabilistic distance of a pair of finite automata
wrt a given probabilistic automaton that, intuitively, repre-
sents the significance of particular words. We discuss the
complexity of computing the probabilistic distance. Finally,
we formulate two problems of approximate automata reduc-
tion via probabilistic distance.

3.1 Probabilistic distance

We start by defining our notion of a probabilistic distance
of two NFAs. Assume NFAs A1 and A2 and a probabilistic
automatonP specifying the distribution PrP : Σ∗ → 〈0, 1〉.
The probabilistic distance dP (A1,A2) between A1 and A2

wrt PrP is defined as

dP (A1,A2) = PrP (L(A1)� L(A2)).

Intuitively, the distance captures the significance of thewords
accepted by one of the automata only. We use the distance
to drive the reduction process towards automata with small
errors and to assess the quality of the result. (The distance is
sometimes called the symmetric difference semi-metric [17].)

The value of PrP (L(A1)� L(A2)) can be computed as
follows. Using the fact that (1) L1 � L2 = (L1\L2)�(L2\
L1) and (2) L1\L2 = L1\(L1 ∩ L2), we get

dP (A1,A2)

= PrP (L(A1)\L(A2)) + PrP (L(A2)\L(A1))

= PrP (L(A1)\(L(A1) ∩ L(A2)))

+ PrP (L(A2)\(L(A2) ∩ L(A1)))

= PrP (L(A1))+PrP (L(A2)) − 2 · PrP (L(A1) ∩ L(A2)).

Hence, the key step is to compute PrP (L(A)) for an NFA A
and aPAP . Problems similar to computing such a probability
have been extensively studied in several contexts including
verification of probabilistic systems [2,6,52].

In our approach, we apply the method of [6] and compute
PrP (L(A)) in the following way. We first check whether
the NFA A is unambiguous. This can be done by using the
standard product construction (denoted as ∩) for comput-
ing the intersection of the NFA A with itself and trimming
the result, formally B = trim(A ∩ A), followed by a check
whether there is some state (p, q) ∈ Q[B] s.t. p �= q [40].
If A is ambiguous, we either determinize it or disambiguate
it [40], leading to a DFA/UFA A′, respectively.1 Then, we
construct the trimmed product of A′ and P (this can be
seen as computing A′ ∩ supp(P) while keeping the prob-
abilities from P on the edges of the result), yielding a PPA
R = (αR, γ R, {ΔR

a }a∈Σ).2 Intuitively, R represents not
only the words of L(A) but also their probability in P (we
give the formal definition ofR inside the proof of Lemma 2).
Now, letΔ = ∑

a∈Σ Δa be thematrix that expresses, for any
p, q ∈ Q[R], the significance of getting from p to q via any
a ∈ Σ . Further, it can be shown (cf. the proof of Lemma 1)
that the matrix Δ∗, representing the significance of going
from p to q via anyw ∈ Σ∗, can be computed as (I −Δ)−1.
Then, to get PrP (L(A)), it suffices to take α
 · Δ∗ · γ .
Note that, due to the determinization/disambiguation step,
the obtained value indeed is PrP (L(A)) despite R being
a PPA. The two lemmas below summarize the complexity of
this step for NFAs and UFAs, respectively.

Lemma 1 Let P be a PA and A an NFA. The problem of
computing PrP (L(A)) is PSPACE-complete.

Proof Themembership inPSPACE can be shown as follows.
The computation described above corresponds to solving
a linear equation system. The system has an exponential
size because of the blowup caused by the determiniza-
tion/disambiguation of A required by the product construc-
tion. The equation system can, however, be constructed by
a PSPACE transducer Meq. Moreover, as solving linear
equation systems can be done using a polylogarithmic-space
transducer MSysLin, one can combine these two transducers
to obtain a PSPACE algorithm. Details of the construction
follow:

First, we construct a transducer Meq that, given an NFA
A = (QA, δA, IA, FA) and a PA P = (α, γ , {Δa}a∈Σ) on
its input, constructs a system of m = 2|QA| · |Q[P]| linear
equations S(A,P) of m unknowns ξ [R,p] for R ⊆ QA and
p ∈ Q[P] representing the product of A′ and P , where A′

1 In theory, disambiguation can produce smaller automata, but, in our
experiments, determinization proved to work better.
2 R is not necessarily a PA since there might be transitions in P that
are either removed or copied several times in the product construction.
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is a deterministic automaton obtained fromA using the stan-
dard subset construction. The system of equations S(A,P)

is defined as follows (cf. [6]):

ξ [R,p]=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if LA(R) ∩ LP ′(p)=∅,
∑

a∈Σ

∑

p′∈Q[P]

(
Δa[p, p′] · ξ [δA(R,a),p′]

) + γ [p]
if R ∩ FA �= ∅,

∑

a∈Σ

∑

p′∈Q[P]
Δa[p, p′] · ξ [δA(R,a),p′]

otherwise,

such that P ′ = supp(P) and δA(R, a) = ⋃
r∈R δ(r , a).

The test LA(R) ∩ LP ′(p) = ∅ can be performed by check-
ing ∃r ∈ R : LA(r) ∩ LP ′(p) = ∅, which can be done in
polynomial time.

It holds that PrP (L(A)) = ∑
p∈Q[P] α[p] · ξ [IA,p].

Although the size ofS(A,P) (which is the output ofMeq) is
exponential in the size of the input of Meq, the internal con-
figuration of Meq only needs to be of polynomial size, i.e.
Meq works in PSPACE. Note that the size of each equation
is at most polynomial.

Given a system S ofm linear equations withm unknowns,
solving S can be done in the time O(log2 m) using O(mk)

processors for a fixed k [16, Corollary 2] (i.e. it is in the
class NC).3 According to [19, Lemma 1b], an O(log2 m)

time-bounded parallel machine can be simulated by an
O(log4 m) space-bounded Turing machine. Therefore, there
exists anO(log4 m) space-bounded Turing machineMSysLin

that solves a system ofm linear equations withm unknowns.
As a consequence, MSysLin can solve S(A,P) using the
space

O(log4(2|QA| · |Q[P]|)) = O(log4 2|QA| + log4 |Q[P]|))
= O(|QA|4 + log4 |Q[P]|)).

The missing part is how to combine Meq and MSysLin

to avoid using the exponential-size output tape of Meq. For
this, we use the following standard technique for combining
reductions [43, Proposition 8.2].

We take turns in simulating MSysLin and Meq. We start
with simulatingMSysLin.WhenMSysLinmoves its head right,
we pause it and simulateMeq until it outputs the correspond-
ing bit, which is fed into the input of MSysLin. Then we
pause Meq and resume the run of MSysLin. On the other
hand, when MSysLin moves its head left (from the k-th posi-
tion on the tape),we pause it, restartMeq from its initial state,
and simulate it until it outputs the (k − 1)-st bit of its output
tape, and then pause Meq and return the control to MSysLin.
In order to keep track of the position k of the head ofMSysLin

on its tape, we use a binary counter.

3 We use log k to denote the base-2 logarithm of k.

The internal configuration of both Meq and MSysLin is of
a polynomial size and the overhead of keeping track of the
position of the head ofMSysLin also requires only polynomial
space.Therefore, thewhole transducer runs in a polynomially
bounded space.

The PSPACE-hardness is obtained by a reduction from
the (PSPACE-complete) universality of NFAs: using the
PA PExp defined in Sect. 2, which assigns every word a
nonzero probability. it holds that

L(A) = Σ∗ iff PrPExp(L(A)) = 1.

��

Lemma 2 Let P be a PA and A a UFA. The problem of com-
puting PrP (L(A)) is in PTIME.

Proof We modify the proof from [6] into our setting. First,
we give a formal definition of the product of a PA P =
(α, γ , {Δa}a∈Σ) and an NFA A = (Q, δ, I , F) as the
(|Q[P]| · |Q|)-state PPA R = (αR, γ R, {ΔR

a }a∈Σ) where4

αR[(qP , qA)] = αR[qP ] · |{qA} ∩ I |,
γ R[(qP , qA)] = γ R[qP ] · |{qA} ∩ F |,

ΔR
a [(qP , qA), (q ′

P , q ′
A)]=Δa[qP , q ′

P ] · |{q ′
A}∩δ(qA, a)|.

Note thatR is not necessarily a PA anymore because forw ∈
Σ∗ such that PrP (w) > 0, (i) ifw /∈ L(A), then PrR(w) = 0
and (ii) if w ∈ L(A) and A can accept w using n different
runs, then PrR(w) = n · PrP (w). As a consequence, the
probabilities of allwords fromΣ∗ are no longer guaranteed to
add up to 1. IfA is unambiguous, the second issue is avoided
and R preserves the probabilities of words from L(A), i.e.
PrR(w) = PrP (w) for allw ∈ L(A), soR can be seen as the
restriction of PrP to L(A). In the following, we assume R
is trimmed.

In order to compute PrP (L(A)), we construct a matrix E
defined as E = ∑

a∈Σ ΔR
a . Because R is trimmed, the

spectral radius of E, denoted as ρ(E), is less than one, i.e.
ρ(E) < 1. (The proof of this fact can be found, for example,
in [6].) Intuitively, ρ(E) < 1 holds because we trimmed
the redundant states from the product of P and A. We fur-
ther use the following standard result in linear algebra: if
ρ(E) < 1, then (i) the matrix I − E is invertible and (ii)
the sum of powers of E, denoted as E∗, can be computed
as E∗ = ∑∞

i=0 E
i = (I − E)−1 [23]. Moreover, note that

matrix inversion can be done in polynomial time [48].
E∗ represents the reachability between nodes of R, i.e.

E∗[r , r ′] is the sum of significances of all (possibly infinitely

4 We assume an implicit bijection between states of the product R and
{1, . . . , |Q[R]|}.
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many) paths from r to r ′ in R. When related to P and A, the
matrix E∗ represents the reachability in P wrt L(A), i.e.

E∗[(qP , qA), (q ′
P , q ′

A)]
=

∑ {
Δw[qP , q ′

P ] ∣
∣ qA

w� q ′
A, w ∈ Σ∗} . (1)

We prove Equation (1) using the following reasoning. First,
we show that

En[(qP , qA), (q ′
P , q ′

A)]
=

∑ {
Δw[qP , q ′

P ] ∣
∣ qA

w� q ′
A, w ∈ Σn

}
, (2)

i.e. En represents the reachability inP wrt L(A) for words of
lengthn.WeproveEquation (2) by induction onn: For n = 0,
the equation follows from the fact that E0 = I . For n = 1,
the equation follows directly from the definition of R and
Δ. Next, suppose that Equation (2) holds for n > 1; we
show that it holds also for n + 1. We start with the following
reasoning:

bEn+1[(qP , qA), (q ′
P , q ′

A)]
= EnE)[(qP , qA), (q ′

P , q ′
A)]

= sum
{
En[(qP , qA), (q ′′

P , q ′′
A)] · E[(q ′′

P , q ′′
A),

(q ′
P , q ′

A)]
∣
∣
∣ (q ′′

P , q ′′
A) ∈ Q[R]

}
.

The last line is obtained via the definition of matrix multipli-
cation. Further, using the induction hypothesis, we get

bEn+1[(qP , qA), (q ′
P , q ′

A)]
= sum

{ ∑ {
Δw[qP , q ′′

P ]
∣
∣
∣ qA

w� q ′′
A, w ∈ Σn

}
·

∑ {
Δa[q ′′

P , q ′
P ]

∣
∣
∣ q ′′

A
a−→ q ′

A, a ∈ Σ
} ∣

∣
∣
∣

(q ′′
P , q ′′

A) ∈ Q[R]
}

=
∑ { ∑ {

Δw[qP , q ′′
P ] · Δa[q ′′

P , q ′
P ]

∣
∣
∣ qA

w� q ′′
A,

q ′′
A

a−→ q ′
A, a ∈ Σ,w ∈ Σn

} ∣
∣
∣
∣ (q ′′

P , q ′′
A) ∈ Q[R]

}

=
∑ {

Δw′ [qP , q ′
P ]

∣
∣
∣ qA

w′
� q ′

A, w′ ∈ Σn+1
}
.

Since E∗ = ∑∞
i=0 E

i , Equation (1) follows. Using the
matrix E∗, it remains to compute PrP (L(A)) as

PrP (L(A)) = α

R · E∗ · γ R.

��

3.2 Automata reduction using probabilistic distance

We now exploit the probabilistic distance introduced above
to formulate the task of approximate reduction of NFAs as
two optimization problems. Given an NFA A and a PA P
specifying the distribution PrP : Σ∗ → 〈0, 1〉, we define

– size-driven reduction: for n ∈ N, find an NFA A′ such
that |A′| ≤ n and the distance dP (A,A′) is minimal,

– error-driven reduction: for ε ∈ 〈0, 1〉, find an NFA A′
such that dP (A,A′) ≤ ε and the size |A′| is minimal.

The following lemma shows that the natural decision prob-
lem underlying both of the above optimization problems is
PSPACE-complete, which matches the complexity of com-
puting the probabilistic distance as well as that of the exact
reduction of NFAs [26].

Lemma 3 Consider an NFA A, a PA P , a bound on the
number of states n ∈ N, and an error bound ε ∈ 〈0, 1〉.
It is PSPACE-complete to determine whether there exists
an NFA A′ with n states s.t. dP (A,A′) ≤ ε.

Proof Membership in PSPACE: We non-deterministically
generate an automatonA′ with n states and test (in PSPACE,
as shown in Lemma 1) that dP (A,A′) ≤ ε. This shows the
problem is in NPSPACE = PSPACE.

PSPACE-hardness: We use a reduction from the problem
of checking universality of anNFAA = (Q, δ, I , F)overΣ ,
i.e. from checking whether L(A) = Σ∗, which is PSPACE-
complete. First, for a reason that will become clear later, we
test ifA accepts all words overΣ of length 0 and 1,which can
be done in polynomial time. It holds that L(A) = Σ∗ iff there
is a 1-state NFA A′ s.t. dPExp(A,A′) ≤ 0. (PExp is defined
in Sect. 2.) The implication from left to right is clear: A′ can
be constructed as A′ = ({q}, {q a−→ q | a ∈ Σ}, {q}, {q})).
To show the reverse implication, we note that we have tested
that {ε}∪Σ ⊆ L(A). Since the probability of any word from
{ε}∪Σ ⊆ L(A) inPExp is nonzero, the only 1-stateNFA that
processes those words with zero error is the NFA A′ defined
above. Because the language of A′ is L(A′) = Σ∗, it holds
that dPExp(A,A′) ≤ 0 iff L(A) = Σ∗. ��

The notions defined above do not distinguish between
introducing a false positive (A′ accepts a word w /∈
L(A)) or a false negative (A′ rejects a word w ∈ L(A))
answers. To this end, we define over-approximating and
under-approximating reductions as reductions for which the
conditions L(A) ⊆ L(A′) and L(A) ⊇ L(A′) hold.

A naïve solution to the reductions would enumerate all
NFAs A′ of sizes from 0 up to k (resp. |A|), for each of
them compute dP (A,A′), and take an automaton with the
smallest probabilistic distance (resp. a smallest one satisfying
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Algorithm 1: A greedy size-driven reduction
Input : NFA A = (Q, δ, I , F), PA P , n ≥ 1
Output: NFA A′, ε ∈ R s.t. |A′| ≤ n and dP (A,A′) ≤ ε

1 V ← ∅;
2 for q ∈ Q in the order �A,label(A,P) do
3 V ← V ∪ {q}; A′ ← reduce(A, V );
4 if |A′| ≤ n then break
5 return A′, ε = error(A, V , label(A,P));

the restriction on dP (A,A′)). Obviously, this approach is
computationally infeasible.

4 A heuristic approach to approximate
reduction

In this section, we introduce two techniques for approxi-
mate reduction of NFAs that avoid the need to iterate over
all automata of a certain size. The first approach is based on
under-approximating the automata by removing states—we
call it the pruning reduction—while the second approach
is based on over-approximating the automata by adding
self-loops to states and removing redundant states—we call
it the self-loop reduction. Finding an optimal automaton
using these reductions is also PSPACE-complete, but more
amenable to heuristics like greedy algorithms. We start with
introducing two high-level greedy algorithms, one for the
size- and one for the error-driven reduction, and follow by
showing their instantiations for the pruning and the self-loop
reduction.A crucial role in the algorithms is played by a func-
tion that labels states of the automata by an estimate of the
error that will be caused when some of the reductions is
applied at a given state.

4.1 A general algorithm for size-driven reduction

Algorithm 1 shows a general greedy method for performing
the size-driven reduction. In order to use the same high-
level algorithm in both directions of reduction (over-/under-
approximating), it is parameterized with the functions: label,
reduce, and error. The real intricacy of the procedure is
hidden inside these three functions. Intuitively, label(A,P)

assigns every state of anNFAA an approximation of the error
that will be caused wrt the PA P when a reduction is applied
at this state, while the purpose of reduce(A, V ) is to create
a new NFAA′ obtained fromA by introducing some error at
states from V .5 Further, error(A, V , label(A,P)) estimates

5 Weemphasize that this does notmean that states fromV will be simply
removed from A—the performed operation depends on the particular
reduction.

the error introduced by the application of reduce(A, V ), pos-
sibly in amore precise (and costly)way than by just summing
the concerned error labels: Such a computation is possible
outside of the main computation loop. We show instantia-
tions of these functions later, when discussing the reductions
used. Moreover, the algorithm is also parameterized with
a total order �A,label(A,P) that defines which states of A are
processed first and which are processed later. The ordering
may take into account the pre-computed labelling. The algo-
rithm accepts an NFA A, a PA P , and n ∈ N and outputs
a pair consisting of an NFA A′ of the size |A′| ≤ n and an
error bound ε such that dP (A,A′) ≤ ε.

The main idea of the algorithm is that it creates a set V
of states where an error is to be introduced. V is constructed
by starting from an empty set and adding states to it in the
order given by �A,label(A,P), until the size of the result of
reduce(A, V ) has reached the desired bound n (in our set-
ting, reduce is always antitone, i.e. for V ⊆ V ′, it holds
that |reduce(A, V )| ≥ |reduce(A, V ′)|). We now define the
necessary condition for label, reduce, and error that makes
Algorithm 1 correct.

Condition C1 holds if for every NFAA, PAP , and a set V ⊆
Q[A], we have that

(a) error(A, V , label(A,P)) ≥ dP (A, reduce(A, V )),
(b) |reduce(A, Q[A])| ≤ 1, and
(c) reduce(A,∅) = A.

C1(a) ensures that the error computed by the reduction
algorithm indeed over-approximates the exact probabilistic
distance,C1(b) is a boundary condition for the case when the
reduction is applied at every state of A, and C1(c) ensures
that when no error is to be introduced at any state, we obtain
the original automaton.

Lemma 4 Algorithm 1 is correct if C1 holds.

Proof Follows straightforwardly from Condition C1. ��

4.2 A general algorithm for error-driven reduction

In Algorithm 2, we provide a high-level method of com-
puting the error-driven reduction. The algorithm is in many
ways similar to Algorithm 1; it also computes a set of
states V where an error is to be introduced, but an impor-
tant difference is that we compute an approximation of the
error in each step and only add q to V if it does not raise the
error over the threshold ε. Note that the error does not need
to be monotone, so it may be advantageous to traverse all
states from Q and not terminate as soon as the threshold is
reached. The correctness of Algorithm 2 also depends onC1.

Lemma 5 Algorithm 2 is correct if C1 holds.

Proof Follows straightforwardly from Condition C1. ��
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Algorithm 2: A greedy error-driven reduction.
Input : NFA A = (Q, δ, I , F), PA P , ε ∈ 〈0, 1〉
Output: NFA A′ s.t. dP (A,A′) ≤ ε

1 	 ← label(A, P);
2 V ← ∅;
3 for q ∈ Q in the order �A,label(A,P) do
4 e ← error(A, V ∪ {q}, 	);
5 if e ≤ ε then V ← V ∪ {q}
6 return A′ = reduce(A, V );

4.3 Pruning reduction

The pruning reduction is based on identifying a set of states
to be removed from an NFA A, under-approximating the
language of A. In particular, for A = (Q, δ, I , F), the prun-
ing reduction finds a set R ⊆ Q and restricts A to Q\R,
followed by removing useless states, to construct a reduced
automatonA′ = trim(A|Q\R). Note that the natural decision
problem corresponding to this reduction is also PSPACE-
complete.

Lemma 6 Consider an NFA A, a PA P , a bound on the
number of states n ∈ N, and an error bound ε ∈ 〈0, 1〉.
It is PSPACE-complete to determine whether there exists
a subset of states R ⊆ Q[A] of size |R| = n such that
dP (A,A|R) ≤ ε.

Proof Membership in PSPACE: We non-deterministically
generate a subset R of Q[A] having n states and test (in
PSPACE, as shown in Lemma 1) that dP (A,A|R) ≤ ε. This
shows the problem is in NPSPACE = PSPACE.

PSPACE-hardness:Weuse a reduction from thePSPACE-
complete problem of checking universality of an NFA A =
(Q, δ, I , F) over Σ . Consider a symbol x /∈ Σ . Let us con-
struct an NFA A′ over Σ ∪ {x} s.t. L(A′) = x∗.L(A).
A′ is constructed by adding a fresh state qnew to A that
can loop over x and make a transition to any initial state
of A over x : A′ = (Q �{qnew}, δ ∪ {qnew x−→ q | q ∈
I ∪ {qnew}}, I ∪ {qnew}, F). We set n = |A′| + 1. Fur-
ther, we also construct an (n + 1)-state NFA B accepting
the language xn .Σ∗ defined as B = (QB, δB, {q1}, {qn+1})
where QB = {q1, . . . , qn+1} and δB = {qi x−→ qi+1 | 1 ≤
i ≤ n} ∪ {qn+1

a−→ qn+1 | a ∈ Σ}. Moreover, let P be
a PA representing a distribution PrP that is defined for each
w ∈ (Σ ∪ {x})∗ as

PrP (w) =

⎧
⎪⎨

⎪⎩

μ|w′|+1 for w = xn .w′, w′ ∈ Σ∗,
and μ = 1

|Σ |+1 ,

0 otherwise.

(3)

Note that PrP (xn .w) = PrPExp(w) for w ∈ Σ∗, and
PrP (u) = 0 for u /∈ xn .Σ∗ (P can be easily con-
structed from PExp.) Also note that B accepts exactly those
words w such that PrP (w) �= 0 and that PrP (L(B)) =
1. Using the automata defined above, we construct an
NFA C = A′ ∪ B where the union of two NFAs is
defined as A1 ∪ A2 = (Q[A1] � Q[A2], δ[A1] � δ[A2],
I [A1] � I [A2], F[A1] � F[A2]). NFA C has 2n states, the
language of C is L(C) = x∗.L(A) ∪ xn .Σ∗ and its probabil-
ity is PrP (L(C)) = 1.

The important property of C is that if there exists a set
R ⊆ Q[C] of the size |R| = n s.t. dP (C, C|R) ≤ 0, then
L(A) = Σ∗. The property holds because since |Q[A′]| =
n−1, whenwe remove n states from C, at least one state from
Q[B] is removed, making the whole subautomaton of C cor-
responding to B useless, and, therefore, L(C|R) ⊆ x∗.L(A).
Because dP (C, C|R) ≤ 0, we know that PrP (L(C|R)) = 1, so
xn .Σ∗ ⊆ x∗.L(A) = L(C|R) and, therefore, L(A) = Σ∗.
For the other direction, if L(A) = Σ∗, then there exists a set
R ⊆ Q[A′] ∪ Q[B] of the size |R| = n s.t. dP (C, C|R) ≤ 0.
(In particular, R can be such that R ⊆ Q[B].) ��

Although Lemma 6 shows that the pruning reduction is as
hard as a general reduction (cf. Lemma 3), the pruning reduc-
tion is more amenable to using heuristics like the greedy
algorithms from Sects. 4.1 and 4.2. We instantiate reduce,
error, and label in these high-level algorithms in the follow-
ing way (the subscript p stands for pruning):

reducep(A, V ) = trim(A|Q\V ),

errorp(A, V , 	) = min
V ′∈�V �p

∑ {
	(q) | q ∈ V ′} ,

where �V �p is defined in the rest of this paragraph: Because
of the use of trim in reducep, for a pair of sets V , V ′
s.t. V ⊂ V ′, it holds that reducep(A, V ) may, in general,
yield the same automaton as reducep(A, V ′). Therefore, in
order to obtain a tight approximation, we wish to compute
the least error that is obtained when removing the states
in V . We define a partial order �p on 2Q as V1 �p V2
iff reducep(A, V1) = reducep(A, V2) and V1 ⊆ V2, and use
�V �p to denote the set of minimal elements of the set of
elements that are smaller than V (wrt �p). The value of the
approximation errorp(A, V , 	) is therefore the minimum of
the sum of errors over all sets from �V �p.

Note that the size of �V �p can again be exponential, and
thus we employ a greedy approach for guessing an opti-
mal V ′. Clearly, this cannot affect the soundness of the
algorithm, but only decreases the precision of the bound
on the distance. Our experiments indicate that for automata
appearing in NIDSes, this simplification has typically only a
negligible impact on the precision of the bounds.

For computing the state labelling, we provide the follow-
ing three functions, which differ in the precision they provide
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and the difficulty of their computation (naturally, more pre-
cise labellings are harder to compute): label1p, label

2
p, and

label3p. Given an NFA A and a PA P , they generate the
labellings 	1p, 	

2
p, and 	3p, respectively, defined as

	1p(q) =
∑ {

PrP (L�

A(q ′))
∣
∣ q ′ ∈ reach({q}) ∩ F

}
,

	2p(q) = PrP
(
L�

A(F ∩ reach(q))
)

,

	3p(q) = PrP
(
L�

A(q).LA(q)
)

.

A state label 	(q) approximates the error of the words
removed from L(A) when q is removed. More concretely,
	1p(q) is a rough estimate saying that the error can be
bounded by the sum of probabilities of the banguages of
all final states reachable from q. (In the worst case, all those
final states might become unreachable.) Note that 	1p(q) (1)
counts the error of a word accepted in two different final
states of reach(q) twice and (2) it also considers words that
are accepted in some final state in reach(q) without going
through q. The labelling 	2p deals with (1) by computing
the total probability of the banguage of the set of all final
states reachable from q, and the labelling 	3p in addition
also deals with (2) by only considering words that traverse
through q. (They can, however, be accepted in some final
state not in reach(q) by a run completely disjoint from q and
reach(q) ∩ F , so even 	3p can still be imprecise.) Note that if
A is unambiguous, then 	1p = 	2p.

Each state labelling is given as the probability (or the sum
of probabilities in the case of 	1p) of the language related to q.
Therefore, when computing the particular label of q, we first
modify A to obtain A′ accepting the language related to the
labelling. Then, we compute the value of PrP (L(A′)) using
the algorithm fromSect. 3.1. Recall that this step is in general
costly, due to the determinization/disambiguation of A′. The
key property of the labelling computation resides in the fact
that if A is composed of several disjoint sub-automata, the
automaton A′ is typically much smaller than A and thus
the computation of the label is considerably less demanding.
Since the automata appearing in regex matching for NIDS
are composed of the union of “tentacles”, the particular A′s
are very small, which enables an efficient component-wise
computation of the labels.

The following lemma states the correctness of using the
pruning reduction as an instantiation of Algorithms 1 and 2
and also the relation among 	1p, 	

2
p, and 	3p.

Lemma 7 For every x ∈ {1, 2, 3}, the functions reducep,
errorp, and labelxp satisfyC1. Moreover, consider an NFAA,
a PA P , and let 	xp = labelxp(A,P) for x ∈ {1, 2, 3}. Then,
for each q ∈ Q[A], we have 	1p(q) ≥ 	2p(q) ≥ 	3p(q).

Proof We start by proving the inequalities 	1p(q) ≥ 	2p(q) ≥
	3p(q) for each q ∈ Q[A], which will then help us prove

the first part of the lemma. The first inequality follows from
the fact that if the banguages of reachable final states are not
disjoint, in the case of 	1p, we may sum probabilities of the
same words multiple times. The second inequality follows
from the inclusion L�

A(q).LA(q) ⊆ L�

A(F ∩ reach(q)).
Second, we prove that the functions reducep, errorp, and

labelxp satisfy the properties of C1:

– C1(a): In order to show the inequality

errorp(A, V , labelxp(A,P)) ≥ dP (A, reducep(A, V )),

we prove it for 	3p = label3p(A,P); the rest follows from
	1p(q) ≥ 	2p(q) ≥ 	3p(q), which is proved above.
Consider some set of states V ⊆ Q[A] and a set V ′ ∈
�V �p s.t. for any V ′′ ∈ �V �p, it holds that∑{	3p(q) | q ∈
V ′} ≤ ∑{	3p(q) | q ∈ V ′′}. We have

L(A)� L(reducep(A, V ))

= L(A)� L(reducep(A, V ′)) �def. of �p�
= langof A\L(reducep(A, V ′))
�L(A) ⊇ L(reducep(A, V ′))�
⊆

⋃

q∈V ′
L�

A(q).LA(q). �def. of reducep�

(4)

Finally, using (4), we obtain

dP (A, reducep(A, V ))

= PrP (L(A)� L(reducep(A, V ′)))
�def. of dP�
≤

∑

q∈V ′
PrP (L�

A(q).LA(q)) �(4)�

=
∑

{	3p(q) | q ∈ V ′} �def. of 	3p�
= min
V ′′∈�V �p

∑
{	3p(q) | q ∈ V ′′} �def. of V ′�

= errorp(A, V , 	3p). �def. of errorp�

– C1(b): |reducep(A, Q[A])| ≤ 1 because

|reducep(A, Q[A])| = |trim(A|∅)| = 0.

– C1(c): reducep(A,∅) = A since

reducep(A,∅) = trim(A|Q[A]) = A.

(We assume that A is trimmed at the input.) ��
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4.4 Self-loop reduction

The main idea of the self-loop reduction is to over-approxi-
mate the language of A by adding self-loops over every
symbol at selected states. Thismakes some states ofA redun-
dant, allowing them to be removed without introducing any
more error. Given an NFA A = (Q, δ, I , F), the self-loop
reduction searches for a set of states R ⊆ Q, which will have
self-loops added, and removes other transitions leading out of
these states, making some states unreachable. The unreach-
able states are then removed.

Formally, let sl(A, R) be the NFA (Q∪{s}, δ′, I , F∪{s})
where s /∈ Q and the transition function δ′ is defined such
that δ′(s, a) = {s} and, for all states p ∈ Q and symbols
a ∈ Σ , δ′(p, a) = (δ(p, a)\R) ∪ {s} if δ(p, a) ∩ R �= ∅
and δ′(p, a) = δ(p, a) otherwise. Similarly to the pruning
reduction, the natural decision problem corresponding to the
self-loop reduction is also PSPACE-complete.

Lemma 8 Consider an NFA A, a PA P , a bound on the
number of states n ∈ N, and an error bound ε ∈ 〈0, 1〉.
It is PSPACE-complete to determine whether there exists
a subset of states R ⊆ Q[A] of size |R| = n such that
dP (A, sl(A, R)) ≤ ε.

Proof Membership in PSPACE can be proved in the same
way as in the proof of Lemma 6.

PSPACE-hardness: We reduce from the PSPACE-comp-
lete problem of checking universality of an NFA A =
(Q, δ, I , F). First, we check whether I [A] �= ∅. We have
that L(A) = Σ∗ iff there exists a set of states R ⊆ Q of the
size |R| = |Q| such that dPExp(A, sl(A, R)) ≤ 0. (Note that
this means that a self-loop is added to every state of A.) ��

The required functions in the error- and size-driven reduc-
tion algorithms are instantiated in the following way (the
subscript sl stands for self-loop):

reducesl(A, V ) = trim(sl(A, V )),

errorsl(A, V , 	) =
∑

{	(q) | q ∈ min (�V �sl)} ,

where �V �sl is defined in a similar manner as �V �p in the
previous section (using a partial order �sl defined similarly
to �p; the difference is that in this case, the order �sl has
a single minimal element, though).

The functions label1sl, label
2
sl, and label

3
sl compute the state

labellings 	1sl, 	
2
sl, and 	3sl for an NFA A and a PA P , which

are defined as follows:

	1sl(q) = weightP (L�

A(q)),

	2sl(q) = PrP
(
L�

A(q).Σ∗) ,

	3sl(q) = 	2sl(q) − PrP
(
L�

A(q).LA(q)
)

.

In the definitions above, the function weightP (w) for
a PAP = (α, γ , {Δa}a∈Σ) and a wordw ∈ Σ∗ is defined as
weightP (w) = α
 ·Δw ·1 (i.e. similarly as PrP (w) but with
the final weights γ discarded), and weightP (L) for L ⊆ Σ∗
is defined as weightP (L) = ∑

w∈L weightP (w).
Intuitively, the state labelling 	1sl(q) computes the proba-

bility that q is reached from an initial state, so if q is pumped
upwith all possibleword endings, this is themaximumpossi-
ble error introduced by the added word endings. This has the
following sources of imprecision: (1) the probability of some
words may be included twice, e.g. when L�

A(q) = {a, ab},
the probabilities of all words from {ab}.Σ∗ are included
twice in 	1sl(q) because {ab}.Σ∗ ⊆ {a}.Σ∗, and (2) 	1sl(q)

can also contain probabilities of words already accepted on
a run traversing q. The state labelling 	2sl deals with (1) by

considering the probability of the language L�

A(q).Σ∗, and
	3sl deals also with (2) by subtracting from the result of 	2sl
the probabilities of the words that pass through q and are
accepted.

The computation of the state labellings for the self-loop
reduction is done in a similar way as the computation of the
state labellings for the pruning reduction (cf. Sect. 4.3). For a
computation of weightP (L), one can use the same algorithm
as for PrP (L), only the final vector for PA P is set to 1. The
correctness of Algorithms 1 and 2 when instantiated using
the self-loop reduction is stated in the following lemma.

Lemma 9 For every x ∈ {1, 2, 3}, the functions reducesl,
errorsl, and labelxsl satisfyC1. Moreover, consider an NFAA,
a PA P , and let 	xsl = labelxsl(A,P) for x ∈ {1, 2, 3}. Then,
for each q ∈ Q[A], we have 	1sl(q) ≥ 	2sl(q) ≥ 	3sl(q).

Proof First, we prove the inequalities 	1sl(q) ≥ 	2sl(q) ≥
	3sl(q) for each q ∈ Q[A], whichwe then use to prove the first
part of the lemma. We start with the equality weightP (w) =
PrP (w.Σ∗), which follows from the fact that for each state
p of P the sum of probabilities of all words, when consider-
ing p as the only initial state of P , is 1. Then, we obtain the
equality

∑

w∈L�
A(q)

weightP (w) =
∑

w∈L�
A(q)

PrP (w.Σ∗),

which, in turn, implies

	1sl(q) = weightP (L�

A(q)) =
∑

w∈L�
A(q)

PrP
(
w.Σ∗)

≥ PrP
(
L�

A(q).Σ∗)= 	2sl(q).

(5)

For example, for L�

A(q) = {w,wa} where w ∈ Σ∗ and
a ∈ Σ , we have
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weightP (L�

A(q)) = weightP ({w,wa})
= weightP (w) + weightP (wa)

= PrP (w.Σ∗) + PrP (wa.Σ∗),
(6)

while

PrP
(
L�

A(q).Σ∗) = PrP
({w,wa}.Σ∗) = PrP

(
w.Σ∗) .

The inequality 	2sl ≥ 	3sl holds trivially.
Second, we prove that the functions reducesl, errorsl, and

labelxsl satisfy the properties of C1:

– C1(a): To show that errorsl(A, V , labelxsl(A,P)) ≥
dP (A, reducesl(A, V )), we prove that the inequality
holds for 	3sl = label3sl(A,P); the rest follows from
	1sl(q) ≥ 	2sl(q) ≥ 	3sl(q) proved above.
Consider some set of states V ⊆ Q[A] and the set
V ′ = min(�V �sl). We can estimate the symmetric dif-
ference of the languages of the original and the reduced
automaton as

L(A)� L(reducesl(A, V ))

= L(A)� L(reducesl(A, V ′)) �def. of �sl�
= L(reducesl(A, V ′))\L(A)

�L(A) ⊆ L(reducesl(A, V ′))�
⊆

⋃

q∈V ′
L�

A(q).Σ∗\
⋃

q∈V ′
L�

A(q).LA(q).

�def. of reducesl�
(7)

The last inclusion holds because sl(A, V ) adds self-loops
to the states in V , so the newly accepted words are for
sure those that traverse through V , and they are for sure
not those that could be accepted by going through V
before the reduction (but they could be accepted without
touching V , hence the inclusion). We can estimate the
probabilistic distance of A and reducesl(A, V ) as

dP (A, reducesl(A, V ))

≤ PrP

( ⋃

q∈V ′
L�

A(q).Σ∗\
⋃

q∈V ′
L�

A(q).LA(q)

)

�(7)�

≤ PrP

( ⋃

q∈V ′

(
L�

A(q).Σ∗\L�

A(q).LA(q)
) )

�properties of union and set difference�
≤

∑

q∈V ′
PrP

(
L�

A(q).Σ∗\L�

A(q).LA(q)
)

�union bound�
=

∑

q∈V ′

(
PrP

(
L�

A(q).Σ∗) − PrP
(
L�

A(q).LA(q)
))

�prop. of Pr and the fact that L�

A(q).LA(q) ⊆ L�

A(q).Σ∗�
=

∑
{	3sl(q) | q ∈ min(�V �sl)}

�def. of 	3sl and V ′�
= errorsl(A, V , 	3sl). (8)

– C1(b): |reducesl(A, Q[A])| ≤ 1 because, from the defi-
nition, |reducesl(A, Q[A])| = |trim(sl(A, Q[A]))| ≤ 1.

– C1(c): reducesl(A,∅) = A since

reducesl(A,∅) = trim(sl(A,∅)) = A.

(We assume that A is trimmed at the input.) ��

5 Reduction of NFAs in network intrusion
detection systems

We have implemented our approach in a Python prototype
named Appreal (APProximate REduction of Automata and
Languages)6 and evaluated it on the use case of network
intrusion detection using Snort [50], a popular open-source
NIDS. The version of Appreal used for the evaluation in
the current paper is available as an artefact [11] for the
TACAS’18 artefact virtual machine [22].

5.1 Network traffic model

The reduction we describe in this paper is driven by a prob-
abilistic model representing a distribution over the words
from Σ∗, and the formal guarantees are also wrt this model.
We use learning to obtain a model of network traffic over the
8-bit ASCII alphabet at a given network point. Our model is
created from several gigabytes of network traffic from amea-
suring point of the CESNET Internet provider connected to a
100Gbps backbone link. (Unfortunately, we cannot provide
the traffic dump since it may contain sensitive data.)

Learning a PA representing the network traffic faithfully
is hard. The PA cannot be too specific—although the number
of different packets that can occur is finite, it is still extremely
large. (A conservative estimate assuming the most com-
mon scenario Ethernet/IPv4/TCP would still yield a number
over 210,000.) If we assigned nonzero probabilities only to
the packets from the dump (which are less than 220), the
obtained model would completely ignore virtually all pack-
ets that might appear on the network, and, moreover, the
model would also be very large (millions of states), making
it difficult to use in our algorithms. A generalization of the
obtained traffic is therefore needed.

A natural solution is to exploit results from the area of
PA learning, such as [10,51]. Indeed, we experimented with

6 https://github.com/vhavlena/appreal/tree/tacas18
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the use of Alergia [10], a learning algorithm that constructs
a PA from a prefix tree (where edges are labelled with multi-
plicities) by merging nodes that are “similar.” The automata
that we obtained were, however, too general. In particular,
the constructed automata destroyed the structure of network
protocols—the merging was too permissive and the general-
ization merged distant states, which introduced loops over a
very large substructure in the automaton. (Such a case usually
does not correspond to the design of network protocols.) As
a result, the obtained PAmore or less represented the Poisson
distribution, having essentially no value for us.

In Sect. 5.2, we focus on the detection of malicious traffic
transmitted over HTTP. We take advantage of this fact and
create a PA representing the traffic while taking into account
the structure of HTTP. We start by manually creating a DFA
that represents the high-level structure of HTTP. Then, we
proceed by feeding 34,191 HTTP packets from our sample
into the DFA, at the same time taking notes about how many
times every state is reached and how many times every tran-
sition is taken. The resulting PA PHTTP (of 52 states) is then
constructed from the DFA and the labels in the obvious way.

The described method yields automata that are much
better than those obtained using Alergia in our exper-
iments. A disadvantage of the method is that it is only
semi-automatic—the basic DFA needed to be provided by
an expert. We have yet to find an algorithm that would suit
our needs for learning more general network traffic.

5.2 Evaluation

We start this section by introducing the experimental setting,
namely, the integration of our reduction techniques into the
tool chain implementing efficient regex matching, the con-
crete settings of Appreal, and the evaluation environment.
Afterwards, we discuss the results evaluating the quality of
the obtained approximate reductions as well as of the pro-
vided error bounds. Finally, we present the performance of
our approach and discuss its key aspects. We selected the
most interesting results demonstrating the potential as well
as the limitations of our approach.

General setting. Snort detects malicious network traffic
based on rules that contain conditions. The conditions take
into consideration, among others, network addresses, ports,
or Perl compatible regular expressions (PCREs) that the
packet payload should match. In our evaluation, we select
a subset of Snort rules, extract the PCREs from them, and
use Netbench [45] to transform them into a single NFA A.
Before applying Appreal, we use the state-of-the-art NFA
reduction tool Reduce [38] to reduce A. Reduce per-
forms a language-preserving reduction of A using advanced
variants of simulation [37]. (In the experiment reported in
Table 3, we skip the use of Reduce at this step as discussed

later in the performance evaluation.) The automaton ARed

obtained as the result of Reduce is the input of Appreal,
which performs one of the approximate reductions fromSect.
4 wrt the traffic model PHTTP, yielding AApp. After the
approximate reduction, we, one more time, use Reduce and
obtain the result A′.

Settings of Appreal In the use case of NIDS pre-filtering,
it may be important to never introduce a false negative, i.e.
to never drop a malicious packet. Therefore, we focus our
evaluation on the self-loop reduction (Sect. 4.4). In particular,
we use the state labelling function label2sl, since it provides a
good trade-off between the precision and the computational
demands. (Recall that the computation of label2sl can exploit
the “tentacle” structure of the NFAs we work with.) We give
more attention to the size-driven reduction (Sect. 4.1) since,
in our setting, a bound on the available FPGA resources is
typically given and the task is to create an NFA with the
smallest error that fits inside. The order �A,	2sl

over states

used in Sect. 4.1 and Sect. 4.2 is defined as s �A,	2sl
s′ ⇔

	2sl(s) ≤ 	2sl(s
′).

Evaluation environment All experiments ran on a 64-bit
Linux Debian workstation with the Intel Core(TM) i5-661
CPU running at 3.33GHz with 16GiB of RAM.

Description of tables In the caption of every table, we pro-
vide the name of the input file (in the directory regexps/
tacas18/ of the repository of Appreal) with the selection
of Snort regexes used in the particular experiment, together
with the type of the reduction (size- or error-driven). All
reductions are over-approximating (self-loop reduction). We
further provide the size of the input automaton |A|, the size
after the initial processing by Reduce (|ARed|), and the time
of this reduction (time(Reduce)). Finally, we list the times of
computing the state labelling label2sl onARed (time(label2sl)),
the exact probabilistic distance (time(Exact)), and also the
number of look-up tables (LUTs(ARed)) consumed on the
targeted FPGA (Xilinx Virtex 7 H580T) when ARed was
synthesized (more on this in Sect. 5.3). The meaning of the
columns in the tables is the following:

k/ε is the parameter of the reduction. In partic-
ular, k is used for the size-driven reduction
and denotes the desired reduction ratio k =

n
|ARed| for an input NFA ARed and the

desired size of the output n. On the other
hand, ε is the desired maximum error on
the output for the error-driven reduction.

|AApp| shows the number of states of the automa-
ton AApp after the reduction by Appreal
and the time the reduction took. (We omit it
when it is not interesting.)

123

189



Approximate reduction of finite automata for high-speed network intrusion detection

Table 1 Results for the
http-malicious regex,
|Amal| = 249, |ARed

mal| = 98,
time(Reduce) = 3.5s,
time(label2sl) = 38.7s,
time(Exact) = 3.8–6.5 s, and
LUTs(ARed

mal) = 382

k |AApp
mal| |A′

mal| Error Exact Traffic LUTs
bound error error

(a) Size-driven reduction

0.1 9 (0.65 s) 9 (0.4 s) 0.0704 0.0704 0.0685 –

0.2 19 (0.66 s) 19 (0.5 s) 0.0677 0.0677 0.0648 –

0.3 29 (0.69 s) 26 (0.9 s) 0.0279 0.0278 0.0598 154

0.4 39 (0.68 s) 36 (1.1 s) 0.0032 0.0032 0.0008 –

0.5 49 (0.68 s) 44 (1.4 s) 2.8e−05 2.8e−05 4.1e−06 –

0.6 58 (0.69 s) 49 (1.7 s) 8.7e−08 8.7e−08 0.0 224

0.8 78 (0.69 s) 75 (2.7 s) 2.4e−17 2.4e−17 0.0 297

ε |AApp
mal| |A′

mal| Error Exact Traffic
bound error error

(b) Error-driven reduction

0.08 3 3 0.0724 0.0724 0.0720

0.07 4 4 0.0700 0.0700 0.0683

0.04 35 32 0.0267 0.0212 0.0036

0.02 36 33 0.0105 0.0096 0.0032

0.001 41 38 0.0005 0.0005 0.0003

1e−04 47 41 7.7e−05 7.7e−05 1.2e−05

1e−05 51 47 6.6e−06 6.6e−06 0.0

|A′| contains the number of states of the NFAA′
obtained after applying Reduce on AApp

and the time used by Reduce at this step
(omitted when not interesting).

Error bound shows the estimation of the error of A′ as
determined by the reduction itself, i.e. it is
the probabilistic distance computed by the
corresponding function error from Sect. 4.

Exact error contains the values of dPHTTP(A,A′) that
we computed after the reduction in order
to evaluate the precision of the result given
in Error bound. The computation of this
value is very expensive (time(Exact)) since
it inherently requires determinization of the
whole automaton A. We do not provide it
in Table 3 (presenting the results for the
automaton Abd with 1,352 states) because
the determinization ran out ofmemory. (The
step is not required in the reduction pro-
cess.)

Traffic error shows the error that we obtained when
compared A′ with A on an HTTP traffic
sample, in particular the ratio of packets
misclassified by A′ to the total number of
packets in the sample (242,468). Compar-
ing Exact error with Traffic error gives
us a feedback about the fidelity of the traf-

fic model PHTTP. We note that there are
no guarantees on the relationship between
Exact error and Traffic error.

LUTs is the number of LUTs consumed by A′
when synthesized into the target FPGA.
Hardware synthesis is a costly step, there-
fore we provide this value only for selected
interesting NFAs.

5.2.1 Approximation errors

Table 1 presents the results of the self-loop reduction for the
NFA Amal describing regexes from http-malicious.
We can observe that the differences between the upper
bounds on the probabilistic distance and its real value are
negligible (typically in the order of 10−4 or less).We can also
see that the probabilistic distance agrees with the traffic error.
This indicates a good quality of the trafficmodel employed in
the reduction process. Further, we can see that our approach
can provide useful trade-offs between the reduction error and
the reduction factor. Finally, Table 1b shows that a significant
reduction is obtained when the error threshold ε is increased
from 0.04 to 0.07.

Table 2 presents the results of the size-driven self-
loop reduction for NFA Aatt describing http-attacks
regexes. We can observe that the error bounds provide again
a very good approximation of the real probabilistic distance.
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Table 2 Results for the http-attacks regex, size-driven reduction,
|Aatt| = 142, |ARed

att| = 112, time(Reduce) = 7.9s, time(label2sl) =
28.3min, time(Exact) = 14.0–16.4min

k |AApp
att| |A′

att| Error Exact Traffic
bound error error

0.1 11 (1.1s) 5 (0.4s) 1.0 0.9972 0.9957

0.2 22 (1.1s) 14 (0.6s) 1.0 0.8341 0.2313

0.3 33 (1.1s) 24 (0.7s) 0.081 0.0770 0.0067

0.4 44 (1.1s) 37 (1.6s) 0.0005 0.0005 0.0010

0.5 56 (1.1s) 49 (1.2s) 3.3e−06 3.3e−06 0.0010

0.6 67 (1.1s) 61 (1.9s) 1.2e−09 1.2e−09 8.7e−05

0.7 78 (1.1s) 72 (2.4s) 4.8e−12 4.8e−12 1.2e−05

0.9 100 (1.1s) 93 (4.7s) 3.7e−16 1.1e−15 0.0

On the other hand, the difference between the probabilistic
distance and the traffic error is larger than that for Amal.
Since all experiments use the same probabilistic automaton
and the same traffic, this discrepancy is accounted to the dif-
ferent set of packets that are incorrectly accepted by ARed

att.
If the probability of these packets is adequately captured in
the traffic model, the difference between the distance and
the traffic error is small and vice versa. This also explains
an even larger difference in Table 3 (presenting the results
for Abd constructed from http-backdoor regexes) for
k ∈ 〈0.2, 0.4〉. Here, the traffic error is very small and caused
by a small set of packets (approx. 70), whose probability is
not correctly captured in the traffic model. Despite this prob-
lem, the results clearly show that our approach still provides
significant reductions while keeping the traffic error small:
about a fivefold reduction is obtained for the traffic error
0.03% and a tenfold reduction is obtained for the traffic error
6.3%. We discuss the practical impact of such a reduction in
Sect. 5.3.

5.2.2 Performance of the approximate reduction

In all our experiments (Tables 1, 2, 3), we can observe that
the most time-consuming step of the reduction process is
the computation of state labellings. (It takes at least 90% of
the total time.) The crucial observation is that the structure
of the NFAs fundamentally affects the performance of this
step. Although after Reduce, the size of Amal is very sim-
ilar to the size of Aatt, computing label2sl takes more time
(28.3min vs. 38.7 s). The key reason behind this slowdown
is the determinization (or alternatively disambiguation) pro-
cess required by the product construction underlying the state
labelling computation (cf. Sect. 4.4). For Aatt, the process
results in a significantly larger product when compared to the
product forAmal. The size of the product directly determines
the time and space complexity of solving the linear equation
system required for computing the state labelling.

Table 3 Results for http-backdoor, size-driven reduction,
|Abd| = 1, 352, time(label2sl) = 19.9min, LUTs(ARed

bd ) = 2, 266

k |AApp
bd | |A′

bd| Error Traffic LUTs
bound error

0.1 135 (1.2m) 8 (2.6 s) 1.0 0.997 202

0.2 270 (1.2m) 111 (5.2 s) 0.0012 0.0631 579

0.3 405 (1.2m) 233 (9.8 s) 3.4e−08 0.0003 894

0.4 540 (1.3m) 351 (21.7 s) 1.0e−12 0.0003 1,063

0.5 676 (1.3m) 473 (41.8 s) 1.2e−17 0.0 1,249

0.7 946 (1.4m) 739 (2.1m) 8.3e−30 0.0 1,735

0.9 1216 (1.5m) 983 (5.6m) 1.3e−52 0.0 2,033

As explained in Sect. 4, the computation of the state
labelling label2sl can exploit the “tentacle” structure of the
NFAs appearing inNIDSes and thus can be done component-
wise. On the other hand, our experiments reveal that the
use of Reduce typically breaks this structure and thus the
component-wise computation cannot be effectively used.
For the NFA Amal, this behaviour does not have any
major performance impact as the determinization leads to
a moderate-sized automaton and the state labelling compu-
tation takes less than 40s. On the other hand, this behaviour
has a dramatic effect for the NFAAatt. By disabling the ini-
tial application of Reduce and thus preserving the original
structure of Aatt, we were able to speed up the state label
computation from 28.3 to 1.5min. Note that other steps of
the approximate reduction took a similar time as before dis-
abling Reduce and also that the trade-offs between the error
and the reduction factor were similar. Surprisingly, disabling
Reduce caused that the computation of the exact probabilis-
tic distance became computationally infeasible because the
determinization ran out of memory.

Due to the size of the NFA Abd, the impact of disabling
the initial application of Reduce is even more fundamen-
tal. In particular, computing the state labelling took only
19.9min, in contrast to running out of memory when the
Reduce is applied in the first step. (Therefore, the input
automaton is not processed by Reduce in Table 3; we still
give the number of LUTs of its reduced version for compari-
son, though.) Note that the size ofAbd also slows down other
reduction steps (the greedy algorithm and the final Reduce
reduction). We can, however, clearly see that computing the
state labelling is still the most time-consuming step of the
process.

5.3 The real impact in an FPGA-accelerated NIDS

To demonstrate the practical usefulness and impact of the
proposed approximation techniques, we employ the reduced
automata in a real use case from the area of HW-accelerated
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deep packet inspection. We consider the framework of [36]
implementing a high-speed NIDS pre-filter in an FPGA. The
crucial challenge is to obtain a pre-filter with a sufficiently
small false positive rate (and no false negatives), while being
able to handle the traffic of current networks operating on
100 Gbps and beyond. The implementation of NFAs per-
forming regex matching in FPGAs uses two types of HW
resources: LUTs, which are used to build the combinational
circuit representing the NFA transition function, and flip-
flops, representing NFA states. In our use case, we omit the
analysis of flip-flop consumption because it is always domi-
nated by the LUT consumption.

In our setting, the amount of resources available for the
FPGA-based regex matching engine is 15,000 LUTs and the
frequency of the engine is 200MHz using a 32-bit-wide data
path. As explained in [36], the engine containing a single unit
(i.e. the singleNFA implementation) can achieve the through-
put of 6.4Gbps (200MHz × 32b). Therefore, 16 units are
required for the desired link speed of 100Gbps and 63 units
are needed to handle 400Gbps. With the given amount of
LUTs, the size of a single NFA is thus bounded by 937
LUTs (15,000/16) for 100Gbps and 238 LUTs for 400Gbps,
respectively. These bounds directly limit the complexity of
regexes the engine can handle.

We now analyse the resource consumption of the match-
ing engine for two automata, http-backdoor (ARed

bd ) and
http-malicious (ARed

mal), and evaluate the impact of the
reduction techniques. Recall that the automata represent two
important sets of know network attacks from Snort [50].

– 100Gbps: For this speed, ARed
mal can be used without

any approximate reduction as it is small enough (it has
382 LUTs) to fit in the available space. On the other hand,
ARed

bd without the approximate reduction is way too large
to fit. (It has 2,266 LUTs and thus at most 6 units fit
inside the available space, yielding the throughput of only
38.4Gbps, which is unacceptable.) The column LUTs in
Table 3 shows that using our framework, we are able to
reduceARed

bd such that it uses 894 LUTs (for k = 0.3), and
so all of the 16 needed units fit into the FPGA, yielding
the throughput over 100Gbps and the theoretical error
bound of a false positive ≤ 3.4 × 10−8 wrt the network
traffic model PHTTP.

– 400Gbps: Regex matching at this speed is extremely
challenging. In the case of ARed

bd , the reduction k = 0.1
is required to fit 63 units in the available space. As such
a reduction has error bound almost 1, this solution is
not useful due to a prohibitively high false positive rate.
The situation is better for ARed

mal. In the exact version,
at most 39 units can fit inside the FPGA with the maxi-
mum throughput of 249.6Gbps. On the other hand, when
using our reduced automata, we are able to place 63 units

into the FPGA, each of the size 224 LUTs (k = 0.6), and
achieve a throughput of over 400 Gbps with the theoret-
ical error bound of a false positive ≤ 8.7× 10−8 wrt the
model PHTTP.

6 Conclusion

We have proposed a novel approach for approximate reduc-
tion of NFAs used in network traffic filtering. Our approach
is based on a proposal of a probabilistic distance of the origi-
nal and reduced automaton using a probabilistic model of the
input network traffic, which characterizes the significance of
particular packets. We characterized the computational com-
plexity of approximate reductions based on the described
distance and proposed a sequence of heuristics allowing one
to perform the approximate reduction in an efficient way. Our
experimental results are quite encouraging and show that we
can often achieve a very significant reduction for a negligi-
ble loss of precision. We showed that using our approach,
FPGA-accelerated network filtering on large traffic speeds
can be applied on regexes of malicious traffic where it could
not be applied before.

In the future, we plan to investigate other approximate
reductions of theNFAs,maybe using some variant of abstrac-
tion from abstract regularmodel checking [7], adapted for the
given probabilistic setting. Another important issue for the
future is to develop better ways of learning a suitable proba-
bilistic model of the input traffic.
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framework for evaluationof packet processing algorithms. In: Sym-
posium On Architecture For Networking And Communications
Systems pp. 95–96 (2011)

46. Shützenberger, M.: On the definition of a family of automata. Inf.
Control 4, 245–270 (1961)

47. Sidhu, R.P.S., Prasanna, V.K.: Fast regular expression matching
using FPGAs. In: FCCM’01, pp. 227–238. IEEEComputer Society
(2001)

48. Solodovnikov, V.I.: Upper bounds on the complexity of solving
systems of linear equations. J. Sov.Math. 29(4), 1482–1501 (1985)

49. Tan, L., Sherwood, T.: A high throughput string matching archi-
tecture for intrusion detection and prevention. In: ISCA’05, pp.
112–122. IEEE Computer Society (2005)

50. The Snort Team: Snort. http://www.snort.org. Accessed 30 Sept
2017

123

193



Approximate reduction of finite automata for high-speed network intrusion detection

51. Thollard, F., Clark, A.: Learning stochastic deterministic regu-
lar languages. In: G. Paliouras, Y. Sakakibara (eds.) Grammatical
Inference: Algorithms and Applications: 7th International Col-
loquium, ICGI 2004, Athens, Greece, October 11–13, 2004.
Proceedings, pp. 248–259. SpringerBerlinHeidelberg,Berlin,Hei-
delberg (2004). https://doi.org/10.1007/978-3-540-30195-0_22

52. Vardi, M.Y.: Automatic verification of probabilistic concurrent
finite state programs. In: SFCS ’85, pp. 327–338. IEEE

53. Yu, F., Chen, Z., Diao, Y., Lakshman, T.V., Katz, R.H.: Fast and
memory-efficient regular expression matching for deep packet
inspection. In: ANCS’06, pp. 93–102. ACM (2006)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

194



Semi-quantitative Abstraction and
Analysis of Chemical Reaction Networks
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Abstract. Analysis of large continuous-time stochastic systems is a
computationally intensive task. In this work we focus on population mod-
els arising from chemical reaction networks (CRNs), which play a funda-
mental role in analysis and design of biochemical systems. Many relevant
CRNs are particularly challenging for existing techniques due to complex
dynamics including stochasticity, stiffness or multimodal population dis-
tributions. We propose a novel approach allowing not only to predict,
but also to explain both the transient and steady-state behaviour. It
focuses on qualitative description of the behaviour and aims at quanti-
tative precision only in orders of magnitude. First we build a compact
understandable model, which we then crudely analyse. As demonstrated
on complex CRNs from literature, our approach reproduces the known
results, but in contrast to the state-of-the-art methods, it runs with vir-
tually no computational cost and thus offers unprecedented scalability.

1 Introduction

Chemical Reaction Networks (CRNs) are a versatile language widely used for
modelling and analysis of biochemical systems [12] as well as for high-level pro-
gramming of molecular devices [8,40]. They provide a compact formalism equiv-
alent to Petri nets [37], Vector Addition Systems (VAS) [29] and distributed
population protocols [3]. Motivated by numerous potential applications ranging
from system biology to synthetic biology, various techniques allowing simulation
and formal analysis of CRNs have been proposed [2,9,21,24,39], and embodied
in the design process of biochemical systems [20,25,32]. The time-evolution of
CRNs is governed by the Chemical Master Equation (CME), which describes the
probability of the molecular counts of each chemical species. Many important
biochemical systems lead to complex dynamics that includes state space explo-
sion, stochasticity, stiffness, and multimodality of the population distributions
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[23,44], and that fundamentally limits the class of systems the existing techniques
can effectively handle. More importantly, biologist and engineers often seek for
plausible explanations why the system under study has or has not the required
behaviour. In many cases, a set of system simulations/trajectories or population
distributions is not sufficient and the ability to provide an accurate explanation
for the temporal or steady-state behaviour is another major challenge for the
existing techniques.

In order to cope with the computational complexity of the analysis and in
order to obtain explanations of the behaviour, we shift the focus from quanti-
tatively precise results to a more qualitative analysis, closer to how a human
would behold the system. Yet we insist on providing at least rough timing infor-
mation on the behaviour as well as rough classification of probability of differ-
ent behaviours at the extent of “very likely”, “few percent”, “barely possible”,
so that we can conclude on issues such as time to extinction or bimodality of
behaviour. This gives rise to our semi-quantitative approach. We stipulate that
analyses in this framework reflect quantities in orders of magnitude, both for
time duration and probabilities, but not more than that. This paradigm shift is
reflected on two levels: (1) We abstract systems into semi-quantitative models.
(2) We analyse systems in a semi-quantitative way. While each of the two can
be combined with a traditional abstraction/analysis, when combined together
they provide powerful means to understand systems’ behaviour with virtually
no computational cost.

Semi-quantitative Models. The states of the models contain information on
the current amount of objects of each species as an interval spanning often sev-
eral orders of magnitude, unless instructed otherwise. For instance, if an amount
of a certain species is to be closely monitored (as a part of the input speci-
fication/property of the system) then this abstraction can be finer. Similarly,
whenever the analysis of a previous version of the abstraction points to the lack
of precision in certain states, preventing us to conclude which of the possible
behaviours is prevalent, the corresponding refinement can take place. Further,
the rates of the transitions are also captured only with such imprecision. The
crucial point allowing for existence of such models that are small, yet faithful,
is our concept of acceleration. It captures certain sequences of transitions. It
eliminates most of the non-determinism that paralyses other types of abstrac-
tions, which are too over-approximative, unable to conclude anything, but safety
properties.

Semi-quantitative Analysis. Instead of performing exact transient or steady-
state analysis, we can consider most probable transitions and then carefully lift
this to most probable temporal behaviours. Technically, this is done by alter-
nating between transient and steady-state analysis where only some rates and
transitions are taken into account at different stages. In order to further facili-
tate the resulting insight of the human on the result of the analysis, we provide an
algorithm to perform this analysis with virtually no computation effort and thus
possibly manually. The trivial computations immediately pinpoint why certain
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behaviours occur. Moreover, less likely behaviours can also be identified easily,
to any desired degree of improbability (dozens of percent, promilles etc.).

To summarise, the first step yields tiny models, allowing for a synoptic obser-
vation of the model; due to their size these models can be either analysed easily
using standard means, or can be subject to the second step. The second step
provides an efficient approximative analysis, which is also very illustrative due
to the limited use of quantities. It can be applied to any system; however, it is
particularly interesting in connection with the models coming from the first step
since (i) no extra effort (size, computation) is wasted on overly precise treatment
that is ignored by the other step, and (ii) together they yield an understandable
explanation of the behaviour. An entertaining feature of this paradigm is that
the stiffer (with rates at hugely different time scales) the system is the easier it
is to analyse.

To demonstrate the capabilities of our approach, we consider three chal-
lenging and biologically relevant case studies that have been used in literature
to evaluate state-of-the-art methods for the CRN analysis. It has been shown
that many approaches fail, either due to time-outs or incapability to capture
differences in behaviours, and some tailored ones require considerable compu-
tational effort, e.g. an hour of computation. Our experiments clearly show that
the proposed approach can deliver results that yield qualitatively same informa-
tion, more understanding and can be computed in minutes by hand (or within
a fraction of a second by computer).

Our contribution can be summarized as follows:

– We propose a novel semi-quantitative framework for analysis of CRN and
similar population models, focusing on explainability of the results and low
complexity, with quantitative precision limited to orders of magnitude.

– An algorithm for abstracting CRNs into semi-quantitative models based on
interval abstraction of the species population and on transition acceleration.

– An algorithm for semi-quantitative analysis that replaces exact numerical
computation by exploring the most probable transitions and alternating tran-
sient and steady-state analysis.

– We consider three challenging CRNs thoroughly studied in literature and
demonstrate that the semi-quantitative abstraction and analysis gives us a
unique tool that is able to accurately predict and explain both transient and
steady-state behaviour of complex CRNs in a fraction of a second.

Related Work

To the best of our knowledge, there does not exist any abstraction of CRNs
similar to the proposed approach. Indeed, there exist various abstraction and
approximation schemes for CRNs that improve the performance and scalability
of both the simulation-based and the numerical-based techniques. In the fol-
lowing paragraphs, we discuss the most relevant directions and the links to our
approach.
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Approximate Semantics for CRNs. For CRNs including large populations
of species, fluid (mean-field) approximation techniques can be applied [5] and
extended to approximate higher-order moments [15]: these deterministic approx-
imations lead to a set of ordinary differential equations (ODEs). An alternative
is to approximate the CME as a continuous-state stochastic process. The Linear
Noise Approximation (LNA) is a Gaussian process which has been derived as an
approximation of the CME [16,44] and describes the time evolution of expec-
tation and variance of the species in terms of ODEs. Recently, an aggregation
scheme over ODEs that aims at understanding the dynamics of large CRNs has
been proposed in [10]. In contrast to our approach, the deterministic approx-
imations cannot adequately capture the stochasticity of CRNs caused by low
population species.

To mitigate this drawback, various hybrid models have been proposed. The
common idea of these models is as follows: the dynamics of low population species
is described by the discrete stochastic process and the dynamics of large pop-
ulation species is approximated by a continuous process. The particular hybrid
models differ in the approximation of the large population species. In [27], a pure
deterministic semantics for large population species is used. The moment-based
description for medium/high-copy number species was used in [24]. The LNA
approximation and an adaptive partitioning of the species according to leap con-
ditions (that is more general than partitioning based on population thresholds)
was proposed in [9]. All hybrid models have to deal with interactions between
low and large population species. In particular, the dynamics of the stochastic
process describing the low-population species is conditioned by the continuous-
state describing the concentration of the large-population species. The numeri-
cal analysis of such conditioned stochastic process is typically a computationally
demanding task that limits the scalability.

In contrast, our approach does not explicitly partition the species, but rather
abstracts the concrete species population using an interval abstraction and tries
to effectively capture both the stochastic and the deterministic behaviour with
the help of the accelerated transitions. As we already emphasised, the proposed
abstraction and analysis avoids any numerical computation of precise quantities.

Reduction Techniques for Stochastic Models. A widely studied reduc-
tion method for Markov models is state aggregation based on lumping [6] or
(bi-)simulation equivalence [4], with the latter notion in its exact [33] or approx-
imate [13] form. Approximate notions of equivalence have led to new abstrac-
tion/refinement techniques for the numerical verification of Markov models over
finite [14] as well as uncountably-infinite state spaces [1,41,42]. Several approx-
imate aggregation schemes leveraging the structural properties of CRNs were
proposed [17,34,45]. Abate et al. proposed an adaptive aggregation that gives
formal guarantees on the approximation error, but typically provide lower state
space reductions [2]. Our approach shares the idea of abstracting the state space
by aggregating some states together. Similarly to [17,34,45], we partition the
state space based on the species population, i.e. we also introduce the popula-
tion levels. In contrast to the aforementioned aggregation schemes, we propose a
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novel abstraction of the transition relation based on the acceleration. It allows us
to avoid the numerical solution of the approximate CME and thus achieve a bet-
ter reduction while providing an accurate predication of the system behaviour.

Alternative methods to deal with large/infinite state spaces are based on a
state truncation trying to eliminate insignificant states, i.e., states reached only
with a negligible probability. These methods, including finite state projections
[36], sliding window abstractions [26], or fast adaptive uniformisation [35], are
able to quantify the total probability mass that is lost due to the truncation,
but typically cannot effectively handle systems involving a stiff behaviour and
multimodality [9].

Simulation-Based Analysis. Transient analysis of CRNs can be performed
using the Stochastic Simulation Algorithm (SSA) [21]. Note that the SSA
produces a single realisation of the stochastic process, whereas the stochastic
solution of CME gives the probability distribution of each species over time.
Although simulation-based analysis is generally faster than direct solution of the
stochastic process underlying the given CRN, obtaining good accuracy necessi-
tates potentially large numbers of simulations and can be very time consuming.

Various partitioning schemes for species and reactions have been proposed
for the purpose of speeding up the SSA in multi-scale systems [23,38,39]. For
instance, Yao et al. introduced the slow-scale SSA [7], where they distinguish
between fast and slow species. Fast species are then treated assuming they reach
equilibrium much faster than the slow ones. Adaptive partitioning of the species
has been considered in [19,28]. In contrast to the simulation-based analysis, our
approach (i) provides a compact explanation of the system behaviour in the form
of tiny models allowing for a synoptic observation and (ii) can easily reveal less
probable behaviours.

2 Chemical Reaction Networks

In this paper, we assume familiarity with standard verification of (continuous-
time) probabilistic systems, e.g. [4]. For more detail, see [11, Appendix].

CRN Syntax. A chemical reaction network (CRN) N = (Λ,R) is a pair of finite
sets, where Λ is a set of species, |Λ| denotes its size, and R is a set of reactions.
Species in Λ interact according to the reactions in R. A reaction τ ∈ R is a
triple τ = (rτ , pτ , kτ ), where rτ ∈ N|Λ| is the reactant complex, pτ ∈ N|Λ| is the
product complex and kτ ∈ R>0 is the coefficient associated with the rate of the
reaction. rτ and pτ represent the stoichiometry of reactants and products. Given

a reaction τ1 = ([1, 1, 0], [0, 0, 2], k1), we often refer to it as τ1 : λ1 + λ2
k1−→ 2λ3.

CRN Semantics. Under the usual assumption of mass action kinetics, the
stochastic semantics of a CRN N is generally given in terms of a discrete-state,
continuous-time stochastic process X(t) = (X1(t),X2(t), . . . , X|Λ|(t), t ≥ 0) [16].
The state change associated to the reaction τ is defined by υτ = pτ − rτ , i.e. the
state X is changed to X′ = X + υτ , which we denote as X

τ−→ X′. For example,
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for τ1 as above, we have υτ1
= [−1,−1, 2]. For a reaction to happen in a state X,

all reactants have to be in sufficient numbers. The reachable state space of X(t),
denoted as S, is the set of all states reachable by a sequence of reactions from
a given initial state X0. The set of reactions changing the state Xi to the state
Xj is denoted as reac(Xi,Xj) = {τ | Xi

τ−→ Xj}.
The behaviour of the stochastic system X(t) can be described by the (possi-

bly infinite) continuous-time Markov chain (CTMC) γ(N ) = (S,X0,R) where
the transition matrix R(i, j) gives the probability of a transition from Xi to Xj .
Formally,

R(i, j) =
∑

τ∈reac(Xi,Xj)

kτ · Cτ,i where Cτ,i =

N∏

�=1

(
Xi,�

r�

)
(R)

corresponds to the population dependent term of the propensity function where
Xi,� is �th component of the state Xi and r� is the stoichiometric coefficient of the
�-th reactant in the reaction τ . The CTMC γ(N ) is the accurate representation
of CRN N , but—even when finite—not scalable in practice because of the state
space explosion problem [25,31].

3 Semi-quantitative Abstraction

In this section, we describe our abstraction. We derive the desired CTMC con-
ceptually in several steps, which we describe explicitly, although we implement
the construction of the final system directly from the initial CRN.

3.1 Over-Approximation by Interval Abstraction and Acceleration

Given a CRN N = (Λ,R), we first consider an interval continuous-time Markov
decision process (interval CTMDP1), which is a finite abstraction of the infi-
nite γ(N ). Intuitively, abstract states are given by intervals on sizes of popu-
lations with an additional specific that the abstraction captures enabledness of
reactions. The transition structure follows the ideas of the standard may abstrac-
tion and of the three-valued abstraction of continuous-time systems [30]. A tech-
nical difference in the latter point is that we abstract rates into intervals instead
of uniformising the chain and then only abstracting transition probabilities into
intervals; this is necessary in later stages of the process. The main difference is
that we also treat certain sequences of actions, which we call acceleration.

Abstract Domains. The first step is to define the abstract domain for the
population sizes. For every species λ ∈ Λ, we define a finite partitioning Aλ of
N into intervals, reflecting the rough size of the population. Moreover, we want
the abstraction to reflect whether a reaction is enabled. Hence we require that

1 Interval CTMDP is a CTMDP with lower/upper bounds on rates. Since it serves only
as an intermediate formalism to ease the presentation, we refrain from formalising
it here.
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{0} ∈ Aλ for the case when the coefficients of this species as a reactant is always
0 or 1; in general, for every i < maxτ∈R rτ (λ) we require {i} ∈ Aλ.

The abstraction αλ(n) of a number n of a species λ is then the I ∈ Aλ for
which n ∈ I. The state space of α(N ) is the product

∏
λ∈Λ Aλ of the abstract

domains with the point-wise defined abstraction α(n)λ = αλ(nλ).
The abstract domain for the rates according to (R) is the set of all real

intervals.
Transitions from an abstract state are defined as the may abstraction as

follows. Since our abstraction reflect enabledness, the same set of action is
enabled in all concrete states of a given abstract state. The targets of the action
in the abstract setting are abstractions of all possible concrete successors, i.e.
succ(s, a) := {α(n) | m ∈ s,m

a−→ n}, in other words, the transitions enabled in
at least one of the respective concrete states. The abstract rate is the smallest
interval including all the concrete rates of the respective concrete transitions.
This can be easily computed by the corner-points abstraction (evaluating only
the extremum values for each species) since the stoichiometry of the rates is
monotone in the population sizes.

High-Level of Non-determinism. The (more or less) standard style of the
abstraction above has several drawbacks—mostly related to the high degree of
non-determinism for rates—which we will subsequently discuss.

Firstly, in connection with the abstract population sizes, transitions to dif-
ferent sizes only happen non-deterministically, leaving us unable to determine
which behaviour is probable. For example, consider the simple system given by

λ
d−→ ∅ with kd = 10−4 so the degradation happens on average each 104 seconds.

Assume population discretisation into [0], [1..5], [6..20], [21..∞) with abstraction
depicted in Fig. 1. While the original system obviously moves from [6..20] to
[1..5] very probably in less than 15 ·104 seconds, the abstraction cannot even say
that it happens, not to speak of estimating the time.

[0] [1..5] [6..20] [21, ∞)
d, 104 d, 6 · 104 d, 21 · 104

d, [2 · 104, 5 · 104] d, [7 · 104, 20 · 104] d, [22 · 104, ∞)

[0] [1..5] [6..20] [21, ∞)
d, .44 · 104 d, [.76 · 104, 6 · 104] d, (0, 21 · 104

Fig. 1. Above: Interval CTMDP abstraction with intervals on rates and non-
determinism. Below: Interval CTMC abstraction arising from acceleration.

Acceleration. To address this issue, we drop the non-deterministic self-loops
and transitions to higher/lower populations in the abstract system.2 Instead,

2 One can also preserve the non-determinism for the special case when one of the
transitions leads to a state where some action ceases to be enabled. While this adds
more precision, the non-determinism in the abstraction makes it less convenient to
handle.
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we “accelerate” their effect: We consider sequences of these actions that in the
concrete system have the effect of changing the population level. In our example
above, we need to take the transition 1 to 13 times from [6..20] with various
rates depending on the current concrete population, in order to get to [1..5].
This makes the precise timing more complicated to compute. Nevertheless, the
expected time can be approximated easily: here it ranges from 1

6 ·104 = 0.17 ·104

(for population 6) to roughly ( 1
20 + 1

19 +· · ·+ 1
6 )·104 = 1.3·104 (for population 20).

This results in an interval CTMC.3

Concurrency in Acceleration. The accelerated transitions can due to higher
number of occurrences be considered continuous or deterministic, as opposed to
discrete stochastic changes as distinguished in the hybrid approach. The usual
differential equation approach would also take into account other reactions that
are modelled deterministically and would combine their effect into one equation.
In order to simplify the exposition and computation and—as we see later—
without much loss of precision, we can consider only the fastest change (or
non-deterministically more of them if their rates are similar).4

3.2 Operational Semantics: Concretisation to a Representative

The next disadvantage of classical abstraction philosophy, manifested in the
interval CTMC above is that the precise-valued intervals on rates imply high
computational effort during the analysis. Although the system is smaller, stan-
dard transient analysis is still quite expensive.

Concretisation. In order to deal with this issue, the interval can be approxi-
mated roughly by the expected time it would take for an average population in
the considered range, in our example the “average” representative is 13. Then
the first transition occurs with rate 13 · 10−4 = 10−3 and needs to happen 7
times, yielding expected time 7/13 · 104 = 0.5 · 104 (ignoring even the precise
slow downs in the rates as the population decreases). Already this very rough
computation yields relative precision with factor 3 for all the populations in this
interval, thus yielding the correct order of magnitude with virtually no effort.
We lift the concretisation naturally to states and denote the concretisation of
abstract state s by γ(s). The complete procedure is depicted in Algorithm 1.

The concretisation is one of the main points where we deliberately drop a
lot of quantitative information, while still preserving some to conclude on big
quantitative differences. Of course, the precision improves with more precise
abstract domains and also with higher differences on the original rates.

3 The waiting times are not distributed according to the rates in the intervals. It is only
the expected waiting time (reciprocal of the rate) that is preserved. Nevertheless, for
ease of exposition, instead of labelling the transitions with expected waiting times
we stick to the CTMC style with the reciprocals and formally treat it as if the label
was a real rate.

4 Typically the classical concurrency diamond appears and the effect of the other
accelerated reactions happen just after the first one.
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Algorithm 1. Semi-quantitative abstraction CTMC α(N )

1: A ← ∏
λ∈Λ Aλ � States

2: for a ∈ A do � Transitions

3: c ← γ(a) � Concrete representative

4: for each τ enabled in c do

5: r ←rate of τ in c � According to (R)

6: a′ ← α(c + υτ ) � Successor

7: set a
τ−→ a′ with rate r

8: for self-loop a
τ−→ a do � Accelerate self-loops

9: nτ ← min{n | α(c + n · υτ ) �= a} � the number of τ to change the abstract state

10: a′ ← α(c + nτ · υτ ) � Acceleration successor

11: instead of the self-loop with rate r, set a
τ−→ a′ with rate nτ · r

It remains to determine the representative for the unbounded interval. In
order to avoid infinity, we require an additional input for the analysis, which are
deemed upper bounds on possible population of each species. In cases when any
upper bound is hard to assume, we can analyse the system with a random one
and see if the last interval is reachable with significant probability. If yes, then
we need to use this upper bound as a new point in the interval partitioning and
try a higher upper bound next time. In general, such conditions can be checked
in the abstraction and their violation implies a recommendation to refine the
abstract domains accordingly.

Orders-of-Magnitude Abstraction. Such an approximation is thus sufficient
to determine most of the time whether the acceleration (sequence of actions)
happens sooner or later than e.g. another reaction with rate 10−6 or 10−2. Note
that this decision gets more precise not only as we refine the population levels,
but also as the system gets stiffer (the concrete values of the rates differ more),
which are normally harder to analyse. For the ease of presentation in our case
studies, we shall depict only the magnitude of the rates, i.e. the decadic logarithm
rounded to an integer.

Non-determinism and Refinement. If two rates are close to each other, say
of the same magnitude (or difference 1), such a rough computation (and rough
population discretisation) is not precise enough to determine which of the reac-
tions happens with high probability sooner. Both may be happening roughly at
the same pace, or with more information we could conclude one of them is con-
siderably faster. This introduces an uncertainty, showing different behaviours are
possible depending on the exact quantities. This indicates points where refine-
ment might be needed if more precise results are required. For instance, with
rates of magnitudes 2 and 3, the latter should be happing most of the time, the
former only with a few percent chance. If we want to know whether it is rather
tens of percent or tenths of percent, we should refine the abstraction.
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4 Semi-quantitative Analysis

In this section, we present an approximative analysis technique that describes
the most probable transient and steady-state behaviour of the system (also with
rough timing) and on demand also the (one or more orders of magnitude) less
probable behaviours. As such it is robust in the sense that it is well suited to work
with imprecise rates and populations. It is computationally easy (can be done
in hand in time required for a computer by other methods), while still yielding
significant quantitative results (“in orders of magnitude”). It does not provide
exact error guarantees since computing them would be almost as expensive as
the classical analysis. It only features trivial limit-style bounds: if the population
abstraction gets more and more refined, the probabilities converge to those of the
original system; further, the higher the separation between the rate magnitudes,
the more precise the approximation is since the other factors (and thus the
incurred imprecisions) play less significant role.

Intuitively, the main idea—similar to some multi-rate simulation techniques
for stiff systems—is to “simulate” “fast” reactions until the steady state and
then examine which slower reactions take place. However, “fast” does not mean
faster than some constant, but faster than other transitions in a given state.
In other words, we are not distinguishing fast and slow reactions, but tailor
this to each state separately. Further, “simulation” is not really a stochastic
simulation, but a deterministic choice of the fastest available transition. If a
transition is significantly faster than others then this yields what a simulation
would yield. When there are transitions with similar rates, e.g. with at most one
order of magnitude difference, then both are taken into account as described in
the following definition.

Pruned System. Consider the underlying graph of the given CTMC. If we keep
only the outgoing transitions with the maximum rate in each state, we call the
result pruned. If there is always (at most) one transition then the graph consists
of several paths leading to cycles. In general when more transitions are kept, it
has bottom strongly connected components (bottom SCCs, BSCCs) and some
transient parts.

We generalise this concept to n-pruning that preserves all transitions with
a rate that is not more than n orders of magnitude smaller than the maximum
rate in the state. Then the pruning above is 0-pruning, 1-pruning preserves also
transitions happening up to 10 times slower, which can thus still happen with
dozens of percent, 2-pruning is relevant for analysis where behaviour occurring
with units of percent is also tracked etc.

Algorithm Idea. Here we explain the idea of Algorithm 2. The transient parts
of the pruned system describe the most probable behaviour from each state until
the point where visited states start to repeat a lot (steady state of the pruned
system). In the original system, the usual behaviour is then to stay in this SCC
C until one of the pruned (slower) reactions occurs, say from state s to state t.
This may bring us to a different component of the pruned graph and the analysis
process repeats. However, t may also bring us back into C, in which case we stay
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in the steady-state, which is basically the same as without the transition from
s to t. Further, t might be in the transient part leading to C, in which case
these states are added to C and the steady state changes a bit, spreading the
distribution slightly also to the previously transient states. Finally, t might be
leading us into a component D where this run was previous to visiting C. In
that case, the steady-state distribution spreads over all the components visited
between D and C, putting a probability mass to each with a different order of
magnitude depending on all the (magnitudes of) sojourn times in the transient
and steady-state phases on the way.

Using the macros defined in the algorithm, the correctness of the compu-
tations can be shown as follows. For the time spent in the transient phase
(line 16), we consider the slowest sojourn time on the way times the number
of such transitions; this is accurate since the other times are by order(s) of mag-
nitude shorter, hence negligible. The steady-state distribution on a BSCC of the

Algorithm 2. Semi-quantitative analysis
1: W ← ∅ � worklist of SCCs to process

2: add {initial state} to W and assign iteration 0 to it � artificial SCC to start the process

3: while W �= ∅ do

4: C ←pop W

� Compute and output steady state or its approximation

5: steady-state of C is approximately minStayingRate/(m · stayingRate(·))
6: if C has no exits then continue � definitely bottom SCC, final steady state

� Compute and output exiting transitions and the time spent in C

7: exitStates ← arg minC(stayingRate(·)/exitingRate(·)) � Probable exit points

8: minStayingRate ←minimum rate in C, m ←#occurrences there

9: timeToExit ← stayingRate(s) · m/(|exitStates| · minStayingRate · exitingRate(s))

for (arbitrary) s ∈ exitStates

10: for all s ∈ exitsStates do � Transient analysis

11: t ←target of the exiting transition

12: T ←SCCs reachable in the pruned graph from t

13: thereby newly reached transitions get assigned iteration of C + 1

14: for D ∈ T do

� Compute and output time to get from t to D

15: minRate ←minimum rate on the way from t to D, m ←#occurrences there

16: transTime ← m/minRate

� Determine the new SCC

17: if D = C then � back to the current SCC

18: add to W the union of C and the new transient path τ from t to C

19: in later steady-state computation, the states of τ will have probability

smaller by a factor of stayingRate(s)/exitingRate(s)
20: else if D was previously visited then � alternating between different SCCs

21: add to W the merge of all SCCs visited between D and C (inclusively)

22: in later steady-state computation, reflect all timeToExit and transTime

between D and C

23: else � new SCC

24: add D to W

MACROS:

stayingRate(s) is the rate of transitions from s in the pruned graph

exitingRate(s) is the maximum rate of transitions from s not in the pruned graph
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pruned graph can be approximated by the minStayingRate/(m · stayingRate(·))
on line 5. Indeed, it corresponds to the steady-state distribution if the BSCC is a
cycle and the minStayingRate significantly larger than other rates in the BSCC
since then the return time for the states is approximately m/minStayingRate
and the sojourn time 1/stayingRate(·). The component is exited from s with
the proportion given by its steady-state distribution times the probability to
take the exit during that time. The former is approximated above; the latter
can be approximated by the density in 0, i.e. by exitingRate(s), since the stay-
ing rate is significantly faster. Hence the candidates for exiting are maximising
exitingRate(·)/stayingRate(·) as on line 7. There are |exitStates| candidates for
exit and the time to exit the component by a particular candidate s is the
expected number of visits before exit, i.e. stayingRate(s) · exitingRate(s) times
the return time m · minStayingRate, hence the expression on line 9.

s0 s1 s2 s3t u
11 10 10

1001 1

100

1 10

Fig. 2. Alternating transient and steady-state analysis.

For example, consider the system in Fig. 2. Iteration 1 reveals the part
with solid lines with two (temporary) BSCCs {t} and {s1, s2, s3}. The for-
mer turns out definitely bottom. The latter has a steady state proportional to
(10−1, 10−1, 100−1). Its most probable exits are the dashed ones, identified in the
subsequent iteration 2, probable proportionally to (1/10,10/100); the expected
time to take them is 10 · 2/(2 · 10 · 1) = 1 = 100 · 2/(2 · 10 · 10). The latter leads
back to the current SCC and does not change the set of BSCCs (hence in our
examples below we often either skip or merge such iterations for the sake of read-
ability). In contrast, the former leads to a previous SCC; thereafter {s1, s2, s3} is
no more a bottom SCC and consequently the third exit to u is not even analysed.
Nevertheless, it could still happen with minor probability, which can be seen if
we consider 1-pruning instead.

5 Experimental Evaluation and Discussion

In order to demonstrate the applicability and accuracy of our approach, we
selected the following three biologically relevant case studies. (1) stochastic
model of gene expression [22,24], (2) Goutsias’s model [23] describing transcrip-
tion regulation of a repressor protein in bacteriophage λ and (3) viral infection
model [43].

Although the underlying CRNs are quite small (up to 5 species and 10 reac-
tion), their analysis is very challenging: (i) the stochasticity has a strong impact
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on the dynamics of these systems and thus purely deterministic approximations
via ODEs are not accurate, (ii) the systems include species with low, medium,
and high populations and thus the resulting state space of the stochastic process
is prohibitively large to perform precise numerical analysis and existing reduc-
tion/approximation techniques are not sufficient (they are either too imprecise
or do not provide sufficient reduction factors), and (iii) the system dynamics
leads to bi-modal distributions and/or is affected by stiff reactions.

These models thus represent perfect candidates for evaluating advanced
approximation methods including various hybrid approaches [9,24,27]. Although
these approaches can handle the models, they typically require tens of minutes
or hours of computation time. Similarly simulation-based methods are very time
consuming especially in case of very stiff CRN, represented by the viral infection
model. We demonstrate that our approach provides accurate predications of the
system behaviour and is feasible even when performed manually by a human.

Recall that the algorithm that builds the abstract model of the given CRN
takes as input two vectors representing the population discretisation and pop-
ulation bounds. We generally assume that these inputs are provided by users
who have a priori knowledge about the system (e.g. in which orders the species
population occurs) and that the inputs also reflect the level of details the users
are interested in. In the following case studies, we, however, set the inputs only
based on the rate orders of the reactions affecting the particular species (unless
mentioned otherwise).

5.1 Gene Expression Model

The CRN underlying the gene expression model is described in Table 1. As dis-
cussed in [24] and experimentally observed in [18], the system oscillates between
two phases characterised by the Don state and the Doff state, respectively. Biol-
ogists are interested in how the distribution of the Don and Doff states is aligned
with the distribution of RNA and proteins P, and how the correlation among
the distributions depends on the DNA switching rates.

The state vector of the underlying CTMC is given as [P, RNA, Doff, Don]. We
use very relaxed bounds on the maximal populations, namely the bound 1000
for P and 100 for RNA. Note the DNA invariant Don + Doff = 1. As in [24], the
initial state is given as [10,4,1,0].

We first consider the slow switching rates that lead to a more compli-
cated dynamics including bimodal distributions. In order to demonstrate the
refinement step and its effect on the accuracy of the model, we start with a
very coarse abstraction. It distinguishes only the zero population and the non-
zero populations and thus it is not able to adequately capture the relationship
between the DNA state and RNA/P population. The pruned abstract model
obtained using Algorithm 1 and 2 is depicted in Fig. 3 (left). The full one before
pruning is shown in Fig. 6 [11, Appendix].

The proposed analysis of the model identifies the key trends in the system
dynamic. The red transitions, representing iterations 1–3, capture the most prob-
able paths in the system. The green component includes states with DNA on
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Table 1. Gene expression. For slow DNA switching, r1 = r2 = 0.05. For fast DNA
switching, r1 = r2 = 1. The rates are in h−1.

Fig. 3. Pruned abstraction for the gene expression model using the coarse population
discretisation (left) and after the refinement (right). The state vector is [P, RNA, Doff,
Don].

(i.e. Don = 1) where the system oscillates. The component is reached via the
blue state with Doff and no RNAs/P. The blue state is promptly reached from
the initial state and then the system waits (roughly 100 h according our rate
abstraction) for the next DNA activation. The oscillation is left via a deactiva-
tion in the iteration 4 (the blue dotted transition)5. The estimation of the exit
time computed using Algorithm 2 is also 100 h. The deactivation is then followed
by fast red transitions leading to the blue state, where the system waits for the
next activation. Therefore, we obtain an oscillation between the blue state and
the green component, representing the expected oscillation between the Don and
Doff states.

As expected, this abstraction does not clearly predict the bimodal distri-
bution on the RNA/P populations as the trivial population levels do not bear
any information beside reaction enabledness. In order to obtain a more accurate
analysis of the system, we refine the population discretisation using a single level
threshold for P and DNA, that is equal to 100 and 10, respectively (the rates in
the CRN indicate that the population of P reaches higher values).

Figure 3 (right) depicts the pruned abstract model with the new discretisa-
tion (the full model is depicted in Fig. 7 [11, Appendix]. We again obtain the
oscillation between the green component representing DNAon states and the
blue DNAoff state. The states in the green component more accurately predicts

5 In Fig. 3, the dotted transitions denote exit transitions representing the deactiva-
tions.
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that in the DNAon states the populations of RNA and P are high and drop
to zero only for short time periods. The figure also shows orange transitions
within the iteration 2 that extend the green component by two states. Note that
the system promptly returns from these states back to the green component.
After the deactivation in the iteration 4, the system takes (within the same
iteration) the fast transitions (solid blue) leading to the blue component where
system waits for another activation and where the mRNA/protein populations
decrease. The expected time spent in states on blue solid transitions is small and
thus we can reliably predict the bimodal distribution of the mRNA/P popula-
tions and its correlation with the DNA state. The refined abstraction also reveals
that the switching time from the DNAon mode to the DNAoff mode is lower.
These predications are in accordance with the results obtained in [24]. See Fig. 8
[11, Appendix] that is adopted from [24] and illustrates these results.

To further test the accuracy of our approach, we consider the fast switching
between the DNA states. We follow the study in [24] and increase the rates by
two orders of magnitude. We use the refined population discretisation and obtain
a very similar abstraction as in Fig. 3 (right). We again obtain the oscillation
between the green component (DNAon states and nonzero RNA/protein popu-
lations) and the blue state (DNAoff and zero RNA/protein populations). The
only difference is in fact the transition rates corresponding to the activation and
deactivation causing that the switching rate between the components is much
faster. As a consequence, the system spends a longer period in the blue transient
states with Doff and nonzero RNA/protein populations. The time spent in these
states decreases the correlation between the DNA state and the RNA/protein
populations as well as the bimodality in the population distribution. This is
again in the accordance with [24].

To conclude this case study, we observe a very aligned agreement between the
results obtained using our approach and results in [24] obtained via advanced
and time consuming numerical methods. We would like to emphasise that our
abstraction and its solution is obtained within a fraction of a second while the
numerical methods have to approximate solutions of equations describing high-
order conditional moments of the population distributions. As [24] does not
report the runtime of the analysis and the implementation of their methods is
not publicly available, we cannot directly compare the time complexity.

5.2 Goutsias’s Model

Goutsias’s model illustrated in Table 2 is widely used for evaluation of various
numerical and simulation based techniques. As showed e.g. in [23], the system
has with a high probability the following transient behaviour. In the first phase,
the system switches with a high rate between the non-active DNA (denoted
DNA) and the active DNA (DNA.D). During this phase the population of RNA,
monomers (M) and dimers (D) gradually increase (with only negligible oscilla-
tions). After around 15 min, the DNA is blocked (DNA.2D) and the population
of RNA decreases while the population of M and D is relatively stable. After
all RNA degrades (around another 15 min) the system switches to the third
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Table 2. Goutsias’ Model. The rates are in s−1

Fig. 4. Pruned abstraction for the Goutsias’ model. The state vector is [M + D, RNA,
DNA, DNA.D, DNA.2D]

phase where the population of M and D slowly decreases. Further, there is a
non-negligible probability that the DNA is blocked at the beginning while the
population of RNA is still small and the system promptly dies out.

Although the system is quite suitable for the hybrid approaches (there is
no strong bimodality and only a limited stiffness), the analysis still takes 10
to 50 min depending on the required precision [27]. We demonstrate that our
approach is able to accurately predict the main transient behaviour as well as
the non-negligible probability that the system promptly dies out.

The state vector is given as [M, D, RNA, DNA, DNA.D, DNA.2D] and the
initial state is set to [2, 6, 0, 1, 0, 0] as in [27]. We start our analysis with a
coarse population discretisation with a single threshold 100 for M and D and a
single threshold 10 for RNA. We relax the bounds, in particular, 1000 for M and
D, and 100 for RNA. Note that these numbers were selected solely based on the
rate orders of the relevant reactions. Note the DNA invariant DNA + DNA.D
+ DNA.2D = 1.

Figure 4 illustrates the pruned abstract model we obtained (the full model
is depicted in Fig. 9 [11, Appendix]. For a better visualisation, we merged the
state components corresponding to M and D into one component with M +D.
As there is the fast reversible dimerisation, the actual distributions between the
population of M and D does not affect the transient behaviour we are inter-
ested in.

The analysis of the model shows the following transient behaviour. The pur-
ple dotted loop in the iteration i1 represents (de-)activation of the DNA. The
expected exit time of this loop is 100 s. According to our abstraction, there are
two options (with the same probability) to exit the loop: (1) the path a rep-
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resents the DNA blocking followed by the quick extinction and (2) the path b

corresponds to the production of RNA and its followed by the red loop in the
i2 that again represents (de-)activation of the DNA. Note that according our
abstraction, this loop contains states with the populations of M/D as well as
RNA up to 100 and 10, respectively.

The expected exit time of this loop is again 100 s and there are two options
how to leave the loop: (1) the path within the iteration i3 (taken with roughly
90%) represents again the DNA blocking and it is followed by the extension of
RNA and consequently by the extension of M/D in about 1000 s and (2) the
path within the iteration 5 (shown in the full graph in Fig. 9 [11, Appendix])
taken with roughly 10% represents the series of protein productions and leads
to the states with a high number of proteins (above 100 in our population dis-
cretisation). Afterwards, there is again a series of DNA (de-)activations followed
by the DNA blocking and the extinction of RNA. As before, this leads to the
extinction of M/D in about 1000 s.

Although this abstraction already shows the transient behaviour leading
to the extinction in about 30 min, it introduces the following inaccuracy with
respect to the known behaviour: (1) the probability of the fast extinction is
higher and (2) we do not observe the clear bell-shape pattern on the RNA (i.e.
the level 2 for the RNA is not reached in the abstraction). As in the previous
case study, the problem is that the population discretisation is too coarse. It
causes that the total rate of the DNA blocking (affected by the M/D population
via the mass action kinetics) is too high in the states with the M/D population
level 1. This can be directly seen in the interval CTMC representation where
the rate spans many orders of magnitude, incurring too much imprecision. The
refinement of the M/D population discretisation eliminates the first inaccuracy.
To obtain the clear bell-shape patter on RNA, one has to refine also the RNA
population discretisation.

5.3 Viral Infection

The viral infection model described in Table 3 represents the most challenging
system we consider. It is highly stochastic, extremely stiff, with all species pre-
senting high variance and some also very high molecular populations. Moreover,
there is a bimodal distribution on the RNA population. As a consequence, the
solution of the full CME, even using advanced reduction and aggregation tech-
niques, is prohibitive due to state-space explosion and stochastic simulation are
very time consuming. State-of-the-art hybrid approaches integrating the LNA
and an adaptive population partitioning [9] can handle this system but also
need a very long execution time. For example, a transient analysis up to time
t = 50 requires around 20 min and up to t = 200 more than an hour.

To evaluate the accuracy of our approach on this challenging model, we also
focus on the same transient analysis, namely, we are interested in the distribution
of RNA at time t = 200. The analysis in [9] predicts a bimodal distribution where,
the probability that RNA is zero in around 20% and the remaining probability
has Gaussian distribution with mean around 17 and the probability that there
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Table 3. Viral Infection. The rates are day−1

Fig. 5. Pruned abstraction for the viral infection model. The state vector is [P, RNA,
DNA].

is more than 30 RNAs is close to zero. This is confirmed by simulation-based
analysis in [23] showing also the gradual growth of the RNA population. The
simulation-based analysis in [43], however, estimates a lower probability (around
3%) that RNA is 0 and higher mean of the remaining Gaussian distribution
(around 23). Recall that obtaining accurate results using simulations is extremely
time consuming due to very stiff reactions (a single simulation for t = 200 takes
around 20 s).

In the final experiments, we analyse the distribution of RNA at time t = 200
using our approach. The state vector is given as [P, RNA, DNA] and we start
with the concrete state [0, 1, 0]. To sufficiently reason about the RNA population
and to handle the very high population of the proteins, we use the following
population discretisation: thresholds {10, 1000} for P, {10, 30} for RNA, and
{10, 100} for DNA. As before, we use very relaxed bounds 10000, 100, and 1000
for P, RNA, and D, respectively. Note that we ignore the population of the virus
V as it does not affect the dynamics of the other species. This simplification
makes the visualisation of our approach more readable and has no effect on the
complexity of the analysis.

Figure 5 illustrates the obtained abstract model enabling the following tran-
sient analysis (the full model is depicted in Fig. 10 [11, Appendix]. In a few days
the system reaches from the initial state the loop (depicted by the purple dashed
ellipse) within the iteration i1. The loop includes states where RNA has level 1,
DNA has level 2 and P oscillates between the levels 2 and 3. Before entering
the loop, there is a non-negligible probability (orders of percent) that the RNA
drops to 0 via the full black branch that returns to transient part of the loop
in i1. In this branch the system can also die out (not shown in this figure, see
the full model) with probability in the order of tenths of percent.
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The average exit time of the loop in i1 is in the order of 10 days and the
system goes to the yellow loop within the iteration i2, where the DNA level is
increased to 3 (RNA level is unchanged and P again oscillates between the levels
2 and 3). The average exit time of the loop in i2 is again in the order of 10
days and systems goes to the dotted red loop within iteration i3. The transition
represents the sequence of RNA synthesis that leads to RNA level 2. P oscillates
as before. Finally, the system leaves the loop in i3 (this takes another dozen
days) and reaches RNA level 3 in iterations i4 and i5 where the DNA level
remains at the level 3 and P oscillates. The iteration i4 and i5 thus roughly
correspond to the examined transient time t = 200.

The analysis clearly demonstrates that our approach leads to the behaviour
that is well aligned with the previous experiments. We observed growth of the
RNA population with a non-negligible probability of its extinction. The concrete
quantities (i.e. the probability of the extinction and the mean RNA population)
are closer to the analysis in [43]. The quantities are indeed affected by the popu-
lation discretisation and can be further refined. We would like to emphasise that
in contrast to the methods presented in [9,23,43] requiring hours of intensive
numerical computation, our approach can be done even manually on the paper.
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Abstract. This paper considers large families of Markov chains (MCs)
that are defined over a set of parameters with finite discrete domains.
Such families occur in software product lines, planning under partial
observability, and sketching of probabilistic programs. Simple questions,
like ‘does at least one family member satisfy a property?’, are NP-hard.
We tackle two problems: distinguish family members that satisfy a given
quantitative property from those that do not, and determine a family
member that satisfies the property optimally, i.e., with the highest prob-
ability or reward. We show that combining two well-known techniques,
MDP model checking and abstraction refinement, mitigates the compu-
tational complexity. Experiments on a broad set of benchmarks show that
in many situations, our approach is able to handle families of millions of
MCs, providing superior scalability compared to existing solutions.

1 Introduction

Randomisation is key to research fields such as dependability (uncertain sys-
tem components), distributed computing (symmetry breaking), planning (unpre-
dictable environments), and probabilistic programming. Families of alternative
designs differing in the structure and system parameters are ubiquitous. Software
dependability has to cope with configuration options, in distributed computing
the available memory per process is highly relevant, in planning the observabil-
ity of the environment is pivotal, and program synthesis is all about selecting
correct program variants. The automated analysis of such families has to face
a formidable challenge—in addition to the state-space explosion affecting each
family member, the family size typically grows exponentially in the number of
features, options, or observations. This affects the analysis of (quantitative) soft-
ware product lines [18,28,43,45,46], strategy synthesis in planning under partial
observability [12,14,29,36,41], and probabilistic program synthesis [9,13,27,40].

This paper considers families of Markov chains (MCs) to describe config-
urable probabilistic systems. We consider finite MC families with finite-state
family members. Family members may have different transition probabilities
and distinct topologies—thus different reachable state spaces. The latter aspect
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Science Foundation grant No. Robust 17-12465S.
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goes beyond the class of parametric MCs as considered in parameter synthe-
sis [10,22,24,31] and model repair [6,16,42].

For an MC family D and quantitative specification ϕ, with ϕ a reachability
probability or expected reward objective, we consider the following synthesis
problems: (a) does some member in D satisfy a threshold on ϕ? (aka: feasibility
synthesis), (b) which members of D satisfy this threshold on ϕ and which ones
do not? (aka: threshold synthesis), and (c) which family member(s) satisfy ϕ
optimally, e.g., with highest probability? (aka: optimal synthesis).

The simplest synthesis problem, feasibility, is NP-complete and can naively
be solved by analysing all individual family members—the so-called one-by-one
approach. This approach has been used in [18] (and for qualitative systems in e.g.
[19]), but is infeasible for large systems. An alternative is to model the family D
by a single Markov decision process (MDP)—the so-called all-in-one MDP [18].
The initial MDP state non-deterministically chooses a family member of D, and
then evolves in the MC of that member. This approach has been implemented
in tools such as ProFeat [18], and for purely qualitative systems in [20]. The
MDP representation avoids the individual analysis of all family members, but
its size is proportional to the family size. This approach therefore does not scale
to large families. A symbolic BDD-based approach is only a partial solution as
family members may induce different reachable state-sets.

This paper introduces an abstraction-refinement scheme over the MDP repre-
sentation1. The abstraction forgets in which family member the MDP operates.
The resulting quotient MDP has a single representative for every reachable state
in a family member. It typically provides a very compact representation of the
family D and its analysis using off-the-shelf MDP model-checking algorithms
yields a speed-up compared to the all-in-one approach. Verifying the quotient
MDP yields under- and over-approximations of the min and max probability
(or reward), respectively. These bounds are safe as all consistent schedulers, i.e.,
those that pick actions according to a single family member, are contained in all
schedulers considered on the quotient MDP. (CEGAR-based MDP model check-
ing for partial information schedulers, a slightly different notion than restricting
schedulers to consistent ones, has been considered in [30]. In contrast to our
setting, [30] considers history-dependent schedulers and in this general setting
no guarantee can be given that bounds on suprema converge [29]).

Model-checking results of the quotient MDP do provide useful insights. This
is evident if the resulting scheduler is consistent. If the verification reveals that
the min probability exceeds r for a specification ϕ with a ≤ r threshold, then—
even for inconsistent schedulers—it holds that all family members violate ϕ. If
the model checking is inconclusive, i.e., the abstraction is too coarse, we iter-
atively refine the quotient MDP by splitting the family into sub-families. We
do so in an efficient manner that avoids rebuilding the sub-families. Refinement
employs a light-weight analysis of the model-checking results.

1 Classical CEGAR for model checking of software product lines has been proposed
in [21]. This uses feature transition systems, is purely qualitative, and exploits exis-
tential state abstraction.
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We implemented our abstraction-refinement approach using the Storm model
checker [25]. Experiments with case studies from software product lines, plan-
ning, and distributed computing yield possible speed-ups of up to 3 orders of
magnitude over the one-by-one and all-in-one approaches (both symbolic and
explicit). Some benchmarks include families of millions of MCs where family
members are thousands of states. The experiments reveal that—as opposed to
parameter synthesis [10,24,31]—the threshold has a major influence on the syn-
thesis times.

To summarise, this work presents: (a) MDP-based abstraction-refinement for
various synthesis problems over large families of MCs, (b) a refinement strategy
that mitigates the overhead of analysing sub-families, and (c) experiments show-
ing substantial speed-ups for many benchmarks. Extra material can be found
in [1,11].

2 Preliminaries

We present the basic foundations for this paper, for details, we refer to [4,5].

Probabilistic models. A probability distribution over a finite or countably infinite
set X is a function μ : X → [0, 1] with

∑
x∈X μ(x) = μ(X) = 1. The set of

all distributions on X is denoted Distr(X). The support of a distribution μ is
supp(μ) = {x ∈ X |μ(x) > 0}. A distribution is Dirac if |supp(μ)| = 1.

Definition 1 (MC). A discrete-time Markov chain (MC) D is a triple
(S, s0,P), where S is a finite set of states, s0 ∈ S is an initial state, and
P : S → Distr(S) is a transition probability matrix.

MCs have unique distributions over successor states at each state. Adding non-
deterministic choices over distributions leads to Markov decision processes.

Definition 2 (MDP). A Markov decision process (MDP) is a tuple M =
(S, s0,Act ,P) where S, s0 as in Definition 1, Act is a finite set of actions, and
P : S × Act � Distr(S) is a partial transition probability function.

The available actions in s ∈ S are Act(s) = {a ∈ Act | P(s, a) �= ⊥}. An
MDP with |Act(s)| = 1 for all s ∈ S is an MC. For MCs (and MDPs), a state-
reward function is rew : S → R≥0. The reward rew(s) is earned upon leaving s.

A path of an MDP M is an (in)finite sequence π = s0
a0−→ s1

a1−→ · · · , where
si ∈ S, ai ∈ Act(si), and P(si, ai)(si+1) �= 0 for all i ∈ N. For finite π, last(π)
denotes the last state of π. The set of (in)finite paths of M is PathsM

fin (PathsM ).
The notions of paths carry over to MCs (actions are omitted). Schedulers resolve
all choices of actions in an MDP and yield MCs.

Definition 3 (Scheduler). A scheduler for an MDP M = (S, s0,Act ,P) is a
function σ : PathsM

fin → Act such that σ(π) ∈ Act(last(π)) for all π ∈ PathsM
fin .

Scheduler σ is memoryless if last(π) = last(π′) =⇒ σ(π) = σ(π′) for all
π, π′ ∈ PathsM

fin . The set of all schedulers of M is ΣM .
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Definition 4 (Induced Markov Chain). The MC induced by MDP M and
σ ∈ ΣM is given by Mσ = (PathsM

fin , s0,P
σ) where:

Pσ(π, π′) =

{
P(last(π), σ(π))(s′) if π′ = π

σ(π)−−−→ s′

0 otherwise.

Specifications. For a MC D, we consider unbounded reachability specifications
of the form ϕ = P∼λ(♦G) with G ⊆ S a set of goal states, λ ∈ [0, 1] ⊆ R,
and ∼ ∈ {<,≤,≥, >}. The probability to satisfy the path formula φ = ♦G
in D is denoted by Prob(D,φ). If ϕ holds for D, that is, Prob(D,φ) ∼ λ, we
write D |= ϕ. Analogously, we define expected reward specifications of the form
ϕ = E∼κ(♦G) with κ ∈ R≥0. We refer to λ/κ as thresholds. While we only
introduce reachability specifications, our approaches may be extended to richer
logics like arbitrary PCTL [32], PCTL* [3], or ω-regular properties.

For an MDP M , a specification ϕ holds (M |= ϕ) if and only if
it holds for the induced MCs of all schedulers. The maximum probability
Probmax(M,φ) to satisfy a path formula φ for an MDP M is given by a max-
imising scheduler σmax ∈ ΣM , that is, there is no scheduler σ′ ∈ ΣM such
that Prob(Mσmax , φ) < Prob(Mσ′ , φ). Analogously, we define the minimising
probability Probmin(M,φ), and the maximising (minimising) expected reward
ExpRewmax(M,φ) (ExpRewmin(M,φ)).

The probability (expected reward) to satisfy path formula φ from state s ∈
S in MC D is Prob(D,φ)(s) (ExpRew(D,φ)(s)). The notation is analogous for
maximising and minimising probability and expected reward measures in MDPs.
Note that the expected reward ExpRew(D,φ) to satisfy path formula φ is only
defined if Prob(D,φ) = 1. Accordingly, the expected reward for MDP M under
scheduler σ ∈ ΣM requires Prob(Mσ, φ) = 1.

3 Families of MCs

We present our approaches on the basis of an explicit representation of a fam-
ily of MCs using a parametric transition probability function. While arbitrary
probabilistic programs allow for more modelling freedom and complex parameter
structures, the explicit representation alleviates the presentation and allows to
reason about practically interesting synthesis problems. In our implementation,
we use a more flexible high-level modelling language, cf. Sect. 5.

Definition 5 (Family of MCs). A family of MCs is defined as a tuple D =
(S, s0,K,P) where S is a finite set of states, s0 ∈ S is an initial state, K is a
finite set of discrete parameters such that the domain of each parameter k ∈ K
is Tk ⊆ S, and P : S → Distr(K) is a family of transition probability matrices.

The transition probability function of MCs maps states to distributions over
successor states. For families of MCs, this function maps states to distributions
over parameters. Instantiating each of these parameters with a value from its
domain yields a “concrete” MC, called a realisation.
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(d) Dr4 with r4(k1) = 0, r4(k2) = 3

Fig. 1. The four different realisations of D.

Definition 6 (Realisation). A realisation of a family D = (S, s0,K,P) is a
function r : K → S where ∀k ∈ K : r(k) ∈ Tk. A realisation r yields a MC
Dr = (S, s0,P(r)), where P(r) is the transition probability matrix in which each
k ∈ K in P is replaced by r(k). Let RD denote the set of all realisations for D.

As a family D of MCs is defined over finite parameter domains, the number of
family members (i.e. realisations from RD) of D is finite, viz. |D| := |RD| =∏

k∈K |Tk|, but exponential in |K|. Subsets of RD induce so-called subfamilies
of D. While all these MCs share the same state space, their reachable states may
differ, as demonstrated by the following example.

Example 1 (Family of MCs). Consider a family of MCs D = (S, s0,K,P) where
S = {0, 1, 2, 3}, s0 = 0, and K = {k0, k1, k2} with domains Tk0

= {0}, Tk1
=

{0, 1}, and Tk2
= {2, 3}. The parametric transition function P is defined by:

P(0) = 0.5: k0 + 0.5: k1 P(1) = 0.5: k1 + 0.5: k2

P(2) = 1: k2 P(3) = 0.5: k1 + 0.5: k2

Figure 1 shows the four MCs that result from the realisations {r1, r2, r3, r4} =
RD of D. States that are unreachable from the initial state are greyed out.

We state two synthesis problems for families of MCs. The first is to identify the
set of MCs satisfying and violating a given specification, respectively. The second
is to find a MC that maximises/minimises a given objective. We call these two
problems threshold synthesis and max/min synthesis.

Problem 1 (Threshold synthesis). Let D be a family of MCs and ϕ a prob-
abilistic reachability or expected reward specification. The threshold synthesis
problem is to partition RD into T and F such that ∀r ∈ T : Dr � ϕ and
∀r ∈ F : Dr � ϕ.

As a special case of the threshold synthesis problem, the feasibility synthesis
problem is to find just one realisation r ∈ RD such that Dr � ϕ.
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Problem 2 (Max synthesis). Let D a family of MCs and φ = ♦G for
G ⊆ S. The max synthesis problem is to find a realisation r∗ ∈ RD such that
Prob(Dr∗ , φ) = maxr∈RD{Prob(Dr, φ)}. The problem is defined analogously for
an expected reward measure or minimising realisations.

Example 2 (Synthesis problems). Recall the family of MCs D from Example 1.
For the specification ϕ = P≥0.1(♦{1}), the solution to the threshold synthesis
problem is T = {r2, r3} and F = {r1, r4}, as the goal state 1 is not reachable for
Dr1

and Dr4
. For φ = ♦{1}, the solution to the max synthesis problem on D is

r2 or r3, as Dr2
and Dr3

have probability one to reach state 1.

Approach 1 (One-by-one [18]). A straightforward solution to both synthesis
problems is to enumerate all realisations r ∈ RD, model check the MCs Dr, and
either compare all results with the given threshold or determine the maximum.

We already saw that the number of realisations is exponential in |K|.

Theorem 1. The feasibility synthesis problem is NP-complete.

The theorem even holds for almost-sure reachability properties. The proof is a
straightforward adaption of results for augmented interval Markov chains [17,
Theorem 3], partial information games [15], or partially observable MDPs [14].

4 Guided Abstraction-Refinement Scheme

In the previous section, we introduced the notion of a family of MCs, two syn-
thesis problems and the one-by-one approach. Yet, for a sufficiently high number
of realisations such a straightforward analysis is not feasible. We propose a novel
approach allowing us to more efficiently analyse families of MCs.

4.1 All-in-one MDP

We first consider a single MDP that subsumes all individual MCs of a family D,
and is equipped with an appropriate action and state labelling to identify the
underlying realisations from RD.

Definition 7 (All-in-one MDP [18,28,43]). The all-in-one MDP of a family
D = (S, s0,K,P) of MCs is given as MD = (SD, sD

0 ,ActD,PD) where SD =
S × RD ∪ {sD

0 }, ActD = {ar | r ∈ RD}, and PD is defined as follows:

PD(sD
0 , ar)((s0, r)) = 1 and PD((s, r), ar)((s′, r)) = P(r)(s)(s′).

Example 3 (All-in-one MDP). Figure 2 shows the all-in-one MDP MD for the
family D of MCs from Example 1. Again, states that are not reachable from the
initial state sD

0 are marked grey. For the sake of readability, we only include the
transitions and states that correspond to realisations r1 and r2.
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Fig. 2. Reachable fragment of the all-in-one MDP MD for realisations r1 and r2.

From the (fresh) initial state sD
0 of the MDP, the choice of an action ar cor-

responds to choosing the realisation r and entering the concrete MC Dr. This
property of the all-in-one MDP is formalised as follows.

Corollary 1. For the all-in-one MDP MD of family D of MCs2:

{MD
σr | σr memoryless deterministic scheduler} = {Dr | r ∈ RD}.

Consequently, the feasibility synthesis problem for ϕ has the solution r ∈ RD iff
there exists a memoryless deterministic scheduler σr such that MD

σr � ϕ.

Approach 2 (All-in-one [18]). Model checking the all-in-one MDP determines
max or min probability (or expected reward) for all states, and thereby for all
realisations, and thus provides a solution to both synthesis problems.

As also the all-in-one MDP may be too large for realistic problems, we merely
use it as formal starting point for our abstraction-refinement loop.

4.2 Abstraction

First, we define a predicate abstraction that at each state of the MDP forgets in
which realisation we are, i.e., abstracts the second component of a state (s, r).

Definition 8 (Forgetting). Let MD = (SD, sD
0 ,ActD,PD) be an all-in-one

MDP. Forgetting is an equivalence relation ∼f ⊆ SD × SD satisfying

(s, r) ∼f (s′, r′) ⇐⇒ s = s′ and sD
0 ∼f (sD

0 , r) ∀r ∈ RD.

Let [s]∼ denote the equivalence class wrt. ∼f containing state s ∈ SD.

Forgetting induces the quotient MDP MD
∼ = (SD

∼ , [sD
0 ]∼,ActD,PD

∼ ), where
PD

∼ ([s]∼, ar)([s
′]∼) = P(r)(s)(s′).

At each state of the quotient MDP, the actions correspond to any realisation. It
includes states that are unreachable in every realisation.

Remark 1 (Action space). According to Definition 8, for every state [s]∼ there are
|D| actions. Many of these actions lead to the same distributions over successor
states. In particular, two different realisations r and r′ lead to the same distribu-
tion in s if r(k) = r′(k) for all k ∈ K where P(s)(k) �= 0. To avoid this spurious
blow-up of actions, we a-priori merge all actions yielding the same distribution.

2 The original initial state s0 of the family of MCs needs to be the initial state of MD
σr .
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Fig. 3. The quotient MDP MD
∼ for realisations r1 and r2.

The quotient MDP under forgetting involves that the available actions allow to
switch realisations and thereby create induced MCs different from any MC in D.
We formalise the notion of a consistent realisation with respect to parameters.

Definition 9 (Consistent realisation). For a family D of MCs and k ∈ K,
k-realisation-consistency is an equivalence relation ≈k ⊆ RD×RD satisfying:

r ≈k r′ ⇐⇒ r(k) = r′(k).

Let [r]≈k
denote the equivalence class w.r.t. ≈k containing r ∈ RD.

Definition 10 (Consistent scheduler). For quotient MDP MD
∼ after forget-

ting and k ∈ K, a scheduler σ ∈ ΣMD
∼ is k-consistent if for all π, π′ ∈ Paths

MD
∼

fin :

σ(π) = ar ∧ σ(π′) = ar′ =⇒ r ≈k r′ .

A scheduler is K-consistent (short: consistent) if it is k-consistent for all k ∈ K.

Lemma 1. For the quotient MDP MD
∼ of family D of MCs:

{
(
MD

∼
)
σr∗ | σr∗

consistent scheduler} = {Dr | r ∈ RD}.

Proof (Idea). For σr ∈ ΣMD

, we construct σr∗ ∈ ΣMD
∼ such that σr∗

([s]∼) = ar

for all s. Clearly σr∗
is consistent and MD

σr =
(
MD

∼
)
σr∗ is obtained via a map

between (s, r) and [s]∼. For σr∗ ∈ ΣMD
∼ , we construct σr ∈ ΣMD

such that if
σr∗

([s]∼) = ar then σr(sD
0 ) = ar. For all other states, we define σr((s, r′)) = ar′

independently of σr∗
. Then MD

σr =
(
MD

∼
)
σr∗ is obtained as above.

The following theorem is a direct corollary: we need to consider exactly the
consistent schedulers.

Theorem 2. For all-in-one MDP MD and specification ϕ, there exists a mem-

oryless deterministic scheduler σr ∈ ΣMD

such that MD
σr � ϕ iff there exists a

consistent deterministic scheduler σr∗ ∈ ΣMD
∼ such that

(
MD

∼
)
σr∗ � ϕ.
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Example 4. Recall the all-in-one MDP MD from Example 3. The quotient MDP
MD

∼ is depicted in Fig. 3. Only the transitions according to realisations r1 and
r2 are included. Transitions from previously unreachable states, marked grey in

Example 3, are now available due to the abstraction. The scheduler σ ∈ ΣMD
∼

with σ([sD
0 ]∼) = ar2

and σ([1]∼) = ar1
is not k1-consistent as different values

are chosen for k1 by r1 and r2. In the MC MD
∼σ induced by σ and MD

∼ , the
probability to reach state [2]∼ is one, while under realisation r1, state 2 is not
reachable.

Approach 3 (Scheduler iteration). Enumerating all consistent schedulers
for MD

∼ and analysing the induced MC provides a solution to both synthesis
problems.

However, optimising over exponentially many consistent schedulers solves the
NP-complete feasibility synthesis problem, rendering such an iterative approach
unlikely to be efficient. Another natural approach is to employ solving techniques
for NP-complete problems, like satisfiability modulo linear real arithmetic.

Approach 4 (SMT). A dedicated SMT-encoding (in [11]) of the induced MCs
of consistent schedulers from MD

∼ that solves the feasibility problem.

4.3 Refinement Loop

Although iterating over consistent schedulers (Approach 3) is not feasible, model
checking of MD

∼ still provides useful information for the analysis of the family D.
Recall the feasibility synthesis problem for ϕ = P≤λ(φ). If Probmax(MD

∼ , φ) ≤ λ,
then all realisations of D satisfy ϕ. On the other hand, Probmin(MD

∼ , φ) > λ
implies that there is no realisation satisfying ϕ. If λ lies between the min and
max probability, and the scheduler inducing the min probability is not consistent,
we cannot conclude anything yet, i.e., the abstraction is too coarse. A natural
countermeasure is to refine the abstraction represented by MD

∼ , in particular,
split the set of realisations leading to two synthesis sub-problems.

Definition 11 (Splitting). Let D be a family of MCs, and R ⊆ RD a set of
realisations. For k ∈ K and predicate Ak over S, splitting partitions R into

R
 = {r ∈ R | Ak(r(k))} and R⊥ = {r ∈ R | ¬Ak(r(k))}.

Splitting the set of realisations, and considering the subfamilies separately, rather
than splitting states in the quotient MDP, is crucial for the performance of the
synthesis process as we avoid rebuilding the quotient MDP in each iteration.
Instead, we only restrict the actions of the MDP to the particular subfamily.

Definition 12 (Restricting). Let MD
∼ = (SD

∼ , [sD
0 ]∼,ActD,PD

∼ ) be a quotient
MDP and R ⊆ RD a set of realisations. The restriction of MD

∼ wrt. R is the
MDP MD

∼ [R] = (SD
∼ , [sD

0 ]∼,ActD[R],PD
∼ ) where ActD[R] = {ar | r ∈ R}.3

3 Naturally, PD
∼ in MD

∼ [R] is restricted to ActD[R].
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Algorithm 1. Threshold synthesis

Input: A family D of MCs with the set RD of realisations, and specification P≤λ(φ)
Output: A partition of RD into subsets T and F according to Problem 1.

1: F ← ∅, T ← ∅, U ← {RD}
2: MD

∼ ← buildQuotientMDP(D, RD, ∼f ) � Applying Def. 7 and 8
3: while U �= ∅ do
4: select R ∈ U and U ← U \ {R}
5: MD

∼ [R] ← restrict(MD
∼ , R) � Applying Def. 12

6: (max, σmax) ← solveMaxMDP(MD
∼ [R], φ)

7: (min, σmin) ← solveMinMDP(MD
∼ [R], φ)

8: if max < λ then T ← T ∪ R
9: if min > λ then F ← F ∪ R

10: if min ≤ λ ≤ max then
11: U ← U ∪ split(R, selPredicate(max, σmax, min, σmin)) � See Sect. 4.4

12: return T , F

The splitting operation is the core of the proposed abstraction-refinement. Due
to space constraints, we do not consider feasibility separately.

Algorithm 1 illustrates the threshold synthesis process. Recall that the goal is
to decompose the set RD into realisations satisfying and violating a given spec-
ification, respectively. The algorithm uses a set U to store subfamilies of RD

that have not been yet classified as satisfying or violating. It starts building the
quotient MDP with merged actions. That is, we never construct the all-in-one
MDP, and we merge actions as discussed in Remark 1. For every R ∈ U , the algo-
rithm restricts the set of realisations to obtain the corresponding subfamily. For
the restricted quotient MDP, the algorithm runs standard MDP model checking
to compute the max and min probability and corresponding schedulers, respec-
tively. Then, the algorithm either classifies R as satisfying/violating, or splits it
based on a suitable predicate, and updates U accordingly. We describe the split-
ting strategy in the next subsection. The algorithm terminates if U is empty,
i.e., all subfamilies have been classified. As only a finite number of subfamilies
of realisations has to be evaluated, termination is guaranteed.

The refinement loop for max synthesis is very similar, cf. Algorithm 2. Recall
that now the goal is to find the realisation r∗ that maximises the satisfaction
probability max∗ of a path formula. The difference between the algorithms lies
in the interpretation of the results of the underlying MDP model checking. If
the max probability for R is below max∗, R can be discarded. Otherwise, we
check whether the corresponding scheduler σmax is consistent. If consistent, the
algorithm updates r∗ and max∗, and discards R. If the scheduler is not consistent
but min > max∗ holds, we can still update max∗ and improve the pruning
process, as it means that some realisation (we do not know which) in R induces
a higher probability than max∗. Regardless whether max∗ has been updated, the
algorithm has to split R based on some predicate, and analyse its subfamilies as
they may include the maximising realisation.
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Algorithm 2. Max synthesis

Input: A family D of MCs with the set RD of realisations, and a path formula φ
Output: A realisation r∗ ∈ RD according to Problem 2.

1: max∗ ← −∞, U ← {RD}
2: MD

∼ ← buildQuotientMDP(D, RD, ∼f ) � Applying Def. 7 and 8
3: while U �= ∅ do
4: select R ∈ U and U ← U \ {R}
5: MD

∼ [R] ← restrict(MD
∼ , R) � Applying Def. 12

6: (max, σmax) ← solveMaxMDP(MD
∼ [R], φ)

7: (min, σmin) ← solveMinMDP(MD
∼ [R], φ)

8: if max > max∗ then
9: if isConsistent(σmax) then r∗ ← qmax, max∗ ← max

10: else
11: if min > max∗ then max∗ ← min

12: U ← U ∪ split(R, selPredicate(max, σmax, min, σmin)) � See Sect. 4.4

13: return r∗

4.4 Splitting Strategies

If verifying the quotient MDP MD
∼ [R] cannot classify the (sub-)realisation R

as satisfying or violating, we split R, while we guide the splitting strategy by
using the obtained verification results. The splitting operation chooses a suitable
parameter k ∈ K and predicate Ak that partition the realisations R into R
 and
R⊥ (see Definition 11). A good splitting strategy globally reduces the number of
model-checking calls required to classify all r ∈ R.

The two key aspects to locally determine a good k are: (1) the vari-
ance, that is, how the splitting may narrow the difference between max =
Probmax(MD

∼ [X ], φ) and min = Probmin(MD
∼ [X ], φ) for both X = R
 or

X = R⊥, and (2) the consistency, that is, how the splitting may reduce the
inconsistency of the schedulers σmax and σmin. These aspects cannot be eval-
uated precisely without applying all the split operations and solving the new
MDPs MD

∼ [R⊥] and MD
∼ [R
]. Therefore, we propose an efficient strategy that

selects k and Ak based on a light-weighted analysis of the model-checking results
for MD

∼ [R]. The strategy applies two scores variance(k) and consistency(k)
that estimate the influence of k on the two key aspects. For any k, the scores are
accumulated over all important states s (reachable via σmax or σmin, respectively)
where P(s)(k) �= 0. A state s is important for R and some δ ∈ R≥0 if

Probmax(MD
∼ [R], φ)(s) − Probmin(MD

∼ [R], φ)(s)

Probmax(MD∼ [R], φ) − Probmin(MD∼ [R], φ)
≥ δ

where Probmin(.)(s) and Probmax(.)(s) is the min and max probability in the
MDP with initial state s. To reduce the overhead of computing the scores, we
simplify the scheduler representation. In particular, for σmax and every k ∈ K,
we extract a map Ck

max : Tk → N, where Ck
max(t) is the number of important

states for which σmax(s) = ar with r(k) = t. The mapping Ck
min represents σmin.
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We define variance(k) =
∑

t∈Tk
|Ck

max(t)−Ck
min(t)|, leading to high scores if

the two schedulers vary a lot. Further, we define consistency(k) = size
(
Ck

max

)
·

max
(
Ck

max

)
+size

(
Ck

min

)
·max

(
Ck

min

)
, where size (C) = |{t ∈ Tk | C(t) > 0}|−1

and max (C) = maxt∈Tk
{C(t)}, leading to high scores if the parameter has clear

favourites for σmax and σmin, but values from its full range are chosen.
As indicated, we consider different strategies for the two synthesis problems.

For threshold synthesis, we favour the impact on the variance as we principally do
not need consistent schedulers. For the max synthesis, we favour the impact on
the consistency, as we need a consistent scheduler inducing the max probability.

Predicate Ak is based on reducing the variance: The strategy selects T ′ ⊂ Tk

with |T ′| = 1
2 �|Tk|�, containing those t for which Ck

max(t)−Ck
min(t) is the largest.

The goal is to get a set of realisations that induce a large probability (the ones
including T ′ for parameter k) and the complement inducing a small probability.

Approach 5 (MDP-based abstraction refinement). The methods under-
lying Algorithms 1 and 2, together with the splitting strategies, provide solutions
to the synthesis problems and are referred to as MDP abstraction methods.

5 Experiments

We implemented the proposed synthesis methods as a Python prototype using
Storm [25]. In particular, we use the Storm Python API for model-adaption,
-building, and -checking as well as for scheduler extraction. For SMT solving,
we use Z3 [39] via pySMT [26]. The tool-chain takes a PRISM [38] or JANI [8]
model with open integer constants, together with a set of expressions with possi-
ble values for these constants. The model may include the parallel composition of
several modules/automata. The open constants may occur in guards4, probabil-
ity definitions, and updates of the commands/edges. Via adequate annotations,
we identify the parameter values that yield a particular action. The annota-
tions are key to interpret the schedulers, and to restrict the quotient without
rebuilding.

All experiments were executed on a Macbook MF839LL/A with 8 GB RAM
memory limit and a 12 h time out. All algorithms can significantly benefit from
coarse-grained parallelisation, which we therefore do not consider here.

5.1 Research Questions and Benchmarks

The goal of the experimental evaluation is to answer the research question:
How does the proposed MDP-based abstraction methods (Approaches 3–5) cope
with the inherent complexity (i.e. the NP-hardness) of the synthesis problems
(cf. Problems 1 and 2)? To answer this question, we compare their perfor-
mance with Approaches 1 and 2 [18], representing state-of-the-art solutions and
the base-line algorithms. The experiments show that the performance of the

4 Slight care by the user is necessary to avoid deadlocks.
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Table 1. Benchmarks and timings for Approaches 1–3

Bench. Range |K| |D| Member size Quotient size Run time

Avg. |S| Avg. |T | |S| |A| |T | 1-by-1 All-in-1 Sched.

Enum.

Pole [3.35, 3.82] 17 1327104 5689 16896 6793 7897 22416 130k∗ MO 26k

Maze [9.8, 9800] 20 1048576 134 211 203 277 409 28k∗ TO 2.7k

Herman [1.86, 2.44] 9 576 5287 6948 21313 102657 184096 55∗ 72 246

DPM [68, 210] 9 32768 5572 18147 35154 66096 160146 2.9k∗ MO 7.2k

BSN [0, 0.988] 10 1024 116 196 382 457 762 31∗ 2 2

MDP abstraction significantly varies for different case studies. Thus, we consider
benchmarks from various application domains to identify the key characteristics
of the synthesis problems affecting the performance of our approach.

Benchmarks description. We consider the following case studies: Maze is a plan-
ning problem typically considered as POMDP, e.g. in [41]. The family describes
all MCs induced by small-memory [14,35] observation-based deterministic strate-
gies (with a fixed upper bound on the memory). We are interested in the
expected time to the goal. In [35], parameter synthesis was used to find ran-
domised strategies, using [22]. Pole considers balancing a pole in a noisy and
unknown environment (motivated by [2,12]). At deploy time, the controller has
a prior over a finite set of environment behaviours, and should optimise the
expected behavior without depending on the actual (hidden) environment. The
family describes schedulers that do not depend on the hidden information. We
are interested in the expected time until failure. Herman is an asynchronous
encoding of the distributed Herman protocol for self-stabilising rings [33,37].
The protocol is extended with a bit of memory for each station in the ring,
and the choice to flip various unfair coins. Nodes in the ring are anonymous,
they all behave equivalently (but may change their local memory based on local
events). The family describes variations of memory-updates and coin-selection,
but preserves anonymity. We are interested in the expected time until stabilisa-
tion. DPM considers a partial information scheduler for a disk power manager
motivated by [7,27]. We are interested in the expected energy consumption.
BSN (Body sensor network, [43]) describes a network of connected sensors that
identify health-critical situations. We are interested in the reliability. The family
contains various configurations of the used sensors. BSN is the largest software
product line benchmark used in [18]. We drop some implications between fea-
tures (parameters for us) as this is not yet supported by our modelling language.
We thereby extended the family.

Table 1 shows the relevant statistics for each benchmark: the benchmark
name, the (approximate) range of the min and max probability/reward for the
given family, the number of non-singleton parameters |K|, and the number of
family members |D|. Then, for the family members the average number of states
and transitions of the MCs, and the states, actions (=

∑
s∈S |Act(s)|), and transi-

tions of the quotient MDP. Finally, it lists in seconds the run time of the base-line
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Table 2. Results for threshold synthesis via abstraction-refinement

Inst λ # Below # Subf # Above # Subf Singles # Iter Time Build Check Anal. Speedup

below above

Pole 3.37 697 176 1326407 2186 920 4723 308 117 60 118 421

3.73 1307077 7854 20027 3279 1294 22265 1.7k 576 317 396 77

3.76 1322181 3140 4923 1025 1022 8329 584 187 114 197 222

3.79 1326502 572 602 123 74 1389 58 23 10 23 2.2k

Maze 10 4 3 1048572 92 4 189 5 <1 3 <1 26k

20 4247 2297 1044329 4637 3400 13867 114 21 43 29 246

30 18188 9934 1030388 18004 14010 55875 608 80 127 270 46

8000 1046285 846 2291 1125 969 3941 136 9 106 13 1.0k

Herman 1.9 6 6 570 368 320 747 333 303 11 18 0.2

1.71 0 0 576 258 184 515 232 206 8 17 0.3

DPM 80 160 141 32608 1292 356 2865 1.0k 602 322 64 3

70 6 6 32762 443 40 897 380 190 156 32 8

60 0 0 32768 104 6 207 99 42 48 8 29

BSN .965 544 81 480 81 25 321 2 <1 <1 <1 1

.985 994 41 30 8 5 97 <1 <1 <1 <1 3

algorithms and the consistent scheduler enumeration5. The base-line algorithms
employ the one-by-one and the all-in-one technique, using either a BDD or a
sparse matrix representation. We report the best results. MOs indicate breaking
the memory limit. Only the all-in-one approach required significant memory. As
expected, the SMT-based implementation provides an inferior performance and
thus we do not report its results.

5.2 Results and Discussion

To simplify the presentation, we focus primarily on the threshold synthesis prob-
lem as it allows a compact presentation of the key aspects. Below, we provide
some remarks about the performance for the max and feasibility synthesis.

Results. Table 2 shows results for threshold synthesis. The first two columns
indicate the benchmark and the various thresholds. For each threshold λ, the
table lists the number of family members below (above) λ, each with the number
of subfamilies that together contain these instances, and the number of singleton
subfamilies that were considered. The last table part gives the number of iter-
ations of the loop in Algorithm1, and timing information (total, build/restrict
times, model checking times, scheduler analysis times). The last column gives
the speed-up over the best base-line (based on the estimates).

Key observations. The speed-ups drastically vary, which shows that the MDP
abstraction often achieves a superior performance but may also lead to a perfor-
mance degradation in some cases. We identify four key factors.

5 Values with a ∗ are estimated by sampling a large fraction of the family.
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Iterations. As typical for CEGAR approaches, the key characteristic of the
benchmark that affects the performance is the number N of iterations in the
refinement loop. The abstract action introduces an overhead per iteration caused
by performing two MDP verification calls and by the scheduler analysis. The
run time for BSN, with a small |D| is actually significantly affected by the
initialisation of various data structures; thus only a small speedup is achieved.

Abstraction size. The size of the quotient, compared to the average size of
the family members, is relevant too. The quotient includes at least all reachable
states of all family members, and may be significantly larger if an inconsistent
scheduler reaches states which are unreachable under any consistent scheduler.
The existence of such states is a common artefact from encoding families in
high-level languages. Table 1, however, indicates that we obtain a very compact
representation for Maze and Pole.

Thresholds. The most important aspect is the threshold λ. If λ is closer to the
optima, the abstraction requires a smaller number of iterations, which directly
improves the performance. We emphasise that in various domains, thresholds
that ask for close-to-optimal solutions are indeed of highest relevance as they
typically represent the system designs developers are most interested in [44]. Why
do thresholds affect the number of iterations? Consider a family with Tk = {0, 1}
for each k. Geometrically, the set RD can be visualised as |K|-dimensional cube.
The cube-vertices reflect family members. Assume for simplicity that one of
these vertices is optimal with respect to the specification. Especially in bench-
marks where parameters are equally important, the induced probability of a
vertex roughly corresponds to the Manhattan distance to the optimal vertex.
Thus, vertices above the threshold induce a diagonal hyperplane, which our
splitting method approximates with orthogonal splits. Splitting diagonally is
not possible, as it would induce optimising over observation-based schedulers.
Consequently, we need more and more splits the more the diagonal goes through
the middle of the cube. Even when splitting optimally, there is a combinato-
rial blow-up in the required splits when the threshold is further from the optimal
values. Another effect is that thresholds far from optima are more affected by
the over-approximation of the MDP model-checking results and thus yield more
inconclusive answers.

Refinement strategy. So far, we reasoned about optimal splits. Due to the
computational overhead, our strategy cannot ensure optimal splits. Instead, the
strategy depends mostly on information encoded in the computed MDP strate-
gies. In models where the optimal parameter value heavily depends on the state,
the obtained schedulers are highly inconsistent and carry only limited information
for splitting. Consequently, in such benchmarks we split sub-optimally. The sub-
optimality has a major impact on the performance for Herman as all obtained
strategies are highly inconsistent – they take a different coin for each node, which
is good to speed up the stabilisation of the ring.

Summary. MDP abstraction is not a silver bullet. It has a lot of potential in
threshold synthesis when the threshold is close to the optima. Consequently,
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feasibility synthesis with unsatisfiable specifications is handled perfectly well by
MDP abstraction, while this is the worst-case for enumeration-based approaches.
Likewise, max synthesis can be understood as threshold synthesis with a shifting
threshold max∗: If the max∗ is quickly set close to max, MDP abstraction yields
superior performance. Roughly, we can quickly approximate max∗ when some of
the parameter values are clearly beneficial for the specification.

6 Conclusion and Future Work

We contributed to the efficient analysis of families of Markov chains. In particu-
lar, we discussed and implemented existing approaches to solve practically inter-
esting synthesis problems, and devised a novel abstraction refinement scheme
that mitigates the computational complexity of the synthesis problems, as shown
by the empirical evaluation. In the future, we will include refinement strategies
based on counterexamples as in [23,34].
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Abstract. Probabilistic programs are key to deal with uncertainty in,
e.g., controller synthesis. They are typically small but intricate. Their
development is complex and error prone requiring quantitative reason-
ing over a myriad of alternative designs. To mitigate this complexity,
we adopt counterexample-guided inductive synthesis (CEGIS) to auto-
matically synthesise finite-state probabilistic programs. Our approach
leverages efficient model checking, modern SMT solving, and counterex-
ample generation at program level. Experiments on practically relevant
case studies show that design spaces with millions of candidate designs
can be fully explored using a few thousand verification queries.

1 Introduction

With the ever tighter integration of computing systems with their environment,
quantifying (and minimising) the probability of encountering an anomaly or
unexpected behaviour becomes crucial. This insight has led to a growing inter-
est in probabilistic programs and models in the software engineering community.
Henzinger [43] for instance argues that “the Boolean partition of software into
correct and incorrect programs falls short of the practical need to assess the
behaviour of software in a more nuanced fashion [. . .].” In [60], Rosenblum advo-
cates taking a more probabilistic approach in software engineering. Concrete
examples include quantitative analysis of software product lines [32,40,59,66,67],
synthesis of probabilities for adaptive software [19,23], and probabilistic model
checking at runtime to support verifying dynamic reconfigurations [20,37].

Synthesis of Probabilistic Programs. Probabilistic programs are a prominent for-
malism to deal with uncertainty. Unfortunately, such programs are rather intri-
cate. Their development is complex and error prone requiring quantitative rea-
soning over many alternative designs. One remedy is the exploitation of proba-
bilistic model checking [6] using a Markov chain as the operational model of a
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program. One may then apply model checking on each design, or some suitable
representation thereof [27,32]. Techniques such as parameter synthesis [26,42,58]
and model repair [9,31] have been successful, but they only allow to amend or
infer transition probabilities, whereas the control structure—the topology of the
probabilistic model—is fixed.

Synth Verifier

instance

reject +
CE

sketch properties

unsatisfiable

no instance

synthesised program

accept

Fig. 1. CEGIS for synthesis.

Counter-Example-Guided Inductive Syn-
thesis. This paper aims to overcome
the existing limitation, by adopting
the paradigm of CounterExample-Guided
Inductive Synthesis (CEGIS, cf. Fig. 1) [1,
3,63,64] to finite-state probabilistic mod-
els and programs. The program synthe-
sis challenge is to automatically provide a
probabilistic program satisfying all prop-
erties, or to return that such a program
is non-existing. In the syntax-based set-
ting, we start with a sketch, a program
with holes, and iteratively searches for good—or even optimal—instantiations of
these holes. Rather than checking all instantiations, the design space is pruned
by potentially ruling out many instantiations (dashed area) at once. From every
realisation that was verified and rejected, a counterexample (CE) is derived,
e.g., a program run violating the specification. An SMT (satisfiability modulo
theory)-based synthesiser uses the CE to prune programs that also violate the
specification. These programs are safely removed from the design space. The
synthesis and verification step are repeated until either a satisfying program is
found or the entire design space is pruned implying the non-existence of such a
program.

Problem Statement and Program-Level Approach. This paper tailors and gener-
alises CEGIS to probabilistic models and programs. The input is a sketch—a
probabilistic program with holes, where each hole can be replaced by finitely
many options—, a set of quantitative properties that the program needs to ful-
fil, and a budget. All possible realisations have a certain cost and the synthesis
provides a realisation that fits within the budget. Programs are represented
in the PRISM modelling language [50] and properties are expressed in PCTL
(Probabilistic Computational Tree Logic) extended with rewards, as standard in
probabilistic model checking [34,50]. Program sketches succinctly describe the
design space of the system by providing the program-level structure but leaving
some parts (e.g., command guards or variable assignments) unspecified.

Outcomes. To summarise, this paper presents a novel synthesis framework for
probabilistic programs that adhere to a given set of quantitative requirements
and a given budget. We use families of Markov chains to formalise our problem,
and then formulate a CEGIS-style algorithm on these families. Here, CEs are
subgraphs of the Markov chains. In the second part, we then generalise the
approach to reason on probabilistic programs with holes. While similar in spirit,
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we rely on program-level CEs [33,71], and allow for a more flexible sketching
language. To the best of our knowledge, this is the first lifting of CEGIS to
probabilistic programs. The CEGIS approach is sound and complete: either an
admissible program does exist and it is computed, or no such program exists
and the algorithm reports this. We provide a prototype implementation built
on top of the model checker Storm [34] and the SMT-tool Z3 [56]. Experiments
with different examples demonstrate scalability: design spaces with millions of
realisations can be fully explored by a few thousand verification queries and
result in a speedup of orders of magnitude.

Related Work. We build on the significant body of research that employs
formal methods to analyse quality attributes of alternative designs, e.g. [8,10,
16,38,65,72]. Enumerative approaches based on Petri nets [54], stochastic models
[19,61] and timed automata [44,52], and the corresponding tools for simulation
and verification (e.g. Palladio [10], PRISM [50], UPPAAL [44]) have long been
used.

For non-probabilistic systems, CEGIS can find programs for a variety of
challenging problems [62,63]. Meta-sketches and the optimal and quantitative
synthesis problem in a non-probabilistic setting have been proposed [17,25,30].

A prominent representation of sets of alternative designs are modal transi-
tion systems [5,49,53]. In particular, parametric modal transition systems [11]
and synthesis therein [12] allow for similar dependencies that occur in program-
level sketches. Probabilistic extensions are considered in, e.g. [35], but not
in conjunction with synthesis. Recently [36] proposed to exploit relationships
between model and specification, thereby reducing the number of model-checking
instances. In the domain of quantitative reasoning, sketches and likelihood com-
putation are used to find probabilistic programs that best match available
data [57]. The work closest to our approach synthesises probabilistic systems
from specifications and parametric templates [39]. The principal difference to
our approach is the use of counterexamples. The authors leverage evolution-
ary optimisation techniques without pruning. Therefore, completeness is only
achieved by exploring all designs, which is practically infeasible. An extension to
handle parameters affecting transition probabilities (rates) has been integrated
into the evolutionary-driven synthesis [21,23] and is available in RODES [22].
Some papers have considered the analysis of sets of alternative designs within
the quantitative verification of software product lines [40,59,67]. The typical
approach is to analyse all individual designs (product configurations) or build
and analyse a single (so-called all-in-one) Markov decision process describing
all the designs simultaneously. Even with symbolic methods, this hardly scales
to large sets of alternative designs. These techniques have recently been inte-
grated into ProFeat [32] and QFLan [66]. An abstraction-refinement scheme has
recently been explored in [27]. It iteratively analyses an abstraction of a (sub)set
of designs—it is an orthogonal and slightly restricted approach to the inductive
method presented here (detailed differences are discussed later). An incomplete
method in [45] employs abstraction targeting a particular case study. SMT-based
encodings for synthesis in Markov models have been used in, e.g. [24,46]. These
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encodings are typically monolithic—they do not prune the search space via CEs.
Probabilistic CEs have been recently used to ensure that controllers obtained via
learning from positive examples meet given safety properties [74]. In contrast,
we leverage program-level CEs that can be used to prune the design space.

2 Preliminaries and Problem Statement

We start with basics of probabilistic model checking, for details, see [6,7], and
then formalise families of Markov chains. Finally, we define some synthesis prob-
lems.

Probabilistic Models and Specifications. A probability distribution over a
finite set X is a function μ : X → [0, 1] with

∑
x∈X μ(X) = 1. Let Distr(X)

denote the set of all distributions on X.

Definition 1 (MC). A discrete-time Markov chain (MC) D is a tuple
(S, s0, P ) with finite set S of states, initial state s0 ∈ S, and transition prob-
abilities P : S → Distr(S). We write P (s, t) to denote P (s)(t).

For S′ ⊆ S, the set Succ(S′) := {t ∈ S | ∃s ∈ S′. P (s, t) > 0} denotes the suc-
cessor states of S′. A path of an MC D is an (in)finite sequence π = s0s1s2 . . .,
where si ∈ S, and si+1 ∈ Succ(si) for all i ∈ N.

Definition 2 (sub-MC). Let D = (S, s0, P ) be an MC with critical states C ⊆
S, s0 ∈ C. The sub-MC of D,C is the MC D ↓C = (C ∪ Succ(C), s0, P

′) with:
P ′(s, t) = P (s, t) for s ∈ C, P ′(s, s) = 1 for s ∈ Succ(C)\C, and P ′(s, t) = 0
otherwise.

Specifications. For simplicity, we focus on reachability properties ϕ = P∼λ(♦G)
for a set G ⊆ S of goal states, threshold λ ∈ [0, 1] ⊆ R, and comparison rela-
tion ∼ ∈ {<,≤,≥, >}. The interpretation of ϕ on MC D is as follows. Let
Prob(D,♦G) denote the probability to reach G from D’s initial state. Then,
D |= ϕ if Prob(D,♦G) ∼ λ. A specification is a set Φ = {ϕi}i∈I of properties,
and D |= Φ if ∀i ∈ I. D |= ϕi. Upper-bounded properties (with ∼ ∈ {<,≤}) are
safety properties, and lower-bounded properties are liveness properties. Exten-
sions to expected rewards are straightforward.

Families of Markov Chains. We recap an explicit representation of a family
of MCs using a parametric transition function, as in [27].

Definition 3 (Family of MCs). A family of MCs is a tuple D = (S, s0,K,P)
with S, s0 as before, a finite set of parameters K where the domain for each
parameter k ∈ K is Tk ⊆ S, and transition probability function P : S →
Distr(K).

The transition probability function of MCs maps states to distributions over
successor states. For families, this function maps states to distributions over
parameters. Instantiating each parameter with a value from its domain yields a
“concrete” MC, called a realisation.
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Fig. 2. The four different realisations of family D.

Definition 4 (Realisation). A realisation of a family D = (S, s0,K,P) is a
function r : K → S where ∀k ∈ K : r(k) ∈ Tk. A realisation r yields an MC
Dr := (S, s0,P(r)), where P(r) is the transition probability matrix in which
each k ∈ K in P is replaced by r(k). Let RD denote the set of all realisations
for D.

As a family D has finite parameter domains, the number of family members (i.e.
realisations from RD) of D is finite, but exponential in |K|. While all MCs share
their state space, their reachable states may differ.

Example 1. Consider the family of MCs D = (S, s0,K,P) where S = {0, . . . , 4},
s0 = 0, and K = {k0, . . . , k5} with Tk0

= {0}, Tk1
= {1}, Tk2

= {2, 3}, Tk3
=

{2, 4}, Tk4
= {3} and Tk5

= {4}, and P given by:

P(0) = 0.5: k1 + 0.5: k2 P(1) = 0.1: k0 + 0.8: k3 + 0.1: k5 P(2) = 1: k3

P(3) = 1: k4 P(4) = 1: k5

Figure 2 shows the four MCs of D. Unreachable states are greyed out.

The function c : RD → N assigns realisation costs. Attaching costs to realisations
is a natural way to distinguish preferable realisations. We stress the difference
with rewards in MCs; the latter impose a cost structure on paths in MCs.

Problem Statement Synthesis Problems. Let D be a family, and Φ be a set of
properties, and B ∈ N a budget. Consider the synthesis problems:

1. Feasibility synthesis: Find a realisation r ∈ RD with Dr |= Φ and c(r) ≤ B.
2. Max synthesis: For given G ⊆ S, find r∗ ∈ RD with

r∗ := argmax
r∈RD

{Prob(Dr,♦G) | Dr |= Φ and c(r) ≤ B}.
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The problem in feasibility synthesis is to determine a realisation satisfying all
ϕ ∈ Φ, or return that no such realisation exists. The problem in max synthesis
is to find a realisation that maximises the reachability probability of reaching
G. It can analogously be defined for minimising such probabilities. As families
are finite, such optimal realisations r∗ always exist (if there exists a feasible
solution). It is beneficial to consider a variant of the max-synthesis problem
in which the realisation r∗ is not required to achieve the maximal reachability
probability, but it suffices to be close to it. This notion of ε -maximal synthesis
for a given 0 < ε ≤ 1 amounts to find a realisation r∗ with Prob(Dr∗ ,♦G) ≥
(1−ε) · max

r∈RD
{Prob(Dr, φ)}.

Problem Statement and Structure. In this paper, we propose novel synthesis algo-
rithms for the probabilistic systems that are based on two concepts, CEGIS [63]
and syntax-guided synthesis [3]. To simplify the presentation, we start with
CEGIS in Sect. 3 and adopt it for MCs and the feasibility problem. In Sect. 4,
we lift and tune CEGIS, in particular towards probabilistic program sketches.

3 CEGIS for Markov Chain Families

We follow the typical separation of concerns as in oracle-guided inductive syn-
thesis [4,39,41]: a synthesiser selects single realisations r that have not been
considered before, and a verifier checks whether the MC Dr satisfies the spec-
ification Φ (cf. Fig. 1 on page 1). If a realisation violates the specification, the
verifier returns a conflict representing the core part of the MC causing the vio-
lation.

3.1 Conflicts and Synthesiser

To formalise conflicts, a partial realisation of a family D is a function r̄ : K →
S ∪ {⊥} such that ∀k ∈ K. r̄(k) ∈ Tk ∪ {⊥}. For any partial realisations r̄1, r̄2,
let r̄1 ⊆ r̄2 iff r̄1(k) ∈ {r̄2(k),⊥} for all k ∈ K.

Definition 5 (Conflict). Let r ∈ RD be a realisation with Dr |= ϕ for ϕ ∈ Φ.
A partial realisation r̄ϕ ⊆ r is a conflict for the property ϕ iff Dr′ |= ϕ for each
realisation r′ ⊇ r̄ϕ. A set of conflicts is called a conflict set.

To explore all realisations, the synthesiser starts with Q := RD and picks some
realisation r ∈ Q.1 Either Dr |= Φ and we immediately return r, or a conflict is
found: then Q is pruned by removing all conflicts that the verifier found. If Q is
empty, we are done: each realisation violates a property ϕ ∈ Φ.

1 We focus on program-level synthesis, and refrain from discussing important imple-
mentation aspects—like how to represent Q—here.
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3.2 Verifier

Definition 6. A verifier is sound and complete, if for family D, realisation r,
and specification Φ, the verifier terminates, the returned conflict set is empty iff
Dr |= Φ, and if it is not empty, it contains a conflict r̄ϕ ⊆ r for some ϕ ∈ Φ.

Algorithm 1 outlines a basic verifier. It uses an off-the-shelf probabilistic model-
checking procedure Check(Dr, ϕ) to determine all violated ϕ ∈ Φ. The algo-
rithm then iterates over the violated ϕ and computes critical sets C of Dr that
induce sub-MCs such that Dr ↓ C |= ϕ (line 6). The critical sets for safety
properties can be obtained via standard methods [2], and support for liveness
properties is discussed at the end of the section.

0 1 2
0.5

0.5

(a) Fragment of Dr1

0 1 21 1
0.5

0.5

(b) Sub-MC of Dr1 with C = {0}

Fig. 3. Fragment and corresponding sub-MC that suffices to refute Φ

Algorithm 1. Verifier

1: function Verify(family D, realisation r, specification Φ)
2: Violated ← ∅; Conflict ← ∅; Dr ← GenerateMC(D, r);
3: for all ϕ ∈ Φ do
4: if not Check(Dr, ϕ) then Violated ← Violated ∪ {ϕ}
5: for all ϕ ∈ Violated do
6: Cϕ ← ComputeCriticalSet(Dr, ϕ)
7: Conflict ← Conflict ∪ generateConflict(D, r, Cϕ)

8: return Conflict

Example 2. Reconsider D from Example 1 with Φ := {ϕ := P≤2/5(♦{2})}.
Assume the synthesiser picks realisation r1. The verifier builds Dr1

and deter-
mines Dr1

|= Φ. Observe that the verifier does not need the full realisation Dr1

to refute Φ. In fact, the paths in the fragment of Dr1
in Fig. 3a (ignoring the

outgoing transitions of states 1 and 2) suffice to show that the probability to
reach state 2 exceeds 2/5. Formally, the fragment in Fig. 3b is a sub-MC Dr1

↓C
with critical states C = {0}. The essential property is [70]:

If a sub-MC of a MCD refutes a safety property ϕ, then Drefutes ϕ too.

Observe that Dr1
↓ C is part of Dr2

too. Formally, the sub-MC of Dr2
↓ C is

isomorphic to Dr1
↓C and therefore also violates Φ. Thus, Dr2

|= Φ.
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Finally, the verifier translates the obtained critical set C for realisation r to a
conflict Conflict(C, r) ⊆ r and stores it in the conflict set Conflict (line 7). The
procedure generateConflict(D, r, C) identifies the subset of parameters K
that occur in the sub-MCs Dr ↓ C and returns the corresponding partial real-
isation. The proposition below clarifies the relation between critical sets and
conflicts.

Proposition 1. If C is a critical set for Dr and ϕ, with Dr � ϕ then C is also
a critical set for each Dr′ , r′ ⊇ Conflict(C, r), and furthermore Dr′ |= ϕ holds.

Example 3. Recall from Example 2 that Dr2
|= Φ. This can be concluded without

constructing Dr2
. Just considering r2, D and C suffices: First, take all parameters

occurring in P(c) for any c ∈ C. This yields {k1, k2}. The partial realisation
r̄ := {k1 �→ 1, k2 �→ 2} is a conflict. The values for the other parameters do not
affect the shape of the sub-MC induced by C. Realisation r2 ⊇ r̄ only varies
from r1 in the value of k3, but r̄(k3) = ⊥, i.e., k3 is not included in the conflict.
This suffices to conclude Dr2

|= Φ.

Conflicts for Liveness Properties. To support liveness properties such as
ϕ := P>λ(♦G), we first consider a (standard) dual safety property ϕ′ :=
P<1−λ(♦B), where B is the set of all states that do not have a path to G.
Observe that B can be efficiently computed using graph algorithms. We have to
be careful, however.

Example 4. Consider Dr1
, and let ϕ := P>3/5(♦{4}). Dr1

|= ϕ. Then, ϕ′ =
P<2/5(♦{2}), which is refuted with critical set C = {0} as before. Although
Dr2

↓C is again isomorphic to Dr1
↓C, we have Dr2

|= ϕ. The problem here is
that state 2 is in B for Dr1

as r1(k3) = 2, but not in B for Dr2
, as r2(k3) = 4.

To prevent the problem above, we ensure that the states in B cannot reach G in
other realisations, by including B in the critical set of ϕ: Let C be the critical
set for the dual safety property ϕ′. We define B ∪ C as critical states for ϕ.
Together, we reach states B with a critical probability mass2, and never leave
B.

Example 5. In Dr1
, we compute critical states {0, 2}, preventing the erroneous

reasoning from the previous example. For Dr4
, we compute C ′ = {0} ∪ {3} as

critical states, and as Dr4
↓C ′ is isomorphic to Dr3

↓C ′, we obtain that Dr3
|= ϕ.

4 Syntax-Guided Synthesis for Probabilistic Programs

Probabilistic models are typically specified by means of a program-level mod-
elling language, such as PRISM [50], PIOA [73], JANI [18], or MODEST [15].
We propose a sketching language based on the PRISM modelling language. A
sketch, a syntactic template, defines a high-level structure of the model and rep-
resents a-priori knowledge about the system under development. It effectively

2 A good implementation takes a subset of B′ ⊆ B by considering the Prob(D, ♦B′).
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hole X either { XA is 1 cost 3, 2}
hole Y either { YA is 1, 3 }
hole Z either { 1, 2 }
constraint !(XA && YA);
module rex
s : [0.. 3] init 0;
s = 0 -> 0 .5: s’=X + 0.5 : s’=Y;
s = 1 -> s’=s+Z;
s >= 2 -> s’=s;
endmodule

(a) Program sketch SH

module rex
s : [0.. 3] init 0;
s = 0 -> 0 .5 : s’=1 + 0.5 : s’=3;
s = 1 -> s’=3;
s >= 2 -> s’=s;
endmodule

(b) Instance SH({X �→1, Z �→2, Y �→3})

Fig. 4. Running example

restricts the size of the design space and also allows to concisely add constraints
and costs to its members. The proposed language is easily supported by model
checkers and in particular by methods for generating CEs [33,71]. Below, we
describe the language, and adapt CEGIS from state level to program level. In
particular, we employ so-called program-level CEs, rather than CEs on the state
level.

4.1 A Program Sketching Language

Let us briefly recap how the model-based concepts translate to language concepts
in the PRISM guarded-command language. A PRISM program consists of one
or more reactive modules that may interact with each other. Consider a single
module. This is not a restriction, every PRISM program can be flattened into
this form. A module has a set of bounded variables spanning its state space.
Transitions between states are described by guarded commands of the form:

guard → p1 : update1 + . . . . . . + pn : updaten

The guard is a Boolean expression over the module’s variables of the model. If the
guard evaluates to true, the module can evolve into a successor state by updating
its variables. An update is chosen according to the probability distribution given
by expressions p1, . . . , pn. In every state enabling the guard, the evaluation of
p1, . . . , pn must sum up to one. Overlapping guards yield non-determinism and
are disallowed here.

Roughly, a program P thus is a tuple (Var, E) of variables and commands. For
a program P, the underlying MC [[P ]] are P’s semantics. We lift specifications:
Program P satisfies a specification Φ, iff [[P ]] |= Φ, etc.

A sketch is a program that contains holes. Holes are the program’s open parts
and can be replaced by one of finitely many options. Each option can optionally
be named and associated with a cost. They are declared as:

hole h either{x1 is expr1 cost c1, . . . , xk is exprk cost ck }

where h is the hole identifier, xi is the option name, expri is an expression over
the program variables describing the option, and ci is the cost, given as expres-
sions over natural numbers. A hole h can be used in commands in a similar
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Algorithm 2. Synthesiser (feasibility synthesis)

1: function Synthesis(program sketch SH , specification Φ, budget B)
2: ψ ← Initialise(SH , B)
3: R ← GetRealisation(ψ)
4: while R �= Unsat do
5: C ← Verify(SH(R), Φ)
6: if C = ∅ then return R

7: ψ ← ψ ∧
( ∧

R̄∈C LearnFromConflict(SH , R̄)
)

8: R ← GetRealisation(ψ)

9: return Unsat

way as a constant, and may occur multiple times within multiple commands,
in both guards and updates. The option names can be used to describe con-
straints on realisations. These propositional formulae over option names restrict
realisations, e.g.,

constraint(x1 ∨ x2) =⇒ x3

requires that whenever the options x1 or x2 are taken for some (potentially
different) holes, option x3 is also to be taken.

Definition 7 (Program sketch). A (PRISM program) sketch is a tuple
SH := (PH ,OptionH , Γ, cost) where PH is a program with a set H of holes
with options OptionH , Γ are constraints over OptionH , and cost : OptionH → N
option-costs.

Example 6. We consider a small running example to illustrate the main concepts.
Figure 4a depicts the program sketch SH with holes H = {X,Y,Z}. For X, the
options are OptionX = {1, 2}. The constraint forbids XA and YA both being
one; it ensures a non-trivial random choice in state s=0.

Remark 1. Below, we formalise notions previously used on families. Due to flexi-
bility of sketching (in particular in combination with multiple modules), it is not
straightforward to provide family semantics to sketches, but the concepts are
analogous. In particular: holes and parameters are similar, parameter domains
are options, and family realisations and sketch realisations both yield concrete
instances from a family/sketch. The synthesis problems carry over naturally.

Definition 8 (Realisations of sketches). Let SH := (PH ,OptionH , Γ, cost)
be a sketch, a sketch realisation on holes H is a function R : H → OptionH

with ∀h ∈ H. R(h) ∈ Optionh and that satisfies all constraints in Γ . The sketch
instance SH(R) for realisation R is the program (without holes) PH [H/R] in
which each hole h ∈ H in PH is replaced by R(h). The cost c(R) is the sum of
the cost of the selected options, c(R) :=

∑
h∈H cost(R(h)).

Example 7. We continue Example 6. The program in Fig. 4b reflects SH(R) for
realisation R = {X �→1, Z �→2, Y �→3}, with c(R) = 3 as cost(R(X)) = 3 and all
other options have cost zero. For realisation R′ = {Y,Z �→ 1,X �→ 2}, c(R′) = 0.
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The assignment {X,Y,Z �→ 1} violates the constraint and is not a realisation.
In total, SH represents 6 = 23−2 programs and their underlying MCs.

4.2 A Program-Level Synthesiser

Feasibility synthesis. The synthesiser follows the steps in Alglorithm 2. During
the synthesis process, the synthesiser stores and queries the set of realisations
not yet pruned. These remaining realisations are represented by (the satisfy-
ing assignments of) the first-order formula ψ over hole-assignments. Iteratively
extending ψ with conjunctions thus prunes the remaining design space.

We give a brief overview, before detailing the steps. Initialise(SH , B) con-
structs ψ such that it represents all sketch realisations that satisfy the constraints
in the sketch SH within the budget B. GetRealisation(ψ) exploits an SMT-
solver for linear (bounded) integer arithmetic to obtain a realisation R consistent
with ψ, or Unsat if no such realisation exists. As long as new realisations are
found, the verifier analyses them (line 5) and returns a conflict set C. If C = ∅,
then SH(R) satisfies the specification Φ and the search is terminated. Otherwise,
the synthesiser updates ψ based on the conflicts (line 7). R is always pruned.

Initialise(SH , B): Let hole h ∈ H have (ordered) options Optionh =
{o1

h, . . . , on
h}. To encode realisation R, we introduce integer-valued meta-variables

KH := {κh | h ∈ H} with the semantics that κh = i whenever hole h has value
oi

h, i.e., R(h) = oi
h. We set ψ := ψopti ∧ ψΓ ∧ ψcost, where ψopti ensures that

each hole is assigned to some option, ψΓ ensures that the sketch’s constraints Γ
are satisfied, and ψcost ensures that the budget is respected. These sub-formulae
are:

ψopti :=
∧

h∈H

1 ≤ κh ≤ |Optionh|, ψΓ :=
∧

γ∈Γ

γ[N i
h/κh = i],

ψcost :=
∑

h∈H

ωh ≤ B ∧

⎛
⎝ ∧

h∈H

|Optionh|∧

i=1

κh = i → ωh = cost(oi
h)

⎞
⎠ ,

where γ[N i
h/κh = i] denotes that in every constraint γ ∈ Γ we replace each

option name N i
h for an option oi

h with κh = i, and ωh are fresh variables storing
the cost for the selected option at hole h.

Example 8. For sketch SH in Fig. 4a, we obtain (with slight simplifications)

ψ := 1 ≤ κX ≤ 2 ∧ 1 ≤ κY ≤ 2 ∧ 1 ≤ κZ ≤ 2 ∧ ¬(κX = 1 ∧ κY = 1)∧
ωX + ωY + ωZ ≤ B ∧ κX = 1 → ωX = 3 ∧ κX = 2 → ωX = 0 ∧ ωY = 0 = ωZ .

GetRealisation(ψ): To obtain a realisation R, we check satisfiability of ψ.
The solver either returns Unsat indicating that the synthesiser is finished, or
Sat, together with a satisfying assignment αR : KH → N. The assignment αR

uniquely identifies a realisation R by R(h) := o
αR(κh)
h . The sum over all ωH gives

c(R).
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Algorithm 3. Synthesiser (max synthesis)

1: function Synthesis(SH , Φ, B, goal predicate G, tolerance ε)
2: λ∗ ← ∞, R∗ ← Unsat, ψ ← Initialise(SH , B)
3: R ← getRealisation(ψ)
4: while R �= Unsat do
5: C, λnew ← OptimiseVerify(SH(R), Φ, G, λ∗, ε)
6: if C = ∅ then λ∗, R∗ ← λnew, R

7: ψ ← ψ ∧
( ∧

R̄∈C LearnFromConflict(SH , R̄)
)

8: R ← getRealisation(ψ)

9: return R∗

const int X = 1, Y = 3;
.. .
module rex
s : [0.. 3] init 0;
s=0 -> 0.5 : s’=X + 0.5 : s’=Y;
endmodule

(a) CE for upper bound

.. .
module rex
s : [0.. 3] init 0;
s=0 -> 0 .5:s’=X + 0 .5 :s’=Y;
s=3 -> s’=3
endmodule

(b) CE for lower bound

Fig. 5. CEs for (a) P≤0.4[F s=3] and (b) P>0.6[F s=2].

Verify(SH(r), Φ): invokes any sound and complete verifier, e.g., an adaption
of the verifier from Sect. 3.2 as presented in Sect. 4.3.

LearnFromConflict(SH , R̄): For a conflict3 R̄ ∈ C, we add the formula

¬
( ∧

h∈H,R̄(h) �=⊥
κh = αR̄(κh)

)
.

The formula excludes realisations R′ ⊇ R̄. Intuitively, the formula states that the
realisations remaining in the design space (encoded by the updated ψ) cannot
assign the h as in R̄ (for holes where R̄(h) = ⊥).

Example 9. Consider ψ from Example 8. The satisfying assignment (for B ≥
3) is {κX �→ 1, κY , κZ �→ 2, ωX �→ 3, ωY , ωZ �→ 0} represents R, c(R) = 3
from Example 6. Consider Φ = {P≤0.4[♦ s=3]}. The verifier (for now, magically)
constructs a conflict set {R̄} with R̄ = {Y �→ 3}. The synthesiser updates
ψ ← ψ ∧ κY = 2 (recall that κY = 2 encodes Y �→ 3). A satisfying assignment
{κX , κY , κZ �→ 1} for ψ encodes R′ from Example 7. As SH(R′) |= Φ, the verifier
reports no conflict.

Optimal Synthesis. We adapt the synthesiser to support max synthesis, cf.
Alglorithm 3. Recall the problem aims at maximizing the probability of reaching

3 As in Sect. 3.1: A partial realisation for SH is a function R̄ : H → OptionH ∪ {⊥}
s.t. ∀h ∈ H. R̄(h) ∈ Optionh ∪ {⊥}. For partial realisations R̄1, R̄2, let R̄1 ⊆ R̄2 iff
∀h ∈ H. R̄1(h) ∈ {R̄2(h), ⊥}. Let R be a realisation s.t. SH(R) �|= ϕ for ϕ ∈ Φ.
Partial realisation R̄ϕ ⊆ R is a conflict for ϕ iff ∀R′ ⊇ R̄ϕ SH(R′) �|= ϕ.

247



Counterexample-Driven Synthesis for Probabilistic Program Sketches 113

states described by a predicate G, w.r.t. the tolerance ε ∈ (0, 1). Algorithm 3
stores in λ∗ the maximal probability Prob(SH(R),♦G) among all considered
realisations R, and this R in R∗. In each iteration, an optimising verifier is
invoked (line 5) on realisation R. If SH(R) |= Φ and Prob(SH(R),♦G) > λ∗,
it returns an empty conflict set and λnew := Prob(SH(R),♦G). Otherwise, it
reports a conflict set for Φ ∪ {P≥(1−ε)·λ∗(♦G)}.

4.3 A Program-Level Verifier

We now adapt the state-level verifier from Sect. 3.2 in Alglorithm 1 to use
program-level counterexamples [71] for generating conflicts, [68, Appendix] con-
tains details.

generateMC(SH , R): This procedure first constructs the instance SH(R), i.e.,
a program without holes, from SH and R, as in Fig. 4b: Constraints in the
sketch are removed, as they are handled by the synthesiser. This approach allows
us to use any model checker supporting PRISM programs. The realisation is
passed separately, the sketch is parsed once and then appropriately instantiated.
The instance is then translated into the underlying MC [[SH(R) ]] via standard
procedures, with transitions annotated with their generating commands.

ComputeCriticalSet(D,ϕ) computes program-level CEs as analogue of crit-
ical sets. They are defined on commands rather than on states. Let P = (Var, E)
be a program with commands E. Let P|E′ := (Var, E′) denote the restriction of
P to E′ (with variables and initial states as in P). Building P|E′ may introduce
deadlocks in [[P|E′ ]] (just like a critical set introduces deadlocks). To remedy this,
we use the standard operation fixdl, which takes a program and adds commands
that introduce self-loops for states without enabled guard.

Definition 9. For program P = (Var, E) and specification Φ with P |= Φ,
a program-level CE E′ ⊆ E is a set of commands, such that for all (non-
overlapping) programs P ′ = (Var, E′′) with E′′ ⊇ E′ (i.e, extending P ′),
fixdl(P ′) |= Φ.

Example 10. Reconsider Φ = {P≤0.4[♦ s=3]}. Figure 5a shows a CE for SH(R)
in Fig. 4. The probability to reach s=3 in the underlying MC is 0.5 > 0.4.

For safety properties, program-level CEs coincide with high-level CEs proposed
in [71], their extension to liveness properties follows the ideas on families. The
program-level CEs are computed by an extension of the MaxSat [14] approach
from [33], [68, Appendix] contains details and extensions.

GenerateConflict(SH , R,E) generates conflicts from commands: we map
commands in SH(R)|E to the commands from SH , i.e., we restore the informa-
tion about the critical holes corresponding to the part of the design space that
can be pruned by CE E. Formally, Conflict(E,R)(h) = R(h) for all h ∈ H that
appear in restriction SH |E .
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Proposition 2. If E is a CE for SH(R), then E is also a CE for each SH(R′),
R′ ⊇ Conflict(E,R).

Example 11. The CEs in Fig. 5a contain commands which depend on the realisa-
tions for holes X and Y. For these fixed values, the program violates the specifi-
cation independent of the value for Z, so Z is not in the conflict {X �→ 1,Y �→ 3}.

5 Experimental Evaluation and Discussion

Implementation. We evaluate the synthesis framework with a prototype4 using
the SMT-solver Z3 [56], and (an extension of) the model checker Storm [34].

Case Studies. We consider the following three case studies:

Dynamic Power Management (DPM). The goal of this adapted DPM prob-
lem [13] is to trade-off power consumption for performance. We sketch a con-
troller that decides based on the current workload, inspired by [39]. The fixed
environment contains no holes. The goal is to synthesise the guards and updates
to satisfy a specification with properties such as ϕ1: the expected number of lost
requests is below λ, and ϕ2: the expected energy consumption is below κ.

Intrusion describes a network (adapted from [51]), in which the controller tries
to infect a target node via intermediate nodes. A failed attack makes a node
temporarily harder to intrude. We sketched a partial strategy aiming to minimise
the expected time to intrusion. Constraints encode domain specific knowledge.

Grid is based on a classical benchmark for solving partially observable MDPs
(POMDPs) [48]. To solve POMDPs, the task is to find an observation-based
strategy, which is undecidable for the properties we consider. Therefore, we
resort to finding a deterministic k-state strategy [55] s.t. in expectation, the
strategy requires less than λ steps to the target. This task is still hard: finding a
memoryless, observation-based strategy is already NP-hard [29,69]. We create a
family describing all k-state strategies (for some fixed k) for the POMDP. Like
in [47] actions are reflected by parameters, while parameter dependencies ensure
that the strategy is observation-based.

Evaluation. We compare w.r.t. an enumerative approach. That baseline linearly
depends on the number of realisations, and the underlying MCs’ size. We focus on
sketches where all realisations are explored, as relevant for optimal synthesis. For
concise presentation we use Unsat variants of feasibility synthesis. Enumerative
methods perform mostly independent of the order of enumerating realisations.
We evaluate results for DPM, and summarise further results. All results are
obtained on a Macbook MF839LL/A, within 3 h and using less than 8 GB RAM.

DPM has 9 holes with 260 K realisations, and MCs have 5 K (reachable) states
on average, ranging from 2 K to 8 K states. The performance of CEGIS signif-
icantly depends on the specification, namely, on the thresholds appearing in the

4 https://github.com/moves-rwth/sketching.
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Fig. 6. Performance (runtime and iterations) on DPM (Color figure online)

properties. Fig. 6a shows how the number of iterations (left axis, green circle)
and the runtime in seconds (right axis, blue) change for varying λ for property
ϕ1 (stars and crosses are explained later). We obtain a speedup of 100× over the
baseline for λ = 0.7·λ∗, dropping to 23× for λ = 0.95·λ∗, where λ∗ is the mini-
mal probabilty over all realisations. The strong dependency between performance
and “unsatisfiability” is not surprising. The more unsatisfiable, the smaller the
conflicts (as in [33]). Small conflicts have a double beneficial effect. First, the pro-
totype uses an optimistic verifier searching for minimal conflicts; small conflicts
are found faster than large ones. Second, small conflicts prune more realisations.
A slightly higher number of small conflicts yields a severe decrease in iterations.
Thus the further the threshold from the optimum, the better the performance.

Reconsider Fig. 6a, crosses and stars correspond to a variant in which we have
blown up the state space of the underlying MCs by a factor B-UP. Observe that
performance degrades similarly for the baseline and our algorithm, which means
that the speedup w.r.t. the baseline is not considerably affected by the size of the
underlying MCs. This observation holds for various models and specifications.

Varying the sketch tremendously affects performance, cf. Fig. 6b for the per-
formance on variants of the original sketch with some hole substituted by one of
its options. The framework performs significantly better on sketches with holes
that lie in local regions of the MC. Holes relating to states all-over the MC are
harder to prune. Finally, our prototype generally performs better with speci-
fications that have multiple (conflicting) properties: Some realisations can be
effectively pruned by conflicts w.r.t. property ϕ1, whereas other realisations are
easily pruned by conflicts w.r.t., e.g., property ϕ2.

Intrusion has 26 holes and 6800 K realisations, the underlying MCs have only
500 states on average. We observe an even more significant effect of the prop-
erty thresholds on the performance, as the number of holes is larger (recall the
optimistic verifier). We obtain a speedup of factor 2200, 250 and 5 over the
baseline, for thresholds 0.7·λ∗, 0.8·λ∗ and 0.9·λ∗, respectively. For 0.7·λ∗, many
conflicts contain only 8 holes. Blowing up the model does not affect the obtained
speedups. Differences among variants are again significant, albeit less extreme.
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116 M. Češka et al.

Grid is structurally different: only 6 holes in 3 commands and 1800 realisations,
but MCs having 100 K states on average. Observe that reaching the targets on
expectation below some threshold implies that the goal must almost surely be
reached. The MCs’ topology and the few commands make pruning hard: our
algorithm needs more than 400 iterations. Still, we obtain a 3× speedup for
λ = 0.98·λ∗. Pruning mostly follows from reasoning about realisations that do
not reach the target almost surely. Therefore, the speedup is mostly independent
of the relation between λ and λ∗.

Discussion. Optimistic verifiers search for a minimal CE and thus solve an
NP-hard problem [28,71]. In particular, we observed a lot of overhead when
the smallest conflict is large, and any small CE that can be cheaply computed
might be better for the performance (much like the computation of unsatisfiable
cores in SMT solvers). Likewise, reusing information about holes from previous
runs might benefit the performance. Improvements in concise sketching, and
exploiting the additional structure, will also improve performance.

Sketching. Families are simpler objects than sketches, but their explicit usage
of states make them inadequate for modelling. Families can be lifted to a
(restricted) sketching class, as in [27]. However, additional features like conflicts
significantly ease the modelling process. Consider intrusion: Without constraints,
the number of realisations grows to 6·1011. Put differently, the constraint allows
to discard over 99.99% of the realisations up front. Moreover, constraints can
exclude realisations that would yield unsupported programs, e.g, programs with
infinite state spaces. While modelling concise sketches with small underlying
MCs, it may be hard to avoid such invalid realisations without the use of con-
straints.

Comparison with CEGAR. We also compared with our CEGAR-prototype [27],
which leverages an abstraction-refinement loop for the synthesis. We observed
that there are synthesis problems where CEGIS significantly outperforms
CEGAR and vice versa. Details, including an evaluation of the strengths and
weaknesses of CEGIS compared to CEGAR, are reported in [68, Appendix]. In
our future work, we will explore how to effectively combine both approaches to
improve the performance and scalability of the synthesis process.
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12. Beneš, N., Křet́ınský, J., Guldstrand Larsen, K., Møller, M.H., Srba, J.: Dual-
priced modal transition systems with time durations. In: Bjørner, N., Voronkov,
A. (eds.) LPAR 2012. LNCS, vol. 7180, pp. 122–137. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-28717-6 12

13. Benini, L., Bogliolo, A., Paleologo, G., Micheli, G.D.: Policy optimization for
dynamic power management. IEEE Trans. CAD Integr. Circ. Syst. 8(3), 299–316
(2000)

14. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability,
Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press (2009)

15. Bohnenkamp, H.C., D’Argenio, P.R., Hermanns, H., Katoen, J.P.: MODEST: a
compositional modeling formalism for hard and softly timed systems. IEEE Trans.
Softw. Eng. 32(10), 812–830 (2006)

16. Bondy, A.B.: Foundations of Software and System Performance Engineering. Addi-
son Wesley, Boston (2014)

17. Bornholt, J., Torlak, E., Grossman, D., Ceze, L.: Optimizing synthesis with metas-
ketches. In: POPL, pp. 775–788. ACM (2016)

18. Budde, C.E., Dehnert, C., Hahn, E.M., Hartmanns, A., Junges, S., Turrini, A.:
JANI: quantitative model and tool interaction. In: Legay, A., Margaria, T. (eds.)
TACAS 2017. LNCS, vol. 10206, pp. 151–168. Springer, Heidelberg (2017). https://
doi.org/10.1007/978-3-662-54580-5 9

19. Calinescu, R., Ghezzi, C., Johnson, K., et al.: Formal verification with confidence
intervals to establish quality of service properties of software systems. IEEE Trans.
Reliab. 65(1), 107–125 (2016)

20. Calinescu, R., Ghezzi, C., Kwiatkowska, M.Z., Mirandola, R.: Self-adaptive soft-
ware needs quantitative verification at runtime. Commun. ACM 55(9), 69–77
(2012)

252
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68. Češka, M., Hensel, C., Junges, S., Katoen, J.P.: Counterexample-driven synthesis
for probabilistic program sketches. CoRR abs/1904.12371 (2019)

69. Vlassis, N., Littman, M.L., Barber, D.: On the computational complexity of
stochastic controller optimization in POMDPs. ACM Trans. Comput. Theor. 4(4),
12:1–12:8 (2012). https://doi.org/10.1145/2382559.2382563
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