
Network Problem Diagnostics using Typographic
Error Correction

Martin Holkovič
Faculty of Information Technology

Brno University of Technology
Brno, Czech Republic
iholkovic@fit.vutbr.cz

Michal Bohuš
Faculty of Information Technology

Brno University of Technology
Brno, Czech Republic

Ondřej Ryšavý
Faculty of Information Technology

Brno University of Technology
Brno, Czech Republic

rysavy@vutbr.cz

Abstract—Detecting and correcting network and service avail-
ability issues is an essential part of the network administrator’s
daily duty. One of the causes of errors can be the user herself
providing incorrect input. The present work describes a new diag-
nostic method that detects incorrectly inserted inputs observed in
network-related data, e.g., network traffic, log files. The proposed
method aims to detect incorrect words in domains, login names,
or email addresses. First, we describe how to detect possible
incorrect words. For each such detected word, a list of correct
candidates is created based on edit distance. Next, the correction
method selects the best word by scoring candidates based on
the probability of occurrence in the given context. The proposed
method was implemented as a prototype and tested on words
created using real user activities. The evaluation demonstrates
that this approach can substantially reduce the time needed to
identify this kind of errors.

Index Terms—computer network errors, network diagnostics,
typographic error correction, end-user data diagnostics

I. INTRODUCTION

Errors in computer networks can be caused by a lot of
different types of faults. System or device failure can prevent
networks from working, some services may become unavail-
able, and user experience could be negatively affected. Due to
the great variety of errors, there is no single procedure or path
to detect the cause of all network-related errors.

Some of the errors can be caused by incorrect user input.
For example, users can often type a wrong URL into a web
browser, wrong credentials into a mail transfer agent, or an
incorrect phone ID for a VoIP call. When a user incorrectly
specifies some of this data, the requested service will be
unavailable or not work as expected. Because some of the
information entered by a user is necessary to initiate a network
connection or is transmitted in network messages, it is possible
to detect wrong information by analyzing of suitable data
sources, e.g., network packets, NetFlow records, or log files.

We propose a new diagnostic method that applies typo-
graphical error detection techniques and correction commonly
used in spell-checkers. The proposed method can inform the
network administrator about the incorrectly inserted values
from end-users by detecting typographical errors in user data.
At the same time, it provides a suggestion for a possible
correction. This can be useful for the administrator as he
can automatically find out whether the error is created by a
typographical error or if there is another reason.

The paper contribution is as follows. We developed a
method for detecting errors in user data. The method is
similar to that used by spell-checker systems. For each possi-
ble incorrect word, the algorithm creates a list of possible
correct word candidates selected using the number of edit
operations as a distance between the words. Among these
candidates, the correct word is selected using the ranking
method. The problem with current solutions is that they do
not work well without context (individual words) and with
words that are not based on grammar rules (e.g., email address
xholko00@fit.vutbr.cz).

The method’s direct application is to validate typographical
errors in domain names and usernames, which enables us
to apply it to a wide range of applications and services.
Regarding domain names, except for the purely diagnostic use
case, the method can be employed for detecting various types
of malicious activities, such as an IDN homograph attack,
typosquatting, and other forms of domain phishing attacks.

This paper presents the principles and design of a new
diagnostic tool that focuses on detecting typing errors. The
method relies only on passive data sources (captured traffic,
NetFlow records, log files). Similarly, as in [8], our method
will be able to work in a learning mode for which it will
require error-free data. The proposed method is considered as
a complementary tool for the existing systems.

The paper is organized as follows: The next section de-
scribes related work mentioning the key results in computer
network diagnostics. Sec. III provides background information
about research done on spell checking. Sec. IV defines the
principles behind the developed tool. Sec. V presents the
architecture of the tool. In Sec. VI, the approach and results
of the evaluation are provided. Finally, Sec. VII concludes the
paper by discussing the contribution and identifying further
improvements.

II. RELATED WORK

Because computer networks are complex systems, errors are
unavoidable and sooner or later occur [1]. Errors can affect
network performance or user experience, which can cause
other network problems [2]. Therefore, it is necessary to find
and correct errors correctly. This is addressed in diagnostics,
which is an important part of network management [1].

Fault diagnosis is a time-consuming activity that requires in-
depth knowledge of network operation. Administrators often
do not have the appropriate tools or knowledge to diagnose
network problems, and they would like to have sophisticated
automated tools to help them diagnose those errors [3]. In case
of insufficient automatic tools, problems must be diagnosed
manually, for example, using the Wireshark tool [4], [5].

Network problems can be divided into application and
network problems [6]. An example of application problems is
a broken server service or a badly configured client software.
Problems related to network infrastructure fall under network
problems. An error can be caused by a human - unintentional
(misconfiguration) / intentional (attack), or a device failure [7].

Currently, a single tool that can diagnose all kinds of errors
does not exist. Researchers have so far developed a wide
range of diagnostic tools [8]. The tools can be divided either
according to what data they work with - network packets, SDN
data, NetFlow records, log files [9]–[12], or how they access
the data - passive, active, and hybrid [6], [13], [14].

III. BACKGROUND

Researchers are working on correcting typographical errors
since the 1960s [15]. Correcting this type of error is based on
the fact that people make mistakes when typing input data.
Because users are often unaware of the error, a wrong value
can cause a problem. One of the best-known examples of
typographic error correction in misspelled words is in text
editors such as Microsoft Office Word [16]. There are also
other uses, such as Optical Character Recognition (OCR) [17]
or typographical error password tolerance [18], [19].

Kukich [15] has divided the problem of typing errors
correction into three categories:

1) nonword error detection (wrong word detection only),
2) isolated-word error correction (finding the wrong word

and proposing a correction),
3) context-dependent correction (finding the wrong word

and offering a correction based on the text’s context).

Word correction extends error detection by offering correc-
tion for the word with a typographical error. It tries to guess
what word the user could have thought of, solves candidates’
selection, and possibly chooses the best candidate. In addi-
tion to common language words, searching for typographical
errors also makes sense in other data types such as numeric
values [21] or domain names [22].

Correcting typographical errors consists of three parts: 1)
finding an error; 2) creating a list of candidates; 3) rating of
individual candidates [15].

A. Finding an error

To detect a wrong word, it is necessary to model the words
of the language. The model needs to detect several sources of
error, such as pronunciation similarity, typographic similarity,
or user’s bad habits [23]. The most commonly used models
are based on vocabularies or n-grams [15].

1) N-grams: N-grams are n character long substrings of
words. The most commonly used are bigrams (n=2) and
trigrams (n=3). Finding errors based on n-grams works by
generating all n-grams from the analyzed word and comparing
them with a previously created model. If the n-gram is not
present in the model or only with a small occurrence, it is
expected that this is an error. An example is a ”zfq” trigram,
which is not common in English. To create an n-gram model,
a huge text containing only words without errors is needed.

2) Dictionaries: In this case, the model is the dictionary
itself, created by storing all the unique words from the error-
free text. If a word cannot be found inside a dictionary during
the check phase, it is considered a typing error [24], [25].

A search response time may be a problem when using the
dictionary as a model [18]. A common technique to speed up
dictionary searches is to split one large dictionary into several
smaller ones. One way to divide is by word length [31]. For
example, when searching for a word of 5 characters in length,
it will only search within words of the same length.

The basic and often used technique to access a dictionary is
by using a hash table. A dictionary can also be implemented
by tree structures such as a ternary search tree [32], trie, binary
search trees sorted by frequency, trees with words or characters
in nodes, bloom filters [33], or finite state machines [34].

3) Types of errors: The two basic types of errors that
automatic word correction focuses on are [32], [35]:

• nonword error - if an error occurs, a non-existent word
is created (e.g., hello - henlo);

• real-word error - an error will result in an existing word
(e.g., pay - day).

Errors that result in an existing word are more challenging
to detect because it is necessary to know the text’s context.
Mitton analyzed the errors from tests filled out by students at
the age of 15 and found that the real-world error accounted for
40% of the errors [36]. The types of errors vary depending on
the environment in which they occurred; for example, if it is
a writer, most of the errors will be due to pressing the wrong
key. On the other hand, OCR errors will be based on similar-
looking characters such as B and 8. Word-bounded errors are
a specific kind of error where the space between words is
missing, or space is shifted [32].

There are three kinds of mistakes that result in a typograph-
ical error [15]:

• typographical errors are those where the user types the
word ”henlo” instead of ”hello”, where it is assumed
that the author knows how the word is spelled and only
pressed a bad character on the keyboard;

• cognitive errors arise from insufficient knowledge of the
user - the user did not know the correct form of the word;

• phonetic errors occur when replacing a character with
another similar-sounding one.

B. Creating a list of candidates

When a misspelled word is detected, it is determined from
which possible words the misspelled word could have been
formed. For this reason, functions that determine the distance

between two words are being used. The earliest and one of the
best-known ways to determine the distance of two strings is
the Levenshtein distance [37]. The principle is that we specify
the minimum number of operations required to transform
one string into another. Allowed operations are insertion,
deletion, and substitution. Wagner and Fisher [38] also called
the distance the editing distance. There are other types of
editing distances, such as Hamming [39], [40], Dameraou-
Levenstein [41], or Spring-Winkler [42].

The test with data from Birkbeck Spelling Error Corpus [43]
showed that out of 1000 errors in the English language, 742 are
one-character, 201 two-character, 44 three-character, 9 four-
character, 4 five-character [24]. In the case of TshwaneDJe
Sesotho sa Leboa corpus [44], from the 908 errors in domain
names were 804 one-character, 78 two-character, and 26 three-
character. Further analysis of large texts’ errors confirmed that
80-95% of errors are single-character errors [27]. The results
show that it is most important to check words with a short
editing distance when searching for errors.

C. Rating of individual candidates

After generating all words from which it is possible to create
a searched word with a typographical error within a certain
editing distance, it is necessary to rate them. The purpose of
the rating is to find the most likely word from which the error
originated. Research is focused not only on the accuracy of
results but also on the speed of the ranking process [45], [46].

If the user interactively selects one of several options, it is
possible to adapt to a specific user and his type of errors [47].
Another learning option introduces a learning mode during
which all the found words are saved as correct [25]. In addition
to classic methods, it is also possible to use machine learning
and artificial intelligence [48], [49].

Even though it is impossible to use the language’s grammar
to find the best candidates for correction [31], [50], it is
still possible to use the probabilities of specific errors to
prefer some words before others. The most basic heuristic
is to adjust the weights of the editing distance according to
the type of operation. For example, several sources suggest
that each operation has a different probability from others.
Specifically, their probability is in the following order (from
most to least probable): substitution, deletion, insertion, and
transposition [36], [44], [51]–[53].

IV. METHODOLOGY

This work aims to create a new method for searching
for typographical errors and proposing their correction in
data that contain settings and parameters of various network
applications. It does not make sense to analyze all data that
are coming from the user. For example, hashed passwords,
timestamps, or any random values. In contrast to detecting
typographical errors in plain text, the method must work with
words for which it is impossible to apply grammar from plain
text, such as domain names or IP addresses. Simultaneously,
all words will be processed individually, so it will not be pos-
sible to use the context in which the words are located. Since

the typing error is not created by a machine but by a human, it
is necessary to focus on the user’s data. We have recognized
the following categories of data: IP address, transport port,
domain name, username, generic number, generic string.

The term word in this work means a character string
belonging to one of the described categories. It will also be
possible to create combined categories from these categories.
An example of a combined category is an email address
consisting of a login name, a ”@” delimiter, and a domain
name. With combined categories, the values are broken down
into basic categories and stored in the appropriate dictionaries.
This approach allows knowledge sharing, so if someone on the
network visits the ”company.local” domain name, the system
can find a typographical error in the ”user@copmany.local”
email, even if the email has never been seen before.

A. Detecting an error
Our proposed method works on the principle of dictionaries.

What is in the dictionaries is valid and correct; what is not is
considered a typing error. N-gram analysis could also be used
for this purpose, but for words that are not part of the natural
language (domain name, IP address), the N-grams would not
work correctly. Many correct words would be marked as incor-
rect, and at the same time, many incorrectly marked as correct.
Dictionaries are also used to filter out possible corrections
for detected incorrect words, and a suitable replacement is
eventually selected using heuristic methods.

Words are not all stored together but are stored by word
category in several smaller dictionaries. This means that only
a dictionary containing email addresses is used to determine
if an email is a correct word or a typing error. Each dictionary
further consists of two parts - predefined and learned.

The predefined part of a dictionary contains words that are
expected in a given context. In the case of words of a common
language, this is a list of all grammatically correct words. This
can be a list of the most visited domain names or transport
ports of well-known services for other data types. These
dictionaries are expected to be customized by the administrator
based on the data that are present inside the network. For
example, the administrator can enter all company’s usernames.

The dictionaries’ learned parts are not created manually by
administrators, but their content is created by learning from
the input data. One way to teach a tool the correct data is to
use only data for learning that is not reported as problematic.
The downside is that end-users do not report all problems
because they can fix some typographical errors themselves.
The second way of learning is that the administrator manually
verifies which data is correct and which is not. However,
this is unrealistic due to the huge amount of network data
in real networks. The last option is to use an external tool
that evaluates each communication, whether it has finished
successfully or with an error [55]. In this case, the tool would
automatically learn only from correct communications.

B. Generating candidates
For all words detected as words with an error, finding

suitable candidates for correction in the dictionaries is neces-

sary. Candidates are all possible words from which the typing
error could be created with a certain editing distance. We are
working only with words that have an edit distance of less than
or equal to 2. Simultaneously, to consider a word a correct
candidate, the word needs to be in the appropriate dictionary.

The creation of candidates is based on applying reverse
operations to basic operations (insert, delete, replace, and
swapping of two adjacent characters). For example, if we want
to determine if the word ”ello” was formed by omitting the
first letter, the method tries a reverse operation (in this case,
the opposite of omitting is the insertion of a character). After
trying all characters, the method detects that inserting the letter
”h” before the word ”ello” creates the valid word ”hello”. To
try all the possibilities, it is necessary to try all operations on
all word positions and to use all combinations of characters.
Candidates with edit distance 1 are created by one operation
and candidates with distance 2 by two operations.

Our method uses two different ways of creating candidates.
The first method applies all operations to the detected word
with an error and tries to obtain words present in the dictionar-
ies [3]. The second method works oppositely and takes correct
words from dictionaries, and calculates the number of oper-
ations required to create a correct word from the misspelled
word. The second method is more complex, but with fewer
words in the dictionaries, this method is significantly faster.
The amount of words for which the second method is faster
than the first one is described in the evaluation section.

C. Choosing the best candidate

After creating candidates for word correction, it is necessary
to determine the best replacement from them. The easiest way
would be to select the candidate with the shortest editing
distance. The problem is that several candidates may have the
same minimum distance. Based on this information alone, we
cannot select the most suitable candidate.

We propose a scoring algorithm that tries to assign higher
scores to the candidates with higher probability. At first, the
algorithm assigns a basic score for each candidate. In the next
step, the algorithm takes the operations that are needed to
change the word with an error to the correct word (e.g., insert
letter ”h” at the beginning of the word and replace the third
letter ”i” with the letter ”l”). For each of the operations, a
penalty is deducted from the score. The main idea is that each
operation has a different penalty based on probability.

We have analyzed several research papers and identified
which errors are more probable than others. The list of these
errors is in Table I. If the operation contains any of these
errors, its penalty is reduced. Each operation may be attributed
to several probable errors, and the penalty is reduced for each
of them. For example, an error in the username ”matousek”,
where the user mistakenly writes ”mat0usek” is represented as
an operation to replace the fourth character ”o” with ”0”. This
operation contains up to three errors with a higher probability:
1) error is not in the first character; 2) characters ”o” and ”0”
are in a fat finger distance; 3) characters ”o” and ”0” are

visually very similar. All errors have the same weight, and the
same amount reduces the penalty for each of them.

TABLE I
LIST OF ERRORS WITH A HIGHER PROBABILITY

Error type Example
Duplication [21] 44 > 444

Shift [21] 441 > 411
Pluralism [15] money > moneys

Doubling or skipping a voice [36] scissors > sissors
Fat-finger [56], [57] help > hewlp

Transcription error [19] 1 > l
Phonetic error [32] blake > brake

Keyboard layout [19], [32] zoomba > yoomba
Capitalization [19] home > HOME

Error not in first character [31] config > comfig

V. TOOL ARCHITECTURE

This section describes the architecture of the designed tool,
which implements the proposed diagnostic method. The tool
is intended to help network administrators with finding and
fixing a problem on the network. A typical use case for this
is when a service does not work for an end-user. The end-
user reports the problem to the administrator, who uses data
analysis to determine that the service is not working for the
user because he entered some data incorrectly due to a typing
error. Finally, incorrect words with possible corrections will
be displayed to the administrator. Before using the tool, the
administrator needs to know what data to analyze and in which
location this data can be found.

The proposed tool consists of several independent blocks,
shown with their interconnection in Fig. 1. In the left part
of the figure, there is the input data, which, after processing,
continues to other blocks according to the selected mode. The
result of the first (learning) mode is a set of learned words, and
the result of the second (diagnostic) mode is a list of detected
words with a typographical error (or errors) and the proposed
corrections.

PCAP

NetFlow

log file

dictionaries
learning new

words

convertor
typo error

detection

generating

candidates

candidates

ranking
result

typo words diagnostics

Fig. 1. An architecture of the proposed tool which consists of multiple blocks.

A. Convertor

The first part of the tool is used to convert data from
different sources that use a different format into a common
format. The common format will allow the rest of the tool
to work with data no matter its source. For this purpose, a
converter is used. In addition to data converting, it filters the
input data because it does not make sense to analyze all the
data from the sources (e.g., timestamps or password hashes).
The format is based on JSON, consisting of keys (categories)

and lists of values belonging to those categories. The rest of
this subsection describes currently supported sources.

1) Network packets: The analysis will look at user data en-
tered into the application and transported in network packets.
An example is the configuration of an email client, where the
user enters the login name. Packets can be saved in the PCAP
format for later analysis. We are using TShark to convert
packets saved in PCAP format into JSON format, which is
better for data analysis. We have chosen TShark because we
do not need to implement our custom protocol parsers.

2) NetFlow records: Another way to analyze network data
is to use NetFlow technology, which aggregates packets ac-
cording to common properties and reduces the amount of
analyzed data. The tool is working with NetFlow records that
are saved in the CSV format. This CSV format consists of
columns representing NetFlow attributes and rows that contain
individual records. It is important to note that current state-
of-the-art implementations of NetFlow monitoring are not
sampling the analyzed data even for high-speed networks and
are exporting application fields, e.g., the domain name from
DNS or email address from SMTP.

3) Log files: The advantage of processing log files over
network data is that packet analysis cannot process any data
in the case of using an encrypted connection. However, the
data is written to the log files in a readable form. Processing
log files allows the analysis to look for errors regardless of
the network topology or protocols used. Although log files
are in text form by default, their format is not uniform. Each
application creates logs differently, and therefore it is up to the
administrator to specify exactly how the information should be
searched for and extracted from the data. For this purpose, we
used regular expressions to specify which part of the record
will be analyzed.

B. Learning mode

After the converter processes the data, it is possible to
start one of the two modes. The first mode is responsible for
learning new words and saving them into dictionaries. Words
are stored in the appropriate dictionary according to their
category and length. For example, when saving the domain
name ”milk.com”, the word’s length is determined (it is 8)
and saved to the dictionary containing only domain names of
the same length. The goal of dividing the dictionaries by word
length is to make it easier to find words with similar lengths.

C. Diagnostic mode

After the tool has learned the correct words, it is possible to
proceed to the diagnostics mode. The second possibility is that
the learning mode was not used at all, and the administrator
manually predefined all the correct words. This consists of
three parts - typing error detection, generating candidates, and
candidate ranking. Each of these parts is using dictionaries
that contain both predefined and learned words.

1) Typing error detection: The first step in diagnostics is
to find out which words are correct and which words have
a typographical error. To do this, it is necessary to load

dictionaries of correct words. When the program is loading
dictionaries, the individual words are loaded into Python sets.
The search for whether a word is in the dictionary is performed
as a search for an element in a set. The benefit of implementing
a search over a set is that it is possible to search for multiple
elements in a very short amount of time. In our test, we
searched for 1000 elements in less than 1 ms, while the data
structure with 100.000 words took up less than 16 MB of
operational memory.

2) Generating candidates: The second step in diagnosis
mode is to obtain potential candidates to correct the de-
tected typographical error. The proposed method is using
two algorithms for generating candidates. The first one is
applying operations to the word with a typographical error
to create a correct word. The second algorithm takes words
from dictionaries and calculates the number of operations (edit
distance) to create a word with error. The reason why we are
using the second algorithm is the expectation that it is faster
than the first one at the moment when there are not many
words in the dictionaries. Therefore, we performed a test in
which we try to find out the limit when the second algorithm
is faster and, conversely, when the second algorithm starts to
be slower than the first algorithm.

The result of the test is shown in Fig. 2. The first algorithm’s
time depends only on the word’s length and is shown by a line
with circle points. The other lines show the second algorithm’s
time according to the number of words with the same length.
It can be seen that the time complexity of the first algorithm
is approximately the same as the complexity of the second
algorithm when there are 25000 words with a similar length
as the analyzed word in the dictionary.

Based on the test, we chose a 25000 word limit to determine
which algorithm to use. Because the method searches for
candidates up to edit distance 2, it is possible to count only
words that are not shorter or longer by two characters than the
detected word with an error. When processing a word with a
typographical error of length N, the tool determines whether
the number of words in the dictionary of length N-2 to N+2
is less than or greater than 25000.

 0

 5

 10

 15

 20

 25

 5 10 15 20 25

T
im

e
 [

s
]

Word length

�rst algorithm
5000

25000
50000

Fig. 2. Comparison of the generation time of candidates of the first and
second algorithm.

3) Candidate ranking: The algorithm for candidate ranking
works in two stages: assigning a base score and adjusting it
based on the error type. The first stage is simple. If a word
was found in the learned part of the dictionary, a score of 25
is used. Otherwise, a score of 20 is used for words from the
predefined part. Afterward, it is checked whether the word is
of the type domain name, string, or username and whether the
candidate has the same phonetic sound as the typographical
error (according to the Metaphone algorithm). If the phonetic
sound is the same, the value 3 is added to the score.

In the second stage, the method takes the operations needed
to change the word with an error to the correct word and
calculates the penalty that will be reduced from the score.
The penalty has a default value of 10. A list of conditions
defining more probable errors is checked, and for each fulfilled
condition, the penalty is reduced by 1. The system checks the
following conditions that define more probable errors:

• inserted character is the same as the adjacent character;
• inserted character is in the fat finger distance as the

adjacent character;
• changed character is in the fat finger distance as the

original character;
• changed character is on the same position in different

keyboard layouts (qwerty-qwertz);
• mistake is not on the first character;
• error is around the separator (dot, hyphen or underscore);
• inserted character is same as the both adjacent characters;
• inserted character is in prefix or suffix of the word;
• replaced character is visually similar to the original

character;
• removed character is same as the adjacent character;
• both the original and replaced character are different, but

both are the same as one of the adjacent character.
Before substituting the penalty from the score, the penalty

is multiplied by the coefficient based on the operation type:
insert = 0.6, replace = 0.3, delete = 0.5, transpose = 0.7).

There is one exception for which the previous calculation is
not used. When a word with typographical error is capitalized
(caps-lock was enabled on the user’s keyboard). This operation
is not a basic operation used in the edit-distance calculation,
and therefore calculating scores based on these operations
does not make sense. In this case, the algorithm assigns the
maximum score of 25 to all capitalized words. This approach
will make these words always the best candidates.

D. Example

The outputs from the individual tool parts can be seen in
Fig. 3, which also shows the whole method’s main idea. First,
words from the converter belonging to the category domain
name are displayed, which are searched for in dictionaries.
The domain name ”amzon.com” is not in the dictionaries
and is considered a typographical error. All possible words
with a maximum editing distance of 2 that can be created
from the domain name are generated. All these words are
searched for in dictionaries, and only six are considered as
correction candidates. Candidates are ranked, and the one with

the best score (amazon.com) is selected as a replacement for
the original misspelled word.

{

"domain": [

"facebook.com",

"amzon.com",

"google.com"]

}

amzon.com

amzn.com

aaszon.com

amzmin.com

amazon.com

anion.com

azom.com

amazon.com - 23.5

anion.com - 22.9

amzn.com - 22.6

amzmln.com - 21.1

azom.com - 20.2

aaszon - 18.3

amzon.com

�

amazon.com

data from

convertor

detected

typo
candidates

ranked

candidates
result

Fig. 3. Output’s example of individual parts of the architecture.

VI. EVALUATION

This section shows that the presented diagnostic method can
detect typing errors caused by end-users. The first test shows
that the created heuristic for evaluating candidates sorts the
individual errors as expected. The second test tests the success
rate of correcting typographical errors on the created dataset.
In the third test, the speed of the whole tool is measured. The
last test tried to correct typographical errors in IP addresses
and port numbers.

A. Ranking of candidates

The first test aims to verify the correctness of the created
heuristic for scoring correction candidates. We have manually
applied several errors to the word ”google.com”, and a score
heuristic algorithm was run over the words with errors. The
aim is not to verify the exact values of the calculated score
but to determine whether the order of the candidates according
to the calculated score adequately reflects the probability of
the type of typographical error that occurred. The higher the
score, the higher the probability of the candidate should be.
For example, one inserted character from a fat finger distance
should have a better rating (higher score) than deleting two
characters.

The first test result is shown in Table II, containing incorrect
words, a description of operations, and a calculated score. The
calculated score sorts the items in the table. There is no exact
way to determine whether the created order is correct or not.
However, according to intuition, it can be stated that more
probable errors compared to the words with the lowest rating
are placed in the first rows.

B. Candidates proposing accuracy

The second test aims to verify that the created heuristic
selects the correct candidates as a replacement for the detected
errors. We have created a script that applied typing errors from
regular English text to the list of domain names for this test.
As a list of domain names, we have used the most visited
797641 domain names from Alexa 1. A dataset with 2455
typographical errors from 1922 words from English Wikipedia
from Roger Mitton was used to simulate real errors. Each
typing error in this dataset also contains the correct form of
the word.

1http://s3.amazonaws.com/alexa-static/top-1m.csv.zip

TABLE II
SCORING VARIOUS CANDIDATES FOR THE GOOGLE.COM DOMAIN NAME

Score Wrong word Operation
25.0 GOOGLE.COM Capitalization
23.9 g0ogle.com Substitution for a similar symbol
23.6 ggogle.com Substitution with a duplicated symbol
23.6 giogle.com Substitution in a fat finger distance
23.3 gwogle.com Substitution
22.0 gogle.com Deletion of the repeated symbol
21.8 gooogle.com Insertion of a repeated symbol
21.5 goole.com Deletion
21.2 giigle.com Substitution in a fat finger distance
21.2 google.comp Insertion at the end of the word
20.6 gooqgle.com Insertion
19.7 ogogle.com Transposition
18.5 gopople.com Insertion in a fat finger distance
17.0 ggle.com Deletion
15.2 goqoqgle.com Insertion

The script for generating domain names with typing errors
consists of four steps:

1) The list containing pairs with correct and error words
has been created. E.g., the correct word ”guard” was
paired with the misspelled word ”gaurd”. Only words
with a maximum editing distance of 2 have been used.

2) Domain names were analyzed to determine whether they
contain any correct words from the created list. E.g.,
the domain name theguardian.com contains the word
”guard”. The list of pairs was always searched in random
order to prevent repeating the same type of errors.

3) If the domain name contained any valid word, this word
was replaced with a misspelled word. E.g., the domain
name theguardian.com was changed to thegaurdian.com.

4) After 1000 different domain names have been created
with typing errors. The process has stopped.

Out of 1000 created domain names, nine domain names
were such that the new word was also a valid domain name
even after applying the typing error. It means that the new do-
main name was in the same list of domain names from Alexa,
and therefore it is not possible to mark those domain names
as incorrect. Of the remaining 991 words, 967 cases were
correctly corrected. Four misspelled words have had more than
one candidate with the best score, and one of those candidates
was the correct word. The remaining 20 domain names were
incorrectly repaired. For example, the ”udemy.com” domain
name had a typographical error ”udemi.com”, which was
corrected to ”udemu.com” because replacing the letter ”i”
with the letter ”u” is more likely because it is located near
to it (based on the QWERTY keyboard layout). The results
are shown in Table IV, and several correctly repaired domain
names with different types of errors are shown in Table III.

Another test to verify the best candidates’ accuracy was
made on a list of 371 usernames of employees and Ph.D.
students within our faculty. All usernames are based on real
names. This list was used as a dictionary to check whether
the checked username is correct or not. We have randomly
selected 100 usernames and applied the typing errors in the

TABLE III
SELECTED DOMAINS WITH ERRORS THAT WERE CORRECTLY FIXED

Wrong word Heuristic rules Correct word
voice-real.com transposition; similar phonetic voice-reel.com

panbda.tv insert; fat finger distance panda.tv
chasr.com substitution; fat finger distance chase.com

ilvoepdf.com transposition ilovepdf.com
weatherr.com insert; letter duplication weather.com

gole.co.kr 2x delete; removed repeating symbol google.co.kr

same way as in the test with domain names. From these
100 usernames with errors, 100 were correctly detected as
incorrect and 99 were correctly corrected. The results are also
shown in Table IV. The one incorrectly repaired username was
”ikuceran” which was created from the username ”ikucera”,
however our tool repaired it as ”ikuceraj”.

TABLE IV
RESULT OF TESTING THE CORRECTNESS OF PROPOSED CORRECTIONS FOR

DETECTED TYPOGRAPHICAL ERRORS IN DOMAIN NAMES AND
USERNAMES

Data type domains usernames
Word count 1000 100

Detected as error 991 100
Detected as correct word 9 0

Correct best candidate 967 99
Multiple best candidates 4 0

Wrongly repaired 20 1
Success rate 97.5% (967 of 991) 99% (99 of 100)

We have detected up to 97.5% of errors in domain names
and 99% of username errors in misspelled words generated
from sources that contained real user typographical errors.
However, it is unnecessary to achieve 100% accuracy to use
the tool because even with a lower success rate, the tool
can make it easier to diagnose errors. We do not consider
typographical errors words that are also correct as errors. For
example, if a user types ”google.cz” instead of ”google.ca”, it
is impossible to detect an error because both are valid domain
names. Therefore we did not count them when calculating the
success rate.

C. Usage on other data types

The third test aimed to verify functionality on the domain
name of IP addresses and port numbers. It turned out that
the proposed method of error detection does not apply to real
networks very well. There were two main reasons. The first
problem was to obtain relevant data to which the tool could
be applied. Most networks use DNS protocol and default port
numbers, so the end-users rarely use IP addresses and ports.

The second problem was that even though some data has
been collected, there is only a small difference between
the individual values. Usual domain names, login names,
and emails are very different and easily distinguishable. For
example, login names may look like ”vecerav”, ”polcak”,
or ”iletavay”. On the other hand, IP addresses inside a

single network are usually assigned from the same subnet,
e.g., ”147.229.176.14”, ”147.229.176.19,” or ”147.229.176.8”.
With these values, there is a high probability that the value
with an error will also be a valid value. Even if the error will
be detected, it is almost impossible to say the correct value
without additional knowledge.

VII. CONCLUSIONS

This work aimed to create a method for detecting typing
errors in computer network applications appearing in various
data sources. The tool is intended to complement existing
systems for network monitoring and troubleshooting. The
tool focuses on data entered directly by end-users and then
transmitted over a network or stored somewhere in application
servers. An example is the configuration of the email client,
which is provided manually by the user. For example, when an
end-user incorrectly configures such an application and does
not know why the application is not working, the end-user
contacts an administrator. The administrator will use this tool
which will automatically check whether the application is not
working because of the typing error.

The presented method can be considered a spell-checker
for network-related data. The created tool focuses only on
detecting nonword errors, so if another correct word is created
because of a typing error, it is not identified as an error.
The tool checks for each word, whether it is present inside
a dictionary, and if not, it is considered a typographical error.

At the beginning of the work, we have identified data types
in which it makes sense to search for typographical errors. The
most interesting data sources are network packets, NetFlow
records, and log files regarding availability and amount of
data containing possible user’ errors. Each type of data has its
advantages and disadvantages, and therefore it is impossible
to say that only one specific type of data should be used.

Many kinds of typographical errors can be made when
typing on the keyboard. The basic mechanism behind the
emergence of such errors was identified by Damerau, who
defined it in terms of insertion, transposition, replacement, and
deletion of a character. Based on these operations, it is possible
to measure the editing distance between two words and find
similar words to be used as a correction. When there are
multiple candidates for correction, it is necessary to determine
the best selection. To solve this selection problem, we have
developed an algorithm that considers the probabilities of
individual operations’ occurrence and looks for the most
common types of typographical errors in candidates. Based
on the highest evaluation, the best candidate for replacement
is selected. In the case of equally rated candidates, there are
multiple corrections offered.

The created tool works in two modes. Firstly, the learning
mode is applied to create dictionaries of correct words based
on the provided input data considered to be correct. Secondly,
the diagnostic mode uses a learned model to detect and correct
typing errors. The program can also run without the learning
phase, in which case it requires a manually created model.

The tool’s functionality was tested on errors in domain
names and login names created by applying real-user mistakes
from the English Wikipedia. Knowing the correct form of each
error made it possible to determine whether the tool suggests
correct correction candidates. Although the tool’s success rate
was less than 100% (97.5% and 99%), the tool can still speed
up diagnostics by not requiring the administrator to manually
analyze the data entered by the end-user.

Although the method can be applied to any data entered
by a user, it is not appropriate to look for typographical
errors in identifiers from layers other than from the application
layer. The reason is that only the application identifiers are
optimized for typing by users. There are significant differences
between each value, and it is thus possible to easily estimate
the intended word in the case of a typing error.

Finally, we have identified the following future works:
• The tool does not allow feedback processing of the

previous errors. By marking each correction as right or
wrong, the diagnostic method would prioritize previously
successful candidates.

• Every word that has been seen during the learning mode
is considered correct. However, when learning from data
with possible errors, words that were seen only once may
indicate a potential typo. It would make sense to penalize
less frequent words in dictionaries. However, it would be
necessary to deal with words that occur less frequently
and be erroneously marked as typos, even if they are
already in the dictionary.

ACKNOWLEDGMENT

This work was supported by the BUT FIT grant FIT-S-20-
6293, ”Application of AI methods to cyber security and control
systems”.

REFERENCES

[1] Han, Y., Zhao, X. and Li, J., 2018. Computer Network Failure and
Solution. Journal of Computer Hardware Engineering, 1(1).

[2] Wang, R., Wu, D., Li, Y., Yu, X., Hui, Z. and Long, K., 2012.
Knight’s tour-based fast fault localization mechanism in mesh optical
communication networks. Photonic Network Communications, 23(2),
pp.123-129.

[3] Solé, M., Muntés-Mulero, V., Rana, A.I. and Estrada, G., 2017. Sur-
vey on models and techniques for root-cause analysis. arXiv preprint
arXiv:1701.08546.

[4] Orzach, Y., 2013. Network Analysis Using Wireshark Cookbook. Packt
Publishing Ltd.

[5] Squicciarini, A.C., Petracca, G., Horne, W.G. and Nath, A., 2014,
March. Situational awareness through reasoning on network incidents.
In Proceedings of the 4th ACM conference on Data and application
security and privacy (pp. 111-122).

[6] Van, T.,Tran, H. A.,Souihi, S. A. Mellouk, A. Network troubleshoot-
ing:Survey, Taxonomy and Challenges. In: IEEE.2018 International Con-
ference onSmart Communications in Network Technologies (SaCoNeT).
2018, pp. 165–170.

[7] Zeng, H., Kazemian, P., Varghese, G. and McKeown, N., 2012. A survey
on network troubleshooting. Technical Report Stanford/TR12-HPNG-
061012, Stanford University, Tech. Rep.

[8] Chen, A., Wu, Y., Haeberlen, A., Zhou, W. and Loo, B.T., 2016, August.
The good, the bad, and the differences: Better network diagnostics with
differential provenance. In Proceedings of the 2016 ACM SIGCOMM
Conference (pp. 115-128).

[9] Kögel, J., Including the Network View into Application Response Time
Diagnostics using Netflow.

[10] Rudrusamy, G., Ahmad, A., Budiarto, R., Samsudin, A. and Ramadass,
S., 2013. Fuzzy based diagnostics system for identifying network traffic
flow anomalies. arXiv preprint arXiv:1304.7864.

[11] Qiu, T., Ge, Z., Pei, D., Wang, J. and Xu, J., 2010, November. What
happened in my network: mining network events from router syslogs.
In Proceedings of the 10th ACM SIGCOMM conference on Internet
measurement (pp. 472-484).

[12] Csikor, L. and Pezaros, D.P., 2017, December. End-host driven trou-
bleshooting architecture for software-defined networking. In GLOBE-
COM 2017 IEEE Global Communications Conference (pp. 1-7). IEEE.

[13] Pullmann, J. and Macko, D., 2018, November. Network tester: A genera-
tion and evaluation of diagnostic communication in ip networks. In 2018
16th International Conference on Emerging eLearning Technologies and
Applications (ICETA) (pp. 451-456). IEEE.

[14] Traverso, S., Tego, E., Kowallik, E., Raffaglio, S., Fregosi, A., Mellia,
M. and Matera, F., 2014, September. Exploiting hybrid measurements
for network troubleshooting. In 2014 16th International Telecommuni-
cations Network Strategy and Planning Symposium (pp. 1-6). IEEE.

[15] Kukich, K. Techniques for automatically correcting words in text. Acm
Computing Surveys (CSUR). ACM. 1992, 24(4), pp.377-439.

[16] Hirst, G. ”An evaluation of the contextual spelling checker of Microsoft
Office Word 2007.” (2008).

[17] Youssef, B. and Alwani, M.. ”Ocr post-processing error correction
algorithm using google online spelling suggestion.” arXiv preprint
arXiv:1204.0191 (2012).

[18] Chen, X., Huang, X., Mu, Y. and Wang, D., 2019, August. A Typo-
Tolerant Password Authentication Scheme with Targeted Error Cor-
rection. In 2019 18th IEEE International Conference On Trust, Se-
curity And Privacy In Computing And Communications/13th IEEE
International Conference On Big Data Science And Engineering (Trust-
Com/BigDataSE) (pp. 546-553). IEEE.

[19] Chatterjee, R., Athayle, A., Akhawe, D., Juels, A. and Ristenpart, T.,
2016, May. pASSWORD tYPOS and how to correct them securely. In
2016 IEEE Symposium on Security and Privacy (pp. 799-818). IEEE.

[20] Ahmad, I., Parvez, M.A. and Iqbal, A., 2019, July. TypoWriter: A Tool to
Prevent Typosquatting. In 2019 IEEE 43rd Annual Computer Software
and Applications Conference (COMPSAC) (Vol. 1, pp. 423-432). IEEE.

[21] Sun, Y.C., Tang, D.D., Zeng, Q. and Greenes, R., 2002. Identification of
special patterns of numerical typographic errors increases the likelihood
of finding a misplaced patient file. Journal of the American Medical
Informatics Association, 9(Supplement 6), pp.S78-S79.

[22] Wang, Y.M., Beck, D., Wang, J., Verbowski, C. and Daniels, B.,
2006. Strider Typo-Patrol: Discovery and Analysis of Systematic Typo-
Squatting. SRUTI, 6(31-36), pp.2-2.

[23] QasemiZadeh, B., Ilkhani, A. and Ganjeii, A., 2006, June. Adaptive
language independent spell checking using intelligent traverse on a tree.
In 2006 IEEE Conference on Cybernetics and Intelligent Systems (pp.
1-6). IEEE.

[24] Lianga, H.L., Watsonb, B.W. and Kourieb, D.G., Technical Report
Classification for Selected Spell Checkers and Correctors.

[25] Peterson, J.L., 1980. Computer programs for detecting and correcting
spelling errors. Communications of the ACM, 23(12), pp.676-687.

[26] Damerau, F.J. and Mays, E., 1989. An examination of undetected typing
errors. Information Processing & Management, 25(6), pp.659-664.

[27] Bao, Z., Kimelfeld, B. and Li, Y., 2011, June. A graph approach to
spelling correction in domain-centric search. In Proceedings of the
49th Annual Meeting of the Association for Computational Linguistics:
Human Language Technologies (pp. 905-914).

[28] Odell, K.M. and Russell, R.C., 1918. Soundex phonetic comparison
system. US Patent, 1261167.

[29] Pollock, J.J. and Zamora, A., 1984. Automatic spelling correction
in scientific and scholarly text. Communications of the ACM, 27(4),
pp.358-368.

[30] Philips, L., 1990. Hanging on the metaphone. Computer Language,
7(12), pp.39-43.

[31] Elmi, M.A. and Evens, M., 1998. Spelling correction using context.
In COLING 1998 Volume 1: The 17th International Conference on
Computational Linguistics.

[32] Martins, B. and Silva, M.J., 2004, October. Spelling correction for
search engine queries. In International Conference on Natural Language
Processing (in Spain) (pp. 372-383). Springer, Berlin, Heidelberg.

[33] Mullin, J.K. and Margoliash, D.J., 1990. A tale of three spelling
checkers. Software: Practice and Experience, 20(6), pp.625-630.

[34] Aho, A.V. and Corasick, M.J., 1975. Fast pattern matching: an aid to
bibliographic search. Communications of ACM, 18(6), pp.333-340.

[35] Jurafsky, D. and Martin, J.H.: Speech and Language Processing: An In-
troduction to Natural Language Processing, Computational Linguistics,
and Speech Recognition. Pearson Prentice Hall (2009).

[36] Mitton, R. English Spelling and the Computer (Studies in Language Lin-
guistics). Addison-Wesley Longman Ltd, dec 1995. ISBN 0582234794.

[37] Levenshtein, V.I., 1966, February. Binary codes capable of correcting
deletions, insertions, and reversals. In Soviet physics doklady (Vol. 10,
No. 8, pp. 707-710).

[38] Wagner, R.A. and Fischer, M.J., 1974. The string-to-string correction
problem. Journal of the ACM (JACM), 21(1), pp.168-173.

[39] Hamming, R.W., 1950. Error detecting and error correcting codes. The
Bell system technical journal, 29(2), pp.147-160.

[40] Pilar Angeles, M. del a Espino Gamez, A. Comparison of methods
Hamming Distance, Jaro, and Monge-Elkan. In: DBKDA 2015: the
seventh international conference on advances in databases, knowl-edge
and data applications. 2015.

[41] Damerau, F.J., 1964. A technique for computer detection and correction
of spelling errors. Communications of the ACM, 7(3), pp.171-176.

[42] Winkler, William E. ”String Comparator Metrics and Enhanced Decision
Rules in the Fellegi-Sunter Model of Record Linkage.” (1990).

[43] Mitton., R., Birkbeck spelling error corpus, 1985. http://ota.ahds.ac.uk/
(Last accessed: March 2007).

[44] TshwaneDJe HLT. Sesotho sa leboa corpora, 2006. Private Communi-
cation.September 2006.

[45] Rudy, R. and Naga, D.S., 2018. Fast and Accurate Spelling Correc-
tion Using Trie and Damerau-levenshtein Distance Bigram. TELKOM-
NIKA (Telecommunication Computing Electronics and Control), 16(2),
pp.827-833.

[46] Cordewener, K.A., Verhoeven, L. and Bosman, A.M., 2016. Improving
spelling performance and spelling consciousness. The journal of exper-
imental education, 84(1), pp.48-74.

[47] Van Zaanen, M. and Van Huyssteen, G., 2003. Improving a spelling
checker for Afrikaans. In Computational Linguistics in the Netherlands
2002 (pp. 143-156). Brill Rodopi.

[48] Huang, Y., Murphey, Y.L. and Ge, Y., 2013, April. Automotive diagnosis
typo correction using domain knowledge and machine learning. In
2013 IEEE Symposium on Computational Intelligence and Data Mining
(CIDM) (pp. 267-274). IEEE.

[49] Etoori, P., Chinnakotla, M. and Mamidi, R., 2018, July. Automatic
spelling correction for resource-scarce languages using deep learning. In
Proceedings of ACL 2018, Student Research Workshop (pp. 146-152).

[50] Carlson, A. and Fette, I., 2007, December. Memory-based context-
sensitive spelling correction at web scale. In Sixth International Con-
ference on Machine Learning and Applications (pp. 166-171). IEEE.

[51] Hussain, S. and Naseem, T., 2013. Spell checking. Crulp, Nuces,
Pakistan, www. crulp. org.

[52] Dhakal, V., Feit, A.M., Kristensson, P.O. and Oulasvirta, A., 2018, April.
Observations on typing from 136 million keystrokes. In Proceedings of
the 2018 CHI Conference on Human Factors in Computing Systems (pp.
1-12).

[53] Rimbar, H., 2017. The Influence of Spell-checkers on Students’ ability
to Generate Repairs of Spelling Errors. Journal of Nusantara Studies
(JONUS), 2(1), pp.1-12.

[54] Hofstede, R., Čeleda, P., Trammell, B., Drago, I., Sadre, R., Sperotto,
A. and Pras, A., 2014. Flow monitoring explained: From packet capture
to data analysis with netflow and ipfix. IEEE Communications Surveys
& Tutorials, 16(4), pp.2037-2064.

[55] Holkovič, M., Polčák, L. and Ryšavý, O., 2019, July. Application Error
Detection in Networks by Protocol Behavior Model. In International
Conference on E-Business and Telecommunications (pp. 3-28). Springer,
Cham.

[56] Moore, T. and Edelman, B., 2010, January. Measuring the perpetrators
and funders of typosquatting. In International Conference on Financial
Cryptography and Data Security (pp. 175-191). Springer, Berlin, Hei-
delberg.

[57] Grudin, J.T., 1983. Error patterns in novice and skilled transcription typ-
ing. In Cognitive aspects of skilled typewriting (pp. 121-143). Springer,
New York, NY.

