
TREEO
Image-based DBH measurement

Technical report for project financed by Fairventures Worldwide FVW gGmbH.
Supervisor: Tomas Vitek

Bianca Palackova, Tereza Sýkorová, Martin Kolář, Vítězslav Beran

Faculty of Information Technology
Brno University of Technology

2021

Abstract
This document describes the computer vision method for DBH measurement based on
pictures collected in an outdoor environment designed by Brno University of Technology.

The DBH (Diameter at breast height) refers to tree diameter measured at 4.5 feet above the
ground. The method is based on detection and localization of the predefined card placed on
the tree-trunk. The work includes and the report contains:

● design of the computer vision methods for card detection and localization, and
tree-trunk segmentation,

● analysis of the methods reflecting the practically maximal achievable accuracy and
also the stability of the method (e.g. ROC),

● monitoring the computational efficiency of designed methods reflecting the
requirement of running the solution also on old-type smartphones (like Galaxy J1, but
also actual types),

● documentation of the C++ library implementation with API defined together with FVW
team.

Example of the image with the tree-trunk and the known card to process DBH measurement.

2

Content

Card Detection 4
Detection and localization 4
Localization accuracy improvements 7

Tree Detection 10
Tree-trunk segmentation and localization 10
Segmentation optimization 11
Tree-trunk border optimization 13

Diameter Computation 18
Qualitative analysis 18
Additional corrections 20

Human-in-the-loop approach 21

Treeo-Measurement-Library API 22
Structure 22
Build 22
Integration 22

Bark-based tree classification 23
Known approaches and Datasets 23
Adaptation to new varieties 24

Conclusion 25

Appendix 26
Smartphone minimal requirements 26
Gallery of example results 26

3

Card Detection
The first step of the image-based DBH (Diameter at breast height) measurement based on a
priory known card is a detection of the card in the image. The method is designed with the
expectation that the image contains the tree-trunk with the known card overlaid over it.
Having the example images of the card, the method is trained to create the model of the
card that is used to detect and localize the card in the image. The detection and localization
precision is evaluated and followed by a couple of possible extensions to improve the
accuracy.

Detection and localization
For card localization, we use a feature detector and then we try to find a homography
between detected keypoints from image and card model. With our approach we are able to
successfully detect most of the Treeo card (new orange card) if it is not covered, image is
not blurry or card is in high angle. We have worse results in raw treeo dataset, it is mainly
because of cards with small text like driving licenses and ID cards.

In the future, we want to improve this algorithm by precise localization of card edges and try
other feature detectors, which could be faster. Detection in some area of image (50% of
image in the middle of this image) could also speed up the algorithm. We also plan to
improve the card's model, which should increase the percentage of localized cards.

The datasets contain images with various card examples. For the first experiments, the two
cards are used to evaluate the method: card01 and card12.

Card examples for detection evaluation: card01 (top left), card14 (top right), card15(bottom
left), card09(bottom right).

The detection stability (precision, recall) and computational cost (time of detection) is
evaluated on various experiments:

4

● DetCard01
○ Card model: card01,
○ Data used:

■ 70 images (27 from Tomáš Vítek, 20 raw_treeo_uncleaned, 23 our
dataset from Brno)

■ 20 raw_treeo_uncleaned - 10 cards without card and 10 with different
card

■ The rest of 50 cards contain card01.
○ Method parameters:

■ Resize: 1000px width
■ SIFT: full-scale
■ Score: 0.9% of inliers

● DetCard14 and DetCard9
○ Card model: card01, card09
○ Data used:

■ 400 images with the card09, card14, card15, card16 from
raw_treeo_dataset_uncleaned, folders b/1/4ref, c/1/4ref, c/1/5ref,
c/1/6ref

■ 32 images of card09
■ 175 images of card14
■ 154 images of card15
■ 136 images of card16

○ Method parameters:
■ Resize: 1000px width
■ SIFT: full-scale

The detection card experiments are evaluated on the computer with the following setup: Intel
Core i7-9750H CPU, 2.60GHz, RAM 16 GB

Average time to detect card: 0.46s

Precision Recall Acc

DetCard01 1.00 0.94 0.95

DetCard14 1.00 0.49 0.82

DetCard09 0.95 0.59 0.97

DetCard15 1.00 0.94 0.98

DetCard16 0.99 0.97 0.99

Results of the detection card experiments.

Precision provides a number of how many detected cards were actually detected correctly.
High precision mean that we do not detect card where we should not or we do not detect
different type of card (for example Card14 in image with Card09).

Recall tells us what proportion of all cards that should be found were identified correctly. We
can see that Card14 and Card09 were detected only in half of the cases. This could be

5

caused because of small letters on cards and missing large features which could be found in
the image.

Graph Number of detected cards shows experiments with various sizes of input image.
Experiments were done with 400 images from dataset raw_treeo_dataset_uncleaned with
cards Card09, Card14, Card15 and Card16. IoU represents Intersection over Union of
detected card and ground truth label. With larger image size, algorithm is able to find more
cards, but with increasing precision also increase computing time.

Illustration of the card detection method.

6

Localization accuracy improvements
In this part, experiments with other feature detectors and refinement of card edges with 2
methods will be described. Experiments were done with a dataset which contains 200
images with both sides of the new Treeo card. In these images, cards were labeled manually
with the tool VGG Image Annotator. We also labeled a region around the card, which should
simulate a region (ROI) where the card should be present and user should place it here
during photo taking. This dataset also contains cards which are blurred, partially covered or
taken in high angle. Examples from this dataset can be seen in the following images.

Examples from testing dataset. Correctly taken image (left) and partially covered card (right).

Experiments with ORB and AKAZE

We tried to replace the SIFT detector with ORB and AKAZE in order to reduce time and
increase precision. Results are in the following table, where accuracy means how many
cards were detected and IoU (Intersection over union) means how precise these detections
were. In these experiments ROI wasn’t used, which means our algorithm was looking for the
card in the whole image.

detector accuracy IoU time [ms]

SIFT 87.5 % 0.9536 436.41

ORB 54.0 % 0.9317 389.69

AKAZE 87.0 % 0.9541 824.31

7

As we can see in the table, best results were achieved with the SIFT detector. This detector
was able to find a card in 87.5 % of images (175 of 200 images). AKAZE provided similar
results, but with a longer time. The ORB detector was slightly faster but with much worse
results.

Experiment with ROI

This experiment was done in order to find out how much better card detection will be, if the
user will be instructed to place the card in some predefined region on the screen of his
smartphone. In the table below, we can see that computing time is rapidly lower. Accuracy
has better results too. In the case where ROI was used, card was found in 193 images,
which is 15 more than in the case with the whole image. Mean IoU is also slightly higher.

Where card is
detected

accuracy IoU time [ms]

whole image 87.5 % 0.954 436.41

ROI 96.5 % 0.968 49.15

Experiments with Subpixel local registration

In this method, card is localised with SIFT at first. As we can see in pictures below, SIFT is
not accurate enough in some cases and cards will not overlap properly. Our first refinement
method finds corners in both cards with subpixel accuracy. These “good features” are used
for local registration using Optical flow algorithm. With this algorithm we try to find better
overlap for detected card.

First-step card detection with SIFT.

Experiments with Card borders

Like in the first method, the card is localized first by SIFT. Then a small region around each
card edge is cut out. Canny edge detection and Hough line transform is done in each region
in order to find a better card edge.

Both methods found images where they were able to improve card detection, but also
images where IoU dropped. In the end, mean IoU and accuracy wasn’t improved with none

8

of the methods mentioned. So the best solution remains the SIFT detector on ROI without
any refinement.

accuracy IoU time [ms]

Without refinement 96.5 % 0.968 49.15

Optical flow 94.5 % 0.964 49.11

Hough lines 95.5 % 0.963 52.02

Table with results of 2 refinement methods.

Example of refinement with Hough lines. Red line is the original edge found by SIFT, the
green line is refined edge with our method. Neighborhood of this edge can be seen in the

first cut out region, canny edge detection in second and line found by Hough transformation
in the third region (blue line which is also green in the whole image).

9

Tree Detection
The second step of the image-based DBH (Diameter at breast height) measurement is to
detect the tree-trunk. Having the card detected and localized, the method is designed to
detect the borders of the tree-trunk and avoid the false borders coming from the scene
clutter.

Tree-trunk segmentation and localization
Tree detection is based on image segmentation and then estimation of lines that represent
the trunk of the tree. The lines are then used to calculate the diameter of the tree. The
algorithm assumes that the card is positioned so that its center is approximately in the
middle of the trunk. As a result, a smaller part of the image (above or below the card) can be
used for segmentation, which makes the calculation faster.

The algorithm is able to successfully detect most tree trunks in the tested dataset from
Indonesia. In good lighting conditions with high accuracy.

Conditions for good results:

● the center of the card in the middle of the tree,
● uniform lighting, without shadows and overexposure,
● color difference between background and tree (green background is best),
● straight tree (vertical, not rotated in the image),
● avoid complex/challenging backgrounds - dark color similar to a tree, other trees in

the background, wooden stick near the tree,
● tree trunk with a smooth surface works better.

The detection stability and computational cost (time of detection) is evaluated on various
experiments:

● 400 images from dataset raw_treeo_dataset_uncleaned, folders b/1/4ref, c/1/4ref,
c/1/5ref, c/1/6ref

● Method parameters:
○ Different ROI (region of interest) size - image is resized to width 600px and

then an area of height = ⅓ width is selected for tree detection
○ Card points loaded from json groundtruth

ROI [px] Found trees mean IoU mean Time [ms]

600x200 359 0.937 1275.07

500x166 346 0.934 1042.92

400x133 304 0.930 560.06

300x100 246 0.930 322.75

10

The experiments are evaluated on a computer with the following settings: CPU Intel Core
i3-6100U, 2.30GHz, RAM 16GB.

The graph cut algorithm works better on larger images, but is relatively time consuming. The
accuracy (IoU - intersection over union) is around 93% but the number of found trees is
smaller in smaller images. If suitable conditions are provided (lighting, background),
graphcut can work on small images.

Graph presents the overview of accuracy and time-complexity of graph-cut method.

The algorithm works best on trees that are approximately the width of a card. In the selected
dataset, the trees were mostly smaller (sometimes only 1-2cm). The main problems with
detection occur when there are other trees in the background, bad lighting conditions or
challenging backgrounds.

Segmentation optimization
In order to enhance and speed up tree trunk detection, we experimented with different image
segmentation approaches and also tried to improve existing GrabCut detection.

GrabCut variations

In an effort to speed up the algorithm, experiments were performed with different input image
sizes. We tried to use GrabCut line by line and merge individual segmentations into one
mask because we expected it to be faster. However, the result of segmentation was
significantly worse and the acceleration of the algorithm was only slight (a few milliseconds).
An example of segmentation is shown in the figure below.

11

GraphCut line-by-line optimization segmentation example.

Image segmentation using SVM

We started segmenting the image using SVM (support-vector machines) with one set of
images from the raw_treeo_dataset_uncleaned, where there are similar trees (similar texture
and color), and therefore the algorithm could have good results. Each image was divided
into small squares from which input data for learning were calculated. We tried different sizes
of input image, squares, differently calculated data (color histograms). Only the part of the
picture where there is no hand with the card was used, which brought improvements, but the
results were still not sufficient. Another machine learning method or different input data
would probably be needed for improvement.

Left - input image, middle - input data mask (groundtruth), right - segmentation output

Color-based image segmentation

We have started experiments with color-based image segmentation algorithms such as
k-means clustering, but further research would be appropriate in this area.

12

Left - original image, right - k-means clustering output

As a result, the GrabCut algorithm was used in the library for segmentation, because all of
the tested approaches had significantly worse results at this stage. Further research in
color-based segmentation and machine learning is needed to replace GrabCut with a faster,
at least as accurate method.

Tree-trunk border optimization
The tree detection algorithm consists of two main parts - image segmentation using the
GrabCut algorithm and estimation of lines that represent the trunk of the tree from a binary
mask created by segmentation.

Image segmentation is performed on a 600 pixel wide image for faster computation. Only the
area above the card with a height of 200 pixels is used. The segmentation output is then
used to estimate the lines of the tree, but the segmentation is not always accurate. In this
section, we therefore focused on evaluating whether the found lines correspond to the edges
of the tree.

First of all, the lines in the image must not intersect. Next, the angle between the lines is
calculated. We assume that the trunk of the tree is straight and too large an angle probably
means wrong detection.

When checking the lines, we assume that the tree differs significantly in color and texture
from its background. Therefore, a narrow area to the left and right of the line is selected and
the average color and color variation are calculated in them. If the line fits well on the edge
of the tree, there should be a large color difference in the areas. If the colors and variations
are too similar, the line is evaluated as incorrect.

Example of wrong segmentation on left side.

13

Left: left and right side of the left line - similar colors=wrong detection
Right: left and right side of the right line - different colors=OK

Thanks to these checks, we can eliminate wrongly found lines and thus improve detection.
As a result, the algorithm finds fewer trees from the dataset than the original version, but
with higher accuracy, because it eliminates images with poor quality (poor lighting, trees in
the background). The conditions for checking lines can be easily changed or removed if
needed in the future.

Examples of wrong segmentation (original version of the algorithm), but the lines are in the
end evaluated as incorrect (new version with line check) and a new photo will need to be

taken.

14

Despite a good segmentation, these lines are also evaluated as wrong (in the new version of
algorithm) because of the small difference in background color, and a new photo will need to

be taken.

We also tried to solve the problem if there are two trees next to each other in the photo. But
when detecting the edges between the lines, it was not possible to distinguish whether it was
an edge between two trees (a tree and a stick) or a texture of the tree.

Examples of wrong detection (evaluated as good lines)

15

Examples of good detection

version mean IoU min IoU std. dev. IoU found trees

original 0.931 0.326 0.097 356

new 0.955 0.605 0.044 280

Results on 400 images. There are a lot of pictures in this dataset with poor lighting
conditions, two trees next to each other, etc.

16

version mean IoU min IoU std. dev. IoU found trees

original 0.958 0.551 0.059 264

new 0.967 0.700 0.038 242

Results on 280 images mostly good quality

17

Diameter Computation
Diameter computation from detected tree edge lines and card edge lines is performed by
taking into account the perspective, field of view, and absolute dimensions of the card. This
is performed in two steps: linear conversion of pixel count to width, and perspective
adjustment.

Scheme of the diameter computation - top cut views of the tree-trunk.

As shown here, tree width d is computed from perceived tree width ws. By assuming that the
field of view is 81.5°, as is typical of mobile cameras, all parameters are fixed and the
conversion can be performed as:

𝑑 =
𝑤

𝑠

𝑤
𝑠

2/𝑦2 + 1 × (1 −
𝑤

𝑠

2𝑦 𝑤
𝑠

2/𝑦2 + 1
)

18

Qualitative analysis
The method above significantly reduces the error of tree width measurement. Before
adjustment, the error on the evaluation dataset is 18.5%, and applying this correction results
in an average error of 5.4%, corresponding to a reduction of error by 70%. See the following
graph for a graphical analysis of errors across the evaluation dataset:

This graph also demonstrates that certain trees can still exhibit an error of 19% in diameter
measurements. As shown in the graph below, the largest errors are exhibited by trees with a
very large diameter of over 200mm.

These significantly larger errors for wide trees are probably caused by non-linear edge
aberrations of the smartphone lens, which are not addressed by this approach. Future work
should focus on addressing these distortions, which are notable for smartphone lenses.

19

Example of lens distortions exhibited by smartphone lenses.

Additional corrections
This approach yielded the greatest reduction in error with respect to ground truth
measurements. However, correction taking into account the lens field of view (FoV) was also
attempted. This was approached by retrieving the FoV parameter from the image EXIF
information, allowing the computation with correction of total scene width.

This approach did not yield a further improvement, probably caused by non-linear pincushion
distortions of the mobile lens, which is more pronounced on the edges, while the FoV was
assumed to affect the scene linearly.

It was also attempted to recover the specific lens distortion information across popular
smartphone camera lenses, and this proved unfruitful. Numerous lenses are available, but
not all, and not in a consistent format. Therefore, we believe that the correction method
presented here is the most robust, and present the maximum practically achievable
accuracy of measurement with farmers' smartphones.

20

Human-in-the-loop approach
In order to improve the robustness of the entire solution, there was also a discussion with
experts from the contracting team about possible modifications to the GUI of the mobile
application. These were mainly graphic navigation elements that would guide the user to
take a picture of the tree and card with the most suitable location and quality.

Mobile app UI design for better card&tree photo taking.

Mobile App UI might help to navigate the user to take the tree picture properly and as close
as possible to the ideal position. Below is the proposal of guidance layout when picture
grabbing. Showing lines representing the tree center and card region might support the user
to align the card and the tree accordingly.

The resulting library and its API take into account the possibilities of these visual navigation
elements. The specific location and use of these navigation elements can then be set using
the API and used in the calculation of detection, location and measurement.

21

Treeo-Measurement-Library API
The resulting code is implemented in C++, for easy integration into Android apps as native
builds. The code is available in the private repository https://github.com/DCGM/stromy

Structure
Code is structured as five header files with five source files, as follows:

CardDetection.h/cpp

ObjectDetector.h/cpp ← main object for integration

SaveBinarySIFTmodel.h/cpp

TreeDetection.h/cpp

TreeDiameter.h/cpp

Build
Requires OpenCV 4.5.0. To build as a standalone executable, run the following commands:

mkdir results

mkdir build

cd build

cmake ..

make

./treeProject path/to/tree_image

Integration
The function to call is measureTree() in ObjectDetector. For more information, see
documentation in the comments.

22

https://github.com/DCGM/stromy

Bark-based tree classification
A feature which would be useful for the computation of standing wood value is the
automated detection of tree types, and since the images to be taken are of the tree near its
base, we have also explored the topic of tree bark classification. Can we detect the different
types of trees in Indonesia and Uganda from single images?

Known approaches and Datasets
The most successful available methods1 rely on two important assets: a deep neural network
and a tree databank. The selected network is the widely used ResNet2, with experiments
performed here on the small ResNet-18, which has 18 residual layers. Because the deep
network used for this task contains a total of 11 million parameters, it is not fit to be
evaluated on low-end devices, and requires a GPU to perform evaluations under a second.

Furthermore, it requires a vast dataset to train. The BarkNet 1.0 dataset created at
Université Laval in Canada contains 23 thousand distinct images of tree bark, for 23 different
tree varieties. In order to train the network, these images are augmented by random
cropping, geometry transformations, changes in color, and addition of noise to create
sufficient variation to train the classifier. The published classification accuracy of this
classifier is 97.81%, when evaluated through majority voting.

The dataset used here was composed of BarkNet 1.0 and images from FairVentures:
source Species Common name

BarkNet 1.0 Abies balsamea Balsam fir

BarkNet 1.0 Acer platanoides Norway maple

BarkNet 1.0 Acer rubrum Red maple

BarkNet 1.0 Acer saccharum Sugar maple

BarkNet 1.0 Betula alleghaniensis Yellow birch

BarkNet 1.0 Betula papyrifera White birch

BarkNet 1.0 Fagus grandifolia American beech

BarkNet 1.0 Fraxinus americana White ash

BarkNet 1.0 Larix laricina Tamarack

BarkNet 1.0 Ostrya virginiana American hophornbeam

BarkNet 1.0 Picea abies Norway spruce

BarkNet 1.0 Picea glauca White spruce

BarkNet 1.0 Picea mariana Black spruce

BarkNet 1.0 Picea rubens Red spruce

BarkNet 1.0 Pinus rigida Pitch pine

2 He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE
conference on computer vision and pattern recognition. 2016.

1 Carpentier, Mathieu, Philippe Giguere, and Jonathan Gaudreault. "Tree species identification from
bark images using convolutional neural networks." 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2018.

23

BarkNet 1.0 Pinus resinosa Red pine

BarkNet 1.0 Pinus strobus Eastern white pine

BarkNet 1.0 Populus grandidentata Big-tooth aspen

BarkNet 1.0 Populus tremuloides Quaking aspen

BarkNet 1.0 Quercus rubra Northern red oak

BarkNet 1.0 Thuja occidentalis Northern white cedar

BarkNet 1.0 Tsuga canadensis Eastern Hemlock

BarkNet 1.0 Ulmus americana American elm

FairVentures Paraserianthes falcataria Sengon

Older approaches have significantly lower accuracies, but require significantly less
processing power, thanks to their use of Wavelets and SIFTs3.

Adaptation to new varieties
We hypothesised that the same accuracy could be reached on tree varieties seen in
Indonesia. Therefore, the BarkNet 1.0 dataset of tree varieties present in Quebec, Canada,
was extended with 35 Sengon trees photographed in Indonesia. These 35 were additionally
split into 25 for training and 10 for evaluation.

Training and evaluating the Resnet18 architecture on these yielded the following results: A
classification accuracy of 94% for all classes, and 90% on Sengon trees in particular (9 out
of 10). The lower accuracy across all classes in comparison to the published results is
explained by the lack of use of majority voting, and different training conditions. However, the
high accuracy on Sengon trees has low statistical significance, because there were only ten
in the evaluation dataset.

Furthermore, classification inaccuracies for such a small dataset may be caused by different
factors. For example, by analysing the EXIF data it was discovered that the incorrectly
classified image came from a different camera than the others. Similarly, lighting conditions
are likely to affect these results, but these are controlled for well in the larger BarkNet 1.0
dataset.

In conclusion, it may be stated that tree identification from bark is possible for trees captured
on smartphones. However, a significantly larger dataset will be required, of around 1000
trees for each class. For this number of training samples, we expect an accuracy between
98% and 99%.

It may be of interest that an exploration of the literature has also yielded methods for Tree
Re-Identification from bark images4. That is, images of the same tree taken months apart
could be used to detect whether the same tree is being measured, to provide per-tree growth
estimates.

4 Robert, Martin, Patrick Dallaire, and Philippe Giguère. "Tree bark re-identification using a
deep-learning feature descriptor." 2020 17th Conference on Computer and Robot Vision (CRV). IEEE,
2020.

3 Fiel, Stefan, and Robert Sablatnig. Automated identification of tree species from images of the bark,
leaves or needles. na, 2010.

24

Conclusion
The aim of the project commissioned by Fairventures Worldwide FVW gGmbH was to design
and test computer vision methods for image-based DBH measurement respecting the
requirement for effective functionality also on older mobile devices.

The measurement procedure was divided into three steps: detection of a known card in the
image, detection of the edges of a tree trunk, and calculation of the diameter of a tree trunk.
For each of the steps, particular methods were designed concerning the low-computation
cost requirement and memory limitations. The methods were statistically evaluated,
fine-tuned and the results presented and discussed. In addition, the individual methods have
been optimized and include additional options to manually balance the accuracy or
computational costs when integrated into the particular application. The resulting
implementation creates the designed library containing the final methods. Part of the work
was also the close cooperation on the integration of the library into the mobile application
environment developed by the client's development team.

The research also included a study and the possibility of adapting modern machine learning
techniques for recognizing the type of tree from photography. A suitable existing published
procedure was used as a basis for the solution and extended with new data from Indonesia.
The results show the applicability of this approach when more relevant data is provided.

Part of the solution was also the realization of new annotations on parts of the provided
dataset by the client, including the acquisition of additional datasets and their annotations.

All additional approaches, extended experiments, and results are part of this documentation.

Example of card and tree-trunk detection.

25

Appendix

Smartphone minimal requirements
Runtime environment:

- Android: version 5.1 and higher

- 1 GB RAM

- 5 MP camera

Gallery of example results

Correct detection, proper conditions.

26

Correct detection, proper conditions.

27

Tree(s) (or wooden stick) too close to the trunk or on the background

Lighting conditions, sharp highly-contrast shadows

28

High-color distribution on the bark

29

