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Abstract
This paper presents an in depth comparison of state-of-the-art precise shadowing techniques for an omnidirectional point light.
We chose several types of modern shadowing algorithms, starting from stencil shadow volumes, methods using traversal of accel-
eration structures to hardware-accelerated ray-traced shadows. Some methods were further improved – robustness, increased
performance; we also provide the first multi-platform implementations of some of the tested algorithms. All the methods are
evaluated on several test scenes in different resolutions and on two hardware platforms – with and without dedicated hardware
units for ray tracing. We conclude our findings based on speed and memory consumption. Ray-tracing is the fastest and one
of the easiest methods to implement with small memory footprint. The Omnidirectional Frustum-Traced Shadows method has a
predictable memory footprint and is the second fastest algorithm tested. Our stencil shadow volumes are faster than some newer
algorithms. Per-Triangle Shadow Volumes and Clustered Per-Triangle Shadow Volumes are difficult to implement and require
the most memory; the latter method scales well with the scene complexity and resolution. Deep Partitioned Shadow Volumes
does not excel in any of the measured parameters and is suitable for smaller scenes. The source codes of the testing framework
have been made publicly available.
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1. Introduction

Shadows have been a subject of intense research for decades, with
sustained effort to come up with either the fastest, most precise, or
most realistic–looking shadows for various scenarios in computer
graphics, as documented by several comprehensive publications
[ESAW11,Woo12]. The problem of computing precise shadows for
omni-directional lights is evenmore complex as it in addition to pro-
viding a precise solution, it also needs to cover the whole volume of
the light source. Although the gaming industry is the primary con-
sumer of shadowing algorithms, it is focused mostly on speed rather
then perfection. Relatively recently, pixel-precise shadows were
used in video games such as Tom Clancy’s The Division andWatch
Dogs 2 using NVIDIA’s Hybrid Frustum-Traced Shadows (HFTS),
which combine triangle shadow frustum testing and shadow map-
ping [WHL15]. Areas such as CAD/CAM often require precise
shadows from arbitrary triangle soup [MKZP14], thus popular and
simple–to–implement shadow mapping methods are not a feasible
option as they suffer from aliasing problems (e.g. mismatch between

eye and camera-space sampling). The target audience is readers
from CAD/CAM industry or implementers of various visualizations
requiring fast precise shadows from omnidirectional light sources.

The contributions of this article are as follows. We provide
a public and open-source shadow testing framework evaluating
several shadowing algorithms for free. We use this framework
to evaluate modern omnidirectional algorithms producing hard
shadows on several types of popular scenes to cover different
scenarios in terms of scene configuration and complexity in mul-
tiple screen resolutions. The algorithms are also compared on the
basis of time complexity and their capabilities to support multiple
light sources. To our knowledge, we are the first to compare these
methods against state-of-the-art ray tracing using NVIDIA RTX
on two platforms – as hardware and software-accelerated. We also
present a stencil shadow volume implementation that is able to
outperform even methods that claim to be superior in speed. Con-
clusions are drawn based on performance, memory consumption
and implementation difficulty.
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2. Related Work

A point in a 3D space lies in a shadow if there is occluding geometry
between the point and the light source. As simple as the problem
might seem, the research to accelerate shadow rendering has been
going on for decades and there are numerous categories of methods
based on the type of light source, its directionality, or the type of the
shadow the algorithm produces. There are also dedicated techniques
for solving shadows from many lights, as outlined in [OPB15].

Based on the shadow type, the shadowing algorithms produce ei-
ther hard shadows, where the shadow information is only binary
shadowed–lit, and soft shadows, where the amount of shadow can
be expressed in the 0–1 range. The methods rendering hard shadows
from omnidirectional light sources can be put into the following
three categories: stencil shadow volumes, which rasterize shadow
geometry into the stencil buffer; methods that use acceleration struc-
tures built from view samples or scene geometry; methods based on
Irregular Z-Buffer; and ray-traced shadows.

Precise shadowing techniques are generally more complex and
slower than shadow mapping. As these methods do not perform any
resampling, the aliasing problems are less pronounced, but there is
still some alias when sampling a binary signal on a regular grid.
There are techniques that offer anti-aliased shadows with sub-pixel
precision – for example Frustum-Traced Shadows [WHL15], cast-
ing multiple shadow rays per sample in ray-tracing or by rasterizing
shadow volumes into a multi-sample framebuffer.

A typical problem of these methods is numerical stability and
floating point precision [ESAW11, MKZP14]. As the methods op-
erate on geometry and perform a lot of tests between various prim-
itives (e.g. point-frustum containment test, point-plane distance,
frustum-AABB test, triangle-point visibility test, etc.), these tests
can be victims of floating point inaccuracy, causing a method to pro-
duce artefacts. These problems typically arise from, for triangles
parallel to the light direction, degenerate triangles or inconsistent
results between hardware (rasterization) and software sampling in a
shader (a problemwe encountered while implementing [SKOA14]).

2.1. Stencil shadow volumes

One of the oldest shadowing algorithms, Shadow Volumes [Cro77],
constructs the shadow volume geometry by computing a set of sil-
houette edges from the 3D scene and then extruding them to infinity
in the light direction. An example subset of silhouette edges is vi-
sualized in Figure 3. This method is later implemented in standard
graphics hardware using the stencil buffer and has become known
as z-pass [Hei91]. The problem with the camera in shadow is fixed
in z-fail that essentially reverses the stencil test and requires the
shadow volumes to be capped at both sides [Car00, EK02]. Z-fail
was patented by Creative Labs [Cre99] but the patent expired in
2019, so the algorithm can now be used freely.

Stencil ShadowVolumes suffer from robustness problems when a
triangle is almost parallel to the light direction. Due to floating point
inaccuracy, such a triangle can cause an edge to be incorrectly tested
as a silhouette and produce a shadow artefact, which exhibits itself
as an infinitely-long quad. Adding bias to these computations only
pushes the problem forward. This issue was addressed by Pečiva

et al. [PSM*13] and further improved by Milet et al. [MKZP14] by
sorting the triangle vertices.

A recent paper by Kobrtek et al. [KMH19] shows a technique to
reduce the number of edges that need to be tested by building an
octree from precomputed potentially silhouette edges using a vox-
elized scene space which further improves silhouette extraction of a
3D model as not all edges need to be tested. Fu et al. [FZW*20] fo-
cus on accelerating silhouette extraction using hash tables, targeting
embedded hardware.

Several methods have tried to address the problem of z-pass when
the camera is in shadow [HHLH05, ESAW11]. ++ZP [ESAW11]
initializes a stencil buffer with a value obtained by rendering the
scene into a 1 × 1 stencil buffer using orthographic projection from
the light position towards the camera’s near plane. The resulting
stencil value, however, needs to be read back to initialize the stencil
buffer. As the authors state, fitting the frustum introduces numer-
ical errors and visual problems. AtomicZP [USB*19] extends the
idea of++ZP by casting a ray for every front-facing triangle to test
if it lies between the light source and the camera, incrementing an
atomic counter. This value is then used in a manual stencil test, dis-
carding fragments having a different stencil value.

The downside of stencil-based methods is fillrate consumed by
rendering infinitely large shadow volume sides. Robustness and nu-
merical stability can also be a problem during silhouette computa-
tion in cases when the light direction is almost parallel to a triangle
connected to the edge causing visual artefacts (e.g. from edges that
are not supposed to cast a shadow). As we will demonstrate, these
methods are still able to outperform more sophisticated solutions
when implemented efficiently, contrary to results of previous eval-
uations, (e.g. Sintorn et al.) [SOA11] was able to outperform z-fail
by a factor of 2 at 4096 × 4096; similarly Sintorn et al. [SKOA14]
claim to be faster than z-pass but the tests were performed only at
1024 × 1024.Mora et al. [MGAG16]measured z-pass 50% – 300%
slower than their algorithm.

For more detailed information about the stencil Shadow Vol-
umes, we direct the reader to the publications by Eisemann
et al. [ESAW11] and Scherzer et al. [SWP11].

2.2. Methods using acceleration structures built from the view
samples

The second category of methods builds acceleration structures from
view samples in order to determine their visibility.

Aila and Laine [AL04] build a 2D BSP tree from view samples.
They then test each triangle against the hierarchy for occlusion and
traverse down if a node is at least partially occluded.

Per-Triangle Shadow Volumes (PTSV) [SOA11] builds a hierar-
chical depth buffer from the view samples. Every level of the hier-
archy consists of tiles that represent 8 × 4 tiles of the level below,
acting as a bounding box with a minimum and maximum depth.
The algorithm then tests the shadow volume of every triangle in the
clip space against the hierarchical depth buffer tiles, marks all nodes
that lie inside the volume as shadowed and traverses those nodes that
were intersected by any of the shadow volume planes, down to the
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testing of individual view samples on the lowest level. Transparent
shadow casters are also supported by the method.

This technique is further extended in Clustered PTSV (CPTSV)
[SKOA14]. The view samples are first grouped into tiles of 8 × 8.
Each tile is divided into several clusters and assigned aMorton code
[Mor66] based on the depth and the screen coordinates. Then, a full
3D hierarchical tree is built from the clusters with a branching fac-
tor of 32. Each of the clusters is enclosed in an axis-aligned bound-
ing box (AABB) for faster culling. The main idea behind this ap-
proach is to reduce the size of clusters for scenes with high depth
complexity.

2.3. Methods based on Irregular Z-Buffer

The methods described in this section share a similar acceleration
structure, the Irregular Z-Buffer [JMB04, JLBM05]. The technique
works similarly to shadow maps, but instead of depth the 2D spa-
tial data structure stores a list of all view samples that have been
reprojected to a particular IZB cell.

Story [Sto15] has proposed the Deep Primitive Map (DPM) tech-
nique that works similarly to the IZB, but instead of storing view
samples, it makes lists of all triangle IDs that cover a particular IZB
cell. The data structure seen in Figure 2 is sampled as a shadowmap
to obtain the list of triangle IDs that are ray-tested from the view
sample position towards the light. For the method to work correctly,
conservative rasterization needs to be used as all triangles touching
a particular IZB cell must be stored in its list. As the method stores
triangle IDs, the maximum length of the lists has to be experimen-
tally determined for every scene.

Frustum Traced Shadows [WHL15] conservatively renders the
scene geometry against the IZB. A shadow volume is created from
a triangle and the light source and every IZB cell touched or cov-
ered by the triangle then tests its view-space samples against the
triangle’s frustum (shadow volume).

A common problem of all the IZB-based methods is long lists,
which cause low GPU occupancy and slow IZB traversal. In order
to match eye and light space sampling, Wyman et al. [WHL15] pro-
pose that ideal parametrization for these methods are cascades, opt-
ing for the technique described by Lauritzen et al. [LSL11]. Story
[Sto16] uses dynamic reprojection of the light space area where the
list lengths exceed a selected threshold. A second projection matrix
is computed that projects the selected area into the second IZB list
head texture.

2.4. Methods building acceleration structures from the scene
geometry

The methods described in this section use BSP-trees to build a hier-
archy from the scene’s geometry. This approach was first described
in Shadow Volumes BSP (SVBSP) [CF89]. The BSP tree is built
incrementally from a front-to-back sorted set of polygons with re-
spect to the light source, thus a triangle being processed is tested
only against the planes that are already in the BSP tree. Triangles
that intersect a plane need to be split, which complicates the build
process. Sample visibility is determined by traversing the tree and

Figure 1: Construction of the TOP tree. The purple triangle creates
a volume from the three side shadow planes and itself. Each plane
acts as a node in the TOP tree, its children being triangles outside
the plane, intersecting the plane or on their inner side. The right
side depicts a possible scenario when the purple triangle is added
first and all other triangles afterwards. Used both in [GMAG15]
and [MGAG16].

Figure 2: Data structures of Deep Primitive Map, consisting of the
buffer storing indices to triangles covering or intersecting the par-
ticular texel of the primitive map. Primitive count map stores the
number of triangles in each texel of the primitive map. Primitive
buffer is the list of processed triangles [Sto15].

finding out if the sample’s coordinates lie in an occluded part of the
tree or not. The resulting data structure needs to be rebuilt every
time the light changes.

Gerhards et al. [GMAG15] have proposed a tree that is ternary
rather than binary, calling it TOP tree, built and traversed on the
GPU. Instead of splitting the triangles during the build process as
SVBSP, this algorithm assigns triangles that intersect a split plane
into a separate intersection node, as seen in Figure 1. This addresses
the robustness issues resulting from triangle splitting. Triangles are
also inserted in random order, which produces a TOP tree of differ-
ent quality every frame.

Mora et al. [MGAG16] improve on the TOP tree method
by introducing stackless and hybrid traversals, as well as depth
optimization. Stackless and hybrid traversal try to trade register
allocation of stack-based traversal for memory bandwidth, a hy-
brid method providing an optimal solution in the majority of the
described test cases.

Deves et al. [DMAG18] have improved the scalability of the
SVBSP. The geometry in the scene is clustered into and encap-
sulated with either a bounding sphere or a capsule and stored in
a metric tree [Uhl91]. The traversal is similar to methods men-
tioned above except that the view sample is first tested against the
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Figure 3: Visualization of Sponza silhouette edges from a given
light position. The set of silhouette edges is only a small subset of
all the edges.

bounding volumes. According to the authors’ results the method is
more suitable for scenes with a large amount of geometry (millions
of triangles); other methods are faster for smaller scenes.

These group of methods share one common feature – their accel-
eration structure is built every frame in a random order of nodes;
thus, its quality varies from frame to frame, which will be seen in
the measurements.

2.5. Ray–Traced shadows

One of the first computer graphics techniques for rendering shad-
ows is ray tracing, used for off-line rendering via a scan-line ap-
proach [App68]. Recent development of graphics hardware brings
ray-tracing from interactive to real-time graphics also for the con-
sumer market. The current generation of graphics hardware has ded-
icated units for ray tracing acceleration, including the latest game
consoles. This makes ray tracing an attractive method for shadow
rendering. Shadow computation using ray-tracing can be easily ex-
tended from hard to soft shadows by casting multiple shadow rays
towards an area light source. These techniques sample multiple ran-
dom locations on the area light source and accumulate the visibility
contribution from each shadow ray cast from a single origin. As the
sampled locations cannot cover the whole area of the light source,
the shadows suffer from noise, thus a de-noising filter needs to be
applied. Such a technique has been proposed by Boksanský et al.
[BWB19]. The algorithm utilizes the recently introduced Vulkan
ray tracing extension, coupled with the rasterization pipeline. The
method uses penumbra detection and adaptive sampling to lower
the number of shadow rays based on the sample visibility in the
four previous frames. When tracing hard shadows, the method was
able to outperform shadow mapping on scenes with multiple light
sources. The method, however, produces temporal shadow artefacts
and ghosting when used in combination with a moving light source
or shadow caster due to reprojection from previous frames.

2.6. Other methods

In the context of this paper we note several key algorithms
for Shadow Mapping [Wil78] parametrization that aim to mini-
mize alias and produce hard shadows. Cascade-based approaches
[ZSXL06, LSL11] cover the camera frustum by a series of shadow
maps, each covering a differently sized area. Warping the shadow
map in order to redistribute texels based on over or undersampling
of the shadow map regions has been tried by several researchers,
notably Martin et al. [MT04] (trapezoidal warping), Wimmer
et al. [WSP04] (light frustum warping for directional lights),
Rosen [Ros12] (rectilinear warping) andMilet et al. [MNZ15] (non-
orthogonal warping). Scherzer et al. [SJW07] use temporal repro-
jection and jittering to increase the sampling rate of a shadow map.
The hybrid approach combining shadow maps and shadow volumes
by Chan et al. [CD04] uses shadow volumes only on the shadow
borders.

2.7. Sub–Pixel precise methods

Several algorithms were designed to provide sub–pixel anti–aliased
hard shadows. Ray tracing can achieve sub-pixel precision naively
by simply casting more secondary rays, or by beam [ORM07] or
packet tracing [BEL*07]. Sub-pixel shadow maps [LMSG14] try
to address both perspective and projection alias of shadow maps
by storing fixed-sized partial representation of the scene geometry.
Conservative rasterization is then used to generate fragments cov-
ering the entire triangle. Sub-pixel precision is achieved by testing
multiple subsamples of fragments on the shadow boundary. A simi-
lar approach is used in [WHL15] that is capable of up to 32 samples
per pixel precision by creating a µquad from screen pixel and pro-
jecting it onto the fragments’ tangent base. Its subsamples are then
marked when testing a triangle shadow frustum sides against the
µquad. Du et al. [DFY14] use a triangle-based G-buffer generated
from the original coverage triangle of each screen pixel and propose
a faithful geometric filter to alleviate aliasing. Several hard-shadow
anti-aliasing techniques are discussed by Li et al. [LCF17].

3. Selected Methods and Implementation Details

We tested and evaluated several methods representing each category
discussed in the previous section. Stencil shadows are represented
by an implementation in the compute shader (CSSV) based on the
algorithm proposed by Milet [MKZP14]. We also evaluated imple-
mentations in tessellation and geometry shaders, but we were able
to optimize the compute shader versions of the algorithm to be the
fastest and most consistent of all hardware platforms.

The second category will be represented by the Per-Triangle
Shadow Volumes (PTSV [SOA11]) and Clustered PTSV (CPTSV
[SKOA14]).

We chose Deep Partitioned ShadowVolumes from the category of
methods building acceleration structures from scene geometry as its
shader sources are publicly available and the scale of the evaluated
models should suit the method.

Although IZB-based methods are not explicitly omnidirectional,
we have implemented the Frustum-Traced Shadows [WHL15]
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using omnidirectional parameterization, similar to omnidirec-
tional shadow mapping (Omnidirectional Frustum-Traced Shad-
ows, OFTS).

As we used a single point light source in our test scenes, we im-
plemented a hardware-accelerated ray tracer casting one shadow ray
per fragment using NVIDIA RTX. The source codes for both testing
programs are freely available on GitHub as a reference for other re-
searchers and as a public benchmark. (https://github.com/dormon/
Shadows, https://github.com/neithy/NeiGinPublic.

All methods except for the ray tracing were implemented in
a multi-platform framework using OpenGL 4.5 core. Ray tracing
was implemented in Vulkan using VK_NV_ray_tracing extension.
Both test programs use the same mechanics – we utilized a deferred
pipeline to first render the G-buffer (position, depth, normal, color,
triangle ID) which serves as the input for the shadowing method.
As all these methods use different ways of applying shadows to the
scene (stencil mask, acceleration structure traversal, shadow map),
we decided to unify the tested algorithms in terms of output. Each
method is supposed to fill a shadow mask texture that is then used
in the final rendering pass to apply shadows to the view samples.

The following subsections describe our implementations for all
these methods in more detail.

3.1. Stencil shadows

We based our stencil shadow volumes on z-fail using techniques
from [MKZP14] and [KKT08], as it addresses the robustness issues
of shadow volumes. The connectivity information is extracted on the
CPU and without loss of generality, we set the maximum possible
multiplicity to 2 in our tests – edges having more than two adja-
cent triangles were split into several instances. The compute shader
then tests every edge for silhouetteness. In order to minimize the
amount of data written to the global memory, the compute shader
only outputs one encoded integer per silhouette edge consisting of
edge ID and its multiplicity. Then, the geometry shader receives this
encoded information as a vertex attribute and casts the edge side as
many times as its multiplicity with correct triangle winding based
on the multiplicity sign. To speed up the computation process even
more, we replace storing opposite vertices with the edges with pre-
computed triangle planes that would otherwise have to be calculated
every time in the silhouette testing shader from the edge vertices
and from the opposite vertex. The shadow volume caps are rendered
similarly using the geometry shader, we compute multiplicity from
the triangle and the light source, the sign of the multiplicity deter-
mining the winding of the triangle.

3.2. PTSV and CPTSV

Both PTSV and CPTSV aim to reduce the shadow volume raster-
ization times as it is the most demanding step. They do not use
traditional rasterization of shadow volumes as the stencil methods,
instead they hierarchically rasterize the shadow volumes into an
acceleration structure. PTSV uses a hierarchical depth buffer and a
shadowmask buffer. CPTSV uses a 3D tree of view sample clusters,
as seen in Figure 4. All hierarchical structures have a branching

Figure 4: The image shows view-samples (coloured triangles) and
clusters (green boxes) on one level of the CPTSV’s hierarchy

factor equal to 32 (SIMD size) in the original design. Threads in
each warp cooperate in rasterization of one shadow frustum.

We re-implemented both methods in OpenGL according to the
original papers and available source codes. The authors provided
us with the implementation of PTSV in CUDA. We modified the
implementation to run on different hardware (AMD) and to sup-
port different resolutions and fixed some visual artefacts. We tested
different memory storage types (textures and buffers) for intermedi-
ate results. In the end, we chose textures as they performed slightly
better.

CPTSV was implemented from scratch with all the extensions
mentioned in the original paper, except for load balancing. We im-
plemented the traversal shader using a small stack since template
recursion is not possible in OpenGL.

We further optimized the construction of upper parts of the 3D
cluster tree by storing the IDs of active nodes of the previous level
and launching only the appropriate number of threads. We also tried
to minimize the number of operations required to compute Morton
codes for x, y, and z components with different bit lengths. Further-
more, we optimized the traversal step of the algorithm by reducing
the number of registers required for the stack using local memory.

According to our measurements, we are convinced that our
implementation is on a par with, or faster, than the original
implementation.

3.3. Deep partitioned shadow volumes

The shaders for DPSV [MGAG16] have been made publicly avail-
able by the authors; we provided all the necessary inputs and out-
puts for the method. We implemented a deterministic shadow plane
construction based on [MKZP14], which helped with blinking arte-
facts we encountered with this method. After testing all three vari-
ants of the method’s TOP tree traversal (stack, stackless, hybrid),
we opted for the hybrid variant, combining both approaches, as it
was the fastest of all three versions.
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3.4. Omnidirectional frustum-traced shadows

This method was implemented using all optimizations mentioned
in the original paper [WHL15] (tight-fitting projection, discarding
back-facing view samples, removal of already shadowed view sam-
ples, depth buffer initialization) including the reprojection of ar-
eas with very long lists using off-centre projection [Sto16]. Our
implementation works similarly to omnidirectional shadow map-
ping, utilizing six light frusta to cover all directions. We cull those
frusta in two stages – first on the CPU by computing collisions
of light frusta with camera frustum and producing a bit mask,
which speeds up the heat map construction. The second frustum
culling occurs when computing new projection matrices, as some
of the visible light frusta may not contain any view samples. The
whole method runs in a single pass using compute shaders to com-
pute the heat map (list lengths per light-space texel), new projec-
tion matrices and IZB; the depth buffer optimization and the IZB
traversal utilize geometry shader and layered rendering to draw to
several textures simultaneously. The IZB traversal pass requires
conservative rasterization; we use NVIDIA’s OpenGL extension
GL_CONSERVATIVE_RASTERIZATION_NV.

3.5. Ray tracing

Shadow rendering by ray tracing was implemented separately in a
Vulkan test program using NVIDIA’s VK_NV_ray_tracing exten-
sion. Similarly to other implemented methods, it used geometry in-
formation provided by the G-buffer to create a per-fragment shadow
mask. A simple ray generation shader casts a ray from the fragment
position towards the light and the corresponding miss shader marks
the fragment as lit. As a precise triangle intersection is not required,
we enabled an optimization in the form of TerminateOnFirstHit
flag, that is terminating BVH traversal upon hitting any triangle to-
wards the light source.

To use the ray tracing extension, a two-level bounding volume
hierarchy is required. The bottom level consists of elements of the
geometry, and the top level is built from bounding volumes of object
instances. In the case of static geometry, the acceleration structure
is created once and never updated. For a scene with moving objects,
only the top level needs to be updated with transformations. The
bottom level structure needs to be updated only when the geom-
etry changes (elastic simulation, skinning, etc.). In order to simu-
late several possible scenarios, we included measurements without
BVH updates as the best-case scenario and a full per-frame BVH re-
build as the worst case. Building is done on the GPU; therefore, all
memory needs to be allocated in advance. The API provides an up-
per estimate of the required memory amount based on the provided
geometry, but the final size of the BVH is usually around 50% of
the estimate.

4. Measurements

The measurements were carried out on a set of popular scenes; de-
tails can be seen in Table 1. Although ‘Villa’ is a small scene com-
pared to modern standards, it was used in [SKOA14], and we will
demonstrate that this method was designed specifically for scenes
of this type – high depth complexity and falls behind on other scene

Table 1: Test scenes used for method evaluation.

Scene Triangle count Edge count

Villa 88 870 136 663
Conference 124 619 195 019
Sponza 279 163 431 246
Closed Citadel 613 567 921 555
Buddha 1 087 476 1 630 522
Hairball 2 880 002 4 290 005

Table 2: Memory consumption of all tested algorithms on all scenes.

Scene RTX CSSV DPSV PTSV CPTSV

Villa 5.63 7.82 10.85 8.13 9.49
Conference 7.88 11.16 15.21 17.85 20.83
Sponza 17.50 24.68 34.08 39.48 46.06
Citadel 38.56 52.73 74.90 84.37 98.43
Buddha 68.40 93.30 132.75 149.27 174.16
Hairball 181.02 245.48 351.56 392.76 458.22

Notes: The sizes for the ray tracer are only for the BVH structure. As we only
cast one secondary ray per fragment, they should fit into the GPU registers.
The memory footprint of Sintorn’s methods (PTSV, CPTSV) depends on the
resolution and other factors, so the table only shows the size of shadow frusta
buffers. All sizes are in MB.

types. Even “Hairball”, with its 2.8 million triangles, poses a chal-
lenge for the tested algorithms. All scenes were tested with a sin-
gle point light source. The ‘Buddha’ and ‘Hairball’ scenes were
slightly modified – we positioned both models on a plane, acting
as a shadow receiver. Each scene was tested using a camera fly-
through that took 1000 frames. Every frame was rendered five times
and the average time of the shadow mask creation was written to a
.csv log file. The tests are focused on resolutions of 1920× 1080
and 3840 × 2160, but we have also tested on other resolutions, from
1K × 1K to 4K × 4K, when evaluating the resolution dependency.
The memory consumption of all methods is analysed as well.

All tests were carried out on an AMD ThreadRipper 1920X sys-
tem with 32GB of RAM and a GeForce RTX 2080 Ti graphics card
with hardware ray tracing support. Some of the test were run on a
GeForce GTX 1080Ti that supports RTX API in fallback mode us-
ing compute shaders. The system runs onWindows 10, and both test
applications were compiled using Visual Studio 2019.

4.1. Memory consumption

We measured the amount of memory each method requires for its
acceleration structures; the results can be seen in Table 2. The mem-
ory footprint of OFTS is not affected by the scene geometry, as it
depends only on the method parameters and the screen resolution.
We used two sets of parameters based on profiling – lower resolu-
tions (up to 1920× 1080) used 1024 by 1024 for one slice of the
IZB’s head texture, and higher resolutions used 2048 × 2048. The
reason for this was to cope with the performance drops caused by
insufficient reprojection of the densest areas of the heat map. The
heat map had a resolution of 512× 512 for all screen resolutions.
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This resulted in memory consumption of up to 98MB for lower res-
olutions (up to 1920 × 1080), and up to 403 MB at the resolution
of 4000 × 4000. The reason for such a high amount of memory at
the higher resolutions is that the IZB’s head texture has 12 layers
(six sides with reprojection), the same for the depth texture for the
z-buffer optimization pass. At lower resolutions, the benefit of be-
ing independent on the scene geometry prevails on larger models;
however, at higher resolutions (3840× 2160 and more), the method
is the second most demanding, even at the ‘Hairball’ scene.

From the rest of the tested methods, of which the memory foot-
print is dependent on the amount of scene geometry, ray tracing
reports the lowest amount of video RAM (based on the upper es-
timate reported by the RTX API), followed by CSSV. The stencil
method only needs one buffer to store the edge information and an-
other to write the resulting encoded multiplicity and the edge ID.
DPSV stores the TOP tree nodes in a single linear buffer and its
memory consumption is around 40% higher than CSSV.

The memory requirements of PTSV and CPTSV depend on two
factors: the number of triangles and the resolution. Both algorithms
need to allocate a shadow frusta buffer, the size of which can be seen
in Table 2.

Apart from the shadow frusta buffer, PTSV uses two acceleration
structures – one hierarchically stores the depth ranges per tile, the
other contains the actual shadowed/lit information. The depth range
is represented by two float values; the number of tiles on every level
can be expressed by Equation (1), where T is the number of tiles, R
the resolution,N the number of levels, B the branching factor (work-
group size) and i the index of the level. The size of these hierarchical
structures is 5 MB at 4K resolution.

T = R

bN−i (1)

The memory footprint of CPTSV’s hierarchical structures is
much larger than PTSV. The actual size of the structures depends
greatly on resolution, branching factor, and z’ bits in the cluster key;
the amount of memory can go up to 6 GB at 4K × 4K (buffer con-
taining the AABBs of the clusters). We have also implemented the
memory reduction scheme as mentioned in the original paper, re-
ducing the amount of memory approximately 6.5-times at a cost of
about 5% of the performance.

4.2. Evaluation at 1920 × 1080

The results of all methods and scenes at 1920× 1080 can be seen
in Figure 5 and the average shadow mask creation times in Table 3.
PTSV was removed from the ‘Buddha’ graph (Figure 5e) for
clarity, as its average performance was 352ms.

Although RTX without BVH rebuild is the fastest method of all,
it is also an ideal condition that would probably not be achieved in
a real scenario. ‘RTX AVG’ as an average is probably closer to a
practical case, but even then it was the fastest in the most cases. Ray
tracing was also the most stable method tested.

CSSV’s average time was spoiled by the “Hairball” scene, where
the silhouette is not simple – the model is comprised chiefly of
thin geometry, producing a complex silhouette that generates a lot

Table 3: Average shadow mask creation times across all the test scenes at
1920× 1080.

Villa Conf. Sponza Citad. Buddha Hairb. AVG

CPTSV 1.30 8.51 3.08 4.93 7.04 33.55 9.74
CSSV 2.23 0.68 1.57 4.15 2.24 29.90 6.80
DPSV 1.87 3.11 2.91 5.16 8.47 120.88 23.74
OFTS 2.05 2.05 3.70 3.30 5.22 14.32 5.08
PTSV 12.73 12.73 10.25 10.66 352.64 97.90 81.42
RTX rebuild 1.18 1.47 2.33 4.33 7.23 16.50 5.50
RTX 0.24 0.28 0.37 0.26 0.08 0.54 0.29
RTX AVG 0.71 0.88 1.35 2.30 3.66 8.52 2.90

Notes: The bold values represent the fastest algorithm (except ray tracing).
‘RTX_AVG’ represents an average of ‘RTX’ and ‘RTX rebuild’. The ‘AVG’
column contains the average shadow mask creation time across all frames
on all scenes. All values are in milliseconds.

of shadow volumes requiring rasterization. Otherwise, this method
would be second to ray tracing in this scenario, even surpassing the
“RTX AVG” time twice. Compared to OFTS, stencil shadow vol-
umes perform better on enclosed scenes (‘Conference’, ‘Sponza’)
and scenes with a relatively simple silhouette (‘Buddha’, as well as
‘Conference’, has a relatively simple silhouette). Tree branches on
‘Villa’ cast shadows that cause a high fill rate, which leads to lower
performance of the stencil method compared to other techniques.

PTSV is the slowest method on most of the scenes. The ‘Buddha’
scene seems to pose a non-trivial problem for PTSV as the model
contains a high number of small triangles positioned mostly in the
middle of the viewport. This triangle distribution causes an imbal-
anced GPU load when traversing the acceleration structure of the
view samples, as only a handful of the view samples are affected
by the vast majority of the scene geometry, causing the method to
perform very poorly in this test case.

CPTSV excels on the ‘Villa’, as the scene was specifically de-
signed for this method.Both PTSV and CPTSV perform unusually
on the ‘Conference’ scene, where the average time is slower than on
‘Buddha’, despite having just 11% of its geometry. This is probably
caused by missing load-balancing optimization, as there are larger
triangles in the scene (table, floor, etc.). A single triangle is pro-
cessed by one warp, which causes improper load balancing when
the triangle covers a large portion of the screen, as a lot of nodes
need to be processed. Apart from these two cases, the method can
be considered an average one – not the fastest, not the slowest.

DPSV randomly builds its TOP tree every frame,meaning that the
quality of the acceleration structure differs from frame to frame. It
can be observed as fluctuations mostly on the ‘Hairball’ scene. The
complex and concentrated geometry in this scene poses a challenge
for the build phase of the algorithm, resulting in huge variation of the
frame times. Themethodwas faster than CPTSV up to ‘Sponza’, but
does not scale as well as other methods with the increasing amount
of geometry.

OFTS had to be tuned for smaller (up to 1920 × 1080) and larger
resolutions separately, as the parameters greatly affected sudden
performance drops caused by the reprojection area being too large
and the most exposed lists did not get properly redistributed. This
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Figure 5: Comparison of all the methods using flythroughs on various test scenes, resolution 1920 × 1080, sorted by the amount of triangles.
Each graph represents one tested scene with results from methods tested. Ray tracing is measured twice – without any modification to the BVH
(as ‘rtxNoRebuild’) being the best possible scenario and with full BVH rebuilt every frame (‘rtxBvhRebuild’) for the worst case. The ‘Buddha’
scene does not include the PTSV method, as its average performance was 352ms and was removed for clarity.
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Table 4: Average shadow mask creation times across all the test scenes at
3840× 2160.

Villa Conf. Sponza Citad. Buddha Hairb. AVG

CPTSV 2.16 18.51 7.52 12.61 5.96 29.95 12.79
CSSV 5.42 1.74 4.27 9.68 3.97 64.29 14.90
DPSV 4.95 8.52 7.01 10.62 10.61 129.97 28.61
OFTS 4.25 4.78 8.18 4.43 6.21 17.52 7.57
PTSV 5.40 41.62 23.52 13.19 316.87 91.77 82.06
RTX rebuild 1.85 2.23 3.36 5.0 7.31 17.66 6.24
RTX 0.90 1.06 1.40 0.99 0.25 1.93 1.09
RTX AVG 1.38 1.65 2.38 3.0 3.78 9.80 3.67

Notes: The table description is identical to Table 3.

happensmost often when the camera is very close to the geometry or
when the reprojection itself cannot benefit from the shape of the re-
projection area (e.g. when the longest lists are in opposite corners of
the heat map). Such spikes can be seen on the ‘Villa’ scene. Its per-
formance also depends on the number of active light frusta, which
can be seen for example on the ‘Sponza’ scene where the light is po-
sitioned in a way so that all 6 frusta are facing some of the scene’s
geometry, thus there are always multiple frusta active during the
flythrough; compared to, for example ‘Buddha’, where most of the
scene geometry will be concentrated in a single frustum. OFTS can
handle complex geometry, like ‘Hairball’, better than other conven-
tional methods. This method suffers from the same problem as om-
nidirectional shadow mapping – seams between the cubemap faces,
exhibiting as an occasional line of lit fragments.

4.3. Evaluation at 3840 × 2160

The results of the 4K flythroughs are presented in Figure 6 and Ta-
ble 4; the results of the ‘Buddha’ scene in Figure 6e are again miss-
ing the PTSV graph, as the method performed very slowly – 316 ms
on average. We were surprised by the results of the stencil method
on the 4K resolution, as we estimated that the rasterization of the
shadow volumes geometry would cause CSSV to perform as one
of the slowest, but the results seem to follow a similar trend as at
1920 × 1080. In terms of the average across all scenes, OFTS was
again second-fastest to ray tracing, followed by CSSV (mainly be-
cause of poor performance on the ‘Hairball’ scene) and CPTSV. In-
terestingly, the PTSV was able to outperform CPTSV on the ‘Hair-
ball’ scene compared to the full-HD test; the reasons will be dis-
closed below. OFTS had to be tuned for higher resolution, as we
often experienced spikes in frame times; for example, there were
270 ms spikes on both ‘Sponza’ and ‘Hairball”. We had to adjust
the resolution and reprojection threshold to cope with them, but they
are still visible. Ray tracing is again the fastest solution.

4.4. Frame time decomposition

The timings of the particular components of each method can be
seen in Figure 7, measured on the ‘Sponza’ scene at 1920× 1080
resolution. Sponza was chosen because the omni directional light
source can demonstrated be very well in its enclosed atrium.

Table 5: Average shadow mask creation times across all the test scenes at
1920× 1080 running on GeForce GTX 1080Ti.

Villa Conf. Sponza Citad. Buddha Hairb. AVG

CPTSV 2.14 10.30 4.36 7.05 11.22 49.48 14.09
CSSV 2.31 0.74 1.79 4.51 2.90 32.01 7.38
DPSV 2.93 4.63 4.19 6.87 9.86 137.08 27.59
OFTS 1.87 2.22 3.97 3.66 5.94 16.39 5.67
RTX rebuild 3.62 3.22 5.12 7.26 8.53 26.28 9.01
RTX 2.39 1.65 2.74 2.45 0.42 7.66 2.89
RTX AVG 3.01 2.44 3.93 4.86 4.47 16.97 5.95

Notes: The table description is identical to Table 3.

CSSV can be broken down into two parts – silhouette computa-
tion and shadow volume rasterization. We used the z-fail, thus we
rendered both the front and back caps for each shadow volume. The
silhouette extraction takes only around 0.05ms (‘compute’). The
extruded sides take the longest to render, as they consume a lot of
fillrate. Drawing caps takes on average 9.5% of the total shadow
computation time (0.15 ms in average).

The time to build the hierarchical tree from the view samples in
CPTSV is significantly faster than in PTSV, 0.44 versus 3.17 ms
on average. Wedge optimizations for faster tile culling sped up the
rasterization of the shadow volumes against the hierarchical tree
structure.

All stages of OFTS except traversal take about 1 ms combined.
The traversal itself takes 2.72 ms on average on this scene, about
73% of the shadow compute time. ‘Sponza’ as an enclosed scene
provides a good example, as the number of active frusta frequently
changes in the course of the test as well as projected area in each
frustum. Sudden spikes are caused by IZB lists being long.

The ray tracer spent most of the frame time building the BVH
structure; the tracing itself is only around 20% of the total time. We
have also found out that the initial BVH build takes up 10ms more
than all subsequent rebuilds, probably due to memory allocation.
The traversal part is very fast, also because all the rays are coherent
and converge to a single point.

4.5. Evaluation on GeForce GTX 1080Ti

We repeated the measurements using GeForce GTX 1080Ti, which
supports the RTX API in fallback mode, representing a well-
optimized software ray tracing solution. The results can be seen in
Figure 8 and Table 5. As PTSV was the slowest method of all, we
excluded it from this measurement.

Ray tracing, on average, performs 2.1-times slower than on the
RTX 2080Ti; rebuild 1.6-times and the traversal-only scenario 10-
times. The acceleration structure traversal benefits mostly from the
hardware acceleration. Compared to other methods on this platform,
ray tracing without rebuild is not the fastest method until the Citadel
scene. Although a combined average time of ray tracing was second
to pure traversal on the 2080Ti, it was surpassed by OFTS on the
1080Ti. CSSV is also faster than RTX with rebuild on the legacy
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Figure 6: Comparison of all the methods using flythroughs on various test scenes, resolution 3840 × 2160. The methods are labelled the
same way as in Figure 5. The test on the ‘Buddha’ scene again does not include the PTSV method, as its average performance was 316ms.
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Figure 7: Frame time decomposition of all methods on the Sponza scene at 1920 × 1080. Ray tracing is represented by its worst-case scenario
(full BVH rebuild every frame).
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Figure 8: Evaluation at 1920× 1080 using GeForce GTX 1080Ti, having only software support for ray-tracing. The methods are labelled
the same way as in Figure 5. PTSV was excluded from the measurements for clarity.
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Figure 9: Dependency on the triangle count across all tested scenes
at 1920 × 1080. PTSV was excluded for clarity.

platform. Conventional methods were, on average, 15.5 % (8%–
30 %) slower than on the 2080Ti.

4.6. Dependency on triangle count

Figure 9 shows performance dependency on triangle count across all
of the tested scenes and methods at 1920 × 1080. It was calculated
as the average and mean absolute deviation from all the frame times
of the flythrough on a particular scene. Due to PTSV’s behaviour
on the ‘Buddha’ scene (described above), the method was excluded
from the graph. It also has the highest dependency on the triangle
configuration of all the tested methods; its mean absolute deviation
at 4000 × 4000 was 30 ms. It can be seen that ray tracing without
rebuild does not put a lot of stress on the RT cores of the GPU;
we are tracing 2 megarays at 1920× 1080 shadow rays per frame,
where the hardware is, in theory, capable of 8 gigarays per second.
OFTS shares similar triangle dependency with ray tracing with full
rebuild, having the lowest average and mean absolute deviation of
the conventional methods. CSSV is something of a surprise, as the
method needs to rasterize a lot of infinite shadow volume geome-
try. Although having lower triangle dependency than CPTSV in the
tested scenarios, the tide would change for larger scenes as the aver-
age curves of both methods converge. With the increasing number
of triangles, DPSV was gradually outperformed by other methods,
and its curve steep final segment is the result of the ‘Hairball’ scene.

4.7. Dependency on screen resolution

We produced a graph in a similar fashion for dependency on the
resolution as well; see 10.

CPTSV’s average shadow computation time increased 7.5-times
at 4096 × 4096 compared to 4K resolution despite the fact the ac-
celeration structures have the same size in both cases. This occurred
on every test scene. We found out that it is caused by incorrect
view sample depth clustering. The majority of the view samples
in all screen tiles fell into the same cluster even if their depth was
different. The reason is the exponential division of the view frus-
tum’s depth. The amount of bits allocated for encoding depth using

Figure 10: Computational times as they depend on the screen res-
olution on the “Villa” scene.

the Morton code depends, apart from other factors, on the vertical
screen resolution and on the distance of the near clipping plane. To
encode the depth at 4096 × 4096, the bit count would exceed the
allocated 10 bits, causing the z-part of the Morton key to overflow
and thus storing all view samples into the same furthest cluster. This
resulted in a very long AABB of the cluster (along the z axis) which
causes very slow traversal, as most of the clusters have to be vis-
ited by the majority of the shadow frusta. One of the possible fixes
would be to allocate more bits (13 or more) for the depth, but in that
case, a 32-bit integer would be insufficient and an arbitrary bit array
would slow down the method. Using 64-bit keys would double the
already high memory consumption. Another possibility would be to
divide the frustum using a different scheme.

Provided CPTSV would not be affected by the problem men-
tioned above, we extrapolated a hypothetical average frame time be-
tween 3.8 and- 5.1 ms (using quadratic regression and power curve)
for 4K × 4K resolution. In such a case, the method would have had
one of the lowest resolution dependencies of all the tested methods.

Although PTSV and CPTSV have a lower resolution dependency
thanks to the hierarchy they build, they have larger initial overhead
and don’t scale well with the increasing amount of triangles. As ex-
pected, CSSV is more sensitive to resolution than other methods;
its curve is similar to OFTS but absolute deviation is the widest (ex-
cept for 4k × 4k). DPSV follows CSSV in this scenario, but ends
up slightly above. Hardware-accelerated ray tracing has the lowest
sensitivity on all the test scenes.

5. Time Complexity

Although the authors of the original papers do not state the complex-
ity of their algorithms, we tried to estimate the average time com-
plexity based on increasing scene complexity, screen resolution and
multiple light sources for every major part of the tested algorithms.
These findings can be seen in Table 6. In terms of resolution, most
of the algorithms scale linearly with the increasing amount of pixels
except for CPTSV.When multiple lights are used, ray tracing seems
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Table 6: Time and memory complexities of the tested algorithms, broken
down into stages.

Method Resolution Geometry Multiple lights

CSSV (adjacency) O(1) O(N log(N)) O(1)
CSSV (silhouette) O(1) O(N) O(N)
CSSV (rasterize) O(N) O(N) O(N)
PTSV (shadow frusta) O(1) O(N) O(N)
PTSV (depth stencil) O(N) O(1) O(N)
PTSV (traversal) O(N) O(N) O(N)
CPTSV (shadow frusta) O(1) O(N) O(N)
CPTSV (view cluster hierarchy) O(N) O(1) O(1)
CPTSV (traversal) O(log(N)) O(N) O(N)
OFTS (shadow frusta) O(1) O(N) O(N)
OFTS (IZB build) O(N) O(1) O(N)
OFTS (traversal) O(N) O(N) O(N)
RTX (build) O(1) O(N log(N)) O(1)
RTX (trace) O(N) O(log(N)) O(N)
DPSV (build) O(1) O(N log(N)) O(N)
DPSV (traverse) O(N) O(log(N)) O(N)

Notes: An empty cell means the stage of a particular algorithm is not depen-
dent on the number of triangles or screen pixels.

again to be the best possible method as it does not require a BVH
rebuild, unlike all the other evaluated methods.

6. Discussion and Conclusion

We were able to compare several modern omni directional shadow-
ing methods with precise hard shadows. These methods were tested
on several popular test scenes under multiple resolutions.

Hardware-accelerated ray tracing is the clear winner in terms of
speed, implementation difficulty and even memory consumption in
the most cases. It is clear that having dedicated hardware units can
reduce the BVH traversal time by a factor of 10. Ray tracing (traver-
sal only) on legacy hardware was able to outperform all the methods
on scenes having more than 600,000 triangles. Ray tracing also has
the lowest triangle and resolution dependency in our tests. Unlike
all other tested algorithms, support for multiple light sources does
not require a BVH rebuild, as the structure can be reused, since it is
independent on the light position. Transparent casters and sub-pixel
precision are also supported.

Although the authors of Frustum-Traced Shadows did not de-
sign the method primarily for omnidirectional parametrization, the
method works very well with this configuration. It has one of the
lowest triangle dependencies, a predictable memory footprint and
was able to handle the ‘Hairball’ scene second best to ray tracing. Its
implementation is straightforward and does not require any prepro-
cessing. The downsides are higher memory consumption on higher
resolutions, and performance drops due to long lists, which need to
be addressed using parameters which are scene-dependent. We no-
ticed a light-leaking artefact on the seams between the frusta, prob-
ably caused by different projections. Although CSSV was faster on
the enclosed test scenes, OFTS has better geometry dependency and,
in most cases, better resolution dependency. It was the only method
to outperform the average of combined RTX time on the 1080Ti.

The CSSV algorithm was a surprise, as almost all previous
papers presented stencil-based shadow volumes as being too slow
for larger resolutions. Our implementation was able to compute
an object’s silhouette in 0.03 to 0.1ms across the test scenes, thus
the majority of the method’s time was spent on the rasterization of
shadow volumes. Although based on z-fail, CSSV was the fastest
conventional method on ‘Buddha’, ‘Conference’ and ‘Sponza’ in
both 1920 × 1080 and 3840× 2560. These scenes have relatively
a simple silhouette, mostly observable on ‘Buddha’, where the
method is on average 48% faster than OFTS behind it. As no bias
was used during any of its stages, the method has the most accurate
shadows of the tested algorithms. We think the advance in the
graphics hardware and increased rasterization performance can
also be credited for the performance of the stencil shadow volumes.
The method’s implementation is among the easier ones; its memory
consumption is second to ray tracing. The downsides are edge
extraction as a preprocess step and unpredictable performance due
to shadow volume rasterization. If not for the “Hairball” scene,
which was the worst-case for this method, we would declare CSSV
to be the second-fastest algorithm.

DPSVwas improved by deterministic shadow plane calculations,
which helped with robustness of the method but we still experienced
blinking triangles in the ‘Buddha’ scene, as the model consists of
very small triangles. The randomness of the TOP tree build quality
between consecutive frames caused the method to perform less sta-
bly locally, most notably on the ‘Hairball’ scene. Our measurements
have shown that this method is more suitable for scenes with up to 1
million triangles. The method is easy to implement, as source codes
for both its shaders are already available and requires no geometry
preprocessing. The memory consumption was average compared to
other methods. Overall, the method ends up 4th in our comparison,
as it did not excel in any of the observed parameters.

We succeeded in porting PTSV and CPTSV algorithms from
CUDA to OpenGL, making them available to other hardware plat-
forms. These methods, particularly CPTSV, are difficult to imple-
ment and their memory consumption is the highest of all tested
methods, as it depends not only on the geometry, but also on
the screen resolution. CPTSV’s acceleration structure, containing
AABBs for view sample clusters, can take up to 6GB at 4096×
4096 if the memory optimization is not used, but can still take
around 1 GB when optimized. The method also suffers from an
incorrect acceleration structure build when the screen resolution is
very high, which negatively affects its performance. If not for this
issue, this method would have had one of the lowest sensitivities to
screen resolution. PTSV was the slowest algorithm in the test. In
general, we don’t recommend either of these methods for practical
use, as there are faster and easier-to-implement methods that also
consume less memory.

Except for ray tracing, there is no universal method that would
be suitable for all scenarios; all methods have their best and worst
cases. If ray tracing is not available, OFTS is suitable for more
opened scenes, whereas CSSV handles closed or scenes with simple
silhouette. Our tests also conclude that more complex code does not
necessarily yield faster frame times.

In the future, the ray tracing implementation could be optimized
for other hardware platforms, including the current generation of
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game consoles. It would be interesting to see even bigger scenes,
although ‘Hairball’ was already challenging for the most of the al-
gorithms as the fastest time behind ray tracing was 14ms at 1920 ×
1080. Multiple light sources is also an issue that is not frequently
evaluated on these methods.
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