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Abstract

Protection of industrial communication systems against cyber attacks has become
a great challenge during the past years due to the convergence of Operational Tech-
nologies (OT) and Information Technologies (IT), adoption of the TCP/IP to indus-
trial networks, and the rising level of automation and intelligent control of indus-
trial processes. Security and safety of critical infrastructure systems that include
power plants, substations, water and gas distribution, traffic control systems, etc.,
can be implemented on various levels. In this work we focus on security of in-
dustrial system via high-level communication monitoring and automated anomaly
detection. In this work, we deal specifically with smart grid communication proto-
cols like IEC 104, GOOSE, and MMS.

At first, we address the issue of high-level visibility of industrial communica-
tion. By monitoring of transmitted commands and their parameters we can disclose
real activities of the system and identify potential threats. For this task we adopt
Netflow/IPFIX technology that is a standard for IP networks. The adoption requires
re-definition of the flow and extension of IPFIX records by values obtained from
industrial protocols, e.g., transmitted operations (setting on/off the switch breaker,
reading process values), device status, types and identification of target objects,
etc. Monitoring data are further analyzed and used for anomaly detection.

Industrial devices are usually pre-configured and their communication exhibits
stable device-specific patterns. When we learn these patterns, we can identify un-
usual behavior. This work introduces two novel techniques for anomaly detection
of smart grid communication. The first one is based on probabilistic automata
that model typical communication sequences. Using this approach we can detect
unexpected message sequences, unusual command frequency, or irregular data ex-
changes. Such anomalies may indicate specific cyber attacks or device failures.

The second presented technique observes time properties of packets. Using
statistical methods we model typical distribution of packet inter-arrival times and
create statistical profiles that represent normal behavior of the network. By apply-
ing the Three Sigma Rule we observe deviation from the learned profile.

By combination of both techniques we are able to detect common anomalies in
the smart grid communication and improve security of smart grid networks. The
presented methods were implemented and become a part of commercial solution.
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Chapter 1

Introduction

This work is focused on security of industrial communication in a domain of power
systems and energy distribution with a specific application to smart grids. The
smart grid (also called the power grid) produces and supplies electrical energy
to customers over a large geographical region. It is an electricity network that
includes energy generation using various resources (nuclear, water, wind, photo-
voltaic, etc.), energy transmission and distribution, advanced metering, and other
operations. Automation and control of smart grids is implemented using Industrial
Control System (ICS) and Supervisory Control and Data Acquisition (SCADA)
communication protocols, e.g, IEC 60870-5-104 (aka IEC 104), DNP3, IEC 61850
MMS and GOOSE, or DLMS [72]. These protocols transmit monitoring data
and control commands in substations, smart meters, or phasor measurement units.
Proper operation of ICS/SCADA communication systems is essential for stability,
reliability and security of smart grids.

Power production and energy distribution fall into the category of critical sys-
tems which interruption or blackouts may have fatal consequence on industrial
processes, traffic, and even lives of individual persons. For this reason, we need
to monitor smart grid communication and detect possible malfunctioning of a de-
vice, lost packets, communication delays, and also cyber attacks initiated from the
outside of the smart grid network but also from the inside of the network from an
infected machine [53].

Current security of smart grids focuses on the network edge where firewalls
and IDS systems control and filter both outgoing and incoming traffic. This ap-
proach is successful against external threats, but have a little effect on internal
threats initiated from infected machines. These threats are real and have significant
consequences as seen in a cyber attack against Ukrainian power plants in 2016 [41]
or a more recent ransomware attack against the Colonial Gas Pipeline in the U.S.
that happened in May 2021 [106].

Security of smart grid communication includes two important steps: (i) real-
time visibility of ICS communication via extended security monitoring, and (ii)
automated detection of security incidents using advanced detection methods. In
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CHAPTER 1. INTRODUCTION 2

this work, we present a solution for both tasks. The extended visibility of smart
grid communication can be implemented using flow-based monitoring of industrial
protocols [108]. This technique using Netflow/IPFIX protocols [34] is commonly
used for IT networks monitoring. For ICS communication, we need to re-define
the flow and import specific features extracted from ICS packets to the network
monitoring system so that it is able to reveal transmitted operations. This technique
with special focus on smart grid communication protocols is described in Chap. 3.

The second step for enhancing cyber security of smart grid communication
requires automated detection of security incidents. In this work we apply two ap-
proaches: automata-based approach and statistical anomaly detection. Automata-
based approach uses language theory. It stems from the hypothesis that commu-
nication sequences between two industrial devices are stable and do not change
over time. By observing device to device communication, we can learn their typ-
ical communication sequences and form a probabilistic language that represents a
communication profile of these devices. For this task we employ two formalisms:
Prefix Trees (PT) and Deterministic Probabilistic Automata (DPA). Both these for-
malisms represent an efficient way how to create a probabilistic language from a set
of sample strings obtained from normal communication. This work demonstrates
that communication profiles are effective for detection of common ICS security
incidents like the command injection, packet manipulation, network scanning, or
lost connection. An important advantage of this approach is that it uses the stan-
dardized IPFIX flow monitoring protocol and it can be easily incorporated into
common security information and event management (SIEM) systems. Modeling
ICS communication using probabilistic automata and anomaly detection based on
automata models is described in Chapter 4.

Another approach to anomaly detection that we present in this work, observes
timing properties of ICS communication. Since the ICS communication is stable,
periodical and contains regular communication patterns, it can be described using
statistical models. Here we deal with modeling selected features of ICS traffic,
more specifically packet direction and inter-arrival times. Based on the previous
research [97, 109] and our own experiments, we approximate inter-arrival times of
ICS communication and the number of transmitted packets within a time window
with normal distribution. Using selected features we create a statistical profile
of an ICS communication. Our experiments show that using statistical profiles,
we can detect various anomalies caused by irregular transmission, device or link
failures, packet injection, scanning, or denial of service (DoS) attack.

Unlike automata-based approach, the statistical profiles do not require a deep
analysis of ICS protocols during detection phase because they operate on packet
level. Statistical profiles build a complementary view on smart grid communication
security with respect to the automata-based model. We show how combination
of these two presented approaches increases accuracy and flexibility of anomaly
detection in smart grid networks. The statistical anomaly detection is described in
Chapter 5.
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1.1 Structure of the Text

The text of this work is structured as follows. Chapter 2 introduces typical indus-
trial protocols deployed in smart grids, discusses their features and typical commu-
nication patterns of ICS communication. It also describes common cyber threats
against ICS communication. It lists major cyber attacks against ICS systems that
happened in previous years. How these attacks may operate is demonstrated on two
cyber attacks against Ukrainian power grid in 2015 and 2016 where ICS communi-
cation was manipulated and misused by an attacker. To prevent such sophisticated
attacks that are not visible by common security techniques is the main motivation
of our research. Further in that chapter we discuss common ICS attack vectors
defined by NIST Report 8219 [92] and MITRE ATT&CK matrix for Industrial
Control Systems1. We conclude the chapter with mentioning main mitigation and
prevention techniques that are commonly used in smart grid networks.

Chapter 3 deals with the first main task related to security of ICS communica-
tion, i.e., the increased visibility of ICS communication within the network. First,
it reviews common ICS protocols deployed in smart grid networks and discusses
their features and vulnerabilities. Further details of common ICS protocols are
given in Appendix A. Our approach is built on IPFIX monitoring. For our purpose,
we define an ICS Flow as a sequence of ICS packets with the same property that
includes not only L3 and L4 meta data as Netflow/IPFIX records but also appli-
cation data extracted from ICS protocol headers. By adding selected ICS header
values to flow records, we increase visibility of ICS communication which is then
used for anomaly detection. The chapter presents recommended ICS headers for
common smart grid protocols IEC 104, MMS, GOOSE and DLMS. Then we show
how extended ICS monitoring and analysis covers Behavior Anomaly Detection
(BAD) capabilities defined by NIST Report 8219 [92].

Chapter 4 presents an automata-based technique for anomaly detection of ICS
communication. Using extended ICS flow records, we obtain communication se-
quences of normal ICS traffic that is further used to create a probabilistic model of
ICS communication using Prefix Trees (PT) and Deterministic Probabilistic Au-
tomata (DPA). While Prefix Trees are easy and fast to construct, DPAs provide
more compact representation where similar states are merged using Alergia al-
gorithm [39]. The result of learning is a probabilistic model in form of a PT or
DPA that represents a typical communication between two ICS devices. Our re-
sults show that even for samples covering two-days communication, the resulting
automaton is relatively small with tens of states at maximum. Having the prob-
abilistic model of communication, we can detect anomalies by observing passing
ICS sequences and comparing them with the learned models. For anomaly de-
tection we implemented two approaches: single conversation reasoning where we
compute probability for each conversation with respect to learned automata, and
distribution reasoning where we create a DPA for each time window and com-

1See https://collaborate.mitre.org/attackics/index.php/Main_Page [07/2021]

https://collaborate.mitre.org/attackics/index.php/Main_Page


CHAPTER 1. INTRODUCTION 4

pare this DPA with learned DPAs using 2-Euclidean distance. Our results prove
that such approach is efficient to detect communication loss, rogue devices on the
network, switching, scanning, and injection attacks. Probabilistic approach is not
suitable to detect DoS attacks that use communication sequences present in the
training dataset. However, a DoS attack can be easily detected by the statistical
approach.

Chapter 5 presents a complementary approach to automated-based detection
which uses statistical properties of ICS communication. Since ICS communica-
tion is stable, periodical and with regular communication patterns as observed by
Barbosa [20, 18, 19], Lin [79, 78], and others [117, 46], it can be easily described
using statistical modeling. In our approach, we focused on three packet features,
namely, packet size, packet inter-arrival time, and packet direction. Using these
features, we create a communication profile that describes statistical distribution
of these features. We observe inter-arrival times ∆t of incoming packets for each
direction within a time window. For more accurate modeling, we add inter-arrival
times distribution to the statistical model so that we split observed packets into sev-
eral regions based on ∆t values. Then we create a statistical model each region.
Using this modeling, we are able to detect common ICS anomalies as communi-
cation loss, DoS attack, rogue device, scanning and switching attacks. By careful
observing in which region the anomaly appeared, we not only detect the anomaly
but also identify the possible cause of anomaly which is very important for security
monitoring and management.

The last chapter concludes this work and discusses future research direction in
the area of security of ICS communication.

1.2 Contribution

This document presents research results that were done by the author during 2016-
2021, mostly in frame of projects IRONSTONE (2016-2019) and Bonnet (2019-
2022), see below. The main contribution of the proposed work includes the follow-
ing achievements:

• Definition of ICS flow. Design of ICS flow records for common ICS com-
munication protocols in smart grid based on extended IPFIX flow records.
This proposal was implemented into a commercial IPFIX monitoring probe
by Flowmon Networks, Ltd within the IRONSTONE project (2016-2019).
This is described in Chapter 3.

• Application of simple statistics and rule-based reasoning on extended ICS
flow records obtained from the monitoring probe. The work was presented
on the 6th International Symposium for ICS & SCADA Cyber Security Re-
search in 2019 (ICS-CSR 2019) [88]. Extended version of the paper was
published in Journal of Information Security and Application in 2020 (JISA,
Q2) [90]. This is included in Section 3.7.
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• Proposal of automata-based approach for representing ICS communication.
Extraction and modeling IEC 104 features using Prefix Trees (PTs) and De-
terministic Probabilistic Automata (DPAs). Evaluation of the method. The
main results were presented in 2021 IFIP/IEEE International Symposium on
Integrated Network Management (IM 2021, Core B) [87]. The method is be-
ing implemented into the anomaly detection module of Flowmon Network’s
solution within the Bonnet project (2019-2022). The method is described in
Chapter 4.

• Proposal of statistical model of inter-arrival times distribution, experiments
with different features, evaluation. The paper with the method and experi-
mental results was accepted to the 17th International Conference on Network
and Service Management (CNSM 2021, Core B). The method is going to be
implemented into the anomaly detection module of Flowmon Network’s so-
lution within the Bonnet project (2019-2020). Description of the method and
our results is in Chapter 5.
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Chapter 2

Smart Grid Communication:
Threats and Security

In this chapter, a standard architecture of the smart grid and its communication
will be introduced. We mention typical properties of smart grid communication
that are important for security monitoring and anomaly detection. Then we give
an overview of cyber security threats for ICS and SCADA systems as identi-
fied by standards NIST SP 800-82 [113], NISTIR 7628r1 [36] and other works
[122, 72, 98, 81]. We show typical cyber attack scenarios on ICS communication
and discuss security recommendations for enhancing security of smart grid com-
munication which is the main objective of this work.

2.1 Industrial Control Systems

With the progress of digitization, industrial automation, and intelligent control of
industrial processes as proposed by the Industry 4.0 initiative [111], Industrial
Control System (ICS) communication plays an essential role in monitoring and
controlling devices, processes and events. The term ICS includes a wide range of
control systems like Process Control System (PCS), Distributed Control System
(DCS), Supervisory Control And Data Acquisition (SCADA) system, Substation
Automation System (SAS), Safety Instrumented System (SIS), and others [72].

The main purpose of industrial control systems is to gather real-time data, re-
alize device automation, and supervise the system. The ICS system is not limited
to power industry and energy distribution but it is also deployed in factory automa-
tion, oil and gas industry, water distribution, transportation, air control, etc.

Industrial control systems belong to the broad category of Operational Tech-
nology (OT). OT generally includes the hardware and software used in industry
for monitoring and control of physical devices, processes, and events. The term
operational technology is used to demonstrate technological and functional differ-
ences to traditional Information Technologies (IT) which were originally designed
for administrative tasks and communication over the Internet.

6



CHAPTER 2. SMART GRID: THREATS AND SECURITY 7

2.1.1 IT and OT Networks

Until recently information technologies (IT) and operational technologies (OT)
lived in separate worlds. IT supported connections over the Internet, OT monitored
and controlled devices and processes in the industrial environment. Traditionally,
OT has used dedicated networks with specialized communication protocols. OT
devices used to run separately from the IT networks, see Figure 2.1.

Figure 2.1: Separation of business and industrial networks [72]

With the rise of the Internet and expansion of Ethernet and TCP/IP as standard
technologies for IT communication, OT has also started to adopt these technologies
for OT domain. A common example is the Ethernet that replaced serial industrial
buses, or the IP protocol for transporting control communication in the industrial
environment. The convergence of IT and OT networks increased accessibility of
OT devices through the remote control and monitoring over WAN networks. This
resulted in major security concerns, particularly because many OT systems and
devices were never envisioned to run on a shared, open standard infrastructure
with built-in security. The following items highlights main differences between IT
and OT networks [51]:

• OT networks run 24x7 and are part of the critical infrastructure. Their dis-
ruption directly impact business, energy (electricity, gas, water) supply, etc.

• OT top priorities are (1) availability, (2) integrity, and (3) security while IT
prioritizes (1) security over (2) integrity and (3) availability.

• OT networks transmit monitoring, control, and supervisory data only while
IT traffic also includes voice, video, transactional, or bulk data.
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• OT security focuses on controlling physical access to devices. IT security
includes user and devices authentication, data integrity and data encryption.

• OT networks were often isolated and used proprietary or ISO/IEC protocols.
Some data are transmitted directly over L1, others require the full OSI stack.

• OT communication is mostly insecure. Protocols do not implement access
control, authentication, authorization, or encryption by design. When trans-
mitted over WAN networks, SSL/TLS or IPSec security are applied.

2.2 Smart Grid Network Architecture

The smart grid presents an ICS domain in energy industry. Term smart grid is gen-
erally used for the next-generation power system that integrates high-speed and
two-ways communication technologies into millions of power equipment to estab-
lish a dynamic and interactive infrastructure with new energy management capa-
bilities, such as control, monitoring, load management system, power distribution,
advanced metering infrastructure (AMI) [72, 126].

As seen in Figure 2.2, the smart grid communication includes the backbone

Figure 2.2: The network architecture in the smart grid [122]

network and local area networks (LANs) [122]. The backbone network consists
of gateways and high-bandwidth routers that interconnect LANs and forward mes-
sages across a variety of domains in the smart grid. SCADA system of the smart
grid provides monitoring and control functions across the operations, transmis-
sion, and distribution domains. The LAN is used for intra-domain communication.
It includes end nodes, for example meters, sensors or intelligent electronic devices
(IEDs) installed on the power infrastructure.
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On one hand, integration of advanced computing and communication enhances
efficiency and reliability of future power systems, energy distribution, metering,
remote control, and monitoring. On the other hand, convergence of IT and OT
technologies in smart grid infrastructure, especially interconnection of industrial
and TCP/IP networks, reveals new vulnerabilities associated with easier access to
control bus and highlights a lack of security features of industrial protocols and
end devices.

As mentioned above, security of smart grid systems is critical. With millions
of electronic devices inter-connected via communication networks, network intru-
sions may lead to a variety of severe consequences in the smart grid such as dis-
ruption of operation or even a massive blackout as showed the attacks on Ukraine’s
power system in December 2015 [76] and 2016 [17, 30]. In these cases, communi-
cation system of Ukrainian power grid was infected by a malware which started to
sent authorized commands to switch breakers and caused disruption of the service
with the following collapse of the whole control system.

2.2.1 Types of Communication in the Smart Grid

The smart grid is a network that integrates information and communication tech-
nologies with the power-delivery infrastructure, enabling two-way energy and com-
munication flows [36]. It provides three major functions [51]: (i) power genera-
tion in nuclear, coal, power, or wind plants where the electricity gets produced, (ii)
power transmission that takes high-voltage electrical power over long distances
to substations in the service area, and (iii) power distribution that delivers energy
from the substation to homes or businesses. Management of these main operations
include metering, distribution management, billing, or demand response, see Fig-
ure 2.3. Smart grid control communication covers two application domains [122]:

Figure 2.3: Smart grid deployment [72]

• Distribution and Transmission Operation. Power distribution and transmis-
sion operation systems are responsible for power delivery between power
generators (power plants) and customers from the perspective of control.
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These systems consists of millions of devices like Remote Terminal Units
(RTUs), Intelligent Electronic Devices (IEDs), Programmable Logic Con-
trollers (PLCs), and others, that are interconnected with the SCADA server
for centralized management.

SCADA communication collects measurements and status data and sends
control commands to switching devices (e.g., circuit breakers). Based on the
collected data, a management system provides analytical tools for operators
to determine the system state and take appropriate actions.

An important part of the power grid comprises substations. All devices in
a substation are controlled, protected and monitored by substation automa-
tion system (SAS) that collects information from the power equipment and
performs actions on it. SAS uses Ethernet-based communication network.
Communication in the system is time-critical. Standard IEC 61850 [8] de-
fines high-speed communication protocols for substation automation facil-
ities. The standard describes three transmission protocols: Generic Object
Oriented Substation Event (Goose), Manufacturing Message Specification
(MMS) and Sampled Measured Values (SMV). GOOSE transmits messages
from protective IEDs to circuit breakers. Measurement quantities, e.g., cur-
rent or voltage values, are sent from measuring units to IEDs by SMV pro-
tocol. The MMS protocol provides the exchange of system data and control
commands between a user interface and IEDs, see Figure 2.4.

SCADA

Substation
Host

IED 1: Bay 
Controller

IED 2: Relay IED 3: Relay

Intelligent
Switchgear

CT/VT

Station Ethernet Bus (Goose, Modbus)

Process Bus (Sample Values)

Substation
Gateway

WAN: Remote 
Control

MMS, IEC 104MMS, IEC 104

Figure 2.4: An example of SCADA network in the substation

Besides IEC 61850 protocols, smart grid network may deploy protocols like
Modbus, DNP3 or IEC 60870-5-101/104 [35] that are also used for control-
ling power grid devices.
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• Advanced Metering Infrastructure (AMI) and Home-Area Networks (HAN).
The AMI system connects each customer’s home-area network for sched-
uled energy management. Communication here is primarily for interaction
with customers and utilities. It includes information exchange between smart
meters and the utility center, such as reading and maintenance. Message de-
livery in the AMI network is non-time critical and availability is less impor-
tant than integrity and confidentiality. Communication network of AMI is
formed by smart meters, local data aggregators and management system.

Legacy devices for remote metering known as Automatic Meter Reading
(AMR) supported only one-way communication and were not able to deliver
management and control messages. They communicated through serial RS-
232 interface or infrared (IF) connection [70]. On lower layers, communica-
tion to the AMR server was transmitted via power line carrier, cellular net-
works (GSM, GPRS), telephone lines PSTN, or short range radio frequency
(RF) networks (Bluetooth, WiFi, ZigBee, wireless M-Bus or WiMax) [120].
A new generation of meters known as smart meters is equipped with ad-
vanced hardware and software capabilities and communicates over TCP/IP
via high-level protocols like DLMS/COSEM [11, 1].

2.2.2 Common Properties of ICS Communication

ICS and SCADA networks provide control and monitoring operations over the net-
work infrastructure. SCADA servers continuously poll RTU and IED devices to get
their status and variables that are used to monitor industrial processes, eventually
send control commands. Alerts are generated in case of unusual events when hu-
man intervention is required. Many researchers examined control communication
in ICS networks, observed its properties, and identified typical communication pat-
terns [18, 19, 117, 78, 69]. A following list comprises major features of ICS com-
munication in the smart grid that are important for modeling ICS communication
and anomaly detection.

• Delays. Power communication is not designed to provide high throughput
services as required by Internet connection but to ensure reliable and secure
transmissions, in addition with real-time message delivery. Hence, latency
is much more important than the throughput.

Internet services often define different requirements on transmission delays.
Real-time communication like VoIP requires delays below 150 ms while ser-
vice with human interaction, e.g., ssh, web, or ftp can experience longer de-
lays. The smart grid also features a wide range of delays from milliseconds
to minutes. For example, messages for trip protection in substations have
the delay constraint of 3 ms [13]. Thus, time-critical messages are some-
times passed from the application layer directly to the MAC layer to avoid
redundant processing, e.g., in GOOSE, GSE, or SMV communication [8].
An important task of SCADA networks is to guarantee time response [73].
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• Periodicity. In power networks, a large amount of traffic flows shows peri-
odic behavior [122] because they are initiated by pre-configured electronic
devices that run constantly without interruption for months. Unlike Internet
traffic, there is no much human interaction involved in communication and
therefore a traffic pattern is more predictable. We can observe several phases
of power system communication, namely (i) initialization when a connection
is established and values of all available variables are being set, (ii) normal
transmission which mostly comprises periodic reading of variable values and
checking the status of a device, and (iii) configuration that includes writing
values or issuing remote commands.

Common cyber attacks like intrusions, network scans, or DoS attacks dis-
turb traffic periodicity. Periodicity checking requires to learn the periodicity
at first. During periodicity learning we extract two characteristics of network
flows: the period (frequency) and the size of the periodic bursts which are
used to compute a periodogram [19]. Anomaly detection consists of mea-
suring distance between periodograms of learned flows and the periodogram
of a running flow.

• Constant throughput. Barbosa et al. [18] also examined time series of
throughput (packets/sec) in SCADA communication that showed constant
shape over long periods of time often called a baseline. This feature is re-
flected in statistical anomaly detection, see Chapter 5.3.

Unlike traditional IP network, SCADA communication does not show diur-
nal patterns as proved by [20]. The reason is that SCADA communication
is mostly initiated by an automated process while Internet communication
pattern reflects individuals’ activity.

• Communication Model. In legacy power grids, the most commonly used
communication model is a one-way communication where electronic devices
report their readings to the control center. In contrast, the smart grid enables
a two-way communication model: top-down (center to a device, control di-
rection) or bottom-up (device to center, monitoring direction). The smart
grid also supports peer-to-peer communication, e.g., IEC 104 communi-
cation. The type of ICS communication model is considered in statistical
modeling (Section 5.2.4) where we define master-oriented communication
profile that corresponds to one-way transmission, e.g., for GOOSE publish-
subscribe mechanisms, and peer-to-peer oriented profile that is applied to
peer-to-peer protocols like IEC 104.

• Monitoring. The smart grid network spans over a large geographical area.
It uses hierarchical topology of independent systems like substation automa-
tion, smart meters, distribution system control, and others. The NIST Frame-
work and Roadmap [36] identifies seven operation domains within the smart
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grid: Transmission, Distribution, Operations, Generation, Markets, Cus-
tomer, and Service Provider, see Figure 2.5.

Figure 2.5: Smart grid domains [36]

All these domains need to transmit, store, and process the information needed
within the smart grid. It is almost impossible to secure every part or node
against physical attack. Therefore, the communication network needs to
continuously perform profiling, testing and comparison of the network traf-
fic status so that we can detect and identify abnormal behavior caused by
malfunctioning or security incidents. A solution how to increase security
monitoring of smart grid communication is addressed in Chapter 3.

• Network stability. The smart grid network is composed of devices which
are permanently connected to the network either in on or off state. Thus, it
is possible to track all addresses transmitted over a communication line and
identify unknown or unexpected resources that appear in communication.

ICS communication also exhibits a stable number of connections within a
baseline that is almost unchanged for periods longer than a day [18]. When
studying the graph of active connections of the smart grid network during a
given period, there are not many changes with historical records.

Stability feature includes the stable number of connected devices for longer
periods, stability of established connections between communicating nodes,
stability of transmitted packets/bytes between nodes, a stable or even fixed
range of communicating protocols that appear on the line, etc. Due to net-
work stability we can apply whitelisting [22, 72] as a powerful and easy-to-
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implement technique for protecting smart grid resources.

Stability indicators like the number of active devices, their addresses, the
number of active connections, the number of transmitted packets and bytes,
etc., can be obtained through enhanced IPFIX monitoring as proposed in
Section 3.3. By observing and analyzing these indicators, we can detect
various security incidents, connection loss, or device failures.

• Communication Stability. Direct consequence of network stability is com-
munication stability. As demonstrated by previous research and also our ex-
periments, ICS devices with pre-configured services and applications com-
municate with each other using a stable set of messages that correspond to
the type of a device, its configuration, and used ICS protocol.

By monitoring normal ICS communication we can learn typical commu-
nication sequences and create a profile of device-to-device communication
using a formal language. Our experiments in Chapter 4 show that the set
of exchanged messages is small and can be efficiently modeled using finite
automata.

The above mentioned properties of smart grid communication are essential for
security monitoring and anomaly detection which is the core of this work. The first
task of the process is to observe ICS communication in real time and extract values
of interest from ICS packets that represent network activity. The following task is
to create a model of normal communication using the extracted values. Such model
represents the baseline. Whenever the communication on the network significantly
differs from the learned model, we indicate an anomaly. During detection phase we
can apply various detection techniques in order to reveal potential security threats.

The next section describes typical cyber security threats against smart grid
communication with specific focus on attacks against Ukrainian smart grid that
happened in 2015 and 2016.

2.3 Cyber Security Threats

Cyber security of ICS protocols is still insufficient in comparison with Internet or
mobile networks because design of many ICS protocols does not include encryp-
tion, authentication is often implemented with a pre-configured password trans-
mitted in an open form, and a functional scheme for key management of ICS end
devices is missing [125].

This section discusses security issues of smart grid communication. First, we
present requirements for smart grid cyber security and overview common threats
against ICS systems. Then we briefly mention data security standard IEC 62351
[61] for smart grid communication and data exchange. Finally, we give an overview
of past cyber attacks against ICS and SCADA systems and explain typical attack
scenario using examples of two attacks against Ukrainian power grid.
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2.3.1 Requirements on Cyber Security

Smart grid communication networks belong to critical infrastructure systems. NIST
Guidelines for Smart Grid Cybersecurity [36] defines three high-level security
objectives for the smart grid, namely confidentiality, integrity, and availability
(CI&A) which are similar to IT networks security requirements. In addition, the
document mentions access control, configuration management, identification and
authentication, audit and accountability, continuity of operations, incident response,
and others. Similarly, standard IEC 612351 for security of smart grid communica-
tion [60] lists four main security requirements: confidentiality, integrity, availabil-
ity, and non-repudiation.

• Authentication, authorization, access control.

The smart grid network infrastructure incorporates millions of electronic de-
vices and users. Authentication verifies the identity of a user or a device
while authorization grants legitimate access to a resource in the smart grid.
Authentication and authorization require secure management of credentials
that are used to prove an identity of an entity requesting a service, and also to
check permission to use the service. Authentication and authorization shall
be implemented both on communication level (protocols) and also on end
devices. Unfortunately, many ICS protocols do not support authentication or
authorization, or these features are optional and not implemented at devices.

• Integrity, confidentiality.

Integrity means the protection against modification or destruction of trans-
mitted data. Confidentiality protects data against non-authorized access and
reading, which is important for billing and smart metering. Message deliv-
ery in ICS systems is mostly time-critical and requires fast packet generation
and processing while implementation of security adds an extra time for com-
puting a MD5 hash or encrypting the packet. Thus, optimal balance between
fast packet delivery and sufficient security must be found.

In IT networks, confidentiality is mainly implemented using secure connec-
tion via VPNs, IPSec, or SSL/TLS. These strategies can be also applied to
OT environment, especially for WAN communication. Direct application of
IT security techniques is limited due to time-critical processing [95].

• Availability.

Many processes in smart grid networks are continuous in nature. Unexpected
outage of a system that controls industrial processes is not acceptable. Using
IT strategies such as rebooting is not possible due to the impact on the sys-
tem [113]. Thus, redundant components and backup communication lines
are required. The IEC 61850-90-4 standard for substation protection con-
siders Rapid Spanning Tree Protocol (RSTP), Parallel Redundancy Protocol
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(PRP) and High-availability Seamless Redundancy (HSR) as recommended
solution for IEC 61850-8-1 and IEC 61850-9-2 communication [95].

Attacks against availability include Denial of Service (DoS) attacks on Lay-
ers 1 or 2, e.g, jamming attack, SYN or Smurf attacks on Layer 3, or DoS
attack on Layer 7.

When talking about smart grid cyber security, we usually focus on a single part
of smart grid architecture. Thus, we talk about cyber security of the power substa-
tion system, SCADA system, AMI network, PMU synchronization, etc. However,
above mentioned requirements shall be implemented on every single system of the
smart grid. Naturally, availability would be more important for smart metering
while authentication and authorization is important for SCADA control and mon-
itoring transmissions. Nevertheless, all above mentioned requirements should be
carefully considered for each part of the smart grid system.

2.3.2 Common Threats to Smart Grid Communication

In this part, we overview main network security threat categories according to [72,
122, 98, 81, 60, 125]. Nevertheless, many cyber attacks exploit more than a single
vulnerability of the target, thus we talk about blended attacks [72]. It is important
to analyze features of a possible attack before starting to think about detection and
prevention.

2.3.2.1 Network Scanning

Network scanning is considered as a preliminary phase of an attack. Before the
attack is launched against the target, the attacker gathers information about victim’s
network: its topology, addressing scheme, running protocols and services, installed
software, etc. This phase is also known as reconnaissance and is performed either
passively by intercepting passing traffic, or actively by sending special requests
into a network with the objective of discovering available services and devices.

Network scanning is very easy to execute in IT networks, so is is often ignored
by IT security experts. In contrast to IT domain, OT systems are less open to
outside communication and the traffic is more predictable because of automatic
processes. Thus, network scanning of ICS networks is considered as a significant
signal of starting attack that should be detected and thoroughly examined in order
to prevent following hostile activities.

Past ICS cyber attacks show that network scanning attacks of ICS networks
is usually launched from a compromised host inside the network. Thus, traffic
filtering on the perimeter of the ICS network cannot detect and prevent network
scanning and advanced detection methods like behavior-based anomaly detection
and communication pattern analysis [117] are needed.
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2.3.2.2 Denial of Service (DoS)

The primary objective of a DoS attack is to delay, block, or corrupt communication
in the smart grid, so it violates system availability. DoS attack can be performed
on various layers of communication model:

• Physical layer. When performed on physical layer, it is often called channel
jamming. Channel jamming is usually launched against wireless connection
in substations where causes a wide range of damages [82]. For detection, a
signal-based detector can measure the received signal and detect the presence
of jamming. If the signal strength is larger than a threshold, the detector
raises alarm.

• Data link layer. On Layer 2, a malicious node can start sending excessive
amount of broadcast messages (broadcast storm) which disrupt the whole
LAN communication.

• IP layer. Similar attack can be launched on Layer 3, e.g., a ping attack
against IEC 61850 substation as demonstrated by [98].

• Application layer. On application layer, the DoS attack can send an enor-
mous amount of packets that a target host is unable to process. This was
demonstrated on real ICS network where 100,000 unsolicited DNP3 event
messages were sent to the DNP3 master from a compromised IED [68].

DoS attacks initiated from the outside of the ICS system are usually filtered out
by the perimeter IDS or firewall. In this work we focus on security monitoring of
internal ICS systems. External attacks are not the subject of our research.

To detect DoS attacks on Layers 2 to 7, we can apply similar methods as in
IT networks. Based on monitoring statistics we can detect a high number of failed
transmission, increased traffic load and higher packet transmission ratio [122]. An-
other mitigation technique includes policy-based routing where a sender must ob-
tain authorization to send significant amount of traffic, stateless dynamic packet
filtering, lightweight authentication and authorization, etc. [36].

Since the smart grid communication exhibits two major predictable directional
information flows, i.e., bottom-up (monitoring direction) and top-down (control
direction), we can easily implement firewall rules to filter undesired or suspicious
traffic flows [122].

2.3.2.3 Man-in-the-Middle (MITM)

MITM attack can be launched either from a compromised host in the ICS network
or from an unauthorized (rogue) device that was connected to the ICS network.
This kind of attack is especially dangerous for smart grid networks where outsta-
tions located in remote places can be a subject of physical attack. When an attacker
gains access to the transmission medium, it can launch a spoofing attack where it
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masquerades itself as another device. An attacker can also redirect Layer 2 or
Layer 3 communication to itself via spoofed ARP or IP packets.

Spoofed devices can be later misused to eavesdrop communication, launch a
DDoS attack, or send forged commands into the ICS system in order to turn down
critical industrial processes.

MITM attack can be prevented by a proper usage of authentication and by en-
suring integrity checks of transmitted data as recommended by standard IEC 62351
[61]. Unfortunately, authentication is rarely implemented in ICS networks. As
shown further, MITM attacks can be successfully identified by proposed detection
techniques as mentioned in Chapters 4 and 5.

2.3.2.4 Data Interception and Manipulation

Data interception can be a part of MITM attack or it can be caused by wiretapping
the transmission line. This attacks is directed against data integrity and confiden-
tiality with possible attempts to access or/and modify data. The target can be cus-
tomers’ information (e.g., pricing, billing, account balance), status values of the
system (e.g., voltage reading, device status), or other information.

One of the most discussed variant of data interception in smart grid is a false
data injection attack (FDIA) [80, 77, 124] which targets Advanced Metering In-
frastructure (AMI) communication. This attack is focused against state estimation
in electric power grids. State estimation is a process of estimating unknown state
variables in a power grid based on the meter measurements. The output of state
estimation is typically used in contingency analysis, which controls the power grid
components, e.g., the increase of the yield of a power generator [80]. Malicious
measurements injected by an attacker can mislead the state estimation process [77],
manipulate the market price information [124] or cause load redistribution [127]
which can lead the system into a false operating state.

Data interception can be generally prevented by encrypting transmitted data.

2.3.3 Limitation of Security Standard IEC 62351

Standard series IEC 62351 [61] defines data security in the power system. It ad-
dresses common cyber security threats mentioned in the previous sections and in-
cludes recommendations for security improvements of smart grid communication
protocols IEC 61850 (MMS, GOOSE, SMV), IEC 60870-5 (IEC 104), and others.
Specification covers authentication through digital signatures, prevention of eaves-
dropping, anti-replay attacks, spoofing and other threats. The standard consists of
several parts, see Table 2.1.

However, there are signification objections concerning feasibility of implemen-
tation of the standard in smart grid devices. In addition, not all parts of the standard
are properly designed and may cause additional vulnerabilities [110, 114, 122].
The following objections are raised:
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Part Description

IEC 62351-1:2007 Introduction to security issues
IEC 62351-2:2008 Glossary of terms
IEC 62351-3:2014 Profiles including TCP/IP
IEC 62351-4:2007 Profiles including MMS
IEC 62351-5:2013 Security for IEC 60870-5 and derivatives
IEC 62351-6:2007 Security for IEC 61850
IEC 62351-7:2017 Network and System Management data object

models
IEC 62351-8:2011 Role-based access control
IEC 62351-9:2017 Cyber security key management for power system

equipment
IEC 62351-10:2012 Security architecture guidelines
IEC 62351-11:2016 Security for XML documents
IEC 62351-12:2016 Resilience and security recommendations for power

systems with distributed energy resources cyber-
physical systems

IEC 62351-13:2016 Guidelines on security topics to be covered in stan-
dards and specifications

IEC 62351-90-1:2018 Guidelines for handling role-based access control in
power systems

Table 2.1: IEC 62351 standard for smart grid security

• The standard does not provide a way of adequate defense of compromised
devices and these devices will be still recognized as legitimate by other nodes
in the system.

• Due to backward compatibility, IED devices offer both secure and insecure
communication. Thus, an attacker can choose to use insecure channel to
bypass authentication or encryption requirements.

• Application level security (A-profile) does not cover message integrity and
confidentiality of all transmitted messages but only during initial phase when
connection is established. This means that an attacker can forge or modify
PDUs exchanged between two devices.

• Security enhancements of SCADA device can be misused by a DoS attack
targeted on limited CPU and memory resources of SCADA nodes.

• The Standard specifies authentication for the communication between two
stations, but at the same time it allows the authentication state to be shared
between stations by improperly authenticated messages. This may cause
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invalidation of session keys or forcing discarding legitimate messages with
authentication.

• Some applications require response times of 4 ms. The standard does not rec-
ommend encryption for these applications while not giving any other form
of protection [95].

• Key management is a great challenge for the SCADA system where a substa-
tion communicates with hundred IEDs. Due to the lack of resources and low
latency requirements in SCADA networks, it is unfeasible to use traditional
key management schemes proposed by the standard. Open issues include
key generation in the device, key exchange, distribution, or revocation in
SCADA networks [47].

• GOOSE/SMV protocol security does not cover anti-replay attack protection
as demonstrated by [114].

Based on aforementioned description, we have identified following challenges
related to cyber security of smart grid communication. These challenges are later
addressed by anomaly detection techniques proposed in the following chapters.

• Smart grid communication protocols are not secure enough to provide au-
thentication, integrity and confidentiality. When a device in the smart grid
network is compromised, it can be misused to intercept communication,
modify packets or inject data on the communication line. These forged pack-
ets will be considered as legitimate since there is no way how to verify their
origin or integrity on the level of communication protocol.

• Smart grid networks are vulnerable to DoS attacks. Industrial IDS systems
can filter attacks initiated from the outside of a substation network, however,
filtering is powerless if an attack is launched from the inside of the network.
Smart grid communication (e.g., GOOSE communication) is time critical,
thus, even moderate-range DoS can disrupt operation of the substation.

• A high level penetration of smart meters increases a possibility that intruder
may access the AMI network from a node installed in the public area, e.g., a
smart meter and local data collector [115]. Compromising a host may lead
to energy theft, false data injection, or leakage of the customer information.

• Current cyber security protection concentrates on smart grid network perime-
ter where firewalls and IDS systems are used to identify possible attacks and
filter incoming traffic. These devices lack a clear visibility of ICS communi-
cation that may reveal security incidents or technical malfunction of critical
systems.

As mentioned above, smart grid infrastructure is susceptible to a wide range
of different cyber attacks due to its distributed nature, unprotected transmission



CHAPTER 2. SMART GRID: THREATS AND SECURITY 21

protocols, and remote control features. Today, cyber security in the smart grid
is mostly provided using (i) network segmentation via VLANs that separates ICS
communication and non-production traffic, (ii) firewalls that filter incoming and
outgoing communication, and (iii) IDS devices that provide advanced analysis of
network flows and detect anomalies based on signatures or behavior analysis. In
addition, (iv) ICS/SCADA honeypots, (v) probes or analysis modules are being
deployed to protect ICS network against cyber attack [67].

The performance of firewalls or IDS systems mostly rely on predefined rules or
a set of signatures of known attacks. To be able to identify a new type attack (also
called zero-day attack), advanced techniques like anomaly detection are needed.

2.4 Cyber Attacks against ICS Systems

Cyber attacks against industrial control systems are not just a theory. One of the
first documented attack happened during the Cold War in 1982 when intruders from
Central Intelligence Agency (CIA) planted a Trojan horse in the SCADA system
that controlled the Trans-siberian pipeline. The software reset pump speeds and
valve settings and produced so high pressure that caused an explosion [93, 105].

Later, plenty of attacks on SCADA systems were performed. Some of them
were caused by attackers who broke to the SCADA system from inside by exploit-
ing L1 or L2 communication, e.g., knocking out of Worcester air traffic system in
1997, Maroochy Shire sewage spill in 2000 [113]. Other attacks started by malware
infection via phishing mails that caused infection of a device inside the SCADA
network and opened back-doors for an attacker. Following that, DoS attacks were
launched against SCADA system, for example, worm Slammer attacked SCADA
system of David-Bess nuclear power plant in 2003 and caused a crash and un-
availability of Safety Parameter Display System (SPDS), Sobig virus that caused
shutting down of CSX train signaling system in 2003, Zotob worm knocked offline
13 of Daimler-Chrysler’s manufacturing plants in 2005, see Table 2.2.

Besides DoS attacks focused on putting parts of the operational technologies
out of service, there were also sophisticated attacks directed to seize a control over
technological process. Such attacks are also called Advanced Persistent Threats
(APTs) [38] because they represent continuous hacking activities against a target.
The most popular APTs are Stuxnet worm that destroyed Iranian centrifuges by
increasing and decreasing their speed and pressure beyond normal levels in 2010
[113], and attacks against Ukrainian power grid, see Sections 2.4.1 and 2.4.2 .

2.4.1 BlackEnergy Attack on the Ukrainian Power Grid (2015)

On December 23, 2015, Ukrainian power companies experienced unscheduled
power outages for a few hours impacting a large number of customers in the Ivano-
Frankivsk region in Ukraine (population around 1.4 million). There have also been
reports of malware found in Ukrainian companies in a variety of critical infras-
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Year Attack Place

1982 Explosion of Siberian gas pipeline caused by a trojan which
reset pump speeds and valve settings

Soviet Union

1997 Knock out of Worcester air traffic control communication MA, USA
2000 Maroochy shire sewage spill Australia
2003 Crash of the Safety Parameter Display System in Davis-

Bess nuclear power plant by Slammer worm
OH, USA

2003 Shutting down of CSX train signaling system by Sobig
virus

FL, USA

2005 Zotob virus knocked 13 of Daimler-Chrysler’s manufactur-
ing plants

USA

2010 Stuxnet virus damaged Iranian centrifuges by increasing
and decreasing their speed and pressure beyond normal
levels

Iran

2014 Disrupted control system in German steel mill Germany
2015 Power outage off Ukrainian power plant distribution

caused by BlackEnergy malware
Ukraine

2016 Industroyer malware attack on Ukrainian power grid Ukraine
2017 Cyber-espionage attack against aerospace and energy in-

dustry by APT33 group
USA

2019 Cyber attack against chemical giant Bayer Germany
2019 Intrusion attack against U.S. Energy sector by KA-

MACITE group
USA

2019 Cyber attack against Kudankulam nuclear power plant India
2020 Compromising supply chain of Solarwinds software used

in industrial environment
USA

2021 Ransomware attack against oil distribution company Colo-
nial Pipeline

USA

Table 2.2: Overview of cyber attacks against ICS systems

tructure sectors. Public reports indicate that the BlackEnergy (BE) malware was
discovered on the companies’ computer networks.

Power outages were caused by remote cyber intrusions at three regional electric
power distribution companies (Oblenergos) impacting approximately 225,000 cus-
tomers. While power has been restored, all the impacted Oblenergos continued to
run under constrained operations. In addition, three other organizations, some from
other critical infrastructure sectors, were also intruded upon but did not experience
operational impacts [76].

The cyber-attack was reportedly synchronized and coordinated, probably fol-
lowing extensive reconnaissance of the victim networks. According to company
personnel, the cyber-attacks at each company occurred within 30 minutes of each
other and impacted multiple central and regional facilities. During the cyber-
attacks, malicious remote operation of the breakers was conducted by multiple
human attackers using either existing remote administration tools at the operating
system level or remote industrial control system (ICS) client software via virtual
private network (VPN) connections. The companies believe that the actors ac-
quired legitimate credentials prior to the cyber-attack to facilitate remote access.
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2.4.1.1 BlackEnergy Trojan

BlackEnergy is a trojan which dates back to 2007 [9]. Originally, it was designed
as a toolkit for creating botnets for use in conducting DDoS attacks. Over time,
the malware has evolved to support different plugins, which are used to extend its
capabilities to provide necessary functions, depending on the purpose of an attack.

BlackEnergy 2 (BE2) [10] was first observed in 2010, used by advanced persis-
tent threat (APT) group dubbed ”Sandworm” and was tailored to target industrial
control systems (ICS) components–specifically human machine interfaces (HMIs)
used in the industrial environment. Once the perpetrators gained access to the HMI
they can conduct reconnaissance on the network.

The third iteration of BlackEnergy (BE3) emerged in 2014 featuring additional
functionality such as support for proxy servers, espionage modules, and support
for a range of operating systems and devices. The purpose of these plugins was
mainly for network discovery, remote code execution, and for collecting data off
the target’s hard drives. In addition, it contained a KillDisk component specifi-
cally designed to erase files and corrupt a system’s master boor record, effectively
rendering the system inoperable.

The infection vector used in these attacks is Microsoft Office files containing
malicious macros. In one case it was a MS Word document, see Figure 2.6, with
a text trying to convince the victim to run the macro in the document. This is an
example of using social engineering to attack the victim host instead of exploiting
software vulnerabilities.

Figure 2.6: An example of a Word document with a hidden macro

In the second case, PowerPoint slideshow file (.ppsx) was used to execute a
BlackEnergy dropper. The PowerPoint package contained two embedded OLE
objects with a remote path where resource is located. It is a feature of Microsoft
PowerPoint to load these files, but it turned out to be a dangerous one, since the
objects could be downloaded from an arbitrary untrustworthy network location and
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executed with none of the warning pop-ups. This happens due to exploitation of
vulnerability in OLE objects in MS Office documents which allow remote attackers
to execute arbitrary code, see CVE-2014-41141.

2.4.1.2 Attack Scenario

The attack scenario was simple: the target received a spear-phishing email that
contained an attachment with a malicious document. The Ukrainian security com-
pany CyS Centrum published two screenshots of emails used in BlackEnergy cam-
paigns, where the attackers spoofed the sender address to appear to be one be-
longing to Rada (the Ukrainian parliament). The document itself contained a text
trying to convince the victim to run the macro in the document. If victims were
successfully tricked, they ended up infected with BlackEnergy trojan.

In addition, the Win32/KillDisk malware was found on the infected system.
As well as being able to delete system files to make the system unbootable—
functionality typical for such destructive trojans—the KillDisk variant detected
in the electricity distribution companies also appeared to contain some additional
functionality specifically intended to sabotage industrial systems. The scheme of
the attack from March to December 23, 2015 is depicted in Figure 2.7 using ICS
Cyber Kill Chain methodology [16]. Detailed description of the attack is given
below:

Figure 2.7: ICS Kill Chain Mapping Chart [76]

1Available at https://nvd.nist.gov/vuln/detail/CVE-2014-4114, [August 2018]

https://nvd.nist.gov/vuln/detail/CVE-2014-4114
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Reconnaissance. An analysis of the three impacted organizations showed [76]
that they were particularly interesting targets due to the levels of automation in
their distribution system; enabling the remote opening of breakers in a number of
substations.

Weaponization and Targeting was focused on getting tools to break into
the system. In this case, MS Office documents (Excel and Word) with embedding
BlackEnergy 3 trojan were created.

Delivery, Exploit and Install. During these steps, the malicious docu-
ments were delivered via email to individuals in the administrative or IT network
of the company. When these documents were opened, a popup was displayed to
encourage users to enable macros in the documents. Enabling the macros allowed
the malware to install BlackEnergy 3 on the victim system. Upon the install step,
the BlackEnergy 3 malware connected to C&C IP addresses to enable remote com-
munication with the malware and the infected system. From the analysis it seemed
that attackers gained access more than six months prior to the attack. During that
time the attackers gathered information about the system, credentials and discov-
ered the system and extracted data necessary for the attack.

Develop and Test. In this stage the attackers learned how to interact with
the local distribution management system using the native control and developed
malicious firmware for the serial-to-Ethernet devices. It was also possible that
attackers tested the malware prior to its deployment.

Deliver. Then the attackers used native software to deliver malware into the
environment for direct interaction with the ICS components. They achieved this
using existing remote administration tools on the operator workstations.

Install/Modify. In this stage, malicious software (customized KillDisk virus)
was installed across the system.

Execute the ICS Attack. The final step was launched through HMIs in the
SCADA environment to open the breakers. At least 27 substation were taken of-
fline across the three energy companies, impacting roughly 225,000 customers for
about 6 hours until manual operations could restore power. Simultaneously, the at-
tackers uploaded the malicious firmware to the serial-to-Ethernet gateway devices.
This ensured that even if the operator workstations were recovered, remote com-
mands could not be issued to bring the substation back online. Thus the Ukrainian
grid operators were without their SCADA environment, meaning that lost the abil-
ity for automated control, for upwards a year in some locations [41].
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2.4.1.3 Mitigation

As seen from the above mentioned description, the attack included a range of vari-
ous operations on the substation system that left traces on the targeting system and
in network communication. Finding these traces and detecting a cyber threat in the
beginning is the core of this document.

As reaction to this cyber attack against Ukrainian power grid, the US. Depart-
ment of Homeland Security created a report2 with following mitigation techniques:

• Implementation of information resources management best practices: trusted hard-
ware and software, system patching, technology updates.

• Application Whitelisting (AWL): detection and prevention of attempts to execute
malware uploaded by malicious actors.

• Isolation of ICS networks from any untrusted networks, especially the Internet.

• Unused ports should be locked down, all unused services turned off.

• Limit Remote Access functionality, use read only access for monitoring purposes.

• Strong multi-factor authentication should be used if possible.

Additional recommendations learned from this cyber attack are mentioned in
E-ISAC report [76]. This report also recommends network security monitoring
that continuously search the networked environment for anomalies. As we show in
Chapter 3, the preliminary step for revealing malicious activities is visibility of net-
work and system operations to the monitoring system. The second step is detection
of anomalies that may include whitelisting, observation of untypical communica-
tion sequences, unusual number of transmitted packets, etc.

2.4.2 Industroyer Attack on the Ukrainian Power Grid (2016)

A week before Christmas 2016, hackers struck an electric transmission station of
Ukrenergo north of the city of Kiev, blacking out a portion of the Ukrainian capital
equivalent to a fifth of its total power capacity for an hour [50], see Figure 2.8. This

Figure 2.8: Industroyer operation [30]

would be the second such known hack of a Ukrainian power facility following a
2See https://ics-cert.us-cert.gov/alerts/IR-ALERT-H-16-056-01[April 2018]

https://ics-cert.us-cert.gov/alerts/IR-ALERT-H-16-056-01
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massive December 2015 power outage affecting about 230,000 people, which was
later blamed on the Russian government.

The attack occurred almost exactly one year after the previous outage, struck
the Pivnichna substation outside the capital city Kiev, and cut power a few minutes
before midnight local time December 17, leaving customers in part of Kiev and a
surrounding area in the dark on a Saturday night. The outage lasted only an hour,
and power was restored a little after 1 am.

Further analysis of the cyber attack was released by two cyber security compa-
nies, ESET and Dragos Inc., provided analysis of malware modules called Indus-
troyer (ESET) or CrashOverride (Dragos), see [30, 41]. Comparing to the 2015
attacks, there are significant differences. The 2015 attack targeted three Ukrainian
distribution entities causing distribution-level outages while damaging the utility’s
SCADA systems. The 2016 attack occurred at the transmission-level targeting a
regional SCADA system generally focused on a single 330 kV-to-110 kV-to-10 kV
substation [17].

2.4.2.1 Industroyer malware

The attackers employed trojan called Industroyer that is a sophisticated malware
designed to disrupt operation of ICS systems, specifically in substations [30].

Figure 2.9: Model of power grid hit by Industroyer malware [41]
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Industroyer is a particularly dangerous threat, since it is capable of controlling
electricity substation switches and circuit breakers directly. To do so, it uses in-
dustrial communication protocols used worldwide in power supply infrastructure,
transportation control systems, and other critical infrastructure systems (such as
water and gas). The four industrial control protocols are included in Industroyer
[30]: IEC 104, IEC 101, MMS/GOOSE, and OPC DA, see Figure 2.9. In addition,
Industroyer implements a DDoS attack against a particular family of protection
relays—Siemens SIPROTEC.

The problem is that the above mentioned protocols were designed decades ago
without security in mind. That means the attackers didn’t need to be looking for
protocol vulnerabilities; all they needed was to teach the malware ”to speak” with
those protocols.

Industroyer was designed as a modular malware, see Figure 2.10. It consists

Figure 2.10: Schema of Win32/Industroyer components [30]

of the main backdoor used by attackers to manage the attack. This module installs
and controls other components and connects to a remote C&C server to receive
commands and to report to the attackers. Post-mortem analysis revealed that most
of the IP addresses or remote servers were part of Tor network3 which covered the
real origin of the attack.

Similarly to the BlackEnergy 3, the Industroyer works in stages whose goals
are at first mapping the network, and then figuring out and issuing commands that
work with the specific industrial control devices.

Main Backdoor connects the malware to its remote C&C server using HTTPS
and receiving commands from the attacker. All analyzed samples showed the hard-
coded proxy address. This means, it was created to work only in one specific

3Tor (The Onion Router) is a network that enables anonymous communication.
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organization. One interesting feature of this backdoor is that attackers can define a
specific hour of the day when the backdoor is active, for example, outside working
hours. Once connected to its remote C&C server, the main backdoor component
sends the data in POST requests. The main backdoor component supports the
following commands:

0. Execute a process.

1. Execute a process under a specific user account with supplied credentials.

2. Download a file from C&C server.

3. Copy a file.

4. Execute a shell command.

5. Execute a shell command under a specific user account with supplied credentials.

6. Quit.

7. Stop a service.

8. Stop a service under a specific user account with supplied credentials.

9. Start a service under a specific user account with supplied credentials.

10. Replace ”image path” registry value for a service.

Once the attackers obtained administrator privileges, they installed the back-
door to a more privilege level as a Windows service program. To do this they
picked an existing, non-critical Windows service and replaced its ImagePath reg-
ister value with the path of the new back-doors’ binary.

Launcher was responsible for launching the payloads and the Data wiper com-
ponent. It contained specific times and dates: 17th Dec 2016 and 20th Dec 2016.
Once one of these dates was reached, the component created two threads:

• The first thread made attempts to load a payload DLL. The name of the
payload DLL was supplied by the attackers via a command line parameters
supplied in one of the main back-door’s ”execute a shell command”.

• The second thread waited one or two hours and then attempted to load the
Data wiper component.

101 payload component implemented communication between ICS system and
Remote Terminal Unit (RTU) using a serial link. Configuration file of this malware
component used several entries: a process name that was running on the victim
machine, COM ports of the Windows station, Information Object Address (IOA)
ranges, and the beginning and ending IOA values for the specified number of IOA
ranges. The malware terminated the specified process and started to communicate
with the specified device using CreateFile, WriteFile and ReadFile Windows
API functions. It iterated through all IOAs in the defined range. For each IOA it
constructed two select and execute packets, one with a single command SCO
(C SC NA 1, type 45) and one with a double command DCO (C DC NA 1, type 46)
sent to the RTU device. The attack itself had three stages:

1. The malware attempted to switch IOAs to their OFF state.
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2. It inverted IOA states to ON state.

3. It switched IOA states to OFF again.

104 payload component contained the IP address of the station, target port,
ASDU address, switch value (on/off), change value (0/1), operation (iteration type
for IOA: range, sequence, or shift). Once launched, it created a thread for each
station section defined in the configuration file. In each thread it communicated
with the specified IP address using IEC 104 protocol. Before the connection was
made, the 104 component attempted to terminate the legitimate process that was
responsible for IEC 104 communication.

Then, it connected to the the specified IP address and started to send packets
with the ASDU address defined in the configuration where it interacted with an
IOA using a single command type (SCO).

• Range mode. Using the range mode the attacker discovered all possible IOAs
in the targeted device by enumerating all possible addresses. Once the range of
valid IOAs was obtained, the malware iterated through the specified IOAs and sent
select and execute packets to discover whether the IOA belonged to the SCO
type, see Figure 2.11. Following that the malware started sending select and

Figure 2.11: IEC 104 communication: single command type

execute packets in an infinite loop where it flipped on/off state of the objects. If
logging enabled, it wrote message "Starting only success" to the log.

• Shift mode was very similar to the range mode. It iterated over the range of
IOAs where the new range was calculated by adding the shift values to the default
range values.
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• Sequence mode was used once they knew the values of all IOAs of the single com-
mand type. The malware immediately executed an infinite loop, sending select

and execute packets to the IOAs defined in the config file.

61850 payload component implemented a part of IC 61850 communication
standard. Similarly to the previous components, it read its configuration supplied
by the Launcher. The config file contained a list of IP addresses of devices capable
of communicating via IEC 61850 standard. If the config file was not present, the
component enumerated all connected network adaptors to determine their IP subnet
masks. Then it enumerated all possible IP addresses for each of these subnet masks,
and tried to connect to port 102 on each of those addresses4. Once the component
found a target, the following data communication was initiated:

1. The component sent a Connection Request packet using Connection Oriented
Transport Protocol (COTP) [66].

2. If the target device responded correctly, it sent an InitiateRequest using MMS
protocol [3].

3. Following that, it sent a MMS getNameList request to receive a list of object name
in a Virtual Manufacturing Device (VMD), see Figure 2.12.

Figure 2.12: Requesting getNameList in MMS communication

4. Then it enumerated objects and named variable in a specified domain. After that, it
parsed received data searching for variables that contained string CSW which was a
name for logical nodes used to control circuit breakers and switches.

4This is a ISO TSAP connection port for Class 0.
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5. Then the component sent an additional MMS Read request. For some of the vari-
ables it issued a Write request to change its state.

Data wiper component was a destructive module that was used in the final
stage of an attack to hide the tracks and make recovery difficult. This included the
following activities:

• It enumerated all keys in the registry and set the value ImagePath with an empty
string in each of the entries found to make the OS unbootable.

• It deleted files with specific extensions on all drives from C:\ to Z:\. The compo-
nent rewrote file content with meaningless data obtained from newly allocated mem-
ory. The files included Windows binaries (.exe, .dll), archives (.7z, .tar, .rar, .zip),
backups (.bak, .bk, .bkp), MS SQL files (.mdf, .ldf), configuration files (.ini,.xml),
ICS files (.scl, .cid, .scd), vendor-dependent files (SYS BASCOM.COM for ABB),
or license data (.paf).

• After deletion it terminated all processes except those included in a list of critical
system processes. Then, the second attempt was made.

• Finally, the malware terminated all processes including system processes except its
own. The system became unresponsive and eventually crashed.

Additional tools included port scanner that was used to map the network and to
find computers relevant to their attack and DoS tool used against Siemens SIPRO-
TEC devices. The tool sent a specially crafted UDP datagrams to port 50.000 that
cause a denial-of-service of the affected device, see CVE-2015-53745. Following
that, the target device stopped responding to any command until it was rebooted
manually.

2.4.3 Lesson Learned

Malware analysis showed that the Industroyer was an advanced and sophisticated
piece of malware used against industrial control systems. It was able to directly
control switches and circuit breakers at power grid substation using four ICS proto-
cols and contained an activation timestamp for the day of the power outage. Using
logs produced by the tool-set and highly configurable payload, the attackers could
adapt the malware to any comparable environment. Following security recommen-
dation were proposed by analysts [41, 17], see also Figure 2.13:

• Visibility requirement: Security teams should have a clear understanding of
where and how IEC 104 and IEC 61850 protocols are used. They should
look specifically for increased usage of the protocols against baselines es-
tablished in the environment. Also, they should look for systems leveraging
these protocols if they have not before and specifically try to identify systems
generating new network flows using these protocols.

5Available at https://nvd.nist.gov/vuln/detail/CVE-2015-5374 [August 2018]

https://nvd.nist.gov/vuln/detail/CVE-2015-5374
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• Backup: Robust backup of engineering files such as project logic, IED con-
figuration files, and ICS application installers should be stored offline and
tested. This helps reduce the impact of the wiper functionality.

• Traffic filtering is not sufficient: Air gapped networks, unidirectional fire-
walls, antivirus in the ICS, and other passive defenses and architecture changes
are not appropriate solutions for this attack. No amount of security control
will protect against a determined human adversary. Human defenders are
required.

• Monitoring and anomaly detection: At key network traffic points, ensure
network captures are collected, baselined, and analyzed in a manner that will
identify anomalous communication. Monitor all outbound communications
looking for suspicious connections. Perform network security monitoring to
continuously search through the network environment for anomalies.

Figure 2.13: Overview of detection activities [55]

2.5 Summary

In this section we presented the architecture of typical control communication in
smart grid networks and its features. We mentioned, that ICS control protocols in
smart grids lack sufficient protection that would cover standard security require-
ments like authentication, authorization, confidentiality, data integrity, and avail-
ability. These drawbacks are addressed to a certain extent by the security standard
IEC 62351 but as mentioned before, not all proposals are easy to deploy. Until this
standard is fully applied to ICS protocols MMS, GOOSE, IEC 104, and others,
insecure versions of these protocols will co-exist in smart grids together with those
implemented security features.
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We also gave an overview of recent attacks on ICS protocols. Detailed anatomy
of smart grid attacks using BlackEnergy and Industroyer malware revealed that for
detection and prevention of such attacks that are initiated from infected an internal
device, we need to enhanced communication visibility of ICS protocols in smart
grid networks together with automated detection of anomaly detection.

The following chapters will address these issues and discuss possible solution
how to increase security of smart grid communication using extended ICS moni-
toring and application of anomaly detection on monitoring data.



Chapter 3

Increasing Visibility of ICS
Communication

Network monitoring is an important part of network management. Its primary ob-
jective is to obtain monitoring data about connected devices and activities that hap-
pen on the network. By analyzing monitoring data we learn what devices are active
on the network, what transmissions are established, what protocols and services are
requested, what is the load of individual network devices, etc. This helps network
administrators to identify potential security incidents and unusual behavior on the
network.

Network monitoring of critical industrial systems like smart grid networks is
mostly limited to the observation of packet or flow transmissions on Layers 3 (IP
layer) and 4 (transport layer) without revealing what ICS commands are transmit-
ted to a specific ICS device, what services have been switched on/off at a given
SCADA device, or what files are downloaded from a IEC 104 master. ICS moni-
toring is essential for application visibility of ICS communication. ICS monitoring
data represents a valuable input for intrusion and anomaly detection systems.

In this chapter we present a technique how to extend the standardized IPFIX
flow monitoring system by ICS monitoring data and kinds of security incidents
can be detected using these augmented IPFIX records. We introduce a definition
of ICS flows and show how this definition is mapped to common ICS protocols in
the smart grid, namely IEC 104, MMS, GOOSE and DLMS. Then we demonstrate
on IEC 104 protocol, how ICS flow records are built and what level of details are
provided by extended ICS flow monitoring. The last part of this chapter evaluates
benefits of extended ICS flow monitoring for anomaly detection.

3.1 The Need for Advanced ICS Monitoring

ICS communication transmits monitoring and controlling data among industrial
devices, processes and events. It was originally designed for serial data links that
were physically separated from external networks. Recently, ICS protocols have

35
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been adopted to operate over Ethernet with the Internet Protocol (IP) and UDP/TCP
transport. This solution opened possibility to interconnect ICS networks over wide-
area networks (WANs) in order to provide remote control and online updates.

Interconnection of ICS systems with IP networks revealed serious security
flaws in industrial protocol design mentioned in the previous chapter. As demon-
strated on the attacks against Ukrainian power grid presented in Section 2.4.2, the
malware installed on a station in the smart grid was able to masquerade as a le-
gitimate process and communicate with RTUs without anyone noticing this. The
malware scanned available resources in the substation network using address enu-
meration and then started to send legitimate IEC 104 commands to RTUs that ma-
nipulated circuit breakers. Since the malware was installed on a station inside the
network, its communication is unnoticed by IDS systems or firewalls located at the
edge of the network.

This case revealed a lack of visibility of ICS communication within the power
grid [16]. Insufficiency of ICS network monitoring was also highlighted in the Re-
port of European Union Agency for Network and Information Security (ENISA)
[44]. The report warns that without active network monitoring, it is very diffi-
cult to detect suspicious activity, identify potential threats, and quickly react
to cyber attacks. NIST Guide to ICS Security [113] recommends network seg-
regation, application of firewall rules, redundancy, etc., to secure ICS networks.
However, these techniques provides only limited security against internal cyber
security attacks. For this reason, NISTIR report from 2018 focuses on behavior
anomaly detection (BAD) [92].

3.1.1 IP Network Flow Monitoring

The proposed approach was inspired by IP networks where security monitoring
is well established. IP monitoring techniques include SNMP monitoring [99], IP
flow monitoring [31], and system logging [48]. These techniques can be applied
to a certain extent also in ICS systems. Since IP monitoring relies on IP layer, it
cannot be easily transferred to ICS protocols like GOOSE that run directly over
link layer. Due to the restricted hardware and firmware of RTUs and IEDs, it is
also not difficult to implement SNMP agents or Syslog clients on these devices and
operation SNMP and Syslog monitoring in ICS networks similarly to IP networks.

A feasible option for ICS networks is IP flow monitoring using Netflow/IPFIX
concept [31, 34]. This is a passive monitoring technique where a monitoring probe
(exporter) observes a unidirectional sequence of packets with some common prop-
erties passing the observation point. The probe stores meta data about each flow
into a flow record. Flow records include source and destination IP addresses and
ports, packet and byte counts, timestamps, Type of Service (ToS), input and output
interfaces, etc., see Figure 3.1. Flow records are then transported to IP flow collec-
tor where are further analyzed, visualized and processed by anomaly detection.

IPFIX standard [34] supports flexible definition of monitoring data using tem-
plates. It means that a set of observed information can be defined a user. When a
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Figure 3.1: Netflow monitoring

monitoring probe implements user-defined definition of flows, it collects not only
standardized values from Layer 2 to Layer 4 protocol headers, but it can also col-
lects meta data from selected application protocols.

Application of IPFIX monitoring to ICS protocols is described in the following
sections. First, we overview works related to ICS monitoring. Then we define ICS
Flow and present an architecture of ICS flow monitoring system in the smart grid.
The most important part of this chapter is a selection of ICS headers of smart
grid protocols that creates higher visibility into ICS communication. Finally, we
demonstrate, how extended ICS flow meta data increases security of smart grid
communication.

3.2 Related Work

Protection of smart grid networks against cyber attacks has been researched by
many authors [81, 93, 75, 91]. NIST Guide to ICS Security [113] presents a large
overview of past attacks on ICS systems with recommendation how to secure ICS
architecture using network segregation, firewall rules, NAT translation and other
techniques.

Security of ICS/SCADA networks is often implemented by proprietary IDS
systems with deep-packet inspection (DPI) that analyzes selected ICS protocols.
Generally, an IDS system parses ICS packets and extracts data of interest from ICS
protocol headers. The data are subject to further signature-based or behavior-based
analysis. If a suspicious communication is detected, an alert is raised and the traffic
is filtered out. Real-time scanning and analysis of ICS packets demand high pro-
cessing power and fast memory on the analyzing device. In addition, each ICS pro-
tocol requires a specific ICS pre-processor (parser) that should be installed on an
IDS system [57]. IDS systems are usually located at the perimeter of ICS/SCADA
networks. This limits protection to external threats only. The proposed IPFIX
flow-based monitoring system can observe communication both at the edge of the
substation network as well as inside of the network.



CHAPTER 3. INCREASING ICS VISIBILITY 38

Distributed monitoring system for protecting SCADA communication in power
grid was proposed by [67]. The authors deployed SCADA probes over the power
grid network which observed IEC 104 and IEC 61850 communication. The probes
included Snort1 and Bro2 software with installed SCADA protocols analyzer. When
a security incident was detected, the probe sent an alarm to the Security informa-
tion and event management (SIEM) system. In contrast to their system, the pro-
posed ICS flow monitoring can observe network communication on any place in
the network. Our system also uses standardized IPFIX protocol, so it enables easy
integration with current SIEM systems. Detection based on ICS-enabled IPFIX
data is not limited to rule-based intrusion detection as Snort and Bro.

Barbosa, Sadre and Pras [22] proposed flow-based monitoring for whitelisting.
Unlike our solution, their approach was based strictly on IP flows. They observed
packets and extracted four properties to build a flow: client address, server address,
server-side port and transport protocol. During the learning phase, the system cre-
ated an initial white-list with legitimate flows. In the detection phase, when a new
flow was detected that was previously not white-listed, an alarm was raised. Com-
paring to their approach, we propose monitoring of application-level data, e.g., ICS
commands, objects, etc., which provides higher visibility into ICS communication.

Combination of rule-based anomaly detection and IP flow analysis is described
in [75] where the authors use IP flow statistics like packet rate and packet size to
classify traffic into the four behavior characteristics in power equipment. Besides,
they observe GOOSE communication and detects selected security incidents using
rule-based IDS. Our approach includes also application data from ICS protocols.

3.3 Flow Based Monitoring of the Smart Grid

Smart grid communication employs industrial protocols like IEC 61850 GOOSE
[86], Modbus, IEC 60870-5-104 [59], DNP3, IEC 61850 MMS [3], DLMS [84]
and others. These protocols transmit control and status data of industrial processes
running on RTUs or IEDs. Protocols like GOOSE implement publish-subscribe
mechanism where an application (publisher) writes the values into a local buffer
that is periodically transmitted to subscribing agents using L2 multicast. ICS pro-
tocols like IEC 104, DNP3, MMS or DLMS communicate use client-server model.
In this model, controlled station (RTU slave) is monitored or commanded by a mas-
ter station. Controlling station (PC with SCADA system, RTU master) performs
control of outstations. ICS client-server communication can be delivered in the
monitoring direction (from controlled station to the controlling station) or in the
control direction (RTU master sends commands toward the RTU slave), see Figure
3.2. This is important when analyzing ICS flows.

Smart grid security requires awareness of active communication in the network,
e.g, what nodes are sending or receiving data, what ICS protocols are active in the

1See https://www.snort.org/ [July 2021]
2See https://bricata.com/blog/what-is-bro-ids/ [July 2021]

https://www.snort.org/
https://bricata.com/blog/what-is-bro-ids/
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network, what commands have been issued, how many packets were transmitted
between two devices within a given time window, etc. Traditional Netflow and
IPFIX monitoring provides data on Layer 2 to Layer 4. Here we show how ICS-
specific data can be added to extended IPFIX records.

3.3.1 Architecture of ICS Flow Monitoring

Flow based monitoring system is composed of probes that observe packets on the
link, extract meta data from passing flows and creates so called flow records that
are later transmitted to the flow collector. Traditional IP flow is defined as a se-
quence of IP packets passing the observation point during a certain time interval
[31]. Packets belonging to a given flow have a set of common properties. IP flow
properties include source and destination IP addresses, source and destination port
numbers and the protocol type. An example of the IP flow is a HTTP request from
a client (identified by the source IP address and port) to a specific server (identified
by the destination IP address and port). For each flow the monitoring probe collects
meta data, e.g., timestamp when the first packet of the flow occurred, the number of
packets in the flow, the number of transmitted bytes, duration of the flow, etc. Meta
data together with flow properties are written into a flow record. The probe creates
flow records for all flows passing the probe. The flow records are then delivered to
the IPFIX collector, see Figure 3.3.

3.3.2 ICS Flow

For ICS monitoring, we extend definition of IP flows by adding property values
extracted from ICS protocol headers. Let P be an IP packet with a set of IP header
fields, i.e. P = {p1, p2, . . . , pn}, T be a transport layer (L4) protocol data unit
(PDU) with L4 protocol headers, i.e., T = {t1, t2, . . . , tm}, and A be an applica-
tion layer (L7) PDU with L7 headers, i.e., A = {a1, a2, . . . , ao}.

Definition 3.1. We define the flow property Fprop as a subset of selected
values extracted from L3, L4 and L7 headers, i.e.,

Fprop(ICS) ⊆ P (IP ) ∪ T (UDP/TCP ) ∪A(ICS) (3.1)
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Figure 3.3: ICS flow monitoring system

The flow property Fprop is mapped to specific L3 and L4 that transmits
ICS protocol, e.g., for IEC 104 it is the IP protocol on Layer 3 and TCP on
Layer 4. Layer 7 protocol is IEC 104.

For ICS protocols transmitted directly over the link layer, e.g., GOOSE or
Modbus RTU, we can either define P and T sets as empty, or we can create so-
called virtual L3 and L7 layers where, for example, for L3 we derived IPv6 link
local addresses from MAC addresses using EUI-64 or other techniques recom-
mended by RFC 4291 [103].

In case of IEC 104 protocol monitoring, typical L3 properties are the source
and destination IP addresses and the protocol type. Typical L4 properties include
source and destination ports. On application layer, L7 properties of IEC 104 may
include APDU frame type, ASDU type, cause of transmission (COT), number of
information objects, origination address (ORG) and ASDU address (COA), see
Figure 3.6. Thus, flow properties of IEC 104 can be expressed as follows:

Fprop(IEC104) = {SrcIP,DstIP, IPprot, SrcPort,DstPort,
APDUtype,ASDUtype, COT, Items,ORG,COA}

(3.2)

Definition 3.1 allows flexible selection of protocol headers used for ICS flow
monitoring. This is important because industrial protocols differ in protocol format
and header and not all fields are equally valuable for monitoring. Thus, Fprop is
mapped to a given ICS protocol similarly as shown in formula (3.2).

Definition 3.2. ICS flow is a sequence of ICS packets passing the observa-
tion point during a certain time and having the same flow property Fprop.

The ICS probe parses ICS packets where it extracts selected header values and
insert them into the ICS flow record. The ICS flow record becomes a building
block for ICS network monitoring. The ICS flow record contains Fprop data that
identifies the flow and statistical data Fstat that describes behavior of the flow.
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Fstat set is computed by the probe and includes meta data like starting time of the
flow, ending time, the number of packets of the flow, the total size in bytes, etc.,
i.e., Fstat = {tstart, tend, packets, size, . . .}.

Following that definitions, ICS flow record Frec is a union of ICS flow prop-
erty values and statistical behavior of the flow. ICS flow record is then mapped to
a specific ICS protocol, e.g., IEC 104, MMS, etc.

Frec(ICS) = Fprop(ICS) ∪ Fstat (3.3)

The presented approach is flexible and can be applied to any ICS protocol by
mapping specific protocol headers to ICS flow record fields. Table 3.1 presents
recommended L7 headers of common ICS protocols that are part of smart grid
communication. The headers were chosen based on protocol behavior and appli-
cation domain knowledge.

IEC 104 

IP: Src Address, Dst Address, Protocol type

TCP/UDP: Src Port, Dst Port

APDU type
ASDU type
No. of elements
COT
ORG
ASDU address

MMS GOOSE DLMS

MMS type
ConfServReq
ConfServResp
UnconfServ

Application ID
ControlBlockRef
DataSet
GooseID
Status number

DLMS type
DLMS subtype
Class ID
OBIS code
Attribute ID
Data Type
Data Length
Access result
Action result

Flow stats: start time, end time, no. of packets, size

P(IP)

T(TCP/UDP)

A(ICS)

Fprop

Fstat

Table 3.1: Recommended ICS headers extracted from ICS protocols.

As mentioned above, ICS monitoring requires implementation of a ICS pro-
tocol parser for each supported protocol and definition of an IPFIX template that
maps Frec(ICS) fields into IPFIX record format. Parsers for common smart grid
protocols GOOSE, IEC-104, MMS and DLMS were implemented in frame of the
research project IRONSTONE (2016-2019) and are available at the project web
site3. An example of the IEC 104 template is in Appendix B.1. The next part will
thoroughly demonstrate how ICS flows are created for IEC 104 protocol.

3See https://www.fit.vut.cz/research/project/1101/.en [Dec 2019]

https://www.fit.vut.cz/research/project/1101/.en
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3.4 Example: ICS Flows for IEC 104 Protocol

IEC 104 protocol is a part of IEC Telecontrol Equipment and Systems standard IEC
60870-5 that provides a communication profile for sending basic telecontrol mes-
sages between two systems in electrical engineering and power system automation
[59]. IEC 104 operates over TCP using client-server communication model and
delivers supervisory data and acquisition request for controlling power grids.

IEC 104 messages are exchanged between the controlled and the controlling
station. Controlled station (also called outstation, RTU slave) is monitored or
commanded by a master station. Controlling station (typically a PC with SCADA
system, RTU master) performs control of outstations. IEC 104 communication is
delivered in the monitoring direction, i.e., from controlled station to the controlling
station, or in the control direction.

3.4.1 IEC 104 Protocol

IEC 104 protocol [59] is implemented on application layer of TCP/IP stack us-
ing Application Protocol Data Unit (APDU) and Application Service Data Unit
(ASDU), see Figure 3.4 and Appendix A.1. Based on APDU Control Field 1, three
APDU formats are defined: I-frames for transmitting data, S-frames for numbered
supervisory operations, and U-frames transmitting unnumbered control functions
(test frame, start transfer, stop transfer).

Start Byte (0x68)

Length of APDU

Control Field 1

Control Field 2

Control Field 3

Control Field 4

8 bits

APCI

APDU with variable length

ASDU

APDU
Information object address 

Information Element 1

Information Element 2

Information Element 3

Information Element N

Information
object

Time Tag (if used)

1 Number of elements = N

Type identification

ASDU address fields
(2 bytes)

Originator address (ORG)

Cause of transmission P/NT Data Unit
 Identifier

Figure 3.4: IEC 104 protocol header

The most important APDUs for security monitoring are I-frames that trans-
mit ASDUs. The ASDU includes two sections: fixed-length ASDU header and a
variable-length list of information objects. The header includes ASDU type (e.g.,
single point of information, measured value, regulating step command, read com-
mand), number of transmitted objects, cause of transmission (COT, e.g., peri-
odic, spontaneous, activation, interrogation) and ASDU address (station address).
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Each information object is addressed by Information Object Address (IOA)
that identifies particular data on the given node. For each ASDU type, the IEC
104 standard defines the format of information object, that includes information
elements which form the object and structure of the data. For example, information
object in ASDU with type 36 (Measured value, scaled value with time tag) and
cause of transmission 20 (interrogation) contains two information elements: SVA
(Scaled value) and QDS (Quality descriptor), see Figure 3.5.

IO Address (IOA) = 50

Scaled Value (SVA) = 46

Quality Descriptor (QDS) = 0x00

CP56Time = Jul 11, 2018 16:23

1 Number of elements = 1

Type = 36 (M_ME_TF_1)

Common ASDU Address = 1

Originator address = 1

COT=20 (interrogation)P/NT

Figure 3.5: Example of IEC 104 packet

Typical IEC communication is depicted in Table 3.2 that shows selected IEC
104 transactions (transactions no. 2,6,8,10,14) exchanged between the IEC 104
master and slave in both directions: control and monitoring. Each transaction
contains at least one ASDU with an object addressed by the Information Object
Address (IOA), Cause of Transmission (COT) and transmitted value or command.
You can notice that one ASDU may transmit several IOA objects with different
IOA addresses, COTs and data. The proposed monitoring system retrieves interest-
ing data from IEC 104 packets in order to create IEC 104 flows for ICS monitoring.

3.4.2 Defining IEC 104 Flow Records

As previously stated, the traffic flow includes Layer 3 and Layer 4 data only, see
[32, 34]. For increasing IEC 104 visibility, we add the following IEC 104 headers
to the IEC 104 flow definition:

• APDU frame type

• ASDU type

• ASDU cause of transmission (COT)

• Number of information object

• Originator address (ORG)

• ASDU address (COA)
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Table 3.2: Example of IEC 104 communication

3.4.3 Virtual Flows

IP flow monitoring works with IP packet. For each flow, it observes all packets
belonging to the flow and creates one record for that flow. IEC 104 communication,
however, may encapsulate several ASDUs into one TCP packet. Using the standard
definition of IP flow, we should create only one flow record for this packet, i.e.,
only data from the first ASDU, see Section 3.4.2, would be included in the flow
and other ASDUs ignored, or all ASDUs should be aggregated into on record. In
both case we would loose detailed information about transmitted ASDUs.

To deal with this issue, we need to split an IP flow with multiple ASDUs into
multiple IEC 104 virtual flows where each IEC 104 virtual flow transmits exactly
one ASDU. On one side, this will increase the number of monitoring flows, on the
other side, the required IEC 104 visibility will be preserved.

3.4.4 Building IEC 104 Flows

Figure 3.6 shows how IEC 104 flow records are created from IEC 104 communi-
cation. The flow is composed of five packets. The IEC 104 flow record contains
values from Layer 3 (IP addresses), Layer 4 (ports) and Layer 7 (selected IEC 104
headers). All these property values identify an IEC 104 flow. The flow record
also includes statistical values related to the flow (timestamps, size, bytes, etc.).
After the final packet of IEC 104 flow is observed by the monitoring probe, the
flow is closed and transmitted by IPFIX protocol to the IPFIX collector. A set of
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IEC 104 
packet

IEC 104 
packet

IEC 104 
packet

IEC 104 
packet

IEC 104 
packet

Start Byte (0x68)

Length of APDU

Control Field 1

Control Field 2

Control Field 3

Control Field 4

ASDU

Information object address 

Information Element 1

Information Element 2

Information Element 3

Information Element N

Time Tag (if used)

1 Number of elements = N

Type identification

ASDU address fields
(2 bytes)

Originator address (ORG)

Cause of transmission 
P/
N

T

Time 1 Time 2

Number of packets, size of the packets
Start Time, End Time

SrcIP, DstIP, SrcPort, 
DstPort,
Protocol type
APDU type
ASDU type
No. of elements
COT
ORG
ASDU address
No. of packets
Size of the packets
Start time
End time

IEC 104 Flow Record

IPFIX 
Protocol

Figure 3.6: Building an IEC 104 flow record from IEC 104 packets.

flow records is then analyzed and visualized through network management system.
Technical details about creating IEC 104 flows are mentioned at [88].

3.4.5 Collecting ICS Flow Data

A big advantage of ICS flow-based monitoring is that ICS monitoring probes can
be deployed anywhere in the smart grid network as shown in Figure 3.3, thus pro-
viding monitoring data from overall the network.

Table 3.3 shows a raw format of IEC 104 flows extracted from IEC 104 com-
munication. For space limit, not all flow items are displayed. Besides IP addresses
and ports, IEC 104 flow record includes APDU length (Len), APDU frame for-
mat (Frame), ASDU type (Type), the number of Information Objects (Items), the
Cause of Transmission (COT), Originator Address (ORG), and the ASDU address
(COA).

Table 3.3: Example IEC 104 flows (selected fields only)
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Fields with nil value in the first two rows indicate IEC 104 APDUs without
the ASDU payload, i.e., U-frames (frame type=3). Only I-frames (frame type=0)
transmit ASDUs as showed in Figure 3.6.

From the list of IEC 104 flows above, we can notice that there is a controlling
station with originator address ORG=0 running on IP address 172.16.1.100. The
third flow record describes an I-frame (Frame=0) that encapsulates ASDU data sent
by a controlling station with ORG=2 to the controlled station with ASDU address
3. Type of this ASDU is 100 (interrogation command) and cause of transmission
(COT) is 6 (Activation). The controlled station responses with COT=7 (Activation
Confirmation). Then we see packets transmitted in monitoring direction from sta-
tion 172.16.1.1 with originator address ORG=0 to station 172.16.1.100. TypeID=1
means Single Point Information, typeID=3 Double Point Information,
and typeID=5 Step Position Information. The station sends monitoring data
of active information objects with the Cause of Transmission COT=20 (Interroga-
tion). Value Items gives a number of Information Objects transmitted within the
ASDU.

ICS flow records contain a list of active stations and commands that were ex-
changed which enhances visibility in of ICS communication in the smart grid.

3.5 Comparison of IP Flows and ICS Flows

In this section we show benefits of ICS flows monitoring approach with respect to
the traditional IP flow monitoring. The section discusses various levels of details
that can be obtained from ICS protocol headers. Naturally, with the increased
number of details, more processing power and time is required at the monitoring
probe. On the other hand, by reducing the number of observed ICS headers, we
will lost communication details. The following part discusses how various levels
of details in ICS flow records impact the visibility of ICS communication.

The case will be demonstrated on IEC 104 traffic that was captured during the
cyber attack against the IED device. The attacker sent multiple IEC 104 activation
commands in order to switch the device off. The attack is expressed by sending
repeated sequence of ASDUs with the Cause of Transmission 6 (Activation), 7
(Activation Confirmation), and 10 (Activation Termination) and with the Double

Command ASDU that invoked a switch on/off function on the target device.

3.5.1 IP flows

As mentioned before, traditional IP flow monitoring processes only Layer 3 and
Layer 4 headers, e.g., IP addresses and ports. Table 3.4 shows IP flows created
during the attack using the Silk Netflow/IPFIX probe4.

The Silk creates a unique IP flow for each ASDU packet without parsing appli-
cation data. When monitoring the attack, we may notice intensive activity on the

4See https://tools.netsa.cert.org/silk/ [May 2019].

https://tools.netsa.cert.org/silk/
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Table 3.4: IP flows during the attack obtained by Silk.

link, however, we cannot determine the cause of this activity and what effect it has
on ICS devices.

Creating flows for each single ASDU is not typical IP flow behavior, see Sec-
tion 3.4.3. The standard IP flow includes five key properties (srcIP, dstIP, srcPort,
dstPort, Protocol). Thus, the attack communication would yield two IP flows only,
see Table 3.5. The result was obtained using the softflowd probe5.

Table 3.5: IP flows during the attack obtained by softflowd.

This example demonstrates limits of traditional IP flow monitoring which is
not able to provide higher visibility of ICS communication and reveal ICS-specific
attacks.

3.5.2 ICS flows with standard ICS headers

ICS flows monitoring extends monitoring data with selected L7 headers as de-
scribed in Section 3.3.2. By analyzing ICS flows on the traffic with an attack, the
attacker’s activity are revealed, see Table 3.6.

The ICS flow records shows that a sending node with IP 172.16.1.100 sends
Double Command operation (type=46) to the IEC device with address 3 (COA).
This level of details does not provide information which object on the device was
requested, however, they present valuable source of information for statistical-
based anomaly detection and behavior-based anomaly detection as described later.

3.5.3 ICS flows with extended headers

The ICS-enabled probe can also implement advanced ICS protocol pre-processing
that extracts additional ICS headers from the packets. These new headers extend

5See https://github.com/irino/softflowd [May 2019].

https://github.com/irino/softflowd
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Table 3.6: IEC 104 flows during the attack.

a set of ICS flow record values Fprop. In this case, the probe extracts the IOA
address of an information object that is involved in communication, see Table 3.7.

Table 3.7: IEC 104 flows extended by IOA address.

Pre-processing can go further. Table 3.8 shows IEC 104 flow records with
deeper analysis of information elements transmitted in ASDUs.

As stated before, more detailed pre-processing of packet headers requires higher
computational power on the probe. In addition, more items in IPFIX template of
the ICS flow increase the size of transmitted IPFIX records and require more stor-
age space at the collector. Thus, it is necessary to find a balance between the level
of details required for ICS monitoring, and hardware capability.
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Table 3.8: IEC 104 flows with information elements.

3.6 Visibility of Smart Grid Communication

The level of visibility of ICS communication depends on implementation of a ICS
pre-processor and operational requirements. Figure 3.7 displays multiple levels of
ICS flow monitoring applied to IEC 104 communication.

Level 1: 
IP flows

Level 2: One flow per each 
IEC 104 packet

Level 3: Flow per ASDU packet

Level 4: Flow per IEC 104 object

+ Individual IEC 104 
packets

SrcIP, DstIP, SrcPort, 
DstPort, Proto, Pkts, 

Bytes

+ APDU type, ASDU 
type, COT, ORG, COA 

+ IOA, Operation 
Params (ON/OFF), Data

Details

Figure 3.7: Levels of IEC 104 visibility.

As you can see, traditional IP flow monitoring offers only basic statistics about
communication between two hosts extracted from Layer 3 and 4 PDUs. This level
of monitoring does not provide sufficient visibility of ICS transmissions, as demon-
strated on attack scenario in Section 3.5.1. Nevertheless, traditional IP flows pro-
vide useful data that may reveal a few types of common cyber attacks, e.g., detec-
tion of a rogue device on the network, DoS attack, network scanning, etc. However,
without L7 information, we are not able to disclose details of the attack and identify
possible consequences..

By splitting the IP flow into ICS protocol-based flows as implemented by Silk,
see Table 3.4, we receive detailed statistics about individual L7 packets without
knowing what operation was requested, what IOA objects were involved in com-
munication, etc. These flow records include Layer 3 and 4 headers only as in the
previous case. No real ICS visibility is provided on that level.

The Level 3 of ICS monitoring requires processing of ICS headers by the mon-
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itoring probe. Extracted ICS headers are then included into ICS flow records. In
case of IEC 104 communication, it means adding APDU type, ASDU type, Cause
of Transmission, Originator Address, and Common Address of ASDU (COA). This
level of visibility is sufficient for observing details about daily transmission in the
IEC 104 network.

Using Level 3 ICS monitoring data, we can monitor regular behavior of com-
municating nodes, detect if IEC 104 commands are properly transmitted in control
or monitoring direction, check the names of requested information objects, detect
IEC 104 resource scanning and provide enriched input data for statistical-based or
behavior-based anomaly detection.

The most detailed level of ICS visibility is obtained by processing all embedded
objects in the ICS protocol. In case of IEC 104 communication, Level 4 monitoring
provides data about information objects and information elements transmitted in
ASDU packets. Such ICS packet processing almost corresponds to the full packet
capturing that processes both the ICS packet header and the payload.

Full packet processing requires high CPU performance and big memory if de-
ployed on high-speed links. In case of links with limited bandwidth (around 100
Mb/s) a software-based monitoring probe is sufficient. Application level process-
ing on high-speed networks (tens of Gb/s) requires accelerated hardware using
FPGA or ASIC. Nevertheless, ICS communication does not require higher speed
links, so even Level 4 packet processing can be implemented in software. Our ex-
periments also demonstrate that Level 3 provides sufficient visibility of ICS com-
munication for most use cases.

3.7 Security Monitoring Using ICS Flow Records

This section demonstrates how common security incidents in smart grid networks
can be detected using ICS flow records. Instead of creating a comprehensive threat
model that considers all aspects related to these attacks we focus on threat cate-
gories listed in the NISTIR 8219 report [92].

The report aims to evaluation of available techniques for the identification of
activities that can be a part of attack scheme. The listed activities thus represent
a representative sample of operations used by different types of attackers in the
course of an attack. Our goal is to demonstrate that flow-based security monitoring
with simple anomaly detection is able to identify such activities.

The detection will be demonstrated on IEC 104 datasets using simple statistical
techniques. However, the presented approach is flexible and can be applied to any
ICS protocol by mapping specific protocol headers to ICS flow records as proposed
in Section 3.3.2.
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3.7.1 Detecting Security Incidents

The NIST report Securing Manufacturing Industrial Control Systems: Behavioral
Anomaly Detection [92] presents practical approaches for strengthening cyber se-
curity in the manufacturing processes using behavioral anomaly detection (BAD).
Similar to our approach, the NIST report presents non-intrusive techniques to ana-
lyze industrial network communications. Passive monitoring can be implemented
via port mirroring. The same solution uses the ICS flow monitoring probe that
passively observes the traffic mirrored to the probe.

We argue that ICS flows are sufficient to cover majority of BAD classes de-
scribed in the NISTIR report. The list of BAD capabilities observed by NIST is
summarized in Table 3.9.

Table 3.9: Behavioral Anomaly Detection (BAD) classes [92].

The NIST report documents the use of BAD capabilities in two environments:
a robotics-based manufacturing system and process control system in chemical
industry. We apply the selected scenarios of the report on IEC 104 communication.

3.7.1.1 Rogue Device Detection

The ICS flow data provides sufficient visibility that enables to detect rogue devices
on the network. Generally, ICS networks show signs of stability in the number of
connected devices as observed by [18]. Using flow based monitoring, active ICS
nodes can be learned from TCP handshake [22]. This helps to determine which
station is a client, which is a server and what type of communication is established.
The authors applied whitelisting on flow data that compared newly detected devices
with the list of known devices. This approach worked well for ICS protocols over
TCP but it could not be applied to L2 protocols like GOOSE or Modbus RTU.

The proposed model of ICS flow monitoring creates ICS flows even for ICS
protocols directly encapsulated in Ethernet like GOOSE or transmitted over serial
links like Modbus RTU or IEC 101, see Section 3.3.2. By analyzing transmitted
additional ICS data like ASDU type, we can check if the packet was transmitted
in monitor direction (from the RTU slave to the RTU master) or in control direc-
tion (from the RTU master to the RTU slave). Thus, we do not rely on TCP data
only, e.g, packet type, registered port number, but we check if the command was
transmitted in the right direction.
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Table 3.10 shows how rogue devices are identified using ICS flow data. Part
A represents IP flows aggregated by source IP address and port. We can see three
communicating nodes without being able to identify their roles. Part B shows ICS
flows. It reveals communication details about the APDU type, ASDU type, and
the Cause of Transmission (COT). Flows with ASDU type 1 (Single Point of

Information), 2 (Double Point of Information, 11 (Measured Values),
or 70 (End of Initialization) are usually initiated by the RTU slave.

Table 3.10: Analyzing ASDU types of IEC 104 communication

From flow records in Table 3.10 (B) we can see flows with ASDU type 100
(Interrogation Command) that ares sent from IP address 10.209.13.145 and port
2404 in control direction. Generally, using ICS flow records, we can verify the role
of the device. For example, we can identify the RTU master not only by observing
the reserved port 2404 used for RTU masters, but also by a command that was sent.
IEC 104 defines what commands are sent in control direction (from the master) and
what commands are sent in monitor direction (from the slave).

This means, that the anomaly detection system in the smart grid learns IP ad-
dresses and roles of all communicating nodes connected to the network during the
learning phase. Then, when an unknown device or a device with unexpected role
is detected, an alarm would be raised with details about the intruder.

3.7.1.2 Abnormal Network Traffic

ICS traffic exhibits long-term stability and periodicity as observed by [122, 19,
20] and can be described using communication patterns [78]. Any traffic with
unusual behavior, e.g., an invalid sequence of commands, exceeding numbers of
packets, or an non-typical combination of values in packet headers, is considered
as anomalous.

An example of the communication pattern is depicted in Figure 3.8 that de-
scribes the activation of an IEC 104 device. The communication pattern includes
four ASDUs exchanged between the RTU master and slave. Such pattern is di-
rectly extracted from ICS flow records as seen in Table 3.11. In Chapter 4 we will
talk about an automated way how to extracted these communication patterns from
ICS flow records and how to model them using probability automata.
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10.33.232.120 10.33.232.121

activation

confirmation  act

termination act

spontaneous

Figure 3.8: IEC 104 node activation command sequence

Table 3.11: IEC 104 node activation

Using historical ICS flow records we can also create a statistical model of smart
grid communication. Statistical techniques have been considered as a resource
efficient for anomaly detection techniques, see [100, 26, 37].

The statistical model is formally defined as a pair (S,P), where:

• S is the sample space of the model that comprises the set of all possible
tuples of features considered in the model, e.g., the number of ICS packets
exchanged between ICS devices, their sizes, inter packet delay, direction,
etc.

• P is a set of probability distributions on S.

The statistical model is then computed using the sample of ICS flows that rep-
resents normal behavior of the system as follows:

1. The flows are grouped in time windows of the predefined size, e.g., 60 sec-
onds, 5 minutes, etc.

2. For each flow within the given window, selected features are extracted and
added as a new tuple to the set of samples.

3. Step 2 is repeated until all windows are processed.

4. Finally, the set of probability distributions P is determined from all collected
samples using a statistical inference method.
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We demonstrate this approach on detection of the switching attack. We con-
sider a simple method that computes a threshold to define the anomaly. In this
simple case we will use only one feature: the number of transmitted packets within
a time window. Figure 3.9 depicts a scenario where an attacker manipulates with
the IED node by sending IEC 104 Activation (Act) and Activation Termination
(ActTerm) commands within the ASDU.

Table 1

Time Normal Attack-1 Attack-2 Attack-3

0 1 1 3723 1

1 0 0 3717 0

2 0 0 3739 0

3 0 0 3738 0

4 0 0 3733 0

5 2 1 3723 1

6 0 0 3723 0

7 0 0 1700 0

8 0 12 2499 0

9 0 0 3710 0

10 0 1 3716 0
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Figure 3.9: Distribution of (a) Act and (b) ActTerm packets during the
normal usage and the attack.

The blue line represents the number of Act (a) and ActTerm (b) commands
sent during 10 minutes of normal traffic. The green line depicts the number of
Acts and ActTerms during the attack. We can see a peek between from 7 to 8
where unexpected number of Acts was sent to the IED device.

By comparing the number of sent Act commands with the number of received
ActTerm commands we can notice that the number of Acts and ActTerms is equal
during normal communication. This means that all Act ASDUs are correctly con-
firmed by the ActTerm as defined by the communication pattern in Figure 3.8.
However, during the attack, some Act commands are ignored due to the high num-
ber of requests.

This scenario simulated behavior of the Industroyer malware, see Section 2.4.2,
when an targeted IED device was continuously switched on and off within few
seconds. Using ICS flow monitoring and simple statistics we are able to detect
such behavior. More elaborated technique for statistical-based anomaly detection
using ICS flows is given in Chapter 5.

3.7.1.3 Data Exfiltration Between ICS Devices and File Transfer

Data exfiltration describes an attempt to download data from an ICS system without
the proper authorization. We mentioned in Section 2.3 that current ICS protocols
lack security enhancement to prevent attacks against authorization, integrity, con-
fidentiality, and availability. Despite this limitation, using ICS flow monitoring we
can detect these kind of attacks.
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Figure 3.10 depicts transmission statistics of a long term communication be-
tween IEC 104 nodes within 3 days. We can see the stable number of ASDUs
transmitted over the network.
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Figure 3.10: IEC 104 communication

The green line represents ASDUs with COT=3 (Spontaneous Event) sent in
monitor direction to the RTU master. The blue line depicts the file transfer be-
tween two nodes (COT=13, Data Transmission). Using ICS flows, we can detect
unauthorized data transfer by observing ICS flows with COT=13 and ASDU type
120-127 (File Transfer) and also determine the source and destination of such ac-
tivity. Then, the operator should decide if this transmission was legitimate or not.
However, without increased ICS visibility, such operation would not be noticed.

3.7.1.4 Resource scanning

Using ICS flow monitoring, we can detect not only new devices but also identify
unknown or invalid resources. ICS device and port scanning (also called recon-
naissance, see Section 2.3.2.1) is a preparatory phase before the cyber attack is
launched. During this phase the attacker maps available resources on the network.
A typical device scanning attack on the IP layer can be performed by nmap tool6.
Some penetration tools provide resource scanning even on Layer 7, which is more
difficult to detect.

Scanning attacks can be easily revealed by flow monitoring. IP flows identify
the scanning attack by enumeration of IP addresses and ports that appears in flow
statistics. Using ICS flows, we can also detect resource scanning on the Layer 7.
Typically, the resource scanning attack yields a large number of packets targeting
one device within a short time with invalid responses. By observing ICS fields that
mark the invalid resource request, we can identify the attack.

6See https://nmap.org/ [July 2021]

https://nmap.org/
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In case of IEC 104 communication, we can observe COT values, see Table
3.12, especially values 46 (unknown address), 47 (unknown information object) or
45 (unknown Cause of Transmission). All these packets indicate either resource
scanning attack or misconfiguration. In both cases, it is necessary to take some
appropriate action.

Table 3.12: IEC 104 wrong data

3.7.2 ICS flows and BAD capabilities

ICS flows provide a valuable source of monitoring data for successful detection of
common security threats. Its design is based on a standardized IPFIX framework
with ICS-specific templates, see Appendix B. Unlike IP flow monitoring, ICS flows
provide additional details about ICS communication, which are essential for cyber
threat detection.

ICS flow monitoring uses a passive approach which means that not all anoma-
lies listed in Behavioral Anomaly Detection (BAD) classes [92], see Table 3.9, can
be detected because it requires an agent running directly on a monitored device.
For example, flow monitoring is not able to detect plain text password (BAD no.1)
transmitted in ICS protocols, however, it is able to detect protocols that may trans-
mit plain passwords, e.g., SMB, telnet or FTP. ICS flow monitoring cannot detect
failed internet connectivity (BAD no.5) because this detection requires active test-
ing. Also, it is not able to detect malware transmissions since it does not process
packet payload. However, the system can recognize unusual communication pat-
terns caused by malware activity, e.g., communication between the control station
and an external site, which is typical for botnets.

Table 3.13 shows how ICS flow monitoring and analysis covers BAD capa-
bilities. Majority of BAD capabilities is fully covered by ICS flow monitoring
(value yes). BAD classes like plain text passwords detection or malware detection
cannot be directly covered using ICS flows unless the ICS-enabled probe checks
the content of transmitted ICS packets and informs about unencrypted passwords.
Nevertheless, suspicious malware activities can be identified by analyzing Layer
3 transmissions that are part of ICS flow records. BAD defines also threats re-
lated to the hardware, e.g., BAD capabilities no.8 and 9, which are not subject of
flow-based monitoring.
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Table 3.13: Coverage of BAD capabilities by ICS monitoring

3.8 Summary

Industrial systems are attractive targets for cyber criminals, activists, professional
hackers, or state-sponsored attackers. Critical infrastructure is among the most
significant concerns for cyber defense. Recent attacks against smart grids demon-
strate the need to improve the security of smart grid communication. These attacks
were not correctly detected due to an inadequate protection. To provide sufficient
network security monitoring in ICS systems, visibility into communication is an
essential requirement. Although many ICS systems use IP-based networking, stan-
dard enterprise security systems cannot analyze ICS application protocols, thus
they are not able not to provide the required in-sight to network transactions.

In this chapter, we have introduced the concept of the ICS monitoring sys-
tem employing IPFIX flows extended with application-level data extracted from
ICS communication protocols. The approach was demonstrated on the IEC 104
communication, which is the standard protocol suite for smart grid networks. The
proposed ICS flow monitoring is passive and does not affect network performance.

In order to mitigate security threats against smart grids, anomaly detection
techniques can be integrated with the ICS flow-based network monitoring system.
Thanks to ICS transaction visibility, it is possible to detect behavior anomaly de-
tection cases as specified in the NISTIR 8219 report. We have demonstrated in
Section 3.7 how ICS flow records help detecting rogue devices, abnormal network
traffic, data exfiltration, and resource scanning. The simple statistical model was
created based on the regular traffic to demonstrate this ability.

Following chapters present two solutions of automated anomaly detection of
smart grid communication that are based on ICS flow monitoring data. The first
high-level solution that models ICS communication sequences using probabilistic
automata is presented in Chapter 4. The second solution that observes statistical
distribution of packet features is described in Chapter 5. Both approaches provides
a viable solution for improving security of network communication in the smart
grid.



Chapter 4

Anomaly Detection Using
Probabilistic Automata

Protection of the critical infrastructure against cyber attacks has become a chal-
lenge for security experts during recent years and was addressed by several se-
curity reports issued by NIST [113, 36, 92]. With adoption of IT technologies
like TCP/IP or Ethernet, interconnection of industrial networks with Internet, re-
mote access, etc., cyber threats against ICS systems increased. The cyber attacks
initiated from the outside of the smart grid can be effectively filtered out on the
perimeter of the network by ICS-enabled firewalls or IDS systems. This protec-
tion is, however, ineffective against attacks originating from the inside network.
Such attacks can be launched by a malware installed on a control station, from a
compromised host, or a rogue device connected to ICS/SCADA infrastructure as
mentioned in Section 2.4. Attackers usually scan the ICS network first in order to
identify potential targets. Then they launch a regular attack with the intention to
control industrial processes [17], steal sensitive data [96], damage functionality of
the system [16, 93], or request ransom for encrypted data [106].

In order to identify and eliminate internal cyber threats against ICS system,
we need (i) to monitor ICS communication and (ii) to employ monitoring data
for detection of suspicious behavior on the network. As showed in the previous
chapter, high visibility of ICS communication can be achieved using IPFIX flow
monitoring extended with meta data from the ICS protocol header. Monitoring data
are stored in the ICS flow records that contain (i) flow properties, i.e., data extracted
from Layer 3 to Layer 7 protocols, and (ii) statistical properties of the flow, i.e., the
starting and ending time, the number of transmitted bytes, packets, see Section
3.3.1. Such data represent a valuable source of information about communication
activities in the smart grid that is used for anomaly detection [121]. Flow records
are usually collected at the network management system and then analyzed by an
anomaly detection system (ADS) [56]. This process is depicted in Figure 4.1. The
most important question is how to model ICS conversations obtained from ICS flow
records. This chapter presents a solution based on formal languages and automata.

58
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Figure 4.1: Monitoring and detecting anomalies using ICS flows

The idea behind the proposed approach stems from the observation that ICS
traffic between two ICS devices is stable and predictable [21, 19, 102]. In addition,
a set of commands that are regularly exchanged between these device is relatively
small and can be expressed using a formal language. Having ICS flow records
with commands, we can create a multiset of ICS conversations. This set together
with the frequency of command occurrence represent a set of strings belonging to a
probabilistic language that describes ICS communication exchanged between two
devices. In this chapter we describe how to create a model of this language using
probabilistic automata [39] and how we can detect anomalies using this model.

The chapter is structured as follows. First, we overview research works that
deal with modeling ICS communication. Then we introduce theory of probabilis-
tic automata developed by Colin de la Higuera [39]. We show how to create a
probabilistic model from ICS flow records. The model can be represented by a
Prefix Trees (PT) or a Deterministic Probabilistic Automata (DPA). We use these
models to describe a normal communication of the ICS network. Then we present
two anomaly detection techniques that are applied on our probabilistic models: sin-
gle conversation reasoning and distribution reasoning. Finally, we evaluate these
techniques on IEC 104 communication and discuss their advantages and limita-
tions.

The work presented here was developed in collaboration with Vojtěch Havlena
and Lukáš Holı́k from the Department of Intelligent Systems FIT BUT in frame of
Bonnet Project1.

4.1 Related Work

Anomaly detection (AD) of ICS/SCADA communication has been explored by
many research teams in previous years as a response to the increasing threats of
cyber attacks against the critical infrastructure [92, 102]. Unlike signature-based
approach where detection systems search for suspicious sequences in individual
packets, anomaly detection creates a model of the legitimate behavior of an ICS

1See https://www.fit.vut.cz/research/project/1303/.en [July 2021].

https://www.fit.vut.cz/research/project/1303/.en
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system during normal operations. Then, ADS system observes deviations of an
input traffic with respect to the normal behavior model. If the deviation is higher
then a given threshold, the input communication is marked as anomalous.

Rakas et al. [102] divide anomaly detection systems into three groups: statistical-
based (univariate, multivariate, time series), knowledge-based (finite automata, de-
scription scripts, expert systems), and machine learning-based (using Bayesian net-
works, Markov models, neural networks, fuzzy logic, etc.). Our approach is a
combination of knowledge-based and machine learning-based techniques because
we employ probabilistic approach as in Markov models and use finite automata to
implement the model.

Similar approach was explored by Lin and Nadjm-Tehrani [78, 79] who ob-
served three attributes of IEC 104 communication (ASDUTYPE, COT, IOA) and
created a Probabilistic Suffix Tree (PST) that represented underlying timing pat-
terns of spontaneous events for each attribute class. Using the changes in distri-
bution of inter-arrival times, they categorized the traffic into five different groups
based on the periodicity and stability of observed times. They used PSTs to pre-
dict the future behavior of the network and detect possible changes. Their method
is computationally very demanding and also sensitive to network delays. Instead
of modeling timing features, our technique models sequences of ICS commands
exchanged between communication nodes with their probabilities and is able to
detect unexpected operations or higher occurrence of some commands.

Martinelli et al. [83] proposed a network of timed automata (TA) to model
the SCADA water distribution system. They mapped numerical values of water
tank level into three classes. Time changes represented edges in the time automata.
They implemented anomaly detection using formal verification of pre-defined tem-
poral logic formulae over this model. However, their method had several limitation,
mainly manual creation of TAs and then high computational requirements during
model checking.

Goldenberg and Wool [49] similarly to us modeled semantics of ICS protocol,
more specifically, sequences of queries and responses of Modbus communication.
Their model employed Deterministic Finite Automata (DFA) where symbols of
the alphabet represent a tuple of a transaction ID, function code, reference num-
ber, and bit/word count obtained from the Modbus packet. DFA transitions then
expressed the predicted behavior of the system which could be of type normal, re-
transmission, miss, or unknown. The created model was sensitive to out-of-order
messages. Similar to us, their model was able to recognize invalid messages. States
of our automaton also express expected commands but transitions represent prob-
ability of next expected command. Thus, our model is able to comprehend more
aspects of communication, e.g., frequency of exchanged commands, the correct
order of command sequences, etc.

Probabilistic approach to SCADA communication was also applied by Caselli
et al. [27, 28] who introduced a sequence-aware intrusion detection system based
on Discrete-Time Markov Chains (DTMC). The modeling process clusters all mes-
sages with the same semantic meaning to one state of the DTMC, e.g., read coils
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from address 0 for Modbus, Initiate for MMS, or type ”I, C IC NA 1” for IEC
104. Transitions represent a sequence of messages using the probability of moving
from one state (a message) to another state (a subsequent message). Transitions
also include information about the number of jumps and average time between two
consequent states. Our model is different. We do not cluster similar messages into
one state but each sequence of messages is modeled as a string of the language
which produces more accurate model. Thus, we are able to detect changes in net-
work behavior by observing ICS communication. In addition, our model is created
automatically using the set of ICS conversation without the need to specify exact
semantics of each command.

The idea of inferring protocol state automata from network traces was also
explored by Wang et al. [123] where the authors created a Probabilistic Protocol
State Machine (P-PSM) from network communication traces of the given protocol.
P-PSM is a probabilistic generalization of protocol state machine. First, the authors
measured similarity between messages using Jaccard index and clustered similar
messages into groups using Partitioning Around Medoids (PAM) algorithm. Their
definition of P-PSM is very similar to Deterministic Probabilistic Automata (DPA)
defined by de la Higuera [39]. Their protocol model is more general since the
similar messages are grouped into one state, e.g., commands EHLO and HELO
for SMTP are considered as one cluster. This is sufficient for observing typical
behavior of a specified protocol. Our approach is more accurate since each each
sequence of messages become a part of the model without any clustering. This
helps to identify even small changes in communication.

Similar approach of learning stateful protocol models from network traces was
examined by Kreuger et al. [74] who developed a method for protocol inspection
and state machine analysis. They represented messages by n-grams and model
communication states by a hidden Markov model. They used the model for simu-
lating behavior of honeypots. As stated in the previous paragraph, our approach is
different because we do not model a specific protocol behavior but communication
exchanges, even if both approaches use probabilistic model.

To our best knowledge we can say that the proposed automata-based approach
of modeling communication sequences for anomaly detection is novel and have not
been published by other authors. It differs from the previously published methods
and gives promising results in anomaly detection as demonstrated later.

4.2 Preliminaries

A language is a set of strings over defined an alphabet where a string either belongs
to a language or does not. The problem of defining a language from a set of sample
strings have been studied by many researchers in the past. One of the early works
related to this domain was introduced in 1987 by Dana Angluin who presented a
technique to identify an unknown regular set from examples of its members and
nonmembers [14]. She developed a learning algorithm L? that correctly learns
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any regular set from any minimal adequate teacher in polynomial time. This sys-
tem requires the teacher to determine whether string t belongs to the language or
not (membership query). Then the teacher is asked if a conjectured automaton is
equivalent to the target language (equivalence query). In a stochastic setting the
teacher can be replaced by a random sampling oracle that determine membership
of a sample. Application of the L? algorithm to our domain is not possible because
we learn the language from the samples only and have not a teacher that would
decide the equivalence question.

Later, automata learning have been studied by other researchers [42, 62, 15].
Similarly to Angluin’s idea, the proposed algorithms require a piece of knowledge
that decides membership and equivalence queries whether a given string belongs
to the target language.

Our problem with modeling ICS communication is different. We have a regular
set of samples obtained from the normal ICS traffic. Since all these samples be-
long to the unknown language, we do not need to ask for membership as the above
mentioned algorithms suggest but we are not able to determine if a constructed
automaton is complete since there is no teacher that would answer the equivalence
questions. Thus, for our specific domain is more appropriate to construct proba-
bilistic automata that do not require a teacher. Instead of defining a language as a
set of strings, we deal with a distribution over a set of strings [39]. The distribution
can be regular, in which case the strings are then generated by a probabilistic reg-
ular grammar or a probabilistic finite automaton. The following text introduce the
notion of probabilistic automaton and probabilistic distribution that is important
for our method of anomaly detection.

4.2.1 Probabilistic Automata2

Let Σ be a finite alphabet and Σ∗ the set of all finite strings over alphabet Σ, with
ε denoting the empty string.

Definition 4.1. A Probabilistic Automaton (PA) is a tupleA = (Σ, Q, δ, I,F)
where

• Σ is the alphabet,

• Q is a finite set of states labeled q1, . . . , q|Q|,

• δ : Q × Σ × Q → Q ∩ [0, 1] is a (total) transition function assigning
probabilities from the interval [0, 1] of rational numbers to transitions,

• I : Q→ Q∩ [0, 1] is a mapping assigning the initial-state probabilities,

• F : Q→ Q ∩ [0, 1] is a mapping assigning the acceptance probabilities.

2The following definitions are mostly taken from [39].
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The probabilistic automaton must satisfy the consistency condition requiring
that for each state q, the sum of probabilities of the outgoing transitions plus the
probability of acceptance is 1, that is ∀q ∈ Q:

F(q) +
∑

a∈Σ,r∈Q
δ(q, a, r) = 1

Definition 4.2. A Probabilistic Automaton A = (Σ, Q, δ, I,F) is called
deterministic (DPA) if the following conditions are satisfied:

• ∃q ∈ Q (unique initial state) such that I(q) = 1,

• ∀q ∈ Q,∀a ∈ Σ : | {r | δ(q, a, r) > 0} | = 1, that is, for each q ∈ Q and
a ∈ Σ exist a unique successor.

Further, we define probability of acceptance of a word w by probabilistic au-
tomaton A.

Definition 4.3. Let A = (Σ, Q, δ, I,F) be a probabilistic automaton and
w = a1 . . . an ∈ Σ∗ be a word. A trace π of the word w is a sequence π =
(q0, a1, q1) . . . (qn−1, an, qn) where δ(qi−1, ai, qi) > 0, I(q0) > 0 and F(qn) > 0
for 1 ≤ i ≤ n. Informally, it is a path through PA via w starting in the
initial state and ending in a state with non-zero acceptance probability.

Definition 4.4. Probability of trace π is then given as PA(π) = I(q0).δ(q0, a1, q1),
. . . , δ(qn−1, an, qn).F(qn). Informally, we multiply transition probabilities
with the initial-state probability and the acceptance probability on trace π.

Let
∏
w be a set of all traces of word w. Probability of word w accepted

by A is the sum of probabilities of all traces for the given word, that is,

PA(w) =
∑
π∈

∏
w

PA(π)

Example 4.1. Consider a PA from Fig. 4.2. Then PA(abc) = 1.0 ·0.3 · (0.2 ·
0.3 + 0.5 · 0.1) = 0.033.

q0 q1, 0.1 q2, 0.3

b, 0.6

a, 1.0

b, 0.3

c, 0.5

c, 0.2

Figure 4.2: Example of a probabilistic automaton. States are labeled with
a state name and the accepting probability (no number corresponds to zero
probability). Transitions are labeled with a symbol and the probability
taking this transition.



CHAPTER 4. AUTOMATA-BASED ANOMALY DETECTION 64

4.2.2 Frequency Automata

For construction of DPA, we need to define a deterministic frequency finite au-
tomaton (DFFA) that is later used to form a DPA.

Definition 4.5. A Deterministic Frequency Finite Automaton (DFFA) is a
tuple A = (Σ, Q, δfr, Ifr,Ffr) where

• Σ is an alphabet,

• Q is a finite set of states,

• δfr : Q × Σ ×Q → Q ∪ N is a (total) transition frequency function. Due to
determinism, for each q ∈ Q and a ∈ Σ there is at most one state q′ ∈ Q :
δfr(q, a, q′) > 0,

• Ifr : Q → N is a mapping assigning initial-state frequencies. Because of
deterministic automaton, there is exactly one state q : Ifr(q) > 0,

• Ffr : Q→ N is a mapping assigning final-state frequencies.

The consistency condition of DFFA says that any string that enters a state (or
starts in a state) has to leave it (or end there). If we denote by FREQ(q) the total
number of both entering and leaving strings at state q, the consistency condition is
formally expressed as follows:

FREQ(q) = Ifr(q) +
∑

r∈Q,a∈Σ

δfr(r, a, q) (4.1)

= Ffr(q) +
∑

r∈Q,a∈Σ

δfr(q, a, r). (4.2)

If the consistency condition is fulfilled an DFFA can be normalized to an DPA
by dividing the acceptance frequencies of each state q and frequencies of its outgo-
ing transitions by its overall frequency FREQ(q) as demonstrated at the example
showed at Figure 4.3.

q0 (40) q1 (2)

q2 (5) q3 (3)

(50) a (10)

a (3)

b (5)

b (50)
a (50)

b (45)

q0 (0,4) q1 (0,2)

q2 

(0,05)
q3 (1)

(1) a (0,1)

a (0,3)

b (0,5)

b (0,5)
a (0,5)

b (0,45)

100

100

3

10

DFFA DPA

(a) (b)

Figure 4.3: Transformation of DFFA to DPA.
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Frequency values of DFFA at Figure (a) are in brackets. This DFFA fulfills
the consistency condition, so it can be transformed to DPA. The transformation
algorithm is straightforward and uses FREQ(q) values computed for each state
of the DFFA. These values are marked by yellow color in the figure. For exam-
ple, state q0 of DFFA contains one incoming edge from q2 and Ifr with the total
frequency 100. We get the same sum for outgoing frequencies plus the finish-state
frequency F(q0). Transition algorithm defined in [39, pp. 390-391] computes the
DPA’s probabilities by dividing the DFFA’s frequencies by FREQ(q) value, i.e.,

F(q) =
Ffr(q)

FREQ(q)
, δ(q, a, r) =

δfr(q, a, r)

FREQ(q)
.

Note that for deterministic PA I(q) = 1, see Definition 4.2.

4.2.3 Prefix Tree

For learning probabilistic language from samples, we use a special type of the
DFFA called a Prefix Tree (PT). Before defining the Prefix Tree, we need to define
a prefix set of language L.

Definition 4.6. The prefix set of L is PREF (L) = {u ∈ Σ? : uv ∈ L}.

We use the PREF (L) for defining the prefix tree. The prefix tree is a compact
representation of the input multiset S. Its nodes are prefixes of strings in S where
ε is the root and there is an edge labeled by symbol v from u to u.a if and only if
both u and u.a are prefixes of strings from S. The edge is labeled by the number
of occurrence of prefix u.a in S. We denote the number of occurrence of string w
in S as S(w): ∑

w∈S,∃v:w=u.a

S(w).

Formally, the prefix tree is defined as follows:

Definition 4.7. Let S be a multiset of strings from Σ?. The Prefix Tree
PT(S) is the DFFA:(Σ, Q, δfr, Ifr,Ffr) where

• Q = {qu : u ∈ PREF (S)},

• Ifr(qε) = |S| (initial-state frequency for qε),

• ∀u.a ∈ PREF (S), δfr(qu, a, qu.a) = |S|uaΣ? (transition frequency of u.a),

• ∀u.a ∈ PREF (S), δfr(qu, a) = qu.a (the next state for the sample u.a),

• ∀u ∈ PREF (S),Ffr(qu) = |S|u (final-state frequency).

An example of the prefix tree generated from a set of 100 strings is showed in
Figure 4.4. The values in brackets represent frequencies: initial-state, final-state,
or transition frequencies.
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qε  (53)
(100)

qa (12)

qb (15)

qaa (4)

qab (5)

qba (2)

qbb (2)

qaaa (2)

qaab (1)

qabb (1)

qbba (2)

qbbb (1)

a(25)

b(22)

a(7)

b(6)

a(2)

b(5)

a(2)

a(2)

b(1)

b(1)

b(1)

Figure 4.4: Example of the Prefix Tree.

From the prefix tree, we can see that a part of the input set are two strings
aaa, bba, one string aab, abb, bbb, four string aa, five string ab, etc. Thus, from
a set of input samples, we can easily create a prefix tree representing this set of
samples. The prefix tree is a special form of DFFA, so it can be transformed to a
DPA which is more compact form for probabilistic language representation. The
following section shows how PTs and DPAs can represent ICS communication.

4.3 Modeling ICS Communication Using Automata

In this section we apply the theory of probabilistic automata as presented in the
previous section on ICS communication. First we explain, how prefix trees or
DPAs can be created from input samples. Then we describe steps how ICS flow
records are transformed into a multiset of conversations for modeling ICS traffic
using probabilistic automata.

4.3.1 From Samples to Probabilistic Automata

For learning the DPA we use algorithm Alergia presented in [39]. Here, we briefly
outline how the algorithm works.

Given a multiset S of input strings, the algorithm creates a prefix tree of these
strings with the frequency of string occurrence in the multiset. Then the prefix tree
is transformed into the deterministic probabilistic automaton that approximates the
probabilities of the individual strings in S by merging similar states. The algorithm
proceeds in the following steps:

1. Create prefix tree PT(S) with strings from S where each edge is labeled by
the frequency of occurrences of the respective string prefix in S, see Section
4.2.3. The prefix tree is created iteratively:
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(a) For each string w ∈ S we check if exists a trace π(w) over the tree.
If yes, we increase the frequency of occurrence S(w) along the trace
π(w) by one.

(b) If trace π(w) does not exist, we find the shortest prefix PREF (w) that
is already a part of the tree. For the rest of string w we add new states
and transitions according to the Definition 4.7.

Prefix tree PT (S) may be interpreted as a frequency automaton of S where
nodes are states, edges correspond to transitions, ε is the initial state, and the
acceptance frequency of each state w equals |S(w)|.

2. Generalize and compact the PT by merging ”similar” states.

Generalization is the main part of Alergia. This algorithm includes ordering
of the states, a compatibility test and merging and folding operations, see
[52] for details. The general algorithm visits the states through two loops
and attempts to merge states recursively. It explores the prefix tree from the
initial state. While exploring the tree, it merges states r on the frontier of the
so far undiscovered part of the tree with the previously discovered states q.

The merging operation merges the sub-tree rooted by r into the automaton
reachable from q. The acceptance frequency of r is added to the acceptance
frequency of q. Moreover, for each symbol a, the frequency of the outgoing
a-transition of r is added to the frequency of the outgoing a-transition of q,
and the merging procedure is recursively called on the target states of the
two merged transitions.

Two states q and r are merged under the condition that they are sufficiently
similar. Similarity here means that their acceptance frequencies are close
enough as well as the frequencies of the outgoing a-transitions for each sym-
bol a. The test that is used to decide if states are to be merged or not is based
on the Hoeffding test made on the relative frequencies of the empty string
and of each prefix. The quantities compared are (we use f1, f2, n1, n2 for
shortening):

f1 = Ffr(q)
n1 = FREQ(q)

and
f2 = Ffr(r)

n2 = FREQ(r)
.

Then the comparison test using the Hoeffding’s bounds is implemented as
follows:

Test(f1, f2, n1, n2, α) =

∣∣∣∣ f1

n1
− f2

n2

∣∣∣∣ <
(√

1

n1
+

√
1

n2
).

√
1

2
. ln

2

α

)
(4.3)

3. The generalized PT (which is a DFFA) is then transformed to the correspond-
ing DPA as demonstrated on Figure 4.3.

The level of similarity in Step 2 is controlled by parameter α that corresponds
to the probability that the merged automaton wrongly rejects a string from S. The
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authors of the algorithm recommendsα = 0.05. In our preliminary experiments we
set α ∈ {0.05, 0.1, 0.15, 0.2}. We discovered that the best results for our datasets
is given by α = 0.05 which is also the recommended value by the authors of the
algorithm. Detailed description of the algorithm and our experiments is given in
the technical report [52].

In our experiments, we use two models of the input multiset: the Prefix Tree
created from the input multiset by Step 1, or the Deterministic Probabilistic Au-
tomaton, created by Steps 1 to 3. In Section 4.5, we evaluate these two representa-
tions using our datasets and conclude how suitable they are for anomaly detection.

4.3.2 ICS Flows Data Pre-Processing

Now we describe how to pre-process ICS flow records and create a sample set S
representing ICS communication for learning probabilistic automata.

Collecting ICS flows. ICS flows are obtained from the ICS-enabled monitor-
ing probe as described in 3.3. The probe observes passing traffic and creates ICS
flow records that contain selected data from Layer 3 to 7 headers. In case of IEC
104 communication, the ICS flows contain the following L7 headers: APDU type,
ASDU type, Number of information elements, Cause of Transmission (CoT), Orig-
inator address (ORG), and ASDU address (COA). For IEC 104 protocol modeling,
we observe only two IEC 104 headers: ASDUTYPE and COT.

Partitioning the traffic by communication groups. Given network
flows, our aim is to obtain an automaton for each communication group, i.e., a set
of communicating ICS devices. For ICS protocols employing master-slave com-
munication mechanism, the communication group usually includes two devices
(master and slave) identified by a pair of SrcIP:srcPort + DstIP:dstPort. Another
communication topology used in SCADA systems includes a set of slaves (RTUs)
that are requested by one master station. This is typical for MODBUS but it is
also used for IEC 104. In this communication model we observe ICS messages
exchanged between the master and slave(s) in both directions.

For ICS protocols with publish-subscribe mechanism (e.g., GOOSE) the com-
munication group includes a publisher with all subscribers. The communication
group is identified by the publisher ID and destination ID, e.g., the publisher’s
source address and subscriber’s destination multicast address. The traffic of the
communication group includes all messages sent by the publisher (one-directional
communication).

Thus, we partition the observed traffic according to communication groups.
Since we use ICS flow monitoring, ICS packets are represented by a set of ICS
flow records of all devices in the communication group observed within a given
time window.
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Splitting the traffic into conversations. The learning algorithm from
Section 4.3.1 takes a multiset of strings as an input. Network traffic of the com-
munication group is represented by a sequence of ICS flow records. For automata-
based modeling, we need to divide ICS flow records into a multiset of conversa-
tions which are sequences of logically connected messages that correspond to one
”communication session”. The result of splitting phase is a sample set S of the
learned conversations that is used for constructing a probabilistic model: a prefix
tree or DPA.

Recall that we work with messages on the application layer. Thus, there can be
multiple ICS conversations within one TCP session which is typical, for example,
for IEC 104 protocol. Recall the conversation is a sequence of messages logically
bound together. A splitting of a sequence of messages into conversations is done
automatically according to the semantics of ASDUTYPE and COT. A conversation
is built by adding messages from a traffic one by one until a specific suffix or prefix
is spotted.

Example 4.2. Identification of a conversation in the sequence of flow records
is based on the expert knowledge of the particular ICS protocol. Since the
conversation is a logical sequence of L7 messages, we need to define what
ICS messages logically close the conversation. Based on IEC 104 protocol
standard [85], we specify the following suffixes and prefixes that split IEC
104 communication into conversations:

• Suffixes: IEC 104 conversions are typically ended by messages with
AsduType = 70 (end of initialization), 124 (ACK file), and packets
with CoT = 9 (confirmation deactivation), 10 (confirmation termina-
tion), or 44–47 (unknown resources), and also messages transmitted
as single units, e.g., CoT=3 (spontaneous event).

• Prefixes: Start of an IEC 104 conversation can be marked by the
following messages: CoT=4 (initialized), AsduType=120 (file ready)
or 122 (select file).

If logical sequences of ICS messages (i.e., conversations) are not properly de-
termined for a given ICS protocol, e.g., because of a lack of expert knowledge,
the original conversations can be cut into several parts and from the input ICS
flow records we obtain a different sample set that is later used for learning. This
will result in a different automaton. However, this automaton describes the same
ICS communication (expressed by ICS flow records) and thus, it can be used for
anomaly detection. Disadvantage of the improper splitting of input data is that the
semantics of obtained conversations do not reflect the real meaning of transactions
and can be confusing for experts.

Message abstraction. To represent normal network communication using
automata, we need to set a suitable level of abstraction and remove irrelevant details
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from messages. Too much details would lead to an over-specialized model that
marks small nuances in communication as anomalies while too little details would
blur the boundaries between normal communication and anomalies.

• First, the level of message abstraction depends on available ICS flow data.
We discussed four levels of ICS visibility in Section 3.6. Depending on
the level of ICS visibility, we select appropriate ICS flow headers that suffi-
ciently describe behavior of ICS communication with respect to the specifics
of a given ICS protocol. The set of recommended ICS headers for common
ICS protocols in smart grids is given in Table 3.1.

• Second, it is necessary to consider semantics of the selected field and de-
cide how unique the values are for probability distribution modeling. For in-
stance, each message includes a timestamp which makes the message unique.
Thus, the learning procedure could hardly find any regular structure in com-
munication and the learned automaton would hence reject all messages ap-
pearing in the future as anomalies.

In case of IEC 104 protocol, the ASDU contains a set of information objects
and information elements, see Figure 3.4. Modeling individual information
objects and elements would provide interesting details about communica-
tion, on the other hand it would lead to a very large multiset of input sam-
ples with large probabilistic model. Since we primarily aim to model the
exchange of ICS commands, we consider command-level abstraction only.
This abstraction reveals ICS operations on the network without going into
specific details of each operation. If a detailed analysis of ICS traffic is
required, there is a possibility of full packet capturing. In Section 4.4 we
demonstrate, that command-level abstraction is sufficient for anomaly de-
tection of most cyber attacks against smart grid communication.

For IEC 104 protocol [85], we particularly consider fields ASDUTYPE and
COT that determine the high-level communication model and abstract from con-
crete data values. An abstract ICS message is modeled as a pair 〈ASDUTYPE,
COT〉, see the following example.

Example 4.3. Consider a sample of conversations S consisting of a sequence
of pairs 〈AsduType,CoT〉, i.e.,

S = { [<122,13>, <120,13>, <122,13>, <121,12>, <122,13>, <125,13>, <125,13>,

<125,13>, <123,13>, <124,13>, <123,13>, <124,13>],

[<36,3>],

[<36,3>],

[<36,3>],

[<122,13>, <120,13>, <122,13>, <125,13>, <123,13>, <124,13>],

...

}

The incomplete prefix tree and the DPA constructed from this sample
set is depicted in Figure 4.5.
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Figure 4.5: Learning a prefix tree and DPA from IEC 104 samples.

This model reveals what operations are typically executed between these two
IEC 104 communicating devices. If a testing traffic contains a different communi-
cation sequence, it is considered as anomaly.

We can summarize data pre-processing by three steps, see Figure 4.6:

1. Partitioning: from a given dataset, e.g., IEC 104 communication, extract
only the IEC 104 flow records with i-messages and partition them by pairs
of communication entities.

2. Splitting: Split the modified traffic into conversations.

3. Abstraction: Select suitable fields from ICS messages that create an abstract
communication model.

The set of abstracted conversations for each communication group becomes an
input for probabilistic model learning as described in Section 4.3.1.

ICS flow 
records

IP A: port A <-> IP B: port B

monitoring
IP A: port A’<-> IP C: port C

IP D: port D <-> IP E: port E

IP F: port F <-> IP E: port E’

partitioning

{conv1, conv2, ..., convn}

{conv1, conv2, ..., convm}

{conv1, conv2, ..., convo}

{conv1, conv2, ..., convp}

splitting

<type,CoT>,<type,CoT> ..

<type,CoT>,<type,CoT> ..

<type,CoT>,<type,CoT> ..

<type,CoT>,<type,CoT> ..

PDA A1

PDA A2

PDA A3

PDA An

abstraction modeling

Figure 4.6: Pre-processing ICS flow data.
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4.4 Anomaly Detection

Now we present how to utilize the learned model of a network traffic for anomaly
detection. Our detection works with fixed time windows (particularly, 5 minutes)
where each time window contains a set of conversations as described above. Op-
tionally, flexible sliding time windows can be implemented, which does not have
impact the principle of presented anomaly detection mechanisms.

Traffic 
window

Conversations Cp for 
a communication 

group p

DPA Ap 
selection

Detection 
Mechanism

Cp,p Cp,Ap

Figure 4.7: Overview of the anomaly detection.

Detection has three consecutive phases as also depicted in Figure 4.7:

1. The time window is divided into a series of conversations Cp for each com-
munication group p identified, e.g., by the end-to-end IP addresses and ports.

2. A probabilistic automaton Ap that was created during the learning phase and
describes the normal communication of p is selected using communication
group identifiers.

3. Anomalies are detected by comparing Cp with Ap.

The last step, anomaly detection based on a comparison of Cp and Ap, is imple-
mented by the Single Conversation Reasoning or by the Distribution Reasoning as
explained in the following text.

4.4.1 Anomaly Detection via Single Conversation Reasoning

The first mechanism for anomaly detection is based on reasoning about individual
conversations. For each conversation c ∈ Cp, we compute the probability PAp(c)
(see Definition 4.4) assigned to c by probabilistic automaton Ap that represents
valid communication of group p that was created during the learning phase. If the
probability is below the threshold µ, i.e., PAp(c) ≤ µ, an anomaly is detected.
For our detection, we set threshold µ to 0 meaning that we are only interested in
whether Ap marks c as possible string of the language (no matter how far), or not.
If PAp(c) = 0, conversation c is not accepted by Pap and is marked as anomaly.

The advantage of single reasoning mechanism is that it is simple, fast and al-
lows to point to the concrete conversation causing the anomaly which provides
useful data for further diagnostics. The time complexity of single conversation
reasoning is linear and depends on an input sample set, i.e., O(|Cp|.l) where |Cp| is
the number of input samples and l is the length of a longest string from Cp.

One major limitation of the single conversation reasoning is that this method
is not able to detect missing conversations, e.g., when a link or device go down. If
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conversation c is in the learning set but it is not present in the testing set, we cannot
compute PA(c) for the missing conversation c, so this kind of failure will not be
detected. This case is, however, covered by the distribution reasoning described in
the following section.

4.4.2 Anomaly Detection via Distribution Comparison

Instead of evaluating individual conversations gathered from the monitoring traffic
in isolation as in case of the single conversation reasoning, the second detection
mechanism focuses on evaluating a traffic transmitted in a fixed-length time win-
dow. The probabilistic distribution of every window is then compared to the prob-
abilistic distribution of the learned model expressed by automaton A0, see Figure
4.8. Unlike the single conversation reasoning, this mechanism also detects anoma-
lies caused by missing conversations or by a change of a communication profile.

Training Samples

Traffic 
window 1

Traffic 
window 2

Traffic 
window 3

Traffic 
window 4

Traffic 
window 5

A’1 A’2 A’3 A’4 A’5

A0

L2(A0,A’1) L2(A0,A’2) L2(A0,A’3) L2(A0,A’4) L2(A0,A’5)

Figure 4.8: Distribution Comparison Reasoning.

The idea of this approach is to learn a DPA for testing traffic Cp and then com-
pare DPA Ap′ with the referential DPA Ap representing the valid traffic. The de-
tection mechanism works as follows:

1. Construct a DPA A′p from a sequence of conversations Cp obtained from the
traffic window under monitoring.

2. Compare the A′p with the DPA Ap representing the normal traffic. If the
difference is too large, report an anomaly.

To quantify how much different is Ap from A′p, we use the 2-Euclidean dis-
tance L2 (or just Euclidean distance), defined as

L2(Ap,A′p) =

√∑
w∈Σ∗

(
PAp(w)− PA′p(w)

)2
(4.4)

Intuitively, the Euclidean distance sums the differences of probabilities assigned to
strings accepted by Ap and A′p.
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In [39], the authors also mention other metrics for measuring distance between
automata: L1 distance (variation, Manhattan distance), logarithmic distance, or
Kullback-Leibler divergence. Logarithmic distance is useful when considering
very small probabilities which is not our case. One drawback of Kullback-Leibler
divergence is that it represents a relative metric where the sum over all strings of
the logarithmic loss is weighted down by the actual probability of a string. If any
string has a null probability in Ap′ but not in Ap, then the denominator is null and
the Kullback-Leibler divergence is infinite. There are some ways how to solve this
issue but since this case may appear in our domain, we prefer to use L2.

Time complexity of this algorithm is polynomial, more specifically O(n6),
where n is the maximum number of states of Ap and A′p. For efficient implemen-
tation of probabilistic automata we use matrix representation, see [119] for details.

To reduce false positives we use a parameter θ to control if these two automata
are different enough to announce an anomaly, i.e., L2(Ap,A′p) > θ. The value of
θ represents sensitivity of detection on the interval [0, 1]. Lower value of θ means
higher possibility of false alarms, higher values can cause that some anomalies
would not be discovered. Based on our experiments we recommend θ values from
0.1 to 0.25.

4.5 Experiments

In this section we present our experiments with modeling and anomaly detection of
IEC 104 communication using prefix trees and probabilistic automata. In the first
part we focused on learning and will discuss how efficient are PTs and DPAs for
representing the smart grid communication. The second part applies probabilistic
models on datasets with selected cyber attacks where we evaluate efficiency and
accuracy of anomaly detection.

4.5.1 Learning Probabilistic Models from IEC 104 Samples

For modeling IEC 104 communication, we employed the Alergia algorithm pre-
sented in Section 4.3.1. For our first experiments, we used tool Treba3 developed
by Mans Hulden et. al [58]. The tool implements various algorithms for training
probabilistic finite automata including Alergia. For execution, the Treba tool uses
two parameters: α that determines if two states have frequencies close enough to
be merged, see Equation (4.3), page 67, and threshold t0 that determines the mini-
mal number of strings that are necessary to be a state considered for merging [39,
p. 400]. Based on our experiments [52], we set the parameters as follows:

• The parameter α is set to 0.05 which gives a good balance between the merg-
ing (the strength of generalization and compactness) and classification error.

3See https://code.google.com/archive/p/treba/ [August 2021]

https://code.google.com/archive/p/treba/
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Dataset IEC 104 flows i-messages Conv. Devices

iec104 115 91 31 2
10122018-104Mega 104,533 94,040 6,927 4
10122018-104Mega 0 9,905 8,876 503 2
13122018-mega104 1,460,829 1,313,997 91,957 14
13122018-mega104 1 62,040 55,772 3,603 2
mega104-14-12-18 14,597 9,657 9,125 2
mega104-17-12-18 58,930 37,661 37,661 2
KTH-RTU1 6,234,474 3,117,251 2,088,540 6
KTH-RTU1 1 184 96 59 2
KTH-RTU1 2 168 87 55 2
KTH-RTU4 3,306,086 1,653,046 1,107,537 2
RICS 1,550,304 775,152 519,352 2

Table 4.1: IEC 104 datasets used for experimental evaluation

• The threshold t0 is set according to the formula t0 = blog2 |S|c, i.e., the
threshold depends on the size of the sample set. The logarithmic function
was chosen to obtain a smaller increase with the growing number of samples.

We evaluated the proposed probabilistic models on real IEC 104 traffic4. The
characteristics of our datasets (name, the number of flows, i-messages, conver-
sations, and communicating devices) are summarized in Table 4.1. Our datasets
contain from 31 to millions of conversations. The number of devices occurring
in the traffic varies between 2 and 14. Datasets with more than two devices are
partitioned by communication groups and one of the partitions is selected for ex-
periments (parts are annotated with numbers, e.g., 0,1,2). We also include the full
unpartitioned version which represents one master more slaves communication.

We applied the learning algorithm Alergia on each dataset to get the corre-
sponding prefix tree model and DPA. One third of each dataset was used for learn-
ing, the other two thirds were used for testing, i.e., evaluating the accuracy of the
learned model. The accuracy was computed as the ratio of the accepted conversa-
tions (with non-zero probability) to all conversations in the testing data. The results
are shown in Table 4.2.

The table evinces a high accuracy of both DPA and prefix tree models (about
99%) in all cases except iec104 dataset. The case of iec104 illustrates a scenario
with an insufficient learning data. The learning sample contains only one third
of the 115 messages and 31 conversations, which does not cover the complexity
of overall communication. Thus, the learned model has a very little chance to
recognize the testing communication. Notice, that in this case Alergia is not able
to merge states and generalize, so it returned an automaton with the same size of
44 states as the prefix tree.

4Datasets created in BUT are available in CSV format at https://github.com/

matousp/datasets/ [Sept 2020]. Datasets KTH-RTU1, KTH-RTU4, and RICS were pro-
vided by the RTSLab, Linköping University, Sweden [78].

https://github.com/matousp/datasets/
https://github.com/matousp/datasets/
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Dataset
DPA learned by Alergia algorithm Prefix tree

Est. parameters States Accuracy States Accuracy

iec104 α = 0.05, t0 = 3 44 0% (0/31) 44 0% (0/31)

10122018-104Mega α = 0.05, t0 = 11 8 100% (4642/4642) 49 99.8% (4636/4642)

10122018-104Mega 0 α = 0.05, t0 = 7 8 99.7% (337/338) 48 99.7% (337/338)

13122018-mega104 α = 0.05, t0 = 14 8 99.9% (61606/61612) 38 99.9% (61606/61612)

13122018-mega104 1 α = 0.05, t0 = 10 8 99.9% (2414/2415) 28 99.8% (2412/2415)

mega104-14-12-18 α = 0.05, t0 = 11 8 100% (6114/6114) 39 100% (6114/6114)

mega104-17-12-18 α = 0.05, t0 = 13 3 100% (25233/25233) 3 100% (25233/25233)

KTH-RTU1 α = 0.05, t0 = 19 12 100% (2088540/2088540) 12 100% (2088540/2088540)

KTH-RTU1 1 α = 0.05, t0 = 4 9 98.3% (58/59) 9 98.3% (58/59)

KTH-RTU1 2 α = 0.05, t0 = 4 9 100% (55/55) 9 100% (55/55)

KTH-RTU4 α = 0.05, t0 = 19 10 100% (1107537/1107537) 10 100% (1107537/1107537)

RICS α = 0.05, t0 = 17 2 100% (519352/519352) 2 100% (519352/519352)

Table 4.2: Modeling IEC 104 communication using DPAs and prefix trees.

For some cases, e.g., 13122018-mega104 and 10122018-104Mega, an appli-
cation of Alergia lead to a slightly small number of false positives that are resulted
by messages that were wrongly classified as anomalies. In case of 10122018-104
Mega, we get 100% accuracy for Alergia and 99.8% for the prefix tree. This is
caused by the fact that Alergia merges the prefix tree and derive general regular-
ities. Thus, the constructed DPA represents an over-approximated model of the
input set. Due to over-approximation (or generalization) the DPA also accepts
conversations that do not precisely appear in the learning sample which decreases
the number of false negatives.

Figure 4.9: A DPA constructed from dataset 13122018-mega104 1

.

In this particular case, Alergia learned that the file transfer may contain any
number of data segments, i.e., messages with ASDUTYPE=125 and COT=13, see
Figure 4.9. Thus, the model classifies as normal also conversations which are
contained in the learning sample and have the different number of occurrence. On
contrary, the prefix tree classifies everything that did not appear in the learning
sample as anomaly because it skips the generalization phase. The number of false
positives generated by the prefix tree is, nevertheless, quite small (below 2%). This
can be explained by the fact that we deal with a highly regular and relatively simple
traffic which is almost covered by the learning sample.

The prefix tree learned from KTH-RTU4 dataset is depicted in Figure 4.10. Note
that the probabilities contain rounded values, therefore the probability denoted as
0.0 means a very small value, e.g., 1.8 · 10−6 for transitions from 6 to 0 and 6 to 9.

As seen from our experiments, Alergia creates more compact automata than the
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Figure 4.10: A prefix tree constructed from dataset KTH-RTU4.

prefix tree due to merging of similar states in the generalization phase. The number
of states created by the prefix tree is surprisingly small, despite the large size of the
learning set. It is because of relative simplicity of ICS communication. For a
couple of datasets, in particular KTH-RTU*, the prefix tree has the same number of
states as the automaton obtained by Alergia. The reason of this is nature of these
datasets where the traffic is almost indifferentiable to apply the state merging.

The advantage of the prefix tree over the DPA created by Alergia is its sim-
plicity and transparency. For highly regular traffic it has relatively small number of
states with respect to the size of the learning set.

4.5.2 Anomaly Detection Using Probabilistic Models

In previous text we presented a method how to model ICS traffic using probabilistic
models. In this part, we focus on evaluation of our anomaly detection mechanisms
mentioned in Section 4.4, particularly single conversation reasoning and distribu-
tion comparison reasoning.

For our experiments we used IEC 104 dataset mega104-17-12-18 that was
created at Brno University of Technology3. The dataset consists of 58,930 mes-
sages of IEC 104 communication that were captured within 3 days of a real network
traffic. We experimented with six types of anomalies discussed below. The attack
traces were inspired by real scenarios against ICS communication as described in
Section 2.3 and 2.4. These attack vectors were emulated by injecting/removing
IEC 104 messages into/from the original normal traffic while keeping all the IEC
104 features untouched.

The probabilistic model of the normal traffic was trained on the original traffic.
The results of anomaly detection using DPA were indistinguishable from results
when using prefix trees for learning. Therefore we give only one common summary
of the results based on DPAs.

Input data were analyzed within five minutes windows. The output of distribu-
tion reasoning using DPA is visualized in Figures 4.11, 4.12, and 4.14.

Injection attack. In this scenario, see Fig. 4.11 a), an attacker compromised
an internal host on the ICS network and started to send unusual requests. First,
the attacker sent activation messages with ASDUTYPE=45 and COT=6 which re-
quested execution of the given command on the target host. The host correctly
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(a) Injection attack
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(b) Connection loss

Figure 4.11: Anomaly detection using distribution reasoning, part I.

confirmed the request with COT=7. The first attack took five minutes and in-
cluded 83 packets. During the second injection attack the attacker transferred a
file from the target to the compromised host. The attacker sent messages with
ASDUTYPE ∈ {122, 120, 121, 124, 125} which represented a file transfer. The at-
tack included 221 messages and took 15 minutes. We can see that during the first
attack, the Euclidean distance was about 0.4, during the second attack it was 1.

Connection loss. This scenario, see Figure 4.11 b), represents a short blackout
of a device when connection was lost. The first connection failure took 10 minutes
and 146 messages were lost. The second failure lasted for about one hour and 921
messages were lost. In both cases is the connection loss successfully detected by
distribution reasoning over DPAs.
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(a) DoS attack
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(b) Rogue devices

Figure 4.12: Anomaly detection using distribution reasoning, part II.

DoS attack. This Denial of Service (DoS) attack, see Figure 4.12 a), was di-
rected against a control station. The attacker sent hundreds of legitimate packets
to the destination. He used a spoofed IP address, which was sending spontaneous
messages with ASDUTYPE=36 and COT=3. The attack lasted for half an hour and
contained about 1049 spoofed messages. As seen in Figure 4.12 a), the attack was
not detected. It is because the DoS attack scenario contained additional conversa-
tions of the same typeA that was present in the training dataset. The time windows
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of the valid communication also contained many conversations of the type A and
the constructed probabilistic automata could not capture the change.

Example 4.4. To make it clear, consider, for instance, a time window
containing 10 messages of the type A and another time window containing
1.000 messages of type A. Then probabilistic automata obtained from the
prefix tree and these time windows are equal, see Figure 4.13.

q0,0
q1, 

1.0

A, 1

Figure 4.13: A DPA created from A sample set.

This limitation of probabilistic automata can be removed by a combination of
the detection procedure with a simple statistical analysis.

Rogue devices. A rogue device was connected to the ICS network and started
communicate with an IEC 104 host using legitimate IEC 104 messages. The at-
tacker used a sequence of spontaneous messages with ASDUTYPE=36 and COT=3.
The station correctly responded with supervisory APDUs. The attack lasted about
30 minutes and included 417 packets, see Figure 4.12 b). As seen in the figure, the
attack was correctly identified.
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(a) Scanning attack
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(b) Switching attack

Figure 4.14: Anomaly detection using distribution reasoning, part III.

Scanning attack. This scenario includes two scannings: the horizontal scan-
ning that enumerated IP addresses of the network segment, and the vertical scan-
ning that enumerated IOA addresses on the selected host, see Figure 4.14a a). First,
the attacker sent IEC 104 Test Frame messages on port 2404 that is typical for IEC
104 and observed responses. If a station responded, the attacker launched the ver-
tical scanning of the host using General Interrogation ASDUs sent to information
objects with IOA addresses 1 to 127. Each attack took about 15–20 minutes and
was detected by the distribution reasoning method.
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Anomaly Single Distrpref Distraler

Communication loss 7 3 3

Switching attack 3 3 3

Scanning attack 3 3 3

DoS attack 7 7 7

Rogue devices 3 3 3

Injection attack 3 3 3

Table 4.3: Comparison of the detection methods

Switching attack. The switching attack implemented a scenario similar to
the real attack against Ukrainian power plant using CrashOverride malware [41].
During this attack a series of IEC 104 packets with ASDUTYPE=46 and a sequence
of COT numbers (6, 7, 10) were sent to the target that caused switching the device
on and off, see Figure 4.12 b). The attack lasted for ten minutes and transferred
72 packets. Also here the attack was detected because such sequence of IEC 104
packets was not present in the normal ICS traffic and cause anomaly expressed by
higher Euclidean distance of DPAs.

4.5.3 Discussion

We evaluated our detection methods described in Section 4.4 using cyber attacks
scenarios typical for smart grid networks. For detection using the single conversa-
tion reasoning we set the threshold µ = 0. For detection via distribution compar-
ison we set θ = 0.25. The length of an observed time window was five minutes
which corresponds to a typical export time of IPFIX records.

Results of both detection method, i.e., single conversation reasoning and dis-
tribution reason are summarized in Table 4.3. We have compared the detection
via single conversation reasoning (Single), detection via distribution comparison
based on DPAs learned using Alergia (Distraler ), and detection via distribution
comparison based on prefix trees (Distrpref ). The detection results for Distraler

of the considered scenarios are shown in Figures 4.11 to 4.14. The graphs show
Euclidean distance of the valid traffic and the traffic under inspection for each time
window, see Equation 4.4 in Section 4.4.2.

From Table 4.3 we can see that the Distraler and Distrpref detection methods
are equally successful in all cases except the DoS attack scenario as discussed
above.

The Single detection method does not detect DoS attack and communication
loss. In case of communication loss, Single is not able to detect an anomaly because
it only analyses existing individual conversations unlike the distribution compari-
son method.

From graphs in Figures 4.11 to 4.14 we can see that in case of Distraler , we
are able to detect all anomalies including multiple occurrence within the scenarios



CHAPTER 4. AUTOMATA-BASED ANOMALY DETECTION 81

(except the discussed DoS attack scenario) with no false positives. The same is
true also for Distrpref : the graphs look the same, so we do not present them here.
In case of the Single detection approach, the situation is also encouraging. This de-
tection method is able to detect all anomalies including their multiple occurrences.

Our detection methods do not report any false positives because no other win-
dows in the traffic are evaluated as anomalous. They give alerts exactly on the
ongoing anomalies, except the two missed anomalies discussed above.

4.6 Summary

In this chapter, we have introduced a new technique for efficient modeling of ICS
communication using probabilistic automata. Our choice of probabilistic automata
as a modeling mechanism for the network traffic is based on the idea that DPAs can
be efficiently learned from positive examples and that besides the regular struc-
ture of the communication, the probabilistic automata also capture a probability
distribution of communication which is beneficial, for instance, for detection of
connection loss.

Since the ICS communication is stable and regular, the automata capture the
normal communication rather precisely using small number of states and transi-
tions. The automata are automatically learned from samples of ICS communication
obtained from ICS flow records. The automata model the semantics of ICS com-
munication between two ICS devices. The semantics is extracted from the protocol
headers based on expert knowledge. We demonstrated on IEC 104 communication
that it is enough to consider only ASDUTYPE and Cause of Transmission (COT)
extracted from i-messages for modeling high-level communication of IEC traffic.

For anomaly detection we proposed two methods that verify incoming data in
form of ICS flow records with the learned probabilistic model. The first method
called single conversation reasoning computes the probability of each incoming
conversation on the learned automaton. If the probability is zero, the conversa-
tion is marked as anomalous. The second method called distribution comparison
reasoning creates a probabilistic model for each time window of the input traffic.
This model in form of the prefix tree or DPA is compared to the learned model.
Difference between model is expressed using Euclidean distance. If the distance
between these two models is above threshold, an anomaly is raised.

We demonstrated that these detection methods are able to detect common classes
of cyber attacks on ICS systems, i.e., the switching attack, command injection, con-
nection of a rogue device, and the scanning. Probabilistic automata are not suitable
for detecting denial of service attacks if the attack uses same communication se-
quences that were present in the training dataset. However, the DoS can be easily
detected by statistical methods as described in the following chapter.



Chapter 5

Statistical-Based Anomaly
Detection

In the previous chapter we introduced an automata-based approach for modeling
ICS communication sequences using probabilistic automata. As demonstrated by
our experiments, the created automata-based models are stable, compact and able
to detect security threats and anomalies typical in smart grids. We also noticed
that due to the missing timing information, an automata-based model cannot cap-
ture time-related anomalies like an abundance of legitimate ICS packets caused by
the DoS attack, unexpected inter-packet delays which may indicate unstable con-
nection, or irregular time delivery caused by network congestion. It is possible to
extend probabilistic automata by time but their application to ICS traffic would be
limited due to their complexity. Instead, we focus our attention on statistical meth-
ods that produce sufficient results for ICS anomaly detection with much lower time
and space complexity then probabilistic timed automata.

To address time-related issues of smart grid communication, we thus propose
a second approach of modeling ICS communication. This approach can be seen as
complementary to the automata-based modeling where automata represent high-
level qualitative features of ICS communication while statistical-based modeling
deals with quantitative communication parameters and their statistical distribution.

Statistical-based anomaly detection observes distribution of specific features
obtained from ICS traffic. By monitoring ICS packets and flows, we extract various
features like inter-arrival time, packet direction or size that are used to build a
model representing their statistical distribution. Anomaly detection then compares
the real-time traffic statistics with the learned statistical model. Data points that are
outside the learned model are called outliers or anomalies and denote unexpected
behavior of the system.

Due to the stability of ICS communication, statistical models represent a natu-
ral way for detection of common ICS anomalies including security threats, device
malfunctioning, network congestion, etc. In addition, monitoring time properties
of ICS/SCADA protocols is extremely important to secure proper operation of crit-
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ical industrial processes which work in real-time environment.
Statistical properties of network communication are not limited to time values

only but include various packet and flow features that are observed on different
layers of the TCP/IP model. On Layer 3 (IP layer), we can observe IP datagram
timestamp, packet size, direction, delay, etc. On Layer 4 (transport layer), we can
monitor TCP flow duration, flow size, TCP segment inter-arrival time, round-trip
time (RTT), or re-transmissions [46, 69]. Statistically interesting features can be
also extracted from Layer 7 (application layer), e.g., statistical distribution of IEC
104 commands (i-frames) or Modbus operations [71].

The main advantage of the statistical model is that it does not require high
processing power and time to extract packet features and build the model, so it
can be easily implemented on a monitoring probe or IDS device. On the other
hand, statistical methods are sensitive to outliers which are particular data with
exceptionally low probability that can be incorrectly marked as anomalies. Hence,
an important question for statistical modeling of network communication is how
to represent statistical distribution of a given data set so that the model is precise
enough and includes even samples with low probability, and at the same time is
able to correctly detect any anomaly. The level of detection accuracy is usually
controlled by a threshold variable which is determined with respect to the specific
environment.

In this chapter we present a method for creating a statistical profile of ICS com-
munication using inter-arrival time and packet direction obtained from normal traf-
fic samples. The presented method combines the ideas used by Crotti et. [37] and
[108] for IP traffic fingerprinting and classification. We split the communication
into regions based on packet inter-arrival times and direction. For each region we
create a statistical profile representing the typical ICS traffic. The main point of this
method is how to determine split-points that automatically divide the traffic into re-
gions for more accurate modeling. For detection, we employ the Three Sigma Rule
[101] that gives minimum false positives. Our experiments were mostly done on
IEC 104 communication where we detected common anomalies. The proposed
method not only detects a specific anomaly but is able to identify its type.

The work presented here was created in collaboration with Ondřej Ryšavý and
Ivana Burgetová in frame of Ironstone1 and Bonnet2 projects.

5.1 Related Work

Statistical-based anomaly detection is one of the widely used techniques [12, 45].
The basic idea of statistical methods is to detect significant deviations of observed
behavior from the normal one. Successful statistical modeling requires stable and
predictable behavior of modeled traffic. Stability and regularity of ICS/SCADA

1See https://www.fit.vut.cz/research/project/1101/.en [July 2021].
2See https://www.fit.vut.cz/research/project/1303/.en [July 2021].

https://www.fit.vut.cz/research/project/1101/.en
https://www.fit.vut.cz/research/project/1303/.en
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communication was previously studied and demonstrated for major industrial pro-
tocols like Modbus [117], IEC 104 [78], or DNP3 [46].

In our own work [89] we observed regularity of Internet of Things traffic and
created a simple statistical model for representing resource usage of Constrained
Application Protocol (CoAP) [112]. The CoAP resource was described by a pair
operation (e.g., PUT command) and resource URL address (e.g., floor light). In
each time window we observed the number of packets and octets associated with
the resource and created a usage profile related to the specific resource and device.
The model was created by application of expectation-maximization (EM) algo-
rithm [40] and represented as a joint probability function and computed threshold
value. The obtained results showed hit ratio (recall) about 75 to 90% with false
positive ration about 2 to 6.4%. Since ICS traffic is more stable and regular than
CoAP communication, we applied a statistical model with simpler computation
which, however, gives quite precise results.

Statistical properties of ICS communication were widely explored by Barbosa,
et al. in [18, 20] where the authors compared periodicity, throughput and topology
changes in SCADA and SNMP traffic. Their results show that SCADA communi-
cation exhibits periodic behavior at a smaller scale, has constant throughput over
a long period of time, and keeps a stable number of connections. Its periodicity is
caused by a polling mechanism used to retrieve data from SCADA slaves [19]. The
authors demonstrated that attacks like scanning, denial of service, network protocol
manipulation, or buffer overflow disturb the periodicity, thus, it can be detected by
anomaly detection. For modeling the SCADA communication, Barbose et al. use
time series representing the number of packets belonging to a specific flow. During
periodicity learning, they generate a periodogram for each flow using Fast Fourier
Transform. In detection phase, using discrete-time Short-Time Fourier Transform
they create a spectrogram for monitoring changes in periodicity. Our approach
comes out of Barbosa’s observations. Instead of monitoring a simple number of
transmitted packets we provide a more subtle classification using arrival times dis-
tribution. This is faster in computation while providing similar results.

Valdes and Cheung [117] introduced pattern-based and flow-based anomaly
detection of ICS communication. Their patterns include source and destination
IP addresses and ports. During detection, they monitor previous n-occurrences of
the pattern and compute the historical probability of the pattern. If the probability
is less than the given threshold, an alert is generated. Their solution includes a
periodic update of the patterns and pruning the rare patterns. The second technique
presented by Valdes and Cheung uses flow records for anomaly detection. Flow
records include more attributes like source and destination addresses, the time of
the last packet, the average number of bytes per packet, the variance of bytes per
packet, or mean and variance of packet inter-arrival time. Similarly to pattern-
based detection, they compare the traffic with historical flow records and compute
a difference. If a record does not exist or differs too much, the alert is raised. They
tested the approach on MODBUS network with periodic data retrieval. They were
able to detect anomalies like scanning, modified data, denial of service, and system
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degradation. Unfortunately, their results do not show the number of false positives
and implementation. Our approach does not observe individual flows but creates a
model for entire communication between groups of communicating ICS nodes.

Lin and Nadjm-Tehrani [78] analyzed timing patterns of spontaneous events
of the IEC 104 protocol which are asynchronously generated by an RTU. The au-
thors model inter-arrival times of IEC 104 packets using Probabilistic Suffix Trees
(PSTs) and analyze phase transitions, predictability, and frequent patterns. They
describe inter-arrival times as sequences of symbols representing groups of ”simi-
lar” inter-arrival times. The symbolic sequences are further processed (smoothing,
finding boundaries) and used to create a PST. Having the PST, the authors define a
phase transition, i.e., a period of time during which the distribution of inter-arrival
times is stable. They found five groups of traffic patterns based on phase transi-
tions: strongly cyclic, weakly cyclic, stable, bursty, and transitional communica-
tion. Using the probability of communication patterns, they predict future behavior,
i.e., that a certain pattern would appear in the next segment. The approach is, how-
ever, computationally very intensive. We also deal with IEC 104 communication,
but we do not restrict to spontaneous events only but model all IEC 104 packets.
We use a simpler statistical model with lower computational requirements.

In their other work, Lin et al. [79] propose a timing-based anomaly detec-
tion system for SCADA networks where they employ inter-arrival time of packets
similarly to us. They built a statistical model for selected packets of three ICS pro-
tocols: request and responses of S7, requests and responses of Modbus, and IEC
104 spontaneous events. Their model includes sampling distribution defined by
the sample mean, standard deviation, and the Central Limit Theorem (CLT). For
detection, they use a sliding window where they calculate the sample mean and
sample range. They verified the proposed model on normal traffic and various at-
tacks including flooding, injection, and prediction (spoofing). They reached a 99%
detection rate with 1.4% false positives. In our case, we divide packets into several
regions based on inter-arrival time and direction, and for these regions we create a
statistical model which is more accurate.

5.2 Preliminaries

Statistical anomaly detection is grounded on the assumption that ”normal data in-
stances occur in high probability regions of the stochastic model, while anoma-
lies occur in the low probability regions” [29]. Statistical modeling is a popular
technique for anomaly detection because statistical methods allow simple and fast
outlier detection, especially in one-dimensional space. They assume data points
to be spread out according to some distribution, e.g., normal distribution. Then, a
statistical test is performed in order to determine if a particular data point belongs
to the model or not. If the probability of a particular data point generated from
the learned model is low, then the data point is declared as an anomaly. Similarly,
it is possible to define an interval of normal values for a given dataset using the
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statistical model and the applied test.
There is a various range of statistical methods and techniques used for anomaly

detection. In this section, we recapitulate only those methods and statistics that are
relevant for our work.

5.2.1 Sample Mean, Standard Deviation, Range

Having a sample of data points expressed using numerical values, we used several
statistics that summarize the information in the sample data and highlights impor-
tant features such as the middle or central tendency and the variability which is
important for anomaly detection. There are three common statistics used for statis-
tical modeling: the sample mean, standard deviation and sample range [94].

Let D = {d1, ..., dn} be a sample of data points that follow the normal distri-
bution. For set D, we compute the sample mean m, sample standard deviation σ,
and the sample range r as follows:

sample mean: m =
1

n

n∑
i=1

di (5.1)

sample standard deviation: σ =

√√√√ 1

n

n∑
i=1

(di −m)2 (5.2)

sample range: r = max(di)−min(di) (5.3)

5.2.2 Three Sigma Rule, Box Plot

A simple outlier detection technique is Three Sigma Rule. It says that for normal
distribution roughly 99.7% of data points lie within the interval 〈m − 3 × σ,m +
3 × σ〉 [101] where m is the mean and σ is the standard deviation of the sample.
This interval describes normal behavior and is computed during the learning phase.
When a data point is outside this interval, it indicates an anomaly.

Another useful technique is the Box Plot Rule [116] that defines an interval
of normal values using the Inter Quartile Range (IQR). Having the lower quartile
Q1 and upper quartile Q3 of the distribution, the normal values are within the
interval 〈Q1− 1.5× IQR,Q3 + 1.5× IQR〉 where IQR = Q3−Q1. For normal
distribution, roughly 99.3% of data points lie within this interval.

In our research, we applied both approaches on our data [24]. Since the IQR
test produced more false positives we focused on the Three Sigma Rule.

5.2.3 Packet inter-arrival time

Packet inter-arrival time ∆t is the amount of time between the arrival of two sub-
sequent packets. It is computed by a monitoring probe as a difference between
timestamps of two subsequent packets. Its value depends on the location of the
monitoring probe in the network, see Figure 5.1.
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Figure 5.1: Measuring inter-arrival times

For statistical modeling, the location of a probe is not important since ∆t
distribution keeps the same statistical properties independently on the location
of an observation point, i.e., statistical distribution of set T = {∆t1,∆t2,∆t3,
∆t4,∆t5,∆t6, . . .} is similar to distribution of T ′ = {∆t′1,∆t′2,∆t′3,∆t′4,∆t′5,
∆t′6, . . .}. Nevertheless, the location of the probe during learning phase where a
distribution model is created should be the same as for the testing.

In case of industrial communication and anomaly detection, it is effective to
observe distribution of inter-arrival times between two packets in one direction or
between packets in bi-directional transmissions.

In case of one-directional inter-arrival times monitoring, we observe indepen-
dently packets passing through an observation point in each direction, see Figure
5.2 (a). Thus, we obtain two distributions of inter-arrival times sent from the master
and to the master, i.e., T f = {∆t1,∆t2,∆t3} (black values) and T t = {∆t1,∆t2}
(blue values).

In case of bi-directional inter-arrival times monitoring, we compute ∆t times
of each subsequent packets exchanged between the master and slave, see Figure
5.2 (b), thus we get one distribution T = {∆t1,∆t2,∆t3,∆t4, . . .}.

One-directional model better describes communication profile of a sending
station while bi-directional model efficiently represents typical data exchange be-
tween a pair of stations. Which model is more suitable for statistical-based anomaly
detection depends on behavior of underlying ICS protocols. Bi-directional distri-
bution gives more sense for a master-slave communication while one-directional
modeling better fits a publish-subscribe data exchange.

An important question for any statistical modeling is what statistical distribu-
tion describes the best the chosen packet features? In case of packet inter-arrival
times, there are several studies observing their statistical distribution. Perkins
showed in [97] that inter-arrival time of RTP packets is similar to Gaussian dis-
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Figure 5.2: One-directional and bi-directional inter-arrival times

tribution. Santos da Silva et al. [109] also supposed normal distribution in their
classification of SDN traffic using flow features. Lin et al. [79] approximated dis-
tribution of timing properties of ICS protocols (S7, Modbus, IEC 104) by normal
distribution using the Central Limit Theorem. Also our experiments of measuring
inter-arrival times of GOOSE and IEC 104 traffic proves that this feature can be
approximated with normal distribution. Real inter-arrival times distribution can be
a bit skewed due to the congestion, but congestion is rare in industrial networks.

5.2.4 Network Traffic Profiles

Industrial communication is usually limited to a fixed number of communicating
nodes connected to the ICS network. In the master-slave communication model,
a master station communicates with one or more slaves. This behavior is typical
for industrial protocols like IEC 104, MMS, or Modbus. In the publish-subscribe
communication model, the publisher sends regularly data to a set of receiving sta-
tions, mostly in one direction. This model is implemented by the GOOSE protocol,
for instance. Based on the communication model, we define two kinds of network
profiles that we use for statistical modeling of network communication: master-
oriented profile and peer-to-peer-oriented profile.

The master-oriented profile, see Figure 5.3, describes a communication where
a master periodically exchanges data with a set of slaves. Typically, slaves are
requested at the master one by one using round-robin order. To build the pro-
file, we select all network transmissions identified by master’s ID, e.g., IP or
MAC address. Then the statistical model for the master-oriented profile repre-
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sents inter-arrival times of packets sent or received by this master node as a set
T = {∆t1,∆t2,∆t3, . . .}. Additionally, we can refine the model by adding packet
direction and measure ∆t times between subsequent packets of each direction as
mentioned in previous section. Then we create two subsets based on direction, i.e.,
T f = {∆tf1 ,∆t

f
2 , . . .} for the from-master direction and T t = {∆tt1,∆tt2, . . .} for

the to-master direction.
A peer-to-peer-oriented profile represents communication between two nodes,

e.g., IEC 104 master and slave, or GOOSE publisher and its subscribers, see Figure
5.4. In this case, peer-to-peer communication is identified by peer IDs, i.e, a pair
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Figure 5.4: Peer-to-peer-oriented communication profile
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of MAC addresses, IP addresses, and/or ports, or using a multicast destination
address like in case of GOOSE communication. The peer-to-peer profile is built
for each pair of communicating devices. The number of pairs is determined during
the learning phase and usually stays unchanged until a new device is connected to
the network which is quite rare in smart grid networks.

The difference between master-oriented profile and peer-to-peer oriented pro-
file is highlighted in Figure 5.5. The figure displays the number of packets of in
13122018 dataset, see Section 5.3.1, transmitted in five minute windows. The
dataset contains communication of 14 different devices. Figure 5.5 (a) shows ap-
plication of peer-to-peer-oriented communication profile in from master direction.
The profile considers communication of one pair device only, i.e., the master and
one slave. Looking at the graph, we can notice that during 2 days and 23 hours
long data capturing, these two devices communicated only shortly, therefore it is
not possible to get one stable statistical model for their communication. One so-
lution is to create two statistical models which would, however, prevent detection
of many attacks. More suitable solution is to apply master-oriented profile which
covers all communications of the given master and where the packet distribution
with inter-arrival time characteristic is stable as showed on Figure 5.5 (b).
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Figure 5.5: Network profiles of inter-arrival times, dataset 13122018

5.3 Statistical Modeling of ICS Traffic

Now we describe how to build a statistical model of ICS communication using
two packet features: inter-arrival packet times and packet direction. Packets that
are subject of modeling are selected using the previously defined network profiles.
The core of our method is how to automatically find suitable split points that di-
vide ∆t times characteristic of a given communication into regions which provide
more subtle models. As described more thoroughly below, split points represent
an additional characteristic that creates more stable models for representing ICS
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communication.
The text of this section is structured as follows. First, we describe datasets used

for our experiments and present three approaches how to automatically select split
points. Then we show how the statistical model is computed using the Three Sigma
Rule and selected split points.

5.3.1 Datasets

For our experiments we used several datasets with IEC 104 and GOOSE traffic
listed in Table 5.1. The first four datasets were created at our university, datasets
RTU8, RTU11, and RICS were provided by RTS Labs in Linköping University,
Sweden. The last dataset with GOOSE communication was captured at GIGS
Labs in Grenoble, France. Each line in the table contains the name of the dataset,
number of captured packets, number of packets of interest, i.e, IEC 104 or GOOSE,
duration of capturing and the number of communicating ICS devices.

Packets
Dataset Total IEC/Goose Duration Devices

13122018 (I) 1,433,083 874,697 2 days 23h 14
10122018 (I) 102.971 62,676 4h 53 min 4
14-12-18 (I) 35,905 14,342 15h 38min 2
17-12-18 (I) 150,273 58,929 2 days 20h 2
RTU8 (I) 5,788,789 3,117,663 6 days 18h 2
RTU11 (I) 3,491,020 1,828,733 6 days 18h 2
RICS (I) 4,477,807 882,957 12 days 21h 2
Goose (G) 200,583 83,966 19h 26 min 4

Table 5.1: Datasets with IEC 104 (I) and GOOSE (G) traffic.

5.3.2 Finding Split Points

As mentioned in the previous research [79, 109, 118], packet inter-arrival time ∆t
is a useful characteristic for describing network behavior. In this work, we create
a statistical model of the number of transmitted packets having specific character-
istic(s), e.g., ∆t, packet size, direction, within a fixed time window. To build an
accurate model, we first split observed packets into several regions based on their
characteristic(s) Then we create a statistical model for each region. Usage of re-
gions provides more accurate models which enable to detect common anomalies
and identify a particular anomaly that occurred in the network. This particularly
helps for ICS communication that exhibits periodic patterns. Instead of detect-
ing periodic cycles, their size and duration as in [23], we use regions that provide
sufficient accuracy of modeling of periodicity in communication with much less
complexity. This is demonstrated on DoS attack in Section 5.4.2.
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In addition, application of regions helps to identify of an anomaly type which
is important especially for network administrators. This section presents three pos-
sible ways how to determine split points for inter-arrival times.

Four equal regions. The first case represents a naı̈ve solution that splits the
range of inter-arrival times into four equal regions based on the maximal and min-
imal values observed in the training dataset, i.e., the total range R = ∆tMax −
∆tMin is split into four regions:

〈∆tMin,
1

4
×R), 〈1

4
×R, 1

2
×R), 〈1

2
×R, 3

4
×R), 〈3

4
×R,∆tMax〉

Unsurprisingly, this solution is not very suitable for ICS traffic modeling, since
∆t values are usually not uniformly distributed as seen in Table 5.2. The table

Dataset Direction min Q1 Q2 Q3 max

13122018 fm 0.0000 0.0000 0.0003 0.0004 16.1905
tm 0.0000 0.0002 0.0004 0.0600 10.1331

10122018 fm 0.0000 0.0000 0.0003 0.0005 8.2033
tm 0.0000 0.0002 0.0004 0.0598 5.2006

14-12-18 fm 0.0000 1.6701 3.2010 5.2896 19.7166
tm 0.0000 1.0076 3.0301 6.0784 19.2687

17-12-18 fm 0.0000 1.9989 3.5909 5.6002 19.9873
tm 0.0001 1.0091 3.0332 6.0831 19.2696

RTU8 fm 0.0000 0.2025 0.2044 0.2184 1.2111
tm 0.0000 0.0142 0.0145 0.0146 15.5452

RTU11 fm 0.0000 0.2109 0.3734 0.4792 2.4896
tm 0.0000 0.0060 0.0121 0.0145 1.4055

RICS fm 0.0000 0.0464 0.0830 3.8960 20.0577
tm 0.0000 0.0073 0.0124 0.1410 10.1876

Table 5.2: Inter-arrival time distribution in selected datasets

shows inter-arrival time distribution of packets in direction from master (fm) and
to master (tm). Taking the first row with ∆tMin = 0 and ∆tMax = 16.19, we
obtain four regions 〈0, 4.05), 〈4.05, 8.1), 〈8.1, 12.15), and 〈12.15, 16.2〉. However,
the majority of observed ∆t values fall into the first region, since even the third
quartile (75%) includes values with ∆t ≤ 0.0004. Typically, inter-arrival time of
few packets is much greater then inter-arrival time of the rest of packets. With such
splitting, the majority of packets falls into one or two regions.

Non-uniform distribution of inter-arrival times is apparent on graphs in Figure
5.6 which display the number of packets transmitted in five minute windows of
13122018 dataset in from master and two master directions.

The figure presents master-oriented profiles where additional characteristics
show the effect of using four equally large intervals of inter-arrival times. The
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(b) Direction to master

Figure 5.6: Split points selected equally, dataset 13122018

blue line depicts the total number of packets, i.e., the sum of all regions. You
can notice that the most packets fall into region int1 (orange line) while the other
three regions of equal size contain only few values. For from master direction, the
average number of packets matching the first region int1 is 1300.5 packets, for the
second region int2 it is 5.2 packets, for the third region int3 0 packet and for the
last region int4 1 packet. For to master direction, the average number of packets
matching the four regions is 365.1 (int1), 32.5 (int2), 1.2 (int3), and 1.0 (int4),
see Table 5.3.

Region 1 Region 2 Region 3 Region 4

fm regions 〈0; 4.05) 〈4.05; 8.1) 〈8.1; 12.14) ∆t ≥ 12.14
packets 1300.5 5.2 0 1.0

tm regions 〈0; 2.53) 〈2.53; 5.07) 〈5.07; 7.6) ∆t ≥ 7.6.
packets 365.1 32.5 1.2 1.0

Table 5.3: Equal regions for dataset 13122018 (a 5-minute window)

The pre-defined split points. Table 5.2 highlights significant differences
in inter-arrival times distribution for individual datasets and directions. It is obvi-
ous that reasonable split-points cannot be defined ad-hoc. To define suitable split
points, we need to analyze inter-arrival times of the given learning dataset. Due
to this fact we decided to reduce the number of split points and ∆t regions. We
search for one split point for each direction only that provides two additional char-
acteristics of the traffic expressed in regions.

With non-uniform inter-arrival time distribution it seems reasonable to choose
some percentile, e.g. median, as a recommended split point. Such solution pro-
vides much better characteristics than the equal regions. As obvious in Table 5.2
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it is not easy to find a single percentile which gives the best split point selection
for each dataset and direction. The choice of a suitable quartile for one dataset
and direction leads to less stable characteristics for another dataset or direction.
For example, in dataset 17-12-18 and direction from master the 75th percentile
Q3 produces a very stable characteristic while the opposite direction of the same
percentile produces unstable periodic characteristics, see Figs. 5.7 (d) and 5.8 (d).
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(a) Split-point Q1=2.00
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(b) Split-point Q2=3.60
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(c) Split-point mean=4.13
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(d) Split-point Q3=5.66

Figure 5.7: Pre-defined split points, from master direction, dataset 17-12-18

Figure 5.7 depicts the number packets of 17-12-18 dataset transmitted in five
minute windows in from master direction using the peer-to-peer profile. The figure
demonstrates selection of different split points, i.e, quartiles Q1, Q2, mean, and Q3.
We can see that when using the mean and Q2 for splitting inter-arrival times into
regions, it is not easy to describes these regions statistically because they overlaps.
The overlapping would result in putting a packet into several regions and statistical
profiles which would distort the model of communication. Thus, more suitable
candidates for this datasets are Q1 and Q3.

Similarly, when observing graphs in Figure 5.8, suitable candidates for split
points are also Q1 and Q3 with none or small overlapping. However, for other
datasets, split point candidates may differ, see our experiments described in [24].
Thus, we can conclude that split points cannot be effectively selected by splitting
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(b) Split-point Q2=3.03
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(c) Split-point mean=4.29
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Figure 5.8: Pre-defined split points, to master direction, dataset 17-12-18

the inter-arrival range of the dataset into four equal regions neither by choosing pre-
defined values representing quartiles and the mean. The third approach shows an
automated way how to find suitable split points for a learning dataset by a two-step
algorithm that includes computation of the mean and standard deviation for split
point candidates and selection of the one that best fulfills matching conditions.

Automatically derived split points. The third case employs the auto-
mated method that finds suitable split points for individual directions of the given
traffic. This approach utilizes distribution of ∆t of packets transmitted in the given
direction together with the standard deviation. Undoubtedly, different split points
produce different characteristics. Some split points can filter-out the periodic be-
havior from at least one characteristic. This case is more suitable for anomaly
detection as it produces more stable characteristics. Depending on traffic, the most
suitable split points are the median of inter-arrival times, and quartiles Q1 or Q3.

Instead of testing the value of each percentile of inter-arrival times as a candi-
date split-point, we approximate the inter-arrival times distribution with four val-
ues: quartiles Q1, Q2, mean and Q3. We search for the best split-point among
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these four candidates.
Tables 5.4 and 5.5 show the candidate split-points for dataset 17-12-18 with

mean and standard deviation (std) of the resulting characteristics. ∆t distribution
is derived from the first 48 hours of the captured traffic in order to decrease the
influence of the periodicity. For from master direction, see Table 5.4, the value
5.66 (Q3) produces characteristic with the minimal standard deviation, so Q3 is
the best candidate for the split point. For to master direction, see Table 5.5, we
obtain the most stable characteristic for value 1.01, so Q1 is the best candidate.

Split point ∆t < split point ∆t ≥ split point
candidate value mean std mean std

Q1 2.00 12.66 3.80 36.82 8.08
Q2 3.60 25.29 8.34 24.19 3.94

mean 4.13 28.89 9.38 20.59 3.33
Q3 5.66 37.36 10.99 12.12 2.83

Table 5.4: Automated split point selection, dataset 17-12-18, from master

Split-point ∆t < split point ∆t ≥ split point
candidate value mean std mean std

Q1 1,01 6,04 2,33 16,78 2,23
Q2 3,03 10,92 3,13 11,90 2,86

mean 4,29 14,61 3,34 8,21 3,01
Q3 6,08 16,90 3,37 5,93 3,02

Table 5.5: Automated split point selection, dataset 17-12-18, to master

Therefore, our algorithm for automated selection of split points tests four can-
didates for split points: Q1, Q2, mean and Q3 and select the candidate that pro-
duces the most stable characteristic, i.e., it has the minimal standard deviation.
However, for some datasets the split point with minimal deviation divides packets
in such way that the stable characteristic contains only few packets in each time
window. If the mean is close to zero, then the testing the Three Sigma Rule range
would go to negative values and such model would not be capable to detect some
types of anomalies. For this reason, we put an additional condition on selection
of the split point from the set of candidates: we search for the candidate (i) with
the minimal standard deviation of the distribution, and (ii) matching the non-zero
condition for the Three Sigma Rule, i.e., mean− 3× σ > 0, see Section 5.2.2.

5.3.3 Building the Statistical Profile

In this part, we provide a step-by-step description of the ICS modeling process.
Consider an input sequence of packets in master-oriented or peer-to-peer-oriented
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communication model, i.e., between two devices or a master and the correspond-
ing slaves as described in Section 5.2.4. For each packet i in the sequence, extract
timestamp ti and create a set T d = (td1, t

d
2, ..., t

d
n), where d ∈ {t, f} denotes di-

rection to master (t) and from master (f). We build up the statistical model for the
given set of packets as follows:

1. For each subsequent packets (i) an (i+ 1) determine the packet inter-arrival
time ∆tdi+1 = tdi+1−tdi and create the sequence ∆T d = (∆td1,∆t

d
2, . . . ,∆t

d
n)

describing inter-arrival times of the communication for given direction.

2. Partition sets T d and ∆T d into subsets based on direction, i.e., T f and ∆T f

for from master direction and T t and ∆T t for to master direction.

3. For each set ∆T d where d ∈ {f, t}, determine a set of split point candidates
Dd = {Q1d, Q2d,meand, Q3d} where Q1 is the first quartile, Q2 is the
median, Q3 is the third quartile and mean is the arithmetic mean.

4. For each split point candidate sp ∈ Dd split the ∆T d into two sets Sd,L and
Sd,U , where Sd,L is a set of ∆tdi < sp (lower region) and ∆tui ≥ sp (upper
region). For each regions, find the number of packets transmitted in every
time window and compute its mean and standard deviation using equations
(5.1) and (5.2).

5. From the set of split point candidates select for each direction the best split
point with minimum σ that satisfies condition m− 3× σ > 0.

6. Filter out the time windows in which the number of transmitted packets does
not satisfy the Three Sigma Rule. Find the new mean m′ and standard de-
viation σ′ for the reduced set of time windows. This step is important for
learning when ∆t values of few data points are too far from majority of val-
ues. Such exceptions happen in ICS communication. By refining the mean
and standard deviation in this step keeps the computed region small enough
to match majority of normal data points. When omitting this refinement,
the created region would become too wide which would cause the increase
number of false negatives.

7. For a filtered set of time windows, create the statistical profile

P d = (spd, 〈a1, a2〉, 〈l1, l2〉, 〈u1, u2〉)

where sp is the selected split point from Dd, a1 = m′ − 3 × σ′, a2 =
m′+3×σ′, l1 = m′l−3×σ′l, l2 = m′l+3×σ′l, and u1 = m′u−3×σ′u, u2 =
m′u + 3× σ′u.

Range 〈a1, a2〉 denotes the total number of the transmitted packet in the time
window, range 〈l1, l2〉 denotes the packets with inter-arrival times less than
the split point (lower region) and range 〈u1, u2〉 denotes the packets with
inter-arrival times greater than the split point (upper region).
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By applying this method, we can create statistical profiles for our datasets using
packet inter-arrival times and packet direction, see Table 5.6.

Dataset Dir Split point Total range Lower region Upper region

13122018 fm 0.09 <1260.54;1357.95> <1171.15;1270.40> <45.17;131.89>
tm 0.46 <390.15;411.42> <336.42;359.35> <46.27;59.52>

10122018 fm 0.10 <1200.78;1413.44 > <1104.74;1311.42> <79.51;119.30>
tm 0.40 <367.10;427.92> <314.46;375.33> <47.91;54.49>

14-12-18 fm 5.28 <17.74;82.24> <0.27;72.10> <4.82;22.70>
tm 1.01 <19.39;26.28> <-1.43;12.03> <11.09;23.98>

17-12-18 fm 5.66 <20.30;76.94> <4.70;68.05> <3.90;20.62>
tm 1.01 <19.39;26.22> <-1.01;12.26> <10.67;23.64>

RTU8 fm 0.186 <1329.00;1858.74> <86.53;524.54> <1230.18;1346.55>
tm (0.014 <147.58;206.59> <10.04;58.02> <92.85;193.18>

RTU11 fm 0.211 <368.79;1302.63> <-231.92;644.10> <541.62;713.65>
tm 0.006 <40.97;144.76> <9.69;36.95> <11.34;127.58>

RICS fm 1.35 <169.52;248.56> <114.27;191.58> <50.29;62.05>
tm 0.14 <24.56;33.61> <14.25;29.47> <0.84;13.56>

Table 5.6: Example of statistical profiles for our dataset

The following section presents how the statistical profiles of smart grid com-
munication can be used for anomaly detection.

5.4 Anomaly Detection

Validation tests were performed to confirmed suitability of the proposed statistical
method for ICS communication and correctness of defined ranges for individual
features selected to describe behavior of the communication. For each test we used
the first two thirds of the captured communication to learn the statistical profile
using the steps described in the previous section. Then we validated the profile on
the last third of the dataset.

5.4.1 Simple Detection and 3-Value Detection Methods

We employed two detection methods: simple detection and 3-values detection.
The simple detection evaluates each time window independently and compares the
number of transmitted packets of a selected communication (using the peer-to-peer
or master-oriented communication profile) in this single window with the learned
statistical profile. An anomaly is detected if a value does not fit the specified range
of the profile determined by the Three Sigma Rule, see Section 5.2.2.

By doing experiments with the simple detection, we noticed that the method
marks a number of five minute windows as anomalies even if it is a normal traffic,
see the second column in Table 5.7.

Such anomalies expressed as exceeding inter-arrival times mostly disappear in
the consecutive time windows. These small deviations from the normal range of
values can be caused by communication overhead of a device or network delays.
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Simple detection 3-value detection
Dataset FP/all Accuracy FP/all Accuracy

13122018 2/285 99.30% 0/285 100%
10122018 1/20 95% 0/20 100%
14-12-18 0/63 100% 0/63 100%
17-12-18 4/273 98.53% 0/273 100%
RTU8 9/650 98.62% 5/650 99.23%
RTU11 16/650 97.54% 0/650 100%
RICS 37/1240 97.02% 11/1240 99.11%
Goose 4/78 94.87% 0/78 100%

Table 5.7: Validation tests summary

By close examination we found out that such anomaly windows did not appear
in bursts but were scattered over the whole communication period, see detailed
results in [24]. In addition, the characteristics returned back to the normal range
in the subsequent time window. We identified such behavior in all our datasets for
both directions (from master and to master). This means that such short deviations
representing the legitimate traffic appear once in a while in communication and
should not be treated as false positives (FP).

There are several ways how to eliminate these false positives. The easiest so-
lution is to enlarge the normal values range so that the exceeding values match
the profile. However, this approach would increase the number of false negatives,
i.e., the number of cases where an illegitimate traffic would be considered as nor-
mal and thus potential threats would not be detected. Another solution is to apply
a sliding window that observes the immediate context of the given time window
and smooths these small deviations. We implemented the approach in our second
method called 3-value detection.

The 3-value detection method evaluates three consecutive time windows. If
two of three values fit the given profile range, the test is considered valid and no
anomaly is announced. An anomaly is reported only if at least two of the three
windows detect the values outside the specified range for some characteristics of
the traffic. We show in the following section that this approximation has no nega-
tive effect on detection of common security threats. As seen in Table 5.7, 3-value
detection produces better accuracy with less false positives.

5.4.2 Anomaly Detection Using Statistical Profiles

For anomaly detection, we made experiments with 3-value detection only. For
these tests, we created a normal statistical profile using the same dataset as in case
of probabilistic anomaly detection described in Section 4.5.2. Then we applied
the profiles on the dataset with anomalies. The dataset with anomalies was manu-
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ally created using typical attack vectors described in research papers3. Graphical
representation profiles of 17-12-18 dataset is depicted in Figure 5.9.
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(a) Normal traffic profile (from master)
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(b) Normal traffic profile (to master)

Figure 5.9: Statistical profiles of dataset 17-12-18

DoS attack and rogue device. Table 5.8 lists the five minute windows that
were revealed as anomalies. The header lists the real five-minute windows in which
the attack occurred. We used to datasets. The first one included two DoS attacks in
time windows 110-128 and 142-161. The second dataset comprised a rogue device
that connected to the network and in time windows 8-13 communicated instead of a
legitimate device. In the table we can see windows in which the attack was detected
by individual characteristics. Arrows indicate whether the number of packets was
above or below the range of specified values.

Direction Profile DoS Attack Rogue Device
110-128 142-161 8-13

fm total - - 10-14
∆t < sp - - 10-14
∆t ≥ sp 112-114, 117-121, 125-128 ↑ 145-161 ↑ 10-14

tm total 111-130 ↓ 143-162 ↓ 9-14 ↓
∆t < sp - - -
∆t ≥ sp 111-129 ↓ 143-162 ↓ 9-14 ↓

Table 5.8: DoS attack and rogue device detection

The table shows that two DoS attacks that occurred during time windows 110-
128 and 142-161 were successfully detected. Both DoS attacks were found in the
upper region (∆t ≥ sp) characteristic of the from master (fm) direction and in
both the total and upper region characteristics of the to master (tm) direction. In

3Available as CSV traces at https://github.com/matousp/datasets [May 2021].

https://github.com/matousp/datasets
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the from master direction, the expected number of packets with the given charac-
teristics was higher then the normal value, in the opposite direction it was smaller.
This indicates that the DoS attack was directed against the slave, see Figure 5.10.
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(a) DoS attack (from master)
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(b) DoS attack (to master)

Figure 5.10: DoS attack detection

The presence of a rogue device connected to the ICS network was found in
both directions, see also Figure 5.11. Here, we can notice a fast drop of packets
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(a) A rogue device (from master)
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Figure 5.11: Detection of a rogue device in the network.

in windows 10-14 caused by packets replaced by a rogue device. The drop is seen
in the lower and upper regions in the from master direction and also in the upper
region of the to master direction.

The experiment with DoS attack clearly justifies our approach of using addi-
tional characteristics for statistical anomaly detection. When using a simple statis-
tics represented by the number of transmitted packets only (i.e., the total charac-
teristics in our statistical profile), the DoS attack would not be revealed in the from
master direction because both DoS attacks happened in the down part of the peri-
odic behavior of the communication, see Figure 5.10, and excessive packets caused
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by the attack would fall into the expected total range approximated by the Three
Sigma Rule.

However, our statistical profile is composed of three characteristics, i.e., the
total number of transmitted packets and two regions created by the split point.
Thus, we receive a small-grained model of the passing traffic which reveals details
normally hidden in the total transmission statistics.

Scanning and Switching Attacks. Table 5.9 shows results of scanning and
switching attack detection. Two scanning attacks appeared in time windows 239-

Direction Profile Scanning attack Switching attack
239-242 413-417 190-192

fm total 240-242 ↓ - -
∆t < sp 241-242 ↓ - -
∆t ≥ sp 240-242 ↓ - -

tm total 240-243 ↓ 414-417 ↑ 191-192 ↑
∆t < sp - - 191-192 ↑
∆t ≥ sp 240-243 ↓ - -

Table 5.9: Scanning and switching attack detection

242 and 413-417. The switching attack happened in time windows 190-192. The
first scanning attack was detected in both directions, i.e., in the from master and
to master directions, see Figure 5.12. The second scanning attack was detected
only in the to master direction.
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(a) Scanning attack (from master)
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(b) Scanning attack (to master)

Figure 5.12: Scanning attacks detection

On the example we can demonstrate benefit of building profiles for each direc-
tions separately. This approach allows to detect some attacks that would be hidden
in the overall traffic when using the bi-directional profile. The same is true also for
the switching attack, see the right column in Table 5.9 and Figure 5.13, where the
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attack is not visible in the from master direction (it is too short) but is detected in
the to master direction.
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(a) Switching attack (from master)
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(b) Switching attack (to master)

Figure 5.13: Switching attack detection

Connection loss and injection attack. The last experiment shows anomaly
detection when connection is lost and during the injection attack, see Table 5.10.
The scenario include connection loss in two time periods: windows 310-312 and

Direction Profile Connection loss Injection attack
310-312 498-510 59-60 365-368

fm total 311-312 ↓ 499-511 ↓ - -
∆t < sp - 500-510 ↓ - -
∆t ≥ sp - 499-510 ↓ - -

tm total 311-313 ↓ 499-511 ↓ - 367-369 ↓
∆t < sp - - - -
∆t ≥ sp 311-312 ↓ 499-511 ↓ - -

Table 5.10: Connection loss and injection attack detection.

498-510. The injection attack appeared in two time windows 59-60 and 356-368.
As seen in the table, connection loss attacks were properly detected but in case

of the injection attacks, only the second attack was properly detected in the to
master direction. The first injection attack was ignored because it did not involve
a sufficient number of packets that would cause a significant deviation from the
learned profile, see Figure 5.14.

5.4.3 Discussion

The result of our experiments proves that the proposed method based on observ-
ing statistical characteristics of inter-arrival times of transmitted packets is able to
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(a) Injection attack (from master)
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Figure 5.14: Injection attack detection

successfully detect more frequent anomalies that appear in smart grid networks.
Statistical modeling of inter-arrival times distribution was fine-grained by splitting
distribution to two regions based on the automatically selected splitting point in
order to create more accurate profile of the traffic. Additionally, we create profiles
for both directions individually which helps to improve detection of some attacks
and overcome limits of periodicity that would absorb some attacks when using a
simple statistics.

Table 5.11 summarizes capability of the proposed method to detect the individ-
ual attacks and compares it with our previous research using probabilistic automata
[87]. The table shows that while the DoS attack is not properly detected by prob-
abilistic automata, it can be detected using statistical profiles. On the contrary,
statistical approach cannot detect an injection attack which is nevertheless covered
by the probabilistic approach.

Anomaly Statistical-based AD Automata-based AD
Single Distrpref Distraler

Connection loss X × X X
Injection attack X/× X X X

DoS attack X × × ×
Rogue Device X X X X

Scanning attack X X X X
Switching attack X X X X

Table 5.11: Comparison of the anomaly detection based on statistical profiles
and probabilistic automata.

Another advantage of building statistical profiles for each direction and the
usage of split points for fine-grained representation of the normal traffic is that the
method also identifies the type of an attack as depicted in Figure 5.15.
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Figure 5.15: Attack Identification based on the change from expected values.

As the figure shows the reasoning is based on individual characteristics and
combination of changes from the expected behavior. Such patterns help to identify
an attack class. For example, a DoS attack is marked with the decreased number
of packets in the total characteristic in the to master direction and the increased
number of packets of upper region (i.e., ∆t ≥ sp) in the from master direction.

Similarly, the switching attack is usually marked by the increased number of
packets of the total packet characteristic and also by the increased number of pack-
ets in the lower region (i.e., ∆ < sp). You can also notice that some attacks have
various patterns (e.g., the scanning attack) that can overlap with other types of
attacks. Nevertheless, even such indication of possible attack type is useful for
network operators.

5.5 Summary

In this chapter we introduced a method for statistical modeling of inter-arrival
times that employs several characteristics (total number, lower region, upper re-
gion, packet direction) in order to create a simple but accurate profile for smart
grid communication. The profile is computed in two-steps process using the mean
and standard deviation and outlier values tested by the Three Sigma Rule.

In the previous text we presented several approaches for selecting best split
points to receive fine-grained characteristics of the traffic. The important aspect
of anomaly detection method is to reduce the number of false positives. We have
identified that false positives can be suppressed by the 3-value detection that com-
pares three consecutive windows of monitored traffic to the model and raises an
alert only if an anomaly is detected at least in two of them. We demonstrated that
profiles built for each direction of ICS communication could detected the consid-
ered attacks.
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The conducted experiments demonstrated high accuracy of the proposed method
similar to more complex anomaly detection methods while the computation costs
of building a profile and evaluating the monitored traffic are substantially lower.
The method was demonstrated on a variety of datasets consisting of IEC 104 and
Goose traffic.

We also compared the method with the previously proposed approach based on
probabilistic automata. It is obvious from Table 5.11 that both method complement
each other in case of DoS and injection attack and similarly gives good results for
other types of anomalies. This result is important for deployment in production
anomaly detection system where the result of one method can be proved or aug-
mented by the result of the other method in order to give accuracy to the detection
and decrease the number of false positives.



Chapter 6

Conclusion

This thesis presents the research of cyber security of industrial systems that was
done by the author of the thesis during years 2016-2021. The research was focused
on monitoring and detection of cyber attacks in smart grid control protocols which
have been frequent targets of sophisticated cyber attacks in the past. Such attacks
usually have serious consequences as presented in Section 2.4. In order to miti-
gate and eliminate attacks against control communication of industrial networks,
we need (1) to increase visibility of communication, and (2) to apply detection
methods for revealing attack traces in communication.

In this work we presented ICS flow monitoring concept based on extension
of IPFIX standard used in IT networks. The proposed extension includes defi-
nition of ICS flow properties obtained from ICS protocols that are mapped into
IPFIX records. Another extension represents virtual flows that encapsulate com-
munication of Layer 2 industrial protocols into IPv6 link-local flows, or that divide
multiple application-layer data units into separate flows for more detailed monitor-
ing. The advantage of the proposed technique is that it uses the standardized IPFIX
framework that can be easily incorporated into common network monitoring and
management systems.

This work also presented two methods for anomaly detection of industrial pro-
tocols. The first method is based on probabilistic automata. We introduced new
representations of ICS communication sequences using deterministic probabilis-
tic automata and prefix trees. We showed how these models are automatically
created from samples of normal ICS traffic. Then we presented two methods for
anomaly detection based on computing probability of an observed sequence (sin-
gle conversation reasoning) and on automata comparison (distribution reasoning).
Our experiments show that both methods are able to detect common cyber attack
vectors that are typical for industrial networks. In addition, they exhibit very high
accuracy with a small number of false positives.

The proposed method is not limited to specific protocols or environment and
can be adopted to any industrial protocol as presented in Section 4.3. In our future
work we plan to apply the method on other industrial protocols and evaluate its
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precision. We also focus on its optimization, namely on reduction of states. An-
other open issue is modeling of corrupted communication where some packets are
lost due to unstable communication or buffer overflow.

The second presented technique was statistical-based anomaly detection. This
technique applies a different view on networking data. Instead of observing le-
gitimate communication sequences, their order and occurrence, we monitor packet
time properties of ICS communication. In our case, we model distribution of packet
inter-arrival times of ICS transmissions. Since ICS communication is stable with
periodic patterns, we can easily create statistical profiles of peer-to-peer or master-
to-slaves communications. We showed that splitting packets into regions based
on inter-arrival times and directions provide sufficient model representing normal
communication. Using the model we can detect common anomalies and also iden-
tify their type.

Both proposed techniques can be combined in order to increase accuracy of de-
tection and minimizing the number of false positives. They can be implemented in
an anomaly detection module that works with IPFIX flow records or incorporated
into industrial intrusion detection systems.

This work was presented to the research community at the 6th Conference
on the Engineering of Computer Based Systems (ECBS 2019) [89], 6th Interna-
tional Symposium for ICS & SCADA Cyber Security Research in 2019 (ICS-CSR
2019) [88], the 7th Conference on the Engineering of Computer Based Systems in
2021 (ECBS 2021) [107], the 2021 IFIP/IEEE International Symposium on Inte-
grated Network Management (IM 2021) [87], and the 17th International Confer-
ence on Network and Service Management (CNSM 2021)[25]. Automata-based
technique was published in the Journal of Information Security and Application in
2020 (JISA) [90].



Acronyms and Abbreviations

A-XDR Adjusted External Data Representation.

AARE Application Association Response.

AARQ Application Association Request.

ACSE Association Control Service Element.

ADS Anomaly Detection System.

AMI Advanced Metering Infractructure.

AMR Advanced Metering Reading.

APCI Application Protocol Control Information.

APDU Application Data Protocol Unit.

APT Advanced Persistant Threat.

ASDU Application Service Data Unit.

ASN.1 Abstract Syntax Notation One.

AWL Application Whitelisting.

BE BlackEnergy.

BER Basic Encoding Rules.

CI&A Confidentiality, Integrity, Availability.

DCS Distributed Control System.

DFFA Deterministic Frequency Finite Automaton.

DNP3 Distributed Network Protocol, Version 3.

DoS Denial of Service.
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DPA Deterministic Probabilistic Automaton.

DPI Deep Packet Inspection.

GOOSE Generic Object Oriented Substation Event.

GSE Generic Substation Event.

HAN Home Area Network.

HMI Human Machine Interface.

ICS Industrial Control System.

IDS Intrusion Detection System.

IEC International Electrotechnical Commission.

IED Intelligent Electronic Device.

IETF Internet Engineering Task Force.

IoT Internet of Things.

IPFIX IP Flow Information Export.

ISO International Organization for Standardization.

LAN Local Area Network.

MMS Manufacturing Message Specification.

OT Operational Technology.

PCS Process Control System.

PPDU Presentation Protocol Data Unit.

PT Prefix Tree.

RTU Remote Terminal Unit.

SAS Substation Automation System.

SCADA Supervisory Control and Data Acquisition.

SIS Safety Instrumented System.

SMV Sampled Measured Values.
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SPDU Session Protocol Data Unit.

TPDU Transport Protocol Data Unit.

VMD Virtual Manufacturing Device.

WAN Wide Area Network.
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IoT Communication Using Flows. In Proceedings of the 6th Conference on
the Engineering of Computer Based Systems, ECBS ’19, pages 1–9. Asso-
ciation for Computing Machinery, 2019.
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Astarloa. Cyber-security in substation automation systems. Renewable and
Sustainable Energy Reviews, 54:1552 – 1562, 2016.

[96] Jacqueline O’Leary, Josiah Kimble, Kelli Vanderlee, and Nalani Fraser. In-
sights into Iranian Cyber Espionage: APT33 Targets Aerospace and Energy
Sectors and has Ties to Destructive Malware, 2017.

[97] Colin Perkins. RTP: Audio and Video for the Internet. Addison-Wesley,
2003.

[98] U. K. Premaratne, J. Samarabandu, T. S. Sidhu, R. Beresh, and J. Tan. An
Intrusion Detection System for IEC61850 Automated Substations. IEEE
Transactions on Power Delivery, 25(4):2376–2383, Oct 2010.

[99] R. Presuhn, J.Case, K.McCloghrie, M.Rose, and S.Waldbusser. Version 2
of the Protocol Operations for the Simple Network Management Protocol
(SNMP). IETF RFC 3416, December 2002.

[100] André Proto, Leandro A. Alexandre, Maira L. Batista, Isabela L. Oliveira,
and Adriano M. Cansian. Statistical Model Applied to NetFlow for Network
Intrusion Detection, pages 179–191. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2010.

[101] Friedrich Pukelsheim. The Three Sigma Rule. The American Statistician,
48(2):88–91, 1994.
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Petrović. A review of research work on network-based scada intrusion de-
tection systems. IEEE Access, 8:93083–93108, 2020.

[103] R.Hinden and S.Deering. IP Version 6 Addressing Architecture. IETF RFC
4291, February 2006.

[104] Marshall T. Rose and Dwight E. Cass. ISO Transport Service on top of the
TCP Version: 3 . IETF RFC 1006, May 1987.

[105] Alec Russell. CIA plot led to huge blast in Siberian gas pipeline. The
Telegraph, UK, February 2004.

[106] Mary-Ann Russon. US fuel pipeline hackers ’didn’t mean to create prob-
lems’. BBC News, May 2021.

[107] Ondřej Ryšavý and Petr Matoušek. A Network Traffic Processing Library
for ICS Anomaly Detection. In ECBS ’21: Proceedings of the 7th Con-
ference on the Engineering of Computer Based Systems, pages 144–151.
Association for Computing Machinery, 2021.



BIBLIOGRAPHY 121

[108] Omar Santos. Network Security with NetFlow and IPFIX. Big Data Analyt-
ics for Information Security. Cisco Press, 2016.

[109] Anderson Santos Da Silva, Cristian Cleder Machado, Rodolfo Vebber Bisol,
Lisandro Zambenedetti Granville, and Alberto Schaeffer-Filho. Identifica-
tion and Selection of Flow Features for Accurate Traffic Classification in
SDN. In IEEE 14th Int. Symposium on Network Computing and Applica-
tions, pages 134–141, 2015.

[110] Roman Schlegel, Sebastian Obermeier, and Johannes Schneider. A security
evaluation of IEC 62351. Journal of Information Security and Applications,
34:197 – 204, 2017.

[111] Klaus Schwab. The Fourth Industrial Revolution. Crown Publishing Group,
USA, 2017.

[112] Z. Shelby, K. Hartke, and C. Bromann. The Constrained Application Proto-
col (CoAP). IETF RFC 7252, June 2014.

[113] Keith Stouffer, Victoria Pillitteri, Marshall Abrams, and Adam Hahn. Guide
to Industrial Control Systems (ICS) Security. Technical Report NIST-SP-
800-82r2, National Institute of Standards and Technology, 2015.

[114] M. Strobel, N. Wiedermann, and C. Eckert. Novel weaknesses in iec 62351
protected smart grid control systems. In 2016 IEEE International Confer-
ence on Smart Grid Communications (SmartGridComm), pages 266–270,
Nov 2016.

[115] Chih-Che Sun, Adam Hahn, and Chen-Ching Liu. Cyber security of a power
grid: State-of-the-art. International Journal of Electrical Power & Energy
Systems, 99:45 – 56, 2018.

[116] John W. Tukey. Exploratory data analysis. Addison-Wesley, 1977.

[117] A. Valdes and S. Cheung. Communication pattern anomaly detection in
process control systems. In 2009 IEEE Conference on Technologies for
Homeland Security, pages 22–29, May 2009.

[118] Pal Varga. Analyzing Packet Interarrival Times Distribution to Detect Net-
work Bottleneck. In IFIP EUNICE: Networks and Applications Towards a
Ubiquitously Connected World, volume 196, pages 134–141, 2006.

[119] Enrique Vidal, Franck Thollard, Colin de la Higuera, Francisco Casacuberta,
and Rafael C. Carrasco. Probabilistic finite-state machines-part i. IEEE
Trans. Pattern Anal. Mach. Intell., 27(7):1013–1025, July 2005.
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Appendix A

ICS Protocols in the Smart
Grid

Security monitoring of ICS communication deals with deep analysis of transmitted
data and detection of unusual behavior based on gathered data. In this chapter we
describe the most common ICS protocols that are present in Smart Grid networks.
We will focus on typical operations, built-in security, and known vulnerabilities.
The last section of the chapter introduces a unified model of Smart Grid communi-
cation that will be later used for security monitoring and incidents detection.

A.1 IEC 104

IEC 60870-5-104 protocol (aka IEC 104) is a part of IEC Telecontrol Equipment
and Systems Standard IEC 60870-5 that provides a communication profile for
sending basic telecontrol messages between two systems in electrical engineering
and power system automation. Telecontrol means transmitting supervisory data
and data acquisition requests for controlling power transmission grids.

IEC 104 provides the network access to IEC 60870-5-101 (aka IEC 101) using
standard transport profiles. In simple terms, it delivers IEC 101 messages as ap-
plication data (L7) over TCP, port 2404. IEC 104 enables communication between
control station and a substation via a standard TCP/IP network. The communica-
tion is based on the client-server model. IEC 101/104 communication is exchanged
between the controlled and the controlling station where the controlled station is
monitored or commanded by a master station (RTU). The controlled station is also
called outstation, remote station, RTU, 101-Slave, or 104-Server. The controlling
station is a station where a control of outstations is performed (SCADA). Typically,
it is a PC with SCADA system, can be also a RTU32.

IEC 101/104 defines several modes of direction:

• Monitor Direction is a direction of transmission from controlled station (RTU)
to the controlling station (PC).

123
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• Control Direction is a direction from controlling station, a SCADA system,
to the controlled station, an RTU.

Protocol format

IEC 60870-5-104 is transmitted over TCP/IP protocol suite. It includes Application
Protocol Control Information (APCI) layer and selection of Application Service
Data Units (ASDUs) over it.

Each APCI (Application Protocol Control Information) starts with a start byte
with value 0x68 followed by the 8-bit length of APDU (Application Protocol Data
Unit) and four 8-bit control fields (CF). APDU contains an APCI or an APCI with
ASDU, see Figure A.1. Generally, the length of APCI is 6 bytes. APCI is followed
by an Application Service Data Unit (ASDU, also called telegram).

Start Byte (0x68)

Length of APDU

Control Field 1

Control Field 2

Control Field 3

Control Field 4

8 bits

APDU 
length

APCI

APDU with fixed length

Start Byte (0x68)

Length of APDU

Control Field 1

Control Field 2

Control Field 3

Control Field 4

8 bits

APDU 
length

APCI

APDU with variable length

ASDU ASDU

APDU

Figure A.1: APCI frame format

The ASDU contains two main sections: the data unit identifier (with the fixed
length of six bytes), and the data itself, made up of one or more information ob-
jects. The data unit identifier defines the specific type of data, provides addressing
to identify the specific identity of the data, and includes additional information
as cause of transmission. Each ASDU can transmit maximum 127 objects. The
format of ASDU is in Figure A.2.

Structure qualifier (SQ) specifies how information objects or elements are ad-
dressed. SQ=0 denotes a sequence of information objects which means addressing
of individual single information elements or combination of information elements
in a number of information objects (IO) of the same type. SQ=1 means addressing
of just one information object, i.e., addressing of a sequence of single informa-
tion elements or equal combinations of information elements of a single object per
ASDU.
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Information
object 1

Information
object N

SQ=0 SQ=1

Information 
object 2

Information object address 

Information Elements

Time Tag

Information object address 

Information Elements

Time Tag (if used)

Information object address 

Information Elements

Time Tag (if used)

Information object address 

Information Element 1

Information Element 2

Information Element 3

Information Element N

Information
object

Data Unit
 Identifier

0 Number of objects = N

Type identification

ASDU address fields
(2 bytes)

Originator address (ORG)

Cause of transmission (COT)
P/
N

T

Time Tag (if used)

1 Number of elements = N

Type identification

ASDU address fields
(2 bytes)

Originator address (ORG)

Cause of transmission (COT)
P/
N

T Data Unit
 Identifier

Figure A.2: The structure of ASDU with SQ=0 and SQ=1

Cause of Transmission (COT) field is used to control the routing of messages
both on the communication network, and within a station, directing by ASDU to the
correct program or task for processing. ASDUs in control direction are confirmed
application services and may be mirrored in monitor direction with different causes
of transmission. Each ASDU type has a defined subset of valid COT codes, see [85]
for details.

ASDU Address Field (Common Address of ASDU, COA), is denotes a sta-
tion address, however it can be structured to form a station/sector address where
individual stations are broken up into multiple logical units.

ASDU transmits information objects within its structure. Each information
object is addressed by Information Object Address (IOA) which identifies the par-
ticular data within a defined station. The address length is 3 bytes for IEC 104.

Basic Application Functions

Following application functions are implemented in IEC 101 communication:

• Data acquisition collects data cyclically, upon change, or upon request. In
unbalanced transmission, the controlled outstation must always wait for a
request from the controlling station. When balanced transmission is used,
the buffered data is transmitted by the controlled outstation to the controlling
station without a delay.

• Event acquisition. Events occur spontaneously at the application level of the
controlled outstation. The transmission in balanced or unbalanced mode is
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similar to the data acquisition.

• Interrogation is used for updated the controlling station after an internal
initialization. The controlling station requests the controlled outstations to
transmit the actual values of all their process variables.

• Clock synchronization. After system initialization, the clocks are initially
synchronized by the controlling station. After, the clocks are periodically
resynchronized by transmission of a clock synchronization command.

• Command transmission is used to change the state of operational equipment.
A command may be initiated by an operator or by automatic supervisory
procedures in the controlling station.

• Transmission of integrated totals transmits values that are integrated over
a specific time period using methods Freeze-and-Read for acquisition of
integrated totals, and Clear-and-Read for acquisition of incremental infor-
mation.

• Changes in protocol and link parameters.

• Acquisition of transmission delay which is needed for time correction.

Communication Flow

Figure A.3 shows slave initialization which is sent as one logical transaction be-
tween the master and the slave. Individual IEC 104 packets contain several ASDU
units. Each ASDU can transmit more information objects related to physical ob-
jects controlled by the slave.

Following Figure A.4 shows a set of logical transactions within one TCP stream.
It demonstrates remote monitoring and control. It shows logical transactions ex-
changed between the master and slave. The arrow represents direction: master to
slave (—>) or slave to master (<—). A transaction usually concerns one infor-
mation object with its address (IOA). Only exception is transaction no. 1 which
summarizes initialization of the system. Following transactions are initiated by the
master station that sends activation command (COT=6) which is responded by the
slave station using a sequence of messages with COT=7 (activation confirmation),
COT=10 (activation termination) and COT=3 (spontaneous).

By analyzing typical IEC 104 communication, we can notice following fea-
tures:

• Destination is addressed on L7 by common ASDU address (COA) which is
10 in this case (address of the slave station). Then, each destination contains
several objects addressed by the information object address (IOA). Usually,
the controlling station sends or retrieves data from the specific information
object identified by its IOA.
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Figure A.3: IEC 104 slave initialization

• Special destination address 0 does not refer to a specific information object
but to the configuration of the whole slave system. Thus, initialization of the
slave is addressed using IOA=0.

• The transaction 1 sends an activation message with the interrogation com-
mand which enforces a sequence of interrogation answers from object 1-4
and 11-14 transmitting the actual settings of their values.

• We can notice that one object with a given IOA can contain several types
of information elements. E.g., object 1 has elements of type SIQ, DIG, step
position, bitstring, normalized value, scaled value, or short floating point.

• Some responses can be divided into several TCP packets, e.g., the response
on transaction no. 4 is sent in two packets: one contains ActCon ASDU, the
other ActTerm ASDU and Spon ASDU. This is different to transaction no.
3, where the response is sent via one TCP packet that contains three ASDUs:
ActCon, ActTerm and Spon.
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Figure A.4: IEC 104 slave initialization

• Some objects (e.g., 11-14) returns values with timestamp, others (1-4) do not
use them.

• One TCP packet can transmit a sequence of ASDUs of several objects. E.g,
the third response from slave in the transaction 1 transmits ASDUs with
objects IOA=1-4 and IOA=11-14.

• We can also see that some ASDUs contain one information element and
some a sequence of information elements. This number is specified in the
Number of Objects field in the ASDU header.
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A.2 IEC 61850 MMS

MMS (Manufacturing Message Specification) is a messaging system for modeling
real devices and functions and for exchanging information about the real device,
and exchanging process data – under real-time conditions – and supervisory control
information between networked devices and/or computer applications.

MMS is defined by standards ISO/IEC 9506-1 (Services) and ISO/IEC 9506-2
(Protocol).

• The service specification contains definition of the Virtual Manufacturing
Device (VMD), services (and messages) exchanged between nodes on a net-
work, and the attributes and parameters associated with the VMD and ser-
vices.

• The protocol specification defines the rules of communication, i.e., the se-
quencing of messages across the network, the format and encoding of the
messages, and the interaction of the MMS layer with the other layers of the
communications network. MMS communicates using a client-server model.
A client is a network application or device (e.g., monitoring system, control
center) that asks for data or an action from the server. A server is a device
or application that contains a Virtual Manufacturing Device (VMD) and its
objects (e.g., variables) that the MMS client can access. The VMD object
represents a container in which all other objects are located, see Figure A.5.
The client issues MMS service requests and the server responds to these re-
quests.

Object

MMS Client MMS Server

Object

Object

Virtual Manufacturing Device (VMD)

MMS Services

Real devices

Figure A.5: MMS client-server model

MMS uses an object-oriented approach with object classes (Named Variable,
Domain, Program invocation), instances and methods (read, write, store, start, stop,
etc.).
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MMS Communication

MMS does not specify how to address clients and servers and relies on the address-
ing scheme of underlying protocols. In practice, clients and servers are addresses
by their IP address and the MMS is encapsulated over TCP, port 102. However,
port 102 is dedicated to ISO TSAP Class 0 which is general encapsulation of ISO
model protocols over TCP. Upper layers use ISO identifiers, e.g., TSAP (transport
service access point), COTP source and destination references, OSI calling and
called session selectors, etc.

The encapsulation includes several ISO protocols which are part of ISO stack,
see Figure A.6. Not all the protocols shall be presented in every MMS message.
Detailed description of each layer can be found in [86].

Application (L7)

Presentation (L6)

Session (L5)

Transport (L4)

Network (L3)

Data Link (L2)

Association Control Service Element (ACSE): ISO/IEC 8650/X.227

OSI Connection Oriented Presentation ISO 8823/X.226

OSI Connection Oriented Session: ISO 8327/X.225

Transmission Control Protocol (TCP): RFC 793

Internet Protocol (IP): RFC 791

Ethernet: ISO/IEC 8802-3

ISO Transport over TCP (TPKT): RFC 1006

Connection-Oriented Transport Protocol: ISO/IEC 8073/X.224

Manufacturing Message Specification (MMS): ISO 9506

Physical (L1)

APDU

PPDU

SPDU

TPDU

NPDU

Data Frame

Bits

Layer PDU Protocols

Figure A.6: MMS OSI model over TCP/IP

MMS protocol as defined in ISO 9506 [3] implements two types of communi-
cations:

• Confirmed MMS Services

Confirmed MMS services are requested through the use of the Confirmed-
Request PDU . Standard ISO 9506 defines 87 different services, e.g., get-
NameList, read, write, getVariableAccessAttributes.

Each Confirmed-Request PDU is confirmed by a Confirmed-Response PDU
or a Confirmed-Error PDU. In addition, the Confirmed-Request PDU can be
suspended by the Cancel-Request PDU which is confirmed using a Cancel-
Response PDU or a Cancel-Error PDU. Each instance of the Request PDU
is correlated to the corresponding Response PDU using the InvokeID which
is a 32-bit unsigned integer.

• Unconfirmed MMS Services

For unconfirmed MMS services, no response PDU or error PDU will be re-
ceived. Further, it is not possible to cancel an unconfirmed MMS service.
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The standard defines three different unconfirmed services: informationRe-
port, unsolicitedStatus, and eventNotification.

The standard defines 14 types of MMS PDUs which can be easily identified by
the TLV identifier with the tag number given by the standard. An example of MMS
PDU is in Figure A.7.

COTP header (3 B)

SPDU header (4 B)

CPC-type PPDU (9 B)

MMS PDU
(< 120 B)

TPKT header (4 B)

20 B

confirmedRequest = 0xa0 or 
confirmedResponse = 0xa1 (1 B)

Length (1 B)

0x02 0x02 (2 B)

Service Type (1 B)

Service Length (1 B)

Service Data (1 B)

MMS 
length

InvokeID (2 B)

Figure A.7: MMS Confirmed-Request PDU

MMS communication can be divided into three phases: connection establish-
ment, data initialization, and data access, see Figure A.8.

MMS 
Server

MMS Initiate Request

MMS Initiate Response

MMS GetNameList (domain, VMD)

Domains: SIPCTRL, SIPDR, SIPMEAS, SIPPROT

MMS GetNameList (nameVariableList, SIPCTRL)

Dataset:LLN0$Dataset, LLN0$Dataset_1_1

MMS GetNameList (nameVariableList, SIPDR)

Dataset:

MMS GetNameList (nameVariableList, SIPMEAS)

Dataset:

MMS GetNameList (nameVariableList, SIPPROT)

Dataset:LLN0$Dataset_1

MMS 
Client

MMS GetNameVariableListAttributes 
(SIPCTRL,LLN0$Dataset)

Variables: XSWI1$ST$Pos$stVal, XSWI1$SST$Pos$q

MMS GetNameVariableListAttributes 
(SIPCTRL,LLN0$Dataset_1_1)

Variables: XSCBR1$ST$TripOpnCmd$stVal, 
XCBR1$ST$TripOpnCmd$q

MMS GetNameVariableListAttributes 
(SIPPROT,LLN0$Dataset1)

Variables: ID_PT0C1$ST$Str$general, 
ID_PT0C1$ST$Str$q

MMS Read (SIPCTRL, LLN0$DC$NamPlt$configRev)

Value: 636228633875233607

MMS Read (SIPDR, LLN0$DC$NamPlt$configRev)

Value: 636228633879213835

Dataset 
initialization

Data access

Connection 
opening

Dataset 
initialization

MMS 
Client

MMS 
Server

Figure A.8: Example of MMS communnication
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1. Opening the communication

Connection is established using L4, L5, L6 and L7 protocols. On L4, the
TCP establishes connection through port 102. Later, the session layer (L5)
sends Connect Session Protocol Data Unit (SPDU) with Calling and Called
Session Selectors. Then, the presentation layer (L6) transmits a CP Presenta-
tion Protocol Data Unit (PPDU) with a list of defined presentation contexts,
e.g., ACSE abstract syntax (OID 2.2.1.0.1) with identifier 1 and MMS ab-
stract syntax (OID 1.0.9506.1) with identifier 2. The contexts are usually
encoded using BER encoding (OID 2.1.1).

On L 7, Application Association Request (AARQ) and Application Asso-
ciation Response (AARE) are exchanged within MMS initiate-Request and
initiate-Response messages, respectively. In these messages, connection pa-
rameters are negotiated, e.g., a number of maximal served peers, level of
data structure nesting, protocol version, supported conformance parameters,
and a list of supported services. The MMS initiate-Request is confirmed by
the initiate-Response PDU.

2. Data initialization

Following phases of communication are provided by a sequence of confirmed-
Request and confirmed-Response PDUs. The requests are bound with re-
sponses using InvokeID sequence number.

Data initialization discovers available Virtual Manufacturing Devices (VMDs)
on the destination device. For each VMD, a list of logical nodes, data objects,
and attributes is obtained using getNameList and getNamedVariableListAt-
tributes services.

During data initialization phase a client requests names of available logical
nodes, datasets, variables, and attributes using getNameList, getVariableLis-
tAttributes, getNamedVariableListAttributes, etc.

3. Data access

After initialization, discovered data objects are accessed for reading, writing
and other operations.

MMS Monitoring

Based on analysis of several MMS datasets, it seems to be reasonable to extract
following data from MMS headers:

• MMS PDU type: initateRequest, initiateResponse, confirmedRequest, con-
firmedResponse, unconfirmedPDU, conclude, etc.

• For confirmed and unconfirmed services it would be useful to determine the
type of the service, e.g., read, getNameList, informationReport, etc. It can
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be also useful to know what variable is requested. However, it can be tens of
variable.belonging to a logical device.

• Similarly to read service, it is interesting to detect write requests and desti-
nation datasets or variables.

• It is not feasible to extract names of datasets or variables from MMS mes-
sages unless it is specifically required. The reason is that a message may
contain tens of variable in getNameList, read, write, and other services.

• Another approach to security monitoring is to monitor stations (clients) that
are allowed to provide such operations and create a baseline how these op-
eration are provided in time so that potential attacks on the communication
can be detected.

A.3 IEC 61850 GOOSE

Generic Object-Oriented Substation Event (GOOSE) protocol [8] is a Ethernet-
based protocols that is used for passing power measurement as well as for tripping
and interlocking circuits. It implements transfer of time-critical events such as
protection of electrical equipment between IEC 61850 devices [86]. GOOSE com-
munication is based on publish-subscribe mechanism where a publisher IED sends
a message to a group of subscriber IEDs through via L2 multicast. The publisher
writes the values of a defined dataset into a local buffer at the sending side. The
subscriber(s) reads the values, see Figure A.9.

Ethernet

Receiving IED
Receiving IED

Receiving IED

Sending IED

Goose

Figure A.9: GOOSE publish-subscribe communication

The GOOSE message format is shown in Figure A.10. The message consists
of the source and destination MAC addresses, optional VLAN tag, followed by
EtherType 0x88b8 which identifies GOOSE message. Application Identifier (AP-
PID) identifies the receiving application. GOOSE application protocol data unit
(APDU) is defined by Abstract Syntax Notation One (ASN.1) and encoded by Ba-
sic Encoding Rules (BER) [43].

On application layer, GOOSE messages is defined using ASN.1 notation, see
Figure A.10. The structure of GOOSE PDU is derived from GOOSE Control Block
object as defined by IEC 61850-7-2 standard [7]. It consists of the following items:



APPENDIX A. ICS PROTOCOLS IN THE SMART GRID 134

Preamble

Dst MAC Address 
01:0c:cd:01:xx:xx

Src MAC Address 

EtherType=0x88b8 

APPID 

Length 

Reserved1 

Reserved2 

GOOSE APDU 

FCS (4 B)

GOOSE in Ethernet Frame

gocbRef (GOOSE control 
block reference) 

timeAllowedtoLive 

datSet  

goID (GOOSE ID)

t (timestamp)

stNum (status number)

sqNum (sequence 
number)

simulation (test status)

confRev (configuration 
revision)

ndsCom (Needs 
commissioning)

numDatSetEntries

allData

GOOSE APDU

BER 
encoded

Figure A.10: GOOSE message format

• GoCBRef: GOOSE control block reference is a unique path-name of an in-
stance of GOOSE Control Block (GoCB) within LLN0. The format is LD-
Name/LLN0.GoCBName, e.g., GEDeviceF650/LLN0$GO$gcb01 where LD
name is GEDeviceF650, LN class is LLN0 (Logical Node Zero), functional
constraint is GO (GOOSE Control) and GoCB instance is gcb01.

• TimeAllowedtoLive: time at which the attribute StNum was incremented. It
informs subscribers of how long to wait for the next repetition of the mes-
sage.

• DatSet: references of the data set whose values of members shall be trans-
mitted, e.g., GEDeviceF650/LLN0$GOOSE1. The members of the DataSet
shall be uniquely numbered beginning with 1. This number is called the
MemberOffset of a given member. Each member of the DataSet has a unique
number and a MemberReference (the functional constraint data FCD or DataAt-
tribute FCDA), see Figure 12.

• GoID: GOOSE ID is an attribute that allows a user to assign an identification
for the GOOSE message, e.g., F650 GOOSE1.

• T (timestamp): time at which the attribute StNum was incremented.

• StNum (status number) is a counter that increments each time a GOOSE mes-
sage has been sent and a value change has been detected within the DataSet
specified by DatSet. The initital value shall be 1. The value 0 is reserved.
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• SqNum (sequence number is the current sequence number of the reports.
It shall increment each time a GOOSE message sent. Following a StNum
change, the counter SqNum shall be set to a value 0. The initial value for
SqNum upon a transmission of GoEna to TRUE is 1. This number seems to
be similar to the sequence number in TCP.

• Simulation (test bit): if true, the message and therefore its value have been
issued by a simulation unit and are not real values. The GOOSE subscriber
will report the value of the simulated message to its application instead of
the real message depending on the setting of the receiving IED.

• ConfRev (configuration revision) contains the configuration revision to indi-
cate deletion of a member of the data set or the reordering of the members,
or changing the DatSet reference. The number shall represent a count of the
number of times that the configuration of the DataSet referenced by DatSet
value has been changed.

• NdsCom (needs commission) indicates in the message that some commis-
sioning is required. If TRUE, the GoCB requires further configuration.

• NumDatSetEntries: a number of data set entries

• allData: a list of user defined information of the MMS NamedVariableList
that is specified in GOOSE control block.

A.4 DLMS/COSEM

DLMS (Device Language Message Specification), standard IEC 61334-4-41[1], is
an application layer specification designed to support messaging to and from (en-
ergy) distribution devices. Applications like remote meter reading, remote control
and value added services for metering any kind of energy, like electricity, water,
gas, or heat are supported. DLMS specification is used to describe interface classes
for various objects available (voltage, current) with their attributes. Detailed anal-
ysis of DLMS protocol can be found in [84].

COSEM Objects

COSEM [2] is an interface model of communicating energy metering equipment
that provides a view of the functionality available through the communication
interface. It provides semantics for metering application. COSEM model uses
an object-oriented approach. An instance of a COSEM interface class is called
COSEM interface object. The set of objects instantiated in the logical devices of
a physical device model the functionality of the metering equipment as it is seen
through its communicating interfaces.

The COSEM model represents the meter as a server used by client applications
that retrieve data from, provide control information to, and instigate known actions
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within the meter via controlled access to the attributes and specific methods of
objects making up the server interface. The client may be supporting the business
processes of utilities, customers, meter operators, or meter manufacturers.

The COSEM server is structured into three hierarchical levels: physical device,
logical device, and accessible COSEM objects, see Figure A.11.

• A physical device hosts one or several logical devices. A logical device
models a specific functionality of the physical device. Each physical device
shall contain a ”Management logical device”. For example, in a multi-energy
meter, on logical device could be an electricity meter, another, a gas meter,
etc.

• A logical device is a container for COSEM objects. A COSEM object is
simply a structured piece of information with attributes and methods. All
objects that share the same structure are of the same COSEM class. There
are many COSEM classes [6, 5].

• Each logical device can be identified by its unique logical device name
(LDN). This name can be retrieved from an instance of IC SAP assignment
(class id=17) or from a COSEM object COSEM logical device name of the
IC Data.

COSEM Physical Device (Server)

Logical Device A
Electricity
Address: 3

Management 
Logical Device

Address: 1

Logical Device B
Gas

Address: 2

COSEM Client

Get-Request 
(object A.1)

1
2 3

1 2

1 2

Get-Response 
(object A.1)

DLMS/COSEM 

Figure A.11: Physical COSEM object with logical devices

In order to access COSEM objects in the server, an application association
(AA) must be first established with a client. This identifies the partners and char-
acterizes the context within which the association applications will communicate.
The context includes:

• the application context,

• the authentication context, and

• the xDLMS context.
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The information is contained in a special COSEM object Association. There
are two types of the Association object depending on the name referencing: long
names (LN) or short names (SN).

Each logical device contains at least one object of class Association LN (class id=15)
or Association SN (class id=12). This object has an attribute no. 2 called ob-
ject list that contains the list of all objects available in the logical device. This
helps to find which objects exist in the given logical device. The association object
has predefined logical name 0.0.40.0.0.255. Therefore, all available object within
a logical device can be found just by reading the object list.

Object Identification

The COSEM Object Identification System (OBIS) defines the identification codes
(ID-codes) for commonly used data items in metering equipment. It provides a
unique identifier for all data within the metering equipment. The ID codes defined
by OBIS are used for the identification of:

• logical names of the various instances of the ICs or objects,

• data transmitted through communication lines, and

• data displayed on the metering equipment.

Example of an OBIS code is depicted at Figure A.12. The code 1.1.1.8.2.
255 represents a simple meter of electricity (A=1) on channel 1 (B=1), where the
measured quantity is ΣLiActive power+ (C=1) using time integral 1 (D=8), rate is
2 (E=2) and the current value is 255 (F).

OBIS value group A B c D E

Medium Channel Quantity Processing

F

Tarification
Historical 

values

Example
1

Electricity

1
Channel

1
∑ Li A+

8
Time int. 1

2
Rate 2

255
Current

Figure A.12: OBIS data identification system

Communication

DLMS/COSEM (IEC 62056-53,62) is a standard specification using COSEM for
interface modeling equipment and DLMS for data exchange of such metering
equipment. It comprises the object model, the application layer protocol and the
communication profiles to transport the messages.
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Layer Function DLSM/COSEM

Application Network process to application Application
Presentation Data representation, encryption and

decryption, convert machine dependent
data to machine independent data

COSEM

Session Interhost communication, managing
sessions between applications

DLMS

Transport End-to-end connection, reliability and
flow control

DLMS

Network Path determination and logical address-
ing

DLMS

Data link Physical addressing HDLC, IEC 62056-47
Physical Media, signal and binary transmission serial media, cable, radio

Table A.1: DLMS and ISO OSI model

In ISO OSI model DLMS communicates over L4-L5 (transport and session
layer), COSEM forms presentation layer (L6), see Table A.1.

Data exchange between data collection systems and metering equipment using
the COSEM interface object model is based on the client/server paradigm. Me-
tering equipment plays the role of the server. The data collection application and
metering application are modelled as one or more application processes (APs).
Therefore, in this environment communication takes place always between a client
and a server AP: the client AP requests services and the server AP provides them.
The client AP can exchange data with single or multiple server APs at the same
time. The server AP can exchange data with one or more client APs at the same
time.

The request can be ”read the object 1.0.1.8.0.255” and the answer is ”1789.8
kWh”. Before being able to send requests, the client has first to establish a connec-
tion with the other side using Association Control Service Element (ACSE) data
exchange:

1. Session establishment.

Session establishment and tear-down uses ACSE defined by ITU-T X.227
[63]. Figure A.13 shows ACSE messages (blue) and DLMS/ COSEM Ap-
plication Protocol Data Units (APDUs, black).

The ACSE protocol establishes and tears down an Application Association
(AA) between a client Application Process and a server Application Process
for a given Application Context Name. This name identifies whether an
encrypted or plaintext application context is being requested and whether
short name or long names are being used for addressing.

2. Data Exchange.
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AARQ

AARE

Request

Response

Request

Response

RLRQ

RLRE

COSEM Client COSEM Server

Figure A.13: Opening COSEM communication

After establishing association, protocol DLMS/COSEM can read data, write
data or invoke actions. DLMS/COSEM APDU format is also variable and
encoded using A-XDR rules [4]. Example of DLMS Get-Request and Get-
Response APDUs is in Figure A.14.

[192] Get-Request
Get-Request-Normal

DLMS APDU

Invoke-id-And-Priority
e.g., 81

Cosem-attribute-
descriptor

Access-selection
e.g., 00

class-id
e.g., 8 (clock)

object-instance-id
e.g., 0.0.1.0.0.255 (clock)

attribute-id
e.g., 2 (time)

[196] Get-Response
Get-Response-Normal

DLMS APDU

Invoke-id-And-Priority
e.g., 81

Get-Data-Result

Data Type
e.g., 9 (OCTET STRING)

Length
e.g., 12 bytes

DATA
e.g., 4.12.2002, 10:06:11

Figure A.14: DLMS/COSEM requests and responses
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IPFIX Templates for ICS
Protocols

IP Flow Information Export (IPFIX) is a flexible format for the exchange of flow
information obtained during flow monitoring. The standard specifies the IPFIX
protocol by RFC 7011 [34] and the information model by RFC 7012 [33]. A great
advantage of IPFIX specification is that it allows to extend the IPFIX information
model by adding new information elements retrieved by advanced flow monitoring
probes.

In case of ICS flow monitoring, it is possible to define an ICS flow template
for each of the ICS flow protocol so that specific ICS data are collected by IPFIX
monitoring. Here we provide few examples of ICS templates for selected ICS
protocols deployed in smart grid networks.

B.1 IPFIX Flow Template for IEC 104

Standard IPFIX information elements are defined by IANA1. For common infor-
mation elements, the IANA defines a name of the element, its identifier, abstract
data type and semantics. An example of standardized IPFIX information elements
is given in Table B.1.

As mentioned in Section 3.4.2, for IEC 104 analysis we identify six IEC 104
header fields, see Figure 3.4 on page 42, that are important for higher IEC 104 vis-
ibility and anomaly detection. These fields include the APDU frame type, APDU
length, ASDU type, ASDU cause of transmission, the number of information ob-
jects transmitted within the ASDU, originator address, and ASDU address.

For these selected IEC 104 headers, we need to define new IPFIX fields for the
IPFIX template. IPFIX definition includes definition of the information element
name, its ID, data type and the length. Table B.2 shows user-defined IEC 104
information elements as proposed by this research.

1See https://www.iana.org/assignments/ipfix/ipfix.xhtml [August 2011].
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ID Name Data Type Description

1 Octets unsigned64 The number of octets since the previous re-
port.

2 Packets unsigned64 The number of incoming packets since the pre-
vious report.

4 Protocol unsigned8 The value of the protocol number in the IP
packet header.

5 ToS unsigned8 The value of the TOS field in the IPv4 packet
header.

6 TCP flags unsigned16 TCP control bits observed for the packets of
this Flow.

7 SrcPort unsigned16 The source port identifier in the transport
header.

8 SrcIP ipv4Address The IPv4 source address in the IP packet
header.

9 SrcPrefix unsigned8 The number of contiguous bits that are rele-
vant in the sourceIPv4Prefix.

10 Ingress unsigned32 The index of the IP interface where packets of
this Flow are being received.

11 DstPort unsigned16 The destination port identifier in the trans-
port header.

12 DstIP ipv4Address The IPv4 destination address in the IP packet
header.

... ... ... ...

Table B.1: Example of the standardized IPFIX information elements.
.

Figure B.1 shows an example of the IPFIX template for IEC 104 and the corre-
sponding flow record with meta data about the IEC 104 virtual flow. The template
record transmits information about the used template. It is regularly sent by an
IPFIX monitoring probe to inform the IPFIX collector how to interpret received
flow records. In this case the IEC 104 template with ID=257 includes standardized
information elements as defined by RFC 7012 [33], e.g., the number of transmitted
bytes, packets, IP protocol number, TCP flags, source and destination IP addresses,
TCP ports, etc. Information elements with ID 370-376 are ICS-specific fields that
transmit data about IEC 104 flows.

The figure also show an IEC 104 flow record that transmits monitoring data
about observed IEC 104 flow. The IPFIX flow record was created using IPFIX
template with ID=257, see the item FlowSetId and contains meta information about
the IEC 104 flow that was captured on Nov 03, 2017 at 15:41:47 at the monitoring
probe. The flow was sent from station 172.16.1.1, port 2404 to station 172.16.100,
port 13748 and contained only one packet of size 56 bytes. The packet included
i-frame ASDU of 14 bytes with ASDU type=100 (interrogation command) and
ASDU CoT=07 (confirmation activation). The flow record also includes originator
address (2) and ASDU address (3).
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ID Name Data Type Length (B)

370 IEC104 PKT LENGTH unsigned8 1
371 IEC140 FRAME FMT unsigned8 1
372 IEC140 ASDU TYPE unsigned8 1
373 IEC140 ASDU OBJ COUNT unsigned8 1
374 IEC140 ASDU COT unsigned8 1
375 IEC140 ASDU ORG unsigned8 1
376 IEC140 ASDU ADDRESS unsigned16 2

Table B.2: New information elements for IEC 104.

A big advantage of IPFIX flow monitoring is the fact that IPFIX flow records
include only values of the observed flow, not fields. Thus, the flow records repre-
sent a compact data structure for transmitting important monitoring data.

Figures B.2 and B.3 show an example of IEC 104 packet and an IEC 104 flow
record in Wireshark. We can notice that IEC 104 protocol is encapsulated in TCP
and one TCP packet may include multiple IEC 104 ASDU messages. This is the
reason why we split TCP messages into single ASDUs represented by virtual flows.
This increases visibility of IEC 104 communication as discussed in Sec. 3.6, p. 49.

Version = 10

Length = 136

Timestamp = Nov 03, 2017 15:41:45.0

FlowSequence = 0

Observation Domain Id = 1

FlowSet Id = 02 (Data Template)

FlowSet Length = 120

Template Id = 257

Field Count = 21

Field No = 1 Len = 8 Type = 1 (BYTES)

Field No = 2 Len = 8 Type = 2 (PACKETS)

Field No = 3 Len = 1 Type = 4 (PROTOCOL)

Field No = 4 Len = 1 Type = 6 (TCP_FLAGS)

Field No = 5 Len = 2 Type = 7 (L4_SRC_PORT)

Field No = 6 Len = 4 Type = 8 (IP_SRC_ADDR)

Field No = 7 Len = 4 Type = 10 (INPUT_SNMP)

Field No = 8 Len = 2 Type = 11 (L4_DST_PORT)

Field No = 9 Len = 4 Type = 12 (IP_DST_ADDR)

Field No = 10 Len = 4 Type = 34 (SAMPLING_INT)

Field No = 11 Len = 1 Type = 35 (SAMPLING_ALG)

Field No = 12 Len = 1 Type = 60 (IP_PROTO_VER)

Field No = 13 Len = 8 Type = 152 (flowStartMillisec)

Field No = 14 Len = 8 Type = 153 (flowEndMillisec)

Field No = 15 Len = 1 Type = 370 (IEC104_PKT_LEN)

Field No = 16 Len = 1 Type = 371 (IEC104_FRAME_FMT)

Field No = 17 Len = 1 Type = 372 (IEC104_ASDU_TYPE)

Field No = 18 Len = 1 Type = 373 (IEC104_ASDU_OBJ_No)

Field No = 19 Len = 1 Type = 374 (IEC104_ASDU_COT)

Field No = 20 Len = 1 Type = 375 (IEC104_ASDU_ORG)

Field No = 21 Len = 2 Type = 376 (IEC104_ASDU_ADDRESS)

Version = 10

Length = 468

Timestamp = Nov 03, 2017 15:41:48

FlowSequence = 0

Observation Domain Id = 1

FlowSet Id = 257 (Data)

FlowSet Length = 452

Flow 1

56

1 

6 = TCP 

0x18 = ACK+PSH 

2404 

172.16.1.1

0 

13748 

172.16.1.100

0

0 = No sampling

4

Nov 03, 2017 15:41:44.778

Nov 03, 2017 15:41:44.778

0x0e = 14 

0x00 = i-frame

0x64 = 100 interrogation command 

01 = 1 object

07 = confirmation activation

02 = originator address 

00 03 = ASDU address

(b) IPFIX IEC104 Flow Record(a) IPFIX IEC104 Template Record

Figure B.1: An IPFIX template record (a) and flow record for IEC104 (b)
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Figure B.2: Analysis of an IEC 104 packet in Wireshark

Figure B.3 depicts an example of an IPFIX flow record with specific IEC 104
related fields. From that flow we can see, that the station with source IP address
172.16.1.1 and port 2404 (IEC 104 server) sent a message to 172.16.1.100 (IEC
104 client) an interrogation command (ASDU type 100, i.e., 0x64) and the cause
of transmission 07 (confirmation activation). As mentioned in the previous text,
such detailed monitoring information enable high visibility of IEC 104 traffic in
the smart grid which is important for security monitoring and anomaly detection.

PKT_LEN

FRAME_FMT

ASDU_TYPE

ASDU_OBJECT_CNT

ASDU_CoT
ASDU_ORG

ASDU_ADDRESS

Figure B.3: IPFIX record with the IEC 104 fields in Wireshark
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B.2 IPFIX Flow Template for MMS

IEC 61850 Manufacturing Message Specification (MMS) protocol describes high-
level communication between real industrial devices. Standards ISO/ IEC 9506-1
and 2 [3] specify the MMS services and the protocol. The MMS system commu-
nicates using the client-server model where the client is a network application or
device (e.g., control center) that asks for data or an action from the server. The
server contains so called Virtual Manufacturing Device (VMD) that models pro-
cesses and actions implemented on the server device using a collection of MMS
objects. Practically, the client requests a specific operation on the given MMS
object via MMS protocol.

For security monitoring, it is important to observe exchanged MMS messages
and see what operations on what objects are requested on a given station. As de-
scribed in Appendix A.2, the MMS protocols is an application layer industrial pro-
tocol. The protocol was originally defined for OSI stack, thus its implementation
over TCP/IP includes multiple sub-layers encapsulated within L4 and L7 layer, see
Figure A.6, page 130.

To obtain a required granularity of MMS visibility as mentioned in Section 3.6
on page 49, we propose to create a virtual MMS flow for each transmitted MMS
packet, similarly as in case of the IEC 104. This obtains packet-level visibility of
MMS communication that is important for anomaly detection.

The MMS IPFIX template gathers the following data from MMS packets:

• MMS type defines a type of MMS PDU which includes 14 types [86], e.g.,
confirmed-requestPDU (type=0), confirmed-responsePDU (type= 1), con-
firmed-errorPDU (type=2), unconfirmed-PDU (type=3), rejectPDU (type=4),
etc.

• MMS confirmed service request is a specific description of MMS type=1 that
contains an operation requested using the confirmed service. Confirmed ser-
vices include status request (0), getNameList request (1), identify request
(2), rename request (3), read request (4), write request (5), getVariableAc-
cessAttributes request (6), etc.

• MMS confirmed service response contains a response value of the requested
confirmed operation. The MMS confirmed service response should match
previously sent MMS confirmed service request. The response packet con-
tains the response type which has the same values as the MMS confirmed
request messages and requested data. For MMS visibility, we do not moni-
tor requested data but only the value of the service.

• MMS unconfirmed service type transmits specific details for MMS type=3
(unconfirmed-PDU), more specifically the type of unconfirmed message which
is informationReport (0), unsolicitedStatus (1), or eventNotification (2).
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ID Name Data Type Length (B)

420 MMS TYPE unsigned8 1
421 MMS CONF SERVICE REQ unsigned8 1
422 MMS CONF SERVICE RESP unsigned8 1
423 MMS UNCONF SERVICE unsigned8 1

Table B.3: New information elements for MMS.

The application layer fields defined for the IPFIX MMS template are given in
Table B.3. Comparing to the IEC 104 or GOOSE protocols, the MMS template
is more compact, nevertheless, it includes important meta data about MMS com-
munication. An example of the MMS template record and MMS flow record is in
Figure B.4.

The flow record in Figure B.4 (b) transmit information about MMS message
sent from the client on IP address 10.10.3.19 to the server (VMD) at address
10.10.20.10. The client requested a list of all available MMS objects on the de-
vice. This is a standard operation when a connection between the MMS client and
server is established. On the other hand, this message may also indicate the recon-

Version = 10

Length = 112

Timestamp = Oct 22, 2018 11:48:40.0

FlowSequence = 0

Observation Domain Id = 1

FlowSet Id = 02 (Data Template)

FlowSet Length = 96

Template Id = 257

Field Count = 18

Field No = 1 Len = 8 Type = 1 (BYTES)

Field No = 2 Len = 8 Type = 2 (PACKETS)

Field No = 3 Len = 1 Type = 4 (PROTOCOL)

Field No = 4 Len = 1 Type = 6 (TCP_FLAGS)

Field No = 5 Len = 2 Type = 7 (L4_SRC_PORT)

Field No = 6 Len = 4 Type = 8 (IP_SRC_ADDR)

Field No = 7 Len = 4 Type = 10 (INPUT_SNMP)

Field No = 8 Len = 2 Type = 11 (L4_DST_PORT)

Field No = 9 Len = 4 Type = 12 (IP_DST_ADDR)

Field No = 10 Len = 4 Type = 34 (SAMPLING_INT)

Field No = 11 Len = 1 Type = 35 (SAMPLING_ALG)

Field No = 12 Len = 1 Type = 60 (IP_PROTO_VER)

Field No = 13 Len = 8 Type = 152 (flowStartMillisec)

Field No = 14 Len = 8 Type = 153 (flowEndMillisec)

Field No = 15 Len = 1 Type = 420 (MMS_TYPE)

Field No = 16 Len = 1 Type = 421 (MMS_CONF_SERV_REQ)

Field No = 17 Len = 1 Type = 422 (MMS_CONF_SERV_RESP)

Field No = 18 Len = 1 Type = 423 (MMS_UNCONF_SERVICE)

Version = 10

Length = 320

Timestamp = Oct 22, 2018 11:25:30

FlowSequence = 0

Observation Domain Id = 1

FlowSet Id = 257 (Data)

FlowSet Length = 304

Flow 1

77

1 

6 = TCP 

0x18 = ACK+PSH 

52021

10.10.3.19

0 

102

10.10.20.10

0

0 = No sampling

4

Oct 22, 2018 11:25:28.236

Oct 22, 2018 11:25:28.236

0x00 = confirmed request

0x01 = getNameList

0xff = not defined

0xff = not defined

(b) IPFIX MMS Flow Record(a) IPFIX MMS Template Record

Figure B.4: An IPFIX template record (a) and flow record for MMS (b)
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naissance attack when an attacker tries to enumerate all available objects on active
MMS devices. Thus, it is important to observe communication context which can
be implemented using probabilistic automata as presented in Chapter 4.

The following Figure B.5 and B.6 presents an example of MMS packet analysis
in Wireshark and an example of MMS IPFIX flow record.

Figure B.5: Analysis of a MMS packet in Wireshark

Figure B.5 also shows how MMS messages are encapsulated using OSI stack
over TCP/IP. The MMS PDU is encapsulated in the presentation protocol ISO
8823/X.226 [64], session protocols ISO 8327/X.225 [65], Connection-oriented
Transport Protocol (COTP) [66] and ISO Transport Protocol over TCP (TPKT)
[104]. Further information about parsing MMS messages are given in [86].

Figure B.6 depicts an example of MMS flow monitoring records. We can see
two exported records as flows number 5 and 6. The first flow record includes one
MMS packet sent by the MMS client with IP 10.10.20.30 to the MMS server with
IP address 10.10.3.19. MMS related flow fields reveal the confirmed response PDU
with operation getVariableAccessAttributes (6). After getting all variable attributes,
the client request the one of the attributes by read operations (MMS type=00, MMS
confirmed service request = 04).

Such MMS flow data records provide high-visibility of smart grid communi-
cation using MMS protocol and represent input data for modeling MMS commu-
nication using automata, as presented in Chapter 4.



APPENDIX B. IPFIX TEMPLATES FOR ICS PROTOCOLS 147

Figure B.6: IPFIX record with the MMS fields in Wireshark

B.3 IPFIX Flow Template for GOOSE

IEC 61850 Generic Object-Oriented Substation Event (GOOSE) protocol [8] is de-
signed as a publisher/subscriber type communication, see Appendix A.3. The pub-
lisher periodically sends messages and when an event occurs within any GOOSE
dataset element (e.g., tripping signal, circuit breaker closing), it will stop the ex-
isting GOOSE re-transmission message. A state number contained in the GOOSE
protocol identifies whether a GOOSE message is new message or has been re-
transmitted.

Because the protocol is publisher/subscriber based, there is no confirmation
that the sent message is correctly received by the subscriber, so the message burst
minimizes the chance of message loss. GOOSE data is directly embedded into
Ethernet data packets and sent by the publisher on multicast or broadcast MAC
addresses.

All messages are published under a topic. The subscriber receives all messages
from the system, but filters and parses only the messages with the topic it has
subscribed to.

Based on our analysis of GOOSE behavior [86], we identified the following
fields from the GOOSE packet header that seems to be useful for security monitor-
ing:

• Application ID (APPID) refers to the sending application. In include the
type (2 bits) and an application identifier (14 bits). For typical GOOSE com-



APPENDIX B. IPFIX TEMPLATES FOR ICS PROTOCOLS 148

munication, the type value is 00.

• GOOSE Control Block Reference (GoCBRef) is a unique path-name of an in-
stance of GOOSE Control Block within the logical node. The control block
manages processes at the publisher’s side. It contains the parameter that
specifies how to send the data set.

• Data Set name (DatSet) refer to a data set whose values of members shall be
transmitted. The members of the DatSet shall be uniquely numbered begin-
ning with 1. A GOOSE data set is a collection of data attributes transmitted
in the payload of the GOOSE packet. Data set is not structured transmits
uninterpreted values that are relevant for the given data set.

• GOOSE ID (GoID) is an attribute that allows a user to assign an identification
for the GOOSE message.

• Status Number (StNum) is a counter that increments each time a GOOSE
message has been sent and a value change has been detected within the
DataSet.

For monitoring purposes it is not necessary to collect monitoring data about
individual GOOSE packets because the GOOSE protocol operates as a keep-alive
mechanism and consequent messages within the same subscriber group are trans-
mitted repeatedly every few seconds without any significant changes in the packet
header. Until an event happens at the publisher’s side, only the sequence number
(sqNum) is incremented in the GOOSE packets.

Since GOOSE operates directly on Layer 2 and IPFIX flow monitoring requires
IP addresses as key items in the flow record, we create so called virtual flows that
encapsulates L2 flows withing IPv6 virtual connection, see 3.4.3 on page 44. Here
we transform a source unicast MAC address to a link-local IPv6 address using EUI-
64 transformation [54, Appendix A] and a destination multicast MAC address to a
local multicast IPv6 address by a simple transformation, where an original MAC
address is prefixed by the ff02:: IPv6 multicast prefix for link-local scope.

For the above mentioned GOOSE headers, we define the IPFIX GOOSE tem-
plate, see Table B.4.

ID Name Data Type Length (B)

410 GOOSE APPID unsigned16 2
411 GOOSE CB REF char[64] 64
412 GOOSE DATA SET char[64] 64
413 GOOSE ID char[64] 64
414 GOOSE ST NUM unsigned32 4

Table B.4: New information elements for GOOSE.

Unlike IEC 104 protocol, where each IEC 104 ASDU creates a new IEC 104
flow record, definition of the GOOSE flow employs packet aggregation, i.e., GOOSE
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packets with the same source and destination MAC address, GOOSE Application
ID, Control Block Reference, Data Set name, GOOSE ID and Status numbers de-
fine a GOOSE flow. Thus, GOOSE packet where no fields except the sequence
number is changed are aggregated into one flow. The GOOSE template record and
an example of GOOSE flow record are depicted in Figure B.7.

Version = 10

Length = 116

Timestamp = Nov 03, 2017 14:25:45.0

FlowSequence = 0

Observation Domain Id = 1

FlowSet Id = 02 (Data Template)

FlowSet Length = 100

Template Id = 257

Field Count = 18

Field No = 1 Len = 8    Type = 1 (BYTES)

Field No = 2 Len = 8    Type = 2 (PACKETS)

Field No = 3 Len = 1    Type = 4 (PROTOCOL)

Field No = 4 Len = 4    Type = 10 (INPUT_SNMP)

Field No = 5 Len = 16  Type = 27 (IPV6_SRC_ADDR)

Field No = 6 Len = 16  Type = 28 (IPV6_DST_ADDR)

Field No = 7 Len = 4    Type = 34 (SAMPLING_INT)

Field No = 8 Len = 1    Type = 35 (SAMPLING_ALG)

Field No = 9 Len = 6    Type = 56 (SRC_MAC)

Field No = 10 Len = 6  Type = 57 (DST_MAC)

Field No = 11 Len = 1  Type = 60 (IP_PROTOCOL_VERSION)

Field No = 12 Len = 8   Type = 152 (flowStartMillisec)

Field No = 13 Len = 8   Type = 153 (flowEndMillisec)

Field No = 14 Len = 2   Type = 410 (GOOSE_APPID)

Field No = 15 Len = 64 Type = 411 (GOOSE_CB_REF)

Field No = 16 Len = 64 Type = 412 (GOOSE_DATA_SET)

Field No = 17 Len = 64 Type = 413 (GOOSE_ID)

Field No = 18 Len = 4   Type = 414 (GOOSE_ST_NUM)

Version = 10

Length = 592

Timestamp = Nov 03, 2017 14:30:18

FlowSequence = 0

Observation Domain Id = 1

FlowSet Id = 257 (Data)

FlowSet Length = 576

Flow 1

8520

60

0 = IPv6 Hop-by-Hop Option

0

fe80::209:8eff:fefb:4c2b

ff02::10c:cd01:0:2

0 

0 (No sampling)

00:09:8e:fb:4c:2b

01:0c:cd:01:00:02

6 = IPv6

Nov 03, 2017 14:29:27.232

Nov 03, 2017 14:30:25.282

0x01

SCU1UD6/LLN0$GO$Control_Dataset

SCU1UD6/LLN0$Dataset

SCU1/UD6/LLN0/Control_Dataset

1

(b) IPFIX GOOSE Flow Record(a) GOOSE Template Record

Figure B.7: A GOOSE template record (a) and the flow record example (b)

The template contains standard IPFIX fields like the number of transmitted
packets and bytes, IP protocol, sampling time and algorithm,the start and the end of
flow. It also includes standardized field source and destination MAC address, and
source and destination IPv6 address. GOOSE specific fields include Application
ID, GOOSE control block, Data Set name, GOOSE ID, and the Status Number.

Looking at Figure B.7 (b), you can notice that the example GOOSE flow trans-
mits 60 packets of total size 8520 bytes, the flow took about 30 seconds and it
was sent by publisher at 00:09:8e:fb:45c:2b to subscribers listening on the mul-
ticast address 01:0c:cd:01:00:02. Packet transmission was controlled by GOOSE
Control Block SCU1UD6/LLN0$GO$Control Dataset, contained GOOSE ID
SCU1/UD6/LLN0/Control Dataset and the name of the Data Set was SCU1
UD6/LLN0$Dataset.

For security monitoring it is important to understand, how many GOOSE pack-
ets are usually exchanged within a group publisher-subscriber. Also, for whitelist-
ing it is useful to filter unknown source and destination MAC addresses, GOOSE



APPENDIX B. IPFIX TEMPLATES FOR ICS PROTOCOLS 150

Application IDs, GOOSE Control Blocks, Data Set names, or GOOSE IDs. Since
GOOSE communication is highly regular, it is natural to apply statistical methods
to observe GOOSE behavior as presented in Chapter 5.

An example of GOOSE packet analysis in Wireshark and an IPFIX flow record
with GOOSE fields is given in Figures B.8 and B.9.

Figure B.8: Analysis of an GOOSE packet in Wireshark

Figure B.9: IPFIX record with the GOOSE fields in Wireshark
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