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Accurate Automata-Based Detection of Cyber
Threats in Smart Grid Communication

Vojtěch Havlena , Petr Matoušek , Ondřej Ryšavý , and Lukáš Holík

Abstract—Several industry sectors, including critical infras-
tructure, have experienced severe cyber attacks against their
Industrial Control Systems (ICS) due to the malware that mas-
queraded itself as a legitimate ICS process and communicated
with valid ICS messages. Such behavior is difficult to detect
by standard techniques. Intrusion Detection Systems (IDS) usu-
ally filter illegitimate communication using pre-defined patterns
while statistical-based Anomaly Detection Systems (ADS) mostly
observe selected attributes of transmitted packets without deeper
analysis of ICS messages. We propose a new detection approach
based on Deterministic Probabilistic Automata (DPAs) that cap-
ture the intended semantics of the ICS message exchange. The
method models normal ICS message sequences using a set of
DPAs representing expected traffic patterns. Then the detection
system applies reasoning about the model to reveal a malicious
activity in the ICS traffic expressed by unexpected ICS messages.
In this paper, we significantly improve the performance of the
automata-based detection method and reduce its false-positive
rate. We also present a technique that produces additional details
about detected anomalies, which is important for real-world
deployment. The approach is demonstrated on IEC 104 or MMS
communication from different ICS systems.

Index Terms—Smart grid, cyber security, anomaly detection,
probabilistic automata, network flows, MITRE ATT&CK.

NOMENCLATURE

Abbreviations

AD Anomaly Detection
ADS Anomaly Detection System
APT Advanced Persistent Threats
ASDU Application Service Data Unit
ATT&CK Adversarial Tactics, Techniques, and Common

Knowledge
CoT Cause of Transmission
DLMS Device Language Message Specification proto-

col
DNP3 Distributed Network Protocol 3
DoS Denial of Service attack
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DPA Deterministic Probabilistic Automaton
FDIA False Data Injection Attack
FPR False Positive Rate
GOOSE Generic Object Oriented Substation Events
HMI Human-Machine Interface
ICS Industrial Control System
IDS Intrusion Detection System
IEC 104 International Electrotechnical Commission (IEC)

104 protocol, standard IEC 60870-5-104
IED Intelligent Electronic Device
IPFIX IP Flow Information Export protocol
MITM Man in the Middle attack
MITRE Massachusetts Institute of Technology Research

& Engineering, a non-profit organization
MMS Manufacturing Message Specification protocol
Modbus Modicon Communication Bus protocol
OBIS Object Identification System
PCAP Packet Capturing data format
PDU Protocol Data Unit
PLC Programmable Logical Controller
RTU Remote Terminal Unit

Algebraic Symbols

A Deterministic Probabilistic Automaton (DPA)
Ap a DPA corresponding to a pair of devices p
A set of probabilistic automata
Ap set of probabilistic automata corresponding to a

pair of devices p
Cp multiset of conversations between a pair of

devices p
D all pairs of devices communicating within the

network
ε model reduction threshold
G product automaton
L language (set of strings)
PA probabilistic distribution generated by DPA A
� alphabet, i.e., a set of characters
θ anomaly threshold
p pair of devices, p ∈ D
u, v, w strings/conversations

I. INTRODUCTION

SMART grid communication includes control and monitor-
ing transmissions that are exchanged between Intelligent

Electronic Devices (IEDs), Human-Machine Interfaces
(HMIs), control stations, and gateways. Connected devices
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Fig. 1. Industroyer attack on power grid in 2016 [8].

typically communicate using standardized ICS protocols
like IEC 104, MMS, GOOSE, DNP3, or DLMS [1]. The
communication is often not secured which makes it an easy
target for cyber attacks. Cyber security of industrial systems,
including smart grids, has thus become a huge challenge due
to devastating attacks on critical infrastructure around the
world [2], [3], [4], [5]. Notable cases include disruption of
Ukrainian energy distribution by malware BlackEnergy3 in
2015 and Industroyer/CrashOverride in 2016 [6], [7], [8],
disconnection of safety instrumented system by malware
Triton in 2017 and 2019 [9], [10], enumeration of Open
Platform Communication servers by cyber espionage malware
Dragonfly/Havex [11], [12], or the PLC-Blaster malware
attacking Siemens S7 Programmable Logical Controllers
(PLCs) [13].

Such attacks were driven by malware installed on an
internal device or control station infected by social engineering
techniques, supply chain compromise, or replication through
removable media.1 An ICS-capable malware usually employs
industrial communications to discover ICS network resources,
requests execution of unauthorized commands, collects sensi-
tive data, or even manipulates ICS processes, see Fig. 1, that
is not easy to detect using traditional techniques.

Widely deployed Intrusion Detection Systems (IDS) or fire-
walls detect anomalies (i) by checking protocol headers and
applying white lists or black lists filtering based on observed
values, or (ii) by searching individual ICS packet content for
known patterns. Statistical-based Anomaly Detection Systems
(ADS) compute quantitative characteristics of ICS traffic and
create a probabilistic model of the normal behavior. Significant
deviations in the observed characteristics from the model are
then reported. However, malware often sends crafted but oth-
erwise valid ICS messages which are difficult to distinguish
from legitimate communication. Also, an attacker can adjust
communication in such a way that it looks normal in terms

1See MITRE ATT&CK Tactics at https://attack.mitre.org/
tactics/TA0001/ [Jan 2022].

of statistical properties by modifying the timing of transmitted
messages. Detection of such attacks requires techniques that
are sensitive both to the content of ICS messages and the
context of the entire communication.

We have laid the foundation of a content and context sensi-
tive detection in our previous work [14], [15]. Characteristics
of a normal traffic are learned from long-term traffic samples
in the form of deterministic probabilistic automata (DPAs) and
then compared against DPAs synthesised from short-term win-
dows of the traffic currently under scrutiny. The DPA captures
probabilistic distribution of conversations among industrial
devices. Typical conversations consist of a small number of
commands related to a specific-purpose device and arranged
in some of a few simple regular patterns [16], [17], [18],
[19]. Our previous work [15] demonstrates that the DPA-based
approach is feasible and is able to detect various network
attacks on ICS systems.

A. Scope and Motivation

The scope of this paper is to present an automata-based
anomaly detection method that models ICS communication
and is suitable for practical deployment in a smart grid envi-
ronment. The ICS traffic is modelled using Deterministic
Probabilistic Automata (DPAs) [20] that capture ICS conver-
sations together with their relative occurrences in the overall
communication. This approach relies on network monitoring
and requires information extracted from industrial protocols. In
particular, packet headers containing message types and other
attributes are processed. We do not deal with a payload; thus,
it is not necessary to interpret system-specific values in our
model. Even without knowing the payload, it is possible to
detect various types of attacks, e.g., injection attacks, scanning
attacks, switching attacks, etc., as demonstrated in the paper.

Two major issues related to the practical deployment of
industrial anomaly detection systems are addressed in this
work: the higher rate of false positives and interpretation of
detection results. Our main motivation is to provide a solu-
tion that precisely detects anomalies, decreases the number of
false positives, and gives an operator additional hints on how
to easily interpret raised alarms.

Our original approach [15] suffered from a large number
of false positives that—depending on the size of the system—
may be hundreds or even thousands per day. False positives
can hardly be entirely removed, but their number must be kept
low to be acceptable in practice. The anomaly reports are often
difficult to interpret, because the AD methods usually indicate
a numerical distance of the analysed event from the normal
one. The operator then have to manually inspect anomalous
communication consisting of thousands of messages, thus, the
analysis relies on his/her expert knowledge and experience.
These two aspects put excessive demands on the operator and
would likely render the method practically unattractive. In this
paper, we provide a solution for both of these issues.

B. Contribution

This paper presents two main contributions: (i) elimina-
tion of false positives and (ii) providing diagnostic traces,
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accompanied by two additional results that include (iii) exten-
sion of our original detection approach tailored for the protocol
IEC 104 to other ICS protocols, such as MMS, and (iv) map-
ping of the capabilities of our detection method to common
MITRE adversarial tactics [21].

Concerning contribution (i): False positives and general
imprecision of the detection are caused by the fact that the traf-
fic is variable over time, depending on factors such as time
of the day, a particular task given to the industrial system,
etc. Since all the variability is summarised in a single DPA
model, the particular traffic windows taken under different
conditions, even though perfectly normal, would likely differ
from the learned summary DPA, resulting in the large false
positive rate. Our solution has two parts: (i) in the learning
phase, we split the large learning traffic sample into multiple
small parts and learn a separate DPA from each part; (ii) in the
detection phase, the traffic window under scrutiny is compared
against the most similar learned DPA. This solution dramati-
cally improves precision of the method and eliminates almost
all false positives.

However, a naïve implementation of this techniques has a
practical limitation. During the learning we obtain hundreds
of DPAs representing a normal traffic. Comparing the testing
traffic against each of them in the detection phase, in order to
find the most similar DPA, is very expensive. To address this
issue, we came up with a method for reducing the number of
learned DPAs. To this end, we represent a cluster of similar
DPAs by a single representative. The traffic under scrutiny
is then compared only against the representatives of clusters.
Our method allows to define a level of DPA similarity which
in turn gives a control over the detection error caused by
clustering. Consequently, we can prevent any notable dete-
rioration of the detection precision. The representatives can
be pre-computed and hence there is no additional cost dur-
ing real-time detection. The clustering reduces the number of
DPAs from hundreds to small units that can be handled in
run-time perfectly well.

Concerning contribution (ii): To facilitate the analysis of the
anomaly reports, the proposed improvement generates diag-
nostic traces. Namely, we demonstrate how to find examples
of conversations from the tested traffic that was not expected to
occur according to the normal traffic model, and how to syn-
thesise examples of conversations that were expected to occur
but did not. The work of the operator hence reduces from a
blind analysis of the entire traffic window into the inspection
of a few samples of conversations.

The proposed improvements are non-trivial and indeed turn
the proof of concept published in [15] into a practical method
(currently being implemented into a commercial solution).
We present an empirical evidence of the effectiveness of the
proposed techniques based on a prototype implementation. We
also provide testing datasets.

C. Structure of the Paper

Section II reviews related work and presents used nomen-
clature. Section III stands for the paper’s core and explains
the detection method. After recalling the basics of DPA-based

anomaly detection, it includes our contributions: multiple-
model detection, model reduction, and generating diagnostic
traces. Section IV presents the experimental evaluation of the
method using implemented prototype. Based on the results
from experiments, the comparison to other work is presented
in Section V. Section VI concludes the paper by summarizing
results and providing notes on real-world deployments.

II. RELATED WORK

According to Rakas et al. [22], anomaly detection systems
are statistical-based (univariate, multivariate, time series),
knowledge-based (finite automata, expert systems), or machine
learning-based (applying Bayesian networks, Markov mod-
els, neural network, fuzzy logic). Anomaly detection methods
mainly work with statistical features obtained from ICS traffic,
or they build a communication model using attributes extracted
from IP or TCP headers.

Many recent works related to smart grid security focus
on detecting false data injection attacks (FDIA) [23], [24],
[25] where a detection system monitors electrical quantities
on synchrophasors, models their behavior, and estimates typi-
cal energy consumption. Other approaches observe anomalies
on controllers [26], [27], or model probability distribution
of transmitted packets (inter-arrival time, size, occurrence of
specific packets) [28], [29], [30].

Our research deals with network monitoring of ICS packets
transmitted over smart grid links rather than observing elec-
trical quantities on the process bus or monitoring end devices.
As demonstrated in our previous work [31], real-time visi-
bility of ICS data exchange helps revealing unexpected ICS
commands, unusual command frequency, or suspicious com-
mand order that would stay unnoticed by common detection
techniques. Thus, we limit the overview of related works to
those approaches that work on network layer and observe ICS
packets.

In their work, Lin and Nadjm-Tehrani [32], [33] model
inter-arrival times of IEC 104 spontaneous events using a prob-
abilistic suffix tree and categorize the traffic into five different
groups based on the periodicity and stability. Using probabilis-
tic suffix trees they predict the future behavior of the IEC 104
communication and detect possible deviations. The method is
computationally intensive and sensitive to network delays. In
our work we do not consider time but model semantics of ICS
commands by DPAs, which makes the system more robust.

The representation of Modbus communication using finite
state machines was introduced by Goldenberg and Wool [34].
The authors extract key fields from Modbus packets and
encode them as alphabet symbols. Automata transitions
express the behavior of the system in terms of the sequence of
expected message exchanges. Like our approach, their model
can recognize invalid and unexpected messages. Our model
is able to accommodate more aspects of communication,
especially the expected frequency of exchanged messages.

Caselli et al. in [35], [36] employ discrete-time Markov
chains to represent various industrial communication. The
messages with the same semantics, e.g., read coils from
address 0 for Modbus, are grouped to states. Transitions
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Fig. 2. A high-level overview of the proposed detection approach, with offline model learning part the highlighted.

represent a sequence of messages, which is in principle similar
to our model. Instead of clustering, we learn the probabilistic
automaton from all message sequences representing a normal
behavior. Our approach is fully automated, not requiring to
specify the semantics of each command.

The idea of deriving a communication model from network
traces was also discussed by Wang et al. [37] even if it was
not used for industrial communication. The authors create a
probabilistic protocol state machine to represent application
protocols such as SMTP. During the learning process, mes-
sages are extracted from network traces and grouped according
to the calculated similarity. The idea of their automata model
is close to the deterministic probability automata introduced
by De La Higuera [20]. However, their goal is different—they
try to extract specifications for possibly unknown protocols.

To detect attacks, Krueger et al. [38] developed a method
for protocol inspection and state machine analysis that infers
a state machine and protocol message format from network
traffic. They create a Hidden Markov Model from proto-
col messages represented as n-grams and their probability
of occurrence in communication. The model is employed
to simulate the behavior of honeypots. Unlike us, their
Markov models are large (hundred of states) even when
minimization is applied. In addition, our model is easier to
compute.

III. EXTENDED AUTOMATA-BASED ANOMALY

DETECTION

In this section, we present our method of detecting anoma-
lies in ICS communication. Sections III-A to III-D recall
the basics of the method published in our previous papers
[31], [39]. Sections III-E to III-G describe our novel contri-
butions. The section is structured as follows:

• Section III-A recalls how input data are obtained from
an IPFIX monitoring probe that collects IPFIX flows
and partitioned them into conversations, i.e., sequences
of messages exchanged between pairs of devices within
a single communication session.

• Section III-B explains how to interpret input conversa-
tions as multisets of words over a finite alphabet and
how to model these multisets using a probabilistic model
in the form of DPAs.

• Section III-C overviews the general architecture of the
diagnostic system, including the DPA learning from a
valid traffic samples and the detection which is thor-
oughly described in two subsequent sections.

Fig. 3. Examples of IEC 104 conversations.

• Section III-D recalls the technical basis of the detection
with a single DPA model representing the valid traffic, as
used in [31], [39].

• Section III-E describes our novel multiple-model detec-
tion that improves precision and reduces false positives.
Unlike a single DPA model, it is composed of multiple
DPAs representing behavior of the normal traffic.

• Section III-F presents a novel technique of model reduc-
tion that keeps the run-time computational resources of
the multiple-model reduction practically manageable.

• Section III-G finally describes a novel method of gener-
ating diagnostic traces that help to identify the cause of
a reported anomaly.

A high-level overview of the presented method is graphically
expressed in Fig. 2.

A. Application-Level Monitoring of ICS Communication

In [31], [39], we implemented an extension to IPFIX mon-
itoring probe ( 1 in Fig. 2) that collects IPFIX flows enriched
with domain-specific attributes from ICS packets. In [14] we
analyzed semantics of common smart grid protocols and iden-
tified a sufficient set of attributes for application-level moni-
toring: ASDU type (AsduType) and Cause of Transmission
(CoT) for IEC 104, MMS Type and Service for MMS packets,
Application ID, and Control Block Reference for GOOSE, and
Type, Class ID and OBIS code for DLMS. Based on flows, we
define ICS conversations as logical sequences of ICS messages
exchanged between pairs of devices, see Fig. 3.

Example 1: Consider three IEC 104 conversations
exchanged between stations A and B as depicted in Fig. 3.
Conversation (a) reads a set of values, conversation (b)
requests a command execution, and conversation (c) transmits
a file. Notice that each IEC 104 message is represented
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by a pair 〈AsduType,CoT〉. Thus, IEC 104 conversations
between stations A and B form three command sequences
u = 〈100, 6〉〈100, 7〉〈1, 20〉〈1, 20〉〈1, 20〉〈3, 20〉〈5, 1〉
〈100, 10〉, v = 〈46, 6〉〈46, 7〉〈46, 10〉, w = 〈122, 13〉〈120,

13〉〈122, 13〉〈125, 13〉〈125, 13〉〈123, 13〉〈124, 13〉.

B. Modeling ICS Conversations by Probabilistic Automata

We will now discuss the general method we use to learn a
model of a normal ICS traffic. Namely, we learn DPA from
a sample of ICS conversations that represent a normal system
communication (see A in Fig. 2).

We adopt the theory of DPA of [20]. The ICS messages
play the role of symbols and form a finite alphabet �, with
�∗ denoting all finite strings over � (i.e., all possible ICS
conversations). A deterministic probabilistic automaton (DPA)
is then a tuple A = (Q, δ, q0,F) where Q is a finite set
of states, δ : Q × � × Q → [0, 1] is a (total) transi-
tion function assigning probabilities from the interval [0, 1]
of rational numbers to transitions, q0 ∈ Q is the initial
state, and F : Q → [0, 1] is a mapping that assigns the
acceptance probabilities to states. The automaton must be
consistent, meaning that for each state q ∈ Q, the sum of
probabilities of the outgoing transitions plus the probability
of acceptance is 1, formally, F(q) + ∑

a∈�,r∈Q δ(q, a, r) = 1.
The automaton is implicitly deterministic, hence every state
q ∈ Q has a unique successor via every symbol a ∈ �, i.e.,
|{r|δ(q, a, r) > 0}| = 1. The automaton defines a probabil-
ity distribution PA : �∗ → [0, 1] over �∗ as follows. Each
string w = a1 . . . an ∈ �∗ has its unique trace, the sequence
π = (q0, a1, q1) · · · (qn−1, an, qn) where δ(qi−1, ai, qi) > 0
for 1 ≤ i ≤ n, and its probability is defined based on the trace
as PA(w) = F(qn) · ∏1≤i≤n δ(qi−1, ai, qi). Informally, PA(w)

is a probability of the random walk through the automaton
that respects symbols of w and is accepted by the end state.

A sample of typical communication between ICS devices,
in the form of a multiset of ICS conversations, is given to the
algorithm Alergia [20] extended with an automated estimation
of parameters (see [15] for details). Alergia then learns a DPA
that represents a generalisation of the probabilistic distribution
of conversations in the sample. This is a general method that
can be used to learn the behavior of any system that uses any
smart grid communication protocol.

Example 2: Fig. 4 shows a DPA A learned from IEC
104 conversations that include a file transfer (AsduType ∈
{120, . . . , 125}, CoT = 13) and spontaneous events
(AsduType = 36,CoT = 3). The automaton A represents
the language by which two IEC 104 devices talk. The conver-
sation w = 〈122, 13〉 〈120, 13〉 〈122, 13〉 〈125, 13〉 〈123, 13〉
〈124, 13〉 has the probability PA(w) = 0.54 ·1 ·1 ·0.5 ·0.06 ·1 ·
0.5 = 0.0081. Its proper prefixes have probability 0 since they
reach states with 0 acceptance probability. Any IEC 104 con-
versation w that is not a part of the specified device-to-device
language would not be accepted by A and receives probability
PA(w) = 0.

C. Architecture of the Diagnostic System

The schema of the system is shown in Fig. 2. Let D denote
the set of all pairs of devices that communicate within the

Fig. 4. DPA A representing IEC 104 communication. Here and in all the
other figures of DPAs, we depict the accepting probability inside each state
and highlight states with nonzero acceptance probability. We label transitions
in the form symbol:probability. In case of IEC 104 communication, symbol
includes two IEC 104 packet header values, namely ASDU type and Cause
of Transmission.

network. DPAs representing valid traffic for each communica-
tion pair p ∈ D in the system are created during the learning
phase ( A ). In the detection phase, the incoming traffic is split
into time windows with a fixed-length but configurable dura-
tion (default is 5 min). The traffic in form of flow records
is provided by the IPFIX probe ( 1 ). Conversations for each
communication pair p (identified by IP addresses and ports)
are selected, and DPA Bp representing the conversations for
p is computed ( 2 ). In the following step, models Ap repre-
senting valid traffic of a communication pair p are selected
( 3 ). In the last step, the detection mechanism is applied on
Ap and Bp. By evaluating probability of tested conversations
it either approves their validity or returns a diagnostic trace of
an anomaly ( 4 ).

D. Single-Model Anomaly Detection

Our starting point is the detection procedure of [39] that
receives as input a single DPA Ap representing valid traffic
for a given communication pair p and a DPA Bp describing
an incoming traffic captured within a fixed-size time window
under scrutiny. The detection stands for measuring the dif-
ference between Bp and the single model Ap ∈ Ap. Since
DPAs express probability (frequency) of strings, it is natural
to compare PAp(w) and PBp(w) for each w ∈ �∗. We use the
2-Euclid distance (or just Euclid distance) defined as

L2
(Ap,Bp

) =
√ ∑

w∈�∗

(PAp(w) − PBp(w)
)2 (1)

Intuitively, the Euclid distance sums the differences of prob-
abilities assigned to strings by Ap and Bp. A threshold
parameter θ controls how different the two automata must be
to get an anomaly, i.e., L2(Ap,Bp) > θ . Low value of θ causes
higher possibility of false alarms (false positives), high value
of θ can let some anomalies be undetected (false negatives).
We experimentally found (see Section IV) suitable values of
θ in range 0.1 and 0.25.2

Example 3: Consider the DPA Ap representing a desired
IEC 104 behaviour given in Fig. 5. The automaton expresses

2This range is a trade-off between the accuracy and the false positivity rate.
Since we assume stable communication, the value 0.1 provides enough space
to cover possible short-term disturbances in the traffic. On the other hand,
threshold above 0.25 could possibly miss some crucial anomalies.
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Fig. 5. A DPA Ap representing a valid IEC 104 traffic (simplified for the
purpose of Example 3, see Fig. 4 for a realistic example of a traffic model).

Fig. 6. A DPA Bp representing a time window.

the usual traffic that includes conversations differing on the
number of messages 〈5, 20〉, i.e., the valid traffic contains con-
versations {un|un = 〈100, 6〉〈5, 20〉n〈100, 10〉, n>1}. Longer
conversations have smaller probability.

Further consider the DPA Bp given in Fig. 6 created from
a time window with the testing IEC 104 traffic that includes
a set of conversations w1 = u1 = 〈100, 6〉〈5, 20〉〈100, 10〉
and w2 = 〈100, 6〉〈7, 20〉〈100, 10〉 that occur with the same
probability 50%.

The L2 distance between these two DPAs is given as

L2
2

(Ap,Bp
) = (PAp(u1) − PBp(u1)

)2

+ (PAp(w2) − PBp(w2)
)2

+ (PAp(u2) − PBp(u2)
)2

+ (PAp(u3) − PBp(u3)
)2 + · · ·

= 02 +
(

1

2

)2

+
(

1

4

)2

+
(

1

8

)2

+ · · ·

Hence, L2(Ap,Bp) =
√

1
4 + 1

12 ≈ 0.57. Intuitively, Ap and
Bp describe a different behaviour, because Bp represents a
traffic where half of the conversations are w2, which has zero
probability in the model Ap. The L2 distance confirms the
intuition, since 0.57 indicates an anomaly.

By definition, the sum of Euclid distances is over all strings,
however, the distance L2 can be computed in a polynomial
time. The algorithm uses a matrix representation of proba-
bilistic automata and expresses the infinite sum in a closed
form, see [40].

E. Multiple-Model Anomaly Detection

The single-model detection suffers from an excessive num-
ber of false positives (hundreds or thousands daily in our
experiments). Their source is a long term variability of ICS
communication—its characteristics may depend on factors
such as the time of the day, mode of use of the system, etc.
Since the scrutinised communication windows are short-term,
they vary depending on the current conditions. The single-
model approach however summarises all the variability into a
single DPA Ap. Even a perfectly normal short time window
may hence differ from the learned DPA significantly, i.e., their
distance L2(Ap,Bp) may be large, in which case the detection
generates a false positive.

Fig. 7. Visualization of the proposed anomaly detection.

Fig. 8. A single DPA Ap representing the valid IEC 104 traffic.

Fig. 9. A set of DPAs {Ap
1,Ap

2} representing the valid traffic.

To overcome this drawback, we improve our method by
learning multiple models ( A ) that consist of a set of DPAs
Ap = {Ap

i }i∈I . In our experiments, we divide the training
traffic into fixed-length-duration subparts (where the duration
corresponds to the size and double size of the time window
used during the detection). Each such created part is an input
of learning yielding a DPA from Ap. A detection algorithm
( 4 ) first finds the closest model Ap

� ∈ Ap to the window
under scrutiny according to its Euclidian distance. Anomaly
alert is raised if the distance of the closest model Ap

� from Bp

is greater than the defined anomaly threshold θ , formally:

min
Ap∈Ap

L2
(Ap,Bp

)
> θ. (2)

For a better illustration, the proposed detection method is
visualized in Fig. 7 and the effect of multiple models is
demonstrated in the following example.

Example 4: Assume that the first part of a simple valid
IEC 104 traffic related to a single device consists of spon-
taneous conversations 〈36, 3〉 and 〈37, 3〉 with a dominance of
the first mentioned conversations. In the second part, the ratio
changes in favor to the conversations of the second type. If
we represent the traffic using a single model only, we get the
automaton Ap given in Fig. 8.

On the other hand, if we apply learning on each part sep-
arately, we obtain the DPAs Ap

1 and Ap
2 given in Fig. 9

assigning different probabilities for each conversation. As you
can see, the second representation captures subtle difference
in the learning traffic, in this case the change of occurrence
of different spontaneous events.
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Fig. 10. DPA Bp representing the incoming window.

Further assume that the incoming traffic window contains
one conversation 〈36, 3〉 and seven conversations 〈37, 3〉. A
DPA Bp learned for this traffic is shown in Fig. 10.

If we apply the single-model anomaly detection according
to A = {Ap}, we obtain the value L2(Ap,Bp) ≈ 0.53. If we
apply the multiple-model detection with A = {Ap

1,Ap
2}, we

get the value min{L2(Ap
1,Bp), L2(Ap

2,Bp)} ≈ 0.035. Hence,
by applying the single-model detection according to the whole
traffic (represented by Ap) with the threshold θ = 0.2, we get
an anomaly alert, which is not desirable in this case.

F. Model Reduction

According to Eq. (2), the inspection of a each scrutinised
window requires evaluating the distance from every automaton
in Ap. Since the number of automata in Ap easily reaches
hundreds, this task becomes impractically expensive. We hence
need a method of reducing the number of models, preferably
while preserving precision of the detection.

To this end, we utilise the fact that conversations between
two ICS devices are mostly the same or very similar. This
means that also automata representing such ICS traffic are
equal or at least similar, e.g., they only have slightly different
probabilities of certain strings. Thus, we can reduce redun-
dant computation by removing similar automata from a set
of models Ap. To decide which automaton is to be removed
we define the error function that measures how good is the
resulting set of DPAs. The function that computes the detec-
tion error introduced by reducing the model from A to A

′ is
defined as follows:

error(A,A′) = max
A1∈A\A′

{

min
A2∈A′ L2(A1,A2)

}

. (3)

The goal is to find a subset A
′ ⊆ A such that the error of

error(A,A′) is below a given threshold ε.3 The error func-
tion has the property that if we use A

′
p ⊆ Ap as a model

for the anomaly detection, the value, based on the procedure
decides whether the window contains anomaly or not, differs
by error(Ap,A

′
p) in the worst case. In particular, assume that

Ap ∈ A is the closest model to an automaton Bp representing
the input traffic window. Moreover, based on the error func-
tion, there is some A′

p ∈ A
′ s.t. L2(Ap,A′

p) ≤ ε. From the
triangle inequality (L2 is a distance), we get L2(A′

p,Bp) ≤
L2(Ap,Bp)+L2(Ap,A′

p) ≤ L2(Ap,Bp)+ε, which defines the
upper bound.

The reduction procedure is described by Algorithm 1. Since
the optimal computation of A

′ is computationally infeasi-
ble, we use a greedy algorithm iteratively saturating a set
of automata that can be removed. In each iteration the algo-
rithm selects an automaton A having the smallest distance

3Note that similarity threshold ε is different from detection threshold θ .

Algorithm 1: Model Reduction
Input:
A – set of DPAs representing the original model
ε – threshold value for reduction
Result: A′ ⊆ A s.t. error(A,A′) ≤ ε

1 R := R′ := ∅ ;  sets of DPAs to be removed

2 while error(A,A\R′) ≤ ε do
3 R := R′;
4 Select A ∈ A\R s.t. min

B∈A\R,B �=A
L2(A,B) is minimal;

5 R′ := R ∪ {A} ;  update R′ with the DPA A
6 return A

′ := A\R;

from another automaton that has not been removed yet. If
the error caused by removing this automaton is below ε the
removal is approved. Note that for ε = 0 we remove from Ap

automata that are equivalent. The model reduction is a part
of the offline learning ( A ) without any negative impact on
real-time anomaly detection.

G. Generating Diagnostic Traces

The anomaly report of the original method of [15] includes
only the scrutinised window and its L2 distance from the
learned DPA. It would be a task of the operator to inspect
the window and decide whether or not it is indeed anoma-
lous and why. This would require a high level of expertise as
well as time. Therefore, we developed a method of generating
succinct diagnostic traces that capture a reason of anomaly.

Assume a particular window consisting of a multiset of con-
versations Cp and triggering the anomaly alert. The reasoning
is then performed on the level of conversations Cp, DPA Bp

obtained from Cp, and the most accurate learned model Ap,
which is given using the following formula (cf. Section III-E):

Ap ∈ Ap s.t. L2
(Ap,Bp

)
is minimal. (4)

The first output of the detection method is a set of conver-
sations Ebad occurring within the suspicious window that do
not occur in the model:

Ebad = {
w ∈ Cp|PAp(w) = 0

}
. (5)

Since our approach is even able to detect anomalies based
on missing communication, we provide also an example of a
conversation that was not present in the window but it should
be because Ap assigns to the conversation nonzero probability.
As the number of such conversations may be infinite, we pick
conversations with the highest probability only. In particular,
we first compute the set

L = {
w ∈ �∗|PAp(w) > 0,PBp(w) = 0

}
. (6)

The set is regular, and hence it can be effectively represented
by a finite automaton. Based on this set, we find the most
probable strings from L in Ap, which is an example of a
missing conversation. Formally,

Emiss =
{

w ∈ L|PAp(w) = max
u∈L

PAp(u)

}

. (7)
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Fig. 11. Product automaton G.

Roughly speaking, to compute Emiss we first need to repre-
sent the language L using a deterministic finite automaton AL.
Note that the number of states of AL is bounded by |Ap|·|Bp|.
In the second step, we restrict Ap to words from L only. This
can be done using a product of Ap and AL with keeping the
probabilities from Ap. In this case, the product need not to be
a DPA, because the consistency condition might be violated.
We denote the product as G = (Q, δ, q0,F). In order to obtain
Emiss we iteratively compute the least fixpoint of the system
representing a most probable path in the automaton:

�q = F(q), (8)

�q = max
p∈Q,a∈�

{
�q, δ(q, a, p) · �p

}
(9)

Together with computation of the most probable path, we also
store information about the concrete most probable strings
labelling the paths. In particular, at the beginning we set
Wq = ∅ for F(q) = 0 and Wq = {ε} otherwise. Then,
every time �q is improved by a transition (q, a, p) and more-
over �q = δ(q, a, p) · �p holds before the assignment, we set
Wq = Wq ∪ a.Wp. If �q < δ(q, a, p) · �p holds before the
assignment, we set Wq = a.Wp. We have Emiss = Wq0 in the
fixpoint.

Example 5: Consider two DPAs Ap and Bp from
Example 3. Then, the language L can be described by the reg-
ular expression 〈100, 6〉〈5, 20〉〈5, 20〉+〈100, 10〉. The product
G restricting Ap to L is then given in Fig. 11. After the fixpoint
computation, we obtain �q0 = 1

4 and Wq0 = {〈100, 6〉〈5, 20〉
〈5, 20〉〈100, 10〉} where q0 is the initial state of G.

IV. EXPERIMENTAL EVALUATION

This section aims at the experimental evaluation of the
method using various available datasets for (i) evaluation of
the accuracy and efficiency of the detection and (ii) measuring
the effect of the proposed extensions in terms of false posi-
tives. First, we introduce our datasets and evaluation method.
Then we show experimental results of automata reduction. The
we present our experiments with IEC 104 and MMS commu-
nication, respectively. Finally, we discuss the potential of our
method for real-world deployment.

A. Used Tools and Benchmarks

The presented anomaly detection approach was imple-
mented as the PYTHON tool DETANO,4 which is an
extended implementation of our previous tool, here denoted as
AUTANOM [15]. Our experiments were conducted on bench-
marks containing datasets provided by various sources: (i) IEC
104 traffic generated by Brno University of Technology and

4Available at https://github.com/vhavlena/detano [Feb
2022].

TABLE I
OVERVIEW OF THE VRT BENCHMARK [41]

TABLE II
OVERVIEW OF THE ENCS AND GICS BENCHMARKS

containing various attack scenarios [15] (this benchmark is
denoted as BUT and is available at IEEE Dataport [41]),
(ii) IEC 104 traffic provided by RTSLab, Linköping University,
Sweden [42] (denoted as RTS), (iii) IEC 104 traffic generated
in a virtual ICS network (denoted as VRT and also available
at [41]), (iv) MMS traffic provided by European Network for
Cyber Security5 (denoted as ENCS), and (v) MMS traffic pro-
vided by G-ICS labs, Université Grenoble Alpes France [43]
that was further enhanced by various attack scenarios, as
described below (denoted as GICS).

Attacks occurring within the VRT benchmark, in particular
HMI-* datasets, were created at our University by penetra-
tion tools that inserted spoofed or modified IEC 104 messages
on the communication link. Attacks on MMS communication
within the GICS benchmark were created manually by insert-
ing spoofed MMS packets into generated traces. These attack
traces were inspired by published attack scenarios. For our
experiments we used traces obtained by the Flowmon IPFIX
probe6 from the captured PCAP files.

Overview of the datasets occurring within the VRT bench-
mark is shown in Table I.

These datasets contain up to 3 days of traffic with hundred
thousands ICS packets.

Datasets included in the ENCS and GICS benchmarks are
listed in Table II.

These datasets contain up to 1.5 hours of the traffic with
thousands of ICS packets.

The datasets from the BUT benchmark contain up to 3
days of traffic with more than one million of ICS packets.7

The datasets occurring within the RTS benchmark contain up
to 12 days of traffic with more than 3 million packets, see
Table III. More detailed description of of these datasets is
in [15].

5See https://encs.eu/ [Feb 2022].
6See https://www.flowmon.com/en/products/appliances/

probe.
7BUT traces are available at https://github.com/matousp/datasets [Jun 2022].
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TABLE III
OVERVIEW OF THE BUT AND RTS BENCHMARKS

TABLE IV
MITRE TACTICS OBSERVABLE BY ICS FLOW MONITORING. THE

TECHNIQUES WITH (*) ARE A SUBJECT OF OUR EXPERIMENTS

The present anomalies are classified wrt. MITRE
Adversarial Tactics, Techniques, and Common Knowledge
framework for ICS (ATT&CK for ICS) [21], which deals
with levels 1 and 2 of the Purdue model (PLC, RTU, HMI,
etc.) [44]. The complete MITRE Matrix for ICS lists 12
tactics and 78 techniques (May 2022).

We identified 28 attacker’s techniques according to MITRE
ATT&CK for ICS that are observable in network com-
munication and thus can be detected by the proposed
automata-based method, see Table IV. Most of these tech-
niques were implemented in our datasets (marked by ∗).
This list clearly shows the scope of application of the
proposed automata-based detection which depends on the
visibility of an attack in the network communication. The
selected techniques may occur in various stages of the
Advanced Persistent Threats (APT) Kill Chain [45] which
include Reconnaissance (Discovery), Weaponization (Initial

TABLE V
NUMBER OF MODELS USED FOR VARIOUS DATASETS

Access), Exploitation (Collection), Install/Modify (Evasion,
Inhibit Response Function), Command & Control, and Execute
(Execution, Impair Process Control, Impact), see the first
column of the table.

Obviously, the automata-based anomaly detection capabil-
ity covers the attacker’s activities related to sending unex-
pected commands, blocking ICS messages, scanning network
resources, manipulating packets, etc. Since our model repre-
sents ICS commands, it can detect attacker’s activities that
cannot be recognized by statistical-based methods.

B. Focus of the Experiments

In the experiments, we are particularly interested in the
number of detected anomalies/attacks (true positives, denoted
by “Hit”), the number of undetected anomalies (false neg-
atives, denoted by “Miss”), the number of detected anoma-
lies/attacks that are not true anomalies (false positives, denoted
by “FP”), and the time required for processing a single
window for a single communication pair.

An anomaly is detected if at least one window is reported
as an anomaly during the anomaly occurrence. The number
of false positives is then given as the number of windows
wrongly marked as an anomaly. On the contrary, an anomaly
is undetected (false negative) if no window is marked as a
suspicious during the anomaly occurrence.

In the evaluation, we also measure the total number of DPAs
representing all communication pairs p ∈ D in the smart grid
network, given as |A| = ∑

p∈D |Ap|.

C. Effect of Model Reduction

Before we move to the main part of experimental evalua-
tion targeting efficiency and accuracy, we conduct experiments
showing the effect of the proposed model reduction.

Table V shows the number of DPAs obtained during
the DPA learning ( A ) for a particular dataset. The column
“Original” denotes the total number of DPAs learned from
a particular dataset for each communication pair of devices.
The column “Model red. (ε = 0.0)” denotes the num-
ber of automata after removing the identical ones. Finally,
the column “Model red. (ε = 0.1)” denotes the number
of automata left after the model reduction with the error
bound ε = 0.1. Removing identical automata has the biggest
impact on the number of automata. However, the model reduc-
tion with ε = 0.1 further notably decreases the number of
automata, e.g., in the case of HMI-to-IEC104 we could
use for the detection only four DPAs instead of 13 (reduction
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TABLE VI
SUMMARY RESULTS COMPARING DETANO AND AUTANOM ON IEC 104 BENCHMARKS. THE COLUMN “WINDOWS” DENOTES THE TOTAL NUMBER OF

PROCESSED FIVE-MINUTES TIME WINDOWS ACROSS ALL COMMUNICATION PAIRS. THE COLUMN “HIT” DENOTES THE NUMBER OF DETECTED

ATTACKS, “MISS” THE NUMBER OF ATTACKS THAT WERE NOT DETECTED, “FP” DENOTES THE NUMBER OF WINDOWS THAT WERE WRONGLY

MARKED AS AN ATTACK, AND “|A|” DENOTES THE TOTAL NUMBER OF MODEL DPAS FOR ALL COMMUNICATION PAIRS

by 69%). This experiment shows how important is to apply
the automata-based reduction on the learned model.

D. Protocol IEC 104

The first experiment evaluates the accuracy and performance
of the proposed automata-based approach on IEC 104 commu-
nication. We compare the results of DETANO with the original
approach implemented in tool AUTANOM. The summary
results are shown in Table VI.

In the first part of table, all datasets except HMI-MITM and
RTU-MITM contain a normal traffic, so these datasets are used
for method validation. We therefore learned the model from
the initial part of the dataset traffic (∼10 % of the packets).
Such learning sample is not as comprehensive as the one used
in the second part of the table. Representatives of some kinds
of normal traffic may be missing, which can lead to a higher
number of false positives. To compensate for this, we selected
a slightly higher threshold θ = 0.2.

For the datasets in the second part of the table where each
dataset contains some anomaly, a special traffic sample was
used for the model learning, created with the learning in mind.
In particular, for datasets from the VRT benchmark, we used
a learning (normal) traffic consisting of 381,666 packets with
a duration ∼2 days and for datasets from BUT we used a
learning traffic consisting of 58,930 packets with a duration
∼3 days. For these datasets, we selected detection threshold
θ = 0.13.

In all experiments from both parts of the table, removing
identical model DPAs (model reduction with the thresh-
old ε = 0.0) was sufficient to keep the number of

model DPAs small. The detection phase did not suffer from
any performance issues and the model reduction was not
needed.

a) Improved Precision: Table VI shows that the tool
DETANO eliminates almost all false positives introduced by
AUTANOM. Namely, 2,521 FPs in all datasets of AUTANOM

were cut down to 3 FPs of DETANO. False positives
were hence reduced by 99.9 %. An example of Euclid dis-
tance obtained from Eq. (2) for selected datasets comparing
DETANO and AUTANOM is depicted in Fig. 12. It is apparent
that DETANO smoothed most of the values corresponding to
false positives while keeping peaks with anomalies, see, e.g.,
windows 118–132 in Fig. 12 (a) and (d).

Despite this FP reduction, the detection stays very precise.
In particular, we missed only one attack, dos-attack, that
could not be detected by our automata-based approach. All
other missed attacks (marked by ∗) are beyond the scope of
our approach because these attacks aim at features that are
not trackable by DPA models. In particular, changes in IOA
objects are not considered for the monitoring, thus, they are
not represented by DPAs (cf. Section III-A).

The fact that AUTANOM detects these attacks is rather a
side effect of its unacceptable high number of FPs, among
which it accidentally hits the right windows with attacks. For
instance, in case of HMI-MITM, AUTANOM marks 11 % of
incoming windows as an anomaly, however, most of them
are FPs. This number of FPs would require an adminis-
trator to resolve a false alarm approximately every hour
which is not feasible. This is even more pronounced in the
case of HMI-value-change, where almost every incoming
window is marked as an anomaly.
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Fig. 12. Comparison of the Euclid Distance Values Obtained From Eq. (2) for DETANO (a), (b), (c) and AUTANOM (d), (e), (f).

The high precision is not paid for by a performance
decline. On all datasets (except of 10122018-104Mega
having the lowest number of windows where the process-
ing of a single window takes 1 sec) we keep the time for
processing a single window for a communication pair below
0.1 sec.

b) Diagnostic Traces: Our approach is able to provide use-
ful diagnostic traces for detected anomalies allowing to track
possible sources of problems. Below, we discuss a couple of
interesting cases.

• connection-loss: For anomalies occurring within
this dataset, we provide additional information about the
most probable missing conversations Emiss = {〈36, 3〉}.
In this case the device stopped responding and hence
the absence of this message was indeed marked as an
anomaly.

• HMI-report-block: In this scenario, the attacker
blocks and re-sends messages which yields into
duplicated messages 〈3, 20〉. We provide addi-
tional diagnostic traces containing Ebad = {〈100, 6〉
〈100, 7〉〈3, 20〉 〈3, 20〉〈5, 20〉 · · · 〈100, 10〉, . . . } and
Emiss = {〈100, 6〉〈100, 7〉〈3, 20〉 〈5, 20〉 · · · 〈100, 10〉},
based on which the administrator can reveal the
problem.

• HMI-masquerating: In this scenario, the attacker
generates cyclic requests yielding to a duplication of
〈100, 7〉 messages. From our diagnostic trace Ebad =
{〈100, 6〉〈100, 7〉〈100, 7〉〈1, 20〉 · · · 〈100, 10〉, . . . } we are
able to see duplicated messages 〈100, 7〉.

It is evident from the scenarios above that the diagnostic
traces generated by the detection system provide a valu-
able information for revealing the essence of an anomaly.
Based on these traces, an administrator may quickly find
an effective measure against a device failure or cyber
attack.

TABLE VII
RESULTS OF DETANO ON MMS BENCHMARKS

E. Protocol MMS

In the second experiment, we evaluated the accuracy and
performance of DETANO on MMS benchmarks. We did not
include AUTANOM as it was tailored for IEC 104 only. Since
the MMS benchmarks contain separate learning parts, we
set the same detection threshold θ = 0.13 as for IEC 104
with the learning part. For the ENCS benchmark, the learn-
ing traffic had 13,043 packets with a duration ∼15 minutes,
and for the GICS benchmark the learning traffic had 2,706
packets with a duration ∼ 1.5 hours. Regarding the model
reduction, we again removed only identical DPAs. Since the
MMS benchmarks capture only a shorter-term communication
(less than 2 hours), we set the incoming window duration to
60 sec.

a) Improved Precisions: From Table VII we can see results
concerning the anomaly detection in MMS communication
involving a couple of scenarios. First observe, that DETANO

is able to detect all anomalies except gics-interrupt.
We are able to detect the anomalies occurring within this
dataset with a smaller detection threshold θ = 0.09. Further,
we emphasize that our detection technique introduces no false
positives. As well as in the case of the IEC 104 traffic, the
processing of a single window for a communication pair took
less than 0.1 sec.
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TABLE VIII
OVERVIEW AND COMPARISON OF SELECTED AD METHODS. ATTACK CODES: CL - CONNECTION LOSS, DA - DOS ATTACK,

IA - INJECTION ATTACK, SA - SCANNING ATTACK, WA - SWITCHING ATTACK, MM - MESSAGE MODIFICATION

b) Diagnostic Traces: Below, we discuss some interesting
cases of providing diagnostic traces for MMS anomalies.

• gics-lost-connection: In this scenario, a pair
of devices stops responding. Regarding a diagnostic
trace, we report Emiss = {〈0, 4〉〈1, 4〉} (i.e, confirmed-
request/response PDUs with read service), which is
indeed a key missing conversation in the communication.

• gics-scanning: In this scenario, a malicious
device starts scanning resources. Together, with an
anomaly alert, we provide a diagnostic trace containing
Ebad = {〈0, 12〉〈1, 12〉, . . . }, i.e., the confirmed-req/resp
PDUs with GetNamedVariableListAttributes
service.

The diagnostic traces provide beneficial information about the
anomalies. Operators can immediately infer the anomaly by
inspecting a few provided conversations. For selected attacks
(e.g., gics-scanning), the diagnostic traces directly reveal
the intentions of an intruder.

F. Discussion

From the experimental evaluation it is evident that extended
functionality implemented in DETANO removes virtually all
false positives while keeping the detection still very precise,
which is a crucial objective for a real-world deployment.
Another important outcome of the experiments is that the
newly proposed multiple-model detection does not negatively
affect the performance of the detection system. The number of
models (automata) ranges from 1 to 123 (after model reduction
with parameter ε = 0.0). Moreover in the real-world deploy-
ment, if the number of models becomes too high, it is possible
to apply more radical reductions for the price of detection
precision. We also showed that the provided diagnostic traces
are a very useful tool for a precise localization of the anomaly.

In the real-world setting may occur packet delays or retrans-
missions in the network. If this happens during the learning
phase, we build a model with delayed or retransmitted packets
and hence in the detection, our model is able to cope with such
events without an anomaly alert. If the learning traffic does not
contain this kind of messages, the detection system marks such
conversations as suspicious since they are anomalous accord-
ing to the model. (In fact, it depends on the frequency of such
incidents. If their frequency is low, the retransmitted or delayed
communication does not affect much a distribution describing
overall communication and this small difference can be hidden
behind the threshold.)

V. COMPARISON TO OTHER WORK

In this section, properties of the proposed method are com-
pared with selected ICS anomaly detection techniques. Due to
the fact that the details of implementations and datasets are
not commonly available, the presented comparison is based
solely on the information provided by the authors in their arti-
cles. The criteria take into account the representation of the
model, the learning and detection process and the approach
to assessment. Table VIII presents anomaly detection methods
with respect to the following categories:

• Model: All considered methods propose a model of ICS
communication that is based on characterizing a base-
line. Different types of models are employed, most often
statistical, automata, and probabilistic.

• Construction: Usually, the model is computed automat-
ically from the sample data, but there are also methods
that require a user to manually provide a system specifi-
cation. The detection methods are specific to the model
used. For simple statistical models, they determine if a
tested value lies within the specified boundaries. In the
case of automata, the acceptance of an input string is
evaluated or the distance between automata is computed.

• Protocols: A method is applicable to a number of ICS
protocols or is specific to a single one. Also, the authors
present the method for various protocols depending on
the availability of datasets and experimental environment.
The most common are Modbus, IEC 104, DNP3, or S7.

• System: To evaluate the performance of detection meth-
ods the availability of datasets is essential. Many works
use datasets acquired from either a real-world ICS system
or emulated/virtual environment. A few of the presented
works claim to use several ICS systems during the
demonstration and evaluation.

• Datasets: Many methods were demonstrated and eval-
uated using private datasets. There are not so many
publicly available datasets and if so most of them are
generated in an experimental testbed rather than obtained
from a real system. Most of available datasets are in form
of CSV traces, some datasets contain full captured data.

• Evaluation: Most of the works evaluate the performance
in terms of false-positive rate (FPR). Some of them
discuss capabilities of the proposed method without
providing quantitative evaluation.

• Attacks: Some authors also present the capabilities of
the methods to detect various attacks. The types of
attacks differ, but the most common are DoS attacks and
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TABLE IX
SUMMARY OF ANOMALY DETECTION RESULTS. (✓ SUCCESSFUL

DETECTION, ✗ NOT DETECTED, ◦ PARTIALLY DETECTED)

injection attacks as these significantly modify the traffic
characteristics.

The mainstream techniques employed for ICS anomaly
detection found in the literature are statistical methods,
automata, and probabilistic models. The presented experiments
demonstrate that our DFA approach can detect most of the
network attack types considered in the related works (see
Table VIII, row Attacks). One exception is the message mod-
ification (MM) attack that is detectable by the autoregression
method [47]. This limitation is because we do not analyze
message payloads. If message modification does not modify
the message type nor introduces new messages in the com-
munication, it is not detectable by our method. Also, the DoS
attack, easily detectable by statistical methods, is not identified
if the individual requests obey the expected communication
pattern. The overview of attacks detectable by our system with
corresponding MITRE classification is given in Table IX.

As mentioned above, DoS attack is not detectable by
the automata-detection because a DPA models only relative
frequency of the learned conversations, thus, the same DPA is
created for an ICS sequence that occurs ten times in the time
window (normal behavior) or thousand times (DoS attack).
Nevertheless, DoS attack can be easily detected by a simple
statistical analysis. Table IX also lists a few partial results
marked with (◦) for the MITM attack and message modi-
fication. Since our system does not analyze packet payload,
it is not able to detect packets with modified values in the
payload. However, such values usually invoke a new reac-
tion of the ICS system that is trackable by our detection
tool. This was demonstrated by our experiments with IEC 104
(Table VI, datasets HMI-MITM, RTU-MITM) and with MMS
(Table VII, dataset gics-modified) where unexpected IEC
104 or MMS response message were detected. We denote this
result as partial (◦) which means that we did not capture the
original attack but a response for the attack.

VI. CONCLUSION

Industrial control networks use segmentation and perime-
ter protection for the critical parts of the system, which was
rendered insufficient due to new attack vectors identified and
successfully exploited by an intruder. Once the intruder gets
into a protected Operation Technology (OT) segment, he/she

may cause a serious damage to the controlled physical environ-
ment. This paper described a method for monitoring smart grid
networks and automatic detection of deviations from the nor-
mal communication. A detected anomaly either corresponds
to an attack or malfunctioning device, both of which require
immediate operator’s attention.

The proposed method constructs probabilistic automata
from the observed ICS communication that represent a lan-
guage by which ICS devices in the smart grid network usually
talk. The method employs application-level information in
order to model the ICS communication accurately. Potential
attackers need to follow the exact steps of the system com-
munication to go undetected, which significantly limits their
movements. Compared to other approaches commonly based
on statistical, automata, and probabilistic models, the method
detects a wider range of attack types (see Table IX). In addi-
tion, our method provides a trace for the identified anomaly,
which is difficult to obtain by machine learning approaches,
for example. These diagnostic traces help an administrator fur-
ther investigate an incident and determine the root cause of a
system failure.

An essential requirement for practical deployment of
anomaly detection is an almost zero false-positives rate. The
previous experiments demonstrated that the FP rate of the
proposed method is very low or, in many cases, even zero.
Another practical requirement is overall complexity and con-
servative resource demands. Using large datasets of ICS
communication, we proved that the computed model is very
compact even for millions of observed communication flows.
Also, model computation and anomaly detection algorithms
are computationally feasible but this task is done offline during
the training phase only.

The presented method was implemented and integrated
in the network monitoring and anomaly detection tool8 for
further testing in real-world environments.
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